
AFIPS
CONFERENCE
PROCEEDINGS
VOLUME 25

1964
SPRING JOINT

COMPUTER
CONFERENCE

The ideas and opinions expressed herein are solely
those of the authors and are not necessarily repre
sentative of or endorsed by the 1964 Spring Joint
Computer Conference Committee or the American
Federation of Information Processing Societies.

Library of Congress Catalog Card Number: 55-44701

Copyright © 1964 by American Federation of Information Processing
Societies, P. O. Box 1196, Santa Monica, California. Printed in the United
States of America. All rights reserv:ed. This book or parts thereof, may not
he reproduced in any form without permission of the publishers.

Sole Distributors in Great Britain, the British
Commonwealth and the Continent of Europe:

CLEA VER-HUME PRESS
10-15 St. Martins Street

London W. C. 2

ii

LIST OF JOINT COMPUTER CONFERENCES
1. 1951 Joint AlEE-IRE Computer Confer

ence, Philadelphia, December 1951
2. 1952 Joint AIEE-IRE-ACM Computer Con

ference, New York, December 1952
3. 1953 Western Computer Conference, Los

Angeles, February 1953
4. 1953 Eastern Joint Computer Conference,

Washington, December 1953
5. 1954 Western Computer Conference, Los

Angeles, February 1954
6. 1954 Eastern Joint Computer Conference,

Philadelphia, December 1954
7. 1955 Western Joint Computer Conference,

Los Angeles, March 1955
8. 1955 Eastern Joint Computer Conference,

Boston, November 1955
9. 1956 Western Joint Computer Conference,

San Francisco, February 1956
10. 1956 Eastern Joint Computer Conference,

N ew York, December 1956
11. 1957 Western Joint Computer Conference,

Los Angeles, February 1957
12. 1957 Eastern Joint Computer Conference,

Washington, December 1957
13. 1958 Western Joint Computer Conference,

Los Angeles, May 1958

14. 1958 Eastern Joint Computer Conference,
Philadelphia, December 1958

15. 1959 Western Joint Computer Conference,
San Francisco, March 1959

16. 1959 Eastern Joint Computer Conference,
Boston, December 1959

17. 1960 Western Joint Computer Conference,
San Francisco, May 1960

18. 1960 Eastern Joint Computer Conference,
New York, December 1960

19. 1961 Western Joint Computer Conference,
Los Angeles, May 1961

20. 1961 Eastern Joint Computer Conference.
Washington, December 1961

21. 1962 Spring Joint Computer Conference,
San Francisco, May 1962

22. 1962 Fall J oint Computer Conference,
Philadelphia, December 1962

23. 1963 Spring Joint Computer Conference,
Detroit, May 1963

24. 1963 Fall Joint Computer Conference, Las
Vegas, November 1963

25. 1964 Spring Joint Computer Conference,
Washington, April 1964

Conferences 1 to 19 were sponsored by the National Joint Computer Com
mittee, predecessor of AFIPS. Back copies of the proceedings of these
conferences may be obtained, if available, from:

• Association for Computing Machinery, 14 E. 69th St.,
New York 21, N. Y.

• American Institute of Electrical Engineers, 345 E. 47th St.,
New York 17, N. Y.

• Institute of Radio Engineers, 1 E. 79th St., New York 21, N. Y.
Conferences 20 and up are sponsored by AFIPS. Copies of AFIPS Con
ference Proceedings may be ordered from the publishers as available at
the prices indicated below. Members of societies affiliated with AFIPS
may obtain copies at the special "Member Price" shown.

List Member
Volume

I
Prne Price Publisher

20

21

22

23
24
25

$12.00 $7.00 Macmillan Co., 60 Fifth Ave., New York 11,
N. Y.

6.00 6.00 National Press, 850 Hansen Way, Palo Alto,
Calif.

(LOO 4.00 Sparatan Books, Inc., 301 N. Charles
Baltimore 1, Md.

1000 5.00 Sparatan Books, Inc.
16.50 8.25 Sparatan Books, Inc.

Sparatan Books, Inc.

NOTICE TO LIBRARIANS

This volume (25) continues the Joint Computer Conference
Proceedings (LC55-44701) as indicated in the above table. It
is suggested that the series be filed under AFIPS and cross
referenced as necessary to the Eastern, Western, Spring, and
Fall Joint Computer Conferences.

St.,

CONTENTS

Preface

COMPILERS: TUTORIAL
Programming Systems and Languages: A Historical Survey
Bounded Context Translation
Syntax-Directed Compiling

TECHNICAL SESSION
A general-Purpose Table-Driven Compiler

APPLICATIONS
A Computer Technique for Producing Animated Movies
Simulation of Biological Cells by Systems

Composed of String-Processing Finite
Automata

Computer Simulation of Human Interaction
in Small Groups

Real-Time Computer Studies of Bargaining
Behavior: The Effects of Threat Upon
Bargaining

Real-Time Quick-Look Analysis for the
OGO Satellites

SOCIAL IMPLICATIONS OF DATA PROCESSING
An Ethos for the Age of Cyberculture
Information Processing and Some Implications

for More Rational Economic Activities
The Computer Revolution and the Spirit of Man

NUMERICAL ANALYSIS
New Difference Equation Technique for Solving Non

Linear Differential Equations
Discontinuous System Variables in the Optimum

Control of Second Order Oscillatory Systems
With Zeros

Two New Direct. Minimum Search Procedures for
Functions of Several Variables

COMMAND AND CONTROL
On the Evaluation of the Cost-Effectiveness of

Command and Control Systems

Page

S. ROSEN 1
R. M. GRAHAM 17

T. E. CHEATHAM, JR. 31
K. SATTLEY

S. WARSHALL 59
R. M. SHAPIRO

K. C. KNOWLTON 67
W. R. STAHL 89

R. W. COFFIN
H. E. GOHEEN

J. T. GULLAHORN 103
J. E. GULLAHORN

R. J. MEEKER 115
G. H. SHURE

W. H. MOORE, JR.
R. J. COYLE 125

J. K. STEW ART

A. M. HILTON 139
H. E. STRINER 155

R. H. DAVIS 161

J. M. HURT 169

W. NEVIUS 181
H. TITUS

B. WITTE 195

N. P. EDWARDS 211

Fractionization of the Military Context
Some Problems Associated With Large

Programming Efforts
Some Cost Contributors to Large-Scale Programs

HYBRID SYSTEMS: TUTORIAL
Hybrid-Computation ... What is it? ... Who.

Needs it? ...

HYBRID SYSTEMS: TECHNICAL
A Hybrid Analog-Digital Parameter Optimizer

for Astrac II
A Hybrid Analog-Digital Pseudo-Random Noise

Generator
A 2MC Bit-Rate Delta-Sigma Modulation System

for Analog Function Storage

ARTIFICIAL INTELLIGENCE
A Computer-Simulated On-Line Learning Control

System

A Heuristic Program to Solve Geometric-Analogy
Problems

Experiments With a Theorem-Utilizing Program

EVALUATING COMPUTER SYSTEMS
Analytical Technique for Automatic Data Processing

Equipment Acq.uisition
Cost-Value Technique for Evaluation of Computer

System Proposals
The Use of a Computer to Eyaluate Computers

MULTI-PROGRAMMING
A General-Purpose Time-Sharing System

Remote Computing: An Experimental System Part 1 :
External Specifications

Remote Computing: An Experimental System Part 2 :
Internal Design

Multi-Computer Programming for a Large-Scale,
Real-Time Data Processing System

LOGIC, LAYOUT AND ASSOCIATIVE MEMORIES
On the Analysis and Synthesis of Three-Valued

Digital -Systems
An Algorithm for Placement of Interconnected

Elements Based on Minimum Wire Length
Studies of an Associatively Addressed Distributed

Memory
Design of an Experimental Multiple Instantaneous

Response File

F. B. THOMPSON
A. E. DANIELS

B. NANUS
L. FARR

Page

219

231

239

T. D. TRUITT 249

B. A. MITCHELL, JR. 271

R. L. T. HAMPTON 287

H. HANDLER 303
R. H. MANGELS

J. D. HILL 315
G. McMuRTY

K. S. Fu
T. G. EVANS 327

L. E. TRAVIS 339

S. ROSENTHAL 359

E. O. JOSLIN 367

D. J. HERMAN 383

E. G. COFFMAN, JR. 397
J. 1. SCHWARTZ

C. WEISSMAN
T. M. DUNN 413

J. H. MORRISSEY
J. 1\1:. KELLER 425
E. C. STRUM
G. H. YANG

G. E. PICKERING 445
G. A. ERICKSON

E. G. MUTSCHLER

J. SANTOS 463
H. ARANGO

R. A. RUTMAN 477

G. J. SIMMONS 493

E. L. YOUNKER 515
C. H. HECKLER, JR.

D. P. MASHER
J. M. YARBOROUGH

INFORMATION RETRIEVAL TUTORIAL
Research in Automatic Generation of Classification

Systems
Information Storage and Retrieval :. Analysis of the

State-of-the-Art

INFORMATION RETRIEVAL: TECHNICAL
Training a Computer to Assign Descriptors to

Documents: Experiments in Automatic Indexing
Experiments in Information Correlation

Some Flexible Information Retrieval System~ Using
Structure Matching Procedures

BUSINESS DATA PROCESSING
Two New Improvements in Sorting Techniques
Conceptual Models for Determining Information

Requirements

C.

E. H.

Page

H. BORKO 529

G. ARNOVICK 537
J. A. LILES

A. H. ROSEN
J. S. WOOD

M. E. STEVENS 563
G. H. URBAN
J. L. KUHNS 577

A. MONTGOMERY
G. SALTON 587

SUSSENGUTH, JK

M. A. GOETZ 599
J. C. MILLER 609

PREFACE

The following pages contain the papers which were presented and
discussed in the formal technical and tutorial sessions of the 1964 Spring
Computer Conference. The Conference theme, "Computers '64: Problem
Solving in a Changing World," is intended to suggest the significanc~ of
this year as the mid-point between the infancy of electronic digital conl
putation (the first elements of ENIAC began operating in June 1944) and
the Orwellian year 1984, which symbolizes to some critics an unhappy
potential which might be achieved if we do not wisely guide our rapidly
advancing technology. Society is increasingly concerned with the broad
adjustments that must take place if man is to gain the maximum long-term
advantage from the computer. Reflections of this concern and of the
increasing uses to which computers are being applied are, among others,
the papers dealing with social implications and the tutorial papers on hy
brid systems, compilers, and information retrieval.

This volume, a product of the 25th in the series of Joint Computer
Conferences, for the first time includes an -index. Thanks for this useful
addition are due to the authors and session chairmen, who were most -coop
erative in getting "final copy" submitted on schedule, and to our publisher,
who assumed the burden of preparing the index. Appreciation must also
be expressed for the contributions of many other persons, who participated
as conference planners, panel members, and reviewers. A special acknowl
edgement is made to the members of the Technical Program Committee,
who willingly assumed the heavy burden of assembling the formal program.

HERBERT R. KOLLER

General Chairman
1964 Spring Joint Computer Conference

PROGRAMMING SYSTEMS AND LANGUAGES
A Historical Survey

Saul Rosen
Professor of Mathematics and Computer Sciences

Purdue University
West Lafayette, Indiana

1. Introduction. Twenty years ago, in 1943,
there were no Electronic computers. Ten years
ago, in 1953, a large number of Electronic cal
culators were in use, but the general purpose
stored program electronic computer was still
quite rare. The Coincident Current Magnetic
Core memory which finally provided both re
liability and speed at reasonable cost had only
just been developed, and was still. a laboratory
device. A number of specially designed, mostly
one of a kind, computers were in operation at
Universities and government' research centers.
Commercially, a few Univac I computers had
been delivered and were operating with great
reliability at rather low speed. A few IBM 701's
provided high speed but with very poor reliabil
ity. In 1953 most computing was being done by
the Card-Programmed Calculator, an ingenious
mating of an Electromechanical Accounting

\ Machine with an Electronic Calculating Punch.

Between 1954 and 1958 many hundreds of
Electronic computers were installed. This was
the era of the Vacuum Tube Computer, with
Magnetic Drum storage on lower priced ma
chines, and Magnetic Core storage on the larger
more expensive ones. By 1959 the first transis
torized computers had been delivered, and the
production of vacuum tube computers ceased
almost immediately, Low cost magnetic core
memories made the magnetic drum almost ob
solete except as auxiliary storage. Since 1959
thousands of computers have been delivered and

1

installed, including many hundreds of very
large computers. Electronic Computing and
Data-processing have become part of the every
day industrial and commercial environment, and
Electronic Computer manufacturing and pro
gramming has become a multi-billion dollar in
dustry.

Because of this rapid, almost explosive pat-
tern of gro'wth mod systems, both in the hard~
ware and software area could not be adequately
planned, and it was often not possible to make
adequate evaluations of old systems in time to
use such evaluations in the design of new ones.

2. Developments up to 1957. The first pro
gramming systems were systems of subroutines.
Subroutines were in use on the pre-electronic
Mark I, a large electromechanical computer
built as a joint effort by IBM and Harvard Uni
versity in the early forties.! The EDSAC at the
University of Manchester was probably the first
stored program Electronic Computer in oper
ation (1949). The classic text on programming
the EDSAC, by Wilkes, Wheeler and Gill 2

makes the subroutine library the basis of pro
gramming, and stresses the automatic relocation
feature of the EDSAC, which makes such
libraries easy to use.

The IBM Card-Programmed Calculator, de
veloped between 1947 and 1949, was not very
fast by modern standards, but was an extremely
versatile device. Operation codes were deter-

2 PROCEE'DINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

mined by the wiring of control boards. In
genuity could be expended on designing boards
to optimize performance on particular problems
that taxed the capacity of the computer, or it
could be expended on the design of general pur
pose boards for use in large classes of problems.
A set of general purpose boards represented a
language for the CPC, and a number of lan
guages were tried and used.3 Most Scientific
installations finally settled on a wiring that
made the CPC appear to be a floating point ma
chine with three-address logic, and with a
standard vocabulary of built-in routines like
Sq,uare Root, Sine, Exponential, etc. Experi
ence with the CPC systems had many influences
on the programming systems that were designed
for the stored-program computers that fol
lowed.

One of the most important of the early auto
matic programming groups was associated with
the Whirlwind project at MIT. Whirlwind,
which was built between 1947 and 1951, was a
fast but very basic computer. With only a 16
bit word it had a very limited instruction code,
and very limited high speed storage. Even rela
tively simple calcula,tions required the use of
multi-precision techniques. The very difficulty
of using the machine in its own language pro
vided great incentive toward the development
of programming languages. The Summer Ses
sion Computer at MIT was one of the early
interpreti ve systems, designed to make the
Whirlwind computer available to students at a
summer course in computing at MIT. These
~.arly developments led to the design of a quite
elaborate "Comprehensive System" for Whirl
wind.4 At the associated Lincoln Laboratories
the groundwork was laid for the very large pro
gramming systems that were developed in con
nection with Sage and other military projects.s

The first large scale electronic computer
3;vailable commercially was the Univac I
(1951. The first Automatic Programming
group associated with a commercial computer
effort was the group set up by Dr. Grace Hopper
in what was then the Eckert-Mauchly Computer
Corp., and which later became the Univac Divi
sion of Sperry Rand. The Univac had been de
signed so as to be relatively easy to program in
its own code. It was a decimal, alphanumeric

machine, with mnemonic instructions that were
easy to remember and use. The 12 character
word made sca)ing of many fixed-point calcula
tions fairly easy. It was not always easy to see
the advantage of assembly systems and com
pilers that were often slow and clumsy on a
machine with only 12,000 characters of high
speed storage (200 microseconds average ac
cess time per 12 character word). In spite of
occasional setbacks, Dr. Hopper persevered in
her belief that programming should and would
be done in problem-oriented languages., Her
group embarked on the development of a whole
series of languages, of which the most used was
probably A2, a compiler that provided a three
address floating point system by compiling calls
on floating point subroutines stored in main
memory.6,7 The Algebraic Translator AT3
(Math-Matic 8) contributed a number of ideas
to Algol and other compiler efforts, but its own
usefulness was very much limited by the fact
that Univac had become obsolete as a scientific
computer before AT3 was finished. The BO
(Flow-Matic 8,9) compiler was one of the major
influences on the COBOL language development
which will be discussed at greater length later.
The first sort generators 10 were produced by the
Univac programming group in 1951. They also
produced what was probably the first large
scale symbol manipulation program, a program
that performed differentiation of formulas sub
mitted to it in symbolic form.1 1

Another and quite independent group at Uni
vac concerned itself with an area that would
now be called computer-oriented compilers.
Anatol Holt and William Turanski developed a
compiler and a concept that they called GP
(Generalized Programming 12) • Their system
assumed the existence of a very general sub
routine library. All programs would be written
as if they were to be library programs, and the
library and system would grow together. A
program was assembled at compile time by the
selection and modification of particular library
programs and parts of library programs. The
program as written by the programmer would
provide parameters and specifications according
to which the very general library programs
would be made specific to a particular problem.
Subroutines in the library were organized in
hierarchies, in which subroutines at one level

PROGRAMMING SYSTEMS AND LANGUAGES 3

could call on others at the next level. Specifica
tions and parameters could be passed· from one
level to the next.

The system was extended and elaborated in
the GPX system that they developed for Univac
II. They were one of the early groups to give
serious attention to some difficult problems rela
tive to the structure of programs, in particular
the problem of segmenting of programs, and
the related problem of storage allocation.

Perhaps the most important contribution of
this group was the emphasis that they placed on
the programming system rather than on the
programming language. In their terms, the
machine that the programmer uses is not the
hardware machine, but rather an extended ma
chine consisting of the hardware enhanced by
a programming system that performs all kinds
of service and library maintenance functions in
addition to the translation and running of pro
grams.

The IBM 701 (1952) was the first commer
cially marketed large scale binary computer.
The best known programming language on the
701 was Speedcode,13,14 a language that made
the one address, binary, fixed point 701 appear
to be a three address decimal floating point ma
chine with index registers. More than almost
any other language, Speedcode demonstrated
·the extent to which users were willing to sacri-
fice computer speed fOF the sake of program
ming convenience.

The PACT15,16 system on the 701 set a prec
edent as the first programming system designed
by a committee of computer users. It also set a
precedent for a situation which unfortunately
has been quite common in the computer field.
The computer for which the programming
system was developed was already obsolete be
fore the programming system itself was com
pleted. P ACT ideas had a great deal of
influence on the later developments that took
place under the auspices of the SHARE organ
ization.

Delivery of the smaller, medium scale mag
netic-drum computers started in 1953, and by
1955-56 they were a very important factor in
the computer field. The IBM 650 was by far the
most popular of the early drum computers. The

650 was quite easy to program in its own lan
guage, and was programmed that way in many
applications, especially in the data-processing
area. As a scientific computer it lacked floating
point hardware, a feature that was later made
available. A number of interpretive floating
point systems were developed, of which the most
popular was the one designed at the Bell Tele
phone Laboratories.17 This was a three address
floating point system with automatic looping
and with built in Mathematical subroutines. It
was a logical continuation of the line of systems
that had started with the general purpose CPC
boards, and had been continued in 701 Speed
code. It proved that on the right kind of com
puter an interpretive system can provide an
efficient effective tool. Interpretive systems fell
into disrepute for a number of years: They are
making a very strong comeback at the present
time in connection with a number of so-called
micro-programmed computers that have re
cently appeared on the market.

The 650 permitted optimization of programs
by means of proper placement of instructions on
the drum. Optimization was a very tedious job
f'or the programmer, but could produce a very
considerable improvement in program running
time. A program called SOAP, a Symbolic
Optimize:c. and Assembly Programs, combined
the features of symbolic assembly and auto
matic optim.ization. There is some" doubt a~ to
whether a symbolic assembly system would have
received very general acceptance on the 650 at
the time SOAP was introduced. The optimiza
tion feature was obviously valuable. Symbolic
assembly by itself on a decimal machine without
magnetic tape did not present advant~ges that
were nearly as obvious.

The major competitor to the 650 among the
early magnetic drum computers was the Data
tron 205, which eventually became a Burroughs
product. It featured a 4000 word magnetic
drum storage plus a small 80 word fast access
memory in high speed loops on the drum. Effi
cient programs had to make very frequent use
of block transfer instructions, moving both data
and programs to high speed storage. A number
of interpretive and assembly system were built
to provide programmed floating point instruc
tions and some measure of automatic use of the

4 PROCEE'DINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

high speed loops. The eventual introduction of
floating point hardware removed one of the
principal advantages of most of these systems.
The Datatron was the first commercial system
to provide an index register and automatic re
location of subroutines, features provided by
programming systems on other computers. For
these reasons among others the use of machine
code programming persisted through most of
the productive lifetime of the Datatron 205.

One of the. first Datatron computers was in
stalled at Purdue University. One of the first
Algebraic compilers was designed for the Data
tron by a group at Purdue headed by Dr. Al
Perlis. This is another example of a compiler
effort based on a firm belief that programming
should be done in problem-oriented languages,
even if the computer immediately available may
not lend itself too well to th~ use of such lan
guages. A big problem in the early Datatron
systems was the complete lack of alphanumeric
input. The computer would recognize pairs of
numbers as representing characters for print
ing on the flexowriter, but there was no way to
produce the same pair of numbers by a single
key stroke on any input preparation device.
Until the nluch later development of new input
output devices, the input to the Purdue compiler
was prepared by manually transcribing the
source language into pairs of numbers.

When Dr. Perlis moved to Carnegie Tech the
some compiler was written for the 650, and was
named IT.I8 IT made use of the alphanumeric
card input of the 650, and translated from a
simplified algebraic language into SOAP lan
guage as output. IT and languages derived
from it became quite popular on the 650, and on
other computers, and have had great influence
on the later development of programming lan
guages. A language Fortransit provided trans
lation from a subset of Fortran into IT, whence
a program would be translated into SOAP, and
Slofter two or more passes through SOAP it
wou Id finally emerge as a machine language
program. The language would probably have
been more popular if its translation were not
such an involved and time-consuming process.
Eventually other, more direct translators were
built that avoided many of the intermediate
passes.

The 701 used a rather unreliable electrostatic
tube storage system. When Magnetic core stor
age became available there was some talk about
a 701M computer that would be an advanced
701 with core storage. The idea of a 701M was
soon dropped in favor of a completely new com
puter, the 704. The 704 was going to incorpo
rate into hardware many of the features for
which programming systems had been devel
oped in the past. Automatic floating point hard
ware and index registers would make interpre
tive systems like Speedcode unnecessary.

Along with the development of the 704 hard
ware IBM set up a project headed by John
Backus to develop a suitable compiler for the
new computer. After the expenditure of about
25 man years of effort they produced the first
Fortran compiler.I9•20 Fortran is in many ways
the most important and most impressive devel
opment in the early history of automatic pro
gramming.

Like most of the early hardware and soft
ware systems t Fortran was late in delivery, and
didn't really work when it was delivered. At
first people thought it would never be done.
Then when it was in field test, with many bugs,
and with some of the most important parts un
finished, many thought it would never work. It
gradually got to the point where a program in
Fortran had a reasonable expectancy of com
piling all the way through and maybe even of
running. This gradual change of status from
an experiment to a working system was true of
most compilers. It is stressed here in the case
of Fortran only because Fortran is now almost
taken for granted, as if it were built into the
computer hardware.

In -the early days of automatic programming,
the most important criterion on which a com
piler was judged was the efficiency of the object
code. "You only compile once, you run the
object program many times," was a statement
often quoted to justify a compiler design phi
losophy that permitted the compiler to take as
long as necessary, within reason, to produce
good object code. The Fort.ran compiler on the
704 applied a number of difficult and ingenious
techniques in an attempt to produce object cod
ing that would be as good as that produced by
a good programmer programming in machine

PROGRAMMING SYSTEMS AND LANGUAGES 5

code. For many types of programs the coding
produced is very good. Of course there are some
for which it is not so good. In order to make
effective use of index registers a very compli
cated index register assignment algorithm was
used that involved a complete analysis of the
flow of the program and a simulation of the
running of the program using information ob
tained from frequency statements and from
the flow analysis. This was very time consum
ing, especially on the relatively small initial 704
configuration. Part of the index register opti
mization fell into disuse quite early but much
of it was carried along into Fortran II and is
still in use on the 704/9/90. In many programs
it still contributes to the production of better
code than can be achieved on the new Fortran
IV compiler.

Experience led to a gradual change of phi
losophy with respect to compilers. During de
bugging, compiling is done over and over again.
One of the major reasons for using a problem
oriented language is to make it easy to modify
programs frequently on the basis of experience
gained in running the programs. In many cases
the total compile time used by a project is much
greater than the total time spent running object
codes. More recent compilers on many comput
ers have emphasized compiling time rather than
run time efficiency. Some may have gone too far
in that direction.

It was the development of Fortran II that
made it possible to use Fortran for large prob
lems without using excessive compiling time.
Fortran II permitted a program to be broken
down into subprograms which could be tested
and debugged separately. With Fortran II in
full operation, the use of Fortran spread very
rapidly. Many 704 installations started to use
nothing but Fortran. A revolution was taking
place in the scientific computing field, but many
of the spokesmen for the computer field were
unaware of it. A number of major projects
that were at crucial points in their development
in 1957-1959 might have proceeded quite differ
ently if there was more general awareness of
the extent to which the use of Fortran had been
accepted in many major 704 installations.
Among these are the Algol project and the SOS
project which are discussed below.

3. Algol and its Dialects. Until quite re
cently, large scale computers have been mainly
an American phenomenon. Smaller computers
were almost worldwide right from the begin
ning. An active computer organization GAMM
had been set up in Europe, and in 1957 a num
ber of members of this organization were ac
tively interested in the design of Algebraic
compilers for a number of machines. They de
cided to try to reach agreement on a common
language for various machines, and made con
siderable progress toward the design of such a
language. There are many obvious advantages
to having generally accepted computer inde
pendent problem oriented languages. It was
clear that a really international effort in this
direction could only be achieved with United
States participation. The President of GAMM
wrote a letter to John Carr who was then Presi
dent of the ACM, suggesting that representa
tives of ACM and of GAMM meet together for
the purpose of specifying an international lan
guage for the description of computing pro
cedures.

The ACM up to that time had served as a
forum for the presentation of ideas in all aspects
of the computer field. It had never engaged in
actual design of languages or systems.

In response to the letter from GAMM, Dr.
Carr appointed Dr. Perlis as chairman of a
committee on programming languages. The
committee set out to specify an Algebraic com
piler language that would represent the Ameri
can proposal at a meeting with representatives
of GAMM at which an attempt would be made
to reach agreement on an internationally ac
cepted language. The ACM committee consisted
of representatives of the major computer manu
facturers, and representatives of several Uni
versities and research agencies that had done
work in the compiler field. Probably the most
active member of the committee was John
Backus of IBM. He was probably the only mem
ber of the committee whose position permitted
him to spend full time on the language design
project, and a good part of the "American Pro
posal" was based on his work.

The ACM committee had a number of meet
ings without any very great sense of urgency.
Subcommittees worked on various parts of the

6 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

language and reported back to the full commit
tee, and in general there was little argument or
disagreement. There is after all very general
agreement about the really basic elements of
an Algebraic language. Much of the language
is determined by the desirability of remaining
as close as possible to Mathematical notation.
This is tempered by experience in the use of
computers and in the design of compilers which
indicates some compromises between the de
mands of desirable notation and those of prac
tical implementation.

At one meeting of the committee Dr. Bauer,
one of the leaders of the GAMM effort, presented
a report on the proposed European language.
Among other things they proposed that English
language key words, like begin, end, for, do, be
used as a world-wide standard. Of course this
is something the American committee would
never have proposed, but it seemed quite rea
sonable to go along with the Europeans in this
matter. Although some of the notations seemed
strange, there were very few basic disagree
ments between what GAMM was proposing, and
what the ACM committee was developing. Dr.
Bauer remarked that the GAMM organization
felt somewhat like the Russians who were meet
ing with constant rebuffs in an effort to set up a
summit meeting. With such wide areas of
agreement why couldn't the ACM-GAMM meet
ing take place?

Although there is quite general agreement
about the basic elements of an Algebraic lan
guage, there is quite considerable disagreement
about how far such a language should go, and
about how some of the more advanced and more
difficult concepts should be specified in the lan
guage. Manipulation of strings of symbols,
direct handling of vectors, matrices, and mul
tiple precision quantities, ways to specify seg
mentation of problems, and the allocation and
sharing of storage; these were some of the
top~cs which could lead to long and lively dis
cussion. The ACM language committee decided
that it was unreasonable to expect to reach an
agreement on an international language em
bodying features of this kind at that time. It
was decided to set up two subcommittees. One
would deal with the specification of a language
which included those features on which it was
reasonable to expect a wide range of agreement.

The other was to work toward the future, to
ward the specification of a language that would
really represent the most advanced thinking in
the computer field.

The short-range committee was to set up a
meeting in Europe with representatives of
GAMM. Volunteers for work on this committee
would have to arrange for the trip to Europe
and back, and were therefore limited to those
who worked for an organization that would be
willing to sponsor such a trip. The ACM was
asked to underwrite the trip for Dr. Perlis.

The meeting of the ACM and GAMM sub
committees was held in Zurich in the spring of
1958, and the result was a Preliminary report
on an International Algebraic Language, which
has since become popularly known as Algol 58.21

With the use of Fortran already well estab
lished in 1958, one may wonder why the Ameri
can committee did not recommend that the
international language be an extension of, or at
least in some sense compatible with Fortran.
There were a number of reasons. The most ob
vious has to do with the nature and the limita
tions of the Fortran language itself. A few
features of the Fortran language are clumsy
because of the very limited experience with
compiler languages that existed when Fortran
was designed. Most of Fortran's most serious
limitations occur because Fortran was not de
signed to provide a completely computer inde
pendent language; it was designed as a compiler
language for the 704. The handling of a number
of statement types, in particular the Do and If
statements, reflects the hardware constraints of
the 704, and the design philosophy which kept
these statements simple and therefore restricted
in order to simplify optimization of object
coding.

Another and perhaps more important reason
for the fact that the ACM committee almost
ignored the existence of Fortran has to do with
the predominant position of IBM in the large
scale computer field in 1957-1958 when the
Algol development started. Much more so than
now there were no serious comp~titors. In the
data processing field the Univac II was much
too late to give any serious competition to the
IBM 705. RCA's Bizmac never really had a
chance, and Honeywell's Datamatic 1000, with

PROGRAMMING SYSTEMS AND LANGUAGES 7

its 3 inch wide tapes, had only very few special
ized customers. In the Scientific field there were
those who felt that the Univac 1103/1103a/1105
series was as good or better than the IBM 701/
704/709. Univac's record of late delivery and
poor service and support seemed calculated to
discourage sales to the extent that the 704 had
the field almost completely to itself. The first
Algebraic compiler produced by the manufac
turer for the Univac Scientific computer, the
1103a, was Unicode, a compiler with many
interesting features, that was not completed
until after 1960, for computers that were al
ready obsolete. There were no other large scale
scientific computers. There was a feeling on the
part of a number of persons highly placed in the
ACM that Fortran represented part of the IBM
empire, and that any enhancement of the status
of Fortran by accepting it as the basis of an
international standard would also enhance
IBM's monopoly in the large scale scientific
computer field.

The year 1958 in which the first Algol report
was published, also marked the emergence of
large scale high speed transistorized computers,
competitive in price and superior in perform
ance to the vacuum tube computers in general
use. At the time I was in charge of Program
ming systems for the new model 2000 computers
that Philco was preparing to market. An Alge
braic compiler was an absolute necessity, and
there was never really any serious doubt that
the language had to be Fortran. 22, 22A The very
first saies contracts for the 2000 specified that
the computer had to be equipped with a com
piler that would accept 704 Fortran source
decks essentially without change. Other manu
facturers, Honeywell, Control Data, Bendix,
faced with the same problems, came to the same
conclusion. Without any formal recognition, in
spite of the attitude of the professional commit
te~s, Fortran became the standard scientific
computing language. Incidentally, the emer
gence of Fortran as a standard helped rather
than hindered the development of a competitive
situation in the scientific computer field.

To go on with the Algol development, the
years 1958-1959 were years in which many naw
computers were introduced. The time was ripe
for experimentation in new languages. As men
tioned earlier there are many elements in com-

mon in all Algebraic languages, and everyone
who introduced a new language in those years
called it Algol, or a dialect of Algol. The initial
result of this first attempt at the standardiza
tion of Algebraic]anguages was the prolifera
tion of such languages in great variety.

A very bright young programmer at Bur
roughs had some ideas about writing a very fast
one pass compiler for Burroughs new 220 com
puter. The compiler has come to be known as
Balgol.

A compiler called ALGO was written for the
Bendix G 15 computer. At Systems Development
Corporation, programming systems had to be
developed for a large command and control
system based on the IBM military computer
(ANFSQ32). The resulting Algebraic language
with fairly elaborate data description facilities
was JOVIAL23 (Jules Schwartz' own Version
of the International Algebraic Language). By
now compilers for JOVIAL ha:ve been written
for the IBM 7090, the Control Data 1604, the
Philco 2000, the Burroughs D825, and for sev
eral versions of IBM military computers.

The Naval Electronics Laboratory at San
Diego was getting a new Sperry Rand Com
puter, the Countess. With a variety of other
computers installed and expected they stressed
the description of a compiler in its own lan
guage to make it easy, among other things, to
produce a compiler on one computer using a
compiler on another. They also stressed very
fast compiling times, at the expense of object
code running times, if necessary. The language
was called Neliac,24,25 a dialect of Algol. Com
pilers for Neliac are available on at least as
great a variety of computers as for JOVIAL.

The University of Michigan developed a com
piler for a language called Mad, the Michigan
Algorithmic Decoder.26.27 They were quite un
happy at the slow compiling times of Fortran,
especially in connection with short problems
typical of student use of a computer at a Uni
versity. Mad was originally programmed for
the 704 and has been adapted for the 7090. It
too was based on the 1958 version of Algol.

All of these languages derived from Algol 58
are well established, in spite of the fact that
the ACM GAMM committee continued its work

8 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

and issued its now well known report defining
Algol 60.28

Algol 60, known simply as Algol, went con
siderably further than was anticipated in some
of the early committee meetings. The language
did not limit itself to those areas in which there
exists almost universal agreement. Concepts
like recursive subroutines, dynamic storage
allocation, block structure, own variables and
arrays, were introduced which require the in
clusion of rather complex structures in the run
ning programs produced by the compiler. With
out attempting any serious evaluation of these
concepts here, I think it is fair to say that they
are difficult, and their inclusion in an Algebraic
language that is intended to ba universal is con
troversial. They led to much debate about the
difficult areas and tended to obscpre some of the
more fundamental accomplishments of the
Algol committee. Algol set an important prece
dent in language definition by presenting a
rigorous definition of its syntax in the Backus
normal form.29 As compared to Fortran it con
tains a much more general treatment of itera
tive loops. It provides a good systematic han
dling of Boolean expressions and variables and
of conditional statements. The most serious
deficiency in Algol results from its complete
lack of input-output specifications. The han
dling of input-output is one of the most impor
tant services provided by a compiler, and a
general purpose Algebraic compiler language
is not completely specified until its input-output
language has been defined.

Algol compilers have been written for many
different computers, but with the exception
of Burroughs no computer manufacturer has
pushed it very strongly. It is very popular
among University and mathematically oriented
computer people especially in Europe. For some
time in the United States it will probably re
main in its status as another available computer
language.

4. Data Processing Compilers. The largest
user by far of data-processing equipment is the
United States government. The government, by
law and by design, avoids giving preferential
treatment to anyone computer manufacturer.
More than any other computer user, the govern
ment is plagued by the problems caused by the

lack of compatibility between different kinds of
computing equipment, whether manufactured
by the same or by different suppliers.

In the spring of 1959, the office of the Secre
tary of Defense summoned representatives of
the major manufacturers and users of data
processing equipment to a meeting in Washing
ton, to discuss the problem associated with the
lack of standard programming languages in the
data processing area. This was the start of
the Committee on Data Systems Languages
(CODASYL), that went on to produce COBOL,
the common business oriented language. From
the beginning their effort was marked by mis
sionary zeal for the cause of English language
coding.

Actually, there had been very little previous
experience with Data processing compilers.
Univac's B-O or Flow-Matic,8.9 which was run
ning in 1956, was probably the first true Data
Processing compiler. It introduced the idea of
file descriptions, consisting of detailed record
and item descriptions, separate from the de
scription of program procedures. It also intro
duced the idea of using the English language as
a programming language.

It is remarkable to note that the Univac I on
which Flow-Matic was implemented did not
have the data-processing capabilities of a good
sized 1401 installation. To add to the problems
caused by the inadequacy of the computer, the
implementation of the compiler was poor, and
compilation was very very slow. There were
installations that tried it and dropped it. Others
used it, with the philosophy that even with
compiling times measured in hours the total
output of the installation was greater using the
compiler than without it. Experience with
Flow-Matic was almost the only experience
available on Data Processing compilers prior to
the launching of the COBOL project.

A group at IBM had been working for some
time on the Commercial Translator, 30 and some
early experience on that system was also avail
able.

At the original Defense Department meeting
there were two points of view. One group felt
that the need was so urgent that it was neces
sary to work within the state of the art as it

PROGRAMMING SYSTEMS AND LANGUAGES 9

then existed and to specify a common language
on that basis as soon as possible. The other
group felt that a better understanding of the
problems of Data-Processing programming was
needed before a standard language could be pro
posed. They suggested that a longer range ap
proach looking toward the specification of a
language in the course of two or three years
might produce better results. As a result two
committees were set up, a short range commit
tee, and an intermediate range committee. The
original charter of the short range committee
was to examine existing techniques and lan
guages, and to report back to CODASYL with
recommendations as to how these could be used
to produce an acceptable language. The com
mittee set to work with a great sense of ur
gency. A number of companies represented had
commitments to produce Data-processing com
pilers, and representatives of some of these be
came part of the driving force behind the com
mittee effort. The short range committee de
cided that the only way it could satisfy its
obligations was to start immediately on the
design of a new language. The committee be
came known as the COBOL committee, and their
language was COBOL.

Preliminary specifications for the new lan
guage were released by the end of 1959, and
several companies, Sylvania, RCA, and Univac
started almost immediately on implementation
on the MOBIDIC, 501, and Univac II respec
tively.

There then occurred the famous battle of the
committees. The intermediate range committee
had been meeting occasionally, and on one of
these occasions they evaluated the early COBOL
specifications and found them wanting. The pre
liminary specifications for Honeywell's F ACT30
compiler had become available, and the inter
mediate range committee indicated their feeling
that Fact would be a better basis for a Common
Business Oriented Language than Cobol.

The COBOL committee had no intention of
letting their work up to that time go to waste.
With some interesting rhetoric about the course
of history having made it impossible to con
si·1er any other action, and with the support of
the Codasyl executive board, they affirmed Cobol
as the Cobol. Of course it needed improvements,

but the basic structure would remain. The
charter of the Cobol committee was revised to
eliminate any reference to. short term goals and
its effort has continued at an almost unbeliev
able rate from that time to the present. Com
puter manufacturers assigned programming
Systems people to the committee, essentially on
a full time basis. Cobol 60, the first official de
scription of the language, was followed by 6131

and more recently by 61 extended.32

Some manufacturers dragged their feet with
respect to Cobol implementation. Cobol was an
incomplete and developing language, and some
manufacturers, especially Honeywell and IBM,
were' implementing quite sophisticated data
processing compilers of their own which would
become obsolete if Cobol were really to achieve
its goal. In 1960 the United States government
put the full weight of its prestige and purchas
ing power behind Cobol, and all resistance dis
appeared. This was accomplished by a simple
announcement that the United States govern
ment would not purchase or lease computing
equipment from any manufacturer unless a
Cobol language compiler was available, or un
less the manufacturer could prove that the per
formance of his equipment would not be en
hanced by the availability of such a compiler.
No such proof was ever attempted for large
scale electronic computers.

To evaluate Cobol in this short talk is out of the
question. A number of quite good Cobol com
pilers have been written. The one on the 7090
with which I have had some experience may be
typical. It implements only a fraction, less than
half I would guess, of the language described in
the manual for Cobol 61 ext~nded. No an
nouncement has been made as to whether or
when the rest, some of which has only been pub
lished very recently, will be implemented. What
is there is well done, and does many useful
things, but the remaining features are impor
tant, as are some that have not yet been put into
the manual and which may appear in Cobol 63.

The language is rather clumsy to use; for
example, long words like synchronized and
computational must be written out all too fre
quently; but many programmers are willing to
put up with this clumsiness because, within its
range of applicability the compiler performs

10 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

many important functions that would otherwise
have to be spelled out in great detail. It is hard
to believe that this is the last, or even very close
to the last word in data processing languages.
Before leaving Data Processing compilers I
wish to say a few words about the development
of the FACT compiler.

In 1958 Honeywell, after almost leaving the
computer business because of the failure of their
Datamatic 1000 computer, decided to make an
all out effort to capture part of the medium
priced computer market with their Honeywell
800 computer. The computer itself is very inter
esting but that is part of another talk.

They started a trend, now well established, of
contracting out their programming systems de
velopment, contracting with Computer Usage
Co. for a Fortran language compiler.

Most interesting from our point of view was
their effort in the Data Processing field. On the
basis of a contract with Honeywell, the Com
puter Sciences Corporation was organized.
Their contract called for the design and produc
tion of a Data processing compiler they called
FACT.3o.33

Fact combined the ideas of data processing
generators as developed by Univac, GE Han
ford,34 Surge 35 and 9PAC with the concepts of
English language data processing compilers that
had been developed in connection with Univac's
Flow-Matic and IBM's commercial translator.

The result was a very powerful and very in
teresting compiler. When completed it con
tained over 250,000 three address instructions.
Designed to work on configurations as small as
4096 words of storage and 4 tape units it was
not as fast as some more recent compilers on
larger machines.

The Fact design went far beyond the original
COBOL specifications,30 and has had consider
able influence on the later COBOL development.

Like all other manufacturers Honeywell has
decided to go along with the COBOL language,
and Fact will probably fall into disuse.

5. Assemblers and Operating Systems. Sym
bolic assembly language has become an almost
universal form for addressing a computer in a
computer oriented language.

After the first 704's were delivered in 1956
a number of users produced assembly routines
for use on the computer. One of the early stand
ardization efforts involved a choice of a stand
ard assembly program to be used by Share, the
704 users group. It is a sign of some of the
thinking that was current then that the stand
ard chosen was U ASAP. 36 The first SAP was
a very basic assembly system. It did practically
nothing but one-to-one translation, and left the
programmer in complete control of all of the
parameters of the program. In the early days
many users felt that this was all an assembly
system should do. Some still feel that way, but
on most computers the simple assembly system
has been replaced by the full scale computer
oriented compiler in which one-to-one code
translation is augmented by extensive libraries
of subroutines and generators and by allocation,
segmentation, and other program-organization
features. 37

The word-macro-instruction apparently was
coined in connection with the symbolic assembly
systems that were developed for IBM's 702/705
computers. These Autocoder 38 systems with
their large macro-instruction libraries have
been used for huge amounts of data processing
programming on a number of machines.

Assembly systems gradually grew into or be
came incorporated into operating systems.39.40
Perhaps the earliest monitor system on the 704
was put into operation at the General Motors
Research center.41.42 The idea of automatic se
quencing of batches of jobs spread rapidly until
it was almost universally used in connection
with large computers. It made it possible for
large computers to handle small jobs with rea
sonable efficiency and greatly extended their
range of application. The idea of such systems
was to run the computer without any stops, and
to relegate the operator to occasional mount
ing of tapes, and otherwise to responding to
very simple requests presented to him on the
on-line printer. Under such a system debugging
becomes a completely off-line process. The only
response to trouble in a program is to dump and
get on with the next program.

At the end of 1956 IBM announced its new
709 computer. The 709 was essentially a 704
with internally buffered input and output.

PROGRAMMING SYSTEMS AND LANGUAGES 11

As mentioned earlier, IBM was at its peak of
penetration of the large scale scientific com
puter market at that time, and the rest of the
industry watched with great interest as many
of the best programming systems people repre
senting many leading scientific computer instal
lations met as a Share committee to design the
very complex programming system which was
eventually called SOS (Share Operating Sys
tem).

The design of programming systems by large
committees representing many companies and
institutions has almost invariably led to dis
appointing results. SOS was no exception.
Planned mainly by personnel of \Vest Coast air
craft and research companies, it was to be writ
ten according to their specifications by the IBM
programming systems activity on the East
Coast. Separation of design and implementa
tion responsibility by 3000 miles is almost
enough in itself to guarantee great difficulty, if
not complete failure. In 1958 the chairman of
the Share 709 system committee wrote,43 "ThE
fundamental procedures used throughout the
system will undoubtedly be retained in every
installation." This has not been the case. The
SOS system is now in use at only a very few in
stallations. There are many reasons, of which I
would like to suggest just a few. SOS put all of
its emphasis on the computer oriented program
ming system. The time during which SOS was
being designed and implemented was the time
during which the attitude toward Fortran was
changing from polite skepticism to very general
acceptance. By the time SOS was ir nearly full
operation some installations were using almost
nothing but Fortran. Apparently little or no
effort had been expended on the problem of
compatibility between SOS and Fortran. It was
only in 1962 that an SOS system which handles
Fortran was distributed by the Rand Corpora
tion.44 Their system accepts Fortran source
programs, and produces the binary symbolic or
squoze decks that can be combined with other
programs produced by the SOS system. IBM
boasted of over 50 man years of effort on the
SOS system for the 709. They spent almost no
effort on Fortran for the 709, on the theory that
Fortran was developed for the 704 would be
adequate. The Fortran II system that was
originally distributed for the 709 took no ad-

vantage of the fact that the 709 hardware per
mitted buffered input and output. The SOS
system provided a very elaborate buffering
system.

SOS proposed to provide a system in which
the programmer would need to know and use
only one language, the compiler source lan
guage. One of its major achievements was the
provision of source language modification of
programs at load tinle without full recompila
tion. A very versatile debugging system was
built around this feature. While this and other
features of the system are extremely attractive,
there is a' serious question as to whether they
are worth the price paid in system complexity,
and in increased loading time. I think it is
interesting to point out that a relatively simple
assembly system, FAP, and a very basic oper
ating system, the Fortran Monitor System, both
originated at customer installations and not by
the manufacturer, became the most widely used
systems on the 709/90 computers. Quite similar
systems were introduced on competitive equip
ment, the Philco 2000 and the CDC 1604. Com
plexity and system rigidity no doubt contrib
uted to the fact that SOS was not generally ac
cepted. It win be interesting to foliow the his
tory of a new and very complicated system, the
IBSYS/IBJOB complex that has recently been
introduced by IBM on the 7090 and related ma
chines. A critique of these systems is far be
yond the scope of this discussion. A few com
ments may be in order. IBJOB presents a very
elaborate assembly system MAP, and transla
tors from two languages, FORTRAN IV and
Cobol into Map. They are then translated into
a language that is close to machine language,
with the final steps of the translation left to a
very complicated loader. T~le design, which
calls for the translation of problem oriented
source languages into an intermediate computer
oriented source language is very attractive. By
ha ving the assembly system do most of the work
of the compiler it is possible to have many of
the features of the problem oriented language
available by means of subroutine calls to those
who prefer to write in assembly language. This
design philosophy is attractive, but I think that
it is wrong. Attractiveness and elegance should
not be the determining design criteria for pro
duction compiling systems. Design of a system

12 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

is a compromise between many design criteria.
One of the most important is keeping the sys
tem overhead cost low on the many problems
that do not require the use of very sophisticated
system features. The code produced by a com
piler like Fortran is straightforward simple
code. The assembler for such code can be sim
ple and straightforward. The loading program
can be designed to permit easy combination with
programs produced by other systems. An as
sembler designed to aid in the production of
large programming systems contains many fea
tures that are seldom used except in the coding
of such systems. A wasteful mismatch may
occur when the output of Fortran is fed through
such an assembler.

Not so very many years ago there was quite
a bit of discussion as to whether general pur
pose operating systems should be designed and
supplied by the manufacturers. Some users felt
that the very great difference in the job mix
and operating philosophy at the various instal
lations called for specially designed and tailored
system programs. For a time the argument
seem to be settled by the almost universal as
sumption that operating systems, and computer
software in general were as much an obligation
of the manufacturer as was the building of the
computers themselves. I wonder if this assump
tion will be able to stand up in face of the rapid
developments in the large computer field that
will lead to computing systems that are very
much more diverse, and very much more com
plex than those that are in general use today.

In the large computer field multiprocessing
and multiprogramming systems will soon be
come the rule rather than the exception. Many
experiments in these directions are being tried
with computers of the generation that is now
coming to an end. Systems combining a 7094,
a 1301 Disc unit and a 7040 will soon be com
·monplace. There are a number of military sys
tems involving several computers and much
peripheral equipment all working together un
der a common operating system.

Among newer computers already delivered to
customers there are several models that }lave
been designed to make it possible and practical
to run peripheral equipment on-line while simul
taneously carrying out independent computer

processing tasks. The distinction between off
line and on-line tends to disappear on such
systems, and the operating systems must be able
to control equipment in many different modes.
Systems already delivered that have some fea
tures that permit multiprogramming and multi
processing include the Honeywell 800, The Fer
ranti Atlas, The Burroughs 5000 and D825.
There is some very interesting recent literature
about programming systems for these com
pu ters. 45.46.47

In the next generation of large computers it
may be possible to implement true demand proc
essing systems. Demand systems have been
advocated by many in opposition to batching
systems. In a demand system problems are sub
mitted as they arise. The system controls the
input of jobs and the scheduling of jobs by
stacking jobs in queues according to length,
priority, etc. A demand system requires multi
programming facilities, but also requires much
more elaborate decision making on the part of
an executive system than is present in most
monitors today.

The complexity required in some of these op
erating systems may seem to require that they
be uniform systems designed and produced by
the manufacturer. But, another feature that is
being stressed more and more is modularity,
which permits an almost unlimited variety in
system configurations. It is very difficult to de
sign a single operating system that is appropri
ate for a computing system based on Disc stor
age, and also for one based on tapes or drums,
and also for any combination of auxiliary de
vices. The problem will get more complicated
when high speed storage at different levels is
available in various q,uantities. It is quite rea
sonable to anticipate a system in the next few
years that will have a very high speed film mem
ory, backed up by a fast core memory, backed
up by a large and somewhat slower core mem
ory, backed up by high speed drums, then discs
and tapes. It will be a real challenge to design
programming systems that are valid for all
combinations in such systems.

In the early days one of the aims of the oper
ating system was to get the human being out of
the system as much as possible. In a multi-pro
gramming system it is possible to allow human

PROGRAMMING SYSTEMS AND LANGUAGES 13

intervention in the running of a program with
out any appreciable loss of computer time, since
the computer will presumably have other pro
grams it can work on. There has been a great
deal of publicity given to the experiments in the
use of on-line consoles on present day systems.4H

Such consoles may be a routine part of many
computing systems in a few years.

In recent issues of a number of Computer
publications there is an advertisement for a
computer that claims to be faster than the 7090
and costs only $215,000 dollars. Whether or not
the claim is true, it does serve to emphasize the
fact that the cost of computer processing capa
bility is going to go down rapidly. It is going
to be economically feasible to put together ex
tremely large, varied, and complicated concen
trations of computer components. Program
ming sys!ems are going to increase in number
and complexity, and the job of the system pro
gram designer is going to remain "as it always
has been, very difficult, but very, very inter
esting.

6. B'ibliography. This is not intended to be a
complete bibliography of the field of Program
ming Systems and Languages. It is rather a
selected list of publications that may help to
document the text. A great deal of reference
material is contained in manuals published by
computer manufacturers. It would serve no
useful purpose to list such manuals here. Man
uals exist for just about every programming
system mentioned in the text, and the mention
of a language or system may be interpreted as
an implied reference to the manual. I have at
tempted to include specific references to sources
other than manuals for most systems discussed,
but in many cases the system manuals provide
better and more complete documentation.

In the following Bibliography the abbrevia
tion "1954 Symposium" will be used to refer to
the Proc~edings of a Symposium on Automatic
Programming for Digital Computers, Navy
Mathematical Computing Advisory Panel, Of
fice of Naval Research, Washington, D. C. May
13-14, 1954. These proceedings include a bibli
ography on pp. 150-152.

Additional references will be found in the
bibliography on pages 260-270 of reference 49.

1. AIKEN, H. H. and HOPPER, G. M. The Au
tomatic Sequence Controlled Calculator.
Electrical Engineering 65 (1946) pp. 384-
391, 449-454, 522-528.

2. vVILKES, M. V., WHEELER, D. J. and GILL,
S. The Preparation of Programs for an
Electronic Digital Qomputer. Addison
Wesley 1957. (First edition published in
1951.)

3. MACMILLAN, D. B. and STARK, R. H.
"Floating Decimal" Calculation on the IBM
Card Programmed- Electronic Calculator.
Mathematical Tables and other Aids to
Computation. (Mathematics of Computa
tion.) 5(1951) pp. 86-92.

4. ADAMS, CHARLES W. and LANING, J. H. JR.
The M.LT. System of Automatic Coding:
Comprehensive, Summer Session, and Al
gebraic. 1954 Symposium. pp. 40-68.

5. BENNINGTON, H. D. Production of Large
Computer Programs. Proceedings of a
Symposil:lm on Advanced Programming
Methods for Digital Computers. Navy
Mathematical Computing Advisory Panel
and Office of Naval Research. Washington,
D. C. June 28,29, 1956.

6. HOPPER, G. M. The Education of a Com
puter. Proceedings of the Conference of
the ACM. Pittsburgh, 1952.

7. RIDGWAY, R. K. Compiling Routines. Pro
ceedings of the Conference of the ACM
Toronto, 1952.

8. TAYLOR, A. E. The Flow-Matic and Math
Matic Automatic Programming Systems.
Annual Review of Automatic Program
ming 1 (1960) pp. 196-206. Pergamon.

9. KINZLER, H. and MOSKOWITZ, P. M. The
Procedure Translator-A System of Auto
matic Programming. Automatic Coding.
Monograph No.3. Journal of the Franklin
Institute. Philadelphia, 1957 pp. 39-55.

10. HOLBERTON, F. E. Application of Auto
matic Coding to- Logical Processes. 1954
Symposium pp. 34-~9.

11. KAHRIMANIAN, H. G. Analytic Differen
tiation by a Digital Computer. 1954 Sym
posium pp. 6-14.

12. HOLT, ANATOL W. General Purpose Pro
gramming Systems. Communications of
the ACM 1 (1958) pp. 7-9.

14 PROCEE'DINGS-SPRING JOINT OOMPUTER CONFERENCE, 1964

13. BACKUS, J. W. and HERRICK, H. IBM 701
Speedcoding and other Automatic Pro
gramming Systems. 1954 Symposium. pp.
106-113.

14. BACKUS, J. W. The IBM 701 Speedcoding
System. Journal of the ACM 1 (1954) 4-6.

15. BAKER, CHARLES L. The Pact I Coding
System for the IBM Type 701. Journal of
the ACM 3 (1956) pp. 272-278. This is one
of seven papers on the Pact I system in the
same issue of JACM.

16. STEEL, T. B. JR. Pact lA. Journal of the
ACM. 4 (1957) pp.8-11.

17. WOLONTIS, V. M. A Complete Floating
Decimal Interpretive System. Technical
Newsletter No. 11 IBM Applied Science
Division. 1956.

18. PERLIS, A. J. and SMITH, J. W. A Mathe
matical Language Compiler. Automatic
Coding. Monograph No.3. Journal of the
Franklin Institute. Phildelphia 1957 pp.
87-102.

19. BACKUS r J. W. et al. The Fortran Auto
matic Coding System. Proceedings of the
Western Joint Computer Conference. Los
Angeles 1957 pp. 188-198.

20. SHERIDAN, P. B. The Arithmetic Transla
tor-Compiler of the IBM Fortran Auto
matic Coding System. Communications of
the ACM 2 (February 1959) pp. 9-21.

21. PERLIS, A. J. and SAMELSON, K. Prelimi
nary Report - International Algebraic
Language. Communications of the ACM
1 (December 1958) PP. 8-22.

22. ROSEN, S. and GOLDBERY, I. B. Altac, The
Transac Algebraic Translator. Preprints
of papers presented at the 14th National
Conference of the ACM. Boston, 1959.

22. ROSEN, S. Altac, Fortran, and Compata
Ability. Preprints of papers presented at the

16th National Conference of the ACM, Los
Angeles, 1961.

23. SHAW, C. J. Jovial-A Programming Lan
guage for Real-time Command Systems.
Annual Review of Automatic Programming
3(1963) pp. 53-119. Pergamon.

24. HUSKEY, H. D., HALSTEAD, M. H. and
McARTHUR, R. Neliac, A Dialect of Algol.
Communicaitons of the ACM 3(1960) pp.
463-468.

25. HALSTEAD, M. H. Machine Independent
Computer Programming. Spartan Books,
1962.

26. ARDEN, B. W., GALLER, B. A., GRAHAM, R.
M. The Internal Organization of the Mad
Translator. Communication of the ACM
4(1961). This issue of the CACM contains
the Proceedings of an ACM Compiler Sym
posium, Washington D.C. November 17-
18, 1960.

27. GALLER, B. A. The Language of Comput
ers. McGraw Hill, 1962.

28. NAUR, P. Editor. Revised Report on the
Algorithmic Language Algol 60. Commu
nications of the ACM 6(1963) pp. 1-17.
Also published in Numerische Mathematic
and the Computer Journal.

29. BACKUS, J. W. The Syntax and Semantics
of the Proposed International Algebraic
Language of the Zurich ACM-GAMM Con
ference. Information Processing. Proceed
ings of ICIP, UNESCO, Paris 1959 pp.
125-132.

30. CLIPPINGER, R. F. FACT A Business Com
piler. Description and Comparison with
COBOL and Commercial Translator. An
nual Review in Automatic Programming.
Vol. 2(1961) Pergamon. pp. 231-292.

31. SAMMET, JEAN E. Basic Elements of
COBOL 61. Communications of the ACM
5(1962) p.237-253.

32. COBOL-1961 Extended. External Specifi
cations for a Common Business Oriented
Language Dept. of Defense. 1962. U.S.
Govt Printing Office. Washington, D.C.

33. CLIPPINGER, R. F. FACT. The Computer
Journal 5(1962) pp. 112-119.

34. MCGEE, \V. C. Generalization: Key to Suc
cessful Electronic Data Processing Jour
nal of the ACM 6(1959) pp. 1-23.

35. LONGO, F. SURGE: A Recording of the
COBOL Merchandise Control Algorithm.
Communications of the ACM 5(1962) pp.
98-100.

36. MELCHER, W. P. Share Assembler UASAP
3-7. Share Distributor 564. 1958. The
Original UASAP 1 was written by Mr.
Roy Nutt.

PROGRAMMING SYSTEMS AND LANGUAGES 15

37. CHEATHAM JR., T. E., and LEONARD, G. F.
An introduction to the CL-II Program
ming System. Document CAD-63-4-SD.
Computer Associates Inc. Wakefield, lVlass.
1963.

38. GOLDFINGER, R. The IBM Type 705 Auto
coder Proceedings of the Western Joint
Computer Conference. San Francisco
1956.

39. ORCHARD-HAYS, W. The Evolution of Pro
gramming Systems. Proceedings of the
IRE 49(1961) pp. 283-295.

40. MEALY, G. H. Operating Systems. Rand
Corporation Document P-2584. Santa
Monica, California, 1962.

41. RYCKMAN, G. F. The Computer Operation
Language. Proceedings of the Western
Joint Computer Conference 1960, pp. 341-
343.

42. FISHMAN, J. J., HARROFF, D. F., LIVER
MORE, F. G. and KUHN, E. F System
(FS-3). Internal Publication of the Gen
eral Motors Research Laboratories (1960).

43. SHELL, D. L. The Share 709 System: A
Cooperative Effort. Journal of the ACM
6(1959) p. 123-127. This is one of the six
papers on the Share 709 System in the
same issue of J AGM.

44. BRYAN, G. E., Editor. The Rand-Share
Operating System Manual for the IBM
7090 Computer. Memorandum RM-3327-
PR, Rand Corporation. Sept. 1962.

45. KILBURN, T., HOWARTH, D. J., PAYNE, R. B.
and SUMNER, F. H. The Manc,hester Uni
versity Atlas Operating System. Parts 1
and II. The Computer Journal 4(1961) pp.
222-229.

46. KILBURN, T., PAYNE, R. B. and HOWARTH,
D. J. The Atlas Supervisor. Proceedings
of the Eastern Joint Computer Confer
ence, Washington, D. C. 1961. pp. 279-294.

47. THOMPSON, R. N. and WILKINSON, J. A.
The D825 Automatic Operating and Sched
uling Program. Proceedings of The Spring
Joint Computer Conference. Detroit,
Mich. 1963 pp. 41-49.

48. CORBATO, F. J., MERWIN-DAGGETT, M. and
DALEY, R. C. An Experimental Time-Shar
ing System. Proceedings of The Spring
J oint Computer Conference. San Fran
cisco, 1962.

49. CARR, J. W., III. Programming and Cod-
ing. Part B of Handbook of Automation,
Computation and Control. Volume 2. Wiley
1959.

BOUNDED CONTEXT TRANSLATION

Robert M. Graham
Computation Center

Massachusetts Institute of Technology
Cambridge, Mass.

All translators are syntax-directed in the
sense that the translator must obviously recog
nize the various syntactic structures and the
output of the translator is a function of the
syntax of the language. The term syntax-di
rected is usually applied to a translator which
contains a direct encoding of the syntax of the
language, this direct encoding being used by
the translator as data. The companion paper
by Cheatham and Sattley is concerned with this
type of translation.! In the other class of
translators the syntax is essentially buried in
the coding of the translator. Most of the
algebraic languages in use are precedence
grammars,2.3 or close enough so that the prop
erties of precedence grammars are useful.
U sing the properties of precedence grammars,
bounded context translation is possible. At each
step in the scan of an expression in bounded
context translation the decision as to what
action to take next is a function of the symbol
currently under scan and of N symbols on
either side (where N is fixed for the particular
language) .

Most translators produce an intermediate
form of the program before producing the final
machine code. Once this intermediate form is
produced, the distinction between syntax-di
rected translation and other methods disap
pears. The primary goal of the intermediate
form is to encode the program in a form which
is easily and efficiently processed by the com
puter. Most optimization algorithms, such as

17

elimination of common sUbe:x;pressions and
optimum evaluation of Boolean expressions,8

are much simpler when applied to some inter
mediate form rather than to the original ex
pression or the final machine language version.
The intermediate form exhibits the structure
(i.e., which subexpressions are the operands of
each operator) and the order of evaluation of
the subexpressions.

In this paper we will restrict ourselves to
the source language defined in Appendix A.
For the sake of brevity when we say expression
we will mean either an expression, as defined
in Appendix A, or an assignment statement.
This language has no constants and identifiers
are single letters, thus avoiding the problem
of recognition. A translator for a language
such as ALGOL would have a recognizer which
would scan a statement and which, each time
it was called; would recognize the next element
in the input string. After recognizing an iden
tifier the recognizer would store it in a symbol
table if it were not already there. The symbol
table would also contain other information per
taining to the identifier such as type, address,
dimension, etc. The recognizer would then re
turn a pointer to the place in the symbol table
where that identifier and its properties were
stored. A constant, after recognition, would, be
stored in a table of constants, given an internal
identifier, and treated from that point on just
as any other identifier would be. When an
operator was recognized, a pointer to the place

18 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

in the operator table where the properties of
that operator were stored would be returned.
Thus we see that the recognizer would effec
tively reduce an expression of a language such
as ALGOL to an expression of our language;
that is, each element would be reduced to a
single symbol. In general, the intermediate
form does not contain the identifiers or opera
tors but the pointers supplied by the recognizer.
However, for clarity, in the examples we will
use the actual identifiers and operators. The
recognizer is heavily dependent upon the details
of the particular language being translated and
such characteristics of the computer as char
acter representation, word size, etc. The algo
rithms to be discussed in this paper depend only
upon a few very general properties of the source
language. Most of the common compiler lan
guages have these properties so the techniques
discussed here are essentially language inde
pendent. While the algorithms which we will
describe here apply only to the simple expres
sions of Appendix A, several of them may be
trivially generalized to translate more complex
expressions and even the bulk of the ALGOL
statements.'·8.12

Some representation of the tree form of an
expression is used in several translators. Fig-

Tree fOrAI

Figure l.

I /:-~ , ,
''''-, ~~~
/. I ."

B "CID/~ , d"", \,~ ?
\~
E/-............ F

Ross's tree form

Figure 2.

1.. B C

2. - E F

3.. 0 2

II. + 1 3

5. :- A II

Matrix fOrAI

1. :- A 3

2. * B C

3. + 2 II

II •• D 7

5. (6

6. - £ F
7.) 5

5

6

Representat Ion

1

3

7

ure 1 shows the tree form of the expression
A :=:B*C+D* (E-F) and the matrix re-pre
sentation of the tree5,6,7,8 The first column is
the operator, the second column is the left
hand operand, and the third column is the
right-hand operand. An integer represents the
result of the row with that number. The sub
expressions are to be evaluated in the sequence
in which the rows are written. Figure 2 shows
the tree form used by ROSS.12 The first three
columns in the representation are the same as
in Figure 1. There are two additional columns
which explicitly state the sequence of sub
expression evaluation. The fourth column is
the minor evaluation string pointer (dashed
arrows in the tree) and the fifth column is the
major evaluation string winter (solid arrows
in the tree). In the example the evaluation is
to start with row 2. The rules for following the
evaluation strings for the row under examina
tion are:

1. If this is the first time this row has been
examined and,

a. If the minor string pointer is not
empty; proceed to the row named by
it.

b. If the minor string pointer is empty;
evaluate this row and proceed to the
row named by the maj or string
pointer.

2. If this is the second time this row has
been examined, evaluate this row and
proceed to the row named by the major
string pointer.

In this example the '('and')' symbols should
be treated as "do nothing" operators when their
evaluation is called for by the rules. Ross's
representation is part of a more general system
and, hence, some features of the representation
are not pertinent to this discussion. A repre
sentation similar to Ross's based on threaded
lists is described in Ref. 9.

Evans' bases his intermediate form on postfix
notation. The expression A :=:B*C+D*(E-F)
in postfix form is ABC*DEF-*+ :=:. In this
form both the structure and the order of sub
expression evaluation are implicit. The rigbt
hand operand of an operator is the first com
plete expression to the left of the operator and

the left-hand operand is the second complete
expression to the left of the operator. In the
example the right-hand operand of the '+' is
'DEF -*' and the left hand operand is 'BC*'
The subexpressions are evaluated in left to
right order.

The transformation of a completely paren
thesized expression into matrix form is rela
tively simple. The expression is scanned from
left to right. The following rules are applied
to each symbol as it is encountered (a variable
name is considered as a single symbol) :

1. If the symbol is not a ')'; continue the
scan.

2. If the symbol is a ')' and the expression
is properly formed then the four symbols
to the left of the')' should be of the form

'sl#s2', where 'sl' and 's2' stand for
variable names or integers (row num
bers) and '#' is any operator; write
'# sl s2' as the next row of the matrix
and replace '(sl#2)' in the expression
by the number of the row just written in
the matrix. Continue the scan.

In Figure 3 the changes in the expression are
shown on the left, the small.arrow under the
expression indicating the points, during the
scan, at which a row is written in the matrix.
The row actually written at that point is shown
on the right.

Completely parenthesized expressions have
such an overabundance of. parentheses that they
are difficult to read; hence, languages such as
ALGOL have precedence rules making it un
necessary to write completely parenthesized ex
pressions. The language is a precedence gram
mar if the precedence rules are such that given
two adjacent operators it is unambiguous which
is to be evaluated first. Thus if a language is
a precedence grammar it is possible to construct

(A: -((B*C)+(O*(E-F»» 1. - B C

t - E F (A:-(1 +(O*(E-F~») 2.

(A:-(1 +(0- 2 ») 3. - 0 2 ,
(A:-(1 + » ... + 1 3

t
(A:-) 5. :- " ..

t

Figure 3.

BOUNDED CONTEXT TRANSLATION 19

+ - * /

+ left left right right

- left left right r.i gh t

* left left left left

/ left left left left

: . right right right right

Figure 4.

a table of the type shown in Figure 4. To deter
mine which of two adjacent operators to evalu
ate first, find the intersection of the row labeled
with the left operator ,and the column labeled
with the right operator. In the context of
transforming an expression into matrix form,
the order of evaluation of the operators is to
be interpreted as the order of their entry into
the matrix. A subexpression enclosed by paren
theses is to be completely evaluated before any
consideration is given to the operators on either
side of it. ~pplying these considerations we
have the following rules for transforming an
expression to matrix form. We enclose the
expression on the left by '[-' ;and on the right
by '-I'. Again we scan from left to right, ap
plying the rules to each symbol in turn:

1. If the symbol is an operator, # I, and the
left context is,

2.

a. '[-sl'; continue the scan.
b. '(sl' ; continue the scan.

c. 's2#2s1'; look up #2#1 in the table.
If the table entry is,
i. 'right'; continue the scan.

ii. 'left'; write '#2 s2 s1' as the next
row of the matrix, replace 's2#2s1' in
the expression by the number of the
row just written in the matrix, and
apply rule 1 again.

If the symbol is ')' and the left context'
is,
a. 's2#s1'; write '# s2 sl' as the next

row of the matrix, replace 's2#sl' in

20 PROCE,E'DINGS-SPRING JOINT COM,PUTER CONFERENCE, 1964

the expression by the number of the
row just written in the matrix, and
apply rule 2 again.

b. '(s'; replace' (s)' by's' and continue
the scan.

3. If the symbol is '-I' and the left context
is,

a. 's2#s1~; write '# s2 s1' as the next
row of the matrix, replace 's2#s1' in
the expression by the number of the
row just written in the ,matrix, and
apply rule 3 again.

b. '1- s'; the expression has been com-
pletely transformed into matrix form.

This is the essence of bounded cpntext transla
tion. The rules just stated show that N ==3 for
the precedence grammar of appendix A. That
is, in deciding what action to take next, at most
only the three symbols immediately to the left
of the symbol currently under scan need be
examined regardless of the length of the ex
pression being translated.

Before examining some ways that bounded
context analysis has actually been implemented
let us restate, precisely, the above rules in the
form of a flow chart (Figure 5). In the flow
charts of this paper the true exit of a decision
box is marked t and the false exit is marked f.
We consider the expression being analyzed as
a string of symbols, S (indexed by k), bounded
on the left by '/-' and on the right by '-I'.
We will distinguish three classes of symbols:

1. I, the class of identifiers: any variable
name.

2. R, the class of matrix row numbers: any
integer.

3. 8, the class of operator symbols: 8 ==
{+, -, *, I, :==, (,), 1-, -/}. For fu
ture use we distinguish the subclass of
arithmetic operators, 8° == {+,-, *, I}.

Symbols from the input string are transferred
to an auxiliary list, L (indexed by j). This will
avoid the problem of gaps when replacements
are made in the input string. M is the matrix
(with i the row index) and T (x, y) is a func-
tion whose arguments are a pair of operators
and whose value is the label found at the inter
section of the x-row and the y-column in Figure

6. The label ERR has been filled in for all illegal
operator pairs. If one of these occurs then the
expression is incorrectly formed. The questions
of the detection of incorrectly formed expres
sions and what action to take when errors are
detected is very important in actual translator
construction. These questions will not, how
ever, be discussed in this "paper. We will assume
here that all expressions are properly formed.
When the function T (x, y) takes on the value
END then the matrix form of the expression
is complete.

+ -. MTX MTX

- MTX MTX . MTX MTX

I MTX MTX

:- PUT PUT

(PUT PUT

... PUT PUT

Figure 5.

. I :-

PUT PUT ERR

PUT PUT ERR

MTX ~ITX ERR

MTX MTX ERR

PUT PUT ERR

PUT PUT ERR

PUT PUT PUT

Figure 6.

1:-1+1
1iI(I.I>:-L(j-I>
M(I,Z):-L(j-Z)
~I(1.3):-L(j)
j :-j-2;LO):-1

) -f

MTX MTX

f.lTX MTX

MTX MTX

MTX MTX

ERR MTX

DEL ERR

ERR END

It is obvious from the table in Figure 6 that
most operator pairs cause one of two actions
to take place: 1) the operator currently under.
scan is put on the list, or 2) rows are written
in the matri~ until an operator pair is found
which calls for some other action. The only
exceptions are the removal of parentheses and
termination of the transformation. If a preced
ence function is defined for each operator then
a table of all operator pairs is not necessary.
A precedence function, P (x), is defined such
that, given a pair of operators #1#2, if
P(#1)#~#P(#2) then the operator #1 is
evaluated before the operator #2. A precedence
function for the operators used in the previous
examples is defined in Figure 7. The algorithm
for transforming an expression into matrix
form that is used in GAT5 and MAD6.7 uses
a precedence function. The flow chart in
Figure 8 gives an algorithm for generating the
matrix form of the expression. This algorithm
differs from the GAT-MAD algorithm only in
the direction of scanning the expression. N 0-

tice that, assuming all expressions are properly
formed and since P('(') < P(')') and P(,I-')
< P('-I'), when the test P(Lj-1» ~
P(S(k)) fails then S(k)==')' implies L(j-1) ==
'(' and S(k) == '-I' implies L(j-1) == '1-'.

Bauer and Samelson 10 use two lists, one,
L, in the translator and one, N, in the object
program. L, called the "symbols cellar," is used
for storing operators which can not be evalu
ated yet, just as in the previous algorithms. N,
called the "numbers cellar," is used by the
object program during execution for the tem
porary storage of partial results and values of
identifiers. Their algorithm does not generate
an intermediate form, but immediately gen
erates machine code~ In the examples of this
paper, the machine language used will be that
described in Appendix B. This language is very
similar to the F AP symbolic machine language
used on the IBM 709-90-94 computers. C (in
dexed by m) will be a matrix where generated
machine instructions are stored. The first col
umn will contain the operation code and the
second column the. address. ·Figure 9 is the
table, for Bauer and Samelson's algorithm, cor
responding to the table in Figure 6, and Figure
10 is their algorithm. Whenever an identifier

BOUNDED CONTEXT TRANSLATION 21

is encountered in the scan, instructions are
generated to move its value onto the N list.
Bauer and Samelson give, in the same paper,
modifications to this algorithm which will gen
erate more efficient machine code.

x P(x)

I 7

* 7

+ 6

- 6

:= 5

) 4

(3

-f 2

I- 1

Figure 7.

Figure 8.

22 PROGE~EnINGS-SPRING JOINT COM'PUTER CONFERENCE, 1964

. -
~ PUT PUT

+ MTXl MTXl

- MTX2 MTX2

* MTX3 MTX3

I MTX .. MTX ..

(PUT PUT

* I (

PUT PUT PUT

PUT PUT PUT

PUT PUT PUT

MTX3' MTX3 PUT

MTXII MTXII PUT

PUT PUT PUT

Figure 9.

C("l,ll:-'CLA'
C(ot+l,2':-N(h-ll
C(m+2,1):-'FOP'
C(ot+2,2':-N(h)
C(ot+3,1l:-'STQ'
C(m+3 2):-N(h-ll

Figure 10.

) -I

ERR END

MTXl MTXl

MTX2 MTX2

MTX3 ~'TX3

MTX .. MTXII

DEL ERR

Ross's algorithm, as given in Ref. 12, trans
forms more than just expressions into tree
form. In the version of his algorithm given in
Figures 11 and 12 the machinery not needed to
transform expres~ions has been omitted. A
minor evaluation string pointer is set whenever
the right operand of an operator is set and
both operands are variables, or whenever a left
operand is set and the o-perator is a modifier.
The only modifier in an expression is the '('.
The minor evaluation string is forced to pass

Figure 11.

+ - * I :- () -I

+ MTX MTX PUT PUT ERR PUT PRN MTX

- MTX MTX PUT PUT ERR ,?UT PRN ~'Tx'"

* MTX MTX MTX MTX ERR PUT PRN MTX

I MTX MTX MTX MTX ERR PUT PRN MTX

:- PUT PUT PUT PUT ERR PUT ERR MTX

(PUT PUT PUT PUT ERR PUT MTX ERR

) ·MTX ~'TX MTX MTX ERR ERR ERR MTX

~ PUT PUT PUT PUT PUT PUT ERR END

Figure 12.

through modifiers since a modifier may change
the interpretation of the right operand. For
example, the right operand of '(' may' be either
a normal subexpression or the argument of a
function depending upon whether the left argu
ment of the' (' is empty or is an identifier. A
major evaulation string pointer is set whenever
a right or left operand is set and the operand,
is a row number.

Evans4 uses an algorithm based on Floyd's
productions. ll Instead of generating machine
code directly as Floyd did in his paper, Evans
transforms the expression into postfix form.
This algorithm is probably the most versatile
of the lagorithms which we have described here.
The central idea here is a set of productions
which determine the course of action at each
step in the translation process. A production
consists of five parts;

1. A top of stack configuration.
2. A replacement for the configuration of

part 1.
3. The name of an action routine.
4. Scan, no scan flag.
5. Which production to consider next.

Figure 14 gives the productions for transform
ing ,an expression into postfix form. The ex
pression is scanned from left to right. As each
new character is scanned it is put on the top
of the pushdown stack and the productions are
then searched for the first one whose part 1
matches the present top of the stack (when a
class symbol such as eo appears, any member
of that class will give a match). When a match
is found, that portion of~ the top of the stack
which matched part 1 of the production is re
placed by part 2 of the production. If part 2
is empty, the replacement degenerates to the
deletion of the symbols, which matched part 1,
from the top of the stack. The action routine
named in part 3 is then executed. After the
action routine has been executed the ,produc
tions are again searched for a match with the
top of the stack; however, the search is started
with the production whose line number is given
in part 5 of the last interpreted production. If

1 2 3 " 5

1 • OUT · 3

2 ((Nap · 1

3 ,. ,- CaMP · 1

" :- :- OUTP('loc') · 1

5 -. -. CaMP END

6)) CaMP 7

7 () Nap · 3

P-Table

Figure 13.

BOUNDED CONTEXT TRANSLATION 23

x P(x)

* 7

/ 7

+ 6

- 6

:- 5

) 4

-I 3

(2

1 - 1

Figure 14.

Figure 15.

24 PROCE'E'DINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

a '*' appears in part 4, a new symbol is scanned
from the input string before the search con
tinues. The productions given in Figure 13 are
sufficient only to transform the simple expres
sions of this paper. The productions that Evans
gives will transform all the statements of
ALGOL into postfix form. Figure 15 gives an
algorithm for transforming an expression into
postfix form using the productions of Figure
13. The action routine OUT puts the last iden
tifier scanned into the output string, M. The
action routine OUTP (x) puts its argument, x,
into the output string. The productions cause
the unary operator 'loc' to be introduced into
the output string following a variable which is
on the left ,side of ':==', .which indicates that
a location (where a value is to be stored) is
involved rather than a valu~. The action rou
tine COMP uses the precedence function, de
fined in Figure 14, to determine when operators
are placed in the output string (i.e., to deter
mine the sequence of evaluation of the oper
ators) .

Once the matrix form of the expression has
been generated, the final translation to sym
bolic machine code is relatively simple. Corre
sponding to each operator is a set of machine
instructions, a pattern. Figure 16 gives the
patterns for the operators of our language; the
fi"rst column is the operation code and the sec
ond column is the address. The matrix is trans
lated one row at a time, in sequence. Row i of

operator

1 eLA 1 +

2 FAD r

3 STO t

II eLA 1

5 FSB r

6 STO t

7 LDQ 1

8 FMP r

9 STO t

10 eLA I

11 FOP r

12 STQ t

13 eLA r :-

111 STO 1

Pattern Table

Figure 16.

the matrix, M, is translated by making a copy,
in the code output matrix, of the pattern corre
sponding to the operator M (i, 1), replacing all
cccurrences of '1' by the left operand, M (i, 2),
all occurrences of lr' by the right operand,
M (i, 3), and all occurrences of 't' by the row
number, i. The row numbers (integers) which
appear in the code are to be interpreted as the
names of temporary storage locations. Figure
17 is an algorithm for performing this trans
lation. N is the number of rows in the matrix,
M, C is the code output matrix, P AT1 (x) a
function whose value is the index of the first
line of the pattern for the operator x, and
P AT2 (x) a function whose value is the index
of the last line of the pattern for x (both these
functions are defined in Figure 18). The trans
lation of the matrix in Figure 1 is shown in
Figure 19.

It is immediately obvious that very inefficient
machine code is produced by this algorithm.

Figure 17.

x PATl(x) PAT2(x)

+ 1 3

- 4 6

* 7 9

I 10 12

:a 13 14

Figure 18.

1. * B C LDQ B

FMP C

STO 1

2. - E F CLA E

FSB F

STO 2

:3. * D 2 LDQ D

FMP 2

STO :3

II. + 1 :3 CLA 1

FAD :3 I
STO II

A II CLA II I
STO A .

Matrix ~lachlne code

Figure 19.

Once we begin to consider the production of
efficient machine code, the algorithms rapidly
get very complicated. We can make some im
provement, however, without a great deal of
complication. In the example are several redun
dant store and fetch instructions. These can
be eliminated if we keep track of the contents
of the special machine registers. We then insert
store instructions only when the current con
tents of a special register is not one of the
operands of the next operator and fetch in
structions only when the operand is not already
in a special register. To implement this we
generalize the idea of patterns. Corresponding
to each operator is a variable ·pattern, that is,
the instructions which are actually copied into

BOUNDED CONTEXT TRANSLATION 25

the code output matrix depend upon the con
tents of the special registers.

The method used in the MAD translator is
general enough for the machine structure as
sumed in this paper. The problem of gener
ating efficient machine code is a very difficult
one and is yet unsolved. There are methods,
undocumented, other than the one to be de
scribed but none which can claim to produce
highly efficient code in all circumstances. The
patterns will be arranged so that the result of
a row is, in general, not stored, i.e., it will be
left in one of the registers AC or MQ. The
machine code produced when a row of the
matrix is translated will depend on the values
of four Boolean variables. These variables are
named AC, MQ, LO, and RO. Suppose we are
ready to translate the ith row of the matrix,
then these variables have the following mean
ings:

1. If AC is true, the result produced by row
i-I is in the AC.

2. If MQ is true, the result produced by row
i-I is.in the MQ.

3. If LO is true, the left operand in row i is
i-l (I.e., the result of row i-I).

Figure 20.

26 PROCE'EDINGS-SPRING JOINT COM·PUTER CONFERENCE, 1964

4. If RO is true, the right operand in row i
is i-I.

Instead of regarding the patterns as a ·fixed set
of machine code to be produced in translating

operation
code

M

s

J
H

first
operand

inst

11

second
operand

a

12

val

In our language we will need the following
types of instructions: produce a machine in
struction, branch on the truth or falsity of one
of the Boolean variables, absolute transfer, set
the value of one of the Boolean variables, and
halt. Figure 20 is a flow chart for a program
to produce the code for '+', where '1' and 'r'
have the same meanings as in Figure 16, but
't' now refers to the temporary used to store
the result of the previous row. Notice that if
there is a result in the AC or MQ and it is not
either of the operands then instructions to
store it and fetch one of the operands are gen
erated. If one of the operands is in the wrong
special register an exchange instruction is gen-

x PAT(x)

-+ 1

- 20

* 37

I 54

:- 68

Figun21.

a row of the matrix, we now take the view
that the pattern is really a small 'program
which, when executed, produces machine code.
Viewing it in this light, we need a language in
which to write the program.

meaning

compile the machine instruction inst with a
in its address field (a may be I, r, t, or blank)

if r AC -1 == 'true' transfer to line 11,
MQ JI otherwise transfer to line 12

l
LO
AO

set the value of [~gJ to val

transfer to line 1
halt

erated. The word COMPILE means, here,
write the instruction into the code output
matrix.

A command in our pattern programming lan
guage will have a line number, an operation

1 RO 2 26 AC 28 27 51 ~IQ 52 ~9

2 AC ~ 27 :, XCA 52 M STQ t

3 M XCA 28 M FSB r 53 J 49

.. M FAD I 29 J 5 5 .. LO 55 61

5 S AC true 30 AC n 3~ 55 AC 57 56

6 S MO false 31 H STO t 56 '1 XCA

7 H 32 '" elA I 57
"

FOP r

8 lO 9 13 H J 28 58 S AC false

9 AC 11 10 34 /110 35 32 59 S "Q true

10 M XCA 35 M STU t 60 H

11M FAD r 36 J 32 61 AC 62 65

12 J 5 37 RO 38 102 62 M 5TO t

13 AC III 17 31 MO .. 0)9 63 M CLA I

III M STO t 39 M XCA 610 J 57

15 M ClA 1 40 M FMP 1 65 ','0 66 63

16 J 11 U J 5 66 M STI"! t

17MQ 18 15 "2 lO 43 107 67 J 63

IBM STQ t H '~Q .. 5 68 RO 69 7 ..

19 J 15 ,., xeA 69 AC 70 72

20 RO 21 25 .. 5 /I FMP r 70 M STO I

21 AC 23 22 .. 6 J 5 71 H

22 M lCA .. 7 AC 108 51 72 H STQ I

23M CHS .. 8 M STO t 73 H

211 J II 49 M lDQ I n ,., CLA r

25 LO '76 3D 50 J .. 5 75 J 70

Pa ttl! rn PrO.l'l'Ilms

Figure 22.

BOUNDED CONTEXT TRANSLATION 27

MQ:-'false'
RO:-'false'

C (j , 2) : -M (i , 2)

Figure 23.

28 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

x OP(x)

M MOP

AC ACOP

MQ MQOP

LO LOOP

RO R,OOP

S SOP

J JOP

H HOP

Figure 24.

M AC MQ I LO RO C

1. * B C LOQ B

true fal se false fal se FMP C

2. - E F STO 1

I CLA E

true fal se false true FSB F

3. * 0 2 XCA

true false fal se true FMP 0

4. + 1 3 true false false true FAD 1

5. :- A 4 STO A

Figure 25.

code, and two operand fi~lds. The commands
are:
The program for translating the matrix into
machine code now becomes an interpreter
which executes (interpretively), for each row
of the matrix the appropriate pattern program.
The pattern programs will be stored in a
matrix, P (indexed by k), the first column ""is
the operation code, the second column is the
first operand, and the third column is the sec
ond operand. As before, we have a function
PAT (x) whose value is the index of the first

line of the pattern program for the operator x.
The values of LO and RO are set by examining
the operands in a row before executing the pat
tern program for that row. The function
P AT (x) is defined by the table of Figure 21,
~igure 22 gives the pattern programs (the P
matrix), and Figure 23 is the interpreter for
the pattern programs, i.e., the algorithm for
translating the matrix into machine code.
OP (y) is a function, defined in Figure 24,
whose argument, y, is one of the operation
codes of the pattern programming language and
whose value is a label, the label of that portion
of the algorithm which interprets the operation
code y. Figure 25 shows the translation of the
matrix in Figure 1 into machine code using the
algorithm of Figure 23. For each row of the
matrix is shown the machine code produced for
that row and the status of the four Boolean
variables after translating that row and just
before considering the next row, that is, at
point 3 in the flow chart of Figure 23. Notice
that just this simple consideration of the con
tents of the special registers gives us a saving
of five instructions when compared to the in
structions produced by the algorithm of Figure
17.

It is obvious that only trivial modifications
are necessary to be able to use the pattern pro
gram interpreter with Ross's intermediate
form. Instead of considering the rows of the
matrix in sequence, the minor and major evalua
tion strings are followed. When the rules for
following the evaluation strings call for evalua
tion of a row, the appropriate pattern program
is interpreted. Evans uses an algorithm very
similar to the pattern program one which we
have described.

No consideration has been given to the type
(real, integer, etc.) of the identifiers involved.
In many computers there are different instruc
tions for floating decimal (real) and integer
arithmetic. This is easily taken care of by
having, for example, two pattern programs for
'+', one to be interpreted when the operands
are real, and the other to be interpreted when
the operands are integer. Finally, it is clear
that the interpreter instead of generating ma
chine instructions could actually execute them,
thus turning the entire translator itself into

an interpreter which could execute (interpre
tively) programs written in the source lan
guage.

BIBLIOGRAPHY

1. CHEATHAM, T. E., JR., and K. SATTLEY:
Syntax Directed Compiling, Pt'oceedings of
the 1964 SJCC, Washington, D. C., April
19.

2. FLOYD, R. W.: Syntactic Analysis and
Operator Precedence, J. ACM, 10 (3):
316-333 (1963).

3. FLOYD, R. W.: Bounded Context Syntactic
Analysis, Comm. ACM, 7 (2): 62-65
(1964).

4; EVANS, A., JR.: An ALGOL 60 Compiler,
paper presented at the 18th Annual Meet
ing of the ACM, Denver, August 1963.

5. ARDEN, B. W., and R. M. GRAHAM: On
GAT and the Construction of Translators,
Comm. ACM, 2 (7): 24-26 (1959); cor
rection, Comm. ACM, 2 (11): 10-11
(1959) .

6. ARDEN, B. W., B. A. GALLER, and R. M.
GRAHAM: The Internal Organization of the
MAD Translator, Comm. ACM, 4 (1) : 28-
31 (1961).

7. ARDEN, B. W., B. A. GALLER, and R. M.
GRAHAM: An Algorithm for Translating
Boolean Expressions, J. ACM, 9 (2) : 222-
239 (1962).

8. GRAHAM, R. M.: Translator Construction,
Notes of the Summer Conference on Auto
matic Programming, University of Michi
gan, June 1963.

9. EVANS, A., JR., A. J. PERLIS, and H. VAN

ZOEREN: The Use of Threaded Lists in
Constructing a Combined ALGOL and
Machine-Like Assembly Processor, Comm.
ACM,4 (1) : 36-41 (1961).

10. BAUER, F. L., and K. SAMELSON: Sequential
Formula Translation, Comm. ACM, 3 (2) :
76-83 (1960).

11. FLOYD, R. W.: A Descriptive Language for
Symbol Manipulation, J. ACM, 8 (4) : 579-
584 (1961).

BOUNDED CONTEXT TRANSLATION 29

12. Ross, D. T., and J. E. RODRIGUEZ: Theo
retical Foundations for the Computer
Aided Design System, P1'oceedings of the
1963 SJCC, Detroit, May 1963, pp. 305-
322.

13. NAUER, P., et al.: Report on the Algo
rithmic Language ALGOL 60, Comm.
ACM, 3 (5): 299-314 (1960).

APPENDIX A

Definition of the Language Used in the
Examples

<identifier> : :==A I B I C 1 DIE I FIG I H
<primary> : :== <identifier> I

(< expression>)
<mop> : :==* I /

<aop> : :==+ 1-
<term>: :==<primary> I <term><mop>

<primary>

<expression>: :==<term> I <expression>
<aop> <term>

<assignment statement>: :==<identifier>:==
< expression>

APPENDIX B

The Machine Language Used in the Examples

There are two special registers, the A C and
the MQ. Instructions are single address. The
meaning of the instructions is expressed as a
short ALGOL program. The '?' in the context
'MQ:==?' means that the contents of the MQ is
indeterminate. When the name of a register
does not appear to the left of an ':==' in the de
scription of an instruction, then the value of
that register is unchanged.

Instruction
CLA X
FAD X
LDQ X
FMP X
FDP X
FSB X
STO X
STQ X
CHS

Meaning
AC:==X
AC:==AC+X; MQ:==?
MQ:==X
AC :==MQ*X; MQ :~ ?
MQ :==AC/X; AC :==?
AC:==AC-X; MQ:==?
X:==AC
X:==MQ

AC:==-AC
XCA TMP :==AC; AC :==MQ; MQ :== TMP

SYNTAX-DIRECTED COMPILING
T. E. Cheatham, Jr., and Kirk Sattley

Computer Associates, Inc.
Lakeside Office Park

Wakefield, Massachusetts

INTRODUCTION

This paper is primarily concerned with the
analysis of source statements in a programming
language, although some of the ideas and tech
niques may be applicable to the analysis of
source statements in a natural language. We
are particularly concerned with those tech
niques which might be classed as predictive;
the companion paper by Graham7 is concerned
with other ("nonpredictive") techniques of
analysis. Very broadly the techniques we will
discuss operate as follows: Given a set of rules
(Syntax Specification) for forming allowable
constructs, eventually 1-esulting in a statement
(or sentence, word, program, etc.) of a lan
guage, we analyze a source statement in that
language by guessing, or predicting, how the
statement is constructed and either verifying
that this is the case or backing up to try again,
assuming some other method of construction.
We keep a "history" of Our attempts and when
we have determined the exact way in which the
statement is constructed we can use this "his
tory" of its construction for further processing
of the components of the statement.

We will be concerned, secondarily, with the
synthesis of machine coding, given an analysis
of a source statement. We do not, however, dis
cuss in any detail the difficult (and, at this
point, not terribly well understood) problems
of synthesizing highly efficient coding~ Refer
ence [1] contains a brief discussion of this
prohlem..

31

We are concerned hardly at all with the ex
tremely important and often neglected problems
of the~envirj)nment in which a compiler or code
resultiJ1g;from a com'piler is to operate. Refer
ence [3] sketches our position in this matter.

The phrase "syntax-directed" in the title
refers to the method by which the compiler is
given the syntactic specification of the language
it is to compile. That is, rather than having the
syntactic structure· of the language reflected in
the actual encoding of the compiler algorithm,
a "syntax-directed" compiler contains (or uses,
as parametric data) a relatively simple and
direct encoding of the syntactic structure of
the language, for example, as it might be ex
pressed in Backus Normal Form.. By "simple
and direct encoding," we mean, for instance,
numerical codes for the distinct syntactic types
of the language, and direct pointers represent
ing the relations of concatenation and alterna
tive choice, plus perhaps some sorting.

This paper is not intended as a review or
critique of syntax-directed eom'piIers or com
piler techniques nor have we presented a com
prehensive bibliography on the subject. Rather,
our purpose is tutorial-to present in as
straightforward a manner as possible the essen
tial ideas of syntax-directed compilers. Un
fortunately, there is, at the present time, no
completely adequate review paper on the sub
ject; Floyd13 does include a rather complete
bibliography.

32 PROCEEDINGS-,SPRING JOINT COMPUTER CONFERENCE, 1964

Our presentation commences with a discus
sion of syntax and the syntactic specifications
of languages-programming languages in par
ticular. We then discuss techniques for en
coding the syntax into tables and develop a
simple algorithm, the ANALYZER, which can
perform a syntactic analysis of source material,
using this tabled syntax specification as data.
From this we proceed to a discussion of the
generation or synthesis of code from the results
of the analysis. Finally, we discuss several
problems and limitations. Certain problems of
syntactic specification and some modifica
tions of the schemes we describe in the body of
the paper have been discussed in an appendix.

SPECIFICATION OF SYNTAX

Several essentially equivalent formalisms for
the representation of syntax have been devel
oped. These include such things as

Post Production Systems, developed by the
logician Emil Post during the 1940's as a tool
in the study of Symbolic Logic;

Phrase Structure Grammars, developed by
the linguist Noam Chomsky during the 1950's
as a tool in the study of natural languages; and

Backus Normal Form, developed by the pro
grammer John Backus during the late 1950's
as a tool in the description of programming
languages.

We shall use here a formalism most similar
to.Backus's.

A syntactic specification of a language is a
concise and compact representation of the struc
ture of that language, but it is merely that
a description of structure-and does not by
itself constitute a set of rules either for produc
ing .allowable strings in the language, or for
recognizing whether or not a 'Proffered string
is, in fact, an allowable string.

However, rules can be formulated to produce,
or recognize, strings according to the specifica
tion. In a "syntax-directed" compiler it is an
algorithm which performs the recognition of
allowable input strings, and it does this by
using (an en co dement of) the Syntax Specifica
tion as data. In this paper, 'we shall call such
an algorithm an (or the) "Analyzer."

In order to discuss the structure of the lan
guage,., we give names to classes of strings in
the language-we call these names (or the
classes they denote) "Syntactic Types." Some
of the classes of interest consist of single char
acters of the source alphabet: these we call
"Terminal Types," and specifically "Terminal
Characters"; to talk about any particular one,
we will merely display the character. Most of
the classes, though, are more complicated in
structure and are defined in terms of other
classes; these we call "Defined Types," and to
designate one, we choose a mnemonic name for
the class and enclose it in the signs' <' and' >'.

Basic Syntax Specification

Rather than proceed immediately to a dis
cussion of Backus Normal Form, we shall first
define a simple form of Synt~.x Specification
the Basic Specification. This consists of a set
of "Simple Type Definitions" (meaning, not
that the Types are simple, but the Definitions
are). A Simple Type Definition consists of the
name of a Defined TY'pe, followed by the curious
sign ':::=' followed by a sequence of Syntactic
Types, Defined or Terminal. An example, taken
from the Syntax I-soon to be discussed
would be:

<assignment> : ::= <variable>:= <arithexpr>

The Defined Type on the left of the ':::=' is
called The Defined Type of the Definition; and
the Definition is said to be a Definition of its
defined type. In general--even for the more
complicated forms of Type Definitions yet to
come-we shall call the right-hand side of the
Definition the "Definiens." Any sequence of
type designators appearing in a Definiens is
called a "Construction," and each type designa
tor within the Construction is a "Component"
of the Construction. So, the above example is a
Definition of the Defined Type <assignment>;
its Definiens is a Construction with three com
ponents, which are, in the order of their ap
pearance, the Defined Type <variable>, the
Terminal Charcater ':=' and the Defined Type
<.arith expr>.

A Simple Type Definition of this sort states
that, among the strings of the source language
belonging to the . Defined Type, are those which
are concatenations of substrings-as many

substrings as there are components of its (Sim
ple) Definiens-such that each substring (in
order of concatenation) belongs to the Syntac
tic Type named by the corresponding Compo
nent (in order of appearance in the Definiens).
Applied to our example: A source string belongs
to the class <assignment> (or, for short, "is
an <assignment>") if it can be broken into
three consecutive substrings, the first of which
is a <variable>, the second of which is the
single character '==', and the third of which is
an <arith expr>.

If we were interested in using Syntax Specifi
cations as '''generative grammars" -that is, if
we were writing an algorithm to use a Syntax
Specification to produce sam·ples of strings of
the language, we would write something which,
applied to our example, would have the effect
of: "if you wish to produce an <assignment>,
then: first choose any "definition of <variable>
and 'produce a string according to that defini
tion, then, second write down the character '==',
then third produce an <arith expr> according
to any definition of that type; then you have
produced an <assignment>"

Thus, the use of a (Basic) Syntax Specifica
tion as a generative grammar is quite straight
forward. The inverse problem-using the Syn
tax Specification a~ a "recognition grammar"
is, like many inverse problems, rather more
involved. In our opinion, the fundamental idea
-perhaps "germinal" would be a better word
-which makes syntax-directed analysis by com-
puter possible is that of goals: a Syntactic Type
is construed as a goal for the Analyzer to
achieve, and the Definiens of a Defined Type
is construed as a recipe for achieving the goal
of the Type it defines. * It is this use of goals
which leads to another description of analysis
techniques of this kind-"predictive analysis" :
setting up the recognition of a particular Syn
tactic Type as a goal amounts to predicting that
an instance of that type will be found. N eed
less to say, this use of the term "goal" is not
to be confused with the "goal-seeking behavior"
of "artificial intelligence" programs or "self-

* To our knowledge, the first person to formulate and
implement this conception was E. T. Irons, in his initial
design of the PSYCO compiler; his paper [4] describes
the essentials of his compiling technique.

SYNTAX-DIRECTED COMPILING 33

organizing systems." However, when we come
to specifying the algorithm for selecting par~
ticular goals in a particular order, we reach
the point at which the several existing syntax
directed techniques diverge. Our purpose in
this section on "Basic Syntax Specification" is
to lay a foundation common to the principal
different applications of the technique; hence,
if we try to "picture" the use of a Syntax
Specification as a recognition grammar, as we
pictured its use as a generation grammar in
the preceding paragraph, the most generally
valid statement we can make is :

We can say that we have recognized an oc
currence of a given Syntactic Type (at a given
position in the source string) if one of the two
following conditions obtains:

1. The Syntactic Type is a Terminal Char
acter, and the character at the given posi
tion in the source string is exactly that
Terminal Character;

2. The Syntactic TY'pe is a Defined Type, and
for some one of its (Simple) Definitions,
we have already recognized concatenated
occurrences of the Components of that
Definiens, in the stated order, the first
of which occurs at the .given position.

In t>rder for the set of Simple Type Defini
tions to constitute a useful Syntax Specifica
tion, it should satisfy some conditions.

(Cl) Any Defined Type which occurs as a
Component in any Definiens must also occur as
the Defined Type of some definition.

The desirability of this "completeness condi
tion" is fairly obvious-it will be very difficult
to recognize a Defined Type if the Analyzer has
no Definition of that Type. Of course, it is pos
sible that the Analyzer may never be asked to
find an instance of this Type, but then all the
Definitions which included it as a Component
would also be superfluous.

(C2) Every Defined Type must ultimately be
constructible entirely out of Terminal Charac
ters.

This "connectedness condition" is designed to
prevent a cycle of definitions which it is im
possible to break out of-that is, if a Defined
Type is defined only in terms of Defined Types,

34 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

each of which in turn is defined only in terms
of Defined Types, etc. Of course, it will be true
that there will be cycles within the act of defini
tions, and these cycles may be traversed arbi
trarily many times; but there must exist some
point in each cycle where an alternative defini
tion of one of the types exists. It is probably
sufficient to restate condition (C2) in the fol
lowing fashion:

A Terminal Type will be said to be "grounded."
A Defined Type is grounded if it has at least
one Definition, all of whose Components are
grounded; then

(C2') Every Defined Type must be grounded.

(C3) There must exist exactly one Defined
Type which does not appear as a Component in
any Definiens (except possibly its own). This
Type is called the "Starting Type" of the Syn
tax Specification.

The Starting Type represents the "largest"
construction allowable under the Specification
--e.g., "sentence," or perhaps "paragraph," in
natural language applications, or usually "pro
gram" in compiler applications. If there is no
Starting Type, the Analyzer, quite literally, will
not known where to begin.

Let us note here in passing that there is a
property of Syntax 8pecifications which is of
great importance to theoreticians in this field,
and to people who are designing new languages
or trying to construct Specifications for exist
ing complex languages, but which is irrelevant
to the problem of programming a syntax-di
rected Analyzer. This is the question of "struc
tural ambiguity" -does the Syntax Specifica
tion permit a particular source-language string
to be correctly analyzed in two different fash
ions? A simple example, taken from natural
language (with apologies to Oettinger) is:
"Time flies incessantly." This is certainly an
English sentence-but is it a metaphorical dec
larative sentence, or a terse imperative? In
the case of an Analyzer algorithm on a com
puter, only one thing is done at a time-if the
Analyzer is asked to find an instance of an
Ambiguous Syntactic Type, it must try one of
the possible definitions first; if that definition
succeeds, the Analyzer is satisfied, and the other
definitions are not considered. This is not to

say that an Analyzer, one of whose functions
is to find all possible analyses, cannot be built;
this has been done by Oettingerll for natural
language, and by Irons5, for use in compiling.

Some Transformations of the Basic
Specification

We shall now proceed to build up to the de
scription of a particular simple Analyzer algo
rithm, and at this point, we must choose one
among several different techniques. The differ
ences between the various techniques stem from
the following considerations:

-Given a Syntax Specification, there are
different ways of using it to determine the next
goal which the analyzer is to pursue. The two
major approaches are called the "top-down"
and the "bottom-up" techniques.

-There are different ways to use the output
of the Analyzer, e.g., interpretation, immediate
generation of output code, recording of the
analyzed structure for later generation, etc.

The particular type of Analyzer we have
chosen to describe here is, we believe, the easiest
to explain, and is suitable for any of the three
output-treatments mentioned above. It does not
correspond, so far as we know, to any actually
existing compiler system, although it bears a
surprisingly strong resemblance to the algo
rithm used in some of the compilers that Com
puter Associates, Inc., has recently produced.
(See Shapiro and Warshall)1.

The first step is to transform our Basic Syn
tax Specification into a Backus Normal Form.
The description of a Syntactic Type Definition
is now expanded so that the Definiens, instead
of simply a Construction (which, remember,
was a sequence of Components, which, in turn
were Syntactic Types) can now be a sequence
of Constructions, separated by the special sign
'I'. Any such sequence of Constructions, sep
arated by 'I' and appearing in a Definiens is
called an "Alternation," and the individual Con
structions in the sequence are called "Alterna
tives" of the Alternation. To transform a Basic
Syntax Specification into Backus Normal Form,
we must repeatedly apply the following trans
formation rule to the set of Definitions, until
it can no longer be applied:

(Tl) If any Defined Type has more than one
Definition in the set, delete an such Definitions,
and add to the set a new Definition whose left
hand side is the Defined Type in question, and
whose Definiens is an Alternation of the origi
nal (Basic) Definientes.

As an example, the Basic Syntax Specifica
tion for the simple language we are using for
illustration in this paper would have contained
three definitions for <factor> :

<factor> <variable>
<factor> ::== <integer>
<factor> ::== «arith expr»

After applying (Tl) to the Basic Specification,
these three Definitions would be replaced by the
single Definition

<factor> <variable> I <integer> I
(<arith expr>)

This Definition, of COurse, should be read "a
source string is a <factor> if it is either a
<variable> or an <integer> or an <arith
expr> enclos~d in parentheses." This Backus
Normal Form is exactly the form of Syntax
Specification used in the defining documents
for ALGOL 60 [8], and Table 1 presents a
conlplete syntax for a simple arithmetic pro
gramming language in this form, which we
shall refer to as "Syntax 1."

The Action of the Analyzer
We can now sketch out the action of the

Analyzer: At the beginning of the process, it
takes the Starting Type of the Specification as
its first goal. Then at any point in the process
it follows these steps when it has a Defined
Type as its current goal:

The Analyzer consults the Definition of the
Defined Type (in Backus Normal Form, of
course, each Defined Type has a unique Defini
tion) , and specifically, it considers the first
Alternative in that Definition. It then succes
sively takes each Component of that Alternative
as a sub-goaL (Of course, it must re-enter
itself for each of these goals, and it must keep
track of where it was at each level of re-entry.)
If at any point it fails to find one of these sub
goals, it abandons that Alternative, and con
siders the next Alternative in that Definition,

SYNTAX-DIRECTED COMPILING 35

if there is one, and steps through the Compo
nents of that Alternative. If there is no next
Alternative, it has failed to realize its current
goal, and reports this fact "upstairs." If it
succeeds in finding the sub-goals corresponding
to each of the Components of any Alternative
in the Definition of its current goal, it has
found its goal, and reports that fact.

T-his rough sketch conveniently ignor-es a
number of sticky points which we now have to
consider. The first of these -points is that we
discussed the action of the Analyzer only when
its current goal was a Defined Type. What if
the goal is a Terminal Character?

When it· comes to writing a compiler in prac
tice, the question of recognizing Terminal Char- .
acters brings us face to face with the lovely
problems of restricted character sets, input
output idiosyncracies of the particular com
puter, etc. Both in practice and in the remain
der of this paper, we assume the presence of
another routine, called the "Recognizer," which
the Analyzer can call upon to deal with these
problems. So far, we have also glossed over the
problem of keeping track of where in the Input
String the Analyzer is looking. Obviously, when
the first Component of some Construction has
been recognized, starting at a certain point in
the Input String, then, when the Analyzer pro
ceeds to look for the next Component, it must
move its Input-String pointer past the substring
which satisfied the first Component. Now, since
a Type which has been successfully recognized
consists, ultimately, of a sequence of Terminal
Characters, and the recognition of Terminal
Characters is the job of the Recognizer, we
shall also leave the moving of the Input-String
pointer to the Recognizer. The fundamental
action of the Recognizer is then as follows:

The Recognizer is called by the Analyzer,
and asked if a specified Terminal Character
occurs at a stated character position in the
Input String. The Recognizer then negoti
ates with the I/O system of the computer
(if necessary) and examines the character
position in the input string. If the input
character at that position is not the Terminal
Character the Analyzer asked for, the Recog
nizer reports failure. However, if the input
character is the desired Terminal Character,

36 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

the Recognizer reports success to the Analy
zer, and advances the Input-string pointer by
one character position.

H·aving the Recognizer at hand, it turns out
to be convenient in practice to give it some fur
ther responsibilities. Consider the definitions
of <variable> and <integer> in Syntax I.
These amount to saying that 'an <integer> is
any sequence of digits, and a <variable> is
any sequence of letters or digits as long as the
first one is a letter. If we relegate the recogni...;
tion of these fundamental types to the Recog
nizer, rather than the Analyzer, we obtain
several advantages.

-The Recognizer can be hand-tailored to per
form these :particular recognitions very effi
ciently on the particular machine, and this
speeds up the analysis considerably.

-As far as the Analyzer is concerned, if the
Syntax Specification calls for an <integer>,
for instance, any old integer will do. But when
we come to generating output code, we'll need
to know the particular integer which occurred
at that point. The Recognizer can perform the
conversion from external number representa
tion to machine representation, and either re
turn the numerical value, or enter the number
in a "Literal Table" and return its index value.
Similarly, when it recognizes <variable>, it
can look in a "Symbol Table" for previous oc
currences of that particular variable, add it to
the table if necessary, and return a line num
ber.

-In practical applications the question of
what constitutes a "blank" is often an involved
one. In some languages, a long comment may
function syntactically as a blank. When a com
piler runs under the control of some operating
systems, certain segments of the Input string
(e.g., identification fields in cards) must be
treated as blanks, or ignored entirely. Since
the Recognizer constitutes the interface be
tween the Analyzer and the outside world, it
can take care of these matters.

To allow for this extended Recognizer in our
Syntax Specification, We allow another sort of
Terminal Type (up to now, we recall, the only
Terminal Types have been Terminal Charac
ters). We designate these new Terminal Types

with script capital letters, and call them "Ter
minal Classes." Thus, in Syntax I, we can de
lete the definitions of <variable>, <integer>,
<letter>, and <digit>, and replace the De
finientes of <variable> and <integer> by the
Terminal Classes QI and (1, respectively. This
·produces Syntax II, Table 1, which is the one
we shall refer to throughout the rest of this
paper.

But this technique could be carried further.
A compiler-builder might decide that he prefers
operator-precedence techniques for the analysis
of arithmetic expressions, while keeping the
flexibility of syntax-direction for analysis of the
larger constructions. His arithmetic-expression
scanner would then function as a Recognizer
for the previous Defined Type '<arith expr>,'
and, for this simple language, the Syntactic
Specification would take the form of Syntax III,
Table 1.

To summarize: When the current goal is a
Defined Type, the. Analyzer calls upon itself
to find it, but when the goal is a Terminal Type,
it calls upon the Recognizer. When the Recog
nizer is called, it determines according to its
own internal rules, Whether the desired Termi
nal Type occurs in the Input string at the cur
rent pointer-position; if not, it reports failure;
if so, it advances the pointer past the substring
which constitutes the Terminal Type (single
character, or member of a Terminal Class), and
reports success.

Encoding the Syntax Specification

Weare now almost ready to proceed to the
encoding of the Syntax Specification for the use
of the Analyzer, except for one embarrassing
question:

Consider, as an example, the definition of
<term> in Syntax II :

<term>: :==<factor> I <term> * <factor>

What if the Analyzer should find itself con
sidering the second Alternative in this Defini
tion? This would amount to the Analyzer
saying to itself "in order to find my current
goal, which is <term>, I must set out to find
the first Component of this Alternative, which
is <term>." In order to find a term it must

SYNTAX-DIRECTED COMPILING 37

TABLE 1
Alternative Syntax Specifications

Syntax I:
<program>
< assignment>
<arith expr>

<term>
<factor>
<variable>
<integer>
<letter>

<assignment> 1 <assignment> ; <program>
<variable> == <arith expr>
<term> 1 <arith expr> + <term>
<factor> 1 <term> * <factor>
<variable> I <integer> 1 «arith expr»

<digit>

<letter> 1 <variable> <letter> I <variable> <digit>
<digit> I <integer> <digit>

AIBICIDIEIFIGIHIIIJIKILIMINIOIPI
QIRISITIUIVIWIXIYIZ
0111213141516171819

Syntax II:
<program>
< assignment>
<arith expr>
<term>
<factor>

<assignment> I <assignment>·; <program>
<variable> == < arith expr>
<term> I <arith expr> + <term>
<factor> I <term> * <factor>
<variable> I <integer> I «arith expr»

<variable> <v
<integer> a

Syntax III:
<program> <assignment> I <assignment> <program>
<assignment> ::== <variable> == <arith expr>
<aritl} expr>, .. -' £
<variable> a

be able to find a term first. This is called the
"left recursion problem,", and it has led some
language designers to disallow Type Definitions
which include Alternatives which mention the
Defined Type of the Definition as their first
Com,ponent. To a human analyst, of course, the
intent of the Definition is plain ;he should first
look for a <fa~tor>; if he finds one, he has
indeed found a <term>, but he should con
tinue looking to see if he can find a '*' followed
by another <factor>; if he can, he has found
a "longer" <term>, and should continue look
ing for a: still longer one; as soon as he fails
to find a '*' following his latest ,:eterm>, he
can stop looking, confident that he has found
the longest <term> at that point in the string.
This recognition process can be embodied in the
encoding of the Syntax Specification, but it
does require detecting the presence of these

left-recursive alternatives, and giving them
some special treatment. Keeping this in mind,
we shall proceed to encode the Syntax Specifica
tion.

The encoding consists of two tables, the Syn
tax Type Table and the Syntax Structure Table.
The Syntax Type Table will contain an entry
for each Syntactic Type which occurs anywhere
in the Syntax Specification, whether it be a De
fined Type or a Terminal Type. Each entry i
the Type Table consists of two items: a yes-no
item TERMINAL, and an integer item LOOK
FOR. When line t in the Type Table corre
sponds to a Terminal Type, TERMINAL [t]
will be set to "yes," and LOOKFOR [t] will con
tain an arbitrary code number which the Recog
nizer will interpret as denoting the particular
Terminal Character or Terminal Class it should
try to recognize. When line t in the Type Table

38 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

(GOAL)
(Type)

<program>
< assignment>
<arith expr>
<term>
<factor>
<variable>
<integer>

Q/
(]
,

--
+
*
(
)

SOURCE TYPE- I
(Index) CODE

1 ii
2 x
3 i
4 vi
5 xi
6 iii
7 iv
8 xii
9 iv

10 v
11 xiii
12 v
13 vi
14 vii
15 xiv
16 iii
17 xv
18 viii
19 ix

TABLE 2
The Syntax Tables

(Index) TERMINAL

i No
ii No
iii No
iv No
v No
vi No
vii No
viii Yes
ix Yes
x Yes
xi Yes
xii Yes
xiii Yes
xiv Yes
xv Yes

2.1
Syntax Type Table

SUC- ALTER-
STRUCT CESSOR NATE

Yes 2 FAIL
No 3 OK
Yes OK FAIL
No 5 FAIL
No 6 FAIL
Yes OK FAIL
Yes 8 FAIL
No 9 OK
Yes 8 FAIL
Yes 11 FAIL
No 12 OK
Yes 11 FAIL
Yes OK 14
Yes OK 15
No 16 FAIL
No 17 FAIL
Yes OK FAIL
Yes OK FAIL
Yes OK FAIL

LOOK-
FOR

1
4
7

10
13
18
19

101
102

1
2
3
4
5
6

Corresponds
to

Definition

1.1

1.2

1.2
3.1

3.2
4.1

4.2
5.1
5.2

5.3
6.1
7.1

corresponds to a Defined Type, TERMINAL [t]
will be set to "No," and LOOKFOR [t] will con
tain some line-number in the Syntax Structure
Table, to be filled in presently~ We keep in mind
that we can now use small integers as, in effect,
names of Syntactic Types, by using them to
index the Syntax Type Table.

The Syntax Structure Table will contain a
line for each Component of each Alternative of
each Definiens in the Syntax Specification. Each
line of the Structure Table will consist of four
items:

TYPECODE, an integer item, will contain
line numbers referring to the Type Table;

STRUCT, a yes-no item;
SUCCESSOR and
ALTERNATE, integer items, will contain

line numbers referring to other lines of the
Structure Table,plus two special codes
denoted by "OK" and "FAIL."

The Syntax Structure Table is constructed ac
cording to the following rules:

Consider first a Defined Type which has no
left-recursive Alternative in its Definiens. Re
serve a block of entries in the Structure Table.
Assign an entry in the Structure Table to each
Component in each Alternative in the Definiens.
In the Type Table line corresponding to this
Defined Type-say, t-set LOOKFOR [t] to the
Structure-Table line number assigned to the
first Component of the First Alternative of the
Definiens. In each Component-line s, set TYPE
CODE [s] to the Type Table line number of the
Syntactic Type which occurs as that Compo
nent in the Definiens. In each line correspond
ing to a Component which is not the last Com
ponent of an Alternative, set STRUCT to "No"
and SUCCESSOR to the line corres'ponding to
the next Component. In each line correspond
ing to a Component which is the last Component
of an Alternative, set STRUCT to "Yes" and
SUCCESSOR to "OK." In each line corre
sponding to a first Component of any Alterna
tive except the last Alternative of the Definiens,
set ALTERN A TE to the line corresponding to
the first component of the next Alternative. Set
all other ALTERN ATE fields to ,"FAIL."

If the Defined Type contains a left-recursive
Alternative: (we shall here assume there is

SYNTAX-DIRECTED COMPILING 39

only one left-recursive Alternative-See Ap
pendix). Set the left-recursive Alternative
aside temporarily, and carry out the above
process for the other Alternatives. Then:

Assign a Structure-Table line to each Compo
nent of the recursive Alternative except the
recursive Component itself.

Set TYPECODE in each of these lines, as
above.

Set SUCCESSOR and STRUCT in each of
these lines, except for the last Component, as
above. .

Call the first of these lines (the one corre
sponding to the Component which immediately
follows the recursive Component in the De
finiens) the "handle."

Set ALTERN ATE in each of these lines, ex
cept the handle, to "FAIL."

Set ALTERNATE in the handle to "OK."

Set SUCCESSOR in the line for the last
Component of this Alternative to the handle,
and set STRUCT in this line to "Yes."

Now, in the lines corresponding to last Com
ponents in all the other Alternatives in this
Definiens, SUCCESSOR will have been set to
"OK" by the nonrecursive treatment. Replace
each of these "OK"s by the line number of the
handle.

The Syntax Type Table and the Syntax Struc
ture Table corresponding to Syntax II are
shown together as Table 2. In the hope of

~GOAL -I (Stan:1 .. Type)
,SOURCE - 0
'CIIAR- 1

~INAL [GOAL]? ~ •• ~~;;;;;~Qiiii~iL)
~ ~------~

PU'~'
SOURCE-~

Figure 1. Flow Chart for ANALYZE.

40 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

reducing the confusion involved in having en
tries in each table pointing to the other, w(
have indicated the indexing of the Syntax Type
Table with Roman numerals, and the indexing
of the Syntax Structure Table with Arabic
numerals, and we have added the names of the
syntactic types corresponding to the lines of
the Syntax Type Table.

The Analyzer Algorithm
The flow chart, Figure 1, illustrates an

Analyzer working from Syntax Tables of the
sort we have just constructed. The following
remarks will help to follow the flow chart.

-The global quantities GOAL, SOURCE, and
CHAR are used as follows:

GOAL is the line number in the Syntax
Type Table corresponding to the Syn
tactic Type currently being considered
(initially, the Starting Type).

SOURCE is the line number in the Syntax
Structure Table of the Component cur
rently being considered (initially un
defined, hence set to zero) .

CHAR is the (ordinal) number of the
character position in the Input String
next to be considered (initially set to
the beginning of the String, here 1).

-The operations of "Pushdown" and "Pop
up" are performed on these globals-this may
be done by any appropriate mechanism. For
definiteness, let us assume an index Y (initially
zero) accessible to these two operations, and
arrays GYOYO, SYOYO, and CYOYO. Then
(in quasi ALGOL notation),

Pushdown: Y :== Y + 1
GYOYO[Y] :== GOAL;
SYOYO[Y] :== SOURCE·;
CYOYO[Y] :== CHAR;

Popup: GOAL :== GYOYO [Y] ;
SOURCE :== SYOYO[Y];
if CHAR is mentioned in the call
then CHAR :== CYOYO [Y]; Y
:==Y-l;

Plausibly, CHAR is popped up when an Alter
native has failed, and the Analyzer must back
up to the beginning of that Construction and
try another Alternative at the same place; and
CHAR is not popped up-hence left as it has

been set by the successful recognitions-when
some Alternative has succeeded.

-Recognize is assumed as described earlier:
It returns a success/failure indicator which is
tested in the "Found?" box. For definiteness
again, we shall assume that, when it succeeds
in recognizing a Terminal Class, it places a
Symbol-Table or Literal-Table line number in
some global location, for the Generator to use.

-The following sections of this paper will
discuss possible uses to be made of the Ana
lyzer's results. The routine which considers
these results is named the "Generator," and it
is represented in this flow chart by a subroutine
call box: "Generate." When Generate is called,
the valij.e of SOURCE uniquely indicates the
Syntactic Type which has been recognized and,
moreover, the particular Alternative in the Defi
nition of that Syntactic Type which has just
succeeded. The column headed "Corresponds
to Definitions" ha.s been added to the Syntax
Structure Table to indicate this relationship.
The numbers in this column correspond to the
Alternatives in the "semantics" tables, Tables
4 and 5.

DOING SOMETHING USEFUL WITH THE
ANALYSIS

A syntactic analysis, such as that depicted
verbally in the preceding section or via the flow
chart in Figure 1, is an important part of the
problem which must be solved by a compiler,
but it is only a part. The goal of a compiler is,
after all, to produce the coding required to
carry out the procedure described in the pro
gramming language being compiled. This cod
ing might be desired as actual machine instruc
tions for some computer or it might be desired
as instructions appropriate for some interpreter
available on one or more machines or it might
be desired in some other· form. In any event,
some further processing is required once the
syntactic analysis is complete in order to "gen
erate" and format the coding to be output.

Let us suppose that the syntactic analysis has
proceeded to the point where some syntactic
type has been recognized (in the flow chart,
Figure 1, we have passed through the "GENER
ATE" box). The contents of SOURCE tells us

SYNTAX-DIRECTED COMPILING 41

TABLE 3
"Interpretive Semantics" for Syntax II

1.1 <program> <assignment> {Execute the <assignment> then halt}

1.2 I <assignment> ; <program> {Execute the <assignment> then pro-
ceed}

2.1 <assignment> <variable> == <arith expr> {"Locate" the <variable> (determine
its address for later assignment of
value); then evaluate the <arith
expr>; then assign its value ·to the
<variable> }

3.1 <arith expr> : :== <term> {Evaluate the <term> ; the value of the
<arith expr> is this value}

3.2 I <arith expr> + <term> {Evaluate the <term> and then the
<arith expr>; the value of the (de
fined) <arith expr> is the sum of
these two values}

4.1 <term> : :== <factor> {Evaluate the <factor>; the value of
the <term> is this value}

4.2 I <term> * <factor> {Evaluate the <term> and then the
<factor> ; the value of the (defined)
<term> is the product of these two
values}

5.1 <factor> : :== <variable> {The value of the <factor> is the value

5.2 I <integer>

5.3 I «arith expr»

6.1 <variable> 00- <v

7.1 <integer> o

which syntactic type has been recognized as
well as which alternative construction of the
syntactic type was built. Thus, some action or
set of actions could be initiated at this ,point to
process this syntactic type in a variety of ways.

For example, Table 3 gives for each alterna
tive construction of the syntactic types of Syn-

of the <variable>}

{The value of the <factor> is the value
of the <integer>}

{Evaluate the <arith expr> ; the value
of the <factor> is the value of the
<arith expr> }

{The value of the <variable> is the
value most recently assigned to the
variable QI}

{The value of the <integer> is the
value of the integer 0 (according to
the conventional representation of in
tegers) }

tax II a verbal description of the computations
to be performed upon recognition of that con
struction. Corresponding to this table, the anal
ysis of the assignment statement

X == NU* (Y + 15)
could yield the following fragments of (slightly
edited) verbal description:

42 PROCEEDINGS-SPRING JOINT COMPUTER CONF'ERENCE, 1964

Line Construction
6.1 <variable> Q/

6.1 <variable>

5.1 <factor>

4.1 <term>

6.1 <variable>

5.1 <factor>

4.1 <term>

3.1 <arith expr>

7.1 <integer>

5.1 <factor>

4.1 <term>
3.1 <arith expr>

5.3 <factor>

4.1 <term>

3.1 <arith expr>

2.1 <assignment>

<variable>

<factor>

<variable>

<factor>

·<term>

(]

<integer>

<factor>
< ari th expr>

+ <term>

(<arith expr»

<term>
* <primary>

<term>

<variable> =

x

NU

Source Description of Computation
The value* of the <variable>
is the value most recently as
signed to the variable X.

The value of the <variable> is
the value most recently as
signed to the variable NU.

NU The value of the <factor> is
the value of NU.

NU The value of the <term> is the
value of NU.

Y The value of the <variable> is
the value most recently as
signed to the variable Y.

Y The value of the <factor> is
the value of Y.

Y The value of the <t~rm> is the
value of Y.

Y The value of the <arith expr>
is the value of Y.

15 The value of the <integer> is
15.

15 The value of the <factor> is
15.

15 The value of the <term> is 15.

Y + 15 The value of the <arith expr>
is Y + 15.

(Y + 15) The value of the <factor>,
(Y + 15) is Y + 15.

NU* (Y + 15) The value of the <term>,
NU* (Y + 15) is NU* (Y + 15).

NU* (Y + 15) The value of the <arith expr>
NU*(Y +15) is NU*(Y +15).

<arith expr> X= NU* (Y + 15) Assign the value of NU* (Y +
15) to the variable X.

* Obviously, the current value of the variable X is not of interest here since the purpose of the assignment is to
assign a value to X.

Thus, with a certain amount of editing, the
recognition of X = NU* (Y + 15) yields the
verbal description:

"Let NU and Y represent the values most
recently assigned to the vadables NU and
Y; then compute NU* (Y + 15) and assign
the resulting value to the variable X."

Table 4 illustrates a very simple a'pproach to
the problem of machine code synthesis. With
each syntactic construction is associated a set
of actions. These actions are of two types
output and set. The interpretation of the ac
tions is reasonably obvious. The bracketed
numerals under the components of a construc-

SYNTAX-DIRECTED COMPILING 43

TABLE 4

Machine Code Semantics for Syntax II-Direct Generation

1.1 <program>

1.2

::== <assignment>
[1]

I <assignment> ; <·program>
[1] [2] [3]

2.1 <assignment> <variable> == <arith expr>
[1] [2] [3]

3.1 <arith eX'Pr> : :== <term>
[1]

3.2 I <arith expr> + <term>
[1] [2] [3]

4.1 <term> ::== <factor>
[1]

4.2 i <term> * <iactor>
[1] [2] [3]

5.1 <factor> : :== <variable>

5.2

5.3

6.1 <variable>

7.1 <integer>

[1]

I <integer>
[1]

I «arith expr»
[1] [2] [3]

.. - rv

(J

1. Output END

1. Output CLA (addr)
[3]

2. Output STO addr
[1]

1. Set addr == addr
[] [1]

1. Output CLA (addr)
[1]

2. Output ADD (addr)
[3]

3. Output STO (addr)
[]

1. Set addr == addr
[] [1]

1.
• 'T'T""'Irt.J""'\. , ") uutput LV\:l \ aoar

[1]
2. Output MPY (addr)

[3]
3. Output STQ (addr)

[]

1. Set addr == addr
[] [1]

1. Set addr == addr
[] [1]

1. Set addr == addr
[] [2]

1. Set addr == the variable name
[]

recognized at this point of the input
string.

1. Set addr == a symbolic name for the
[]

address in which will be kept, the
integer constant recognized at this
point in the input string.

44 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

tion identify the components. The notation
addr means the result address associated

[1]
with the component identified by [1] in the
syntax specification. A bracketed blank repre
sents the syntactic type being defined and
addr represents the result address of this

[]
type; when the addr a'ppears in a machine

Line
6.1 <variable>

6.1 <variable>

5.1 <factor>

4.1 <term>

6.1 <variable>

5.1 <factor>

4.1 <term>

[]

3.1 <arith expr>

7.1 <integer>

5.2 <factor>

4.1 <term>

3.1 <arith expr>

Construct
Q!

Q!

<variable>

<factor>

<variable>

<factor>

<term>

(j

<integer>

<factor>

<arith expr>
+ <term>

«arith expr»

instruction a temporary storage register is to
be assigned. In the example below we use the
notation tj for the jth such temporary. Again
consider the assignment

x = NU*(Y + 15).

If this assignment is analyzed and actions car
ried out as per Table 4, the following results:

Source
X

NU

NU

NU

Y

Y

Y

Y

15

15

15

Y + 15

(Y + 15)

Result

addr [<variable>] = X

addr [<variable>] = NU

addr [<factor>] = NU

addr [<term>] = NU

addr [<variable>] = Y

addr [<factor>] = Y

addr [<term>] = Y

addr [<arith expr>] = Y

addr [<integer>] = 15

addr [<factor>] = 15

addr [<term>] = 15

CLA Y
ADD=15
STO tl

addr [<factor>] = tl 5.3 <factor>

4.1 <term> <term>*.<factor> NU* (Y + 15) LDQ NU
MPY tl
STQ t2

3.1 <arith expr>

2.1 <assignment>

<term> NU* (Y + 15) addr [<arith expr>] = t2

<variable> =
< arith expr>

Given this mechanism, which we shall refer
to in the sequel as the "Direct Generation
Mechanism," plus some mechanism for creating
and housekeeping local or internal labels and a

X = NU*(Y + 15) CLA t2
STO X

sufficiently sophisticated assembler (e.g., it can
allocate memory for constants and variables)
we have a rudimentary compiler.

SYNTAX-DIRECTED COMPILING 45

TABLE 5
Machine Code Semantics for Syntax II-Deferred Generation

1.1 <program> : :== <assignment> 1. Output END
[1]

1.2 I <assignment> ; <program>
[1] [2] [3]

2.1 <assignment> ::== I <variable> == <arith expr> 1. Process [1]

3.1 <arith expr>

3.2

4.1 <term>

4.2

5.1 <factor>

5.2

5.3

6.1 <variable>

7.1 <integer>

[1] [2] [3] 2. Process [3]

<term>
[1]

I <arith expr> + <term>
[1] [2] [3]

<factor>
[1]

I <term> * <factor>
[1] [2] [3]

<variable>
[1]

I <integer>
[1]

I «arith expr»
[1] [2] [3]

(j

3. Output CLA addr

4. Output STO addr

1. Process [1]
2. Set addr == addr

[3]

[1]

[] [1]
1. Process [1]
2. Process [3]
3. Output CLA addr

4. Output ADD addr

5. Output STO addr

1. Process [1]
2. Set addr == addr

[1]

[3]

[]

[] [1]
1. Process [1]
2. Process [3]
3. Output LDQ addr

4. Output MPY addr

5. Output STQ addr

1. Process [11
2. Set addr == addr

[1]

[3]

[]

[] [1]
1. Process [1]
2. Set addr == addr

[] [1]
1. Process [2]
2. Set addr == addr

[] [2]
1. Set addr == the variable name rec-

[]
ognized at this point of the input
string.

1. Set addr == a symbolic name for the
[]

address in which will be kept the
integer constant recognized at this
point in the input string.

46 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

®-~
<variable> • <arlth expr'>

(!) I [.] (9 I
if <tena>

0~"1~~ [x]

<term>

®I
<factor>

There is an interesting variation in this
method of generating machine code. Let us
suppose that, for one reason or another, it is
desirable to complete the analysis for an entire
<assignment> and produce the tree represen
tation of its syntax, and then to generate the
machine coding which is to correspond to the
tree so constructed. Table 5 illustrates this
approach. It is essentially Table 4 to which
some further actions have been appended. In
this table the action denoted by a bracketed
numeral preceded by the word "process'" is
interpreted: "do the actions for the component
indicat~d." Thus, again given the assignment:

<DI (<ar1th expr'>)

x == NU*(Y + 15)

<variable>

@ I
if

[NU]

e "~-@T'-",,~"
<arlth expr'>

@I [+]

<term·~

@I

<tena>

I @.
<factor>

®I
an analysis of this assignment with respect to
Syntax II could be carried out resulting in the
tree of Figure 2. Given this tree, the actions
indicated in Table 5 could result in the follow
ing:

<factor>

@I
<variable>

@!
V
[yj

<integer

@I
j
[15]

Tree Node Line of Table 5

25 2.1

2 6.1

25 2.1

24 3.1

23 4.2

7 4.1

6 5.1

5 6.1

6 4.1

7 4.1

23 4.1

22 5.3

20 3.2

14 3.1

Figure 2. Syntax Tree for the <Assignment>
"X = NU* (Y + 15)."

Result

Process < variable>, node 2.

Set addr(2) == X; actions complete for node 2, return to node 25.

Process <arith expr>, node 24.

Process <term>, node 23.

Process < term>, node 7.

Process <factor>, node 6.

Process <variable>, node 5.

Set addr(o) == NU; actions for node 5 complete; return to node
6.

Set addr(6) == NU; actions for node 6 complete; return to node
7.

Set addr(7) == NU; actions for node 7 complete; return to node
23.

Process <factor>, node 22.

Process <arith e}Cpr>, node 20.

Process <arith eX'pr>, node 14.

Process <term>, node 13.

Tree Node Line of Table 5
13 4.1

12 5.1

11 6.1

12 5.1

13 4.1

14 3.1

20 3.2

19 4.1

18 5.2

17 7.1

18 5.2

19 4.1

O{\ on
.:::.V 0.':::'

22 5.3

23 4.2

24

25 2.1

SYNTAX-DIRECTED COMPILING 47

Result
Process <factor>, node 12.

Process <variable>, node II.

Set addr(1l) == Y; actions for node 11 complete; return to node
12.

Set addr(12) == Y; actions for node 12 complete; return to node
13.

Set addr(13) == Y; actions for node 13 complete; return to node
14.

Set addr(14) == Y; actions for node 14 complete; return to node
20.

Process <term>, node 19.

Process <factor>, node 18.

Process <integer>, node 17.

Set addr(17) == ==15; actions complete for node 17, return to
node 18.

Set addr(18) == ==15; actions complete for node 18, return to
node 19.

Set addr(19) == ==15; actions for node 19 complete; return to
node 20.

Output CLA Y
Output ADD ==15
Output STO tl
Set addr(2o) == t 1 ; actions for node 20 complete; return to node
22.

Set addr (22) == t 1 ; actions for node 22 complete; return to node
23.

Output LDQ NU
Output MPY tl
Output STQ t2
Set addr f 23) == t2; actions for node 23 complete; return to node
24.

Set addr (24) == t2; actions for node 24 complete; return to node
25.

Output CLA t2
Output STO X
Set addr(2ii) == X; actions for node 25 complete; exit.

Note that we have changed notation slightly
and used the notation addrfiil' for example, to
indicate the (result) address which is as
sociated with node 5.

The "code generation" mechanism implied
by the above description is as follows: At any
point in time some action of some node is to
be performed; the actions and their interpreta
tions are:

48 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Interpretation Action
Process a node

Example
Process [1] Remember which action of the current node is being

processed; perform the first action of the indicated
node.

Output code Output CLA addr
[1]

Procure the result address from the node indicated
(the node corresponding to addr in the example)

[1]
and output the instruction. If the address indication
is blank (e.g., STO addr) select the next available

[]
temporary register address; set that address as the
result address of the current node.

Set address Set addr
[]

addr
[2]

Set the result address of the current node as the result
address of the node indicated.

End of actions Return to the next action of the node which "called"
for this node to be processed.

Thus, the mechanism has a "control" element
which is, at any point in time, considering some
node. When a new node is to be processed, the
"control" remembers which action to proceed
with when "control" returns to the current
node and then initiates the first action of the
node to be ,processed. When all actions for a
node are processed, "control" returns to the
node which called for the current node and
takes up actions for that node where it left off.
Further, the mechanism has the ability to out
put code, associate result addresses with the
node being processed, and procure temporary
register addresses.

Again given this mechanism, which we shall
refer to in the sequel as the "Deferred Genera
tion Mechanism," plus some mechanism for
creating and housekeeping local or internal
labels and a sufficiently sophisticated assembler,
we have a rudim'entary compiler.

There are, of course, other kinds of "actions"
one could associate with a node. For example,
it would be quite straightforward to associate
actions for producing a different tree structure
than the complete syntax tree ,as depicted in
Figure 2. This might then produce, from an
analysis of the assignment

x == NU* (Y + 15)

the simple tree (or "Polish prefix" representa
tion) :

/\.
/\ or (=(X,'(NU,+(Y,15»»

NU /+\
Y 15

It will be apparent that the Direct Generation
Mechanism does not require that the complete
syntactic tree actually be built as the analysis
proceeds. Rather, it is sufficient that there be
some means (for example, a push down store is
adequate) for "remembering" the result ad
dresses which have yet to be "used." Further,
while this technique appears, on the face of it,
to be quite rapid and efficient (no tree need be
kept, shorter "driving tables" -compare Table
4 with Table 5) it is subject to some serious
limitations. In particular, since the coding for
a syntactic type is actually being output as
that type is recognized, there must (for most
languages) be some mechanism for "erasing"
a patch of code generated for a syntactic type
recognized while the analyzer was attempting
recognition of some larger construction when
it turns out that the syntactic type in question
does not enter into the construction of the
larger syntactic type as it is finally built.

In the above example with the Deferred Code
Mechanism we used <assignment> as the syn
tactic type over which (i.e., over the tree repre
sentation of which) generation was to occur.
It is, of course, possible to generalize this to
allow any syntactic type to be "tagged" as big
enough to call the generation mechanism. Thus,
at one extreme a complete program would have
to be recognized before any generation was per
formed (a "two pass" compiler) and, at the
other extreme, each syntactic type would call
for generation ("one pass" compiler) thus
making the Deferred Generation Mechanism
essentially the same as the Direct Generation
Mechanism. It should be noted that, employing
the Deferred Generation Mechanism, once the
tree corresponding to some syntactic type has
been processed ("generated over") it can be
erased with the exception of its top-most or
root node which may have to remain to supply
a "result address" for the generation over some
larger construction.

It must be emphasized that both these
mechanisms are very rudimentary and for use
within a compiler would require some embel
lishment in order to be practical. Thus, for
example, it seems rather a shame to generate
a complete syntax tree for some (perhaps frag
ment of some) 'program and then make essen
tially no use of the contextual information con
tained implicitly in the tree structure. Indeed,
a rather simple addition to make some use of
this information would be the following: con
sider that we add conditional actions of the
following sort:

IF addr
[a]

IF addr
[a]

SKIP n

== addr ,SKIP n
[b]

=1= addr ,SKIP n
[b]

where in the first two the truth of the relation
causes the n actions following to be skipped and
the SKIP n action causes the n actions follow
ing to be skipped. If we further add "AC" and
"MQ" as special values for addr ,then for

[]
a single address computer (say, like the IBM-
7094), it would be possible to generate rather
more efficient coding by placing results tem
porarily in the accumulator (AC) or multiplier
quotient (MQ) registers and then checking for

SYNTAX-DIRECTED COMPILING 49

the use of these locations for operands before
generating coding. Thus we might then as
sociate with the construction <arith ex:pr>
::== <arith ·expr> + <term> in Table 5 the
actions:

1. Process [1]
2. Process [3]

3. IF addr == AC, SKIP 4
[3]

4. IF addr == AC, SKIP 1
[1]

5. Output CLA addr
[1]

6. Output ADD addr
[3]

7. SKIP 1

8. Output ADD addr
[1]

9. Set addr == AC
[]

These would have the effect of preserving
results of additions in the accumulator and
remembe.ring that they were there in order to
avoid redundant store-load instructions. In
order to fully utilize such a facility, including
keeping track of the 1\1Q contents as well some ,
further mechanism for indicating the AC or
MQ are empty or full and some mechanism for
storing their contents would be required. The
basic scheme is, however, reasonably clear from
the example. The MAD Translator has facilities
similar to these built into its code gener,ation
mechanism.

Even such a mechanism as this barely makes
use of the rather rich store of contextual in
formation available. In order to do so, how
ever, we would require some means for talking
about the nodes of the tree relative to any given
node of interest (such as a nodes "father,"
"father's father," "father's right-brother's
son's son," and so on). Further, it would prob
ably be desirable to extend the "control" some
what and allow more general "tree walks" than
simply processing "sons" and returning to
"father." Also, if contextual information were
gathered, it would have to be "parked" some
where and thus an addition of further informa
tion fields associated with each node would be
useful plus, perhaps, some "working variables"

. which various actions could reference and set.

50 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

It is clear that one could extend the whole gen
eration mechanism to include control sequenc
ing and actions which were programs in a
rather specialized programming language. The
paper by Warshall and Shapiro [1] contains a
brief sketch of one such extension which has
been successfully tried on several computers
and for several languages.

SOME PROBLEMS AND LIMITATIONS

The techniques and fragments of techniques
which we have discussed above are all, in one
way or another, relevant to the design and con
struction of compilers. Furthermore, these tech
niques, in the simplified form in which we have
presented them, are of sufficient general utility
that they should be in every "systems" program
mer's bag of tricks. For example, the AN A
L YZE algorithm-coupled with either the Di
rect or Deferred Generation Mechanism dis
cussed in the preceding sections-can be applied
to a variety of programming tasks imbedding
simple algebraic facilities in an assembly pro
gram, handling the "translation" of free format
or formatted control cards, interpreting de
scriptions of formatted data, and so on. How
ever, for the serious construction of compilers
these techniques represent only a few of the
techniques required and they are subject to
some limitations.

Some of the considerations which must enter
into any compiler design and which are affected
to one degree or another by the choice of
method of analysis and its linkage to the gen
eration of code are the following:

--error analysis and recovery
-analysis of languages in which recogni-

tion order is not the same as genera
tion order

-processing declarations
-generation of highly efficient coding

Let us consider these questions.

Error Analysis and Recovery
An error is detected, for example, in Syntax

II, when the analyzer cannot recognize a <pro
gram>. Although the exact point in the input
string past which recognition fails will be
known, it is extremely difficult to determine

exactly why the error occurred and to, in a
general way, devise means for recovery.

Several schemes exist for dealing with this
problem, notably:

1) A scheme which permits specification of
"no back up" on certain constructs. For ex
ample, in Syntax II, no back up on recognition
of "==" or "(" could help isolate the reasons
for a failure.

2) A scheme due to E. T. Irons [5] which, in
effect, carries along all possible parses of an
input string.

3) Special "error" syntactic types which
could be defined in the syntax.

At the ,present time there is no completely
satisfactory scheme for dealing with syntactic
errors discovered in the course of predictive
analysis. If the programming language which
is being analyzed has sufficiently simple struc
ture that it is a precedence grammar, the tech
nique of bounded context analysis is probably
a better technique to utilize. A discussion of
precedence grammars is given in Reference
[6] ; the use of bounded context analysis is de
scribed in Reference [7].

Recognition Order Differs from Generation
Order

Some reasons why the order of generation
might be different from the order of recognition
are:

1) The detection of, and generation of coding
for, sub-expressions which are common to two
or more parts of the program is desired.

2) The detection of computations which are
invariant in some larger computation (for ex
ample within loops) is desired.

3) Languages other than the usual program
ming languages are being translated, for ex
ample, data description languages or the com
putational fragments associated with TABSOL
like descriptions are to be processed.

Reference [1] describes some techniques for
coping with these problems in a compiler which
uses predictive analysis.

Handling Declaration8

Here the problem is that the "actions" are
not to generate coding (usually) but to change
the syntax-normally through type coding in
formation inserted into a symbol table. For
mally, however, a declaration of type is really
the appending of a syntax rule. Thus the
ALGOL 60 declaration

"real X, Y;"

means that the two new syntax rules

"<real var>: :=X"
and

"<real var>: :=Y"

must be appended to the syntax.

Other declarations may cause changes to the
full compiler-for example, debug mode decla
ration, and the like.

Generation of Highly Efficient Coding

This cannot be accomplished by generating
code directly as the analysis is performed since
common sub .. expressions, invariant computa
tions an.d the like couldn't be detected reason
ably and special registers such as index
registers certainly couldn't be allocated on any
global basiS, which is necessary if any really
effective use is to be made of them.

Many of the manipulations required to collect
the information pertinent to optimizing code
are not particularly easily done (or, at least
efficiently done) with the source material in a
syntax tree form. Reference [1] describes a
method by which such optimizations are 'per
formed over a set of "macro-instructions"
which are "generated" by a technique similar
to that depicted by Table 5.

SUMMARY AND CONCLUSION

In this paper we have tried to explain the
workings of syntax-directed compiling tech
niques--or perhaps better, of those parts of a
compiler in which the actions to be performed
can reasonably be associated with the structure
of the input string. A satisfying understanding
of the operation of a syntax..directed analyzer
can only be attained by actually playing through
a few examples. We recommend this as a worth-

SYNTAX-DIRECTED COMPILING 51

while experience to anyone who is interested,
and so we have given a sufficiently detailed
description of a particular example to permit
the reader to write statements of his own in
the simple language, and play them through the
Analyzer and anyone of several code-genera
tion techniques.

There remains the question of evaluating syn·
tax directed compiler techniques in comparison
tb other approaches.

On the face of it, syntax directed analyzers
cannot be as efficient as operator"'precedence
techniques for the simple task of recognizing
input structures. This follows from the fact
that, no matter how cleverly the language de
signer, or specifier, arranges the elements of
his Syntax Specification, the Analyzer will
necessarily spend some percentage of its time
exploring blind alleys. Clever specifications can
make the blind alleys less frequent and shorter,
but even for the simplest of languages, there
will be some.

Thus, in any situation where the primary
consideration is. speed of the compiler itself,
a"""''''Q'V_r1~ ... o,..t-ori ::u·.'h".,;nnoo ~~o ".,nt- t-'ho. 1'V\ncd-t;JJ ~.&V"""-\A.&"'~"''-I'''U "''''\,;''''.I.4.&. ... 'iU.~O Q ~ .loA"",,", "'.l.J.~ .&. '"'~w

suitable. But this, we argue, is true only if the
quality of the coding produced' is also of rela
tively little importance. In our experience with
attempts to generate highly efficient optimized
coding for several different machines, we find
that the time spent in analyzing is a small
fraction of the total--even using very sloppy
Syntax Specifications. The most important
question in compiling system design today, we
reiterate, is not the "understanding" of the
source language-that is a solved problem-but
rather the generation of really good object
language coding.

One of the principal arguments in favor of
syntax-directed techniques is that it is very
easy to change the specification of the language,
or, indeed, to switch languages, merely by
changing the Syntax Tables----no modifications
of the algorithms are required. And this is in
fact true, with some restrictions. But now that
techniques exist for automatically producing
operator-precedence tables from a Syntax Speci
fication [6], the syntax-directed compilers no
longer have a monopoly on this useful feature.

52 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

A further advantage of syntax-directed
analysis remains, up to the present, only poten
tial. These techniques are evidently not of the
"bounded context" sort-a syntax directed
Analyzer can take into account as large a con
text as required to perform its recognition
(admittedly, at a definite cost in speed). Hence,
when the day comes that we need to perform
analysis of source languages of much less rigid
structure, syntax-directed techniques will be
more immediately applicable than the tech
niques which are designed to take advantage
of the restrictive properties of present pro
gramming languages.

In summary, syntax-directed techniques have
a definite place in today's computing world, and
promise to play an even more important role in
the future.

APPENDIX

Some Further Transformations of the Syntax
Specification and the Syntax Tables

In constructing the Syntax Tables, we de
scribed a complicated operation for avoiding
the problem of left-recursive Alternatives in a
Syntactic Type Definition. We can describe this
as a transform·ation within the Syntax Specifi
cation itself, and, at the same time, include
some features which improve the efficiency of
the encoding of the Syntax.

First, we extend the idea of "Component" to
include two new forms:

1) An Alternation (of one or more Construc
tions), enclosed in square brackets '[' and ']'.
These brackets are assumed to be different
from any of the Terminal Characters (if they
were not, we'd use some other signs).

2) An Alternation enclosed in braces '{' and
'r, again assumed different from any of the
Terminal Characters.

Second, we apply a left-distributive law:

(T2) Whenever, within a single definition,
two (or more) Alternatives start with the same
Component (or sequence of Co;mponents), re
place all of these Alternatives with a single one,
whose last Component is the bracketed Alterna-

tion of the non-common parts of the original
Alternatives, and whose first Component(s) is
(are) the one (s) common to the original Al
ternatives. It is also useful to introduce the
idea of a "null" Syntactic Type-effectively a
Terminal Type which is always recognized
whenever it is called for-denoted here by a
capital lambda. Then, for example:

<a>: :== <c> <d> <e> I
 <c> I <c> <f> i <g>

would be transformed into:

<a>: :== <c> [<d> <e> I
<f> I A] I <g>

(Obviously, if the Analyzer is going to consider
Alternatives in the order in which they are
written, a null Alternative shouJd always ap
pear last in an Alternation.)

Having applied (T2) to any Definition, there
can be at most one left-recursive Alternative,
and if there is one, we can rewrite the definition
according to :

(T3) Put the left-recursive Alternative as
the last Alternative in the definition; if there is
more than one other Alternative, put square
brackets around the Alternation consisting of
the nonrecursive Alternatives; delete the sign
, , preceding the last Alternative, and delete the
first Component of that Alternative (which will
be the same as the Defined Type of that Defini
tion) ; then enclose the remaining Components
(of this formerly last Alternative) in braces.

Thus the ultimate transform of a left-recur
sive definition has as Definiens a single Con
struction, the last Component of which is
"iterated" (enclosed in braces). As an example,
a Definition which was originally:

<a>: :== <c> I <a> <d> <e> I
<a> <f> I <g> <h>

would be transformed into:

<a> ::== [<c> I <g> <h>]
{<d> <e> I <f>}

The modifications to the rules for constructing
the Syntax Tables to represent Definitions in
this form is left as an exercise for the reader.

The Analyzer flow-charted in Figure 1 should
work on the resulting tables.

Three of the Definitions in Syntax II 'would
be changed by application of (T2) and (T3):

<program>: :==<assignment>
[; <program> I A]

<arith expr> ::== <term>
{+<term> }

<term> : :== <factor> {* <factor> }

Now, an analogous pair of transformations
a right-distributive law, and the elimination of
right-recursive Constructions-could be ap
plied, and this would render the Syntax Specifi
cation still more compact. The language used
by Brooker and Morris [10] for specifying
syntax is essentially one of this sort, although
the notation used is rather different.

More "Groundedness" 'Problems

The treatment we have described takes care
of left-recursive definitions, as long as the re
cursion occurs within the definition of a single
Syntactic Type. It will not handle the infinite
loop problem engendered by, as an example:

<a>: :== Z I X

<h>: :==<a> Z I Y

and it is in general true that, for an Analysis
technique of the "top down" sort, as presented
here, a Syntax Specification with such left
recursive loops will not be adequate. This leads
to the requirement of an additional condition
on Syntax Specifications: If we say that a
Construction is "firmly grounded" when its
first Component is either a Terminal Type or a
firmly grounded Defined Type, and a Defined
Type is firmly grounded when all of its non-Ieft
recursive D,efinientes (in the Basic Syntax
Specification) are firmly grounded, then:

(C4) Every Defined Type must be firmly
grounded.

In practice, this is not a serious restriction.
The simplest test for this condition is to try to
run the Analyzer-it stops requesting input and
goes into a loop. It is usually a simple matter to
rewrite the Syntax Specification to eliminate

SYNTAX..,DIRECTED COMPILING 53

the difficulty. In the above example, this could
be done in several ways, one of which is:

<a> ::==
 ::== [X I Y] {Z }

A Modified Analyzer

The Analyzer algorithm of Figure 1 is de
signed to call the Generator upon recognition
of every instance of a Syntactic Type, even if
it is not the "longest" instance of that type
present at the given position of the Input string.
It turns out to be the case that, for all the
standard programming languages, w hen the
Analyzer needs to recognize a recursively de
fined Syntactic Type, it wants ~he longest string
which is a member of that Type-that is, it
should keep re-entering the iterated, Component
of the Definition. (in our latest transformed
form) until it meets a failure. The Syntax
Tables and Analyzer described in this paper
will find the "longest" instance of a type but
this Analyzer does report each partial recogni
tion also.

Now, a slight change in the Analyzer algo
rithm allows it to avoid reporting partial recog
nitions to the Generator, and call it only when
it has completed recognition of the longest
instance of a Syntactic Type. For those who
might-be interested in exploring this point, the
changes to be made are:

1) Eliminate the boxes (GENERATE) and
(STRUCT [SOURCE])? from the flow chart.

2) Insert a(G ENERA TWbox between the boxes
!Popup GOAL, SOURCEl and(SOURCE==O?)

The entire Syntax Structure Table entry
STRUCT can also be eliminated.

In order to correctly record the recognitions,
the Generator must construct a slightly differ- '
ent tree (we are here assuming operation in,
the "deferred generation" mode), the form of
which is best illustrated by an example:

For the Input (sub-) string,

A+B+C+D

the Generator discussed in this appear will pro
duce a (sub-) tree:

54 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

<arith expr>

<arith e/' 1 ~rm>
~"~ .

<arith expr> + <term>

/I~
<arith expr> + <term>

I
<term>

B
A

If the modifications mentioned above are made
in the Analyzer, each of the terms in the input
string will cause the Analyzer to signal recog
nition of a <term>, but only one recognition

C

D

of <arith expr> will be reported, and that
after all four <terms>. The Generator will
then tree this recognition as follows:

~rithexP

<term~l ~term>
A B

To use a tree of this form for the generation of
output code, the Generator language must be
extended, for example, to refer to "siblings"
instead of just "sons" and "fathers" and also
to "count" sons (the number per node is not
fixed, but depends upon the actual input) or to
recognize the non-existence of a "sibling," etc.
Typically, the processing sequence for the above
tree is for a <term> node first to send control
to its first son, to evaluate the sub-tree, then
when control returns, to send control "hori
zontally" -to its siblings-for evaluation of the
other <term>s; only the last <term> node
would send control back to the father. Refer
ences [1] and especially, [2], discuss this in
more detail.

AMore Subtle Problem

The Analyzer algorithm given in this paper
has the following property: Assume that a
given Syntactic Type <x> has been recognized
at character-position c in the input string, and
the Analyzer fails to recognize any of the pos
sible successors of <x> within the Definition of

C D

its current goal. The Analyzer will report fail
ure for this Alternative of the Definition. It is
possible to formulate a Syntax Specification in
such a way that this reported failure would pe
erroneous: if there were another, different, sub
string starting at c and which was also an <x>
(this other substring would correspond to an
Alternative occurring later in the Definition of
<x> than the Alternative which was first suc
cessfully recognized). It is certainly possible to
design an Analyzer which will keep track of the
information necessary to allow this kind of
"back-up" (see References [5] and [13]), but
for the present purposes it would have en
cumbered the description with a good deal of
additional mechanism - essentially, the Syntax
Structure Table would have another item, en
coding the converse of the relation represented
"by SUCCESSOR, and push-down storage would
be required to keep track of the SOURCE lines
of the Types successfully recognized, instead of
just those which are currently being worked on.
Using the Analyzer and Generator described in
this appendix, it becomes much easier to ac-

commodate this feature, since the required
additional information can easily be kept in the
tree while it is being built. Reference [2] dis
cusses this question in detail and with examples.

"Top Down" vs. "Bottom Up"

The Analyzer described in this paper is of
the sort known as "top down," the appellation
referring to the order in which the Analyzer
sets its goals. The present Analyzer will always
set as its next goal some Syntactic Type which
appears as a Component in the Definition of
its present goal - any time the Recognizer is
called to find a Terminal Type, the pushdown
storage of the Analyzer will contain a record
for each Syntactic Type in a chain reaching
down from the Starting Type to the Terminal
Type. The order in which a "bottom up" Ana
lyzer sets its goals is much more difficult to
describe, but the actions of the two types can
be impressionistically sketched as follows:

The "top down" Analyzer sets a goal and
tries all ,possible ways of achieving that goal
before giving up and replacing the goal with an
altern a ti ve.

The "bottom up" Analyzer, having recog
nized a Syntactic Ty-pe, checks wh~ther it has
"gone astray" in trying to reach its goal or
whether that Type is indeed ,a possible first
Component of a first Component of . . . of the
goal. If the latter, it continues processing input
until it has built another Type of which the
previous one is a first Component, and goes back
to the checking. If it has gone astray, it backs
"down" and tries to see if it can construe the
input differently, to approach its goal along a
different chain of intermediate types.

E. T. Irons' original syntax-directed Ana
lyzer design was of this type (Reference [4]).
It might be interesting to characterize an Ana
lyzer similar to Irons' within the terminology
of this paper.

We start with the Basic Syntax Specification,
and first build a magical matrix which will
answer the question "Can ex start with [3?"

where a and [3 are Syntactic Types. The relation
"can start with" is defined recursively as fol
lows:

SYNTAX-DIRECTED COMPILING 55

A (Defined) Syntactic Type ex can start with
the Syntactic Type [3 either

1) if [3 appears as the first Component of
some Definiens of a, or

2) if there exists a y which can start with [3,
and y occurs as the first Component of some
Definiens of ex. Irons' pa'per [4] gives an ele
gant technique for constructing this matrix.
Note that ex can start with a, if it is left-re
cursively defined, but not otherwise.

The next step is to transform the Basic Speci
fication:

First, remove the Defined Type and the sign
': :=' from the left-hand end of the Definition,
and place '=::' followed by the Defined Type
at the right-hand end. (In effect, when a defini
tion is considered from left to right, the Type
which it defines is not known until all the Com
ponents have been recognized.) Hereafter, the
Defined Type will be called the "Result" of the
Definition. For example, the Definition of
<assignment> becomes:

<variable> = <arith expr> = ::
<assignment>

Second, apply the left-distributive law to the
set of definitions, introducing Alternation signs
'I' as required. To illustrate, the following two
interesting lines would result, in the exam'ple
language of this paper:

<term> [* <factor> =:: <term>
=:: <arith expr>]

<variable> [= <arith expr> = ::
<assignment> I =::<factor>]

The effect of this transformation is to reduce
the set of definitions to one line for each Syn
tactic Type which occurs as a first Component
of one of the original Simple Definitions.

From the resulting set of "definitions" syntax
tables are constructed, analogous to the ones in
this paper. But the analogue of the Snytax
Type Table is now a directory of first Compo
nents, each entry of which points to the first of
a block of structure-table entries which encode
the remainder of the "definition," now includ
ing a mention of the Result of the original
Simple Definition (suitably flagged to avoid
interpreting it as just another successor).

56 PROCEEDINGS--:SPRING JOINT COMPUTER CONFERENCE, 1964

For use with a "bottom up" Analyzer of this
sort, the Terminal Types of the language (or
at least those which appear as first Components
in any Definition) must be unambiguously rec
ognizable independently of context-that is, the
Recognizer may be told merely to "find some
thing," and it will return with an indication of
the particular Terminal Type it recognized.

To start the analysis, the goal is set to the
Starting Type, and the Analyzer proceeds as
follows:

Step 1 Call the Recognizer; the Terminal
Type it reports is placed in Type In Hand.

Step 2 Can the goal start with the Type In
Hand? If not, go to Step 4. If so, proceed to
Step 3.

Step 3 Consult the Structure Table at the
point indicated in the Type Table for the Type"
In Hand. Push down the current goal and its
source and set up as new goal the Component
mentioned in this entry in the Structure Table.
(This structure-table entry is the "source of
this goal"). Go to Step 1.

Step 4- Is- the Type In Hand the same as the
goal? If not, go to Step 7. If so, proceed to
Step 5.

Step 5 (We have attained a goal) Consider
the source of this goal. Is the successor of that
entry in the Structure Table flagged as a Re
suIt? If so, go to Step 6. If not, replace the
goal with the (Syntactic Type mentioned in
the) successor of the source, reset the source to
point to this successor, and go to Step 3.

Step 6 (We have recognized all the Compo
nents of a Definition.) Place the name of the
Type mentioned in the Result entry into Type
In Hand, pop up the goal (and source), and go
to Step 2.

Step 7 (We have "gone astray.") Consider
the Structure Table entry for the source of the
current goal. Does it have an alternate? If not,
go to Step 8. If so, restore the input-string
pointer to the value it had when the current
goal was first set up, replace the current goal
with the alternate (adjust source), and go to
Step 1.

Step 8 Pop up the goal and source, and go
to Step 4.

For programming languages of the current
sort, there is no clear advantage in favor of
either the top down or bottom up analysis tech
niques, insofar as efficiency of the Analyzer is
concerned. For either technique, it is possible
to design a language and Syntax Specification
on which the technique will perform very
poor-Iy, while the other one will not be nearly
as bad. The choice between the techniques is
generally made on the basis of considerations
other than raw speed of the analysis, such as
the kind of o~tput desired from the analysis,
the possibility of error detection and correction,
or personal taste.

"B ootstrfIpping"

As a final comment, we merely point out the
fact that the language of the Syntax Specifica
tion is itself a rather straightforward, well
behaved language, easily susceptible of being
described by a Syntax Specification. A version
of the compiler can be wri~ten which uses a
Specification of the Syntax-Specification-Lan
guage to "drive" it, and produces, instead of
output code in a machine language, a set of
Syntax Tables which encode the Syntax Specifi
cation it receives as input. This has, in fact,
been done (References [1], [2]).

BIBLIOGRAPHY

1. WARS HALL, S., and SHAPIRO, R. M., "A
Gene1'al PUTpose Table D'riven Compiler,"
to be published in the Proceedings, SJCC,
Spring 1964.

2. SHAPIRO, R. M., and ZAND, L., "A Descrip
tion of the Input Language for the Com
piler Generator System," CAD-63-1-SD,
Computer Associates, Inc., June 1963.

3. CHEATHAM, T. E., JR., and LEONARD, GENE
F., "Introduction to the CL-II Program
ming System," CA-63-7-SD, Computer
Associates, Inc., Nov. 1963.

4. IRONS, E. T., "A Syntax Directed Compiler
for ALGOL-60," Comm. ACM 4 (1961),
51-55.

5. IRONS, E. T., "An ErTor Correcting Parse
Algorithm," Comm. ACM 6 (1963, 669-
674.

6. FLOYD, R. W., "Syntactic Analysis and
Operator Precedence," Jnl. ACM, vol. 10
(1963), p. 316.

7. GRAHAM, R. "Bounded Context Transla
tion," to be published in the Proceedings,
SJCC, Spring 1964.

8. NAUR ET AL., "Report on the Algorithmic
Language ALGOL 60," Comm. ACM, vol.
3 (1960), p. 299.

9. BARNETT, M. P., "Continued Operator No
tation for Symbol Manipulation and Array
Processing," Comm. ACM 6 (Aug. 1963),
p.467.

10. BROOKER, R. A., and MORRIS, D., "An As-

SYNTAX-DIRECTED COMPILING 57

sembly Program for a Phrase Structure
Language," The Computer Journal, vol. 3
(1960), p. 168.

11. KUNO, S., and OETTINGER, A. G., "Syntac
tic Structure and Ambiguity of English."
AFIPS Conference Proceedings, vol. 24
(1963) .

12. IRONS, E. T., "PSYCO, The Princeton Syn
tax Compiler," Institute for Defense Anal
ysis, Princeton, N.J.

1'-' u. FLOYD, R. W., "The Syntax of Program
rning Languages-A Survey," to be pub
lished in the IEEE Transactions on Elec-
tronic Computers.

A GENERAL-PURPOSE TABLE-DRIVEN COMPILER

Stephen Warshall and Robert M. Shapiro
Computer Associates, Inc.

Lakeside Office Park
Wakefield, Massachusetts

INTRODUCTION

If a compiler is to generate efficient object
code, there are several different kinds of opti
mization which should take place. Each of these
optimization procedures has a preferred do
main: that is, some algorithms prefer to oper
ate pver the input string, others over the tree
which describes the syntax of the string, others
over the "macro-instructions" which are gen
erated from the tree, and so forth. In an earlier
paper,! one of the present authors pointed out
the necessity for employing the tree form in
particular as a natural domain for optimizers
which consider syntactic context and suggested
that, just as Irons2 and others had built gen
eral-purpose table-driven parsing algorithms,
one could also build a general-purpose table
driven program for getting from trees to
macro-instructions. The final compiler design
presented here is the result of pursuing that
kind of thinking somewhat farther.

COMPILER ORGANIZATION

The compiler is composed of five phases (not
"passes," if that means pulls of the input tape) :

1. A syntactic analyzer which converts a
piece of input string into a tree-representation
of its syntax.

2. A generator, which transforms the tree
into a sequence of n-address macro-instructions,
investigating syntactic context to decide the
emission.

59

3. An "in-sequence optimizer" (ISO) which
accumulates macros, recognizes and eliminates
the redundant computation of common subex
pressions, moves invariant computations out of
loops, and assigns quantities to special regis
ters.

4. A code selector which transforms macros
into syllables of machine code, keeping com
plete track of what is in special registers at
each stage of the computation.

5. An assembler which simply glues together
the code syllables in whatever form is required
by the system with which the compiler is to
live: symbolic, absolute, or relocatable, with or
without symbol tables, etc.

The first four phases are encoded as general
purpose programs; the fifth has been handled
as a special-purpose job in each version of the
compiler, and will therefore not be covered in
the present discussion.

Phase I: Analyzer

The analyzer is of the "top-down" syntax
directed variety, driven by tables which are in
effect an en co dement of the source language's
syntax as given by a description in the meta
linguistics of the ALGOL 60 report3 (the so
called "Backus normal form"). There are sev
eral features of interest in this en co dement :
rules are shortened where possible by applica
tion of the distributive law (thus, "<A>

60 PROCEEDING~SPRING JOINT COMPUTER CONFERENCE, 1964

 I <A> <C>" would be coded as "<A>
«B> I <C>)"; it is possible to define types
by naming an arbitrary scanner which recog
nizes them, thus eliminating syntax-chasing
when forming ordinary identifiers, etc.; left
and right recursive rules are carried in a trans
form~d condition whose effect is to force recog
nition of the longest possible string which satis
fies the rule. The analyzer tables contain some
information which is not syntactic, but rather
concerned with compiler control (how much
tree should be built before the generator is
called, for example) or with specifying addi
tional information to be placed in the tree for
later use by the generator.

Phase II: Generator

The generator algorithm "walks" through the
tree from node to node, following directions
carried in its tables. As it walks, macro-in
structions are emitted from time to time, also
as indicated in the tables. The encodement of
a set of tables (a so-called "generation strat
egy") is based upon the idea of a "relative tree
name." A relative tree name is, formally, a
function whose domain is the set of nodes in
the tree and whose range is its domain union
zero. At any given time, the generator is look
ing at (has walked to) some particular node
of the tree. Every relative tree name is then in
terpreted (evaluated) as a function of that
node as independent variable. A relative tree
name is a rule for getting from "here" to some
neighboring node of the tree. Thus, if we may
view the tree as a genealogical one, a relative
tree name might "mean" father or first son or
first son of second son, for example, of the node
the generator is currently considering.

A generation strategy is composed of a set
of rules each of which consists of a description
of some kind of node which is somehow of
interest together with a list of things to be
done when a node of that kind is in fact encoun
tered. A kind of node is generally distinguished
by its own syntactic type and the types of some
of its neighbors. The things to be done include
walking to a neighboring node and emission of
macros whose variables are neighboring nodes.
In all cases, neighboring nodes are named in
the tables by relative tree names.

Phase III: In-Sequence Optimize?'

The ISO accepts macro-instructions emitted
by the generator. The processing of a macro
usually results in placing the macro in a table
and sending a "result" message back to the
generator. Macros also instigate various book
keeping and control operations within the ISO.

The processing of a macro is controlled by a
table of macro descriptions. A macro mayor
may not be capable of being combined with
others into a common-subexpression; the argu
ments of a macro mayor may not be commuta
ble, and so forth. The ISO will detect macros
whose arguments are literals and in effect exe
cute those macros at compile time, creating
new literals. If a macro may be handled as
(part of) a common subexpression and is not
computable at compile time, the ISO will recog
nige a previous occurrence of the same macro
as equivalent if none of its arguments have
been changed in value either explicitly or im
plicitly by any of the messages that have been
received in the interval.

At some point the ISO receives a macro
instruction that signals an "end region" con
trol operation. This causes the ISO to perform
a set of "global" optimizations over the region
of macros just completed. These global optimi
zations include the recognition of those com
putations which remain "invariant" within the
region and the reservation of "special regis
ters" such as index registers to reduce the num
ber of special register loads and stores within
the region.

Pha.~e IV: Code Selector'

The code selector produces symbolic machine
code for a region of macros after the ISO has
collected these macros and performed its vari
ous optimizations. The code selector is driven
by a table of code selection strategy. The do
main of a strategy is the region of macros and
a "track table" which represents the condition
of the registers of the target computer.

The code selector views the macros as nodes
of a tree structure; that is,. certain partial or
derings exist which guarantee that the code
emitted preserve the computational meaning of
the macros, but within these constraints the

A GENERAL-PURPOSE TABLE-DRIVEN COMPILER 61

strategy can order the computationaccordlng
to its convenience, as a function of the avail
ability of registers and results. The preferred
mode of operation is to postpone making deci
sions about what code to generate for a macro
until it is known how the. result of that· macro
will be used.

The code selector also makes use of certain
information gleaned from the macro-descrip
tion tables in order to predict how the special
registers (index registers, etc.) will be used.
These predictions enable the code selector to use
such registers intelligently. This local optimi
zation, combined with the global reservation
of special registers by the ISO, results in a
fairly effective use of these registers.

BOOTSTRAP TECHNIQUE

There are three major sets of tables to be
prepared if the compiler is to be particularized
to a specific source language and target ma
chine. These are the syntax tables, the genera
tion strategy tables, and the tables of macro
description and code selection. The bootstrap
technique is simply a method of automating
part of- the process of preparing these tables.

A group of three languages was developed.
corresponding to the three tables. These
languages are all describable in the Backus no
tation and thus capable of analysis by the ana-

Examples:

B.n.f.

lyzer. A set of syntax tables and generation
strategy tables for these languages was encoded
by hand and installed in the compiler, which
was then capable of translating from these spe
cial languages into macro-instructions. The
link from the generator to the ISO was broken
and replaced by a link to a special "Bootstrap
ISO" which converted these apparent macro
instructions into lines of tables, namely, the
three tables of interest. Thus the process of
table preparation was reduced to one of writing
down statements in a family of readable lan
guages.

THE LANGUAGE BNF

The syntax of the source language is de
scribed in a language called BNF (to suggest
"Backus normal form," denoted B.n.f.). BNF
looks much like B.n.f. to within the limitations
of the available character set and a desire for
legibility. Thus syntactic type names are given
as identifiers (upper case alphanumerics), the
sign": :==" is replaced by "==", and the sign
"I" by "I" ; literal symbol strings are headed by
"$" and delimited by "I" or blank. Within a
symbol string "$" acts as a control character
and forces inclusion of the next character as
part of the string. Thus, as long as the symbol
strings do not include "$", "I", or blank, every
thing is quite readable; if they do, legibility
drops accordingly.

BNF

<arex> :: == <term> I <are~> <adop> <term>
<relop> :: == GE I LE I UE I EQ

AREX == TERMI AREX ADOP TERM
RELOP == $GE/$LE/$UE/$EQ
MULOP == $*/$$1 <mulop> :: == */1

To each BNF type definition may also be appended tags which provide control information
associated with the type.

THE LANGUAGE GSL
A statement in the generation strategy language GSL begins with a predicate to be satisfied,

of the form:
IF <type name> AND c\'1 (t1) AND ... AND ~II (til)'

where the d)i are assertions whose truth is to be
tested and the ti are relative tree names. The ~i.
are assertions about the presence or absence
of a node, its syntactic type, the number of its
"sons" (components), and so on.

Following this predicate is a sequence of
commands to be associated with nodes of the
distinguished kind. A command is either a
directive to proceed to another node or an action
of some sort (emit output, for example).

62 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Example:

IF AREX AND SON3 == 0 AND
FATHER*FATHER*RTSIB IS ADOP,
$LFTSIB $SON1 $OUTPUT
(PLUS,SON1,F ATHER *RTSIB).

The list of commands is in effect a small pro
gram to be attached to a node when its kind is
first determined. It is an odd program, in that
each node keeps its own program counter. The
generator may consider a node several times.
The first time, its kind is determined, its gen
eration strategy "program" attached, and the
first command of the program executed. Upon
subsequent reconsiderations of -that particular
node, the first command not yet executed is in
fact· performed. There are appropriate pro
cedures for handling ill-defined commands (if
a command directs walk to a non-existent node,
take the next command; if there are no more
commands, go to FATHER, and so on).

In the above example, upon first entry, the
generator will just move consideration to the
"left sibling" of the current node; at second
entry, to the first son; at third, a PLUS macro
will be emitted; afterward, any entry will cause
automatic transfer to' the father of this node.

Obviously, for a language of this sort-built
around the relative tree name idea-to work at
all, it is essential that the GSL programmer
know in precise detail what tree structure will
be output by the Analyzer. Thus the compo
nents of a type as given in the BNF and the
sons of a node are in perfect one-one corre
spondence. The single exception is that left
and right recursives come out as a "bush" of
components at the same level; thus,

AREX == TERM/ AREX ADOP TERM

would produce, from "A+B+C", a bush of the
form

This exception is readily detectable by the
BNF /GSL programmer, and thus does not vio
late the general philosophy.

The language GSL includes a number of com
mands besides "OUTPUT." These are con
cerned with passing information from node to
node of the tree and with the emission of con
trol messages to the ISO.

THE LANGUAGE MDL
The Macro Description Language provides a

means of completely defining the semantics of
the macro-instructions emitted by the genera
tor. The definition contains the information
necessary for controlling the processing of a
macro by the ISO and the code selector, in
cluding a definition of the instruction reper
toire and special registers of the "object" com
puter.

The most significant part of MDL is the sub
language CSL (Code Selection Language). CSL
permits the writer of a strategy to describe deci
sion rules for the selection of machine instruc
tions in terms of the status of macros (and
their dependents: arguments, arguments of
arguments, etc.) and the status of computer
registers.

To illustrate a few of the properties of CSL
and the code selector, assume the compiler is
translating an algorithmic language with sim
ple arithmetic assignment statements and has
analyzed and generated over the statement

A+-B*C+A

producing the following macros:
(I) *, B, C
(2) +, (1), A
(3) +-, A, (2)

Assume that the computer has an accumu
lator (ACC), an addressable memory (M) and
five single-address instructions:

CLA M (M) ~ ACC
ADD M (ACC) + (M) ~ ACC
MPY M (ACC) * (M) ~ ACC
RAD M (ACC) + (M) ACC, M
STO M (ACC) ~ M

Following the principle that no code should
be generated for a macro until the intended use
of the result of the macro is known, the code
selector would begin execution of the selection

A GENERAL-PURPOSE TABLE-DRIVEN COMPILER 63

strategy for macro line (3), the strategy for a
"+-" macro.

For this example the strategy would recog
nize that the RAD instruction was applicable
and, after deciding on the execution of macro
line one and verifying that its result is in the
ACC, would emit an RAD A instruction.

The strategy for the "*,, on macro line one
would produce CLA B followed by MPY C.

Hence the code produced would be
CLA B
MPY C
RAD A

FOR "+-"

To give some idea of the appearance of a
code selection strategy we append a set of state
ments in CSL. Each line has been numbered to
facilitate referencing a set of explanatory
notes. Also refer to the descriptions of EXE
CUTE, OUTPUT, and ALLOCATE which ap
pear immediately after the strategies.

In the notes, the following symbols are
used:

Q! variable
£ expression

w operation (either "+" or "x")

1.
2.
3.
4.
5.
6.
7.
8.
9.

IS ARG2 = "+" MACRO
begin IS ARG 1 (ARG2) = ARG 1

begin C1 =ARG2(ARG2)
GO TO ALPHA end

IS ARG2 (ARG2) = ARG1
begin C1 = ARG1 (ARG2)

10.
11.
12.
13.
14.

ALPHA .. EXECUT*(C1)
ALLOCATE* (C1 TO ACC)
OUTPUT* «RAD) ARG1)
EXIT end end

EXECUT (ARG2)
ALLOCATE (ARG2 TO ACC)
OUTPUT «STO) ARG1)
EXIT

Notes for H+-"

1. Is the second argument (Le., the value be
ing assigned to the first argument) the
result of a "+" macro?

2. If so, is the first argument of the " +"
macro identical to the variable receiving
the assignment; in other words do we have
the form Q! +- Q! + £?

3. If so, the local variable C1 is set to the
macro line number for £.

4. And transfer control to ALPHA (line 7).
5. Alternatively, is the second argument of

the "+" macro identical to the variable
receiving the assignment; in other words
do we have the case Q! +- £ + ?

6. If so, the local variable C1 is set to the
macro line number for £.

7. ALPHA.. Execute the code selection
strategy appropriate for the macro on the

line specified by C1 (i.e., cause the evam
ation of £.

8. Execute the code selection strategy sub
routine ALLOCATE to guarantee that the
result of macro line C1 (i.e., the value of
£) is in the accumulator.

9. Output to the assembler RAD <//.
10. Exit.
11. Otherwise (the fail path of 1. or 5.) exe

cute the code selection strategy appropri
ate for the macro pointed to by the second
argument. (We ha~ the case rv +- E and
wish to cause the generation ofeode t~
evaluate £).

12. Execute the code selection strategy sub
routine ALLOCATE to guaTantee that the
value of £ is in the ,aeClIllIulatar.

13. Output to the assembler STO ru.
14. Exit.

64 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

FOR u+"
1. C2 == (ADD)
2. BETA .. EXECUTE (ARG1)

3. EXECUTE (ARG2)

4. IS ARG2 IN ACC

5. begin C1 == ARG1
6. GO TO GAMMA end

7. ALLOCATE (ARG1 TO ACC)

8. C1 == ARG2
9. GAMMA .. OUTPUT «C2) C1)

10. EXIT

Notes for "+"
1. The local variable C2 is set to the operation

code for "ADD."

2. BET A .. Execute the code selection strat
egy appropriate for the macro pointed to
by the first argument (we have the case
£ 1 III £2, and wish to cause the generation
of code to evaluate £1).

3. Execute the code selection strategy appro
priate for the macro pointed to by the sec
ond argument (i.e., £2).

4. Is the value of £"}. now in the accumulator?

5. If so, set local variable C1 to £1.
6. And transfer control to GAMMA (line 9).

7. Otherwise execute the code selection
strategy subroutine ALLOCATE to guar
antee that £1 is in the accumulator.

8. And set local variable C1 to £2.
9. GAMMA .. Output to the assembler the

operation code specified by C2 and the ad
dress specified by C1.

10. Exit.

For "*,,
1. C2 == (MPY)
2. GO TO BETA

Notes for "*,,
1. The local variable C2 is set to the operation

code for "MPY".
2. And transfer control to BT A (line 2 for

" +" strategy).

EXECUTE (N): If N names a macro line this
action causes the code selection to execute the

strategy appropriate for the macro on line N
and then resume where it left off.

OUTPUT (): This action outputs code to the
assembler.

ALLOCATE (N1 TO N2): Nl names a macro
line and N"}. names a register (or register class) .
This code selection subroutine causes the code
selection to guarantee that the value for which
N 1 stands is placed in the register (or register
class) named by N2, saving the contents of the
register if they are still needed.

A flow history of the processing for the
example would be:

macro type line resulting output
~ 1
~ 2
~ 5
~ 6
~ 7

* 1

* 2

+ 2

+ 3

+ 4

+ 7 CLA B

+ 8

+ 9 MPY C

+ 10
~ 8
~ 9 RAD A
~ 10

STATUS AND EVALUATION

This compiler and its associated bootstrap
have been realized on a variety of machines
(IBM 7090, Burroughs D-825, CDC 1604). The
compiler has been used to translate from source
languages JOVIAL, Lo (the algebraic language
of the CL-I System), and CXA (a BALGOL
dialect) into several machine languages, includ
ing D-825 and 1604. The method of moving the
compiler from machine to machine may be of
interest as an indication of the power of the
technique.

The compiler itself was originally written in
language Lo and compiled through the CL-I

A GENERAL-PURPOSE TABLE-DRIVEN COMPILER 65

Programming System into a running program
on the IBM 7090. Then a deck of BNF /GSL/
MDL cards defining the translation from L, into
CDC 1604 was input to the bootstrap. After exe
cution of the latter program, there existed a
compiler for translating algorithms written in
Lo into an assembly language (meeting the re
quirements of the COOP system on the CDC
1604), operating on the IBM 7090. That com
piler was fed the decks of cards in Lo which had .
originally defined the compiler to CL-I. The
result of this run was a compiler (and boot
strap) which could be moved to the CDC 1604.
Then that version of the bootstrap was fed
decks in BNF /GSL/MDL which defined the
translation of CXA into CDC 1604, resulting in
a CXA compiler on the CDC 1604.

The compiler is not as fast as some we have
seen, but does not seem prohibitively slow,
either. The object code is quite alarmingly
good: indeed, it is frequently completely un
readable by a programmer of normal patience.
In practice we prepare a BNF /GSL/MDL deck
which does an adequate job. If we later want
to improve the code (and are willing to slow
down the compiler accordingly), we simply
extend the deck.

The bootstrap method does not make com
piler construction trivial, since code selection
for a messy machine can be very difficult to
work out and since contact with the data and
control environment of the code being compiled
may be more expensive than the translation
process. What is now trival is the substantial
modification of source syntax, minor changes
in optimization rules, and the like.

The work described here has been informally
reported to several agencies over the last year
under various names, including "C.G.S." (for
"compiler generator system"), the "bootstrap
method," and the "COMPASS technique" for
Computer Associates, Inc.).

BIBLIOGRAPHY

1. S. WARS HALL, "A Syntax Directed Gener
ator", Proceedings of the EJCC, 1961,
Macmillan and Co., 1961.

2. E. T. IRONS, "A Syntax Directed Compiler
for ALGOL-60", CommunicatiortS of the

ACM, January, 1961.
3. NAUER (ed.) et al., "Report on the Algo

rithmic Language ALGOL-60," Communi
cations of the ACM, Vol. 3, No.5, May,
1960.

A COMPUTER TECHNIQUE FOR PRODUCING

ANIMATED MOVIES

Kenneth C. Knowlton
Bell Telephone Laboratories, Incorporated

Murray Hill, New Jersey

INTRODUCTION

This paper describes a computer technique
used for the production of animated diagram
movies. * This technique-as implemented with
the IBM ·7090 computer and the Stromberg
Carlson 4020 microfilm recorder1-involves the
basic steps of coding and checkout, production
computer run, and optical printing from the
master film thus produced.

Programs are coded in the "movie language"
to be described, a language which has been de
veloped entirely within the framework of
MACR¢ FAP.2 They are checked out, without
producing film, through examination of picture
samples printed on the standard output printer.

Aiter checkout, the production run produces
a magnetic tape which instructs ,the 4020 in
exposing a master film, such as that shown in
Fig. 1. Each frame of this film is made of a
rectangular array of tiny characters produced
by the 4020 charactron tube used in the type
writer mode. The recording camera is slightly
defocussed, thereby turning the finely struc
tured characters into contiguous blobs of differ
ent intensities, depending upon the characters

*This computer technique is also described in a 17-
minute 16mm black and white silent movie which was
produced by the very process which it describes. This
movie, entitled "A Computer Technique for the Pro
duction of Animated Movies", is available on loan from
the Technical Information Libraries, Bell Telephone
Laboratories, Incorporated, Murray Hill, New Jersey.

67

used. Each picture thus consists of a rectan
gular array of blobs on a raster either 126 wide
and 92 high or, for finer res9lution, 252 wide by
184 high. Figures 2a, 2b, and 3 of this paper
were actually made by ,this system---operating
in the fine-resolution mode-as if they were to
appear as scenes in a movie.

The master film contains only one picture for
each sequence of identical frames of the final
movie; a comment above this picture indicates
the length of the sequence. The "stretching
out" of the master is done by optical printing
at a movie laboratory, where standard proc
esses are also used for editing, adding a sound
track, and making work prints and final prints.

Internal Representation of Pictures

The movie programmer imagines that pic
tures exist within the 7090 on rectangular sur
faces ruled off in squares, each square contain
ing a number from 0 to 7. Pictures are created
and manipUlated by changing the pa'tterns of
numbers in the squares. During output these
patterns of numbers are interpreted as spots of
appropriate shades of grey, according to a pro:
grammer-specified trans litera tion. Fine-reso
lution pictures are produced by "aiming" the
output routine at a subarea 252 squares wide
and 184 squares high; for coarse-resolution pic
tures the output routine is aimed at an area 126
squares wide and 92 squares high.

68 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Figure 1. The beginning of a master film, shown here
larger than actual size. The comment above each frame
gives the date, the beginning and ending frame num
bers of the corresponding sequence in the final film,
and (redundantly) the length of this sequence. The
final movie in this case begins with the framing and
focusing pattern, followed by two seconds (48 frames)
of black. Then the four title scenes appear, in order,

followed by one second of black.

The total storage area within the 7090 corre
sponds to two complete fine-resolution movie
frames. This area may be used in different
ways: as two independent surfaces, each just
large enough for one complete movie frame, or
as one surface twice as wide or one surface
twice as high. These possibilities are indicated
in Fig. 2a which gives the names of these sur
faces and their sizes in squares. Every square
of a surface is assigned x and y. coordinates,
the bottom left-hand corner square of every sur
face having the coordinates x == 0, y == o.

There are still other sizes and shapes of sur
fac~s which can be used for complete coarse-

resolution frames (or for parts from which
fine-resolution pictures will be composed by
copying). These surfaces, with their names and

=-. 01 {

,ra. ISIxII4
lb.

m· • •
1SIx184

Figure 2a. Names and sizes of surfaces large enough
to hold complete fine-resolution movie frames (252 x
184). Alternate uses of total 7090 storage area are
indicated, including the uses of region AA in ways

shown in Fig. 2b.

Figure 2b. Names and sizes of additional surfaces, each
of which is at least large enough to hold a complete

coarse-resolution movie frame.

Figure 3. Representation of a surface with scanner A
at x = 3, y = 5, and scanner B at x = 1, and y = 2.

A COMPUTER TECHNIQUE FOR PRODUCING ANIMATED MOVIES 69

sizes, are shown in Fig. 2b. Their use precludes
the simultaneous use of surfaces AA, VV, or CC.

The Programming Language

The programmer's basic conceptual frame
work includes a number of scanners which he
imagines to be sitting on various squares of the
surfaces (see Fig. 3). Scanners can intercom
municate, and each can read the number it is
sitting on, can write a new number into this
square, and can move right, left, up, or down
any integral number of positions to a new
square. Scanners may also convey information
-by virtue of their positions or the numbers
on which they sit-to the subroutines of the

movie system. There are 26 scanners in all, each
named by a different letter of the alphabet.

The language by which the computer is pro
grammed to make movies may be divided into
two parts. The first and historically older part
consists of those instructions for drawing and
changing pictures by explicit manipulation of
scanners. This part, the' "scanner language,"
may be used for other purposes than movie
making. It may be used, for example, to draw
flowcharts or schematic wiring diagrams which
are represented within the computer by two
dimensional arrays of the digits 0 through 7.

An example of an instruction in the scanner
language is

IFANY (B,R,IO) (B,A,C) (A,E,7)T(A,T,B) (A,U,2,) (A,W,3) L~C5

which says that if any of the following is true

that scanner B is Right of x== 10, or
that scanner B is Above (in a line higher

than) scanner C, or
that scanner A is sitting on a number Equal

to 7

Then the following operations are performed

scanner A moves To the same surface and the
same square as scanner B,

scanner A moves Up 2 squares, and
scanner A Writes the number 3, and

control then goes to the line of 'coding labeled
LOC5. If none of the three elementary condi
tions is satisfied, no operations are performed
and control goes to the next line of coding.

The scanner language permits a large num
ber of different elementary tests on the posi
tions of scanners and on the numbers on which
they sit. There are also a large number of ele
mentary operations for moving scanners and
for changing the numbers on which they sit.
A complete list of these basic tests and opera
tions, and the flexible formats in which they
may be used, is given in Appendix A. A con
cise summary of the scanner language appears
there in Tables A.I and A.2.

The other part of the movie language may be
called the "movie language proper." It consists
of more powerful instructions which in general
compile into calls to subroutines written pri
marily in the scanner language. (These sub-

routines actually use an a:dditional set of 26
scanners which the programmer need not know
about.) Instructions of the movie language
proper fall logically into three categories: in
structions for controlling the output or tempo
rary storage of pictures, instructions for per
forming drafting and typing operations, and
instructions for modifying the contents of rec
tangular areas. These categories will be dis
cussed briefly in turn.

The outputting of movie frames (Le., the
writing of the tape which will control the S-C
4020) is performed by an internal "camera"
subroutine. The subroutine has many modes of
operation, which are determined by "camera
settings." One setting "aims" the camera at all
of or part of a surface; another specifies how
many frames of the final film are to be produced
for every frame of the master film. A third
setting specifies the transliteration from digits
o through 7 to ,the typeable characters, of the
4020 charactron. Other settings specify what
output the camera routine should produce on
the normal printer, for monitoring purposes.
Facilities are also available for temporarily
storing entire contents of surfaces on a disc
file. Up to 440 complete fine-resolution movie
frames may be stored on the disc at anyone
time.

The facilities for drafting include the abili,ty
to draw straight lines, arcs, and arbitrary
curves. These lines may be made to appear
instantaneously in the movie, or they may be

70 PROGEEDINGS---.SPRING JOINT COMPUTER CONFERENCE, 1964

made to appear gradually as they are drawn.
Lett-ering may be done by "typing" letters of
six different sizes, the smallest letters each cov
ering an area 4 squares wide and 5 high, the
largest covering an area 15 squares wide and
21 high.

Finally, the entire contents of a surface or a
rectangular subarea may be changed in many
ways. The area may be "painted" by filling all
of its squares with one particular digit, or
another area of similar size and shape may be
copied into it. The contents of the area may be
shifted an integral number of positions up,
down, right, or left, or they may be "expanded"
(by repeating rows or columns) or "squashed"
(by deleting rows or columns) in any of the
four directions. Certain local operations may
be performed throughout the area, such as add
ing incremental layers to regions defined by a
certain number, or rounding sharp corners.
There are operations which approximate the
effect of a zoom lens by enlarging or reducing
by an integral faC'tor the pattern of numbers
within a rectangular area while the camera
routine is putting out pictures of the intermedi
ate states of the piC'ture. There is also a facility
for "dissolving" one picture onto another by
sprinkling the new numbers onto the old ones,
again while the camera routine is outputting
the intermediate states of the dissolve.

The movie language proper is described in
detail in Appendix B. A programming example,
involving instructions both of the scanner lan
guage and of the movie language proper is
presented in Appendix C. This sample program
was actually the program used to produce Fig.
2a of this paper.

U se.s of the Movie System

This movie language may be used to produce
many types of simple animated movies. It may
be used, for example, to produce visual displays
for psychophysical experiments, or to produce
a more common type of movie such as the ex
pository educational film.

The system may also be used to convert the
output of computer-performed experiments into
visual displays. For example, the person experi
menting with heuristics for automatic layout of
printed circuits may wish to watch in a movie

the computer's attempts to search efficiently for
wire paths.

Costs for producing movies by this means are
low, and movies can also be produced quickly,
primarily because only a few people are in
volved. Simple educational movies cost a few
hundred dollars per minute, with the cost split
approximately equally three ways: program
mer's time and overhead, computer time, and
standard movie laboratory operations.

Much of the power of the movie system as
implemented derives from the fact that it has
been constructed entirely within the framework
of MACR~ F AP. The instructions of the scan
ner language and of the movie language proper
are ,actually macro-instructions. As such, they
may be interspersed with instructions of the
basic F AP language or, more important, with
higher-order macro-instructions which the pro
grammer has defined in terms of the original
movie instructions. Appendix C contains ex
amples of such higher-order macros which were
developed, in some cases because they were
more powerful, and in others because they more
exactly matched the requirements of a specific
job.

Acknowledgements

I wish to thank my associates at Bell Tele
phone Laboratories who have helped and en
couraged me in this work. Particular thanks go
to Paul W. Hoff, who wrote and checked out
many of the subroutines.

REFERENCES

1. S-C 4020 High Speed Microfilm Recorder,
Product Specification 281001-241A, Sep
tember 8, 1960, Stromberg-Carlson, San
Diego, California.

2. 7090 Bell Telephone Laboratories Program
mer's Manual, Bell Telephone Laboratories,
Incorporated, Murray Hill, New Jersey.

APPENDIX A

The Scanner Langua,ge

The scanner language is that part of the
movie language by which the programmer ex
plicitly performs tests and operations on the 26

A COMPUTER TECHNIQUE FOR PRODUCING ANIMATED MOVIES 71

scanners--those reading and writing heads
illustrated in Fig. 3 which scan and operate on
two-dimensional arrays of numbers. This ap
pendix describes the formats and uses of scan
ner language instructions; Appendix B de
scribes the more powerful movie instructions
which constitute the "movie language proper."
An example of programming with both kinds of
instructions is presented in Appendix C.

S canner Initialization

A scanner, before being used, must be initial
ized by an instruction with the special format:

PLACE sc,surf,x,y
(e.g. PLACE D,RB,92,5)

which has the effect of placing scanner sc on the
surface surf at coordinates x,y. The scanner
may be anyone of the 26 available, A,B, ... ,Z,
and the surface may be anyone of thos'e illus
trated in Figs. 2a. and 2b. The coordinates
must refer to a square which is actually on the
surface: the programmer should note that the
bottom left square coordinates (0,0) and the
top right square of, say, a 252 X 184 surface,
has coordinates (251, 183).

General Instruction Formats

Scanner instructions are generally expressed
in terms of elementary tests on positions of
scanners and the numbers in the squares they
are sitting on, and in terms of elementary
operations directing scanners to move or write
new numbers into these squares.

Instructions-or lines of coding-are of two
basic types: unconditional and conditional. The

unconditional instruction may be illustrated
sc.hemat~Hy as

Symb THEN () () ... ()Symb2
'---y---l ,) "----y----l

symbol list of el~mentary goto
(Optional) operations (Optional)

and it contains the follQ,wing parts:

1. In the location field of the card, an op
tional FAP symbol which is not a single
letter or double letter (the symbols A,AA,
B,BB, ... Z,ZZ have been pre.,empted by
the movie system).

2. In the operation field of the card, the
macro name THEN.

3. In the variable field of the card, a list
of operations, followed by an optional
single symbol indicating where control is
to go after the operations have been per
formed. If there is no goto, control passes
to the next line of coding. If there is a
goto, the entire list of operations may be
missing. The length of the list is lim
ited by the restriction that the operation
and goto must appear on one card from
columns 16 through at most column 72.

The conditional instruction is similar in for
mat except that preceding the list of opera
tions there appears a list of elementary condi
tions followed by the delimiter 'T', and that
the name of the macro-instruction indicates
which of four logical functions on the condi
tions must be satisfied in order that the opera
tions be performed:

Symb
'---y----l

I Fxxx () () ... () T () () ... () Symb2
\ 1\ J~

list of el~mentary list of el~mentary got 0 Symbol
(Optional) conditions operations

If the list of operations is null, the 'T' is omitted
and a goto must appear. Again, the length of
the lists is limited only by the requirement
that the list of conditions must start in column
16 and the instruction may extend at most
through column 72 of the same card.

Each of the 4 MACR~ names requires satis
faction of a different logical function of the
conditions, as follows:

IF ANY, satisfied if any of the elementary
conditions is satisfied.

IFALL, satisfied if all of the elementary con
ditions are satisfied.

IFN~NE, satisfied if none of the elementary
conditions are satisfied.

IFN ALL, satisfied if not all of the elemen
tary conditions are satisfied.

72 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

In each case, if the compound condition is satis
fied, then the indicated operations are per
formed and if there is a goto, control goes to the
indicated point in the- program, otherwise to the
next line of coding. If the compound condition
is not satisfied, no operation is performed and
control goes to the following line of coding.

In addition to the five basic macro-instruc
tions, the following synonyms are built into the
system:

read and understood. IF and Nf)T are sug
gested in place of IF ALL and IFNfbNE, re
spectively, where there is just one elementary
condition. Likewise, EITHER and BY;TH are
suggested in place of IF ANY and IF ALL, re
spectively, where there are two elementary con
ditions. ELSE is suggested in place of THEN
when it follows a conditional instruction that
has a goto.

Elementary Conditions or Tests
ANY,
ALL,
N~NE,
NALL,
IF,
N0T,
EITHER,

synonym for IF ANY
" " IFALL
" " IFNrj)NE
" " IFNALL
" " IFALL
" " IFNYSNE
" " IFANY

An elementary condition is a simple test per
formed on the position of a scanner or on the
number this scanner is sitting on. Every ele
mentary condition is written as a triplet of
arguments separated by commas and delimited
by parentheses. It has the form

B~TH, " " IFALL (scnr,rel,quant)

" " ELSE, THEN

The first four of these are simply abbreviated
notations to facilitate programming. The
others enable the program to be more easily

where scnr is a single-letter name of a scanner,
rel is a single letter designating a particular
relation, and Quant specifies either directly or
indirectly, the quantity or coordinate involved

Key: a,f3
n(a)
K (n(a»
X(a)
Y(a)

TABLE A.l

Elementary Scanner Conditions and Their Formats

scanner: A,B,C, ... Z
the number a is sitting on
bit-by-bit complement of n (a) *
abscissa of a: 0,1,2 .. .
ordinate of a: 0,1,2 .. .

n a decimal number (if n is a number in a square, 0 L. n L 7)

"Quantity" is a scanner name H Quantity" is a number

1. Tests on position of scanner a. Is it true that a is:

at X (13) (a,X,f3) at X == n
at Y (13) (a,Y,f3) at Y == n
to the Right of X (13) (a,R,f3) to the Right of X == n
to the Left of X (13) (a,L,f3) to the Left of X == n
Above Y (13) (a,A,f3) Above Y == n
Below Y (13) (a,B,f3) Below Y == n

2. Tests on the number scanner a is sitting on. Is it true that n(a)

is Equal to n (13) (a,E,f3) is Equal to the number n
is Not equal to n (13) (a,N,f3) is Not equal to n
is Smaller than n (13) (a,S,f3) is Smaller than n
is Greater than n (13) (a,G,f3) is Greater than n
contains all Zero bits of n (13) * (a,Z,f3) contains all Zero bits of n*
contains all One-bits of n (13) * (a,(/),f3) contains all One-bits of n*

* With numbers expressed in binary notation.

(a,X,n)
(a,Y,n)
(a,R,n)
(a,L,n)
(a,A,n)
(~,B,n)

(a,E,n)
(a,N,n)
(a,S,n)
(a,G,n)
(a,Z,n)
(a,cp,n)

A COMPUTER TECHNIQUE FOR PRODUC.ING ANIMATED MOVIES 73

in the test. If Quant is a number it specifies the
quantity directly; if Quant is a letter than it
specifies the scanner whose number or position
is involved in the test. A complete list of tests
and the letter by which they are designated ap
pears in Table A.I.

Elementary Operations

An elementary operation, like an elementary
condition, is written as a triplet of arguments,
separated by commas and delimited by paren
theses, and has the form

(scnr,op,quant)

Here scnr is the single-letter name· of the scan
ner which performs the operation, op is a single
letter designating the O-peration to be per
formed, and Quant generally specifies directly
or indirectly a quantity involved in the opera
tion: as in elementary tests, a number specifies
the quantity directly, whereas a letter specifies
the scanner whose number or position is to be
used. One exception is the operation

(a,Z,[3)

which specifies that both scanners a and [3 are
to exchange numbers, i.e., each writes the num
ber that the other was just sitting on.

TABLE A.2

Elementary Scanner Operations and Their Form..ats
(Key: same as for Table A.1)

"Quantity" is a scanner name

1. Operations for moving a:

To surface and position of [3
horizontally to X ([3)
vertically to Y ([3)

(a,T,[3)
(a,X,[3)
(a,Y,[3)

Jlove one square according to n ({3) '" (a,lVI,,B)

"Quantity" is a number

horizontally to X == n
vertically to Y == n
Up n squares
Down n squares
Right n squares
Left n squares

(a,X,n)
(a,Y,n)
(a,U,n)
(a,D,n)
(a,R,n)
(a,L,n)

2. OperationS for changing the number a is sitting on, by:

Writing the number n ([3)
Writing K (n ([3))
exchanging n (a) and n ([3)
bit-by-bit ~Ring by n ([3)
bit-by-bit ANDing by n ([3)
adding n ([3) **
subtracting n ([3) **
multiplying by n ([3) **
dividing by n ([3) **
Setting a'S memory to n ([3)

(a,W,[3)
(a,K,[3)
(a,Z,[3)
(a,O,[3)
(a,A,,B)
(a,E,[3)
(a,F,[3)
(a,G,[3)
(a,J,[3)
(a,S,[3)

Writing the number n

bit-by-bit q')Ring n
bit-by-bit ANDing n
adding n**
subtracting n * *
multiplying by n**
dividing by n**
Setting a'S memory to n

(a,W,n)

(a,~,n)
(a,A,n)
(a,E,n)
(a,F,n)
(a,G,n)
(a,J,n)
(a,S,n)

* Step up if n(tn = 4, step right if n(,B) = 5, step down if n(,B) = 6, step left if n(,B) = 7, otherwise no motion.
* * Result reduced modulo 8.

A list of elementary operations appears in
Table A.2. It should be noted that certain oper
ations require that the quantity involved al
ways be indicated directly as a number, where
as certain other operations require the quantity
to be specified indirectly by the name of a
scanner.

It should also be noted that there is no par
ticular relation between the interpretation of
a specific triplet as a test and the interpreta
tion of the same triplet as an operation. For
example the triplet

(E,A,6)

74 PROCEE:DINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

interpreted as a test means "Is scanner B above
y == 6 ?", whereas as an operation it means
"The number that scanner B is sitting on should
have ANDed onto it the number 6 (Le., its low
order bit should be forced to zero)." Whether
a triplet is to be interpreted as a test or an
operation is determined by its position in the
line' of coding.

The available operations permit scanners to
be moved beyond the limits of their surfaces as
defined by Figs. 2a and 2b; special considera
tion should be given to the results of such oper
ations. The surfaces of Fig. 2a act as helices,
such that a single step "right" from the right
column of the surface places the scanner on the
leftmost column of that surface but one row
below where it started. Conversely, a step left
over the· edge places it on the right edge one
row above where it started. Motion above and
below the top and bottom edges is legal, but the
scanners will perform a "no-operation-and-con
tinue" instead of alt~ring any "numbers" that
they might be sitting on there. Furthermore,
the programmer should be aware that the
y-coordinate is treated modulo 215, so that after
a step down from y == 0, a test on its position
will result as if the scanner were at y == 32,767.

The connectivity of the surfaces of Fig. 2b
is similar to that of surfaces in Fig. 2a except
that after stepping over the right edge of the
surface, a scanner enters a no-man's-land a few
squares wide; after successive steps through
this region, the scanner appears, as in the case
of the other surfaces, on the left edge, one row
below the one it started on.

Another precaution regarding the use of the
operations of Table A.2 concerns the case in
which two or more scanners are sitting on the
same square, as they would be, for example,
after an operation of the form

(a,T,p)

If one of the scanners changes the number on
the square in any way, the other scanners on
that same square do not "know" that the num
ber has been altered, and subsequent tests or
operations involving the number under one of
the other scanners may yield an erroneous re
sult. In general a scanner updates its memory
of the number it is sitting on only when it

moves to a square or when it itself changes this
number. "Moving" a scanner a to its own posi
tion by the operation

(a,T,a)

will always properly update a'S conception of
the number it is sitting on.

Finally, a scanner's memory may be deliber
ately set to a number which has no relation to
the number it is sitting on by the last operation
of Table A.2:

(a,S,p) or (a,S,n)

Subsequently, and until another operation is
performed with scanner a, all tests and opera
tions involving a result as if a were sitting on
n (P) or on n. This provides a useful way of
passing information (numbers) to subroutines
wi,thout actually having to write these numbers
on a surface.

Subroutines

In order to perform a subroutine beginning
at symbolic location sub, the special triplet

(QQ,P,sub)

is inserted as an ordinary triplet in a list of
elementary operations. This special operation
saves on a pushdown list the location at which
the program was operating, and it transfers
control to the subroutine.

Exit from a subroutine is accomplished by
use of the special goto which is identically

QQ

Since subroutine returns are recorded on a
pushdown list, a subroutine may use itself, pro
vided that the programmer has in some way
prevented indefinite recursion into ,the routine.

Double-letter "scanners"

In addition to the 26 scanners A through Z,
there is a special double-letter scanner sitting
on the upper right hand corner of each surface.
The name of each such special "scanner" is
identical with the name of the surface. These
scanners ma-y not be moved but they may be
used to write numbers on their particular
squares. Their names may also be used as the
"quantities" in tests and operations on regu
lar scanners. For example, there is a scanner

A COMPUTER TECHNIQUE FOR 'PRODUCING ANIMATED MOVIES 75

BB sitting on the upper right hand corner of
surface BB at (251,183) and the instruction

IF (A,X,BB) T(A,T,BB)

would function the same as the instruction

IF (A,X,251) T(A,Y,183)

The double-letter scanners may also be used on
the same basis as single-letter scanners for
specifying areas to which the higher order oper
ations of Appendix B are to be applied.

APPENDIX B. THE MOVIE LANGUAGE
PROPER

In addition to the scanner instructions of
Appendix A, the movie programmer may use the
more powerful instructions of the "movie lan
guage proper," described below. These are, in
general, macro-instructions which compile into
calls to subroutines which themselves are writ
ten mostly in the scanner language.

The ,movie instructions fall naturally into
four categories, including instructions for

(1) controlling output of pictures and tem
porarily storing ,pictures and retrieving
them from the disc file,

(2) performing drafting and typing opera
tions,

(3) performing "instantaneous" operations
on the contents of rectangular area or

surfaces, and
(4) performing "dynamic" operations on the

contents of rectangular areas or sur
faces.

An instantaneous operation is one which is
performed and completed between output of
adjacent frames of film, whereas a dynamic
operation is one which is performed gradually
while several frames of pictures are being out
put by the "camera" output routine.

These four groups of macro-instructions will
be discussed in turn. The format of each in
struction will be illustrated and described in
terms of dummy arguments and in most in
stances an example of the use of the instruc
tion will be given. A resume of all macro
instruction formats is given in Table B.1, which
also contains a list of the more common dummy
arguments used to describe these instructions.

1. Instructions for Output and Temporary
Storage

An output routine or "camera" within the
7090 is used to write information on the mag
netic tape which is later used to direct the
S-C 4020 in exposing film. The camera routine
is initiated by the instruction

CAMERA n
(e.g. CAMERA 3)

(n optional)

where n is the intended number of identical
frames to be produced in the final film. Only
one frame is produced by the 4020, with the
number n printed just above this frame. If n
is not specified in the CAMERA call, then the
number used is that last specified by the setting

FRAMES n
(e.g. FRAl\fES 2)

This setting is useful for controlling the appar
ent speed at which dynamic operations are per
formed, since the subroutines of the system
which perform dynamic operations contain
CAMERA calls without specification of n. In
the event that the specified or effective n is
zero, the camera call is ineffective, and no pic
ture is output.

Besides the FRAMES setting, there are sev
eral other settings which control the operation
of the camera routine. Camera settings, to be
discussed in turn, include

FRAMES
AIM

(how many identical frames in final movie?)
(what surface area to output?)

FINE or C~ARSE
FILTER
SAMPLE
LINES
FILM or N~FILM

(what resolution?)
(what transliteration during output?)
(how often to monitor results on printer?)
(which lines of picture to print when monitoring?)
(film output, or just monitor output?)

76 PROCE'EDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

scTR

scBL

Key

sc,scl,sc2, ...

surf

mode

ns,ns1, }
ns2, ...

n,n1,n2, ...

width

dir

orient

amt

fctr

speed

TABLE B.1

Resume 01 Movie Macro-instructions

(see text for meanings of dummy arguments not listed in the key)

scanner sitting on Top Right corner of affected rectangular area

scanner sitting on Bottom Left corner of affected rectangular area. If
scBL == '0' then (0,0) of scTR's surface is implied

scanner names

name of a surface

stands for one of the following arguments designating the three different
ways of changing numbers on the surface:

WRITE (replace old number by new one)
AND (bit-by-bit logically AND old and new numbers)
PR (bit-by-bit logically ~R old and new numbers)

indicate numbers to be used or the names of scanners sitting on the num
bers to be used

numbers

a number from 1 to 6 designating the width in squares of a line, arc, curve,
or border to be drawn

stands for one of the four directions: UP, RIGHT, DOWN, or LEFT

stands for one of the eight basic reorientations:
ST standard orientation
90R rotated 90° right (clockwise)
90L rotated 90° left
180 rotated 180 0

X reflected through x axis
Y reflected through y axis
YEX reflected through line y == x
YEMX reflected through line y ==-x

the number of squares of shift, rotation, etc.

an integer from 2 to 6 specifying the factor of magnification, reduction,
"stretch" or "press"

a number specifying the "speed" at which a line is drawn, i.e., the number
of squares it advances between successive calls of CAMERA (if this num
ber is very large, the entire line appears instantaneously)

1. Instructions lor output and temporary storage

CAMERA n (n optional) or CAMERA UNTIL,n
FRAMES n (0 L. n)
FILTER n (0 L. n L. 10)
TABLE n,nO,n1,n2,n3-,n4,n5,n6,n7
AIM sc
SAMPLE n
LINES n (n is 11 octal digits)

A COMPUTER TECHNIQUE FOR PRODUCING ANIMATED MOVIES 77

n,goto
n

FILM
N9>FILM
UNTIL
RESET
C¢>ARSE
FINE
ST¢>RE
RETREV

surf,where (where is NEXT,PREV, a number, or missing)
surf,where (where is NEXT,PREV, a number, or missing)

2. Instructions for drafting and typing
(The entire scanner language of Appendix A may be considered to be in this category)

LINE sc1,sc2,mode,ns, width,speed
ARC sc1,center,d,mode,ns,width,speed,t1,q1,t2,q2 (t2,q2 optional)
TRACE symb1,length,sc,orient,mode,ns, width,speed
TYPE symb2,sc,size,Hspace, V space,mode,ns

symb1 ¢JCT
symb2 BCI

n, (specification of curve to be drawn by TRACE)
n, (specification of text to be typed by TYPE)

3. Instructions for instantaneous operations on rectangular areas

scTR,scBL,mode,ns
scTR,scBL, width, mode,ns

PAINT
BORDER
SHIFT
R~TATE
EXPAND
SQUASH
cifjPY
CENTER
GR¢>W
SMfJq>TH

scTR,scBL,dir ,amount
scTR,scBL,dir,amount,n (n optional)
scTR,scBL,dir ,rep1,rep2
scTR,scBL,dir ,del,kp
scTR,scBL,mode,orient~sc3,sc4,n (n optional)
scTR,scBL
scTR,scBL,ns1,ns2,ns3,goto (goto optional)
scTR,scBL

4. Instructions for dynamic operations on rectq,ngular areas

DIS¢>LV scTR,scBL,sc3,pat
Z¢J~MIN scTR,scBL,fctr
REDUCE scTR,scBL,fctr
STRECH scTR,scBL,dir,fctr
PRESS scTR,scBL,dir,fctr

These settings must be made before the first
CAMERA call, but they may be changed at any
later point in the program.

The surface area to be output is determined
by the position of that scanner sc specified in
the last previous setting of the form

(e.g.
(or

AIM
AIM
AIM

sc
BB)
A)

The top right corner of the picture which is
output by a CAMERA call is the current posi
tion of that scanner specified by the AIM set-

ting. If the scanner moves, the camera tracks
the scanner.

The output mode (coarse or fine) is deter
mined by which of the settings,

FINE
or Cq)ARSE

occurred last. The setting FINE specifies that
henceforth and until encountering the next
COARSE, the area to be output is a rectangular
array of squares 252 wide and 184 high. The
setting C.pARSE specifies that henceforth and
until the next FINE, the area to be output is

78 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

an array 126 wide and 92 high. In this case,
the spots are displayed at twice the spacing for
FINE output in order to fill the complete movie
frame.

I t will normally be the case that the piC'ture
on film is to be composed of other charactron
characters than the digits 0 through 7. This
requires transliteration during output, specified
by the setting

FILTER n (0 :::::; n L 10)
(e.g. FILTER 5)

where 11, is either 0, specifying no translitera
tion, or a number from 1 to 10 specifying one
of ten available transliteration tables. Each
table thus used may be set up or later changed
by a command

TABLE n,nO,nl,n2,n3,n4,n5,n6,n7
(e.g. TABLE 5,60,15,14,72,13,16,54,53)

which causes table n to transliterate 0 into nO,
1 into n1, 2 into n2, etc. The characters which
may be used for output on the charactron are
any of the sixty-four octal characters 0 through
(77)8 except (12)/S, (52)8 and (56)s. The spe-
cific example above gives a recommended grey
scale, transliterating 0 into blank (60) s, 1 into
apostrophe (15) 8, 2 into quote (14), 3 to degree
sign (72)s, 4 to equal sign (13)s, 5 to delta
(16) s, 6 to asterisk (54) s, and 7 to dollar sign
(53) H which is the darkest typeable character
on the charactron.

In addition to film output, printed output
may be produced for monitoring purposes. The
setting

SAMPLE n
(e.g. SAMPLE 24)

says that printed output is to be produced for
every nth frame of the final movie, except that
this output will be produced at most once in
anyone CAMERA call. Thus if the sampling
rate is 24 and the instruction, CAMERA 150,
is encountered, only one printed output is pro
duced during this operation, labeled with the
beginning and ending frame numbers of the
corresponding sequence of identical frames in
the final movie. The part of .the frame which
is to appear in the printed output is predeter
mined by the bit pattern of the II-digit octal
number, n in the setting,

(e.g.
LINES
LINES

n
1400000003)

The first octal digit is 1 or 0, stating that lines
x == 91 and x == 90 of a C~ARSE picture should
or should not be 'Printed, each successive bit
states whether or not the next 3 lines should be
printed. In the example given, only the top 5
lines and the bottom 6 lines would be printed.
If the output mode is FINE, then only the odd
columns of the corresponding odd-numbered
rows are printed. If the above sample LINES
setting were used for fine-resolution output,
then odd-numbered positions of rows 183,181,
179,177,175,11,9,7,5,3 and 1 would be printed
(counting the bottom line as line zero) .

The actual production of film is enabled or
disabled by the instructions

FILM
or N¢>FILM

each of which compiles into a single machine
instruction. Common practice is to begin every
program with this sequence of instructions, and
to test the program in this form, producing only
the printed output for monitoring purposes.
When the program has been checked out, a pro
duction run is performed in which a correction
card replaces the NcfiFILM instruction with a
N¢'P machine instruction.

The system contains a counter which counts
frames of the final movie. This counter may
be interrogated, and flow of control directed
by the branch

UNTIL n,goto
(e.g. UNTIL 2400,AGAIN)

which causes control to go to the indicated
goto if the current frame count is below the
specified number n. A special format for the
CAMERA call also uses the frame counter

(e.g.
CAMERA
CAMERA

UNTIL,n
UNTIL,2496)

This call directs the camera routine to produce
one frame, as does a normal call, but in this case
the number in the frame line-specifying how
many times this frame is to be repeated in the
final movie-is made just large enough to bring
the frame count up to the specified n. The
frame counter may be reset by the program to
any n by the command

A COMPUTER TECHNIQUE FOR PRODUCING ANIMATED MOVIES 79

(e.g.
RESET
RESET

n
4800)

Operations and tests involving the frame
counter are intended primarily to facilitate
synchronization of the movie with a sound
track which is added later by traditional
methods.

In addition to putting out pictures on film,
contents of entire surfaces may be temporarily
stored on and retrieved from the disc file. There
are 440 available storage areas on the disc,
numbered 1 through 440, each capable of stor
ing the entire contents of any surface except
surfaces VV or CC. Storing of surface surf
is accomplished by the instruction

ST</>RE surf,where (where is
n,NEXT,PREV, or
null)

(e.g. ST~RE AA,150)

and the picture is retrieved by the instruction

RETREV surf,where (where is
n,NEXT,PREV, or
null)

(e.g. RETREV AA,PREV)

In either case, the storage area where may be
specified explicitly by a number, or implicitly
by three other possibilities: if where is missing
in the call, the last area used in a ST¢>RE or
RETREV command is used; NEXT implies the
next higher area than the last one used, and
PREY implies the next lower area than the
last one used. The surfaces VV or CC can be
effectively stored by storing the contents of
both AA and BB, since the latter occupy the
same internal 7090 storage space. For example,
contents of surfaces VV (or CC) may be stored
in areas 150 and 151 by the sequence

ST0RE
STf/JRE

AA,150
BB,NEXT

and they may then be retrieved by the sequence

RETREV BB
RETREV AA,PREV

One precaution must be taken after retrieval
of a picture: a scanner a now sitting on this

surface may not act as if it were on the corre
sponding new number until it is first "moved"
by some such scanner instruction as (a, T,a) or
(a,X,a) or (a,Y,a).

2. Instructions for Drafting and Typing

The instructions for drafting have the names
LINE, ARC, and TRACE; the one instruction
for typing is called TYPE. These are all dy
namic operations in the sense that while each
is being executed it is interrupted periodically
to allow the camera routine to output pictures.
For the TYPE instruction, the interruption
occurs after every large character (made up of
a rectangular matrix of numbers) has been
typed, and the camera routine may be rendered
ineffective by a previous setting 'FRAMES 0'.
For the drafting operations, the interruption
occurs every time the line being drawn has ad
vanced another n squares, where n . is specified
in the instruction as the "speed" at which the
line is to be drawn. In this case, the interrup
tion is avoided, or it is rendered ineffective, by
a very high speed (e.g. 5000) or by a previous
setting 'FRAMES 0'.

An approximation to a straight line is drawn
from scanner scl to sc2 by the instruction

LINE scl,sc2,mode,ns, width,
speed

(e.g. LINE A,B,WRITE,5,3,9)

The line "is drawn by using the number ns (or
the number that 11S is sitting on ifons is a scan
ner name) : if mode is WRITE, this number is
used to replace the numbers on affected squares,
whereas if mode is ¢R or AND, the new num
ber is 0Red or ANDed, bit by bit, with the
previous number in each affected square. The
line is drawn by an imaginary stylus which
moves by stepping either horizontally or ver
tically to the adjacent square which lies closest
to the ideally straight line. On each square
thus traversed, an approximately circular dot
of diameter width is centered, and a picture is
produced after advancing each n squares along
the line, where n is the desired speed.

An arc is drawn in a manner similar to the
drawing of a line, by the instruction

optional
,---A--...,

ARC
ARC

scI ,sccent,d,mode,ns, width,speed, tl,q 1, t2,q2
(e.g. A,B, ccw,yi R,6,5, 12, Y ,B,R,B)

80 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

where the arguments rrwde,ns,width, and speed
have the same meaning as for LINE. The arc
begins at the position of scanner sel, and pro
ceeds with scanner seeent as its center, in direc
tion d, which is C'V for clockwise or CCW for
counterclockwise. The arc is terminated when
the drawing stylus, which itself may be thought
of as a scanner, satisfies the joint condition,
expressed in scanner language,

(stylus,tl ,ql) (stylus,t2,q2)

or when it satisfies simply the first condition if
the second condition is not given in the ARC

instruction. If the terminating condition is
not satisfied within 1000 elementary steps, the
program stops. In the specific example above,
an arc of width 5 is initiated at scanner A and
is drawn about scannerB as center in a coun
terclockwise direction at speed of 12, by ~Ring
the number 6 onto affected squares. The arc
is terminated when the drawing stylus is at the
same height as scanner B and right of scan
ner B.

A curve of arbitrary shape may be traced by
an instruction of the form

TRACE
eg TRACE

{~~RVE7 ifJdr

Symb,length,sc,orient,mode,ns, width,speed
CURVE7,19,A,ST,WRITE,2,1,10}

000011122233,455667000000

where mode,ns,width and speed have the same
meanings as for LINE. The argument length
is the length of the curve to be drawn, ex
pressed in elementary steps from one square
to the next, se is the scanner at which the
curve is to start, and orient is one of the eight
possible reorientations of the basic curve (see
the Key in Table B.1). Symb is a F AP symbol
indicating the location at which a description
of the basic curve is given in terms of a
sequence of incremental steps. Each step is
here specified by one of eight octal digits which
stand for the eight possible directions for
these steps:

7 1

6 2

5 4 3

In the specific example above, if the original
surface contained only zeros, and if on output
zeros are transliterated to blanks and 2's to
dots than the result would be

position of
scanner A •.

If the same curve (with the same description)
had been drawn in the YEMX orientation (re
flected through the line y == - x) it would have
started with a straight section going left and
then would have spiralled counterclockwise.

The operation of "typing" in the movie lan
guage is done by affecting appropriate patterns
of squares. The general form of the typing
instruction is

TYPE rg

,

TYPE

TEXT5 BCI
BCI

symb,sc,size,Hspace, V space,mode,ns
TEXT5,B,5x7,1,3,WRITE,61

3,* (BELL
3,*/ *TELEPH0NE

l
BCI
BCI

3, * / *LABORAT0RIES, JI
3,* / *INC. *

A COMPUTER TECHNIQUE FOR PRODUCING ANIMATEH MOVIES 81

where symb is a F AP symbol identifying the
description of the text to be typed, sc is the
scanner specifying the position of the bottom
left hand corner of the first character to be
type, and size is one of the following sizes of
characters w·hich may be typed :

4x5 (4 squares wide, 5 high)
5x7 (5 squares wide, 7 high)
7xl0 (7 squares wide, 10 high)
8x11 (8 squares wide, 11 high)
10x14 (10 squares wide, 14 high)
15x21 (15 squares wide, 21 high)

The argument Hspace specifies the horizontal
spacing in squares between the characters of
a line, whereas V space specifies the number of

* stop typing

squares of vertical spacing between successive
lines. The mode may be AND, ~R, or WRITE
as with the drafting operations, but the pro
grammer must note that only those squares
corresponding to the body of the letter are
affected: background areas, such as the center
of a '0' or the entire area of a blank are un
changed regardless of the mode used. The argu
ment ns is either the number io be used in
changing affected squares, or the name of
scanner sitting on the number to be used. The
description of text to be typed is written out
on F AP BCI cards. All of the 48 standard IBM
Hollerith characters may be typed. The follow
ing special sequences, all starting with '*', have
the indicated meanings for the typing routine:

*(
*)
*L

shift to upper case (affects typing of letters only)
shift to lower case (affects typing of letters only)
where L is any letter: Type this letter in upper case, then shift to lower

case
* return carriage: Return to starting point of previous line, then go down

letter height plus vertical spacing
** type the character ,*,

In the specific case of the example illustrated,
the resuit would appear approximateiy as
follows:

BELL t
Telephone

Laboratories, 37 squares
Inc. .. -----------------

.. 77 squares.

Other examples of typing operations appear in
Appendix C.

3. Instructions for Instantaneous Operations
on Rectangular Areas

The contents of rectangular areas may be
altered by any of a large number of instan
taneous operations-operations which appear
to be performed instantaneously in the movie
because their respective subroutines contain
no CAMERA calls. The. formats and uses of
these instructions are described in the following
paragraphs. In all cases, the rectangular areas
to be changed are specified by the positions
of scanners. The dummy argument "scTR" in
a format statement stands for "scanner defin
ing the Top Right corner of the area." The

dummy argument "scBL" means "either the
nanie of a scanner defining the Bottom Left
corner of the area or else '0', meaning x == 0,
y == 0 of ihe surface that scanner scT-R is on."

A rectangular area may be "painted" --every
square changed by using the same number
by the instruction

PAINT scTR,scBL,mode,ns
(e.g. PAINT ZZ,O,WRITE,O)

where mode, as before, is AND, q)R or WRITE,
indicating whether the change is to be accom- .
plished by ANDing, ~Ring, or replacement, re
spectively and ns is either the number to be
used or the name of a scanner sitting on the
number to be used. In the example above, the
entire surface ZZ is "cleared" to zeros.

A rectangular border of any thickness may
be produced just within the periphery of the
rectangular area by the instruction

Bq'>RDER scTR,scBL, width,mode,ns
(e.g. Bq,RDER A,B,9,¢lR,A)

where width is the thickness of the desired
border, mode and ns indicate the manner in
which numbers are to be changed and the num
ber to be used, as in the case of PAINT.

82 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

The contents of a rectangular area may be
shifted up, right, down or left any number of
positions-up to the dimension of the area in
this direction-by the instruction

SHIFT scTR,scBL,dir,amt
(e.g. SHIFT AA,O,UP,36)

where amt is the number of squares of shift
and dir is the direction of shift, UP,RIGHT,
D~WN, or LEFT. As a result of the shift
operation, material is lost at one edge of the
rectangular area and the "vacated" area is
filled by repeating the original row or column
just within the edge that contents of the area
were shifted away from.

The material within a rectangular area may
be "rotated," as if around a cylinder, by the in
struction

Rf>T A TE scTR,scBL,dir ,amt,n (n optional)
(e.g.R~TATE C,D,LEFT,5)

The effect is the same as for SHIFT except that
the material which is lost at one edge is intro
duced at the opposite edge. Furthermore, if n
is given, the material which "goes around the

back" to be reintroduced is transliterated accor
ing to transliteration table n. This table must
have been previously established by a TABLE
instruction such as is used to specify transliter
ation during output, but only the three lowest
order bits of the new numbers can be used for
the R~TATE transliteration.

The pattern of numbers within a rectangular
area may be "expanded" upward or downward
by du-plicating certain rows, or it may be ex
panded to the right or left by duplicating cer
tain columns. The instruction

EXPAND scTR,scBL,dir,repl,rep2
(e.g. EXPAND F,G,RIGHT,2,3)

causes the material to be expanded in the direc
tion dir (UP, RIGHT, D~WN, or LEFT) by
starting at the edge row or edge column oppo
site the direction of expansion and repeating
the first row or column 1'epl times, the next
row or column rep2 times, the next repl times,
etc., until the entire rectangular area has been
refilled. The sample EXPAND instruction above
would change the pattern

-----(position of scanner F

° 123 4 5 6 7

° 7 6 5 432 1

2 3 4 ° 7 6 5

to

001 1 122

o 0 7 776 6 5

1 2 223 3 4

position of scanner G)----~

The pattern of numbers in a rectangular area
may also be "squashed" toward one edge by de
pleting certain rows or columns and by repack
ing the remaining numbers. The instruction

SQUASH scTR,scBL,dir,del,kp
(e.g. SQUASH A,B,LEFT,1,2)

performs such an operation by starting at the

edge specified by the direction dir and alter
nately deleting del columns (rows) and keeping
kp columns (rows). The remaining columns
(rows) are closely packed and the vacated area
is filled by duplicating the original column
(row) just within the edge from which the mo
tion has occurred. The sample instruction above
would change the pattern

~----(position of scanner A)

23467 1

o 1 234 5 6

2 5 6 7 0 3

to

347 1 000

1 245 666

5 7 0 3 3 3

('position of scanner B)----~

A COMPUTER TECHNIQUE FOR PRODUCING ANIMATED MOVIES 83

A rectangular area may be filled or changed
by "copying" from another area. . This is ac
complished by the powerful and versatile in
struction

C~py scTR,scBL,mode,orient,sc3,sc4,n
(n optional)

(e.g. Cq,py A,B,WRITE,90L,C,D)

Here, as before, scTR and scBL define the af
fected area, sc3 is a scanner on this same sur
face (it may in fact be either scTR or scBL)
and sc4 is a scanner on the surface from which
material is being copied. The precise area to be
copied is visualized as follows: the entire sur
face being copied from is reoriented according
to orient (see Key in Table B.1) and then supe
imposed on the surface to be changed in such a
position that sc3 and sc4 coincide. It is that
area which now falls on the rectangle defined
by scTR and scBL which is used: this area is
first transliterated according to table n if n is
given, and then it is ANDed, cpRed or written
into the rectangle, accordingly as mode is AND
or (/)R or WRITE. Peculiar and unexpected

patterns may result if the two rectangular areas
involved are 'overlapping areas on the same sur
face, unless they are exactly the same area and
orient is ST. The above sample instruction in
volves a 90-degree rotation to the left (counter
clockwise). Thus, if scanner D is located as
shown:

5 673 2 1 7

o 112-3-~ 5 6

o 0 1 1 1 2 12 3
I

4 41 5 5 Si:ypoSitiOn of scanner D)

7 6\ 5 4 3~ 1

1 6~~_~4 0

4 6 4 73 0 2

the effect would be to change the rectangular
area

~position of scanner C>--J

~ ~,position of scanner A

0 0 0 0 0

0 0 0 0 0

000 0 0 0 0

o 0 0 0

o 0 0 0 0 0

position of scanner B

Lines of typed text, such as lines of a movie
title, may be centered in a rectangular area by
the instruction

CENTER scTR,scBL
(e.g. CENTER A,O)

For this instruction to be effective, all squares
bordering on the edge of this area must contain
the same numbe, called the "backgound" num
ber. The complete background consists of all
rows containing only the background number

to

0 0 0 0 0

0 4 2 6 3

o 3 1 542 0

1 5 570

o 0 0 0 0

and, for each horizontal stripe not thus in
cluded, it also contains the widest possible rec
tangle on the right and on the left which con
tain only background numbers. Remaining sub
areas thus delimited are called "lines of text."
The CENTER operation identifies all lines of
text, centers each such line horizontally, and
moves all lines together by a shift-up or shift.:
down to make top and bottom background
stripes equal. Thus it would change the area

84 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

1 1 1 1 1 1 l' 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 r221-1-1211
I

1 1 1 Ll 2 1 1 1 IJ 1
--- ----

I 1 1 1 1 1 1 1 1 1

1 r5 - 41 1 1 1 1 1 1 1
--I

1 1 1 1 1 1 1 1 1

0,0 of the surface scanner A is on

Two different local operations can be per
formed throughout a rectangular area. Both
consume a relatively large amount of computer
time (ca. 10 seconds for the surface AA);
therefore the area to which they are applied
should be judiciously limited. The first local
operation,

GR~W scTR,scBL,nsl,ns2,ns3,goto
(go to optional)

(e.g. GR~W XX,0,2,3,5,AGAIN3)

changes every number nsl which is next to an
ns2 into an ns3. The number ns2 must also be
within the area and it must in each instance be
immediately above, below, right of or left of the
number to be changed. The numbers nsi, ns2
and ns3 must be three different numbers, and
each may be either given explicitly or specified
as the name of the scanner sitting on the num
ber to be used. If the instruction contains a
goto, then on completion of the operation con
trol passes to the goto if at least one such num
ber was changed. Two GR~W instructions are
commonly used in a.loop which causes the re
gion defined by two numbers gradually to
"grow" into the region defined by a third by
alternately adding incremental layers first of
one of its numbers and then of the other. If the
loop contains a CAMERA call, the growth proc
ess is seen in the movie.

The other local operation, which has the
effect of removing sharp corners, is

SM~~TH scTR,scBL
(e.g. SM~~TH A,B)

to

(position of scanner A

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 ri-2-11-1-21
I I

1 1

1 1 Ll_~_l_~!_~ 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 15 -4 ~ l'
L_.....J 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

The operation proceeds by identifying every
instance of the four patterns

r--

n n n n n n

p n n p n p p n

n n n nl n n

where all four n's in a pattern must be the same
number. For each instance thus found, the p
is changed to an n.

4. Instructions for Dynamic Ope-rations on
Rectangular Areas

Dynamic operations on rectangular areas are
those for which a series of pictures are output,
according to current camera settings, while the
operation is proceeding. As in the case of in
stantaneous operations on rectangular areas,
the affected area must be designated by two
scanners (or by one scanner and '0', meaning
0,0 of that scanner's surface).

A rectangular area may have another area of
similar size and shape "dissolved" onto it while
a series of 36 pictures is being produced. The
instruction is

DIS~L V scTR,scBL,sc3,pat
(e.g. DISC/>LV XX,O,ZZ,F)

where scanner sc3 indicates the top right cor
ner of the area of similar size and shape which
is to be dissolved onto the area specified by
scTR and scBL. The dissolve is accomplished
by dividing the area, which must be at least 6x6

A COMPUTER TECHNIQUE FOR ,PRODUCING ANIMATED MOVIES 85

squares in sizes, into 6x6 subareas-possibly
with oddly shaped rectangles at the left and
bottom. Between any two successive pictures
of the dissolve,an additional number of the old
picture is replaced by the corresponding num
ber from the new picture in each 6x6 subarea.
The order in' which new numbers are thus in
troduced is specified by the parameter pat which
must be one of the following:

F fade: quasi-random order
8I spiral in (simultaneously in all 6x6 sub

areas)
8~ spiral out (simultaneously in all 6x6 sub

areas)
R wipe to right (simultaneously in all six

column-wide sections)
L wipe to left (simultaneously in all six

column-wide sections)

"A "zoom" effect may be approximated by
gradually magnifying horizontally and verti
cally, by an integral factor, the pattern of num
bers within a rectangular area. This is accom
plished by the instruction

Z~~MIN scRT,scBL,fctr
(e.g. ZifJ~MIN YY,0,3)

where fet'/' is the magnification factor, an in
teger from 2 to 6. DurinI!' the Z00MIN onera-

- -1Lol' - " 1 ...

tion, the approximate center of the pattern is
fixed and material is lost off all four edges.

An approximate inverse of Zf>0MIN is' ac
complished by the instruction

REDUCE scTR,scBL,fctr
(e.g. REDUCE A,B,5)

where fetf' is the factor of reduction, again an
integer from 2 to 6. Reduction is accomplished
by repeated deletions of rows and columns and
by repacking toward the center those remain
ing. Vacated area around the periphery is
filled in by repetitions of rows and columns
originally just within the periphery of the area.

A unidirectional magnification is accom
plished by the instruction

STRECH scTR,scBL,dir,fctr
(e.g. STRECH A,B,UP,2)

which holds one edge of the pattern fixed and
"stretches" the pattern-by duplicating rows
or columns-in the indicated direction until
(l/fact)th of the original pattern covers the

entire area, with each of these rows (columns)
repeated fetr times: The direction dir must be
UP, RIGHT, Dr>WN, or LEFT, and the factor
fet'r must be an integer from 2 to 6.

Finally, an approximate inverse of STRECH
is provided by the instruction

PRESS scTR,scBL,dir,fact
(e.g. PRESS ZZ,0,D(>WN,3)

which causes the contents of the area to be com
pressed against one side of the area-by dele
tion of rows or columns and repacking in the
direction dire The vacated area is filled with
repetitions of the row or column just within the
edge from which motion occurs. As before, dir
must be UP, RIGHT, D(>WN, or LEFT, and
fetr is the factor of compression, and integer
from 2 to 6.

APPENDIX C

An Example of Movie Language Coding

The actual program which produced Fig. 2a
is here given as an example of movie language
coding. It consists of five parts: definitions of
new macro-instructions, coding for composing
the picture, coding for outputting the picture,
dosed subroutines, and descriptions oi text to
be typed. Particular attention should be paid
to the first section, which illustrates how the
programmer devices his own macro-instruc
tions on a still higher level, instructions which
are either more powerful or which are more
specifically suited to a particular task.

A new macro-instruction of wide application,
BENTLN~ is used for drawing any line which
consists of a series of straight line segments,
such as the two braces,of Fig. 2a. BENTLN is
defined in terms of SEG MNT, which compiles
into a call for the subroutines SEG . . . that
actually draws one segment of the line. The
new macro-instruction, SURF, on the other
hand, was designed specifically for Figs. 2a and
2b. It permits convenient description of the
position and size of a surface in the drawing
and of labels indicating its name and its size in
squares.

The program is here listed, with explanatory
comments on the right. (For more complete
description of the MACR~ FAP compiler see
the Bell Telephone Laboratories, 7090 Program
mer's Manual, July 15, 1963) :

86 PROCEEDINGS-SPRING JOINT COMPUTER CONF'ERENCE, 1964

BENTLN MACRP XSTART,YSTART,PARTS (STARTING POINT + LIST OF SEG
MENTS)

*

THEN
IRP
SEGMNT
IRP
ENDM

(C,T,BB) (C,X,XSTART) (C,Y,YSTART) (D,T,C)
PARTS) C0MPILE SEGMNT FOR EACH PART. EACH "PART"
PARTS ~ IS A LIST ¢>F A DIRECTION (U,R,D,(>R L) AND AN

AM0UNT PLUS AN ~PTIONAL 2ND DIRECTI~N AND
AM0UNT. END ()F BENTLN DEF.

SEGMNT MACR9S DIR1,AMT1,DIR2,AMT2
0,/CRS/DIR2

(DIR2 AND AMT2 <PPTI~NAL)
IF DIR2 PRESENT THEN
C¢MPILE THIS LINE

*
SURF

*

*

IFF
THEN
THEN
ENDM

MACR~
PLACE
THEN
PAINT

THEN
TYPE
CENTER
IFF
THEN
TYPE
ENDM

(D,DIR2,AMT2)
(D,DIR1,AMT1) (QQ,P,SEG ...) C~MPILE CALL TfJ SEG ...

END ~F SEGMENT DEFINITI~N

X1,Y1,WIDTH,HEIGHT,NAME,SIZELN,SHIFT (SHIFT ~PTI~NAL)
B,BB,X1,Y1
(A,T,B) (A,R,WIDTH) (A,L,1) (A,U,HEIGHT) (A,D,1)
A,B,WRITE,2 PAINT RECTANGULAR AREA

WITH 2'S
(C,T,B,) (C,U,1) (C,R,1) (D,T,B) (D,D,8)
NAME,C,8X11,1,1,WRITE,0 TYPE NAME WITH O's
~B CENTER IT
O,/CRS/SHIFT
(D,R,SHIFT)
SIZELN,D,5X7,1,1,WRITE,7

SHIFT SIZE LABEL RIGHT
TYPE SIZE LABEL
END ~F SURF DEFINITION
END (jJF DEFINITIONS OF NEW
MACR0S

FILM
FRAMES ~

BEGINNING ~F PR~GRAM
(Ncb ylUTPUT DESIRED DURING
TYPING)

PAINT
BENTLN
BENTLN
PLACE
TYPE
PLACE
TYPE
PLACE
TYPE
IF
SURF
SURF
SURF
SURF
B~RDER

AIM
FINE

BB,~,WRITE,~ CLEAR SURFACE BB TP O'S
46,173 < (L,3,D,2) (D,18) (L,3,D,2) (R,3,D,2) (D,17) (R,3,D,2))
95,173 (R,3,D,2) tD,46) (R,3,D,2) (L,3,D,2) (D,40) (L,3,D,2))
C,BB,8,167 (TW9S BRACES NOW D¢NE)
q.RSUR,C,5X7,1,2,WRITE,7 TYPE "f/JR SURFACE ... " N¢TE
C,BB,10,60
FIG2A,C,5X7,1,3,WRITE,7
C,BB,103,125
TEXTOR,C,5X7,1,2,WRITE,7
(C,L,120) T (C,X,152) TP~R
52,140,40,28, TEXTAA,252X18
52,90,40,28,TEXTBB,252X18
110,100,40,56,TEXTVV,252X36
160,110,80,28, TEXTCC,504X18,27

TYPE "FIG. 2A ... " CAPTI~N

TYPE "0R"
MOVE RIGHT, TYPE "~R" AGAIN

D~ THE 4 SURFACES

BB,0,2,WRITE,7

BB
BEGIN CAMERA SETTINGS F~R ¢UTPUT
AIM CAMERA AT SURFACE BB

FILTER 5
~UTPUT ENTIRE SURFACE BB (252X184)

) TRANSLITERATE O'S TO BLANKS (60) 8
) AND 7'S TO ASTERISKS (54(68) TABLE 5,60,1,72,3,4,5,60,54

FRAMES 150 DA 1 FRAME, WITH "150" ON FRAME LINE

A COMPUTER TECHNIQUE FOR PRODUCING ANIMATED MOVIES 87

SAMPLE 1 ~ PRf>DUCE fJN PRINTER ALL fJDD
LINES 17777777777 C~LUMNS OF ALL 6DD LINES
CAMERA PR¢>DUCE PICTURE
TRA FINISH

* BEGINNING OF CL¢>SED SUBR9lUTINES
SEG ... LINE C,D,WRITE,7,1,5000) SUBRfliuTINE F~R DRA WING A

THEN (C,T,D)QQ) STRAIGHT SEGMENT cjJF A LINE
~RSUR BCI 2,* ((jJR ~ DESCRIPTI~NS OF TEXTS ~

BCI 2,*/SUR- TO BE TYPED BEGIN HERE
BCI 2,*/FACES (AND C¢>NTINUED T(j THE END.)
BCI 2,*/ctlF
BCI 2,*/FIG.
Bel 2,*/2*)B.*.

TEXTAA BCI 1,AA*.
TEXTBB BCI 1,BB*.
TEXTCC BCI 1,CC*.
TEXTVV BCI 1,VV*.
252X18 BCI 2,252*) X 184 * .
252X36 B.CI 2,252*) X368*.
504X18 BCI 2,504*) X184*.
TEXTOR BCI 1,0* /R*.
FIG2A BCI 8,* (FIG. *)2A. *NAMES AND SIZES OF SURFACES

BCI 8,*/LARGE E7;UGH T~ H¢LD C~MPLETE FINE-
BCI 8, * /RES<PLUTI N M~VIE FRAMES (252 X 184).
BCI 8,*/*ALTERNATE USES ~F T¢>TAL 7090 STq)RAGE
Bel 8, * / AREA ARE INDICATED, INCLUDING THE USES
n~T o :I< /n.y;t 'Dy;t~T~lIr.T '" A '" A TlIr.T 'tIT A VCI ClHrl,.UTlIr.T TlIr.T "'y;tT~ on ...
.D\...I~ 0,· / 'Pr n.£JU~'f'J.'" . .no . .no ~J.'" Yf.no ~ 0 0 'P n .I. ... ~J."'I . r ~U. ""D.·

SIMULATION OF BIOLOGICAL CELLS BY SYSTEMS
COMPOSED OF STRING-PROCESSING FINITE AUTOMATA*

Walte'l' R. Stahl,t Robert W. Coffin,'! and Ha1Tlj E. Goheen§

INTRODUCTION

In the last few years enormous progress has
been made in clarifying the operational mech
anisms of living cells. It has been established
beyond reasonable doubt that all aspects of cell
activity are controlled by sequences of elemen
tary genetic units. A comma-free triplet coding
in the four-letter alphabet of DNA is tran
scribed on RNA and causes the formation of
sequences of amino acids, which make up poly
peptides and proteins. Various theories of
transcription control for such systems are now
under study. Recently, synthetic nucleic acid
(RNA) chains have been fed into the cell
machinery, thus demonstrating that protein
synthesis can be controlled artificially. Numer
ous finer details of the problem could be men
tioned (see Crick,9 Nirenberg,31 Rich,39 Wad
dington,57 and Anfinsen1) but shall not be con
sidered in this report.

There arises the question of what type of
mathematical modelling method is best suited
for simulation of molecular genetics. In the
past numerical models, based on chemical ki
netics expressed in terms of simultaneous dif
ferential equations, have usually been applied.
Impressive results were obtained by Chance et
al.,7 Garfinkel,13 Hommes and Zilliken 18 and
others. However, it has also become clear that

simultaneous solution of hundreds or thousands
of differential equations, many of whose coeffi
cients probably cannot be measured experimen
tally (see Pardee 82) , poses a difficult problem.
Actual cells may contain thousands of different
genes and hundreds of thousands of synthetic
units. Major questions of solvability and stabil
ity of such systems must be faced in an attempt
to model a complete cell.

The present report describes a fundamentally
different approach to the problem of simulat
ing a cell, some aspects of which were reported
earlier in Stahl and Goheen.45 Since genes and
proteins are representable as linear chains or
strings, it is proposed that molecular mecha
nisms of cells be simulated by string-processing
finite automata. In this model strings repre
senting DNA, RNA, proteins and general bio,;
chemicals are subjected to controlled copying,
synthesis into longer strings and breakdown in
to shorter ones, with use of what may be called
"algorithmic enzymes." A major property of
these logical operators is that they are combin
able into large systems with complex properties.

The materials below deal in turn with a new
computer simulation system for studying finite
automata, the properties of algorithmic en
zymes, experimental studies with systems of the
latter and lastly with some questions of solv-

* This report was prepared under the support of Grant GM-11178 of the National Institutes of Health.
t Scientist, Oregon Regional Primate Research Center, Beaverton, Oregon, and Associate Professor, Department

of Mathematics, Oregon State University, Corvallis, Oregon.
t Chief Programmer, Department of Biomathematics, Oregon Regional Primate Research Center, Beaverton,

Oregon.
§ Professor, Department of Mathematics, Oregon State University, Corvallis, Oregon.

89

90 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

ability for model cells defined entirely by au
tomation-like enzyme operators.

THE AUTOMATON SIMULATION SYSTEM

The quintuplet command code proposed by
Turing is used in the programming system and
well described in Turing,50 Davis lo and else
where. Turing's device was designed for proofs
of computability and in principle requires an
infinite tape and infinite number of recursive
steps for such demonstrations. This circum
stance does not prevent one from using the
quintuplet code for general purpose simulation
of automata. The late John von Neumann55.56

pointed out that the Turing Machine represents
a means of programming or simulating any
algorithm, as well as for computability demon
strations. McNaughton26 has emphasized that
the Turing Machine should be considered as the
most general of automata.

A compiler based on the Turing quintuplet
notation <,but not really modelling the Turing
Machine) has been designed and is described in
Coffin, Goheen and Stah1.8 Simulation of a con
siderable number of different automata on the
system, including ones for pattern recognition,
has revealed that a computer program for
modelling of automata is a useful research tool,
which may find practical applications when it
is desired to use a· "variable programmed au
tomaton." Results substantiating this conclu
sion are reported in Stahl, Coffin and Goheen44
and Stahl, Waters and Coffin.46 A special com
piler, constituting an "automaton simulation
program," was written for a SDS-920 com
puter and has processing rates of up to 10,000
quintuplet commands per second. Rates of over
one million automation commands a :second
should be possible with presently .known tech
nology. A number of special provisions have

. been included for automatic sequencing of dif
ferent circumscribed algorithms or automata
presented as lists of quintuplets, debugging,
selective printout of string during simulation
runs, and so forth.

A Turing compiler should not be evaluated on
the basis of the inefficient operation of 'most
Turing Machines described in the literature to
date. The authors are using individual Turing
Programs (algorithms) exceeding 1700 quin
tuplets in size and a complete syst~m (namely,

the algorithmic cell) , which includes over
43,000 quintuplets. Interesting results have
been obtained for the problem of recognition of
hand-printed letters (A-Z) and shall be re
ported elsewhere (Stahl, Waters and Coffin46).
Naturally, automaton simulation has a special
'range of application, as do research compilers
such as LISP, IPL-V, or COM IT.

The Turing Machine is a device which oper
ates on individual symbols presented on a single
long tape, along which a reading head moves
left or right, one cell square at a time. A capa
bility is provided for erasing and writing indi
vidual symbols and for recording the "state"
of the Turing Machine, which defines uniquely.
its response to a particular viewed symbol.

Only one type of program command is used
and consists of a quintuplet (or matrix table
with output triplets of symbols), which usually
appears as follows: symbol, scanned, state of
machine, new state, motion (right-R, left-L
and stay in place-P) and symbol to replace
existing symbol before motion is carried out.
A quintuplet such as 12 A :15RB is read "if in
state 12 and A is viewed, then replace A by B,
go to state 15 and move right one square." A
final logical halt of the automaton takes place
on such an entry as 26* :26P*, which is read "if
asterisk is seen in state 26, remain in place,
stay in state 26 and do not alter asterisk."

In principle, the Turing Machine must have
available an infinite tape and amount of time,
but precisely the same notation can be used with
finite automata and this has been done by such
authors as McNaughton,26 Myhill,30 Trakhten
brot49 and others. The quintuplet command
structure need not in itself connote the extended
and often inefficient "shuffling" operation of
the cl~ssical Turing Machine.

ALGORITHMIC ENZYMES

The concept of a Turing quintuplet code may
be illustrated with a simple but biologically pro
vocative example in which.a ;finite antomatoD
simulates ,a ;l~ic enzyme iflla't breaks ·down
"strings. ',Tatile I is a 'quintuplet program for
an "automaton enzyme"wnich lyses strings in
the alphabet (AGCT), representing the four
nucleic acid bases adenine, guanine, cytosine
and thymine. A typical input tape into the

automaton using this code might be

••• cp cp:=A-C-G-C-C-T-T-A-G-C-A:=4> 4> ...
(1)

in which "4>"-empty cells, ":="-start of
string, "-" -bond between letters.

Table I

TURING PROGRAM FOR A SIMPLE
LYTIC ENZYME

1 cp :lR4>

1 := :2R:=

2 := :2P:=

2 A:2RA

2 C:2RC

2 G:3RG

2 -:2R-

2 T:2RT

2 /:2R/

3 := :3P:=

3 -:2R/

3 /:2R/

Following a single left to right pass the string
in (1) will be converted into

:=A-C-G/C-C-T-T-A-G/C-A:= (2)

in which every bond immediately to the right of
a G, regardless of what synlbol is next to it on
the left or right, is converted into an "open
bond" (/).

Operation commences at the left end of the
string .. The empty symbols (cp) are passed over
by entry 1 cp :lR4>. When the left end-marker
(:=) is seen control passes to state 2. In state
2 all symbols except G (namely, A,C,T and -)
are simply skipped over, as in 2 ~ :2R-. If G is
seen, by entry 2 G :3RG, control passes to state
3, which next encounters a "bond" and con
verts it to an "open bond" using entry 3 - :2R/.
Provisions are also made for skipping over any
existing open bonds, as in entry 2 / :2R/. Stop
ping occurs in state 2 or 3, on an entry such as
3 := :3P!::::.

Table II is a sample of coding for a string
synthesizing finite automaton, which was de
scribed in Stahl and Goheen45 and is the proto
type for the algorithmic enzymes noted in this
paper. The cited work also includes automata

SIMULATION OF BIOLOGICAL CELLS 91

for copying and complementary copying of
strings (as in DNA transcription), and for more
complex types of lysis.

In general, the construction of quintuplet
programs for automata is straightforward. It
is noteworthy that they are truly interchange
able because of the very standard format. It is
clear, however, that string-processing enzymes
might also be represented by other types of
automata, such as Wang's58 modified Turing
Machine and that it would be entirely feasible
to design special compilers that accept a "state
symbol" table.

While the lytic enzyme of Table I was given
principally as an example, it is interesting to
note that reconstruction of a parent protein
string following the action of several lytic en
zymes is an important problem today for nucleic
acid and protein analysis. Rice and Bock38 have
pointed out that application of three specific
lytic enzymes, which split "next to" only three
of the four specific bases in DNA, does not allow
a unique reconstruction of the parent chain.
This is an excellent example of algorithmic Ull

solvability arising in a biological context, and
moreover even in very classical form, namely,
solution of a ~'word problem" by algorithmic
methods.

It must be emphasized that the lytic enzyme
of Table I in no way models the physiochemical
properties of any real enzyme that might per
form the indicated lysis, and only simulates the
string-processing aspects of the enzyme action.
This type of model is somewhat comparable to
the McCulloch-Pitts25 imitation of neurons by
the threshold Boolean "logical neuron," in that
both model systems are rather gross from the
biological viewpoint, but involve a consistent
mathematical methodology. The McCulloch
Pitts neuron can be combined into large sys
tems, such as perceptrons, and much the same
step has been taken with algorithmic enzymes,
The main problem in biological modelling is
probably that of finding well-defined mathe
matical methods which can be applied with
profit to the biological system.

92 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Table II

TURING PROGRAM FOR CONDITIONAL STRING SYNTHESIS

1= :2R== 6=:7L= 10c :12Rc 15=:16L= 19c :19Lc

1cf>:lRcf> 6* :7L8 15* :16L* 1ge:19Le

1a :11Lx 6a:SRa 11=:13R= 15a:17Ra 19x:19Lx

6b:SRb 11 * :llL* 15b:17Rb

2=:2P= 6c :SRc II</> :114 15c:17Rc 20* :20R*

2* :2R* 11a :11La 20</> :20Rcf>

2</> :2R</> 7=:9R= lIb :llLb 20a:20Ra

2a :2Ra 7* :7L* 11c :llLc 16=:20R= 20b:20Rb

2b:2Rb 7</> :7L</> lIe :llLe 16</> :19L* 20c:20Rc
2c :2Rc 7a :7La 16a :16L</> 20e:21r</>
2e :3Le 7b:7Lb 12= :12P= 16c :164 20x :20R</>

7c :7Lc 12* :9R*

3=:4R= 7e:7Le 1q</> : 12R</> 17= :lSL= 21=:22R*
3* :3L* 12a :12Ra 17*:13R* 21 * :21R*

3</> :3L</> S=:SP= 12b:12Rb 17</> : 17R</> 21</> :21R</>
3a :3La S* :4R* 12c :12Rc 17a :17Ra 21a:21Ra

3b:3Lb S</> :SR</> 17b :17Rb 21b:21Rb

3c :3Lc Sa :SRa 13</> :17R</> 17c :17Rc 21c :21Rc

Sb:SRb 13a :14Ra 21e:21Re

4</> :SR</> Sc :SRc 13b:17Rb lS=:lSP= 21x :21R</>
4a :SRa 13c :17Rc lS* :lSL*
4b:5Rb 9</> : 12R</> 13e :17Re 184> :lSL4> 224>:23Ra
4c :SRc 9a :10Ra 13x:17Rx lSa :lSLa 23</> :24Rc
4e:SRe 9b:12Rb lSb :lSLb 244>:25Ra

9c :12Rc 14= :ISL= lSc :ISLc 25</>:26L=
5* :4R* ge :12Re 14* :13R* ISe :ISLe
5a:SRa 14a :17Ra lSx :ISLa 26=:2R=
5b:6Rb 10= :lL= 14b:17Rb 26* :26L</>
5c :SRc 10* :lL* 14c :15Rc 19=:20R= 264> :26L4>

lOa :12Ra 19* :19L* 26a:26La
lOb :12Rb 19</> :194 26b:26Lb

19a :19La 26c :26Lc

19b :19Lb 26e:26Le

The concept of studying cells algorithmically
was probably implied in von Neumann's55 work
on self-reproduction of structures composed of
finite automata. This model has been exten
sively analyzed and extended by Burks4 and
Moore.2!1 The growth and stability of autom
aton-like arrays is considered in Lofgren,22
Ulam,54 Eden,ll Blum:l and others. Rashevsky:l7

suggested the application of the Markov "Nor
mal Algorithm" (A. A. Markov24) to the genetic
codes, but did not define any complete cell
model. Pattee:l5 proposed that a simple autom
aton could produce long biological chains of
a repetitive kind. Induction and repression
mechanisms in cells are analyzed by Jacob and
Monod.20 Sugita47 and Rosen 40 explore the

Boolean logical representation of cells. Turing
himself wrote a paperS1 entitled "The Chemical
Basis of Morphogenesis," but used differential
equations rather than algorithm theory in this
study. Soviet workers such as Frank12 and
Pasynskiy34 discuss some general aspects of
cellular control theory. Lyapunov23 proposes
the systematic study of interacting automata
subjected to executive~ hierarchies of control
. and Medvedev27 deals with errors in genetic
coding.

An "algorithmic cell" is defined in this report
as a system of string-processing finite automata,
representing enzymes, together with the cell
contents, identified as strings. Smaller bio
chemicals which are not as obviously strings as
DN A or proteins may be coded as strings. This
is done routinely in or<iinary chemical nomen
clature. Furthermore, the linearly-coded en
zymes (proteins) must be able to recognize any
normal biochemical in the cell, and this may be
interpreted to mean that some sort of a string
coding of biochemicals is possible. Biochem
ists represent DNA, RNA and proteins in an
associative symbolic notation; but this fact has
not been subjected to mathematical interpre
tation. That is, molecular biologists now assume
that the four DNA bases, the four RNA bases
and the 20 or so pertinent amino acids can and
should be presented as symbols in an associa
tive (parentheses free) linear string notation.
Much progress has been made recently in show
ing the details of the nucleic acid to protein
coding (Nirenberg31). It is noteworthy that a
normal algorithm is implied in the DNA triplet
to amino acid substitution coding, e.g., CAC
~ Pro. (cytosine-adenine-cytosine c.odes the ~
amino acid proline). Although the DNA to pro
tein coding is understood, almost nothing is
known about the grammer, syntactical relation
ships or programming techniques used by the
cell during its strictly deterministic, and there
fore algorithmic, growth, differentiation and
functioning.

Figure 1.1 is a flow chart of string syntheses
taking place in a typical cell model of the type
suggested in this report. At present 43 separate
threshold algorithmic enzymes are used and
produce a total of nine different final products.
The complete model cell consists of the enzyme

SIMULATION OF BIOLOGICAL CELLS 93

operators stored on m~gnetic tape, a 2000 sym
bol memory which has a place for each string
and its numbers at any moment of operation,
and three "housekeeping programs" (written
entirely in quintuplets representing specialized
finite automata) which perform addition, gen
eration of pseudo-random variables, totalling
operations, counting, etc. While this type of
programming is obviously not as efficient as
a conventional computer methods for straight
forward arithmetic operations, it is a consistent
automaton simulation methodology and very
flexible. For example, total cell size may be
controlled by simply introducing a special au
tomaton that changes rates of "diet" letter entry
as a function of total cell string count. A com
plete growth experiment with an algorithmic
cell requires about 30-45 minutes and involves
hundreds of thousands of individual enzyme
steps.

The algorithmic enzyme used in the cell
model is more complex than the one defined by
Table II and functions as follows. Each enzyme
is stored as a program of about 1000 quin
tuplets on magnetic tape and called into the
core memory by the compiler program when a
preceding enzyme or a "housekeeping automa
ton" writes in a "call number" in a specific
region of the memory tape. As the first step,
threshold checks are made of "energy" repre
sented as a simple string and of one or two
control strings, by interrogation of the binary
numbers associated with these strings. If these
thresholds are met it is next ascertained that
the substrates (input materials) for the specific
enzyme are available in sufficiently highquan
tities and that the final product is not already
present in excessively large amounts. If these
added threshold conditions are met, the enzyme
functions, producing a fixed quantity of its
product, while removing appropriate quantities
of the materials that went into the latter. After
this is done the algorithmic enzyme writes in
another "call number" which controls which
housekeeping program or other enzyme shall
function next.

In Figure 1 the enzymes are identified by
number, as #113, and the "k" value indicates
synthetic rate for a unit cycle, while the strings
along the flow lines are the control substances.

94 PROCEE'DINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

1119
k4

CAA AA I~l" ;V
l33 ~-\

k8 \ ED

m~ \ 113V-11y6 AB k4
G

k4
1m AA \ k4

\ BACDC Be
(future

use)
AB/G/D

ABC
\ AHA

\

BDCAA

I:~ ~rl \ #l~~~~ ~ M!

/~AIIA

f.132 --'152 k4 k8
R~CDC AC

AHA AllAH

BD/B/B

GB
(futtir'e use)

~

BBB ,." BACDC

1131/ k8
lUI

J: Ilt~O
k16 DC or

AlUI BD-

B*BJB

MCD/C/DBA
"fAA/A/AB

I~l~~ DC AD 'mAl:· AD/AlA f~. ~47 ::~:/D
BAW 0 or AB/G/D k4 4

AC 112 MCDC nm
k4

CM
(D An/G/D

Y150 ~ ~ ~148 k8 112h(~ ~~ .. _.- k8

GD
AL/C/D - lHH

~l!Q
YATID/GGYABD

Figure 1.1. Main String Syntheses (each pathway is shown with algorithmic enzyme call number, rate and
control substances).

A complete set of specifications for the enzymes
shown in Figure 1 will be published elsewhere.
It can be seen from Figure 1 that certain "in
ducer strings," such as AHA, HHH, etc., control
the action of sets of coordinated reactions.
Moreover, synthesis of these "control strings"
is subjected to induction or repression as a
function of certain special strings that may be
supplied from the outside, as by an adjacent
model cell, or manufactured in the cell if levels
of "metabolite strings" meet certain arbitrary
thresholds. A reasonable correspondence can be
drawn between the activities of the algorithmic
cell model and known basic cell activities, in
cluding blocking and unblocking of DNA, for
mation of messenger RNA, synthesis of enzymes
and proteins on ribosomes, production of metab
olites by enzymes, etc.

The flow chart of Figure 1 is entirely arbi
trary and does not attempt to represent any
actual cell. It must be noted that a real cell
may have tens of thousands of enzymes and
genes, and that firm quantitative data is avail-
able at present only for limited sets of enzy
matic reactions. Nevertheless, one may study
the basic mathematical problems presented by
string-synthesizing automata. The final prod
ucts of the algorithmic cell model, as shown in
Figure 1 were designed to combine into several
different two-dimensional arrays. An example
of a unit in such an array is given in Figure 2.
A "complementation algorithm" is applied to
the product strings. This states that any 'two
strings will stick together or polymerize pro
viding that they have at least three comple
mentary bonds, such as A with B, B with A,

I.~

~
(I) (F)

104

(R)

SIMULATION OF BIOLOGICAL CELLS 95

C with D, etc. Presence of a non-complementary
eond negates two complementary bonds. This
may be considered to be still another kind of
discrete threshold action that generates com
plex entities from simplier units.

I
C
D
K
r
C .
JZ

lI!!!!!
64
32
16
16
121
121
1 '

l1i X 1<128
JZ JA. (Outlide '12V~ 1

-121

BD production

l! &..L
(128ua.1C.
of .-ch)

coa.trol)

II. I_tal Hatertab Suppl1fd ••
W"fgrJ-Ueg

• Ib)eh itaaia. VhaI t
ale ... t. patm-ya provitJed..

'1.~ i
CCI -

The control strings are so chosen that they
regulate the coordinated formation of one or
more final products that polymerize together.
There are sufficient product strings so that dif
ferent types of arrays are possible and may lead
to long individual chains, cross-linked chains,
circumscribed blocks of strings and even grids
with a special border that limits further growth .
All the operations leading to these results are
defined by firm algorithms. However, pseudo
random variables are added to generation rates
and this results in less "mechanical" action.

cc: AllGU11 productiOll ABA., wbic!
~1JII._II .. t:iaM.,. ••

lIJ .Allan proWcUOIl AmI, wbkb
eoatzob nI" tV pthws,=.

CCC Allon ps:oductUa. _. which
e0atr0lopa'-YV.

111) .1.11_ produt:t1o:rlABAll. wbtclt
coatzol.a alternat. pathuaya VI
ad VII. u..tead ., tIl aDd IV

1IHHB. Productioa. cODtrolled by tob1
cell dze.. vl.a #149. W ttl.
1154, ISS co stop fUrthet
srowtb •

~tDOl
BBIBIB 11491.

k4
... /G/'

.!ll!!ill

Figure 1.2. "Diet," "Energy," and "Control" Substances.

The short string
prevents regular
cross-linking with
product V, by fill
ing in open space.

\
See comments
with unit VII~

VL\

~~
fII

This small product
can fit into (1+11)
and prevent any
further polymer
ization.

Strings III and IV are made
in coordinated manner if
DD is present. 'They can com
bine with (1+11) to give
a long chain polymer.

/

PrOducts I and II are induced
by control substance CC
and combine into a three I! Y piece unit.

~
VI~ Units VI and VII are in

duced by substance AHAH
and can combine with the
(I+II)unit to give a

This cross-linking
unit is made if sub-
stance CCC is present.
It cam CDmb.ine units
from (I+n+UI+IV), to
give two-dimensional grid
pattern.

long chain pattern. Cross
linking is possible but the
AHAH control path'-1ay does
not result in production
of cross-link unit V.

COMPLEMENTATION ALGORITHM: Any two strings which collide are assumed
to link or l'polymerize" if three or more complementary bonds are pre
sent (A-B~B~,C-D, etc.). A non-complementary bond negates two
complementary ones. A single collision is assumed to test all bonds.

Figure 2. Two-Dimensional Configurations Associated with String Products of the Algorithmic Cell Model.

96 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

EXPERIMENTAL STUDIES WITH THE
ALGORITHMIC CELL

In a typical run the cell model reaches equi
librium after about some 40-50 passes through
the sequence of algorithmic enzymes, whose
activity or inactivity is determined by induction
and repression conditions. During the run
printouts of quantities of each string are ob
tained 'periodically, as on every second or fourth
unit pass. Cycles of operation, totals of strings
of given sizes, grand totals and total use of
energy are also recorded and used for assessing
the efficiency of a given cell control system.

Among the specific experiments that will be
performed with the cell model are included 1)
curtailing or completely limiting input sub
stances; 2) introducing a "leakage" of one or
more suqstances; 3) limiting ~nergy use or
"suffocating" the cell with unremoved products;
4) suddenly eliminating (as if b)' surgery or
trauma) the entire contents of certain reser
voirs; 5) adding large random variables to all
the generation rates and watching to see if the
system will stabilize or oscillate; 6) driving the
system with periodic inputs of elementary
"diet" letters and noting the transfer functions
to other parts of the system; 7) "heating" or
"cooling" the cell, by appling a simple constant
multiplication factor to rates (k values) of all
enzymes and then checking stability. Other
tests are also possible.

Another experimental study is directed to
wards finding out approximately what fraction
of random changes in the quintuplet commands
shall lead to a final cell system that "grows out
of control," like cancer. With about 45,000
quintuplets, each capable of many random
"mutations," exhaustive testing is not practical
~ven with this small system. However, it is
possible to make random changes in representa
tive quintuplets of the more important enzymes
and determine whether they cause the algorith
mic cell to die, shrink, grow wildly, interact
abnormally with adjacent cells (that is, fail to
differentiate properly), stop producing one or
more of the required final products, etc. All
these examples have clear-cut biological
counterparts.

EX'periments are also planned on competition
between two or more algorithmic cells, which

are subjected to random mutations in selected
enzymes. This is done by having the cells draw
upon a common diet and share a pool of some,
but not all, strings. It is then possible to model
experimentally a kind of simulated natural
selection, in which the cell that first reaches
final "adult" size is selected over lagging ones.

Self-reproduction, as such, can be modelled
with the above system, and would involve hav
ing the algorithmic enzyme quintuplets listed on
a long "gene" string, which is copied at time of
reproduction. Self-reproduction becomes 'pos
sible when the length of the "gene" coding is
sufficient to define a certain minimum number
of operational enzymes which account for cell
structure, basic metabolism, gene copying and
over-all control of t~e entire simulated cell sys
tem. This type of self-reproduction differs in
certain fundamental respects, i.e. exclusive use
of strings from the "kinematic" or "grid" re
production considered by von Neumann,55
Burks4 and Moore,29 and also does not resemble
very closely the geometric growth systems of
Ulam54 or Eden.l1 The details of an existence
demonstration for self-reproduction in an al
gorithmic cell model shall be considered else
where.

As was noted above the final string products
of the cell model combine or polymerize to form
rather intricate two-dimensional arrays, some
what reminiscent of known protein polymers
such as collagen or muscle fibers. Following
polymerization, which at present is modelled by
hand but could be represented on a digitally
controlled projection screen, certain specific
sequences of letters may be read off around the
margins of the two-dimensional arrays which
may be chains, cross-linked chains, grids or
irregular crystal-like structures resembling
those described in Ulam.54 Future studies will
make use of algorithmic pattern recognition
strategies to determine when an array has
reached its final desired configuration and also
what may be done to repair such an array if
it has been injured, i.e., a corner chopped off
a grid. In the biological world there is a clear
counterpart to these abstract studies in the
ability of cells and tissues to regenerate missing
parts using strictly determinate procedures
which are clearly coded in their gene sequences.

The described system is a sequential, not
parallel, simulator. In the real cell it is known
that tens of thousands, if not millions, of copy
ing and synthetic activities may 'proceed in
parallel. It is possible to mimic the effects of
many identical enzymes acting simultaneously
by increasing rates of production, and to mini
mize real-time non-simultaneity problems by
using a rather short unit time period, during
which no one synthetic chain is produced in
large quantity. However, future studies will
explore various ways of simulating a parallel
string-processing system.

As noted, the above system does not attempt
to model any real cell or the properties of real
enzymes in a physiochemical sense. Recent
studies of enzyme action (Labouesse et al.,21
Monod et a1.28) have shown that they are
formidable objects from the physiochemical
standpoint, because they are composed of hun
dreds of individual amino acids and have a
complex three-dimensional structure. They are
now believed to function, at least in part,
through physical dislocations of certain enzyme
regions after a given substance becomes at
tached to a receptor location. One must keep in
mind that these remarkable logical machines,
which can be characterize,d as "coiled up" or
"multiply connected" strings, are determined
solely by the linear array of their ,amino acids,
which are in turn coded by the gene base
sequences. Physiochemical models of this "con
formation" system have not been very satisfy
ing.

Possibly the central question is choice of type
of automaton to simulate an enzyme: it might
use numbers, the Boolean variables 1 and 0, or
letter strings, as discussed above. The differen
tial equations models can be subsumed under
analog-type systems that :process real numbers
(concentrations and rates). Sugita47 and
Rosen40 suggest a Boolean logical model of
cellular biochemical mechanisms. Arbib2 and
others have demonstrated the algorithmic
equivalence of the Turing Machine, finite au
tomaton and McCulloch-Pitts net, so the Boo
lean method and general string approach are
theoretically equivalent. However, it appears
that string-processing methods are more appro
priate for contemporary molecular biology,

SIMULATION OF BIOLOGICAL CELLS 97

which already uses biochemical strings (nucleic
acids and amino acids in proteins) as a basic
tool.

ALGORITHMICALLY UNSOLVABLE
PROBLEMS FOR AN ALGORITHMIC CELL

One of the most interesting conclusions which
can be drawn from the above model is that a
cell composed of string-processing enzymes,
coded by strings of genetic symbols, has definite
limitations on what it can do, i.e., there are
many plausible situations for which it would
have no adaptive algorithm, or "definite proce
dure," to use Turing's own term.52

One has to consider what kind of logical
problems may be solved by a well-defined, cir
cumscribed system of finite automata of the
above type, i.e., ones which may copy strings,
synthesize or lyse strings whil~ obeying a
principle of "conservation of letters" (with the
exception of some random variables imposed on
reaction rates), and also perform certain types
of blocking and unblocking actions, simulating
cellular induction and repression. In addition
the enzymes may be combined into structures
that have barrier properties, i.e., which allow a
string to ,pass from one region to another. En-
zymes may also be linked into fairly complex
subassemblies. Insofar as is known today, the
cell does not contain specialized molecular au
tomata that perform binary logic, arithmetic,
compute or "think" in any ordinary sense.

A system of 43 algorithmic enzymes has
logical abilities that are qualitatively far more
complex than those of an individual enzyme, but
still circumscribed. Consider, for example, what
happens when an algorithmic enzyme contained
in a virus attacks an algorithmic cell. This
virus enzyme may lyse an important string of
the cell, or use normal biochemical strings in the
cell for its own purposes. The original cell may
or may not be able to resynthesize the lysed
products or to produce enough of them to over
come its losses. It mayor not contain any pre
coded lytic enzymes that can dissolve the en
zymes or other constituents of the virus.

What is much more basic, perhaps, is that
there may exist no algorithm by which the cell
system can identify a virus on the basis of its
genetic or protein sequences, or from its initial

98 PROCE'E'DINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

effects on itself, which may result in new prod
ucts that the cell is unable to recognize. If a
cell attempted to "compute" the string composi
tion of a new enzyme (there is no evidence that
cells do this) designed specifically to attack a
virus, it would also have to solve the following
problems, which have well-defined algorith
mically unsolvable counterparts in Turing Ma
chine theory (see Davis,lO Trakhtenbrot49): 1)
will a new proteolytic enzyme (all enzymes are
known to be proteins) lyse other desirable pro
teins of the parent cell (the "applicability prob
lem" of a Turing Machine) ; 2) will a new pro
teolytic enzyme lyse itself (the "self-applicabil
ity problem" of a Turing code applied to itself
-see Trakhtenbrot49); 3) will a new enzyme
result in a stopping or equilibrium condition of
the whole cell (the "stopping problem" of a
Turing Machine-see Davis10); 4) will a new
enzyme give a final cell configuration which is
compatible with all stages of coordinated
growth and development ("translatability prob
lem," or predicting final cell configuration
when gi,!en an earlier one); 5) is the "com
puted" enzyme the most efficient one (this re
lates to the algorithmically unsolvable problem
of minimality of a Turing Machine coding-see
McNaughton26); 6) will the system with the
new enzyme be stable and resist instability
during certain possible cellular situations.

Quite similar problems arise if a cell attempts
to distinguish a cancer cell from a normal cell,
so as to be able to kill it. It is pertinent to ask
if the normal defensive cells perform a kind of
Turing's Test53 on potentially cancerous ones,
acting in some abnormal way.

As a specific example, suppose a hypothetical
cellular automaton were engaged in design of
an enzyme of about 150 amino acids (given in
associative notation, as Asp-Lys-Glu-Lys ...)
which could attack a virus. One would have to
know how this enzyme would function during
all past and future stages of growth and dif
ferentiation. Information about the latter is
present in the genes, but it is not clear how the
cell could get access to the desired information
without a "dump" from gene memory, which
might result in loss of recursive control. In
effect, the cell would have to model its own
condition during all possible earlier and later
states of differentiation. Moreover, the cell is

unable to predict what sort of other biochemi
cals (or viruses) might be present in the envi
ronment at later times or the effects of the new
potential enzyme on its status in natural selec
tion against other cells. Furthermore, the
postulated cellular automaton would have to
anticipate the final three-dimensional structure
of an enzyme, with its "conformation" (physical
folding) properties in abstracto, since once a
new enzyme was actually made it might lyse
the automaton in question or otherwise inter
fere with normal cell controls.

Reasoning of the above type would suggest
that acquired characteristics are not inherited
because in the general case a cell attempting to
carry out the indicated adaptation is faced with
algorithmically unsolvable problems. If direct
genetic adaptation were possible it would confer
a tremendous advantage and basic reasons
why it does not occur should be sought. How
ever, the problem is complicated by the fact
that real cells are much more complex than the
abstract model of this report and is discussed
further in another report (StahI 43).

It must be noted that the described model
does not adequately simulate either the parallel
string processing or real-time processing prob
lems in a 'cell, in which a given algorithm must
be completed in approximate time synchronism
with existing developmental algorithms.
McNaughton,26 Rabin and Scott,36 Burks,5 and
others have considered some aspects of com
putability for "growing automata" and real
time computability problems. The deliberate
design of new algorithmic enzymes might also
involve certain questions of solvability for
multiple-tape Turing Machines, the isomor
phisms (Sorkin42) and composition of automata
(Glushkov16), one-way or back-and-forth read
ing machines (Schutzenberger41), state identi
fication experiments on existing molecular au
tomata (Gill,14 Ginsberg15), and adaptive abili
ties of automata (Tsetlin48).

Algorithmic unsolvability may be referred to
Turing Machine theory or to general recursive
computation theory. If the latter methodology
is used one would presumably reach the con
clusion that no decision procedure existed for
the choice of amino acids (or gene bases) for a
given adaptive problem. In the case of a malig-

nant cell one might say that there was a faulty
"transfer of control," or lack of a "stop condi
tion." This type of statement is considered
wholly acceptable to cancer specialists at pres
ent and is implied in contemporary discussions
of the cancer problem. Turing Machine un
solvability has the important advantage of
defining several qualitatively distinct unsolv
ability situations, such as the "stopping prob
lem," "translatability problem," "self-applica
bility problem," "minimality problem," etc.

The algorithmic cell differs from "learning
models" (see, for example, Pask33) and certain
of the systems described under the term "self
organizing systems" (Yovits and Cameron59)

because, as contrasted with the latter and the
brain, it cannot "learn" its environment, and
only responds to it selectively with available
precoded algorithms. Interesting problems arise
in the study of neurons represented as string
processing systems. Adaptation by the brain
does not, of course, imply adaptation by the
genes in neurons. Algorithmically unsolvable
problems would clearly ·arise if "new" brain
circuits were to be designed by a hypothetical
neuronal molecular automaton, For example,
Hennie17 has stated a number of unsolvable
preblems connected with iterative nets, which
may be composed of non-specific threshold
neurons.

To state an example, it appears plausible that
the deliberated design of a new integrative cir
cuit by a frog brain, for the purpose of detection
of some new specific type of a bug projected on
its retina and based on an iterative type of cir
cuit, might involve algorithmically unsolvable
problems. Pursuing a related line of reasoning,
Cannonit06 has discussed Godel's incomplete
ness theorem as applied to intelligent machines.

DISCUSSION AND CONCLUSIONS

Careful study of the existing literature in
both molecular biology and finite automata
theory, including also recent Soviet reports,
suggests that the model proposed in this report
has not been used before. At present it is in a
developmental stage, and is running as de
scribed on an SDS--920 computer.

It has been noted above that the model does
not attempt to use numerical data from bio-

SIMULATION OF BIOLOGICAL CELLS 99

chemical studies. However, it will be tested in
this capacity, with use of finite approximations
to enzyme kinetics. Quantitative modelling will
become really meaningful when a sufficiently
complete and accurate set of parameters is
available for an actual cell. Most existing quan
titative biochemical models are of the steady
state compartment type and demonstrate
changes of equilibria in open systems. The pres
ent model is designed, on the other hand, to
study coordinated growth and progressive dif
ferentiation of a cell. Both types of studies
obviously have a place.

Since real cells are so c-omplex, and may in
clude thousands of different enzymes present in
many copies, there arises the very real question
of what kind of mathematical or algorithmic
tool is best suited for the simulation of enzymes
and cells. In this report it is suggested that
finite automata are a suitable axiomatic tool.
While the proposed model is imperfect, it does
allow a new and mathematically consistent
representation of such extremely characteristic
biological phenomena as differentiation, induc
tion and repression controlled by environmental
biochemicals, coordinate·d gro'l:lth, development
of cancers, competition betw~en cells, etc. The
need for some new nlathematical attack on the
problem has been strongly stressed by such
senior biologists as Waddington. 57

As concerns the Turing quintuplet pro
gramming technique, it is more efficient than
has been supposed and is well suited for study
of the properties of systems of automata. It is
effective where intensive logical processing of
a non-standard variety is to be done on a rather
small amount of input information, but, of
course, extremely inefficient where much infor
mation must be used at one time or for con
ventional numerical processing. Other reports
will take up the useful range of application of
the described automaton simulation program
ming technique.

A model of a general synthetic system may
also be of interest in realms other than cellular
biology. For example, it may be proposed that
in any general production process the addition
of a letter to a string can represent a "next
processing step," while joining of smaller
strings indicates combination of subassemblies

100 PROCEE'DINGS-SPRING JOINT COM·PUTER CONFERENCE, 1964

or completed parts. Alternatively, each proc
essing step may stand for some specific infor
mational processing task. Abstract models of
this type are interesting for studies of para
sitism and suggest, for example, that viruses,
tapeworms and human embezzlers might be
subsumed under one consistent theory of events
in "synthetic productive systems." The analogy
is loose and speculative, but provocative.

As another example, it has been known for
several years that mammals are able to defend
themselves non-specifically against viruses by
production of a genetically precoded substance
known as "inteferon" (Isaacs19). The mode of
action of this complex biochemical material is
not clear, but when it is discovered it will be
interesting to study what algorithm controls its
release and how it relates to the unsolvability
problems discussed above. There is also much
interest in the study of algorithms that may be
used to distinguish normal from malignant cells.

Work described in the above is intended as a
starting point for studies which deal with
specific problems in the design of cellular con
trol algorithms that are stable in the presence
of environmental fluctuations, coding errors
(mutations) and can to some extent resist para-
sitic systems such as viruses or cancer cells.
Compared with any real cell the model is very
crude, but it bears much the same relationship
to real tissue cells as the McCulloch-Pitts
neuron has to actual brain neurons. The logical
neuron has been useful as a firm mathematical
tool for study of the over-all properties of
brain models and the algorithmic cell can serve
in a very similar capacity for systems of cells.

BIBLIOGRAPHY

1. ANFINSEN, C. B. In The Molecular Basis of
Evolution. John Wiley Science Editions,
New York, 1963. p. 115 et seq.

2. ARBIB, M. "Turing Machines, Finite Au
tomata and Neural Nets." J. Assoc. Compo
Mach. 8 (4) :467-475, 1961.

3. BLUM, H. F. "On the Origin and Evolution
of Living Machines." Amer. Sci. 49 :474-
501, 1961.

4. BURKS, A. W. "Toward a Theory of Au
mata Based on More Realistic Primitive

Elfmlents." Proc. IFIP Congres8, Munich,
Germany, 1962. North Holland Publishing
Company, Amsterdam, 1963. pp. 379-385.

5. BURKS, A. W. "The Logic of Fixed and
Growing Automata." In Proc. Int. Symp.
Switching Theory. Part I. Harvard Univ.
Press, Cambridge, Mass., 1959. pp. 147-
188.

6. CANNONITO, F. B. '~The Godel Incomplete
ness Theorem and Intelligent Machines."
In Proc. AFIPS Spring Joint Compo Conf.,
San Francisco, Calif. May 1962. pp. 71-77.

7. CHANCE, B.,; et al. "Metabolic Control
Mechanisms. Part V. Solution for the
Equations Representing Interaction Be
tween Glycolysis and Respiration in Ascites
Tumor Cells." J. Biol. Chem. 235 :2425-
2439,1960.

8. COFFIN, R. W., H. E. GOHEEN, and W. R.
STAHL. "Simulation of a Turing Machine
on a Digital Computer." Proc. AFIPS
Western Joint Computer Conference, Las
Vegas, Nev., November 1963.

9. CRICK, F. H. C. "On the Genetic Code."
Science 139 (3554) :461-464, 1963.

10. DAVIS, M. D. Computability and Unsolv
ability. McGraw-Hill, New York, 1958.

11. EDEN, M. "A Probabilistic Model of Mor
phogenesis." In Symposium on Informa
tion Theory in Biology. H. P. Yockey,
R. L. Platsman, H. Quastler, eds. Pergamon
Press, New York, 1958. 'pp. 359-370.

12. FRANK, G. M. "Self-Regulation of Cellular
Processes." In Biological Cybernetics.
N. M. Sisakayan and A. I. Berg, eds. Acad.
Sci. USSR, Moscow, 1962. (In Russian).
Available as JPRS 19637. pp. 40-55.

13. GARFINKEL, D. "Computer Simulation of
Steady-State Glutamate Metabolism in Rat
Brain." J. Theoret. Biol. 3 :412-422, 1962.

14. GILL, A. "State-Identification Experiments
in Finite Automata." In/ormation and
Control. 4:132-154, 1961.

15. GINSBURG, S. "On the Length of the
Smallest Uniform Experiment Which
Distinguishes the Terminal States of a
Machine." J. Assoc. Compo Mach. 5 :266-
280, 1958.

16. GLUSHKOV, V. M. "Abstract Theory of
Automata." Uspekhi Mat. Nauk, 16(5):
3-62, 1961. (In Russian).

17. HENNIE, F. C. "Iterativ@ Arrays of Logical
Circuits." MIT Press Research Mono
graphs, Cambridge, Mass. John Wiley,
New York, 1961.

18. HOMMES, F. A., and F. W. ZIt.LIKEN. "In
duction of Cell Differentiation: III. A
Quantitative Approach in the Analysis of
Induction." Bull. Math. Biophys. 24:71-
80,1962.

19. ISAACS, A., H. G. KLEMPERER, and G. HITCH
COCK. "Studies on the Mechanism of Action
of Interferon." Virology 13 :191-199, 1961.

20. JACOB, F., and J. MONOD. "Genetic Regula
tory Mechani~s in the Synthesis of Pro
tein." J. MoZec. Bioi. 3 :318-356, 1961.

21. LABOUESSE, B., B. H. HAVSTEEN, and G. P.
HESS. "Conformational Changes in En
zyme Catalysis." P1'OC. Nat. Acad. Sci.
48 (12) :2137-2145, 1962.

22. LOFGREN, L. "Kinematic and Tesselation
Models of Self-Repair." In Biological P.ro
totypes and Synthetic Systems. E. E. Ber
nard and M. R. Kare, eds. Plenum Press,
New York, 1962.

23. LYAPUNOV, A. A. "Some Questions on the
Teaching of Automata." In Principles of
the Design of Self-Learning Systems. Kiev,
USSR. Available -as JPRS 18181, 1963. pp.
180-185.

24. MARKOV, A. A. "The Theory of Algo
rithms." Amer. Math. Soc.- T1'anslation Ser.
2. 15:1-14, 1960.

25. MCCULLOCH, W. S., and W. PITTS. "A
Logical Calculus of the Ideas Imminant in
Nervous Activity." Bull. Math. Biophys.
5 :115-133, 1943.

26. McNAUGHTON, R. "The Theory of Autom
mata-A Survey". Adv. in Computers. 2:
379-421, Academic Press, New York, 1961.

27. MEDVEDEV, Zh. A. "Errors in the Reproduc
tion of Nucleic Acids and Proteins, and
Their Biological Significance." Pr'oblems
Kibernetikii No.9. A. A. Lyapunov, ed.
Gos. Izd. fiz-Mat. Lit., Moscow, 1963, pp.
241-264. (In Russian).

SIMULATION OF BIOLOGICAL CELLS 101

28. MONOD, J., J. P. CHANGEUX, and F. JACOB.
"Allosteric Proteins and Cellular Control
Systems." J. Molec. BioI. 6 :306-329, 1963.

29. MOORE, E. F. "Machine Models of Self
Reporduction." In Mathematical Problems
in the Biological Sciences. Sympos. No. 14
of Amer. Math. Soc., Providence, R.I.,
1961. pp. 17-33.

30. MYHILL, J. "Linear Bounded Automata."
WADD Tech. Note 60-165. Wright Air
Development Division, Wright Patterson
Air Force Base, Ohio, 1960.

31. Nirenberg, N. W. "The Genetic Code, Part
II." Sci. Amer. 208(3) :80-94, 1963.

32. PARDEE, A. B. "Biochemistry: Sterile or
Virgin for Mathematicians." In Mathe
matical Problems in the Biological Sciences.
Sym,pos. No. 14 of Amer. Math. Soc.,
Providence, R.I., 1961. pp. 69-82.

33. PASK, G. "The Simulation of Learning and
Decision-Making Behavior." In Aspects of
the Theory of Artificial Intelligence. C. A.
Muses, ed. Plenum Press, New York, 1962.
PP. 165-210.

34. PASYNSKIY, A. G. "Some Problems of Bio
chemical Cybernetics." Vest. Acad. Nauk
USSR. 32 :25-31, 1962. (In Russian).

35. PATTEE, H. H. "On the Origin of Macro
molecular Sequences." Biophys. J. 1 (8) :
683-'110, 1961.

36. RABIN, M. 0., and D. SCOTT. "Finite Au
tomata and Their Decision Problems."
iBM J. Res. and Develop. 3 :114-125, 1959.

37. RASHEVSKY, N. "Mathematical Founda
tions of General Biology." Ann. N.Y. Acad.
Sci. 96:1105-1116, 1962.

38. RICE, W. E., and R. M. BOCK. "The Prob
lem of Sequence Determination in Transfer
RNA." J. Theoret. Biol. 4 (3) :260-267,
1963.

39. RICH, A. "The Transfer of Information
Between the Nucleic Acids." In Synthesis
of Molecular and Cellular Structu1'es. D.
Rudnick, ed. Ronald Press, Inc., New York,
1961. pp. 3-11.

40. ROSEN, R. "Digital Computers and the
Problems of Cellular Regulation." Report
read at 1963 Denver Conference of the As-

102 PROCE!EDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

sociation for Computing Machinery, Au
gust 27-30, 1963.

41. SCHUTZENBERGER, M. P. "On the Definition
of a Family of Automata." Inform. and
Control. 4 :245-270, 1961.

42. SORKIN, YU. 1. "Algorithmic Solvability of
the Problem of Isomorphism of Automata."
Doklady Nauk USSR. 137(4) :804-806,
1961. (In Russian).

43. STAHL, W. R. "Solvable and Unsolvable
Problems for an Algorithmic Model of a
Cell." (Submitted for publication).

44. STAHL, W. R., R. W. COFFIN, and H. E. Go
HEEN. "The Turing Machine as a Research
Tool for Algorithmic Simulation." (Sub
mitted for publication).

45. STAHL, W. R., and H. E. GOHEEN. "Molec
ular Algorithms." J. Theoret. Biol. 5 :266-
287,1963.

46. STAHL, W. R., M. C. WATERS, and R. W.
COFFIN. "Pattern Recognition Algorithms
Implemented as Turing Programs." (Sub
mitted for publication).

47. SUGITA, M. "Functional Analysis of Chemi
cal Systems in Vivo Using a Logical Circuit
Equivalent. II. The Idea of a Molecular
Automaton." J. Theorret. Biol. 4 (2) :179-
192, 1963.

48. TSETLIN, M. L. "On the Behavior of Finite
Automata in Random Media." A vtomat. i
Tele·mekh. 22:1345-1354, 1961. (In Rus
sian) .

49. TRACHTENBROT, B. A. "Algorithms and the
Machine Solution of Problems." (In Rus
sian). Available under the title Algorithms
and Automatic Computing Machines. D. C.
Heath and Co., Boston, Mass., 1963.

50. TURING, A. M. "On Computable Numbers,
with an Application to the Entscheidungs
problem." Proc. London Math. Soc. Ser. 2.
42:23-265, 1937.

51. TURING, A. M. "The Chemical Basis of
Morphogenesis". Phil. Trans. R01jal Soc.,
Sere B. 237 :37-72, 1954.

52. TURING, A. M. "Solvable and Unsolvable
Problems." Science News (London). 31:
7-23,1954.

53. TURING, A. M. "Can a Machine Think?"
Reprinted in The World of Mathematics.
J. R. Newman, ed. Simon and Schuster,
New York, 1956. pp. 2099-2123.

54. ULAM, S. "On Some Mathematical Prob
lems Connected with Patterns of Growth
of Figures." In Mathematical Pl'oblerns in
the Biological Sciences. Sym·pos. No. 14 of
the Amer. Math. Soc., Providence, R.I.,
1961. pp. 215-224.

55. VON NEUMANN, J. "The Genral and Logical
Theory of Automata." In Cerebral M eclw
nisms and Behav'iol'. L. A. Jeffress, ed.
John Wiley, New York, 1951. pp. 1-41.

56. VON NEUMANN, J. In The Compute l' and
the Bl°ain. Yale University Press, New
Haven, Conn., 1958. pp. 69-73.

57. WADDINGTON, C. H. In New Patterns in
Genetics and Develop'ment. Columbia Uni
versity Press, New York, 1962.

58. WANG, H. "A Variant to Turing's Theory
of Computing Machines." J. Assoc. Compo
Mach. 4 (1) :63-92, 1961.

59. YOVITS, M. C., and S. CAMERON. Self-Or
ganizing Systems. Pergamon Press, New
York, 1960.

COMPUTER SIMULATION OF HUMAN INTERACTION
IN SMALL GROUPS

John T. and Jeanne E. Gullahorn

Department of Sociology and Anthropology, and
ComputeT Institute for Social Science Research

Michigan State University
East Lansing, Jl;Iichigan

and

Consultants, System De1)elopment Corporation
Santa Monica, California

The mQdern digital cQmputer has made majQr
cQntributiQns to' SQciQIQgy in at least twO' gen
eral areas. Because Qf the CQmputer's high
speed and its ability to' handle effectively the
interrelatiQnships amQng many and cQmplex
variables, we are enabled to' perfQrm mQre SQ
phisticated analyses Qf data already gathered.
FQr the first time it is PQssible to' deal statis
tically with sQcial systems as systems. pQten
tially Qf even greater benefit is the secQnd CQn
tributiQn-the use Qf cQmputers to' generate
data fQr the purpQses Qf theQry testing and
develQpment.

I t has been traditiQnal in SQciQIQgy to' express
theQry in verbal fQrmulatiQns. WQrds, Qf CQurse,
are weak tQQls fQr achieving precise statements
Qf prQPQsitiQns, fQr studying the interrelation
ships amQng variables, and fQr learning the
CQnsequences fQr a sQcial system if it Qperates
accQrding to' the processes defined Qr implied
by the theQry. Once the prQcesses Qf a theQry
are expressed as rQutines in a cQmputer pro
gram, we can simulate the behaviQr Qf a sQcial
system which Qperates accQrding to' the rules
Qf the given theQry. TO' the extent that the Qb
served QutCQmes Qf an experiment in a CQm-

103

puter run-match the observed QutcQmes Qf the
identical experiment in a real-life system, the
rules Qf the theory may be cQnsidered a suffi
cient (thQugh not a necessary) explanatiQn Qf
the behaviQr.

Let us turn nQW to' a descriptiQn Qf ROMUN
CUL US, 3,4- an Qperating prQgram in InfQrma
tiQn PrQcessing Language, VersiQn V,7 designed
to' simulate human interactiQn in small grQUps.
The computer model is based on the theQry ad
vanced in a recent bQQk, Social Behavior, by
GeQrge C. RQmans, which presents an explana
tiQn Qf elementary -sQcial behaviQr-that is, Qf
"face-tQ-face CQntact between individuals, in
which the reward each gets frQm the behaviQr
Qf the Qthers is relatively direct and immedi
ate".5 RQmans' mQdel is one Qf sQcial exchange,
envisaging human behaviQr as a functiQn Qf
its paYQff: in amQunt and kind, an individual's
reSPQnses depend Qn the quantity and quality
Qf reward and punishment his actiQns elicit.
TO' explain elementary sQcial behaviQr, Romans
advances five prQPQsitiQns, based primarily Qn
experimental psychQlogy and classical econQm
ics, dealing with the effects Qf such factQrs as
the frequency and recency Qf reinfQrcement,

104 PROCEEDINGS---;SPRING JOINT COMPUTER CONFERENCE, 1964

stimulus and response generalization, and rela
tive deprivation and satiation.

To simplify the problems of expressing con
cepts concerning human social behavior in a
computer program, we followed the tactic of
beginning with a simple interaction sequence
between two hypothetical individuals. In The
Dyrul1nics of Bureaucracy, Peter Blau of the
University of Chicago describes in detail a fed
eral civil service office in which the men studied
held the same title but varied in competence.2

As expected, the more skilled workers received
more requests for assistance from their co
workers. While the participants in such con
sultations benefited, they still incurred costs in
their exchange. That is, the agent requesting
help was usually rewarded by being enabled to
do a better job; however, he paid the price of
implicitly admitting his inferiority to a col
league who by title was supposedly his equal.
The consultant, on the other hand, gained pres
tige; nevertheless, he incurred the cost of time
taken from his own work.

In our computer model of this social exchange
we have programmed an interaction sequence
beginning with an agent, Ted, emitting a sym
bol representing a request for assistance to his
co-worker, George. The flow chart depicted in
Figures 5 through 6 outlines our interpreta
tion of the processes involved in operational
izing Homans' proposi·tions for elementary
social behavior. In our illustration, the pro
grammed statement of Romans' propositions
specifies the symbol-manipulating processes
which enable our hypothetical consultant,
George, to decide what action he will emit in
response to Ted's request.

As we began to develop flow diagrams for the
specific routines to represent each proposition,
we found that the discipline of making decisions
about how to program a computer to simulate
social behavior gave us a different perspective
in our thinking about how humans react in so
cial contexts. This new frame of reference
forced us to make explicit our conception of a
person as an information-processing system.
If our model of a person were to behave accord
ing to the principles set forth in Romans' ex
planatory propositions, the format in which he
was described in the computer had to be such

that he could perform at least the following
activities: Re had to be able to receive stimuli,
recognize stimuli, store stimuli in memory, and
compare and contrast stimuli; he had to be able
to emit activities, differentiate reward and pun
ishment, associate a stimulus situation with a
response, and associate a response with a rein
forcement; and, on the basis of past experience,
he had to be able to predict the consequences of
each contemplated response.

In the group setting he had to be able to dis
criminate among the members of the group,
evaluate each social stimulus in terms of the
specific person emitting it, and select a response
appropriate to the specific other person in the
given group. Our model thus pictures a person
as an active hypothesis-testing organism capa
ble of receiving, storing, analyzing, and
reconstructing information. These human in
formation-processing functions bear obvious
similarity to the digital computer's symbol
manipulating capacities. Even so, the process
of constructing such a social being in the com
puter was no easy task.

Fortunately, IPL-V was designed to handle
the types of problems we faced. In our model a
person is represented as a list structure com
posed of a hierarchy of list structures, lists, and
description lists. A simplified presentation of
the organization of a list structure of a person
is depicted in Figures 1, 2, and 3. Among the
data included are lists specifying an individual's
identity, his general level of ability and his level
of skill in social interaction and in certain
specific tasks, his relative and absolute position

I ,_,

A'ti"''' .!lot ..

........ I. en.,.
i i

filii ••• un -
, I '. Q ... c~

Sf-
I I

...... f f

5"" SIll -

__ ",_IJII.

tI., ... -.s ,-.
kti!tiH ..!. I ~~I $:. I
lilH_ Ilnrpl

MiIiIy ,..... klim,
$til

-I~ + I i I I i ... -- $III- 111 •• 1 (-
lifo!. E- li_

.. -....
(""'~I

'i"
IIoiIJl. ... I ,...!l., ...

Sf.., "- Sf-
I I I I

... p If of hfllli
It ... It ... I

lI"'If 1'''1 - .
Figure 1.

,
c.lt ...
£ni..-It

COMPUTER SIMULATION OF HUMAN INTERA,CTION IN SMALL GROUPS 105

..... " Ta

I , , , ,
T.n

..... " Stillllli Acli'litils
',tluctim Ta IS bCli Ioitilllll
liIII_s

I ,.s. Ir_ Ta .. TI'
I

I I
II'litJlill $1 Ii.

11 CIIlH I- -
I

i
, tl
bcli ..

I
Gave ltetp
•• ,aeste'

I
I

Clst il
Tille

VII!
II Teh
A,,, ... I

i i i
F" ... ocy FlII!IIICy F,..-, Act"'y IIyb s
... ICIi" • ocli

Figure 2.

I

Responses I bne Made

Relerred
I

Cilid Nit

t. Another
PersoR

I
Cast i.

tl Irill,"
OOClllllts

I I
FrltluellCY Strellltb

hillY nis Act Re •••
Re.a,','

Give
I I

Reuest Evade
I

Approval Flr~tr Reeoemz;.

I Hel, Help Ree'd_

I I
A"re,riltuess Oep,ivatiu-
01 Activity i. btiltiol
This Ctntext Scare

Figure 3.

Help-

I
DisilpP'o"
II Help
Received

I
Fre~aeocy

" Teh
ApproVlI

,
..... " Ta's

'-PS " ttIIIrs

I
."...,.

I
Teh

i
..... s
1.11
IIHI

1

I
Rejecte'
Re.est as
U.,usooable

Responses

I

in certain groups, his images of his membership
and reference groups, and lists containing ele
ments of his past history and his resulting val
ues and needs. Through exposure to various
experiences an individual's list structure be
comes modified to include a record of them.
Thus, at the beginning of a run, he may be rep
resented by a list structure of as little as 200
words. By the end of some fifty or one hundred
interactions, he may require a thousand or more
IPL words to describe him. In effect the indi
vidual learns from his experiences and keeps in
memory the information that will enable him to
behave more appropriately in future inter
actions.

The processes expressed in Homans' proposi
tions determine the behavior of the person~
models in HOMUNCULUS. Homans assumes
that his propositions explaining elementary so
cial behavior apply generally to all humans, re
gardless of their cultural backgrounds and insti
tutional relationships. In operationalizing Ho...
mans' propositions, therefore, we designed the

routines to be common for all simulated per
sons. However, the routines are so written that
the information retrieved from the data list
structures describing individual participants
determine whether certain subroutines will be
executed and wha·t their outputs will be in
specific interaction sequences.

Propostion 1. To illustrate some of the proc
essing involved in our model as well as some of
the problems encountered in translating verbal
statements into computer routines, let us con
sider the dynamics of Proposition 1 (PI, Boxes
IV through XXlI in Figures 4 and 5). Ho
mans states this explanatory proposition as
follows:

If in the recent past the occurrence of a par
ticular stimulus-situation has been the occa
sion on which a man's activity has been
rewarded, then the more similar the -present
stimulus-si'tuation is to the past one, the more
likely he is to emit the activity, or some simi
lar activity, now.5

Essentially this describes the effe,cts of the psy
chological principles of stimulus generalization
and response generalization. In formalizing
this proposition as a computer routine, how
ever, we found that the apparent clarity of the
verbal statement actually cloaked certain am
biguities.

What, for example, is a "particular stimulus
situation?" In terms of the specific interaction
sequence we have selected, does it include every
request for help one has received, or does it
include only requests from the same person for
assistance on the identical problem within an
identical social context? We decided to write
routines to process in sequence two aspects of
the "stimulus-situation." That is, we hypoth-

Figure 4.

106 PROCEEDINGS'-SPRING JOINT COMPUTER CONFERENCE, 1964

Figure 5.

esized that a person receiving a stimulus,
such as a request for assistanGe, would first re
act in a relatively global manner to the general
situation itself; then he would consider the
situation in terms of the specific individual
emitting the stimulus. Thus, in our example,
we interpreted the initial information process
ing implied by Proposition 1 (see PI, Box IV in
Figure 4) to involve consideration by our office
worker, George, of whether the activity received
-in this instance, a request for help--is a gen
eral stimulus-situation in which his responses
have been rewarded. In executing this process,
a subroutine representing one of George's in
formation-retrieval capacities searches a mem
mory list of reinforced stimulus-situations to
determine whether the present input is among
them.

Let us take the positive branch of the flow
diagram and thus assume that George has found
that in the past he has been reinforced for re
sponding to a request for assistance. Ris next
consideration is outlined in Box X of the flow
chart in Figure 5. Now George must determine
whether his responses to a request for help have
been rewarded by Ted, the person currently
introducing the stimulus-situation.

In checking on past interactions with Ted,
George must search deeper into his memory
structure. At this point one subroutine locates
George's image list of office colleagues, finds
the sublist describing Ted, determines whether
Ted has emitted the present stimulus to George
previously and if so whether Ted has generally

rewarded George's responses to such requests.
If he thus determines that Ted has been an
agent of reinforcement in past interactions in
volving requests for assistance, then George
proceeds to retrieve fue types of responses he
has emitteq to Ted. In our program George se
lects up to three activities from a memory list
of responses Ted has rewarded (Box XXII, Fig
gure 5) ; then he proceeds to process further
information regarding these contemplated ac
tions in order.- to select a response which he
anticipates will net him a social profit.

It is apparent that we have adopted as a
tactic the policy of including, as a group, stim
uli which resemble each other but are not nec
essarily identical. This means, however, that
our programmed people cannot discriminate
degrees of similarity. No great difficulties arise,
of course, in constructing routines to test grada
tions of similarity as called for by Romans'
proposition. When we do include a test of
similarity, it will require that we be more pre
cise than Romans in specifying what we mean
by "more" and by "similar." To develop this
discrimination we plan to build a list of attri
butes describing various activities. One such
attribute would have scaled values indicating
the expenditure of energy required to emit an
activity; another would have a range of values
denoting the amount of time required to com
plete the given activity. Once these description
lists for activities have been completed, a rou
tine can be written to compare activities, deter
mining the number of attributes two activities
have in common as well as the degree of simi
larity in the values of their attributes. The
criteria for judgment of similarity can be set
as fine or as broad as desired. Our interest will

XlVI XXIX

Figure 6.

COMPUTER SIMULATION OF HUMAN INTERACTION IN SMALL GROUPS 107

be the development of routines which simulate
human decision processes as closely as possible.

Up to this point in our discussion of Proposi
tion 1 we have considered only the positive
branches-that is, what happens if George finds
that the general stimulus-situation has been a
rewarding occasion and that Ted has been an
agent of reinforcement. But one may note that
most of the items included in the flow diagram
in Figures 4 and 5 outline processes accom
modating the negative branches. For example,
if George finds that in the past his responses to
a request for help generally have not been re
inforced (Box IV, Figure 4), he would still
wish to ascertain whether he has interacted
with Ted before (Box V) and if so, whether
such interactions have proved rewarding (Box
VII). If past interactions with Ted have had
positive consequences, George may then select
a response Ted has previously reinforced to try
in this stimulus-situation (Box IX). Otherwise,
George may decide to withdraw from what is
likely to be another unrewarding situation (Box
VIII) . Even if he has not interacted with Ted
previously (Box V), if George is a gregarious,
other-directed American, he may still wish to
continue the interaction; therefore, he can se
lect some person similar to Ted (in terms of
such attributes as sex, age, relative· position in
the group, etc.) to use as a reference source for
determining appropriate action (Box VI).

Let us now consider the processing involved
in the negative branch for the inquiry concern
ing the social context of the stimulus-situation.
To be at this point in the program George would
have ascertained that, in the past, responding
to a request for help had generally proved re
warding (Box IV, Figure 4); however, he
would have found, in considering the request in
terms of the current stimulus person, that his
responses had not been rewarded by Ted (Box
X, Figure 5). A relevant question then is
whether George previously has received this
stimulus from Ted (Box XI). If he has not,
then George will ascertain whether he really
has interacted with Ted before (Box XII) ; if
not, he will select a colleague similar to Ted to
use as a reference source in processing Ted's
request (Box XIII). To indicate the possibility
that George is using a surrogate for the stim-

ulus person in making decisions, references to
Ted appear in parentheses.

If George finds that Ted has previously re
quested his assistance (Box XI), then the re
sponses he made to Ted's request should be
avoided since they did not lead to reinforcement
(Box XIV). Indeed, in such a case George will
wish to evaluate his relationship with Ted to
determine whether interacting with him is
worthwhile (Box XV). If it is not, he may end
the interaction sequence then and there (Box
XVI) .. On the other hand, if George has en
joyed contact with Ted (Box XV), he might
try to recall whether he has observed Ted's ask
ing other co-workers for assistance (Box XVII)
and, if so, what their reactions were (Box
XIX). If he lacks this knowledge of group
activities (Box XVII), George still can select
rewarded responses to requests for help from
some other colleagues (Box XVIII). In either
case, George will then ascertain whether the
responses suggested are of the same type as
those he emitted previously without receiving
reinforcement from Ted (Box XX). If they
are, George has little choice but to withdraw
from what would probably be an unrewarding
situation; otherwise, he can try again to elicit
a positive reaction from Ted by emitting one of
the untried responses (Box XXI) .

Proposition 2. Homans' second proposition
deals with the positive influence of the fre
quency and recency of reinforcement:

The more often within a given period of
time a man's activity rewards the activity
of another, the more often the other will
emit the activity.5

Reformulating this proposition for computer
simulation posed a number rof problems. It
would have been relatively simple merely to set
a counter for each reinforced response and then
retrieve the desired informa·tion regarding re
ward frequency. However, we felt this proce
dure would not adequately simulate human in
formation-processing systems. Of course, peo
ple do avail themselves of precise measurement
scales and use various cultural artifacts-such
as computers-to increase their accuracy. But
in making estimates concerning frequencies
and values of rewards ensuing from everyday
social interaction, people seem to use a less re-

108 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

fined means of measurement. In programming
this proposition, therefore, we devised a rather
crude five-point ordinal scale for reward fre
quency, ranging from an estimate that a re
sponse was "nearly always rewarded," through
a judgment that it was "rewarded about half
the time," to an assessment that was "almost
never rewarded."

At present we are experimenting with differ
ent means of manipulating this scale. One rou
tine we have written increases the ordinal scale
value for the reward frequency after three re
inforcements of the response. This procedure,
however, is not completely satisfactory. Indeed,
one may argue that estimates of reward fre
quency are not necessarily independent of the
emotional salience of the reinforcement. When
HOMUNCULUS has reached the stage of simu
lating small-group behavior in controlled condi
tions, it should be possible to test various ap
proximations of human judgments of reward
frequencies from social interac·tion and to se
lect the routines which simulate the actual be
havior most accurately.

When the processing for this proposition is
completed (P2, Box XXIII, Figure 6), George
has a rough estimate of the frequency with
which Ted has rewarded each of the activities
he is considering in response to Ted's current
request for help. Homans' Proposition 2, taken
alone, would lead to the expectation that George
would then merely emit the most frequently re
warded response alternative. But other infor
mation must be processed before a decision is
reached.

Perhaps here we should indicate how the
program keeps all this material in immediate
memory for George. Up to one hundred named
private storage cells are assigned for this pur
pose, and instructions in each routine specify
which cells it is to use for storing its findings.
At present, George is using about fifty of these
cells. In addition, important information avail
able to all group participants-for example,
what could be seen and heard during the last
five interactions-is kept in named public stor
age cells.

Proposition 3. Among the other relevant fac
tors that must be considered in selecting an
activity to emit is the value of the anticipated

reward. Homan's third general proposition
states,

The more valuable to a man a unit of the
activity another gives him, the more often
he will emit activity rewarded by the ac
tivity of the other.5

Assessing the value of an activity is some
what more complicated than estimating the fre
quency with which it occurs. Value has two
components--one relatively constant, and the
other, which we shall discuss in Proposition 4,
relatively variable for the periods of time in
volved in the simple interactions comprising
elementary social behavior. The value compo
nent referred to in Proposition 3 concerns an
individual's rank-ordering of the subjective re
ward attendant on receiving one activity rather
than another. With reference to our example,
we might predict that George would find warm
social approval involving Ted's complimenting
him in front of colleagues to be more "valuable"
than a half-hearted response of "Hmm, thanks,"
or an annoyed retort, "Well, sorry I bothered
you."

A t this point in our program, therefore, we
ha ve what game programmers term a "look
ahead." In considering Ted's request, George
has "in mind" three responses he recalls Ted's
having rewarded in the past, and he has esti
mated the frequency with which Ted has rein
forced each response. N ow he must consider
more carefully the particular reward he expects
Ted to give to each response so that he may de
termine the inherent worth of each anticipated
reward (P3, Box XXIV, Figure 6). Taking
in turn each activity George is contemplating,
the routines executing this proposition retrieve
the responses Ted has previously made to each,
determine which one he is likely to emit now,
and search description lists to find the subjec
tive value of the reward for George.

Proposition 4. Homans' fourth proposition
deals with the other component of value-the
deprivation-satiation aspect, or the marginal
utility of a given unit of activity.

The more often a man has in the recent
past received a rewarding activity from
another, the less valuable any further unit
of that activity becomes to him.5

COMPUTER SIMULATION OF HUMAN INTERACTION IN SMALL GROUPS 109

In contrast to the relatively constant intrinsic
s:;ttisfaction aspect of value, the deprivation
satiation component varies over a range of
possible rankings. Taking into account the
amount of an activity a person has received, we
note that he "values" that activity more when
he has been deprived of it than he does when he
is in a state of relative gratification. Thus,
while social approval may be highly rewarding
to an individual, if in the recent past he has
received a great deal of this generalized rein
forcer, then he is not likely to be so interested
at the moment in receiving more.

In processing the information necessary for
completion of this stage of the program-, George
must evaluate his relative deprivation with ref
erence to the rewards he anticipates from Ted.
George now has in immediately available mem
orya record of each activity he is contemplating
and stored with each activity is various infor
mation about it, including the response he ex
pects Ted to make to it. The routines which
execute Proposition 4 search the description
lists of each of the anticipated rewards to deter
mine the degree of George's current deprivation
or satiation 'with respect to them. A depriva-
tion-satiation score based on a simple ordinal
scale is stored as the value of a special attribute
on the description list of each activity. In ex
ecuting Proposition 5, which we shall discuss
later, routines update the deprivation-satiation
score whenever an activity is received.

With the information retrieved thus far
George has an estimate of the relative frequency
with which Ted has rewarded each activity he
is considering emitting. Furthermore, he has
predicted Ted's reaetion to each of the pro
jected actions and has determined how reward
ing each of these anticipated reactions is to
him, personally, as well as how deprived or
satiated he currently feels with respect to each
of these expected rewards. At this point,
therefore, George can rank his contemplated
responses in terms of their expected payoff.
But he is not yet ready to emit the highest
ranked action.

Another important consideration is the cost
of the proposed response. Homans defines the
cost of an activity as the value of the reward
obtainable through an alternative activity fore-

gone in emitting the given one. In our example,
George must forego working on his own assign
ment if he takes time to assist Ted; therefore
George must determine the relative reward
value of this alternative activity. To do this he
follows a procedure analogous to that just de
scribed, processing information concerning the
frequency of past reinforcement and the value
of the anticipated reward ensuing from this
activity as well as his relative satiation with
the reward. Then he can compare the overall
expected reward from his contemplated re
sponse to Ted with the anticipated reward from
continuing with his own work, and he can com
pute what Homans terms the psychic profit
the reward of an activity less its cost.

Let us suppose George is tentatively plan
ning to give Ted direct assistance on his prob
lem because in the past Ted has praised him for
this activity, and social approval is a reinforce
ment George values highly and one for which he
feels relative deprivation at present. But let us
also suppose that George has an important as
signment to complete~ and that taking time
from it might detract from the quality of his
work and thus lessen the approval he anticipates
from his boss for a good job. In this case
George would incur a loss rathEr than a profit
in helping Ted directly; therefore, he will con
tinue processing to see whether one of the other
activities he was contemplating might yield a
profit. In this illustration, George will proba
bly decide that referring Ted to another source
will net him a profit, since he expects some
approval for this activity (albeit less than he
would get from directly assisting Ted), and he
will incur a very small cost in terms of time
taken from his own work.

Having selected what he expects to be a so
cially profitable activity, George emits that re
sponse to Ted. At this point our program cycles,
and the activity George has emitted becomes
the activity Ted has received. N ow Ted must
process information in order to select an ap
propriate and profitable response to George.

Proposition 5. Distributive justice, the sub
ject of Homans' fifth proposition, is perhaps
the most complex of the concepts involved in
the explanation of elementary social behavior.
At the very least it requires consideration of

110 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

information at another level-that of social
norms or accepted expectations for behavior
within a group. Through repetition of interac
tion situations within a group, certain behavior
patterns become stabilized so that expectations
develop regarding what constitutes justice in
the distribution of rewards and costs between
persons: The greater a man's costs in a given
interaction, the greater his rewards ought to be
But the implications of distributive justice go
even further, taking into account a person's
investments in an interaction-for example, his
seniority, skill, experience, age, and sex. The
greater the investment a person makes in an
interaction, the greater the net profit he has a
right to expect. Thus, according to the principle
of distributive justice it is consensually ex
pected that certain antecedent costs and invest
ments should have as consequents certain types
and degrees of reinforcement. Homans states
the related proposition as follows:

The more to a man's disadvantage the rule
of distributive justice fails of realization,
the more likely he is to display the emo
tional behavior we call anger.5

More is included, however, for if a man re
ceives rewards' beyond those to which he con
siders himself entitled, he is likely to experi
ence guilt feelings.

Translating this proposition into computer
routines posed some of the most interesting
problems we have yet encountered in working
with HOMUNCULUS. In effect, the list struc
tures of our agents had to be programmed to
have consciences, and they had to include a
repertoire of appropriate anger responses.

In essence, our programmed interpretation of
this proposition asks whether a stimulus activ
ity is appropriate in the given circumstances
(P5, Box I, Figure 1). If so, then the person

receiving it can process it as George did Ted's
request, which he considered appropriate. If,
however, the stimulus activity is judged inap
propriate, then more complex behavior results.
To illustrate this, let us shift to a description
cf the interactions between George and Tom,
another worker in the same agency.

It is an accepted office norm that a worker
who asks for help should do so openly in a man-

ner acknowledging the superiority of his con
sultant with respect to the given problem.
Tom, however, has been seeking aid from
George in a rather devious manner, coming to
George with "an interesting problem" and say
ing he would like to see whether George arrives
at the same solutio~ as he. This has occurred
three times in the recent past, and on each
occasion, Tom has greeted George's suggested
solution with the comment, "Yes, you reached
the same conclusions I did." George decides
Tom is violating the norms of fair exchange by
evading the cost of thanking him for his assist
ance and conceding his superiority. The fourth
time Tom presents him with an interesting
problem George angrily responds, "Look, why
don't you do your own work!"

This description, of course, does not answer
the question of how the computer is pro
grammed to behave in such an all-too-human
way. George is programmed to treat time spent
solving a problem presented by another worker
as being help to that person for which recogni
tion and social approval are due. When his
colleague responds to his efforts with an unre
warding confirmation that he arrived at the
same conclusion, George finds this input inap
propriate in terms of his expectations regard
ing distributive justice. Therefore, routines
processing Proposition 5 change George's image
list of Tom so that next time he expects greater
recognition and thanks than normal to atone
for the present evasion. After three repetitions
of this interaction sequence the discrepancy be
tween Tom's behavior and George's expectations
will be so great that when George evaluates
Tom's response he will plant a signal in his
image list of Tom to indicate that interacting
with him is not rewarding because Tom violates
group norms.

The next time Tom asks for an opinion after
this warning signal has been set, George will
respond by displaying anger or by storing up
aggression to be expressed against someone
else. In the computer program an anger re
sponse involves emitting behavior punitive to
another person. But before actively punishing
Tom, George will first assess the consequences
to himself of such behavior. In one possible
interaction sequence, if George finds that Tom
is in favor with George's own boss, he may sup-

COMPUTER SIMULATION OF HUMAN INTERACTION IN SMALL GROUPS 111

press his aggression at the moment and then
release it the next time he interacts with a
subordinate.

The routines processing the negative branch
of Propostion 5 (Box II, Figure 4) thus not
only modify image lists but also use some of the
routines from the other propositions to evalu
ate the probable consequences of direct anger
responses. Depending on the outcome of this
processing, the program ei ther proceeds to
Proposition 1 or the interaction is terminated.

Once HOMUNCULUS was operating effec
tively-so that it simulated behavior character
istic of the civil service office discussed earlier
we faced the problem of how the model could
be used to provide a more general test of Ho
mans' theory and also to simulate across a
broader range of experiments involving both
individual decision-making and group interac
tion. Actually, the model as first completed
could have been used; however, the task of
building a complete repertoire of activities ap
peared overwhelming, especially when we con
fronted the need to provide to each group par
ticipant with a complete history of activities
~~~~T'~...J .c~~ ~~...J ~~~++~...J +~ ~~~1-.. ~.c +-1-.. ~+1-..~_~
1. I:::\:ca v I:::U 1.1. Vl11 <::UIU 1:::1111 LLCU LV ca,\:u V.1. HIC VL11C1..,

plus the values and costs of each activity in
each situation.

In our new program of activities we have
adopted a scheme of twelve categories which
appear to encompass all problem-solving activi
ties. I These categories include six dimensions
of group interaction: 1) communication prob
lems where an individual either gives orienta
tion (information, repetition~ clarification, and
confirmation) or asks for orientation; 2) eval
uation problems where an individual either
offers an opinion (evaluation, analysis, and
expression of feeling) or asks for an opinion;
3) control problems where an individual either
presents a suggestion (direction and possible
ways of action) or asks for a suggestion; 4)
decision problems, where an individual either
agrees (shows passive acceptance, understands,
concurs, and complies) or disagrees; 5) tension
reduction problems where an individual either
releases tension (jokes, laughs, and is satisfied)
or displays tension; and 6) reintegration prob
lems where an individual either shows soli-

darity (by raising the other's status and by
giving help and reward) or shows antagonism.

On the basis of laboratory studies of small
groups we know the approxim'ate frequency of
each type of activity, the changes in relative
frequency of each type of activity through time
as a group interacts, and the types of responses
likely to occur to each type of activity. This
information is programmed into reference
groups, and data such as the appropriateness
of a given response to an activity differ for
various reference groups-e.g., for manage
ment, as contrasted to a labor union. When the
individual participant does not have in his own
repertoire sufficient information to select a re
sponse to a stimulus, he checks with his refer
ence group to find one to consider.

As the program is now written we no longer
specify the first actor and action. Currently we
are running interactions among triads. When
the program begins operating, control is turned
over to the master executive routine. This
checks to determine whether a member of the
triad needs to act. If so, control is turned over
to the actor. If not, the need for interaction of
each member is incremented by a figure deter
mined by his basic need for social interaction
plus his energy level. The program cycles until
some member passes the threshold level, and
then he assumes control.

If the initiator knows one or both of the other
members of the triad he selects the one with
whom to open interaction on the basis of expec
tations for securing a rewarding response. If
the group is composed of unacquainted mem
bers, the initiator evaluates the other two and
selects the one whose characteristics lead to a
prediction of rewarding interaction. This in
volves assessing the "personas" or public images
of the other members and comparing their
characteristics with his own self-image to deter
mine compatibility.

If the initiator knows the person he has se
lected, he usually chooses an activity to emit on
the basis of past experience. Otherwise, he con
sults his primary reference group to find an
activity likely to lead to positive reinforcement
when emitted to a person like the one chosen
that is, to an individual who is, say, more skilled
in the task than he, less skilled in social interac-

112 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

tion, one level above him in social background,
and an adherent of similar reference groups.

Interaction thus begins and proceeds accord
ing to the flow diagram discussed earlier. The
propositions guiding behavior remain the same;
however, because of refinements introduced
for example, in the routines enabling one mem
ber to interrupt another before he has oppor
tunity to emit a chosen activity-the process
has become more complex. A programmed
member may keep in available memory at least
two sorts of activities he may wish to emit: a
normally selected response which was pre
vented by someone else's interruption, or an
anger response which the individual suppressed
because of the given circumstances. The need
to emit such thwarted responses fades as other
activities intervene, so that after five activities
have been emitted by others, the individual
"forgets" having been interrupted and goes on
to select other activities. However; the mere
fact of being interrupted raises his need to
participate, and increases the likeihood of his
interrupting in turn to carry out his previously
selected activity or to shift his attention to
other activities.

Discontinuity and annoyance responses are
likely to arise when activities are focused on
social-emotional areas and when a series of
interruptions occur. When the focus is on
task areas, interruptions may lead to annoy
ance responses, but the discontinuity usually
does not appear because the activities continue
within the context defined by the given task.
Memory of anger responses does not deteriorate
so rapidly, but even this disappears after a
series of twenty activities.

We mentioned that at present we are running
experiments dealing with three-person gr-oups
and discussed the processes thrOt~gh which in
teraction within the group is initiated. Some of
the findings in this area have proved to be of
theoretical interest. For instance, a group of
three unacquainted persons usually breaks down
into a pair and an isolate. On the other hand, a
group of three already acquainted persons re
mains a group of three if all the pair relation
ships are positive. If the pair relationships are
not all positive, the outcome is more complex
and may range from a relatively unstable group

of three to three isolates who never become a
group.

Outcomes from such interactions using
HOMUNCULUS help explain what happens.
Sooner or later a member of the unacquainted
group initiates interaction with one of the
others. Each time this pair's interactions prove
rewarding, information is stored in their image
lists which lessens the cost of finding rewarding
acts to emit to each other and increases the ex
pectation of a rewarding response. Thus the
rate of interaction between them increases, the
repertoire of rewarding activities increases, and
the likelihood of the bond's being disrupted
lessens. The third man does not have the oppor
tunity to let the other two know how rewarding
he might be and remains an enigma. Thus the
interaction leads to a dyad and an isolate.

But if the first interaction is punishing to
one or both of the two involved, the probability
becomes higher that interaction will be initiated
with the third person. Assuming that his values
and norms make rewarding interaction likely,
then whichever one captures him first will, in
most instances, form a dyad with him and leave
the slower moving man as isolate. If no re
warding pair is found, then in most circum
stances a group never forms.

With a group of three persons who already
know and like each other, the same principles
lead to different outcomes. Each has already
established a repertoire of activities that he
knows he can emit to the other two and that will
be rewarded. Therefore, when there is slight
satiation with the rewards one of them can
provide, attention is temporarily transferred
to the other. Occasionally, also, the interrupt
mechanism leads the one not yet active in the
group to join the conversation. Since the others
have experienced rewarding interactions with
him, he is not rebuffed.

In reaching beyond the simulation of small
group laboratory experiments, we have begun
planning experiments to use HOMUNCULUS
to test theories of organization design. None of
these will be programmed and on the machine
for at least a year, and probably longer. This
appears to us to be a particularly promising
area in which to blend contributions to socio
logical theory and to organizational practices.

COMPUTER SIMULATION OF HUMAN INTERACTION IN SMALL GROUPS 113

As our first study in this area we plan to ex
amine the relative effectiveness of the tradi
tional authoritarian hierarchy vs. the multiple
overlapping-group design advocated by Rensis
Likert.

In the traditional structure, communication
occurs between adjacent men up and down the
line, with information transmitted up, decisions
made at the top, and instructions flowing down
the line. 'Theoretically, lateral communication
does not occur. In the overlapping-group or
ganization, each member within a group is in
regular communication with every other mem
ber; decisions are reached by the group rather
than the superordinate; and the members are
responsible for passing on the information to
other groups of which they are members.

Computer simulation of decision-making ac
tivities by both types of organization is expected
to produce information showing the relative
efficiency of the two designs. Such factors are
considered as the amount of information avail
able to those making decisions; the effect of the
decision-making process on the motivation of
the workers to perform; and the impact of each
type structure on the satisfaction of individual
workers, on their sentiments toward each other,
and on their sentiments toward the organiza
tion.

CONCLUSION

In our discussion of HOMUNCULUS as an
application of computer simulation to problems
of sociological or social-psychological theory we
have tried to demonstrate that research involv
ing computer models not only plays the passive
role of testing and verifying theory; it performs
active functions for the development of theory.
Formulating a theory as a computer model
affords one a relatively tractable representation
and possibly a more meaningful conceptualiza
tion, having increased precision as a result of
the clarification of concepts the programming
process necessitates. This organizational func
tion of the model is further enhanced by the
computer's capacity actually to set the theoreti
cal processes in motion and output data gener-

ated as logical consequences of hypothesized
processes. While inyestigating the extended
logical consequences of a theoretical system is
in itself a rewarding activity for a social theo
rist, another benefit involves the possibility of
generating unanticipated findings leading to
refinement of theoretical constructs or elabora
tion of a theory and to experimentation directed
to the verification of new hypotheses. This pos
sible serendipity bonus in addition to the in
creased precision, tractability, and dynamic
capacity of a computer model gives the social
theorist ample reward for the cost of transla
tion from verbal formulation.

REFERENCES

1. BAL~S, ROBERT F. Interaction Process
Analysis: A Method for the Study of Small
Groups. Cambridge, Mass.: Addison-Wes
ley Co., Inc., 1950.

2. BLAU, PETER M. The Dynamics of Bu
reaucracy, Chicago; University of Chicago
Press, 1955.

3. GULLAHORN, JOHN T., and GULLAHORN,
JEANNE E. "The Computer as a Tool for
Theory Development.;> Santa Monica, Cali
fornia: System Development Corporation,
SP-817, June 5, 1962. To appear in Dell
Hymes, editor, Uses of Computers in An
thropology. The Hague, Netherlands:
Mouton and Company, in press.

4. . "A Computer Model of Elemen-
tary Social Behavior," in Edward Feigen
baum and Julian Feldman, editors, Com
puters and Thought. New York:McGraw
Hill, 1963. Also reprinted in Behavioral
Science, October, 1963; 8, No.4, pp. 3-54-
362.

5. HOMANS, GEORGE C. Social Behavior: Its
ElementaTY Forms. New York: Harcourt,
Brace & World, 1961, pp. 7, 53, 54, 55, 75.

6. LIKERT, RENSIS. New Patterns of Manage
ment, New York: McGraw-Hill,1961.

7. NEWELL, ALLEN (Ed.). Information Proc
essing Language-V Manual, Englewood
Cliffs, New Jersey: Prentice-Hall, 1961.

REAL-TIME COMPUTER STUDIES
OF BARGAINING BEHAVIOR:

THE EFFECTS OF THREAT UPON BARGAINING*
Robert J. Meeker, Gerald H. Shure, and William H. Moore, Jr.

System Development Corporation
Santa Monica, California

INTRODUCTION
Most behavioral scientists are well aware of

computer technology as a means of reducing
and otherwise analyzing empirically derived
data. A small number have also discovered, and
enthusiastically endorsed, the computer's poten
tial for simulation of analytic models. But little
has been made of yet another application of
computer technology in the behavioral sciences,
namely, the use of computers for data acquisi
tion.

To anyone familiar with the development of
real-time data processing, the prospect of a
computer-administered experiment suggests a
general increase in efficiency and flexibility over
the manual mode of experimentation. One tends
to think immediately of greater speed, greater
accuracy, and, in some instances, greater econ
omy for a research program; but we are empha
sizing the fact that certain types of behavioral
studies can be greatly broadened and enhanced
by exploiting the computer's efficiency and
ability to gather the desired data. In this paper
we shall develop the thesis that computer
administered experimentation permits us to
gather an important type of behavioral data
which are now practically unobtainable; as evi
dence we shall cite our computer-based empiri
cal research on bargaining and negotiation be
havior.

Description of the Project
Our research is designed to study bargaining

and negotiation behavior, particularly the dy
namic interaction process that takes place in
mixed-motive (non-zero sum) bargaining situa
tions. This study utilizes the computer for
real-time experimental control and assessment
of subjects at critical points during bargaining
situations. The project goal was to develop a
general computer-based experimental vehicle
which would provide unique opportunities to
study bargaining and negotiation behavior and
relate it to social-psychological factors (e.g.,
threat, trust, cooperation, status, power), per
sonality variables, and game-strategic charac
teristics and tactical moves.

General Problem Background

Bargaining and negotiation behavior is a
striking example of an area of study which can
be broadened by having access to data that have
heretofore been elusive. Investigations in this
area have typically been confined to data on the
overt behavior of the bargainers (i.e., the bids,
moves, outcomes, rates of response, and so on) ;
yet investigators, theoreticians, and bargainers
themselves recognize that overt behavior is di
rectly related to subjective attitudes, intentions,
expectations, and perceptions. Clearly, in the
temporal sequence of bargaining exchanges,

* This research was supported by the Advanced Research Projects Agency. under contract SD-97.

115

116 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

participants shift their evaluation of outcomes,
alter their goals, and attempt to induce their
opponents to alter theirs. By these criteria, a
complete analysis of bargaining requires not
only data on the overt pattern and sequence
of verbal exchanges, moves and countermoves,
but also a parallel assessment of the partici
pants' changing intentions, expectations, and
perceptions of relative status and opponent be
havior.

Consequently, we must ask the bargainer
what he is doing, or thinks he is doing, what he
plans to do, and why. The importance of these
kinds of "subjective" data is, regrettably,
matched by. the difficulties of collecting and
interpreting them. To obtain useful answers
from a subject, questions must be pertinent to
what has been going on, unambiguously stated,
and not be unduly suggestive. Unfortunately,
it is not yet economically feasible to put each
experimental subject on a psychoanalyst's
couch. But even if it were feasible, the highly
personalized interrogation creates additional
problems of its own-those of comparability of
questions and answers and the effect of the
presence of the interrogator on the responses
made by the subject. Small wonder that psy
chologists have developed strong objections ,to
methods for obtaining subjective data during
the ongoing experiment. These objections, eco
nomic and methodological, ha ve virtually ex
cluded such data even from studies for which
they are most pertinent.

Another important aspect of bargaining and
negotiation is its dynamic nature. Two free
acting agents may effect an endless variety of
interresponse patterns. Such dynamic inter
action phenomena are important for the under
standing of behavior in a variety of social
cognitive situations; yet the traditional methods
for recording and analysis of social interaction
data are extremely costly and place exorbitant.
time demands on highly trained professional
personnel.

In our studies, the computer is used to over
come these difficulties by mediating and moni
toring the communications between experimen
tal subjects. Since all subject interactions are
conducted via the computer, it is easier to
oversee, record, analyze, and even control the

interaction process. Additionally, the computer
capa.city for rapid recording and analysis is
used for constant monitoring of subject be
havior; and this, in turn, becomes the basis for
selective inter...rogation, by the computer, of sub
jects on their individual intentions, perceptions,
motives, and expectations. Thus, the computer
serves the unique function of a standardized in
terviewer which carefully, but unobtrusively,
monitors all participating subjects, detects all
situations about which further information is
desired, and then selectively asks questions
which are relevant to what has just happened
to the subject. The impersonal atmosphere
eliminates in some measure the problems asso
ciated with the presence of the examiner and
would appear to encourage freer responses.

Definition of the Bargaining Situation
and the Possible Effects of Threat

Three essential characteristics of a bargain
ing situation may be identified: (1) For both
parties there are a number of possible agree
ments and each party would be better off, or no
worse off, in reaching an agreement than in
failing to do so. In game theory terms this
means that bargaining is involved with varia
ble-sum games, not constant-sum games. That
is, the sum of payoffs is not fixed-more for one
player does not necessarily mean less for the
other. (2) For each party there is a range (at
least two) of such potential agreements. (3)
Each party has preferences or interests with
regard to the possible agreements that are gen
erally opposite to those held by the other party;
at the very least both players cannot be maxi
mally satisfied at the same time.

Bargaining is thus a situation in which the
participants have mixed motives towards one
another. It is neither purely coordinative or
cooperative, nor purely competitive. That is,
the ability of one participant to gain his ends
is dependent to an important degree on the
choice of decisions that the other participant
will make.

The bargaining processing itself may be
either explicit or tacit. Typically, when we
think of bargaining, we think of the explicit
mode of direct verbal exchange--the dialogue
of bids, counterbids, concessions and compro
mise until an agreement is reached. On the

REAL-TIME COMPUTER STUDIES OF BARGAINING BEHAVIOR: 117

other hand, one can bargain in situations where
there is little or no opportunity (or no desire)
for direct verbal exchange. When drivers might
meet at an intersection, or competitors engage
in a price war, their dialogue may be limited to
the actions that they take. Our experimental
situation focuses on this tacit form of bar
gaining.

Bargaining situations may also involve
threats-a means of directly signalling and/or
imposing loss or damage on the other bargainer.
Such means might entail mutual loss as in a
strike or an extortion attempt. Speculation on
the effects t)f threat on bargaining runs in two
directions. One position tends to underscore the
deleterious effects of threat. The threat spiral
ing theory predicts a pattern of escalation
which leads to disrupting hostility, claiming
that perceived threats (whether intended as
such or not) will beget counterthreats. In this
framework, the mere possession of a threat is
sufficient to initiate the escalation process.

In contrast, one finds among other writers an
almost sanguine acceptance of coercive and
threatening techniques as bargaining tools. In
this view, since every bargaining situation in
volves some minimal aspects of threat-at the
very least a bargainer can refuse to reach any
agreement-threats present themselves as nat
ural and necessary means of bargaining; means,
which can and will be used to effectively define
and convey importance of an outcome, degree
of resolve, or various other facets of the bar
gaining relationship.

One finds then what appears to be, on the
surface at least, inconsistent expectations re
garding the employment of threat. To the advo
cate of its use in bargaining situations, coercion
is specifically designed to influence the "rational
decisions" of the other party by controlling his
expectations of outcomes which will follow from
his actions. Contrasted to this, we find descrip
tions of threat-evoked behavior which is any
thing but rational and which leads to conse
quences desired by none. Since neither party
to this argument has clearly specified the condi
tions which bound the range of his generaliza
tions, the extent of the disagreement is not
apparent. Since both views cannot simultane
ously hold for the same situation, it becomes

important to determine empirically the bar
gaining conditions under which threat will have
either of these effects.

Laboratory Studies on the EfJects of Threat
In our investigations we have focused on the

effects of threat on interpersonal bargaining.
In this regard we were particularly interested
in the widely cited findings of a series of experi
ments by Deutsch and Krauss.2, 3

In their experiments a bargaining game was
played under three conditions: (1) In the bi
lateral threat condition, both players could take
an action which directly imposed an obstacle to
the other's making money. (2) In a unilateral
threat condition, only one of the players had the
means of imposing the obstacle. (3) In a third
condition, neither individual had a direct threat
capability.

The following results were obtained: 'Where
neither subject possessed a threat capability,
the profits increased over trials and were posi
tive for both players. Where one of the players
possessed the threat capability, the profits were
negative in the early trials, but improved and
became positive for both players. In the bi
lateral threat condition, there was no improve
ment over trials and earnings remained nega
tive throughout-that is, both players lost
money instead of making money.

From the "results of their bargaining game,
Deutsch and Krauss derive a three-step process
occurring in -threat-counterthreat spiraling:
(1) If there is a conflict of interests, and threats
are available, they are likely to be used. (2)
The threatened person, if he feels superior or
equal in status to the threatener, will feel hos
tile and will use counterthreat or show increased
resistance to yielding. (3) As a result, further
intensification of the competitive interest of the
bargainers occurs and reduces the likelihood of
their arriving at a cooperative agreement.

We should note that this hypothesis depends
on references to subjective attitudes, expecta
tions, intentions and perceptions. Reviewing
their experiment, we speculated about other
hypotheses-equally dependent on intentions
and perceptions-which might also account for
these results. Our reservations would not have
been satisfied by a simple straightforward repli-

118 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

cation of their experiments, for even supposing
an exact replication of results down to the level
of moves and counter-moves, we should still
want to know whether the attendant pattern of
intentions and perceptions support their hy
potheses regarding the perception of threat and
the escalation of hostility. Indeed, this is pre
cisely the sort of question for which we can
acquire direct data through the use of com
puter-administered experimentation.

To illustrate how these capabilities can be
implemented and, used, we turn to a considera
tion of our experimental vehicle and the details
of our investigations on the effects of threats in
bargaining behavior.

General Experimental Gaming Vehicle
Experiments were carried out in the Systems

Simulation Research Laboratory of the System
Development Corporation. The equipment con
figuration included the Philco 2000 computer,
computer-tied 8-by-11-inch television consoles,
and associated switch insertion response con
soles. Computer programs pair as many as 24
subjects who then play against each other. Sub
jects can be considered "on line" with the com
puter. They send messages (moves, bids,
threats, offers) to their paired opponent via
switch insertions which are displayed on the
receiver's TV console. Computer programs pre
sent the game situations to the subjects, assist
in umpiring of legal moves, provide displays of
game-relevant information, record all moves,
messages and times of response, and probe the
subject's bases for his actions.

Procedures of Experimentation
Our experimental situation incorporated the

formal features of the Deutsch and Krauss ex
periment, although the simulated situation was
different. In our Communication Gam3 sub-,
jects were told that they were going to perform
as operators in a communication system. In
each trial, the subject's task was to transmit
messages from a set of one six-letter and two
four-letter words. Each subjEct was informed
that he was assigned to a communication chan
nel which would also be used by one other
subject. This channel, common to a pair of
subjects, had a total storage capacity of six
units. The six-unit channel storage limitation
prevented concurrent transmission of messages

Figure 1. Communications Game.

by both subjects. Figure 1 illustrates the game
moves and relationship between the bargainers.

An individual subject could earn 25 cents for
transmitting a six-unit message, ten cents for
each four-unit message, or nothing if he failed
to transmit any complete message. Transmis
sion rules resricted an individual operator to
earning a maximum of 25 cents and a pair of
subjects to joint earnings of 35 cents per work
period.

Work periods were made up of 15 "joint
action" turns during which both subjects would
take their actions. In each turn, a subject chose
from one of three action alternatives: inserting
a letter unit into channel storage, withdrawing
a letter unit from channel storage, or passing
(taking no action). A letter unit could be in
serted successfully only if there were sufficient
space in storage (i.e., the six-unit storage ca
pacity could not be exceeded). If attempted
insertion (s), together with the units previously
in storage, exceeded the channel capacity of six
units, then an "overload" resulted, and this indi
cation was displayed as the reason that ,the
attempted insertion (s) had not entered chan
nel storage. In effect, subjects had to work out
an arrangement for sharing the channel.

In the "threat" conditions, both subjects were
provided with an additional "block" action
which prevented the other operator's attempted
insertions from entering channel storage. The
effect of the block action was enduring (it did
not require reihstatement to remain in effect).
Both subjects could independently take block
actions on any turn and maintain them for as
long as they wished, or remove their own blocks,
but each subject could initiate the block only
once in any given work period.

Subjects received instructions in groups rang
ing in size from 18 to 24 members, were as-

REAL-TIME COMPUTER STUDIES OF BARGAINING BEHAVIOR: 119

signed to individual cubicles, and did not know
with whom they had been paired. Each subject
had a switch insertion box for taking actions
and a television receiver for the display of chan
nel status and the results of their attempted
insertions. Subjects had no other means of
direct communication with one another.

All subjects were explicitly told to make as
much money as possible regardless of how much
the other operator made. After each trial ithey
were informed what they each had transmitted.
There was real money at stake in all but one
condition.

The computer program permitted each pair
to proceed at its own rate of response. Follow
ing each work period, individualized computer
designated questions were displayed to the sub
jects to which they responded by means of their
switch insertion boxes. The questions presented
were contingent upon moves taken and the re
suIts of the immediately preceding work period,
and focused upon perceived significance of these
events.

Seven experimental conditions were studied.
Six of these were variations of the "threat"
condition involving bilateral availability of the
block. In all of the threat conditions, the action,
if maintained, had the direct effect of prevent
ing the other bargainer from making any
money. The seventh was a "no threat" condi
tion in which neither operator possessed a block
action with which to control the other opera
tor's behavior. Since the block conditions did
not differ significantly from one another, they
have been combined for the present discussion
and compared with the results obtained for the
"no threat" condition.

Results and Discussion

Having mirrored the salient features of the
Deutsch and Krauss game, we may determine
whether any of tbe. steps described by Deutsch
and Krauss .are Jound inowr data. Let us look
rfinst :atl: the 's'ixCfIDditions where threat action
{(tbe block) was available.

If threat is available, will it be used? The
answer is a resounding "yes." Ninety-three per
cent of the 194 subjects use it on one or more
occasions during the 20 trials. Furthermore,
there is little hesitation in employing it. The

110 r-~I::-:-04--------------'
100

90

80

NUMllER 70
Of SUlJECTS 60
EMPLOYING
ILOCIC so
ACTION «l

30

20

TOTAL N • 194 SULECTS

20

10

O~~~~~L-~~~~~_-LL-~

3-5 6-8 9-15 16-20 NEVEl

FlIST TIIAL USED

Figure 2. Trial of First Block Action.

median trial of initial use is the first trial. (See
Figure 2.)

Will the threat evoke counterthreat? If one
subject employs the block, does it evoke recipro
cation? Again the answer would appear to be
clearly affirmative. Of the 95 pairs where the
block was employed, only 11 subjects never em
ployed the block in return. Furthermore, the
median latency of counter response is short,
with two-thirds of the subjects responding on
the same or immediately following trial. (See
Figure 3.)

Continuing to look exclusively at those ex
perimental conditions in which the block action
is available, we compared the bargaining out
come for those pairs where both members use
the threat with those in which one or both vol
untarily restrain from using it for the full 20
trials (see Figure 4). A significantly lower
mean joint payoff was earned by those pairs
who use the threat bilaterally than by those
pairs where one or both subjects avoid the use
of threat.

These findings were consistent with expecta
tions derived from the threat-counterthreat es-

Zr-~~~-----------~

30 TOTAL N • 9S PAIlS

2S

NUMIIER Of 20
MJECTS
COUNTEI-
.. QCICING 15

10).

Figure 3. Distribution of Trial Latency of
Counter-Blocking.

II

120 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

PAIR MEAN JOINT
N BLOCK USAGE PAYOFF

BILATERAL $5.47 114

UNILATERAL
$6.73 13 AND NEITHER

Mcliff $1.26

Figure 4. Block Use Related to Joint Payoff for
Six Block Conditions.

calation pattern. On the other hand, other find
ings are clearly at variance with the threat
counterthreat spiraling hypothesis.

1. A comparison of the block and no-block
conditions showed the reverse of the predicted
threat spiraling. The pairs who had the block
action available had a significantly higher joint
payoff than did those without it. (See Fig
ure 5.) This result is a direct reversal of the
Deutsch and Krauss findings.

2. Again focusing only on the block condi
tions and those pairs who had not yet reached
a cooperative agreement in the first five trials
-that is, those pairs who were having some
difficulty with each other-we compared those
pairs who made mQre use of the block action
during these first five trials with those who
made less. In a complete reversal from expec
tations, we found that significantly more of the
pairs who made extensive early use of block
action subsequently reached a cooperative
agreement. (See Figure 6.) Nor was there
evidence that greater restraint, expressed in
delaying the counterthreat response, tended to
dampen the escalation of hostility or produce
more favorable outcomes over those where less
restraint was shown in taking a counterthreat
action. We found no significant relationship

NO BLOCK 6 BLOCK CONDITIONS

MEAN
JOINT $4.88 $5.60
PAYOFF

N 18 108

Figure 5. Mean Joint Payoff for No Block and
Block Experimental Conditions.

BLOCK USE
FIRST 5 TRIALS

HIGH

LOW

COOPERATIVE AGREEMENT

AFTER 5 TRIALS NEVER

18 12

5 15

N"'.50

x2 ", 5.92

(p< .02)

Figure 6. Frequency of Block Use (First Five Trials)
Related to Subsequent Cooperative Agreement.

between counterthreat response latency, meas
ured in number of trials, and joint outcome for
each pair. It thus appears that greater restraint
in early use or delay in counterthreat response
does not dampen the escalation of hostility.

These results indicated that there is no sim
ple relationship between the use of threats (as
measured by blocking) and escalation of hos
tility (as assessed by difficulty in achieving a
cooperative agreement).

Up to this point our data show the following:
Subjects who have the block do better than
those who do not; yet, those who have the block
but do not use it do better than those who use it.
This puzzlement is compounded by considering
the additional fact just noted. Those who use
the block more initially and with less restraint
do significantly better than those who use it
less or use it more cautiously.

At this point our methodology of computer
probes may permit us to do something which·
was not possible in previous studies. Since the
computer has inquired of each subject into his
intention and perceptions associated with each
use of the block, we may turn to this informa
tion instead of engaging in further speculations
about the meaning of our results.

3. Generally speaking, how were the blocks
intended and perceived? The first striking find
ing is the frequency with which first blocks are
used with a cooperative intent-specifically as
a signal for coordinative purposes. Approxi.;
mately 70 per cent of all users included a co
operative reason among the three most impor
tant reasons for their initial block usage. In
contrast, only 20 per cent failed to register any

REAL-TIME COMPUTER STUDIES OF BARGAINING BEHAVIOR: 121

coopera,tive intent, indicating that their use of
the block was exclusively intended to threaten
or express some reactive hostility.

That these self-ratings did not merely reflect
a tendency to characterize one's own intentions
in positive terms is indicated by the fact that
users with initially cooperative intent do sig
nificantly and markedly better in terms of sub
sequent cooperative agreement than do those
who indicate no cooperative intent in the use of
the block. (See Figure 7.) Thus, despite the
fact that subjects were explicitly given an "indi
vidualistic" orientation and sizable sums of real
money were at stake, a strongly cooperative
orientation was carried into the game by most
subjects. These findings suggest that many of
the subjects, at least to some degree, substitute
cooperative incentives in place of the individ
ualistic ones which the experimenter attempted
to induce with instructions and monetary re
wards.

Knowing the cooperative use our subjects
. made of the block action, it is now less surpris
ing that a comparison of the "block" and "no
block" conditions showed the reverse of the
Deutsch and Krauss results. It is clear, then,
that the block action need not always have nega
tive meaning, and it would appear that it can
be an actual aid to bargainers if they have the
disposition to use it to achieve an optimal co
ordinate agreement (even, as in the present
case, where pre-game ratings showed that our
subjects predominantJy viewed the block action
as a hostile act).

4. Since so many of our subjects achieved an
early and apparently easy cooperative agree
ment-they were willing to share the payoff

RATED INTENTION MEDIAN TRIAL OF
OF BLOCK COOPERATIVE AGREEMENT N

COOPERATION 2.7 69
INDICATED

COOPERATION 19.5 24
NOT INDICATED

Figure 7. Intention of First Block Use (Within Pair)
Related to Median Trial on Which a Cooperative Agr!e

ment Was Achieved.

without conflictual confrontation and needed
only to coordinate, not to bargain-we next con
sidered just those pairs of bargainers who do
not show outward evidence of mutual coopera
tion (more specifically, those who had not
reached a cooperative agreement by the fifth
trial) to see what effects threat might have in
this fuller bargaining context. These cases
should be more interesting and germane for the
Deutsch and Krauss hypotheses, for, as a class,
tliese are the bargainers who show evidence of
initial interference-whether it be for reason
of incoordination or simply conflict of interest
in doing so. Among these pairs, one would sup
pose that those who subsequently reached a co
operative agreement would exhibit an initially
lower level of hostility than those who never
achieved agreement.

We have already seen that if the frequency
of block usage is employed as an objective index
of hostility, the findings run counter to this ex
pectation; but since we now know that hostility
cannot always be ascribed to block usage, let us
look directly at the subjective indices of hos
tility for the same groups. We "find at this level
also there is no evidence for the hypothesis.
Pairs which subsequently achieved a coopera
tive relationship show a higher instance of re
ported hostile intentions and perceptions over
the first five trials than those who failed to
achieve such a relationship. (See Figure 8.)
While not statistically significant, the trend is
clearly counter to the spiraling hypothesis.

Finally, let's consider one further possibility.
From the threat-counterthreat hypothesis, one
should expect escalation in subjective hostility
among those pairs who subsequently failed to

FREQUENCY OF
HOSTILE RATINGS
IN FIRST 5 TRIALS

HIGH

LOW

COOPERATIVE AGREEMENT

ACHIEVED AFTER NEVER
FIRST 5 TRIALS ACHIEVED

16 12

7 15

N=SO

x2 < .10

Figure 8. Early Subjective Hostility Related to
Subsequent Cooperative Agreement.

122 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

reach a cooperative agreement and evidence of
de-escalation among those who achieved agree
ment. In fact, increase or decrease in subjective
ratings of hostility, both perceived and intended,
over the first five trials show no consistent rela
tionship to success or failure in achieving a
cooperative agreement (see Figure 9).

All of our findings-the predominantly co
operative intent and perception of block use;
the fact that availability of threat is as
sociated with better outcome; the fact that,
for pairs that do poorly, neither objective nor
subjective indices provide evidence for the
escalation of hostility in the early phases of
bargaining-all of these would suggest strin
gent qualifications for the underlying mech
anisms of the threat-counterthreat hypothesis
if it were to be maintained. 1.f our results run
counter to the spiraling hypothesis, what ex
planation can we offer to accoullt for the vary
ing degrees of difficulty which our subjects had
in reaching a bargaining agreement?

It is obvious that pairs of cooperatively ori
ented bargainers can achieve a jointly accept
able agreement which is profitable to bOoth. It is
also the case that competitive pairs (in which
both members want to earn more than half of
the available payoff) tend to do very poorly.

What happens, however, to those dyads where
one member is well-intentioned and conciliatory
while the other is out to get as much as he can?
A naive extrapolation of the threat spiraling
hypothesis would suggest that these pairs should
do better than the competitive pairs. We have
collected pre-game statements of plans by sub-

FREQUENCY OF COOPERATIVE AGREEMENT

HOSTILE RATINGS
DURING FIRST FIVE TRIALS ACHIEVED AFTER NEVER

FIRST 5 TRIALS ACHIEVED

INCREASING
15 13 (TRIALS 4 + 5 >TRIALS 1 + 2)

DECREASING
8 14

(TRIALS 4 + 5 $ TRIALS 1 + 2)

Figure 9. Early Increase and Decrease in Level of
Subjective Hostility Related to Subsequent Cooperative

Agreement.

jects which provide a basis for such. a com
parison. We compared competitive dyads with
mixed dyads (where a subject planning to share
the maximum joint payoff 50/50 is paired with
one planning to earn more than one-half the
maximum joint payoff). While the competitive
pairs were slower to adopt a coordinating strat
egy, all pairs but one succeeded in doing so
within the 20 trials. In contrast, 34 per cent of
the mixed pairs failed to do so. Indeed, they
have the poorest outcomes of all pair combina
tions based on pre-game plans. Similar findings
w~re obtained for pair comparison based on
personality classification. It is not the dyads
which are composed of two players with domi
nating strategies that have most difficulty;
rather, it is those dyads where one member is
well-intentioned and conciliatory and the other
is dominating or belligerent. (See Figure 10.)

As a tentative explanation of these finding'S,
we propose that the well-intentioned and con
ciliatory member is initially reluctant to "force"
cooperation-to employ his block as threats
and is ambivalent and oscillating when he does
so. The subject who delays in responding to a
threat with a counterthreat displays to the ag
gressive member a weak intention to resist and
encourages him to persist in his original de
mands. These then become increasingly unac
ceptable to the conciliatory member. Two addi
tional findings support this interpretation.

Let's look at the situation of the cooperatively
inclined bargainer who initially fails to report
seeing any cooperative intent in the other bar
gainer's use of the block. Should he counter
block immediately or try to nurture coopera-

PAIR COMPOSITION FOR
INTERPERSONAL MEAN N
CONCILIATORY

FACTOR

BOTH CONCILIATORY .52 42

MIXED PAIR 1.86 42

BOTH BELLIGERENT 1.02 42

Figure 10. Mean Number of Joint Zero Profit Trials
(Measured over Last Ten Trials for Seven Experi

mental Conditions).

REAL-TIME COMPUTER STUDIES OF BARGAINING BEHAVIOR: 123

tion otherwise? Our data show his chances to
achieve a cooperative agreement are signifi
cantly better if he responds more immediately
(within two trials) with a counterblock than if
he delays longer in doing so. Twenty-two out
of 37 "immediate" counterblockers concur on a
cooperative agreement, whereas only one out
of seven "delayers" do so.

Finally, our explanation may help to recon
cile our otherwise puzzling finding-that
greater block usage in the earlier trials is asso
ciated with greater likelihood of agreement. On
further analysis we find .that, on the average,
those who never reached agreement used the
block less than once every other trial during this
period. Thus they employed their block only in
a sporadic or intermittent fashion.

In summary, while bargainers who resist .the
use of threats show the most favorable joint
outcomes, these results appear to be related
primarily to the pairing of subjects with pre
game cooperative dispositions. Rather than
spiraling hostilities, a posture of firmness and
determination expressed in a consistent and
rapid response to threat with counterthreat may
contain a belligerent player. Lack of resolution,
as expressed in delay and oscillations in employ-
ment of counterthreat to an aggressor, may sig=
nificantly increase the likelihood of escalation
of conflict.

In follow-on studies we plan to investigate
the conditions under which the exchange of
threat and counterthreat actions lead to conflict
escalation and/or to a dampening or reversal
of the conflict; to identify "points of no return"
if these are present; to assess the effect of mas
sive retaliatory capability on the use of smaller
threat actions; to determine under what condi
tions such a capability would exert a stabilizing
or destabilizing influence on negotiations.

In pursuing these goals, we also plan to ex
ploit further the unique advantages afforded by
our computer approach. Weare planning im
provements in two major directions: first, to
improve techniques for eliciting subjective data
through computer probes so as to minimize their
interrupting features and increase the value
of the information elicited; second, Ito gain ex
perimental control through computer simula
tion of one of the players in each pair. This will
permit direct investigation of effects of indi
vidual styles of play (ruthless competitor, stra
tegic cooperator, irresolute cooperator, moral
pacifist, etc.) ; this, in turn, will provide greater
control of intermediate critical stages of the
game, thus reducing the obscuring effects of
unique patterns of play and improving ability
to evaluate and compare results for different
bargaining pairs.

More important even than the specific find
ings in this study is the demonstration of the
potential usefulness of the computer as a tool
for gathering critical data in studies of social
interaction. As a result, data become available
which have been virtually unobtainable on a
scale necessary for scientific investigation.

REFERENCES

1. DEUTSCH, M. Trust, trustworthiness and
the F scale. J. abnorm. soc. Psychol., 1960,
61 (1), 138-140.

2. DEUTSCH, M., and KRAUSS, R. M. The ef
fects of threat upon interpersonal bargain
ing. J. abnorm. soc. Psychol., 1960, 61 (2),
181-189.

3. DEUTSCH, M., and KRAUSS, R. M. Studies
of interpersonal bargaining. J. conflict
Resolut., 1962, 6, 52-76.

REAL TIME QUICK-LOOK ANALYSIS
FOR THE OGO SATELLITES

R. J. Coyle and J. K. Stewart
Datatrol Corporation

Silver Spring, Maryland

Introduction
The National Aeronautics and Space Admin

istration has designed a series of general pur
pose orbiting satellites which have the family
name of Orbiting Geophysical Observatory
(OGO). Each of these satellites is capable of
carrying up to 50 scientific experiment devices,
which transmit data to ground stations via a
common telemetry channel. There are two
tracking stations, at Rosman, North Carolina,
and Fairbanks, Alaska, which will receive this
telemetry, transmitting it to Central Control at
Goddard Space Flight Center in Greenbelt,
Maryland, at a data rate of up to 64 KC.

General Description of the
Programming System

The requirement of the programming system
for OGO was to provide quick-look analysis and
control of the status of the spacecraft and se
lective experiments on board the satellite. (The
tracking and orbit determination of OGO is not
a function of this program.) All telemetry is
recorded for further extensive analysis in non
real time on other equipment. There are several
special purpose consoles attached to the com
puter to accept telemetry, and provide a means
of communication to and from the spacecraft.
These are appropriately called: PCM Telemetry
input equipment, Control and Display Console,
and Command Console. It is through the inte
gration of these consoles with the computer pro
gram that experiments on board the satellite
may be selected to start, or terminate, by a com-

125

mand from the computer. The selective analysis
of those experiments transmitting data is ini
tiated by an input request from the Control and
Display Console and selective spacecraft status
analysis is handled in the same way. It is there
fore a requirement of the computer program
that it be flexible enough to handle these many
and various requests instantaneously. Since the
bit rate of 64 KC means a new telemetrY frame
of data will arrive every 18 ms., th~ -c~~~~i~r
programs must be able to make maximum use
of the capabilities of the computer.

The SDS 920 computer was chosen by NASA
to handle the quick-look analysis and control
for OGO. The 920 is a small-scale computer
with a 24-bit word and an 8 us. cycle time. It
has one index register and uses single-address
fixed-point arithmetic logic. It is capable of
handling many kinds of input/output, to in
clude: magnetic tape, paper tape, punched
cards, on-line typewriter, and high speed
printer. The OGO 920 has 8 K of memory and
32 channels of interrupts for input/output use.
The OGO installation is illustrated in Figure. 1.

Functions of the Real Time
Monitor Control System

The programming system for OGO can be
thought of in two distinct parts: the Real Time
Monitor Control, and Experiment Processors.
All routines necessary to connect the computer
with the external environment are integrated
into the Real Time Monitor Control system. It

126 PROCEEUING8-SPRING JOINT COMPUTER CONFERENCE, 1964

Figure 1. OGO Central Control Installation.

must service all interrupts, provide for the re
ceipt of all input including telemetry and man
ual input requests from the consoles, direct and
send out all output to the appropriate receiving
device, keep track of time, and determine the
sequence in which all functions and processing
is conducted. The Monitor Control does not
process any of the data itself, but rather acts
as a general purpose framework in which selec
tive routines perform the processing. These
selective routines are called Experiment Proc
essors and are independent routines opera.ting
under control of the Monitor. These routines
process telemetry input data, returning to
Monitor formatted output for driving digital
displays on the special purpose consoles, for
printing, and for typing, as well as other infor
mation to the Monitor.

The first distinct part of the programming
system for OGO, the Monitor Control, is itself
divided into three sections: the Schedule
Program, Monitor Processors, and Interrupt
Processors. The following is a definition of the
functions and characteristics of these various
sections.

Monitor Schedule Program
The Monitor Schedule Program consists of

routines which collectively coordinate, super
vise, and schedule all processors in the system,

utilizing a priority table of processors. It saves
the status of the machine whenever an interrupt
occurs, and facilitates a proper return from an
interrupt by restoring the condition of the ma
chine at the point of interrupt. The heart of
this scheme is the Monitor Schedule Routine
whose function is to examine sequentially the
entries in the priority table in order to deter
mine the next routine of highest priority to be
processed.

The priority table of processors consists of a
group of words, or module, which identify and
describe each processor with a reference in the
table. Due to the difference of functions of the
various processors, the modular approach allows
for flexibility in assigning priority during the
debugging stage of the system. By chaining
these modules together, say by the first word of
each module referencing the first word of the
next module, the modules may be of various
length (Fig. 2).

In order for the Schedule Routine to carry
out its function of determining ,the next proc
essor of highest priority with something to do,
it must know the status of each processor in the

PRIORITY TABlE

MODUlE A INDICATORS I B FIRST WORD

MODUlE B INDICATORS I C FIRST WORD

MODULE C INDICATORS r D FIRST WORD

MODULE D INDICATORS I E FItSTWORD

- - -~ --
Figure 2. Make Up of First Word of the Modules.

REAL TIME QUICK-LOOK ANALYSIS FOR THE AGO SATELLITES 127

priority table at any given instant of time. This
is accomplished through the use of indicator
bits in the module, say the left portion of the
first word of each module (Fig. 2). The vari
ous states that a processor may be in are the
following:

'in process' -This processor was inter
rupted while it was process
ing, and entry should be made
at the point of interrupt.

'ready' -this processor now has some
thing to do; entry should be
made at the beginning.

'suppressed' -this processor should not be
processed at this time.

'terminated' -this processor has now com
pleted its processing.

'not in core'-this module is available for the
addition of a new processor.

These indicator bits, then, inform the Sched
ule Routine whether or not the referenced proc
essor is now available for processing. Since the
priority table entries must be examined from
the top each time return is made to the Sched
ule Routine, a rapid method of examining the
indicator bUs of each module was needed. To
clarify the method that was devised, it is neces
sary to diverge for a moment and describe two
uses of an instruction in the SDS 920 repertoire,
which may be used to load the index regis,ter.

EAX A Immediate Addressing,
X Reg. == A where the address field of

the instruction itself is
placed in the index register.

EAX* A Direct Addressing, where
A PZE 1 the contents of location A,

X Reg. == 1 referenced in the address
field of the instruction, is
placed in the index register.

EAX* A Indirect Addressing, where,
A PZE* B if the contents of location
B PZE 2 A is in turn indirectly ad-

X Reg. == 2 dressed, the address field of
A will again be used as tlie
location from which .to load
the index register.

The SDS 920 computer has the capability of
unlimited indirect addressing; that is, it is pos
sible to continue the above indirect addressing

of an instruction for many steps, until a loca
tion is encountered that is not itself indirectly
addressed. It is convenient then to choose the
indicator bits of the modules discreetly to take
adv;antage of this feature of the machine as
well as the fact that the modules are chained
together. If all states of a processor which indi
cate that it not now available for processing
contain the indirect addressing bit as one of the
indicator bits, .then only those routines with
something to do at the current time would be
picked up for examination. For instance, the
processor states of 'suppression,' 'termination,'
and 'not in core' all -result in there being noth
ing to do at this time on this particular proces
sor.

In Figure 3, the consequences of giving an
"EAX * A" would be that modules A, B, and C
would be skipped and the first word of module
D would be placed in the index register. For
module A is 'suppressed,' module B is 'not in
core' and module C is 'terminated," indicating
that no processing should be done on these
processors at this time. The contents of the
index register actually contains the location of

PRIORITY TASLE

MODULE It. '5' I B --

'SUPPRESSED'

MODULE B 'N' 1 C

'NOT IN CORE'

MODULE C '1' 1 D

'TERMINATED'

MODULE D 'R' 1 E

--I--- ~ .. -

Figure 3. Example of the Use of the Indicators.

128 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

the next module, due to the chaining criteria,
but this presents no particular problem if ref
erence is always made to the words of the
module in reverse; that is, -1,2 or -6,2 etc.

Since it costs only one machine cycle ,to skip
each successive module whose indirect address
ing bit is set, the result is a most efficient search
of the priority table. The alternative would be
to pick up the contents of the indicators of each
module and then through various logical com
pare instructions determine whether any of
these situations are the case. It is apparent that
the scheme using the indirect addressing fea
ture of the computer facilitates spending the
minimum time examining the entries of the
rather lengthy priority table of processors.

};n addition ,to the indicator and chain word,
each module also contains t}le first word loca
tion of the processor which it references, as well
as a block of locations in which the condition of
the machine is saved when this processor is
interrupted. If the referenced processor has
input/ output functions, the module will addi
tionally contain the location of the I/O data
which is stacked in a table for subsequent trans
fer or editing. If the processor is an Experi
ment Processor, it will also contain ,the location
of flag words in the processor by which com
munication is made with the Monitor. That is,
w.ords by which each Experiment Processor can
signal Monitor of its various output require
ments, and whether it has completed processing,
etc. (Fig. 4).

The many processors of the Real Time Con
trol System may be in various states during the
course of real time operations so that it is im
possible for one processor to communicate di
rectly with another. This is especially true of
I/O data and channel select requests. There
fore, two subroutines were devised in the Moni
tor Schedule Program to handle the passing of
data from one processor to another. One sub
routine handles the stacking of data onto the
recei"',ing processor's stacking buffer, while the
other handles the unstacking of the next data
to be processed. The barrel, or wraparound,
method was chosen to facilitate the stacking
and unstacking from these buffers. That is, a
'first in-first out' list type of scheme. To avoid
moving the data around in core memory, since

MODU.EA

ORDINARY
PROCESSOR
MODUlE

PRIORITY TAIIlE

MODUlE I
===F======T===~

110
PRO(ESSOR
MODULE

MODUlEC

EXPERIMENT
PROCESSOR
MODUlE

MODULE 0

SAVE LOCATIONS

STACKING BUffER LOC.S

FRST WD. LOC. OF PROC.

LOC. OF FLAG WORDS

FRST WO. LOC. OF PROC.

Figure 4. Composition of the Modules.

this is necessarily inefficient, the items which
are stacked and un stacked in the buffers are the
locations of the I/O data or channel select
requests.

Each I/O processor's module, then, contains
the top and bottom locations of the stacking
buffer for that processor. It can be seen that
these buffers may be variable in length from one
processor to the next since each processor's
buffer is uniquely defined in its module. The
module also contains the location of the first
item to be un stacked as well as the next free
location into which to· stack. These locations
may vary anywhere within the prescribed stack
ing buffers area, hence the name 'barrel method'
(Fig. 5).

When an item is unstacked, the 'first' loca
tion reference in the module is replaced by the
'first + l' location reference so that the next
item is now referenced for unstacking. Simi
larly, when an item is stacked in a buffer at the
'next' location, the 'next' location reference is
then updated to the 'next + l' loca,tion as the
next free location in which to stack. The top
and bottom locations, delineating the total

REAL TIME QUICK-LOOK ANALYSIS FOR THE AGO SATELLITES 129

BOTTOM
TOP-

ACK-I NEXT LOC IN
WHICH TO ST

'NEXT +1'-\
\
\
-"

J
\. I

" L
I

/

-'fIRST + l' LOC.
_ FIrST LOC. fROM

WHICH TO UNSTACK

Figure 5. 'Barrel-Like' Composition of Stacking Buffers.

buffer area, can be thought of as being only one
unit . apart, for the subroutines always treat the
bottom location + 1 as if it were the top loca
tion. The circular action has now been effected.

Monitor Proces.'wrs
The Monitor Processors handle the input/

output requirements of the Real Time Monitor
Control, as well as a few other minor functions.
The SDS 920 has two buffered channels for
input and output data transfer and 32 real time
channels, all of which have interrupt capabili
ties. One of the buffered channels is used ex
clusively for the telemetry input, the other
handles all other I/O functions, except those
from the special purpose consoles, time inter
rupts, etc. Due to the difference in the rates of
speed of the devices attached to this I/O chan
nel, it was decided to have a series of processors,
each one associated wi,th only one I/O device,
rather than a single large I/O processor geared
to the buffered channel. Each of these proces
sors, like all other processors, is under control
of the Monitor Schedule Program. Its priority
order is determined by the position of its
module in the priority table and is in direct
relationship with the speed of the I/O device
to which it refers. For example, the priority of
a processor handling the on-line printing is
higher than the one handling the output mes
sages to the typewriter.

Since only one channel select request can be
executed by a buffered channel at a time, all
of the Moni,tor I/O Processors hand off their
I/O select requests to a single processor, rather
than randomly selecting the channel themselves.
The function of this processor is to select the
channel with whatever request is next in line,
regardless of the kind of I/O device indicated.

This processor is guaranteed that the channel is
ready to receive the select request, for as each
request is serviced, this processor 'suppresses'
itself. Th~t is, it sets the indicator bits in its
own module so that it will not be considered for
processing again until it is 'unsuppressed.'
When the interrupt from the completion of the
data transfer on that channel occurs, the inter
rupt processor servicing this interrupt will
'unsuppress' the channel selecting processor so
that it may now continue with the next I/O
request, since the channel is free to be rese
lected. This channel selecting processor has
the highest priority of all the other Monitor
Processors, thus allowing for the maximum use
of the channel at all times.

There are other Moni,tor Processors which
handle the input/output to and from the special
purpose Control and Display Console and the
Command Console. These processors are con
trolled and executed in a straightforward man
ner since each function is handled by a unique
interrupt through the 32 real time channels.
There are eight such processors connected with
these consoles. One additional Monitor Proc
essor handles time in the system. It maintains
a gross time figure in minutes, and prints out
a GMT time message periodically. It is espe
cially used to flag certain processors dependent
on some interval of time that it is time to com
mence processing. This procedure is called
'readying' a processor.

Interrupt Processors
The third category of the Monitor Control

deals with processors which handle interrupts.
Each Interrupt Processor is coordinated with a
separate and unique interrupt channel. The 32
channels of interrupts have a priority system
of their own in that lower level channels may
be interrupted by any higher level channel.
This means that the corresponding Interrupt
Processors also may be interrupted during the
course of their processing if an interrupt of a
higher priority comes in. Therefore, the Inter
rupt Processors are naturally coordinated with
the demands of the interrupt to be processed as
well as with ,the priority level of the channel
selected to handle that interrupt. For instance,
it was decided that the telemetry interrupt
would be on the channel with the highest pri
ority, since a new word of telemetry comes into

130 PROCE:EDINGS-oSPRING JOINT COMPUTER CONFERENCE, 1964

the computer every 280 us. The o.ne second
time interrupts were given the second highest
priority, and so on.

Since all processo.rs, whether Monitor Proc
essors, Interrupt Processors, or Experiment
Processors, return control upon completion to
the Monitor Schedule Routine, it was necessary
to vary this requirement somewhat in the case
of Interrupt Processors. Fo.r if an Interrupt
Processor is itself interrupted, then return
should be made to the point of interrupt. For
interrupts are a demand to ackno.wledge some
I/O data transfer and must be processed before
the normal processing continues. This allows
for smo.o.th and coordinated interaction be
tween the different parts of the Real Time Mon
itor Control system. The technique of drawing
a hypothetical line in memory was used to
allow an Interrupt Processor to. decide quickly
whether it had interrupted out of another In-·
terrupt Processor, for all Interrupt Processors
are placed above this 'line.' If this is the case,
return is made to the interrupted Interrupt
Processor and not to the Schedule Routine. It
logically follows that when all Interrupt Proc
essors have finished, the one which caused the
first interrupt in time will be the last to finish
and will return control to the Schedule Routine.
One of the advantages of this scheme is that it
is not necessary for the Interrupt Processors
to run in a 'disabled' mode. That is, where the
computer is prevented from receiving another
interrupt by executing a special instruction. In
fact, the 'disable' instruction is given rarely in
this real time system, and when it is u~ed, the
duration of the disabled mode is very short.
For, since a new telemetry word comes into the
computer every 280 us., it must not be disabled
for a period of time equal to or greater than
that.

Experiment Processors
The second distinct part of the programming

system for OGO consists of all those selectable,
independent routines called, collectively, Ex
periment Processors. The function of these
Experiment Processors is to perform analysis
on the telemetry input data, both of the experi
ments on board the satelUte and the status of
the spacecraft itself. These processors operate
under control of the Monitor Control programs,
returning, upon completion of processing each

telemetry frame of data, to the Monitor Sched
ule Routine. Since there are many more Ex
periment Processors than would fit into core
memory along with the permanent Monitor
Control, it is the funotion of the Monitor to be
able to add and delete selective Experiment
Processors without disturbing the real time
processing. A Monitor Processor, called the
Real Time Load Processor, performs this func
tion. It is this real time load capability of the
Monitor Control which affords the flexibility of
operation required of the system. The Monitor
Control can thus provide for maximum use of
memory capacity as well as maximum use of
processing time.

Requirements of Experiment Processors
All Experiment Processors place three gen

eral requirements on the Monitor. They must
be able to obtain all data needed from the Moni
tor, including such parameters as time and
orbital position of the satellite, as well as spe
cific data points from the telemetry frame. They
must also be able to return the results of their
processing back to the Monitor in the form of
messages to be output on the on-line printer.
Finally, they must be able to communicate with
the Monitor that they have completed their
processing or to request that special functions
be accomplished, such as sending co.mmands to
the special purpose consoles. It is the function
of the Real Time Load Processor ,to provide
the capability of bringing such an Experiment
Processor into memory when requested by de
pressing the appropriate button on the Control
and Display Console, and to make all necessary
connections and links between ,the processor
and Monitor.

Goding Rules
A problem arose in the fact that these Experi

ment Processors were to be written by many
different programmers. This would appear to
involve a considerable amount of supervision of
the coding used to protect the system from
'blow ups,' but actually it was possible to han
dle this checking automatically by writing a
service program called the Static Checker. As
its name implies, the Static Checker checks ,the
symbolic coding of an Experiment Processor to
determine whether the programmer has com
plied with the various coding rules laid down
for the system.

REAL TIME QUICK-LOOK ANALYSIS FOR THE AGO SATELLITES 131

The rules to. be fDllDwed by a prDgrammer
when writing an Experiment PrDcessDr are Df
two. types: real time restrictiDns, which are
necessary to. prDtect the MDnitDr CDntrDI; and
relDcatable binary restrictions (since .the prDC
eSSDr will be used in this fDrm), which fDllDW
frDm the nature Df relDcatiDn itself. The rules
are:

Real Time RestrictiDns
1. No. I/O instructiDns
2. No. breakpDint switch tes,ts
3. No. halts

RelDcatable Binary RestrictiDns
1. No. addresses Df type: -SymbDlic, Sym

bolic + SymbDlic, Dr use Df * Dr /
2. No. references to. absDlute memDry IDca

tiDns
3. No. negative cDnstants Dr masks

The real time restrictiDns are quite straight
fDrward, since all I/O is handled by the MDni
tDr; breakpoint switches (sense switches) are
reserved-fDr MDnitDr use, and halts are strictly
anathema in real time wDrk.

The first set of relocatable binary restrictions
are the familiar Dnes inherent in relDcatiDn and
the second restriction, forbidding absolute ad-
dresses, is also. fairly standard in this kind Df
wDrk. The third restrictiDn, hDwever, is SDme
what unusual and arises frDm the unique man
ner in which relDcatiDn is handled in the SDS
920. A brief IDDk at the makeup Df an SDS 920
instruction wDrd will serve to. illustrate this.

A 24-bit instructiDn wDrd in the 920 is
brDken dDwn as fDllDWS :

o A

o 1 2 8 9 10 23 Bits

The fields are, frDm right to. left, a 14-bit
address field, Dne bit fDr indirect addressing, a
7 -bit DperatiDn field, Dne bit fDr indexing, and
finally, the left-mDst bit which is not inter
preted when the instructiDn is executed. That
is, the instructions 0 35 01000 and 4 35 01000
are interpreted by .the cDmputer as being iden
tical. Since the address field is the only Dne that
need be relocated in any instructiDn, the left
mDst, Dr sign bit Df the wDrd may be used for

Figure 6. Example of Static Checker Diagnostics.

this purpDse, and this is, in fact, the scheme
cDmmDnly u'sed Dn the 920.

FDr data wDrds, hDwever, the full 24 bits are
used and it is fDr this reaSDn that Experiment
PrDcessDrs needing negative constants Dr masks
with a left-mDst Dne must generate them. This
is the Dnly real CD ding restrictiDn placed Dn the
prDgrammer and in practice is nDt seriDus,
since the 920 has the capability Df forming bDth
l's and 2's complements with single instruc
tions.

The Static Checker accepts a symbolic deck
and produces a listing cDntaining errDr diag
nDstics, if any (Fig. 6).

Form,atting
It was apparent that the mDst straightfDr

ward way to nlaintain the Experinlent Proc
essors fDr use with the real time system was in
ithe fDrm of a library Dn magnetic tape. In line
with this, two. fundamental decisions were made
concerning the physical makeup Df these prDC
eSSDrs, both related to. the efficient use Df the
cDmputer's memDry at execution ,time: they
were to be in relocatable binary (as previously
mentiDned) and they were to. be brDken up into
unifDrm-Iength blDcks. Since it was cDnsidered
unreasonable to. require prDgrammers to. cDde
,their Experiment PrDcessors in this latter man
ner, it was necessary to. devise a methDd to. take
the prDgrammer's proceSSDr, coded in a single
sequence, and convert it to. the desired fDrm
automatically.

In additiDn to checking the Experiment
ProcessDr, this cDnversion to unifDrm-Iength
blDcks is also. prDvided by the Static Checker
during the same run. This was easily facili
tated, since the Experiment PrDcessor is input
to the' Static Checker in symbolic fDrm and the
necessary additional instructions and pseudD-

132 P.ROCEEDINGS-SPRING JOINT COMPUT~R CONFERENCE, 1964

TIME 800l

TM 800l
OR81T 800l

ORG o
Communication Cells

ENTRY-

8RU EXIT

ORG l

ORG 2L

r - - - - - - - BRU EXIT
I ~~-------=~
I BSS N
I
I
I
I

L ----EXIT

Figure 7. Conversion to Uniform-Length Blocks by Static Checker.

operations may be inserted in that form (Fig.
7).

It will be noted that a few extra things have
been inserted as well. For instance, the Experi
ment Processor obtains telemetry and other
data from the Monitor by referencing cells
which are absolutely located in the Monitor.
Therefore, these locations are defined by BOOL
pseudo-operations inserted by the Static
Checker; the programmer need only refer to
them symbolically. The Prelink and Postlink,
which are bookkeeping linkages to the Monitor,
are also inserted at this time.

The breaking up of the consecutive sequence

operation at fixed intervals. The actual con
nection between one block and ,the next is han
dled by a 'dynamic link,' the BRU (uncondi
tional branch) instruction which is inserted at
the end of each block. The advantage to be
gained by this approach is that the blocks of a
processor need not be contiguous in memory,
and in practice this is usually the case. ORG's
are used to define the start of each block in
order to ensure that the result of assembling the
symbolic output of the Static Checker is a series
of paper tape records of uniform length, sim
plifying the maintenance of the library of Ex
periment Processors on magnetic tape.

into uniform-length blocks is effected by in- The problem of pseudo-operations which de-
serting an ORG (origin definition) pseudo- fine more than one memory location, such as:

DEC 1,2,3 Places decimal 1-3 in 3 successive locations
OCT 4,5,6,7,10 Places oCital 4-10 in 5 successive locations
BCI 4,ALPHA FIELD Places BCD characters in 4 successive locations
BSS 20 Reserves 20 successive locations.

REAL TIME QUICK-LOOK ANALYSIS FOR THE AGO SATELLITES 133

is handled by a special diagnostic in the Static
Checker which flags any such pseudo-operation
which causes the 'straddling' of two blocks as a
coding error. The programmer must then re
arrange his processor so that the locations de
fined will fit :into one block.

Other Service Programs
The Static Checker has a companion program,

the Dynamic Checker, which works with an
Experiment Processor in Machine Language:
the result of assembling the output of the Static
Checker. The Dynamic Checker is essentially a
simulator which provides the opportunity to
debug an Experiment Processor under condi
tions as similar as possible to those of the real
.time Monitor. The Experiment Processor is
embedded in the Dynamic Checker and is 'fed'
telemetry frames via the same cO!llmunication
cells used in the real time case. The outP\lt of
the processor is printed for subsequent analysis
by the programmer.

The Dynamic Checker uses for input a mag
netic .tape containing simulated telemetry
frames. Its modus operandi is to read a frame,
branch to the Experiment Processor, and check
to processor's communication cells for com
mands and/or output, repeating this cycle until
the tape end-of-file is reached. The input tape
is generated by another service program, the
Tape Builder, which contains a pseudo-random
number generator and which, essentially, gen
erates a magnetic tape of simulated telemetry
frames containing nothing but white noise. This
is to check the Experiment Processors for one
of their basic requirements: that they be
capable of accepting any data and still not
'blow up.' The Tape Builder, however, has the
provision of accepting programmer-coded sub
routines which allows the data generated by
these subroutines to be inserted in specified
words in the telemetry frames. In this manner,
the programmer may insert realistic data in the
words of the telemetry frame which are ana
lyzed by his Experiment Processor and thus
may use the Dynamic Checker as a diagnostic
tool.

Like the Static Checker, the Dynamic Checker
has a second function in addition to a debugging
one. This is the function of timing the Experi
ment Processor. One of the two interval timers

available on the SDS 920 is used for this pur
pose; the result being that, at the end of the
run, the Dynamic Checker prints out the worst
case (longest) execution time in machine cycles
for the Experiment Processor being tested. As
will be seen later, the two parameters: number
of blocks (given by the Static Checker) and
worst-case execution time (given by the Dy
namic Checker) are the ones which will deter
mine whether this particular processor may be
loaded and executed at any particular time when
the real time system is running.

In addition to the above service programs,
there is, of course, a Tape Librarian program
whose task is to maintain the library tape of
Experiment Processors; adding, deleting, or
replacing processors as appropriate. In addi
tion, the Tape Librarian includes a computed
checksum with each block written on the li
brary tape. These service programs taken to
gether provide a means of carrying an Experi
ment Processor from the coding stage through
inclusion on the library tape in a fairly auto
matic manner (Fig. 8).

Loading Experiment Processors in Real Time
The Monitor has two" restraints which deter

mine whether an Experiment Processor may be

DSYmboIic
Experiment Processor
Single s.q-,c.

DCDo Experiment Proc. a" "-nbIed

~ c> Paper Tape

g--@l-.. , ...
D-@ SMnu~

~ DataTape

1

DYNAMIC
I---CHECKER

Blowup

I Execution Time I

TAPE
LIBRARIAN

Figure 8. Flow of Experiment Processor from
Coding to Library Tape.

134 PROCEE!DING'S-SPRING JOINT COMPUTER CONFERENCE, 1964

added at any given time: whether there is
room in memory and whether there is enough
time to execute it. The portion of memory avail
able for use by Experiment Processors, is called
free storage and is allocated in blocks of the
same size as the subdivisions of these processors.
The amount of time available for Experiment
Processor execution is called slack time and is
the number of machine cycles presently not
being used in the 18 ms. interval between suc
cessive frames of telemetry. A parameter table
is maintained for use by the Real Time Load
Processor containing one word for each proc
essor on the library tape. Each parameter
word contains two fields which specify the
amount of memory (in blocks) and amount of
time (in machine cycles) required by that par
ticular Experiment Processor. When a request
is entered into the computer to add a particular
Experiment Processor, this request is handed
off to the Real Time Load Processor which may
easily check whether there is enough free stor
age and slack time to accommodate this Experi
ment Processor. If not, the request is placed in
a special stack called the Request Stack. If the
processor can be added, however, the Load
Processor positions the library tape, reads the
Experiment Processor into memory, relocates
it, and connects it to the Monitor. Actually, the
Load Processor makes requests to the Monitor
for every tape operation given and it is the
interrupt that occurs after each record is
skipped or read which causes the Load Proc
essor to be entered again. (This includes back
spacing and rereading in case of a checksum
error.)

If the request given to the Load Processor
is to delete an Experiment Processor, either be
cause this request has been made from the con
sole or because the processor has signalled the
Monitor that it has finished its run, then the
Load Processor locates this processor, disen
gages it from the Monitor, returns the proc
essor's blocks to free storage, and adds the
processor's execution time to the slack time
count. The Load Processor then checks its Re
quest Stack to see if there are any requests to
add processors which now may be accommo
dated.

The above description is considerably ab
breviated and does not cover some of the special

considerations of the Load Processor as actually
written, such as error checking, backspacing,
and rereading due to checksum error, etc. Also,
although it is convenient ,to speak of 'picking
up' blocks of free storage and 'returning' them
to free storage, nothing is moved around in
memory the change is actually one of alloca
tions.

The basic pieces of informa tion the Load
Processor works with are four in number (Fig.
9) . P ARAM is a parameter table giving the
storage and time requirement for every Experi
ment Processor on the library tape. The block
count is in the operation field and the execution
time is in the address field. Thus, as illustrated,
Experiment Processor 34 requires 3 blocks of
storage and has a worst-case execution time of
700x cycles.

Figure 9 also shows SLACK, which is a cell
containing the available slack time in cycles,
1300x here. FREE is a cell which refers to Free
Storage, the fourth element. It can be seen that
an elementary list processing technique has
been employed here. The address of the first

SlACK

fREE

PARAM

+1
+2

33

34

35

fREE STORAGE

1300 1000 " I

1000 1200 3 J

120 1400 2 I
1000

600

1600 1 I

2000 0 I

2 I 240

3 I 700

Figure 9. Elements Used by the
Monitor Load Processor.

1200

1400-

1600

2000

0

-

REAL TIME QUICK-LOOK ANALYSIS FOR THE AGO SATELLITES 135

word in each block in free storage contains the
starting location of the next so that they are
chained together with the address of FREE
giving the starting location of the end block in
the chain. Furthermore, from bottom to top
in the chain, the operation field of the first word
in each block contains a serial count, starting
at zero. This count is also carried over to the
operation field of FREE and thus this cell not
only provides a link to all of the blocks in free
storage but also contains the number of blocks
in the chain. The linking of blocks shown is
somewhat idealized. In actual practice, these
links become quite 'scrambled.'

Under this scheme, the process of testing
whether a requested Experiment Processor may
be added is handled quite easily, simply by using
its parameter word from the table P ARAM :
the address field of the parameter word (execu
tion time) must be less than or equal to the
address field of SLACK, and the operation field
of the parameter word (block count) must be
less than or equal to the operation field of
FREE.

SlACK

PARAM 34

FREE

1300

3 I 700 l/

,f--l000- l~

- --\:~\

1. \

START ~-------.~-"

\

I
I

)

2.

FREE STORAGE

l(007F~

1200 I 1600

1600 0 I

2000 2 I 1200

Figure lOa. 'Removing' Blocks from Free Storage
First Step.

SLACK

PARAM '·34

FREE

START

t-l

1300

700

\
\

\ 1.\
I
I

:
1000 f

~/
~-----I

000

200

2.

- ---
400 __

600

2000

FREE STORAGE

!OJ%;
~~

~~ V~ m ~
/"/'~-:I

1)0

3 I 2000

==~ .-- -----_ .. _---

0 I 0_

2 I 1200

Figure lOb. 'Removing' Blocks from Free Storage
Second Step.

SLACK 1300

PARAM ,- 34 LI ----=---I~7:..::;OO=___.J

"".. ... - - -

FREE ,;[' -2~>\
L-"'::"-->-!--_ -=,_:.::_:,\~\ ___ • \

STAR

+
+

T

1

2

1000

1400

L-----z.

\ ~ 2.
\ I

\

1. \

:
I

I
I

FREE STORAGE

2000 , 1200 ;--

Figure lOco 'Removing' Blocks from Free Storage
Third Step.

136 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

SLACK

PARAM + 34

FREE

START

+1
1000
1400

+2 2000

FREE STORAGI'

400

700

1200

Figure 10d. 'Removing' Blocks from Free Storage
Final Condition.

Adding an Experiment Processor
In order to add an Experiment Processor,

blocks must be 'removed' from free storage so
that the processor may be read into them (Fig.
10). The 'removal' of a block is a two-step
process, in which the address of FREE is
stacked in a table called START and the con
tents of the location given by that address (the
starting location of the block) is then stored in
FREE. FREE now refers to the next block in
the chain, and this process may be continued as
often as necessary. This is, of course, the fa
miliar 'popping up' of list processing and here
it is done three times since Processor 34's pa
rameter word calls for three blocks. The final
step is to subtract the execution time in the
processor's parameter word from SLACK, set
ting it to the unused time now available.

The table START is used for two things.
First it is used to specify the blocks of memory
into which the Experiment Processor is to be
read. ST ART is also used for relocation with a
companion table BITS which is generated to
contain successive multiples of the block length,
starting at O. Since the Experiment Processors
are assembled with a base origin of zero, it can

;- - -- --~'-_. --.,;3",-5 -=003;.0..:.75--11
Iobe

Moskovt

,----:~00200~· ..,,-+-~ 7 high __ bm

----S-dt..i..1obIo

-: [= :: lr=-----,,~r:Et ~:-
L-----;~~~~----------------------l~=.=35==~001~75~1 ,

QUOO I-~ Add

Figure 11. Example of Relocation.

be seen that BITS consists of the unrelocated
starting location of each block. Figure 11 shows
how this relocation is carried out on a sample
instruction.

The method of relocation allows an instruc
tion in any block to reference a location in any
other block occupied by that processor. The
dynamic link between blocks could then be
effected by the final BRU *+1 in each block,
simply by flagging these instructions for relo
cation. In practice, however, the Tape Librarian
program replaces these terminal branches with
computed checksums when an Experiment
Processor is added to the ,tape library. The
Load Processor uses these checksums to deter
mine whether the Experiment Processor has
been loaded properly, with the usual re-reads in
case of failure. When the processor has been
successfully read in, the relocation sequence in
addition replaces the checksums wi,th the origi
nal branches, connecting each block to its suc
cessor and the last block to the Monitor.

It might be pointed out that there is no fixed
requirement that the blocks have a length 200/i
nor, in fact, need their length be a power of
two, although this simplifies the relocation
scheme. This figure was chosen as a convenient
length and may be changed if experience with
the system warrants it.

Deleting an Experiment Processor
Figure 12 shows how the blocks of the Ex

periment Processor added in the example above
are 'returned' to free storage. The starting lo
cation of the processor is obtained from the

REAL TIME QUICK-LOOK ANALYSIS FOR THE AGO SATELLITES 137

(Plus 1)

FREE STORAGE

EXP. PROC. 34
2ND BlOCK

-BRU 2000
1600 r----_O_-L1_o=-----l

2000
EXP. PROC. 34

3RD BlOCK

BRU (MONITOR)

Figure 12a. 'Returning' Blocks to Free Storage
First Step.

SlACk 1000

1200

(Plus 1) 1600

FREE STORAGE

2 I 1200

1 I 1600

BRU : 2000

o I 0

EXP. PlOC. 34
3RD BlOCK

L-BR_U __ (~M-=--~~

Figure 12b. 'Returning' Blocks to Free Storage
Second Step.

module in the priority table to which it was
assigned and placed in a working cell, called
DUMMY here. Since the terminal branch at
the end of every block provides a link to the
next block, this 'pushing down' process can be
carried out in a four-step process analogous to
the one in which blocks were 'removed' from
free storage. The block count is updated in the

FREE STORAGE

SlACK 1000 2 I 1200

"" ,,' [::Z<{;'~'J;,,\, '200

""'\',',~,;,/'//- / 3. \l.
DU'."",J>~:J:::~:J \'~

I 1600

3 I 1000

(Plus 1) \ \

\\ ~600 ° I

;\ \,
\\ 2000='~'=*=·====~=

\""'"
EXP. PROC. 34

3RD BlOCK

""'" BRU (_!~~~!)
................. ~------- '

Figure 12c. 'Returning' Blocks to Free Storage
Third Step.

FREE STORAGE

SlACK 1300 1000

I

2

:

1200

I FREE 2000 1200 1600

I I
DUMMY 1~ 3 I 1000

l600 ° I °

Figure 12d. 'Returning' Blocks to Free Storage
Final Condition.

process so that at completion FREE again con
tains the correct block count when the number
of blocks given by the processor's parameter
word are 'returned' to free storage. Finally, the
processor's execution time is added ,to SLACK
to set it to the unused free time now available.

As shown by these examples, program blocks
are never actually moved in memory; they are

138 PROCEEDINGS---.SPRING JOINT COMPUTER CONFERENCE, 1964

simply read into the first available blocks and,
since the blocks are dynamically chained with
branch instructions, these blocks need not be
contiguous in memory. A processor is deleted
essentially by disconnecting it from the Moni
tor and allowing the storage it occupies to be
reused. Since the Tape Librarian program con
verts all block reservations in an Experiment
Processor to the corresponding number of zero
words when the processor is added to the li
brary tape, these memory. blocks need never be
cleared.

Conclusion
We feel this project is of interest since it

represents an unusual situation in data process
ing. This is due to the fact that, while there was

a requirement to selectively process different
data points on demand, there was not a need to
process all of the data available. Given the
selection of the specific computer, however, this
project attempted to optimize its use by pro
viding the capability of doing the maximum use
ful work that memory space and processing
time will allow. In this paper we have pointed
out techniques to minimize the execution time
of a powerful Real Time Monitor and to allo
cate reusable storage in a flexible and efficient
manner. While using the computer to sample
and monitor data is not a typical data process
ing application, it is hoped that this paper has
indicated the efficiencies which we feel are in
herent in the real time approach.

AN ETHOS FOR THE AGE OF CYBERCULTURE*
Alice Mary Hilton

President
A. M. Hilton Associates

New York, N. Y.

PART ONE-NEED FOR A NEW ETHOS

I. Introduction

"Acceptability," said John Kenneth Gal
braith, "is the hallmark of the conventional
wisdom."!

Since, however, the pronouncement of the
conventional wisdom is the prerogative of those
in eminent public, academic, business or labor
positions, I am not privileged to bore you with
a recital of the conventional wisdom, and
even if I 'could do so-----to entertain you by ex
pounding it at a properly sophisticated level.
I must, therefore, look to that arch enemy of
the conventional wisdom-the march of events.

If ever a period in the history of man de
manded radical-I am using 'radical,' derived
from radix, root, in its original sense, namely~
going to the roots-fundamental wisdom, it is
surely this revolutionary period of transition to
a new era-the age of cyberculture-the new
era that is formed by a science, cybernetics,
born barely a quarter of a century ago, and a
technology that, for all its precocious develop
ment, has barely left the cradle.

Most of us in this room were probably proud
midwives assisting in the delivery of the com
puting machine only a decade or so ago.

Since then, the world has. changed radically.
Three powerful new phenomena have preco
ciously reached their vigorous, boisterous ad-

olescence-Iong before the world is prepared for
the scientific-social-technological-economic-cul
tural revolution that has been unleashed. Those
in the center of any revolution are always the
least disturbed. The hub of a wheel is fairly
stable, the eye of a hurricance is calm, and
those who create the concepts and forge the
tools of complex social revolutions are neither
alarmed by the enormous power of their brain
children, nor are they surprised.

N ever has a powerful and complete revolu
tion developed more quickly than this cyber
cultural revolution that is affecting the lives of
millions of human beings who have never even
heard the new words to describe powerful new
concepts. In fact, things have been happening
so fast that even those who know a great deal
about one of the phenomena have not had time
to learn enough about the others-or about the
world they are changing.

First among the new p~enomena is nuclear
science. Introduced to a stunned world in its
least attractive manifestation, nuclear science
holds untold mysteries, unimaginable terror,
and vast promises. Einstein said, when the
atom was split everything changed except our
thinking. Far too many people still think of
thermo-nuclear bombs as super-slingshots
Others realize that nuclear science might pro
vide the vast reservoir of physical energy we
need to produce abundance for all mankind. We

* Cyberculture is composed of "cybernetics," the science of control, and "culture," the way of life of a society.

139

140 PROCEEDINGS-SPRING JOfNT COMPUTER CONFERENCE, 1964

have great hopes for atoms for peace and must
search for a way to use atoms for people.

The second of the powerful new phenomena
is not clearly focused yet, although a demon
stration of the destructive potential of nuclear
science has shocked the entire world to see, at
least as a vague vision, the new concept: peace
as a positive phenomenon, a valuable and work
able instrument to settle human conflicts. That
is quite different from man's past experience
for since the beginning of history mankind has
known as an alternative to war only the comple
ment of war, an interlude between wars, oc
casionally even a reasonably prolonged absence
of war. Even when there was no fighting, war
has been regarded as the normal and accepted
means to settle conflicts. Contrary to popular
opinion, it is not a foregone conclusion that
peace will bring about the millenium. There is
no reason to believe that conflicts will disap
pear. And to use peace, rather than war, as an
instrument to settle conflicts will require more
ingenuity and intelligence and skill than to
devise means to win wars. Difficult though it
may be to live with, peace is the essential condi
tion, if human civilization is to survive at all.

The least known and most far-reaching new
phenomenon is the science of cybernetics and
the revolutionary technology based upon its dis
coveries. Automatic systems and computing
machines, even in their infancy, have an impact
upon our world that could not have been
imagined two decades ago; and they have the
clearly foreseeable potential to produce not only
unprecedented abundance for human beings,
but relieve man forever of drudgery and toil.
Yet, even experts still look at the computing
machine as a super-abacus.

Any effort to deduce how observable phe
nomena are likely to develop and affect the en
vironment involves some arbitrary assumptions
that must be defined and granted. The major
assumption in my hypothesis is so fundamental
that, should it prove to be unreasonable, nothing
on earth is likely to be proved or disproved
again. I assume that the cold war will not be
escalated into the nuclear fission of the earth,
but that, on the contrary, it will continue to
defrost. I further assume that all of us in the
field of data processing and automation will

continue to do our jobs with as much ingenuity
and enthusiasm as we have in the past and to
develop our precocious brainchildren, as we
have every reason to expect from our auspi
cious start.

As we know, there is a great deal of confusion
in the public mind about the words "automatic"
and "automation," and about the effects of these
rarely recognized phenomena. Economic pun
dits have made solemn pronouncements about
the future impact of "automation" and based
their predictions firmly upon a past experience
with mechanization and its impact upon em
ployment and the Gross National Product. A
few months ago, Secretary of Labor Wirtz esti
mated that automatic systems have reached the
intellectual level of human high-school gradu
ates.2

Monumental fallacies are incorporated into
such statements because the basic premises used
by economic pundits and by the Secretary of
Labor are incorrect; they confuse automation
with sophisticated mechanization and use these
basically incomparable phenomena interchange
ably. If they could realize that the most so
phisticated and efficient mechanical system-no
:matter how many electrical components are in
corporated-is an open system that cannot
operate unless the control loop is closed by a
human being who must become part of the
system, whereas an automatic system is a closed
system in which the human component has been
supplanted by a computing machine, they would
understand that the conventional methods to
inoculate the economy against periodic epi
demics of unemployment and slackness are no
longer relevant.

Before the Congress has been able to accept
the Conventional Wisdom of one generation
ago, everything changed. Everything but our
thinking! And I must quote again John Ken
neth Galbraith, who wrote that "the shortcom
ings of economics are not original error, but
uncorrected obsolescence." We rightly cherish
our intellectual heritage, but we must not allow
it to calcify. The economic-political and social
wisdom humanity may have acquired so pain
fully in the past must be tempered with new
insights and forever re-evaluated with an open
mind, just as the scientific and technical herit-

AN ETHOS FOR THE AGE OF CYBERCULTURE 141

age of the past is constantly re-examined and
re-vitalized by new discoveries and inventions.

II. Agriculture and Cyberculture

The present cybercultural revolution is com
parable in magnitude only to the agricultural
revolution, the ferment out of which all civili
zation arose. The agricultural revolution
changed the earth from a jungle into a garden
where food gatherers became food producers
who plant and harvest, who create a surplus
over their needs and thus build civilizations.
With the agricultural revolution man first be
gan to emerge into humanity. He learned to
control his environment, to adapt it to his
needs, and to arrange his life into social pat
terns. The agricultural revolution that began
to free man for his specifically human task
changed the very nature of man.

Every society in the age of agriculture goes
through recurring cycles of scarcity and sur
plus, of leisure and drudgery. For centuries
this has been the human situation: part drudg
ery, part creative endeavor; part scarcity, part
waste. The cybercultural revolution can create
a world where machine systems produce un
dreamed-of abundance, and where human be
ings live human lives and are free to pursue as
yet undefined human tasks.

Man in the Stone Age knew his task was to
find food for himself and his young and to pro
tect them from the dangers of a hostile world.
He carved images on the walls of his cave, and
sometimes there must have been a genius who
observed the world closely, who somehow sa-\v
a pattern in remote incidents. He might have
noticed that small plants grow into trees; that
seeds spread by the wind or dropped by birds
into the earth come forth again as plants, and
that roots multiply and that some plants grew
on the same spot again and again. He gathered
the seeds and put them into the earth himself
and watched over them and saw them bear fruit.
And the age of agriculture could be born.

Man learned to till the earth to produce
bountifully, to tame animals to help him pull
the plow, to use the power of water and the
wind to multiply the strength of his own mus
cles. In the course of many centuries man has
developed complex tools which extend the per-

ceptiveness of his senses and the skill of his
hands, and devised powerful machines to extend
the strength of his muscles. But man alone can
direct and guide his aids. He must still labor
for his bread.

The cybercultural revolution is brought about
by the invention of devices that supplement the
labor of man's mind. In the age of cyber
culture the plows pull themselves, and the plant
ing and harvesting is controlled by tireiessly
efficient electronic slaves.

III. What are .ffuman Tasks?

Man must learn to find new tasks to fill his
days. If he no longer needs to pull the plow
and clear the fields and forge the iron, how
will he tire his muscles to earn his rest? How
will he use his mind to earn his peace? How
will he stand upon the earth he has not tilled
in the sweat of his face, and feel that he is
its master? What will he do with his life, if
he no longer has to labor to earn his right to
live? 3

For centuries, and in every land, men have
told stories about all-powerful, completely
obedient slaves who would supply riches and
ease. The brooms conjured up by the sorcerer's
apprentice, the genie in the lamp, the monkey's
paw-these are the stories of man's desire for
a perfect slave and also of his fear. For man
was always aware of his own inadequacy and
he was not sure that he could control so per
fect a servant with wisdom and with honor.

We can expect that in the age of cyberculture
enormous populations will live in leisure. A
few will "work." But no-one will labor in
drudgery and sweat. This will be technolog
ically feasible in a few decades. Invention can
be speeded with the motivation for perfection.
During World War II, the invention of radar
was accelerated-in the opinion of eminent sci
entists-by many decades. But cultural lag
may delay to bring cyberculture to its maturity
for centuries. Reluctance to change obsolete
ways of thinking, conflicts of interests, the
shortsightedness of those who fear what they
cannot fully understand can delay the future
and use the best fruits of man's mind for his
destruction rather than his joy.

142 PROGEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

IV. The Problems of Transition

The problems of transition from an agricul
tural-industrial to a cybercultural society are
momentous. This is only the beginning. Un
employment, serious though it is, is not dis
astrously widespread yet. But soon it will
be, if we refuse to face the fact that unemploy
ment cannot be arrseted, even with the most
phenomenal economic growth rate in the world,
for the acceleration of automation will always
exceed the acceleration of the growth rate.
Unemployment must be changed to leisure. If
we can learn to live with and use our electronic
and mechanical slaves, rather than abuse our
human bodies and our human minds, we can
solve all the other problems that plague us
now: the fear of unemployment, the envy the
poor nations have for the rich nations and the
fear the latter have of the former, the sus
picious competition among the powerful. We
negotiate about disarmament, but watching the
unemployment figures rise, we quickly vote
more money to be spent on producing lethal
weapons. And as the unemployment monster
rises, those who are gobbled up most easily
the unskilled-become afraid and rise in hatred
and despair. Unskilled Negroes think it is the
color of their skin that keeps them unem
ployed and white men fear that they will have
to share the labor that is not fit for human
beings and that none need to do in the age
of cyberculture. Unions are losing members
and try to stretch diminishing jobs by divid
ing them among more men, instead of enlisting
as members those whose work can be done by
machines and teaching them how to live human
lives.

The slower the transition from an agricul
tural-industrial society to a cybercultural so
ciety, the greater is the suffering that must be
endured, and the smaller the chances that-if
humanity survives into the next century-the
emerging age of cyberculture will be a good age
for human beings. Slow transition does not
cushion difficulties any more than pulling a
tooth a little bit at a time softens the pain.
The difficulties are not caused by the new age,
but only by the transition itself-so that the
problem can be solved only as transition is
accomplished. The best transition is a fast
transition. If we could have the wisdom to
introduce as much automation as quickly as it

is technologically feasible, we could create the
age of cyberculture in two decades. Slow tran
sition would bring such intense and widespread
suffering that it may break into nuclear war
and end all civilization.

V. Morality and Ethos

To create the age of cyberculture requires
something far more difficult than scientific dis
coveries and technical inventions. We must re
examine our moral values and our ethical con
cepts and the deeply ingrained notions to which
we give lip service. And we must understand
the difference between the moral values of man
kind and the ethos of a society. The sanctity
of human life, the worth and dignity of the
individual are moral values that are absolute;
these always have been true and always will
be true, as long as there are human beings.
But the ethos of a society is transient and it
must alter with the needs of the society.

What we call our Protestant Ethic, although
it is much older and spread far wider than
protestantism, is the ethos of any society that
knows scarcity and danger. It is a good ethos
where virgin forests must be cleared, and wagon
trains sent across a continent. It is a good
ethos as long as men must wrest their meager
fare from the earth with courage and forti
tude and perseverance. In such a society, it is
right that man should labor to plow the fields
so that he might eat the fruits of the earth
and bask in the sunshine of the heavens and
dream under the shade of the trees. "Thou
shalt eat thy bread in the sweat of thy face"
is a good and reasonable precept in the age of
agriculture.

Already the ethos of scarcity is becoming an
unjust burden. All too often thrift is no longer
a god, but the graven image of past days to
which we give lip service. To save one's earn
ings and thriftily mend last year's coat, and
use last year's car, and warm up last night's
supper no longer is admired. But-the ethos
that commands man to eat his bread in the sweat
of his face still governs our personal lives and
our. national policies. Although for millions
of human beings there is no place where they
can put sweat on their faces, we still believe
that there can never be another ethos for the
future than the obsolete ethos of the past. And

AN ETHOS FOR THE AGE OF CYBERCULTURE 143

every year we are condemning more than two
million human beings to the swelling ranks of
the unwanted. We suspect them of incom
petence and laziness, or we pity them. We
should re-examine the ethos that condemns
millions who are simply the first contingent of
citizens living under cybercultural conditions,
without any preparation for the new age.

When human intelligence has invented plows
that pull themselves, it is more virtuous to
know how to play and to learn how to live
for the joy of living than to bemoan the end
of human toil.

As sons and daughters of puritans we do
not know how to play and we look with terror
at the "threat" of unemployment and idleness,
because we can't conceive a promise of leisure.
What we call play, recreation and entertain
ment, is not play, but its very antithesis. Play
is something one does spontaneously, joyfully.
We rarely do anything just for the joy of doing;
but we do a great deal "in order to" gain some
thing else. Instead of enjoying a holiday, we
take a vacation-the very word signifies that
it is merely a void between the activities we
consider real. The "vacation" is something we
use "in order to" have more strength for our
labors. Recreation is something we pursue "in
order to" re-create our energy. Entertainment
is "in order to" forget our cares. We eat "in
order to" replenish our energy. Our children
are trained for the joyless ethos of scarcity and
given candy "in order to" do something adults
consider virtuous. Only the very young are
fortunate enough to be ignorant of this grim
purpose and suck their lollypops in blissful
ignorance and joy. But even the youngest tod
dlers are not permitted to play for very long.
Before they leave the cradle, they are but re
quired to manipulate educational toys "in order
to" learn control of their muscles or "in order
to" learn to read. By the time they graduate
from kindergarten we have infected our chil
dren and impressed them with our grim ethos.
The joy of playing for the joy of playing is
frowned upon. The joy of learning for the sake
of learning has been destroyed by admonitions
to learn "in order to" please mother, or to get
good grades, or to get into Harvard or MIT
twelve years hence. And by the time they arrive
in Cambridge, they have not even the faintest

memory of joy and play, and they grimly labor
for their "credits," "in order to" graduate to
obsolescent jobs.

VI. Ethos for the Age of Cyberculture

The proper ethos for the age of cyberculture
is one that would serve humanity well to build
a good society. We know so very little about
living human lives in leisure and abundance,
in dignity and self-respect, in privacy and the
assurance of the fundamental human right to
be unique as an individual. We confuse leisure
with idleness, and abundance with waste. We
view with suspicion the attempt of a human
being to preserve his privacy and suspect it to
be an attempt to hide evil. And we almost
take for granted that an anomalism or eccen
tricity is necessarily inferior to conformity.

Nothing could be further from the truth!
Idleness, like drudgery, is passive boredom suf
fered under duress, and waste is the misuse
of anything-whether it is a scarce commodity
or something plentiful. Leisure is the joyful
activity of using our human potentials to the
fullest, and abundance is intelligent economy,
namely, the full use of natural· resources for
the good of hUman beings. Privacy is the fun
damental right of civilized human beings and
a necessity if one is to live harmoniously with
one's fellow man. The uniqueness of individ
uals has made all human civilization possible;
for the conformist cannot go forwards and only
in the individualist's dreams and the dissent
er's vision today can the reality of tomorrow
be conceived.3

To learn to live in leisure and abundance is
the task of this generation. Even if we wanted
to, we would not have the power to choose be
tween the past and the futur~. The cybercul
tural revolution cannot be reversed. But we
can choose the future. We decide what kind of
world we want to leave for our children; what
we do now determines whether they shall exist
in idleness or have a chance to live in leisure.

VII. Early Signs

Once we have grasped the fact that our pres
ent unemployment is only a beginning and that
there can never again be a time when the labor
of human beings will be required to produce
what society wants, we can turn our human

144 ~ROCEEDINGS---.gPRING JOINT COMPUTER CONFERENCE, 1964

intelligence to the problem of transition
namely, to prepare ourselves for the age of
cyberculture by turning unemployment into
leisure, by solving the transitional problems of
scarcity, and by doing everything human
ingenuity can devise to perfect our electronic
slaves and complete all processes of automation.

We must rid ourselves of the erroneous
idea that unemployment is still a negative pe
riod of waiting for a change to the positive
state of being "gainfully" employed again. In
this country, millions of human beings are in
a negative state now. Many of them have been
in this state for many months, years even, and
many know that they will never be in any
other state again. All the projections for the
future-even the most alarming-consider only
our past experiences. Only very recently have
a few economists given their attention to the
phenomenon of acceleration. "For too long they
misled themselves and the public by projecting
productivity into the future on the basis of the
long-term average rate of past productivity
gains. In so doing, they ignored the fact that
their averages were a combination of relatively
low rates in the distant past with significantly
higher rates in more recent years."4

Computing machines and automation are
barely in their infancy, and already our world
has changed beyond all recognition and com
parison. If we consider that all change is slow
until it has overcome initial inertia, we can
expect, before the end of this century, an in
crease in productivity that will dwarf the most
alarming projections for unemployment. Sol
omon Fabricant, director of research of the
National Bureau of Economic Research, warns
that " . . . the long-term pace of advances in
output per manhour has speeded up. It was 22
per cent per decade during the quarter-century
preceding World War I. It has averaged 29
per cent since. During the most recent period
-after \Vorld War II-national product per
manhour has been rising at an even greater
rate, 35 to 40 per cent per decade."5 And
to this should be added what is cautiously noted
in the President's Manpower Report: "Al
though the statistical data on this subject are
too limited to warrant definitive conclusions,
it is probable that underutilization of plant,
equipment, and manpower resources has had
significant effect in retarding productivity

gains since the mid-1950's."6 Reuther con
cludes that "under the stimulus of automation
and other revolutionary technologies, there can
be no doubt that the historical tendency for
productivity to move forward at an accelerat
ing pace will continue into the foreseeable
future."7

To the acceleration of technological advance
we must add-or (more realistically) mUltiply
-the acceleration in the rate of birth. The
"war babies" and "post-war babies" will be
flooding into the labor market-between 25 and
40 million of them in one decade. No rate of
economic growth, no method of spreading jobs
by decreasing the work week or extending vaca
tions can absorb the enormous by accelerated
flood of unemployment. Any dam or deflection
that worked in the past-forced consumption,
exploring underdeveloped continents or outer
space, for example-cannot be used to counter
act the potential power-for good or ill-of the
increasing number and perfection of automatic
systems that can produce 1,000 cars or 10,000
or 100,000 cars without human intervention
and with-at most-a few human monitors to
watch dials and stand by for rare emergencies.

If we allow human beings to remain unem
ployed because machines can do the drudgery
of repetitive tasks, we are dooming untold mil
lions to useless lives without hope and purpose.
Even if we devise the means to feed them and
supply them with the output of machines, they
will not long remain in idleness and scarcity,
while the products of machines rot in ware
houses.s

VIII. Lessons of History

Instead of dooming the vast majority of man
kind to idleness and unemployment and the in
dignity of the dole, we must prepare now for
leisure and abundance. There are some lessons
we can learn from history. In the Golden Age
of Greece we can study a society of leisure and
abundance based upon wealth that was not
created by the labor of any of the members of
the society, but by slaves.

We piously deplore the evils of obsolete
slavery and believe it right and proper to con
demn millions to starvation, or, at best, the in
dignity of the dole. Let us look at Greek society
honestly and examine how an unsurpassed

AN ETHOS FOR THE AGE OF CYBERCULTURE 145

civilization was created amidst the wealth and
leisure which, twenty-five centuries later, might
well have been produced by electronic and me
chanical, instead of human, slaves.

The Greeks differentiated clearly between the
private life of a human being his life in his
household which produced the necessities
oika, the Greek word for "home," is the root
word of economics-and his life as a citizen,
which Aristotle called bios politikos. The "good
life" was the life as a citizen, was "good"
because man, freed from labor by having
mastered in his household the necessities of
life, could pursue human tasks. "At the root of
Greek political consciousness we find an un
equalled clarity and articulateness in drawing
this distinction. No activity that served only
the purpose of making a living, of sustaining
only the life process, was permitted to enter the
political realm, and this at the grave risk of
abandoning trade and manufacture to the in
dustriousness of slaves and foreigners writes
Hannah Arendt."9

However we may deplore the private, or
household, life of the Athenian-in this century
of electronic slaves we can so easily afford to
condemn human slavery-we can only admire
the unequalled height of civilization his public
life produced. In his public life every Athenian
strove to excel, i.e., to distinguish himself from
all others, to be a unique human being, an indi
vidual unlike any other that ever lived or ever
will live. The Athenian lived a human life, in
play and work, but never in drudgery and
labor. "Who could achieve well if he labors?"
asked Pindar.10

Several hundred years later and several
hundred miles to the west of Athens another
society existed whose citizens were freed from
the necessity of labor in order to sustain life.
But whereas freedom from want and the neces
sity to labor emancipated the Athenian into a
human being who achieved excellence, Roman
citizens became an idle mob under equivalent
conditions of affluence. The decline and fall of
the Roman Empire, wrote Edward Gibbon, is
"the greatest, perhaps, and most awful scene in
the history of mankind. The various causes and
progressive effects are connected with many of
the events most interesting in human annals:
the artful policy of the Caesars, who long main-

tained the name and image of a free republic;
the disorders of military despotism ... "11

The essential difference between Greece and
Rome is the difference in their points of view,
in their ethical concepts. The Greeks strove for
individual execellence; they wanted to create
beauty and contemplate the mysteries of the
universe. Abstraction and generalization were
their inestimable contributions to science. The
practical they dismissed as not worthy of dis
cussion ·and recording./ Archimedes, whose
practical inventions covered an astouding
variety of applications, never thought them
worthy of description. He wrote only about
abstract mathematics; we learned from his
Roman enemies that he invented marvelous
machinery.

The death of Archimedes, by the hand of a
Roman soldier; as the great mathematician
stood contemplating a diagram he had drawn in
the sand, is symbolic of the end of an era. The
Romans were great organizers, "but," said
Whitehead, "they were cursed by the sterility
which waits upon practicality. They were not
dreamers enough to arrive at new points of
view."12 No Roman ever lost his life because
he was contemplating abstract mathematics!

Rome, her unemployed citizens idly seeking
panem et circenses, destroyed herself. The
moral disintegration of Rome had begun long
before Christ was born. Her conquests brought
Rome only material luxury and human prover
ty. Roman citizens received their dole and
idled away their humanity in ever more brutal
titillation. "It was because Rome was already
dying that Christianity grew so rapidly. Men
lost faith in the state, not be~ause Christianity
held them aloof, but because the state defended
wealth against poverty, fought to capture
slaves ... they turned from Caesar preaching
war to Christ preaching peace, from incredible
brutality to unprecedented charity, from a life
without hope and dignity to a faith that con
soled their poverty and honored their human
ity The political causes of decay were
rooted in one fact-that increasing despotism
destroyed the citizen's civic sense and dried up
statesmanship at it source. Powerless to ex
press his political will except by violence, the
Ronlan lost interest in government and became

146 PROGEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

absorbed in his business, his amusements, his
legion, or his individual salvation."13

We might ask why despotism increased in
Rome, why the Athenian sought his excellence
in art and philosophy and science, and the
Roman in the material luxuries that were all he
gained from his conquests. We might ask why
Christianity so very quickly forgot that Christ
taught human beings to live for the Glory of
God, which means to live'for the joy of living,
of being human and why the ethos of scarcity
perverted "living for the Glory of God" into
laboring "in order to" assure the glory of the
church. We might ask why the Athenian,
though conquered and enslaved, mastered even
his enslavement and his conquerors. We might
ask whether the Golden Age of Athens could
have endured if the Athenian had found a way
out of his dilemma: his need for leisure and his
rejection of human slavery.

Returning to our own century of transition,
we can rejoice that we have what humanity
never knew before-slaves to free us from the
necessity of laboring "in order to" sustain life
that are not human, so that we need not be
ashamed to enjoy what they produce. For the
first time in human history, man can be free.
Machine. systems can provide him with leisure
and abundance, and rescue him from the degra
dation of being either a slave or a master of
another human being.

But machine systems can do only what man
wants. If human beings cannot learn to dis
tinguish between human tasks and toil fit only
for machines, if we persist in competing with
the machine for the repetitive, dreary, stultify
ing, de-humanizing jobs for which only ma
chines are suited, then humanity wlil become
enslaved by the machine more cruelly than
it has ever been enslaved by any despot of the
past. For the machine provides us with slave
labor; and, therefore, human beings who com
pete with the machine are, thereby, accepting
the conditions of slave labor. Human beings
who learn to use the machine wisely, on the
other hand, will be freed by the machine to
achieve excellence.

Weare at the cross-roads: one way leads to
the Athens the Athenians could only dream of;

the other to a Rome more dreadful than the
most ghastly Roman nightmare.

Greece or Rome-that is the choice we have,
the choice we must make now, the choice we
should have made yesterday and for which to
morrow will be too late.

PART TWO-METHODS OF TRANSITION

I. Educating the Young

A practical and relatively painless method to
accomplish the transition into the Age of
Cyberculture must begin with the education
of the young. We are well aware of the fact
that unemployed youth has already become a
social problem, and we know that what we so
inadequately call "juvenile delinquency" is not
restricted to the underprivileged. The violence
of youth and the crimes committed by children
show, of course, the general moral decline.
Even more serious than isolated outbreaks of
violence, even more desperate than gangs of
destructive hoodlums, is the widespread indif
ference and be'wilderment among the young
whether they stay in schools that provide noth
ing but bland custodial care or whether they
are drop-outs.

The real problem of the young is that there
seems to be no place for them in the world.
They know society looks with dread upon the
vast numbers that are pouring out of schools,
and they know that it is wrong for them to be
met with fear and loathing. They are the future
of mankind, and they have a right to be wel
comed with joy.

What would happen if the 25 to 40 million
young people who will pour out of our inade
quate school system in the next decade were not
to flood an already overflowing labor market,
but enter instead into a period of basic educa
tion for the Age of Cyberculture?

It would be infinitely harder-perhaps im
possible-to change very profoundly the prej
udices of those who have learned to labor and
who have labored for too long. If their labor
is taken over by machines, we can only make
their emancipation which came too late for most
to enjoy in leisure, as pleasant and comfortable
as society can afford. And we can try to make
their idleness not too shameful a thing.

AN ETHOS FOR THE AGE OF CYBERCULTURE 147

But for the young we must do far more
than train them to become another obsolete
generation of laborers, for there can be no
honest labor for them and no dignity in toil.
Any human being who seeks to labor in com
petition with the machine is doomed to slavery
and to the conditions of slavery. There is no
human ditchdigger who can live on a scale low
enough to let him compete with the steamshovel,
and there is no human bookkeeper, or mathe
matician, who can compete with a computing
machine.

There is no human printer who can com
pete with a tape-fed printing press. And there
is no human metal·cutter who can compete with
computing-machine controlled machine tools.
The keyword is "compete." We can no longer
afford to measure the value of a human being
in the market place.14

In 1955, when the A.F.L. and the C.I.O. con
summated their marriage of convenience, Presi
dent Meany promised that the newly-weds
would become parents of an expanding family;
they would "organize the unorganized." But
with the sole exception of Hoffa's teamsters
who are, at best, considered naughty stepchil
dren-the family has not proliferated. The
auto workers have lost 300,000 members since
1953-and this in spite of the fact that the in
dustry has achieved a glittering production rec
ord in 1963. The steel workers have diminished
by 250,000. There are half a million fewer
mine workers, and· 760,000 fewer railroad
workers. I5

In spite of all the efforts made by labor
unions to spread the work and to delay the dis
missal of workers, it takes considerably fewer
of us to produce considerably more. Whether
we regard feather-bedding an evil or a neces
sity-it does not prevent the spread of unem
ployment. At best it delays the inevitable dis
aster for a few; at worst it retards important
improvements.

The ranks of labor are diminished by the
fired, but even more significantly they are
starved at the source by the vast numbers of
"the unhired." Among the ever increasing
number of the unhired, labor unions must find
new blood and new strength, and a new lease
on life. Labor must forget the organization

methods of the past, when "marginal workers"
were considered a poor investment. Many old
time union men say "they bring not back in
dues what it costs to organize them," and are
thereby guilty not only of greater callousness
than that for which they blame management,
but of irresponsible short-sightedness. Unions
who do this sort of cost accounting while they
invest their estimated union wealth of $1.5 bil
lion in blue-chip securities and profitable real
estate, are doomed to die of their own corrup
tion and decay.

Labor and management must learn to invest
in human beings. If labor unions would "organ
ize" youngsters who graduate (or drop out) of
an antiquated school system, their membership
rolls would swell (and without any crippling
diminishment of their coffers) and their vigor
would be restored. They would once again have
a vital role to play in the society. They would
once again breathe the fresh air of the future
instead of suffocating in bank vaults clipping
their coupons.

Organized Labor should offer to educate
every boy and girl who wants an education for
the Age of Cyberculture. It is to be hoped that
colleges will, in time, adjust their curricula to
the needs of the future. With a few exceptions
our institutions of "higher" learning are cus
todial, rather than educational, and perpetuate
training their unfortunate students for obso
lescence. Education must not be equated to
training for obsolescent jobs. Since our present
feeble attempts at "re-education" are not edu
cational at all and do nothing at all to prepare
human being to live in leinsure and abundance,
they could not, and do not, have the slightest
effect upon our present unemployment prob
lem. Such "re-training" efforts are like aspirin;
it can disguise a headache for a while, but it
cannot cure cancer, or even a headache.

We throw a feather into the Grand Canyon
and we are surprised that there is no echo! The
education that must be provided to get an echo
from the age of cyberculture must make it pos
sible for human beings to learn how to live
human lives and to create an ethical system
that will permit human beings to do whatever
they do gladly and for the sake of the thing
itself; and not reluctantly and only "in order
to" make a living.

148 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

A good curriculum might well start with
questions about Greek civilization and Roman
decay. Whatever the specific subject, its aim
must be to open the eyes of our twentieth-cen
tury blind children to the eternal miracle of
life.

One labor leader, enlightened about the vital
need to educate human beings, says: "America
will be a much better place when everybody
works four hours a day and attends some kind
of classes four hours." He made a start-small,
but of tremendous significance. His local has
financed scholarships for children of members.
More important, it is seeking out latent talent
among its members (in the hope of developing
the union's future leaders) for the "Futurian
Society." The best-educated among the mem
bers conduct courses for other members. And
at the local's Long Island estate, seminars are
held in such "impractical" sulUects as literature
and art and philosophy. 16

Since the education of several millions of
youngsters involves far more than a one-week
seminar, much more is required than a Long
Island estate and the funds a local can afford.
Unions are not that rich. But humanity is.
Such a vast education program must be financed
by government subsidy, in part. This can be
justified-even to the satisfaction of the vic
tims of the Puritan Ethos-as a perfectly rea
sonable investment which, partially at least,
pays for itself out of savings in unemployment
compensation, relief, and the costs of custodial
care' for those who would surely commit crimes
if they cannot find a positive purpose in life.

Another source of financing should be sup
plied by the very machines who have replaced
human laborers. At least one manufacturer of
automatic machines is a poineer in this ap
proach. He "taxes" every machine he sells by
putting away a certain sum which contributes
to the support of a foundation to make various
studies of several facets of the problems created
by the very existence of automatic machines.
"If machines perform our labor, then machines
will also have to pay our taxes."17 This may
be a socially acceptable way of saying that the
abundance produced by machines must be avail
able to human beings, lest it rots away and
destroys humanity with its fetid decay.

Union funds, special taxes paid by manu
facturers, a contribution made by the entire
population in the form of government funds
are three sources to finance the preparation of
youth for the Age of Cyberculture. Of course,
it would be foolish to prepare millions of young
people for a world which, simultaneously, we
try to postpone. When we no longer need to
be concerned about new floods in the labor
market, there is no longer any reason to at
tempt any delays in complete automation. We
are then free to encourage technological inven
tiveness and to complete the process as quickly
as possible, not only in the industrialized na
tions but-under the sponsorship and tutelage
of the United Nations-of the underdeveloped
countries.

Such an acceleration of automation would in
sure full employment for the existing labor
force, not only in feather-bedding and busy
work, but by the full occupation of highly
trained personnel. I t is the only method of
achieving full employment and full occupation.
We have neither one nor the other now.

How many scientists and engineers are still
employed, but under-occupied? How many pass
their days in idleness at their well-designed
desks and in their well-equipped laboratories?
How many repeat endlessly insignificant ex
periments, and waste all their ingenuity in
inventing more innocuous re-search (not
research) projects ?18

II. Experiment in Attrition

It is highly probable that, without the influx
of youngsters into the existing labor force,
normal aging and retirement-a process called
by modern economists and labor experts "attri
tion" -will diminish the labor force over the
next two decades at approximately the same
rate as machines replace human drudgery. In
the pioneering agreement, the "Long-Range
Sharing Plan," the union and the Kaiser Steel
Company pointed the way for a company and
its employers to share the fruits of automation.
Whatever can be saved by greater productiv
ity and efficiently is divided: one third to the
workers, two thirds to the company (which
must share its two-third's portion with the
government) .

AN ETHOS FOR THE AGE OF CYBERCULTURE 149

Any laborer whose job is eliminated by a ma
chine continues to draw his pay for one year.
During this time he is placed into a labor pool
which acts as a reserve to fill in for absentees.19

It is too early to draw general conclusions
from the Kaiser experiment, but the officials of
the steel workers' union are reasonably pleased
and the company considers the pool an asset.
This plan does not provide a complete answer
to the problems of automation, and it does not
stop the process of replacing human drudgery
with machine slaves. It does provide a cushion
for a few individuals.

III. Hope For the Future

If one steel plant can create a labor pool, if
one manufacturer can tax his machines and
use the money to encourage study, if one union
local can provide a place for learning and
reflection for its members with such remark
able results, we have good reason to be hopeful
for a bright future.

If we set ourselves as a long-range goal a
good cybercultural society, we can solve the in
termediate problems and devise appropriate
measures to overcome the immediate difficul-
ties that are attributable to the phase of tran
sition rather than the advances in technology.
The immediate consequences of diverting the
young and unskilled from the labor pool and
into a constructive program of education for
the age of cyberculture would be dramatic. It
would, first of all and for all times, wipe out
the demoralizing condition of hopeless unem~
ployment.

We know that in this rich country there is
considerable and stubborn poverty. Why does
it exist when granaries are bursting with
surplus food, when farmers are paid for con
senting to let their fields lie fallow, and when
stores are filled with every sort of consumer
product so that customers must be enticed to
want what they do not need? We know that
poverty, in this country, is poverty in spite
of abundance-poverty caused by inadequate
means of distribution, by the ethos, not the real
existence, of scarcity, i.e., by unemployment.
To wipe out unemployment and the ethos of
scarcity is to wipe out poverty.

This is not true of poverty everywhere on
earth as yet. There is still real poverty in this
world, and there are still poor nations, although
even the poorest nation in the age of cybercul
ture is not intrinsically and forever doomed to
poverty or the charity of others. That is why
we call the poor nations quite appropriately
underdeveloped nations. The most enlightened
domestic policy we might pursue cannot solve
world-wide problems, and the most intelligent
and ingenious' international agreements can
not forever eliminate the danger of nuclear war.
We must do much more. We must not have un
derdeveloped nations. The age of cyberculture
must be universal.

IV. World-Wide Cyberculture

If we eliminate unemployment in this coun
try immediately and proceed to create automa
tion at the fastest possible rate, we shall almost
simultaneously free an enormous number of
highly trained and skilled people-the employed
but under-occupied-who could, under the spon
sorship of the United Nations, assist and advise
the underdeveloped nations to build modern
automated industries.

At the present time, most of the newly
formed nations of Africa seem to be diligently
creating nineteenth-century conditions of the
worst sort. It is not surprising, since most of
their leaders were educated in Europe or the
United States two or three decades ago so that
they were imbued with the ideas of nineteenth
century Europe and America.

They dream or leading their countrymen out
of the jungle, and they are bringing them
straight to the horror of nineteenth-century
city slums. It is preposterous to lead human
beings out of insect-infested green jungles and
turn them into obsolescent masses of unskilled
and unwanted laborers in rat-infested city
jungles.

Surely among all the remarkable intellects
that have asserted themselves in the new na
tions of the world there must be some who can
understand not only John Locke and Voltaire
and Marx, but also Russell's mathematics and
logic and philosophy, and Wiener's cybernetics.
Surely there must be some among them with
the imagination not to imitate nineteenth-cen-

150 PROCE-E-DINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

tury American-European industrialism,. but to
create twenty-first-century cyberculture. Such
a person, if he also has power in his country
and influence among his people, can conserve
the most admirable values of his native culture
and create, at the same time, good living con
ditions for his people. He could bring to his
country the best our European-American civi
lization has to offer without dooming them also
to the worst.

If the ethos of the. society that sees virtue in
laboring "in order to" gain something-bread
or status, or self-respect-changes to an ethos
of abundance, it will be virtuous for human
beings to live human lives in leisure and abun
dance. And no-one can be sure what un
dreamed-of heights humanity can reach when
human talent is no longer wasted in the basic
struggle to survive.

I t is surely the only sensible and practical
choice to prefer leisure and abundance to idle
ness and waste. The choice must be made
and it must be made now. We cannot ignore
the powerful new phenomena human intelli
gence has created. We cannot abdicate our
responsibility to choose how they shall be used.
For in our very abdication of choice, we would
choose the worst alternative: to drift blindly
toward disaster.

If we want to conserve our traditional values
-the right of the individual to life, liberty, and
the pursuit of happiness-we must choose wise
ly and act boldly.

Our history was made by human beings with
bold vision and good sense, with deep moral
convictions and human compassion for human
frailty, with respect for the dignity of human
beings and love for mankind, with the imagina
tion to dream and the courage to act. Such men
and women cross oceans, transform continents,
and build the City of Man!

That is our heritage.

Appendix

A Program for Transition-Immediately At
tainable Goal

Keeping long-range goals clearly in mind, we
must make many choices and decisions about

measures to relieve the problems caused by
transition. Cybernation affects the unskilled
earlier than the skilled, it makes certain skills
obsolete sooner than others. This causes un
tenable conditions of abject poverty and a
sense of personal failure in the midst of great
affluence and achievement. It takes time to
erase the prejudices and superstitions accumu
lated for centuries.

The following suggestions to make the transi
tion period as constructive as possible and to
prevent suffering is a goal that is attainable.
None of the measures proposed will have an ad
verse effect upon the long-range goal of creat
ing a cybercultural society where human beings
can live human lives. And, to some extent, all
measures will contribute to achieving a cyber
cultural society as soon as possible and in a
humane manner that is of benefit to the in
dividual.

1. Government Action

1. An agency for cyberculture should be set
up. The agency must have sufficient funds
and power to study the over-all ramifica
tions of new phenomena, to study specific
recommendations made outside the agency,
to initiate large-scale exp'eriments, and to
carry out programs the agency wishes to
adopt without undue delays imposed by the
Congress or other governmental and non
governmental bodies. The Agency should
have representative of all branches of gov
ernment, of organized labor, of industrial
management, of academic life, and-most
important-of the unorganized consumers.
Representatives of the unorganized con
sumers, i.e., the vast majority of citizens,
should be knowledgeable people who are
completely distinterested, but intensely
committed to the goal of a good cyber
cultural society with the courage to try
the untried and the reverence for perma
nent values that must be conserved. A test
laboratory should be set up immediately
(Long Island would be most suitable).

2. Public works,' there is an almost inex
haustible need for an extensive program of
public works, such as road building, con
struction of dams, irrigation, conversion of

AN ETHOS FOR THE AGE OF CYBERCULTURE 151

sea water, construction of hospitals,
schools, parks, recreation and holiday
facilities, beautification of cities, slum
clearance, low-cost (but comfortable and
beautiful) housing (about one million units
per year is perfectly attainable), a reason
able power system to provide abundant and
low-cost power for industry and homes in
the most remote sections of the country. In
addition to an extensive public-works pro
gram, subsidies to individuals should be
provided, on a generous scale and in gen
erous amounts, to artists, writers and other
intellectuals, and to artisans and crafts
men. This will encourage the most valu
able members of a society and make it pos
sible for them to devote all their energies
to their human tasks; creating a great
civilization with a blossoming of art,
science, and philosophy, as well as a great
revival handcrafts. Pride in artistic and
intellectual achievement and pride in fine
craftsmanship would benefit not only the
individuals subsidized but the community
at large.

3. Constitutional guarantee of Living Certi
ficate. An means of distributing funds to
those who cannot find jobs should be co
ordinated. This would make it possible for
the most severely (financially) handi
capped to move from congested and expen
sive areas. Most of all, it would help to
restore a sense of dignity and worth to the
unemployed and make it possible for them
to learn the use of leisure.

4. Generous Re-location Allowances. Fi
nancial assistance for relocation would
make it possible for families to move to an
area where (1) jobs might be available,
(2) educational facilities might be accessi
ble, and (3) climatic and housing condi
tions might be advantageous. Although
reasonable precautions to prevent undue
abuse may be required allowances should
not be restricted to job opportunities.

5. Large-scale education program to assist
the chronically (often for generations)
under-educated, to develop the potential of
the gifted by enabling and motivating them
to continue their schooling for as long as
they can benefit thereby. Education facil-

ities should be extended and made practical
for adults up to any age when there can be
a reasonable expectation of achievement.
(Achievement to be defined in terms of a
personal sense of dignity rather than mate
rial success).

7. Rehabilitation of neglected and deteriorat
ing areas: urban and remote on a generous
scale and with the conscious intent to re
store natural beauty and create and I or re
store urban beauty.

8. Transportation: construction of rapid
transit systems, both urban and inter
urban, with particular regard for the com
fort and convenience of passengers and the
beauty of the community.

9. Study of the best use of the licensing powe1'
of government, and exercise of the best use
of such power, to carry out the transition
to a cybercultural society as rapidly as pos
sible.

10. Use of the taxation power of government to
expedite and ease the transition from
human labor to automatic machine systems,
apportioning costs of the transition period
fairly, motivating industry to cybernate
and finance the generous ~pplication of
the principle of constitutional Living Certi
ficates.

11. In the process of conversion from a de
fense-oriented to a peace-time economy, all
obsolete military installations and mate
riel should be transferred to the communi
ty for the best civilian use. Transfer should
be guided; trained personnel (from the
military) could participate in the conver
sion to civilian use.

12. A large-scale education and public relations
program to explain the cybercultural re
volution should be devised and carried out
with the cooperation of non-governmental
organizations.

II. Organized Labor

1. The labor movement should play a signi
ficant role in the transition period by rec
ognizing that their responsibility extends
to the unemployed, as well as to the (as
yet) employed.

152 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

2. Organizing the unorganized including
young people leaving school and unable to
find employment.

3. Vast educational programs to prepare
union members (and others) for leisure.
Such programs should be non-utilitarian
and designed primarily to stimulate people
to think through the familiar patterns of
the past and distinguish between obsolete
conventions and permanent values. A
realistic program designed to make "free"
time a time of leisure and accomplishment
rather than idleness would include educa
tion for hobbies and, simultaneously, foster
an awareness that the ethos of scarcity is
not necessarily virtuous.

4. Investing the vast welfare and pension
funds of unions in enterprises of social
value and thus exerting enormous influence
upon the shape of our economy and our
value system.

5. Cooperating in all programs to expedite
the transition, to a cybercultural society
and simultaneously entending the sphere
of influence of organized labor to those
whose laboring has been taken over by
machine systems.

III. Individ'Ual Action

1. In every kind of community, professional.
special-interest or other types of organiza
tions, the individual can spread his insights
about the cybercultural revolution. Dis
cussion with friends, with large groups can
serve to alert others to the fact that
changes are taking place, that changes
are not necessarily to be feared, and that
we do have choices to make to determine
the kind of world that is to evolve from
the changes. For although we can not elmi
nate the fact of change, we can determine
the direction into which change propels
us.

2. The thoughtful individual must seek as
much information as possible, sift informa
tion carefully, and articulate what he has
learned.

3. The education of the population in a free
society is the concern and responsibility of

all citizens. Education can spread by in
dividual and group action.

4. Interest and concern for the action of gov
ernment, industry, and labor, is the duty
of the individual. No government program
is too complex, no corporation too rich, nor
labor union too powerful for most careful
scrutiny by the individual. No injustice is
too minute, no human suffering too remote,
no person's fate too unimportant to affect
profoundly the structure of the society.
If the most insignificant right of the least
important among us is endangered ever
so slightly every right of everyone of us
is in danger. Only the individual can guard
the rights of the individual. And the in
dividual can and must demand that all a~
tion be carried out for" the benefit of in
dividuals in the society. It is still true that
a nation has the government and institu
tions it deserves.

5. Individuals, singly or through their or
ganizations, must demand generous educa
tional facilities and sources of information.
The media of" public information should
be re-organized to serve the public interest.
Freedom from commercials on the air and
from page after page of advertisting ob
scuring information in printed material
should and can be demanded by individuals
(which does not exclude the use of govern
ment licensing power to protect the in
terest of the individual.)

6. Individuals should make conscious efforts
to examine their own values, discard their
prejudices, and accept new ideas. "The
unexamined life is not worth living," said
Socrates. This clearly makes it the re
sponsibility of every citizen to examine his
own life and to assist others (though not
force it upon them, because that would be
ineffective) to examine their lives.

CITED REFERENCES AND
BIBLIOGRAPHY

1. JOHN KENNETH GALBRAITH, The Affluent
Society, Houghton Mifflin Company, Bos
ton (1958).

AN ETHOS FOR THE AGE OF CYBERCULTURE 153

2. Secretary of Labor, W. W. WIRTZ, Address
to the National Convention of the A.F.L.
C.I.O., New York (1963).

3. ALICE MARY HILTON, The Age of Cyber
culture, A Series, The World Publishing
Company, New York (1963).

4. WALTER REUTHER, Statement for the
Senate Subcommittee on Employment and
Manpower (May 22, 1963).

5. SOLOMON FABRICANT, Director of Re
search, National Bureau of Economic Re
search, Annual Report (1959).

6. President's Manpower Report (1962).

7. W ALTER REUTHER, Statement for the Sen
ate Subcommittee on Employment and
Manpower (May 22, 1963).

8. ALICE MARY HILTON, "Computing Ma
chines: Curse or Blessing," The Age of
Cyberculture, Syndicated Se:r:ies, North
American Newspaper Alliance (August 11,
1963) .

9. HANNAH ARENDT, The Human Condition,
University of Chicago Press, Chicago
(1958) .

10. PINDAR, Carmina Olympica, xi. 4.

11. EDWARD GIBBON, The Decline and Fall of
the Roman Empire, vol. I - III.

12. ALFRED NORTH WHITEHEAD, The Aims of
Education.

13. WILL DURANT, Caesar and Chmt; The
Story of Civilization, vol. 3, Simon and
Schuster, New York (1944).

14. ALICE MARY HILTON, Logic, Computing
Machines, and Automation, Meridian
Books, New York (1964).

15. ALICE MARY HILTON, "Cybercultural Revo
lution," The Minority of One (October
1963) .

16. HARRY VAN ARSI)ALE, JR., Report to the
American Foundation on Automation and
Employment, New York (1963).

17 . JOHN S. SNYDER, Report to the American
Foundation on Automation and Employ
ment, New York (1963).

18. ALICE MARY HILTON, "Automation With
out Tears," Electro-Technology (August
1960) .

19. DAVID COLE, Report of the Kaiser Steel
Agreement of March 7, 1963, Washington
(1963) .

INFORMATION PROCESSING AND SOME IMPLICATIONS

FOR MORE EFFECTIVE MANPOWER PROGRAMS
Herbert E. Sfriner

The W. E. Upjohn Institute for EmploY1nent Research
Washington, D. C.

This brief paper will focus on the tremendous
potential which now exists for the development
of a more rational and effective technique for
dealing with problems of manpower utilization.
This topic should call for a far more detailed
and sophisticc;tted treatment than it is about to
receive from me. For this, I must apologize,
both to this audience and my own conscience.
I feel, however, that the opportunity should be
taken to outline to this particular audience the
sort of information processing system which I
fee] must be developed if we are to have a more
effective means for dealing with the growing
manpower problem in the U.S.

In discussing the implications of information
processing for manpower problems, what I am
really concerned with are the two major prob
lems, unemploym.ent and underemployment. At
the present time, our nation would appear to
have an embarrassment of riches in both of
these areas. At the rate we are going, I'm some
what pessimistic about our becoming less
wealthy with respect to these two surpluses.
Aside from the fact that ~nsufficient levels of
demand for goods and services necessary to in
crease the demand for labor would appear to be
on the horizon, there is an increasingly difficult
problem of an inadequate amount of informa
tion to guide both potential employers and em
ployees in the match-making process we call
the "labor market." Before indicating the de
ficiencies of our labor market and what the im
plications of information processing may be,

let me briefly describe what the economist sees
as the functions of the market.

One of the major assumptions of economic
theory is that of the "market place" and its
function of establishing contact between the
forces of supply and demand. In the market
place those with a product or service to sell meet
those who may be interested in the purchase of
the product or service, and in the bargaining
process establish the "market price" and con
summate the economic transaction. In this way,
the needs of the consumer and the products of
the suppliers lead to the pricing and production
decision policies which ensure that the economy
is functioning in an optimal manner-at least
with respect to supplying what the market indi
cates is needed.

155

Obviously, I have not yet included a factor of
rnajor importance regarding the function of the
market~that of communication. In the case of
many products and services, we are all aware of
the consummate and skillful use of the various
news media in apprising us of their qualities.
There is not only very little of a lag between the
entrance of new products into the market and
the public information through television, news
papers and magazines of these new items-but
many of us are very frequently informed months
ahead of the imminent introduction into the
market of the new, completely revolutionary
"widget" without which no home, car, person,
or society can be complete. Indeed, we are

156 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

even made aware of those types of items which
are available for the person "who has every
thing."

But in one all-important sector of our eco
nomic life, the paucity of information and the
turtle-like movement in the direction of the de
velopment of a communication system to con
nect the forces of supply and demand represents
what is tantamount to an unpardonable sin. I
refer to our labor market and the theoretical
mechanism for matching available and pro
jected job needs with the unemployed or those
whom we can foresee as being unemployed.

As you undoubtedly know, the unemployment
situation in the United States has been one of
increasing concern since the mid-1950's. In the
past 10 years, we have not been at a level of un
employment which even the most conservative
economists can view with equanimity. Though
the present rate of 5.6 per cent is far above the
3 per cent we usually view as the maximum de
sirable level, there are many economists who
feel that the real rate of unemployment is much
higher. The bulk of this is concentrated among
the young, the old, and the minorities-chiefly
the negroes. There is currently raging an argu
ment between economists as to the reasons for
this rate of unemployment, which, in an un
precedented manner, continues to hang on like
a summer cold during the sunny seasons of
apparent prosperity. Some claim this results
from structural changes in our economy which
throw large numbers of people into the category
of the unemployable, while the other group con
tends that the real culprit is too Iowa level of
economic growth. For our purposes today,
which is the culprit, or whether it is both, as I
believe, has relatively little significance. In
either situation, there is an increasingly major
role which computers must begin to play if we
are to move in a direction of an optimal utiliza
tion of manpower. Several factors would lend
a sense of the imperative to the application of
a more scientific system for the acquisition,
storage, retrieval and dissemination of labor
market information.

Increasing rates of technological change pro
duce a shorter lead time between the potential
of the innovation and the innovation itself and
its possible resulting labor displacement. Con-

sequently, the amount of time in which society
can anticipate retraining needs and methods
for increasing worker mobility is shortened se
verely. With an ever-increasing labor force, the
numbers are far from inconsequential. I might
also add that along with the obvious economic
facet of the unemployment problem, given the
age and minority group characteristics of this
unemployment population, the stimulus for
dealing with this problem in a more logical man
ner would seem to increase rapidly.

How can computers be of importance in deal
ing with this situation? To begin with, com
puters and the development of a labor market
communication system will not create jobs, at
least not in the numbers necessary to put a
serious dent in the unemployment population.
But a communication system can begin to pro
vide a much more effective means of establish
ing linkages between those possessing specific
skills and those possessing the jobs for which
these skills are needed. Those of us who have
been involved in labor market analysis are more
and more aware of jobs for which there are no
takers because the takers are una ware of the
job openings. Logically, one asks, what about
the use of such agents of communication as the
newspapers, private employment agencies and
the United States Employment Service. In ex
amining these major possibilities, several "nec
essaries" for an optimal solution should be kept
in mind. To begin with, the description of the
available job and the matching skill must be
fairly detailed; second, there must be a form~l
ized network which brings together the partIes
most interested logically in each other's poten
tial; third, there must be the maximum cover
age by industry and geographical area, of all
job and skill-matching potential; and fourth,
there must be a minimal delay in sending the
message to the logical parties, both on the sup
ply, or employee, side and the demand, or em
ployer side.

Now what is the situation with respect to
newspapers private employment agencies, and
the U .S. E~ployment Service? If we begin with
newspapers, I think we immediately see that on
the employer's side, there is a real opportunity
for advertising in ample description. With re
gard to the unemployed individual, however, it
is difficult to envision a situation where the

INFORMATION PROCESSING AND SOME IMPLICATIONS 157

individuals who have been laid off, many of
whom are in the unskilled or semi-skilled cate
gories, will be in a position to advertise. This is
so, firstly, because of the financial problem.
With very limited financial means it is impos
sible for an unemployed individual to be able to
advertise in sufficient length so that an adequate
background description can be given. Aside
from this, many of the items and characteristics
which we have mentioned above could not pos
sibly be contained in the advertisement which
an unemployed individual might conceivably
place in a newspaper. Secondly, the newspaper
is hardly a formalized network which can bring
together the parties most interested logically in
the potential of each other; that is, the potential
employer and the unemployed individual who
may have the characteristics being sought by
the employer. It is a very informal source of
information with no compulsory or systematic
feature about it. As a matter of fact, in a study
done in 1962 by Eva Mueller and Jay Schmied
eskamp, supported by funds from the Upjohn
Institute, it was found that only between 5 and
10 per cent of the unemployed who were able
to locate new jobs had been able to locate the
jobs as a result of their use of newspaper ad
vertisements. The newspaper very s"eriously
lacks the potential :of a network which can be
institutionalized and which can, continuously
and. in an exhaustive manner bring together all
of the sources of information which we need for
the network system we must begin to envision.
Since it is also completely voluntary, there is no
real opportunity for an extensive coverage
either by industry or by geographical area.

If we look at the private employment agen
cies, we immediately see that there is the major
hurdle for many of the unemployed of a sub
stantial fee or part of their salary which
would be deducted upon placement. Private em
ployment agencies also lack the tremendous
scope of coverage in terms of industry and geo
graphical areas which we have set forth as one
of the major criteria for a successful system.
One of the objectives which the system we are
beginning to formulate should have is that
of being capable of directing the unemployed to
positions available outside of the immediate
areas in which they reside. Another problem
of the private employment agency is that very

frequently they tend to choose those sorts of
individuals whose skills represent a higher
probability of placement rather than a lower
probability of placement. The very practical
reason for this has to do with the high cost of
continuing to attempt to place individuals
whose skills are such that they represent a
higher cost rather than a lower cost problem
with respect to placement. The job placement
success of employment agencies can be com
mented upon quickly by alluding to the Mueller
Schiedeskamp study, where it was found that
only between 7 and 14 per cent of those unem
ployed who finally found work found the job
as a result of the use of an employment agency,
public or private.

Finally, let us look at the United States Em
ployment Service. The job description informa
tion and the matching skill information devel
oped by the U.S.E.S. mayor may not be fairly
detailed, depending on the efficiency or the em
ployment service officer or interviewing per
sonnel in the individual state agencies which
make up the U.S. Employment Service. Like
private employment agencies, between the
states we have an erratic-behavior pattern with
respect to the adequacy of the job description
information. However, the U.S. Employment
Service does have the skeleton of a formalized
network which can bring together parties most
interested in each other's potential. This is so
because it is organized with a central focus
coming from the Federal Government with em
ployment services located in and controlled by
the individual states. This is a very important
potential with respect to our envisioned com
munication system. By virtue of this distribu
tion of officers, there is the potential coverage
of each of the industries and geographical areas
in the United States. However, the U.S. Em
ployment Service, like the other sources of in
formation, lacks in the ability to have a minimal
delay in sending messages to the logical parties
both on the supply--or employee-side and on
the demand-or employer-side. Of great im
portance, however, is the fact that within the
present unemployment placement services of
the U.S. Employment Services, there is the seed
from which can grow a major automated com
puter operations system which is calculated to
provide the basis for matching information on

158 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

available jobs with available individuals for
these jobs. Under the original Wagner-Peyser
Act, which authorized the establishment of the
U.S. Employment Service, there was author
ized a system of j ob-clearances between the
states, and during World War II this activity
was of tremendous importance in achieving a
greater degree of mobility of the labor force
and moving scarce skills to defense industries.
This activity has continued as part of the em
ployment service and has been recently im
proved. Its most effective recent operation has
to do with the professional office network. This
particUlar plan deals with making potential
jobs available to professional people and poten
tial workers available for the consideration of
employers needing their services on a nation
wide basis. This program was begun in March
of 1956 after a number of pilot projects and
experiments in 8 states and the District of
Columbia and Puerto Rico. At the outset, the
plan was to provide for a flow of unfilled orders
and unmatched applications for the local office
to a central "key city" office in each one of the
individual states concerned with attempting a
state-wide effort to find openings or recruit
applicants. Beyond that there was an exchange
of still unmatched orders and applications
among the various key cities which were de
fined. This was expanded so that by 1963 there
were 121 professional network offi'ces located
in key parts of all sections of the United States.
This precedence could perform an important
function in that it begins to indicate a proto
type on the basis of which a larger automated
massive acquisition, storage, retrieval and dis
semina tion system could be developed. As I
would envision the system toward which we
hope to move, every individual unemployed in
the United States who registers either for a
job at the U.S. Employment Service or at a
private employment service, or for unemploy
ment insurance would have information filed on
the nature of his particular skill, educational
background, work experience, age, and other
social and economic characteristics of impor
tance for job location. Such information would
be coded in terms of a number, such as the
Social Security number, so that in the event
that such an individual was able to obtain a
job for which he was qualified, that individual's

availability for a job would be dropped from
the storage system. In addition, all graduates
of high schools, whether or not they were seek
ing jobs, would also be listed in the same man
ner on the assumption that they might possess
skills for which jobs would be available in the
United States.

On the emp'loyer side, all job vacancies would
have to be reported to the U.S. Employment
Service indicating the expected duration of the
vacancy, the nature of the skills indicated as
necessary to fill the vacancy, and other social
an economic characteristics of the individual
for whom the vacancy might be a possible
source of work. In addition, all expected va
cancies within a 12-month period would haye
to be listed by employers, thus providing an
early-warning system of expected unemplo
ment in a specific industry and community.
This information would be gathered at each of
the local U.S.E.S. offices in each of the states.
Each state would then have a central collection
agency which would then put all of this infor
mation, coded properly for identification pur
poses, on tapes from which the information
would be brought together in a central skill
job-locator system. This locator system would
quickly match jobs available--no matter where
the job may be found in terms of geographical
area and industry-with the skills which have
been posted for each of the individuals seeking
work. The matches which fall out of compari
sons of skills and job openings would then pro
vide a means for communication without delay
to the concerned individuals. Communication
would take place simultaneously, as a matter of
fact, in order to permit both the employer and
the prospective employee to make contact with
each other. Depending on the scarcity of the
skill and the proximity of the employer to the
employee, there might be indicated the pro
vision of mobility funds, either from industry
or from the government. But in any case, at
least there will have b€en achieved a matching
of a job opening and the individual who is seek
ing that particular sort of job, or for which his
skills provide him with a basis for doing the
job. This second point is important because
more and more we have begun to recognize the
need for transfer from one particular occupa
tional skill to another. In some cases, the skill

INFORMATION PROCESSING AND SOME IMPLICATIONS 159

is such that we can move quite easily between
industries; hence it's important that the infor
mation which is stored is of such a fundamental
or generic nature that the language of the job
description itself does not fall into folkways
or traditional terms which might limit place
ment on the basis of a restrictive job descrip
tion "cliche" rather than on the basis of skill
descriptors which may qualify an individual
for a number of jobs with completely different
titles.

What I have discussed thus far would be an
ambitious program to get under way immedi
ately on a national level. However, a great deal
can be done at the local level. By local level, I
would begin within the confines of a major
metropolitan area rather than on a larger re
gional basis. By starting at the local level,
there are several assets. To begin with, the
local U.S. employment services does, to some
degree, although a limited one, know the local
labor market. It does avail itself of a certain
limited number of information inputs from em
ployers with regard to contemplated changes in
the labor force. It also, to some degree, makes
use of what information is available on the
nature of forthcoming graduates from voca-
tional education programs and the nature of the
skills which they may possess. Building on this
rather primitive basis, we can begin to design
at the local level a more formalized system of
information acquisition, storage, retrieval and
dissemination with respect to labor market
structure and needs, both on the ~upply and
demand sides. An additional asset, if we start
at the local level, results from the fact that
co-operation between employment services of
the individual states varies rather widely and
in most instances we find that the individual
U.S. employment services within a state act on
an autonomous basis. In some instances there
is a bonus which results from the fact that some
school systems have already begun to develop
formal and standardized procedures for storing
information on graduates. This is done with
the objective of following up on graduates after
their departure from the school system in order
to determine what the nature of their work in
the job world was after leaving school and the
degree to which the training, especially voca
tional, affected their success in finding work as

well as the nature of th~ work which they found.
These information systems can be taken over
and utilized for some of the initial information
inputs which will be necessary on graduates as
well as non-graduates coming from the school
system and entering into the labor force.

In addition to the use of computer systems
for providing a means of communication be
tween the demand and supply sides of the labor
market, there is also a fascinating opportunity
to utilize the computers as a current analytical
tool for determining the relationships between
various economic, social, and educational char
acteristics of the employees or unemployed labor
force in the population and the degree to which
these characteristics affect mobility, job-seek
ing patterns, ease of placement, labor turnover,
and other factors which are of prime considera
tion in the development of manpower policies.
At the present time, we know very little con
cerning these sorts of factors and the degree
to which there are correlations between these
factors and other behavioral characteristics and
placement possibilities of the unemployed as
well as the employed in the labor force. By
use of computers, we may also be in a far better
position to determine the degree to which indi
viduals \vith a broad array of skills may be
underemployed in our economy. Once having
established the basis for gathering information
and communicating th}s information on individ
uals seeking jobs as well as employers seeking
skilled individuals for jobs which are available;
there is the potential for continuing to gather
information \vhich can be coded on the basis of
Social Security numbers with regard to types
of skill, hours of work, units of output or pro
ductivity, and other such economic and social
characteristics while the individual is actually
employed. This information can be collected,
collated and analyzed on a current basis and,
with such information being available, there is
the possibility of our being able to move away
from the rather limited sample which we now
use to measure unemployment in the United
States. Further, it presents us with the in
triguing possibility of being able to put a tracer
on individuals who have been displaced for va
rious reasons from an industry, the degree to
which they find new employment, the nature of
the new employment which they find and the

160 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

levels of wages which these individuals are able
to obtain in these new forms of employment.
This is particularly intriguing because, at the
present time, the major argument raging be
tween economists concerning whether or not
unemployment is due to structural factors, in
cluding technological unemployment, or too low
a level of aggregate demand has been subjected
to no truly rigorous research treatment. Each
side of the argument obtains major support
from deduction, logic, Jl.nd scanty data rather
than from large-scale analytical research pro
cedures involving survey techniques and di
rectly relevant primary data. Before closing,
I would like to suggest one additional fascinat
ing potential application of computer technol
ogy to a difficult manpower problem--;that of
designing more effective training systems.
Among these systems I would include both vo
vational training at the high school level and
adult re-training at the post high school level.
If we regard this sort of training as a schedul-

ing of a mix of sequential, overlapping and
concurrent phases, where the optimal situation
is one where we can fO-recast time "bottlenecks"
and choose options which shorten or eliminate
these bottlenecks, we are really considering the
application of PER T and critical path method
techniques for training and curricula design
problems. The scheduling of education, very
much like the scheduling of a Polaris project,
calls for the same awareness of the trade-off
potential between time and money and the de
velopment of PER T network or critical paths
which permit the design of a system more con
cerned with producing an end product in less
time rather than being concerned with a mar
ginal savings of funds. This is not only of sig
nificance with respect to scientists and engi
neers but also with regard to potential juvenile
delinquents and heads of families who, without
work or meaningful job roles, represent serious
personal and social costs with which we are
already becoming familiar.

THE COMPUTER REVOLUTION AND THE SPIRIT OF MAN
Robert H. Davis

System Development Corporation
Falls Church, Virginia

Many of us are gradually becoming aware of
the fact that an enormous number of Americans
live in abject poverty. While estimates of their
number vary, it is certain that millions of people
in this country live in chronic need, perhaps as
many as one out of every four of five citizens.4

Children, the sick, and the aged constitute a
large part of this number; but also included
among them are approximately four million un
employed Americans on whom millions of addi
tional citizens once depended for their support.
Many of these people are victims of automation
and the computer revolution. John Snyder,
President of U.S. I'ndustries, has estimated that
automation is a major factor in displacing
40,000 workers per week. The Department of
Labor, which is more conservative, estimates
the rate of displacement through automation at
4,000 per week.

But poverty is not the only threat to those
who have been displaced by automation. Even
if the unemp]oyed are provided an adequate
standard of living, millions will still be threat
ened by psychological problems which have their
roots in two conditions of the contemporary
American scene. First, most unemployed people
hold values based on the Protestant e,thic
values which are ill-suited to a world in which
there is not enough work to go around. And
second, there is the machine itself, particularly
the computer, which is presented to the worker
as being faster, more accurate, more reliable,
and in short, better than he is. In this essay I
would like to focus not on the physical plight of

161

these people but on the' psychological problems
they face.

Underlying many of the psychological prob
lems which the unemployed face in trying to
adjust to their condition is the fact that the
prevailing value system in this society places
great stress on the virtue of work. Although
many observers have commented on this, one of
the best known was Max Weber who called it
the Protestant ethic.9 The central notion in
the Protestant ethic is the idea that labor is
noble whereas idleness is immoraL The fact
that Weber, a German, chose an American,
Benjamin Franklin, as the exemplar of the
Protestant ethic emphasizes the degree to which
this country is uniquely identified with it.

The aphorisms of Franklin are rich in their
reference to the moral value of a man's labor.
Franklin, at one point in his career, set out to
distill the essence of moral perfection into 13
virtues, one of which was industry.3 "Lose
no time," he advises. "Be always employed in
something useful; cut off all unnecessary ac
tion."

In Poor Richard's Almanac, Franklin makes
these additional observations on work and idle
ness:

"At the working man's house hunger looks
in, but dares not enter." .
"Plough deep, while sluggards sleep, and
you shall have corn to sell and keep."
"Trouble springs from idleness."

162 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

No twentieth century American is entirely
free of his cultural ties to Benjamin Franklin
or the Protestant ethic. Despite occasional jokes
to the contrary, most of us feel uneasy when we
are away from the daily working routine too
long. Indeed, as our jobs become more abstract
and it becomes more difficult to point to concrete
products resulting from our most intensive
labors, many of us are plagued with doubts.
Are we in fact needed? Are we paying our
way? Or are we perpetrating a gigantic hoax
on a world too confused to recognize what it
does, in fact, need?

Our uneasiness is rooted in the fact that ,work
is the principal avenue by which Protestant man
fulfills his potential as a unique and creative
human being. Although our daily life is filled
with numerous activities, work and sleep con
sume the largest part of our days; and in no
other sphere is the potential for self-realization
so great as work. To question my work is to
threaten my value as an individual; to deprive
me of work is to take from me the opportunity
to give meaning to my life-the opportunity to
achieve and to be recognized by my fellow
human beings. The important point to note here
is this: a man's labor does more than supply
the necessities of life; in this culture, it also
feeds hidden and only dimly understood psychic
needs as well. Though a man may have more
money than he requires to satisfy his own needs
and those of his family, he still feels impelled
to work. Work is an autonomous activity: it is
good in and of itself, having a value surpassing
the immediate ends it serves. "God gives all
things to industry," says Poor Richard. To not
work, on the other hand, is bad. "Be ashamed
to catch yourself idle," as Poor Dick says.

Though it may be otherwise on some far off
Pacific Island, in this culture the average man
who does not work feels guilty and useless, and
this, unfortunately, is true even though he is
unable to work through no fault of his own
because he is too sick or too old or too young or
too poorly trained.

While the unemployment statistics do not tell
the whole story, they suggest that there is a
great deal of psychological, as well as physical,
misery in this country.ll The plight of such
"special" manpower groups as the young, the

old, and the minorities is particularly tragic.
Unemployment rates for teenagers are three
times the national average and have risen
almost 70 % in the past five years. Older
workers-those over 45 years old-are similarly
disadvantaged, finding it difficult to find a new
job once they lose their existing one. They ac
count for a disproportionate percentage of the
long-term unemployed, and many older workers
":retire" prematurely to avoid the psychological
stress of hunting for non-existent jobs.

Minority groups are hardest hit. Unemploy
ment rates for non-whites are in almost all cases
twice the rate for whites-regardless of educa
tional level, age, sex or skill. This means that
non-white unemployment rates for teenagers
amount to about one potential worker out of
three; and in some areas, only one youth out of
two has found a job.

One could go on citing such statistics as these
endlessly, but that is really unnecessary. These
data point up the central fact that millions of
people are caught in a fearful conflict. They are
unable to find jobs in a culture where the pre
vailing ethic is "work or be damned."

These statistics appear to have had very little
impact on the drive to replace' men with ma
chines. Indeed, the moral imperatives which
guide the computer revolution seem to take for
granted that man will somehow bungle through
if the machine is properly tended. Writing in
Harper's in 1951,6 two Canadian physicists,
E. W. Leaver and J. J. Brown, suggest that
widespread automation will bring an era of
peace and creative human development. Their
basic principles, which will presumably bring
about this new era of peace and prosperity, are
notable for their emphasis on the machine,
rather than on man himself, as the source of
human salvation.

1. Machines should replace men wherever
possible.

2. Men should not be used for routine opera
tions if machines can do the work.

3. Automaticity of machines should be en
couraged.

4. Automaticity of men should be dis
couraged.

5. Men must be ancillary to machines.

THE COMPUTER REVOLUTION AND THE SPIRIT OF MAN 163

To a generation which has grappled with suCh
earth-shaking problems as the control of nuclear
weapons, the belief that machines should replace
men or that men should be ancillary to machines
may seem trivial. But in point of fact, it may
be as revolutionary a change in the beliefs of
man about himself as the shift which occurred
with the widespread acceptance of the heliocen
tric rather than geocentric view of the universe.

Before the general acceptance of the heliocen
tric view of the solar system~ most people saw
a special significance in the fact that the sun
and stars apparently circled the earth; it seemed
to imply that man, who was obviously first on
earth, must therefore enjoy a special relation
ship to the entire universe. But even then, men
could still look around them and find in their
own handiwork something special, something
which set them apart from other living things.
Veblen, in fact, considered a sense of workman
ship chief among the instinctive dispositions of
man.7 The new doubts which the machine
has cast on the capabilities of man are sufficient
to shake his faith in himself to the very roots.

In the past, as machines extended human
capabilities, they freed men from much of the
drudgery that characterizes more primitive so
cieties. Even today in many underdeveloped
societies, virtually every member must devote
all of his waking hours to the finding and prep
aration of food. There is not enough excess
capacity in these societies to free more than a
few individuals for other kinds of activities.
Under such conditions, machines make good
economic sense. While the rationale behind the
quest for newer and better machines is still
largely economic, we seldom ask what we are
"freeingH men from and what we are "freeing"
them for.

Underlying the relatively high value which
we place on the machine is the notion that men
really aren't very efficient mechanisms. Ma
chines can do many things better than men, and
some would assert that machines can do most
things better than men. We are told that they
are faster; that they are more accurate; that
they are more dependable; and there are those
who believe that computers rather than men
should really make many decisions.

It would be well to note that it makes very
little difference, for the purpose of this discus
sion, whether the machine is or is not superior
to man. In many ways the issue is academic.
What really matters is the extent to which the
average person is convinced that the machine
will replace .. him because it is better- than he is.
With the enormous prestige of science standing
behind us, I submit that we have unwittingly
convinced the average man (who may not in
any case hold himself in very high esteem) that
he is in fact not really worth very much. This,
I fear, is a most serious mistake, first because
of the impact it will ultimately have on our cul
ture, and second, because it is not true!

Clearly the proposition that men should be
replaced by ma~hines because they are better
than he is inconsistent with the Protestant ethic.
If a man must work to feel worthy and needed
and we persist in eliminating him, then the
result must inevitably be a profound and pos
sibly disastrous change in the fabric of our cul
ture. While no one can predict precisely the
social consequences of this state of affairs, most
social scientists to whom I have talked are not
optimistic.

To the sociologist, the disparity between the
prevailing Protestant ethic and the realities of
modern life as experienced by many unemployed
people leads to an alienation between the in
dividual and his reference group. Emile Durk
heim 2. in his comprehensive study of suicide
used the term "anomie" to describe the condi
tion in which an individual is constantly forced
to compromise his established values when they
conflict with the existing reality-a condition
which inevitably results in a feeling of separa
tion and rootlessness.

From the viewpoint of the psychologist, most
problems are rooted in conflict and frustration.
When the society places inconsistent demands
on the individual, insisting, for example, that
he both work and accept the fact that jobs are
not available, he struggles to resolve the incon
sistency. In the absence of more effective re
sponse alternatives, the individual can be
expected to invoke certain well established psy
chological mechanisms in order to adjust to
continuing conflict and frustration. Aggression,
regression, fixation, and in the face of prolonged

164 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

frustration, apathy, withdrawal and resigna
tion, are mechanisms used to some extent by
normal individuals. But when tension persists
despite all efforts to remove it, and the individ
ual resorts to inappropriate psychological mech
anisms as a "way of life," the consequences
are potentially very serious for his mental
health.

The clash between the Protestant ethic and
automation threatens to place literally tens of
millions of Americans into what is essentially
an irresolvable conflict situation. In the absence
of socially acceptable alternatives, the most
likely result of this is the relatively permanent
adoption of one or more inappropriate psycho
logical mechanisms. This is basically an un
healthy state of affairs.

Many advocates of the machine-over-man po
sition declare that we wilJ automatically adopt
healthy alternatives-that we are entering a
new era where the workman will turn to culture
and the arts, thereby resolving the conflict in a
socially acceptable and useful way. This seems
unlikely.

According to statistics published by the De
partment of Labor, 11 the following educa
tional levels can be expected to prevail in the
1960's:

For youths, if current trends continue, ap
proximately 30 per cent of those entering the
labor market (7V~ million young people) will
not complete high school. Approximately 21/2
million of these will not even enter high school.

For non-white workers, the situation is even
worse. As of March 1962, one out of every three
non-white workers had not completed an ele
mentary education, and only one in five had
completed high school.

These educationally deprived groups, who will
be the hard-core unemployed of tomorrow, do
not appear to be particularly promising candi
dates to lead America in a new cultural ren
aissance-nor do the masses of older employed
Americans who suddenly find themselves dis
placed by machines.

In Oklahoma City, in 1960, an intensive effort
was made to help displaced workers after the
closing of the Armour plant. One hundred and

seventy people were tested, but only 60 showed
promise for retraining. As a matter of fact, out
of a total of 431 workers invited to be inter
viewed, only 143 men and 27 women completed
both tests and interviews.10

In another recently published study,13 the
Labor Department compared the characteris
tics of all unemployed workers with those of
30,650 trainees enrolled in Federally financed
retraining programs. Older workers are poorly
represented in such programs. Only 5.7 per cent
of trainees are over 45 years of age, and yet, 28
per cent of the unemployed fall into this age
group. From the report, it is not clear why these
people are so poorly represented, but one sus
pects that they are simply not prepared to build
new lives for themselves through retraining.
Whenever they are called upon to change their
ways dramatically, older people must overcome
a lifetime of learning and powerful habits built
up through years of conditioning. The report
notes that many older people are undereducated
and unskilled and have little to offer the econ
omy. It is reasonable to suppose that many of
these people are undereducated because even in
youth they were not highly motivated to learn,
and that many of them simply have no wish to
learn now. On the other hand, prodded by the
Protestant ethic, they do have the desire to play
a useful role in this society. It seems completely
naive to believe, as some apparently do, that
this need can be satisfied by social activities
which demand a radical reorientation of their
existing modes of behavior.

The new society will provide the potential
for additional leisure, but a large proportion
of the population is unfortunately ill-prepared
for leisure. They are ill-prepared, first, because
leisure is antithetical to the Protestant ethic,
and second, because the enjoyment of leisure
requires preparation for it. Relaxation may
come naturally to us as children. But the ability
withers under the regimentation of a civilized
society, as evidenced by the emotional and
psychological preparation required by most men
who have worked all their lives and who are
suddenly faced with the full-time leisure of
retirement.

Will the unemployed voluntarily turn to edu
cation in search of a solution to their conflicts?

THE COMPUTER REVOLUTION AND THE SPIRIT OF MAN 165

While I am not~ a ware of any research directed
at answering this specific question, a recent
study 12 by the National Opinion Research
Center provides some interesting information
about the kinds of people currently participat
ing in adult education programs. Although one
out of five adults follows some plan for leisure
time education, the "typical" participant is
apparently not one of the "other Americans."
Indeed, the "typical" participant is described
by the authors as a man or woman who has com
pleted high school, has an above-average income,
a full-time white collar job, and is a white mar
ried Protestant living in a city or suburb.

What very few people seem to fully under
stand is this: large numbers of unemployed
people lack the most elementary academic skills,
.such as the ability to read well. In view of the
fact that millions are insufficiently trained to
find work, or even warrant retraining, and that
many more are past ,their prime, fixed in their
ways, and poorly adapted to change of any kind,
it seems unlikely that they will turn to cultural
interests.

Nor do these remarks apply solely to the
laborer. It would be foolish to believe that the
computer revolution will stop with the man in
the denim shirt. On the contrary, white-collar
automation is at least as great a threat as blue
collar automation. Today, white-collar workers
being replaced are those who are engaged in
basically routine tasks, but if the past is any
guide to the future, the "clip level" will gradu
ally rise to encompass literally millions of addi
tional white-collar workers. In the crudest
terms, computers are installed because they
make economic sense, and they make the most
economic sense where they eliminate high-cost
manpower. Managers aren't installing comput
ers for the fun of it; they are installing them
because they save money, largely by doing tasks
which would otherwise be performed by
humans. To review each of the areas in which
this is true would be both tedious and unneces
sary. Airlines, banks, brokerage houses, manu
facturing firms-virtually all sectors of the
American economy-are discovering the simple
fact that computers cut labor costs.

Whether white-collar workers will turn, en
masse, to the classics, art, music, or even do-i,t-

yourself projects, is not easy to foresee. But
even if millions do turn to cultural pursuits, it
is safe to predict that millions will not. What
of them? Like their friends in denim shirts,
they too are products of a Protestant ethic.

To summarize, millions of unemployed Amer
icans, and millions more who may soon be dis
placed by automation, are psychologically
threatened from two directions at once. First,
there is the thre~t created by the fact that they
hold a value system-the Protestant ethic
which is contradictory and ill-suited to the
world in which they find themselves. And sec
ond, there is the threat presented by the ma
chine itself-the computer-which makes the
individual feel insignificant and inferior by
comparison. *

What are we to do about the psychological
problems I have described?

I have shown that the continuing process of
automation challenges one of the most funda
mental factors in the psychological makeup of
the American individual. While we are proba
bly unwilling and even unable to stop automa
tion, it is within our power to change the nature

* Although I am convinced that what matters here
is not whether machines are really superior to men but
what people believe to be true, I cannot leave this topic
without making Qne or two comments. Many authorities
appear to feel that machines will some day simulate all
of the important properties of human intelligence. As
a psychologist, I am frankly a skeptic.

In a recent article published in Datamation,l Paul
Armer deplores the fact that we keep redefining intel
ligence so that it is always just out of the reach of the
machine. The fact of the matter is "intelligence" and
"thinking" have always been concepts just out of the
reach of scientific psychology, as well. We don't really
know how to define them in an entirely satisfactory
way. Indeed, that is the problem. I'm sure that if these
terms are ever defined in a way which encompasses the
full richness of the phenomenon to which they generally
refer, then it will be possible to simulate them.

But, to be satisfactory, the definition will have to
include some extremely frustrating aspects of human
behavior. For example, any really adequate definition
of thinking will have to recognize the fact that percep
tions are selective and shaped by past experience; that
the mind wanders down strange and wonderful unpro
grammed paths; and that the most creative thoughts
are sometimes elicited by the most illogical and bizarre
associations. In short, the very features of man which
make him slow and unreliable may be his most valuable
properties.

166 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

of automation by making it more sensitive to
human variables. To the extent that our anal
yses of the benefits of automation ignore human
costs, they are incomplete. There are costs asso
ciated with retraining, with the support of the
unemployed, with social dislocation, and with
the psychological misery of the displaced
worker. In general, when the benefits of auto
mation are calculated, these costs are ignored.
Taxation may spread such costs over a broad
base, but they are still enormous--and they will
continue to grow as automation expands. It is
important that compu.ter scientists become
sensitive to these human and social costs so that
systems analyses include all of the relevant
variables.

Second, although the task will take decades,
we must begin to change the Protestant ethic.
Changing the Protestant ethic will involve a
dramatic reorientation of our society. Most
important, we will have to learn to live with
the fact that the day is not far off when com
puters and improved machines will make it im
possible for ever-increasing numbers of Ameri
cans to fulfill their potential through work.
Many of our children can expect to spend a
large part of their lives in leisure. To this end,
public education should modify its curricula to
prepare our children and grandchildren not only
for work but for the more profi,table use of free
time as well. Unlike many who see in every
subject which is not blessed by Admiral Rick
over a direct threat to the American way of life,
I believe we should begin to emphasize in our
schools the constructive use of leisure by en
couraging our young people to participate in
the full range of life's activi,ties, including art,
music, drama and similar fields which today are
seen by many to be frills. Also, the society
should recognize and reward excellence in these
fringe areas as much as it does in more tradi
tional fields. While I do not believe we should
turn our backs on science, we should not allow
it to consume us either.

Third, we must re-examine the economic base
of our society. Up to the present time, we have
forced man to work if he wished to receive an
income. If we can no longer provide work in .the
traditional sense for everybody, we must recon
sider how the unemployed are to be provided
with resources and what volume of resources

they should receive. Already, some writers have
suggested that every individual will have to be
given an absolute right to an income adequate
to live his life in dignity.s

Fourth, there is the requirement that we edu
cate every citizen to the limit of his abilities.
To the extent that people are needed at all in
the emerging, new society, they must be edu
cated. Most of those who are not educated will
be cast ruthlessly aside. Furthermore, educa
tion is a profitable way to consume ,time which
might otherwise be spent in antisocial or so
cially maladaptive ways. Therefore, the right
to an education is an essential guarantee-not
only for the protection of the individual but for
the protection of society as well.

Finally, we need more information about the
problems of the unemployed. We are in need
of better psychological data about the displaced
worker, his attitudes toward society, the way
he spends his time, and his fears for the future.
We must try to determine the extent to which
the conflicts I have postulated lead to an aliena
tion of the individual from society and how we
can prevent this from happening. We need to
know more about how to prepare people to ac
cept change, particularly older workers. We
must refine our tools for predicting future
trends so as to properly prepare our young peo
ple for the world they will someday face.

Carl Jung 5 once remarked that in science
"the individual man and, indeed, all individual
events whatsoever suffer a leveling down and a
process of blurring distorts the picture of reality
into a conceptual average." In the scientist's
search for lawfulness, he abstracts a way com
plexity and reduces the individual to a statistic.
So it is with all of the statistics which I have
cited. The individual is lost. But if we look be
yond the abstraction to men, as living, breath
ing individuals, there is much to be concerned
about in this affluent society of ours.

REFERENCES

1. ARMER, PAUL. "Attitudes Toward Intelli
gent Machines," Datamation. March 1963,
pp.34-38.

2. DURKHEIM, E. Suicide A study in Sociol
ogy. Glencoe, Illinois: The Free Press,
1951.

THE COMPUTER REVOLUTION AND THE SPIRIT, OF MAN 167

3. FRANKLIN, BENJAMIN. The Autobiography
of Benjamin Pranklin. New York: Books,
Inc., n.d.

4. HARRINGTON, MICHAEL. The Other Amer
ica. New York: W. W. Norton & Company,
1962.

5. JUNG, C. G. The Undiscovered Self. New
York: The New American Library of
World Literature, Inc., 1961.

6. LEAVER, E. W., and BROWN, J. J. "Elec
tronics and Hurllan Beings," Harper's
Magazine. August 1951, pp. 88-93.

7. LERNER, MAX (Ed.). The Portable Vebelen.
New York: The Viking Press, 1958.

8. THEOBALD, ROBERT. Free Men and Free
Markets. New York: Clarkson Potter,
1963.

9. WEBER, MAX. The Protestant Ethic and
the Spirit of Capitalism. New York:
Charles Scribner's Sons, 1958.

10. "Automation: Report of the Armour Com
mittee." Bureau of National Affairs, No.
419~ June 23, 1961, 16 :621.

11. "Nation's Manpower Revolution." Hear
ings before the Subcommittee on Employ
ment and Manpower of the Committee on
Labor and Public Welfare, United States
Senate, Eighty-Eighth Congress, First Ses
sion, Part 4. Washington: U.S. Govern
ment Printing Office, 1963.

12. The New York Times. May 20,1963, p. 31.

13. The New York Times. December 1, 1963,
pp.l & 48.

NEW DIFFERENCE EQUATION TECHNIQUE
FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS

James M. Hurt
Associate Engineer
IBM Corporation

Data Processing Division
Kingston, New York

INTRODUCTION

This paper will discuss a new mathematical
technique for the solution of nonlinear differen
tial equations. The types of equations and non
linearities presented are those associated with
feedback control systems. Originally developed
as a method for simulating control systems, the
technique was verified during a recent study
of complex aircraft design simulations. It is
now being used in a man-in-the-Ioop Gemini
spacecraft simulation.

Since these design simulations include man
as a component part, it is imperative that they
be performed in real time. For many years,
the analog computer with its parallel comput
ing ability has been used for the real-time de
sign simulation of aircraft. In more recent
years, the analog computer has assumed the
same role for missiles and space vehicles. Pres
ently, aircraft systems have become more com
plex, space vehicle missions require more hours
of simulation time to complete a maneuver, and
high-performance missiles require more logical
decisions in their phases of flight. Because of
these conditions, it has become more difficult
to expand, use and maintain the large analog
systems which are required to perform real
time simulation.

169

Until the present technique was developed,
a general purpose digital computer was unable
to achieve a real-time solution for the more
complex design simulations. The primary ob
stacle to the digital approach was the excessive
COTI1puting time required ior simuiating the
vehicle's control system and rotational motion
equations by avaHable numerical techniques.
The roll, yaw and pitch channels of the aircraft
used as an example are represented by fifteen
linear and nonlinear differential equations in
addition to algebraic equations. The highest
input frequency is approximately three cycles
per second; the maximum transient response
frequency is 60 cycles per second. The solution
time for these equations on the IBM 7090 by
Runge-Kutta integration is 3.0 seconds for each
second of flight time. When solved by the new
technique, the same equations require only 0.17
seconds of computation time for each second
of flight time. This solution-time reduction, in
addition to a reduction in the computation time
for the vehicle dynamics equations, permii3
a digital computer to perform the simulation in
real time.

This paper will describe the theory of the
new technique as applied to the flight simula
tion problem. Autopilot and power controls
equations, and vehicle dynamics equations will
be used as examples.

170 PROGE,EDINGS---oSPRING JOINT COMPUTER CONFERENCE, 1964

p

Figure 1. Transfer Function Diagram for Aircraft Roll Channel.

PROBLEM DEFINITION

Figure 1 illustrates the Laplace transfer
function diagram of an aircraft roll channel. *
The yaw and pitch channels are of similar form
and will not be discussed. This transfer func
tion diagram represents the mathematics of
the vehicle's roll rate as a function of autopilot
(<Pc.) input. Additional inputs are applied at
point X:;. The first two inner loops contain non
linearities in the form of limiting devices. These
devices limit the magnitudes of the variables
X .. and Xt-\ to 6.55 and 20.0, respectively. The
first inner feedback loop is a high-frequency
control unit which accepts autopilot signals as
input. Its internal frequency response is up to
60 CPS and drives the second inner feedback
function. This second feedback transfer func
tion is a lo~-frequency unit and is the mathe
matical representation of the hydraulic unit
of the roll channel.

The next to last block gives the differential
equation for the roll acceleration. The equation
contains continuous nonlinearities in the form
of the time-varying coefficients Ch CII and a,
and the crosscoupling terms, rand q. The time
varying coefficients are functions of altitude,
speed, angle of attack, etc., while the crosscou
pling terms introduce the effects of yaw and
pitch on the roll of the aircraft.

The problem of concern is the solution of the
nonlinear differential equations for the roll
channel (yaw and pitch also) at a solution rate
which will give results that are accurate for a
design analysis, and yet permit real-time opera
tion of the entire simulation.

*Laplace transfer functions rather than differential
equations will be used to specify the mathematical
models. The use of the new technique to be discussed
is greatly aided by starting with transfer functions.

SOLUTION METHOD

The nonlinear differential equations are
solved by an appropriate set of difference equa
tions. These difference equations are derived
by first computing a z transformt of the Laplace
transfer diagram and then reducing the trans
forms to simple difference equations. The z
transforms are used in a manner which differs
considerably from their normal usage. By prop
erly computing z transforms for the linear
portions of the transfer diagram, and then com
bining the linear portions as though they were
separated by samplers, it is possible to arrive
at a transformation which, when reduced to
difference equations, will permit an accurate
and rapid solution of the nonlinear system.

Figure 2 is a feedback control system with a
nonlinearity (the limiter) in the forward loop.
The limiter prevents the magnitude of the vari
able X .. (S) from exceeding the limit KL • The
limiter behaves as a variable gain element. For
the nonlimiting mode, the gain K is unity and,
when limiting occurs, the gain is such that:
X:1(S)K == KJ. == X .. (S). When the system is
operating in the nonlimiting or linear region,
the forward loop transfer function is
G1 (S) G:! (S) and the system transfer function is

X:;(S) G1 (S)G:!(S)
X1 (S) == 1 + G1 (S)GAS)H(S)'

For this nonlimiting mode, a z transform of
the total transfer would be computed as

[
Gl (S)G2 (S)]:1:

z 1 + G
1
(S) G:! (S) H (S) . This transfer

tz is the sampled data variable and is equal to eHT

where S is the complex Laplace variable and T is the
sampling period. For further informat:on, refer to
sources listed in t.he Bibliography.

NEW DIFFERENCE EQUATION TECHNIQUE FOR SOLVING NONLINEAR EQUATIONS 171

Figure 2. Feedback Control System with Limiting.

function has the correct roots and steady-state
gain for a single impulse input. For any other
input, the steady-state gain would need adjust
ment. This would necessitate adjusting the
numerator polynomial coefficients. The denomi
nator polynomial would be correct and would
not need adjustment.

For the limiting case, the forward loop trans
fer function would no longer be Gl(S)G:!(S),
but KGl(S)GAS) where K < 111. The limiter
acts as a variable gain element. When X:{(S)
becomes larger than some predetermined value,
limiting occurs such that IX4 (S) I == KL• Thus,
for a particular sampling instant and limiting
gain KI, the system is considered linear and

4- 1-. ~ 4- .. ~ - ~.c ~ - .c -- n - L: - -- 'Lu C. C .. U- -1-1-1 e- s-' Xl) (S) -
HI t; ,,1. i:l..l1 ~ 1. t; 1.- 1. U! \,:; L! U II" X 1 (S) -

KIGl (S)G2 (S) The resuiting z trans-
1 + K1Gl (S)G2 (S)H(S)"

[
KIGl(S)G2(S)]

form would be Z 1 + K1G(S)G(S)H(S) .

Thus, for both the limiting and nonlimiting
cases, the system at any sampling instant may
be considered linear. This leads to the concept
of a piece-wise linear system. The main prob
lem which remains is to determine when the
limiting occurs, and it is here that a departure
from standard z transform techniques is made.

Figure 3. Sampled Data Feedback Control System.

:j: This equation is written in operator notation. The
capital Z indicates the z transformation operation.
Thus f(z) = Z [f(S)].

Some provision for stopping and checking for
the limiting case must be made. This can be
done by considering each element of the system
separated by a sampler as shown in Figure 3.

In this form, the calculations proceed around
the loop, one transfer function at a time. On
each pass through the forward loop, the test
for the limit is made before proceeding with
the calculations. In this form, the system
transfer function for the nonlimiting case be-

X;;(z) G1 (z)GAz)
comes X1 (z) 1 + G1 (z)GAz)H(z)
which does not correspond with the nonlimit-

. [G1 (S)G .. (S)]
ing transfer functIOn Z 1 +G

1
(S)G:!-(S)H(S)

calculated previously from the Laplace system.
The roots and gain of the transfer function will
not agree with those of the z transform calcu
lated from the Laplace transfer function. How
ever, by appropriate gain adjustments in the
forward and feedback loops, it is possible to
adjust the z transform so that the roots and
steady-state gain match. The difference equa
tions obtained from this corrected z transform
will give solutions which are within the accu
racy required for design simulations.

Figure 4 shows the transfer function dia
gra~ of a feedback control network which will
be used as an example to illustrate the tech
nique.

Figure 4. Linear Feedback Control System.

Since the system of Figure 4 is linear, an
exact difference equation may be derived. The
method consists of multiplying the Laplace
transform of the input by the transfer function
to obtain the output transform. The output
transform is transformed into z transform
notation. By dividing this output transform
by the z transform of the input, the z t{ans
form transfer function is determined. This
transfer function is then used to compute a
difference equation which will give an exact

172 PROGEE'DINGg.......SPRING JOINT COMPUTER CONFERENCE, 1964

T 1 T 2 T 3 -------------- T TIM
n

Figure 5. Arbitrary Input Sampled by Zero
Order Hold.

solution for the particular input used. How
ever, for real-time design simulations the in
puts are, in general, unknown and this method
cannot be used for computing the difference
equations. This difficulty is resolved by com
puting z transforms for step inputs or pulses
of finite width, where the width of the pulse
is equal to the sampling period. Any arbitrary
input may be approximated by a stair-step in
put.

Figure 5 illustrates a function which has
been broken up into steps.

This type of sampled input is obtained by a
zero-order hold, and introduces, on the average,
one-half of a sample period lag in the input.
This lag is compensated by a lead which is
characteristic of the z transform method. The
transfer function of Figure 4 is

X:;(S) G(S) 5
XI(S) = 1 + G(S)H(S) - S2 + 2S + 5 (1)

The output transform for a unit step input
is calculated by multiplying equation (1) by

the unit step transfor~ ~ .

X (S) X 5 (S) 1 5 :; = Xt(S)XS = S(S2 + 2S + 5) (2)

Equation (2) is expanded by partial frac
tions so that standard z transform tables may
be used.

5
S(S2 + 2S + 5)

S + 1
S2 + 2S + 5

1
S-

1
S2 + 2S + 5 (3)

Equation (3) may now be transformed into
z notation through the use of transform tables.§
rhe sampling period used is T = 0.05 seconds.

This rate is much higher than needed to pro
duce satisfactory results. The choice of a solu
tion rate is governed by the frequencies of the
input function and transient response. The
transient response frequencies are calculated
from the roots of the system transfer function.
To reproduce the response at this frequency,
a sampling rate greater than but not less than
twice the frequency should be used. Since an
arbitrary input function is sampled in a stair
step manner, a sampling rate must be chosen
to minimize the error introduced by the stair
step approximation. This error may be made
insignificant merely by increasing the solution
rate. This error is not present for step inputs
since the difference equations are derived for
step inputs. Thus, for step inputs, the solutions
are exact at the sampling instant, regardless
of the solution rate. A general criterion for
choosing a solution rate is to pick one which
will give satisfactory simulation results. The
rate is much less than required for standard
numerical techniques.

z Z2-e-.05 cos (.1) z X5 (z) ----------.:-....:--- z-1 z2_2e-·05 cos (.I)z+e-·1

.5e-·05 sin (.I)z 4
z2_2e-·05 cos (.1) z+e-·1 ()

z z2-.94648z
X5 (s) = z-1 - z2-1.89295z+.904837

.04748z
z2-1.89295z+.904837 (5)

z-1 z2-.8990z
X 5 (z) = -z- - (6) z2-1.89295+ .904837

The system transfer function in z notation is
computed by dividing equation (6), the output

response, by ~1 ' which is the step input in

z transform notation.

X5 (z) _ X/l(z) - 1
XI(z) - _z_ - -

z-1
z2-1.8990z+ .8990

z2-1.89295z+.904837 (7)

X5 (z) _ .00605z+.005837
Xl (z) - z2-1.89295z+.904837 (8)

The difference equation is computed by cross

§ Refer to appendix for a list of basic z transforms.

NEW DIFFERENCE EQUATION TECHNIQUE FOR SOLVING NONLINEAR EQUATIONS 173

multiplying both sides of equation (8) and solv
ing for X,.(z).

Z2X,,(Z) - 1.89295zX,.(z) + .904837X,,(z) =
.00605zX I (Z) + .005837X I (z)

(9)

.00605 Xl (Z) + .005837 Xl ~Z)
z Z

+ 1.89295 Xr.(z) _ .904837 X,,~z)
z z

(10)

In z transform theory, ~ represents a time
z

delay of one sampling period; -4- represents a z
delay of two sampling periods; and, in general,

L is a time delay of n sampling periods, or nT.
Zll

The inverse transformation of equation (10)
back to the time domain thus becomes:

X,.(nT) = .00605XI (nT-T) + .005837X 1

(nT-2T) + 1.89295Xr.(nT-T) -.904837Xr.
(nT-2T) (11)

Equation (11) gives an exact solution at the
sampling instants, nT, for the output of Fig-
ure 4 for step inputs (or for finite-width pulse
inputs of width equal to the sampling period).

A new method of calculating the difference
equations will now be discussed. The new tech
nique is required for the case where a limiter
is present. The same system of Figure 4 will
be used. Normally, a limiter woud be present
between the two elements in the forward loop
of Figure 4. However, for the initial analysis,
the nonlimiting mode is used and the limiting
element can be replaced by an element of unity
gain. The method, as stated before, is to com
pute z transforms for the linear portions, com
bine these portions for the overall transfer
function, and then make appropriate gain ad
justments such that the steady-state gain and
roots agree with the linear gain and roots. The
transforms for the linear portions are calcu
lated directly from the transform tables with
one modification. The transforms in the table::;
are transforms for a single-impulse input. Here,
step inputs are used which, through the sam
pling process, become a train of impulses. The
transforms for the single-impulse input do not
give a correct value of steady-state gain for

the impulse train. This difficulty can be resolved
by using impulses of area T, the sampling
period, or by multiplying the transform by T
and using the unit impulse. The multiplication
by T is a first approximation. The numerator
will generally require further adjustment. For
an integrator, the numerator is multiplied by
T and no further adjustment is required. The
integrator adjustment may be explained by re
ducing the sampling period. The z transform
is a discrete process which approaches the La
place as the sampling period becomes smaller.
Consider the Laplace transform for integration

~. From the tables, the corresponding z trans-

form is ~1 which is multiplied by T to get
z-

Tz The sampling period is reduced. z-I·

lim Tz
T~Oz-1

lim Tz

lim Tel':n'
T~O ewr_l

T(I+ST+S2T2+ ...)
2

T~O z-1 (I+ST+S2T2+ ...)-1
2

(12)

(13)

1
S

(14)

As the sampling period is reduced to zero, the

z transform for integration becomes ~ , which

is the Laplace integration transform as ex
pected. However, if the T had been omitted,
the limit would have been infinity which is in
correct. The z transforms for the linear por
tions of Figure 4 are calculated from tables.

The calculations for the numerator coefficient
of equation (15) may be omitted and a constant
K inserted. This coefficient will undergo a gain
adjustment when the roots are corrected.

5 T5z
--~
S+2 z-e-·1

.25z
z-.904837 -

Kz
z-.904837

1 Tz .05z
S ~ z-1 = z-l

(15)

(16)

The gain adjustment could have been made in
the integrator coefficient with the same output

174 PROGEEDINGS---<SPRING JOINT COMPUTER CONFERENCE, 1964

denominator of equation (17) is matched to the
Xs(z) denominator of equation (8) by solving for the

1--....... - gain constant K .

Figure 6. Sampled Data Feedback Control System
Loop Gain Unadjusted.

results. The only effect would be a time shift
in the response within the loop. The limiter
would limit at a slightly different time. Figure
6 shows the transfer function at this point. A
delay of one sample period has been inserted in
the feedback loop. Since the numerator and
denominator of the forward loop transfer func
tion are the same degree, the corresponding
difference equation relates the present value
of X;; (z) to the present value of XAz). How
ever, X:!(z) is equal to Xl (z) minus X;;(z).
Therefore, without a delay in the feedback, the
computer would be faced with the problem of
calculating a number which depends on itself.
This problem is avoided by inserting a delay
of one sampling period in the feedback loop.
With the delay added, past values of X:; (z) are
used to calculate the present value of X;; (z).

The transfer function of Figure 6 is

X:;(z) G(z)
X1(z) - 1+G(z)H(z)-

K.05z2
(17)

Z2+ (.05K-1.904837)z+.904837

The coefficient for z in the denominator poly
nomial of equation (17) contains the unknown
gain constant K. This constant originated from

equation (15) where the z transform of S!2

was calculated. The reason given for keeping
the numerator of equation (15) a constant K
was that this numerator coefficient would under
go an adj ustment when the roots were cor
rected. The denominator roots of equation (8)
are the correct roots for the system of Figure
4. Since the roots determine the transient re
sponse of a system, the denominator of equa
tion (17) must match the denominator of
equation (8) if the system of Figure 6 is to per
form as the original system of Figure 4. The

. 05K - 1.904837 == -1.89295 (18)

.05K == .011887 (19)

K == .23774 (20)

.011887z2
(21)

z2-1.89295z+ .904837

Equation (21) is the final transfer function.
It has the same denominator as equation (8)
and the numerator coefficient js equal to the
sum of the numerator coefficients of equation
(8) . Since the sum of the numerator coeffi
cients of equation (8) equals the numerator

Figure 7 A. Linear Feedback Control System.

coefficient of equation (21), the steady-state
gain of (21) is equal to (8) as desired. The
numerator is seen to be of an order higher
than equation (8). This introduces a lead in
the system output.

Figure 7 shows a comparison of the output
response of the system of Figure 4 to a pulse

1/2 Time (sec.)

Figure 7B. Input Pulse.

NEW DIFFERENCE EQUATION TECHNIQUE FOR SOL.VING NONLINEAR EQUATIONS 175

-.40·

Curve A - Exoct Differenc.e Equo!iOl"l Solution
e - NeN Difference Equation Technique

Figure 7C. Output Pulse.

time (sec)

input for the two methods of solution. Part A of
the diagram shows the system; Part B repre
sents the pulse input; and Part C gives the out
put responses. The results are for the non lim
iting mode. The solution which uses standard
z transform techniques agrees exactly with the
continuous solution given by equation (22).
Equation (22) was found from the inverse
transformation of equation (2). The input no
tation Xl (t) has been changed to unit step no
tation U(t).

X,,(t) == 2U (t) - 2e-t cos (2t)-e -t sin (2t)

-U(t-L'2)
[2_2e-t +1/ 2 cos (2t-1)-e-t +1/ 2 sin (2t-1)]

(22)

The solution as calculated from the difference
equations derived from Figure 6 leads the exact
solution, as expected, since a pulse input was
used and no delay in step or pulse inputs is in
troduced by the sampling process. This lead
may be programmed out, or may be desirable
in cases where instruments are driven in a
simulation. For an arbitrary input, the stair
step approximation introduces a delay in the
input which cancels all or much of the lead due
to the solution technique.

Figure SA is Figure 4 with the limiter added
to the forward loop. The limiter limits the peak
magnitude of the variable X4 (S) to unity. Fig
ure SB is the z transform of Figure SA. It is
the same as Figure 6 except for the addition
of the limiter and the value for K. Curve B
of Figure 9 is the difference equation solution
of the system of Figure SB for the pulse input

Figure 8A. Laplace Feedback Control System
with Limiter.

shown in Figure 7B. Curve A is the solution
of Figure 8A for the same input pulse. This
solution was achieved by Runge-Kutta integra
tion at a solution rate of 2,000 solutions per
second. The difference equation solution leads

Figure 8B. Z Transform Feedback Control System
with Limiter.

the Runge-Kutta solution but has the same am
plitude and frequency. The difference equa
tions were written from the linear portions of
Figure 6 such that the computer would calcu-

• 80

.«1

-.«1

Curve A - Runge-Kutlo Integration ot 2000 SolutiOM Se-cond .
8 - New [)jffe~nce Equation Technique

ti .. ,sec.)

Figure 9. Output Response for a Pulse Input for
Circuit Shown in Figure 8.

late around the loop a step at a time. This
step-wise solution was necessary to check for
the limit. The equations used were derived
from Figure SB.

176 PROCEE'DINGS----SPRING JOINT COMPUTER CONFERENCE, 1964

X2 (nT) == Xl(nT)-X5(nT-T) (23)

Xa(nT) == .23774X2 (nT) + .904837Xa(nT-T)
(24)

LIMIT hi Xa (nT)

.05X4 (nT) +X5(nT-T)

(25)

(26)

Figure 10 shows, in chart form, the effect of
limiting on the system roots. A comparison is
made between the root loci of the continuous
system and the z transform system for several
values of limiter gain. There are two z trans
form root loci; one is for a sampling period of
T '= 0.05, and the other is for a much slower

,rate of T == 0.2. The two z transform root loci
correspond very closely to the Laplace for values
of limiting gain near unity. This is true be
cause the z transform equations were matched
for the nonlimiting case K == 1. For smaller
values of limiter gain, the roots of the z trans
form deviate slightly from the Laplace roots.
This produces a small shift in the transient
response frequencies.

Limiting Gain

Laplace and z Transform
z Transform, T = • 05 T = • 2

1.000 -1.0 * j 2.00 -1.0* j 2.000

.922 -1.0*jl.90 -1.0 * j 1.899

.848 -1.0* j 1.80 -1.0 * j 1.797

.778 -1.0 * j 1.70 -1.0 * j 1. 696

.712 -1.0 * j 1.60 -1.0* j 1.595

.650 -1.0 * i 1.50 -1.0 * j 1.493

.592 -1.0 * j 1.40 -1.0* j 1.393

.538 -1.!l * j 1.30 -1. 0 * j 1. 292

.488 -1.0 * j 1.20 -1.0*J 1.191

.442 -1.(H j 1.10 -1.0* j 1.091

Figure 10. Root Locus Comparison.

ROLL CHANNEL EXAMPLE

This example will explain the important
features of the z transformation of the roll
channel of Figure 1. Figure 1 is expressed in
Laplace notation, except for the roll accelera
tion (p) equation. Before the z transform is
computed, this equation is placed in Laplace
notation. The equation for p contains time
varying coefficients and crosscoupling terms
from the yaw and pitch channels. These cross
coupling terms have been expressed as a func
tion of time only; however, they are mutually

dependent functions. Thus, rolling of an air
craft will affect its yaw and pitch rates. Be
cause of this interdependence of the cross
coupling terms, the equations for roll accelera
tion (p), yaw acceleration (i-), and pitch ac
celeration (4) form a system of nonlinear dif
ferential equations. For analysis purposes,
each of these equations may be analyzed sep
arately for a predetermined region of flight
by simply considering the crosscoupling terms
as additional inputs to the transfer function.

p(t) = Ku(t)f(t)q(t) [r(t), + p(t)q(t)]
+ KIa(t)q [¢I COS a - CII $in a]

(27)

Since the transfer function for each equation
is matched to give correct transient response
and steady-state gain, the total system of equa
tions will behave properly because the cross
coupling terms are treated as additional inputs
to each channel. Equation (28) is the result
of simplifying equation (27) by choosing an
optimum region of flight.

1> = 65.2of + Kll rq + K12r + 19dr - 12.2p
(28)

The flight region was chosen near the high
performance end. This choice was made so
that the coefficients in equation (28) would be
near these maximum values. This enables the
analysis of the root locus for the overall feed
back system to be made at maximum loop gain.
Fora lesser performance region, the coefficients
would be reduced. This would cause a reduction
in loop gain and a shift of the operating point
of the root locus. As previously shown, a good
match between the actual system root loci and

Figure 11. Transfer Function Diagram for Aircraft
Roll Rate.

NEW DIFFERENCE EQUATION TECHNIQUE FOR SOLVING NONLINEAR EQUATIONS 177

Figure 12. Roll Channel Z Transform Transfer Function (Roots and Steady-State Gain Unadjusted).

the z transform root loci is possible for lower
loop gains.

Figure 11 is the transfer function diagram
of equation (28). The diagram shows the cross
coupling terms as inputs.

The transfer function of Figure 11 is used
in place of the portion from af to p in Figure
1. Once this substitution has been made, the
roll channel transfer function is transformed
into z notation. This transformation of the
forward loop proceeds one inner feedback loop
transfer function at a time. The procedure for
transforming e.ach inner loop is the same as
discussed previously and will not be repeated.
A solution- rate of 20 solutions per second was
chosen. This rate gives satisfactory results and
permits a real-time solution. Figure 12 is the
resulting z transformation.

After performing the z transformation of
the individual loops of the system, there still
remains one final loop gain adjustment. This
adjustment is necessary to match the roots and
gain of the z transform system to the Laplace
system. The adj ustment in loop gain is deter
mined by comparing the root locus of the z
transform with the root locus of the Laplace
transfer function. A root locus program II was

II The Control System Analysis Program computes
root loci for linear, continuous or sampled data systems
in open-loop form. The input data may be in either
S or z transform notation, or any combination of these,
and may contain transportation lags. Options include
z transform computation pole-zero loci, and gain loci for
a specified gain.

The method of computing the root locus is described
in the paper "Numerical Methods for the Synthesis of
Linear Control Systems" by Maurice E. Fowler. The
paper was published in the 1963 Volume 1 of Auto
matica, pp. 207-225.

used which computes points on the root locus
for various values of gain (K) which the pro
gram inserts in the loop. The gain adjustment
for the z transform system is determined by
finding the roots of the Laplace system for
K == 1, and then comparing the gain of the
z system at the same point in the S plane.

Figure 13 is a plot of the two -root loci in the
S plane.

Desired II
Z Trans.fonn . 1.24~r 1.419
Operating POint.

G:tdTU:t::i~~: i16,;it-.~t\\11 #
Factor = .905 JI -

.8874 .979

I
Legend: .591 .635

---Z Transfonn
--laplace

.369- .390

.232 .242

- .V -24 -16

laplace Operating
Point
Gain Factor = 1.
Root = 19.917 +
j16.21

-8

jl6

jl2

i 8

i 4

o

Figure 13. S-flane Root Locus Plot with Gain Factor
(K) as a Parameter.

Since the computer did not calculate roots for
K == 1, a linear interpolation was used to deter
mine the K == 1 point. The resulting root is
S == -19.917 + jI6.210. The adjacent z root

178 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1964

Figure 14. Roll Channel Z Transform Transfer Function (Roots and Steady-State Gain Adjusted).

locus does not have the same real part due to
the characteristic lead introduced by the
method; however, a close match may be ob
tained by using the imaginary part of the root.
For ImS == 16.210 on the z locus, the gain is
determined by linear interpolation to be K ==
0.905. Since this gain should have been unity,
the z root locus was matched to the Laplace by
reducing the z loop gain by a factor of .905.

Figure 14 is the final z transform of the roll
channel. The loop gain adjustment was made
in the forward and feedback loops. This was
done to adjust the steady-state gain of C/>C to p,
and also to obtain the correct system roots.

Figure 15 shows in chart form, the Laplace
and adjusted z transform root loci. Values of
gain less than unity may be thought of as a
reduction in loop gain due to limiting in the for
ward loop. The values of gain shown in the
chart are not the actual loop gains, but are
multiplicative gain factors inserted in the loop.

z Transform
Laplace T; .05

Root Root

S;Re ± jIm S;Re ± jIm

R I
Limiting Gain

R I
e m K e m

-19.917 16.50 1.029 -20.323 16.52

-19.917 16.00 • 979 -20.308 15.98

-19.933 15.50 .931 -20.308 15.46

-19.948 15.00 .884 -20.292 14.91

-19.948 14.50 .839 -20.292 14.38

-19.964 14.00 .795 -20.277 13.84

-19.964 13.50 .753 -20.277 13.32

-19.980 13.00 .712 -20.261 12.79

-19.980 12.50 .673 -20.261 12.27

-19.995 12.00 .635 -20.245 11.76

Figure 15. Root Locus Comparison.

If, for example, the actual loop gain was 10,
then for K == .90, the system would be behav
ing as one with a loop gain of 9.

One last point worth mentioning is that the
root loci of Figure 13 are only a portion of the
loci of the Laplace and Z transform systems.
Actually, the z transform roots repeat them
selves up and down the imaginary axis at multi
ples of 27r/T. It is only necessary to match the
primary roots of the z transform. The other
multiple roots will automatically be matched
when the primary roots are matched to the
Laplace roots.

CONCLUSION

The difference equation technique described
in this paper has been successfully applied to
aircraft and spacecraft simulations. In these
simulations, the difference equations were used
primarily to describe the mathematical be
havior of both linear and nonlinear control sys
tems. A reduction in the computing time for
simulating these control systems was achieved.
This reduction ranged from a factor of 15 to 20.

The results of this technique may be made
to agree almost exactly with those obtained
from standard Runge-Kutta integration tech
niques merely by increasing the solution rate .
However, increasing the rate will increase the
computation time which may make the real
time criterion difficult to achieve. The air
craft simulation was solved at a rate of 20
solutions per second. The maximum instantane
ous deviation from Runge-Kutta solved at
2,000 solutions per second for the output of the
roll, yaw, and pitch channels was about 0.5%.
The steady-state values agree almost exactly.

The stability of the simulation is known be-

NEW DIFFERENCE EQUATION TECHNIQUE FOR SOLVING NONLINEAR EQUATIONS 179

fore the simulation is actually performed. This
preliminary knowledge is gained, of course,
from the root locus plot.

The difference equation technique may be
applied to a wide range of control problems.
Other possible applications for the technique

APPE.NDIX-BASIC z TRANSFORMS

I

N arne of Function t Domain

ANY f{t)

STEP u(t)

RAMP t

PARABOLA t2

EXPONENTIAL e_at

SINE sin bt

COSINE cos bt

DAMPED SINE e-at sin bt

DAMPED COSINE e-llt cos bt

I I

BIBLIOGRAPHY

1. FOWLER, M. E., Numerical Methods for the
Synthesis of Linear Control Systems, IBM
TR 24.001.

2. JURY, E. 1., Sampled-Data Control Sys
tems, John Wiley & Sons, Inc., pp. 1-63.

3. LEONDES, C. T., Computer Control Systems
Technology, McGraw-Hill, pp. 307-362.

outside the aerospace field are hydrofoil boats,
submarines, and industrial control applications.

ACKNOWLEDGEMENT

The difference equation techniques described
in this paper were originally developed by
Maurice E. Fowler of IBM.

S Domain z Domain

F(S) F(z)

1 z
S z - 1

1 Tz
S3 (z - 1)2

2 T2(z2 + z)
S3 (z - 1)3

1 z
S + a z - e-a'r

b (sin bT)z
82 + b2 z2-2(cos bT)z+l

S Z2_(COS bT)z
S2 +b2 z2-2(cos bT)z + 1

b e-aT(sin bT)z
(S + a)2 + b2 z2-2e-II 'l'(cos bT)z + e'--211'1'

S + a z2_ell'l' (cos bT) z
(S + a)2 + b2 z2-2e-IIT (cos bT) z + e'-2nT

4. RAGAZZINI, J. R. & FRANKLIN, G. F., Sam
pled-Data Control Systems, McGraw-Hill,
pp.I-116.

5. TRUXAL, JOHN G., Automatic Feedback
Control System Synthesis, McGraw-Hill,
pp. 501-557.

DISCONTINUOUS SYSTEM VARIABLES IN THE
OPTIMUM CONTROL OF SECOND ORDER OSCILLATORY

SYSTEMS WITH ZEROS*
Lt. Cmdr. William B. Nevius, U.S.N.

Norfolk Test and Evaluation Detachment
Norfolk, Virginia

and
Harold Titus

Assoc. Professor of Electrical Engineering
U. S. Naval Postgraduate School

Monterey, California

I. INTRODUCTION

When controlling the performance of a sys
tem, it is often desirable to choose the control
that will minimize errors in the system and do
it in the shortest possible time. A practical
matter that must be considered in the optimi
zation in relation to rapid action is the fact that
control is of a bounded nature. In a great many
important cases, the constraint on the magni
tude of the control effort precludes the use of
classical variational techniques to design the
controller.

In 1956 Pontryagin hypothesized his "maxi
mum principle" which has since been proven a
necessary condition for the optimization of
linear systems in relation to rapid action. 1

In solving the minimum time problem for linear
systems with bounded control, the principle
leads to a "bang-bang" form of control law.
This implies that the control effort is always
being applie.d at its maximum value. There re
mains, however, the task of finding the opti
mum time to s\vitch the control. Pontryagin's
method leads to a rule for switching the con
troller which is a function of the initial condi-

* Supported in part by the Office of Naval Research.

181

tions in the system adjoint to the one being
controlled. Generally these initial conditions
are difficult to find.

It is usually helpful to consider the control
problem using state space techniques. The co
ordinates of the space for an n til order system
here are a displacement error and its n-1 time
derivatives. The space may be divided into two
regions each of which is characterized by the
control optimal for the trajectories in that re
gion. Optimum switching between the two con
ditions of the bang-bang control occur on the
hypersurface dividing the space. The switching
criteria can then be stated as a function of the
state space variables.

Of considerable value in finding the switching
surface is the system adjoint to the system. The
adjoint can be thought of as the system running
in reverse time. By plotting trajectories from
the origin of the error state space "backwards"
in time, with the control satisfying the respec
tive adjoint variables, a surface is generated
which may be related to the optimal switching
surface in the system state space.

A problem of interest occurs when the sys
tem is of such a nature that when control is ap-

182 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

plieo, a discontinuity appears in one or more
of the system states. This may happen when
the control is of a bang-bang form and the for
ward transmission path of the system contains
zeros. It could also show up if the control is of
such a form that it approximates an impulse
to the system. When there are discontinuities
in the state space due to switching it is gener
ally no longer possible to write the switching
criteria as a function of the state space vari
ables ..

One alternative might be to switch the con
trol as a function of time. This may be done
effectively when the number of switchings to
reach the origin of the error state space is no
more than n-1 in an nth order system. Such a
restriction limits one mainly to considering
only those systems with real, distinct eigen
values. Large disturbances in lightly damped
(oscillatory) systems may require more than
n-1 switchings to zero the error states. The
most important consideration when controlling
as a function of time is the means of implement
ing the switching logic. To accomplish time
dependent control, it is virtually mandatory
that a digital computer be inserted in the con
trolloop.

Another approach to the problem is to find a
system that reacts identically to the system
with zeros except at the points of discontinuity.
Control of this parallel system can be stated in
terms of the state space variables. This logic
can then be used to switch the original plant.

This paper will be an investigation into the
latter method. The prob1em is as follows:

Given a second order oscillatory system
with one zero, find the optimum control for
zeroing the errors in the system in minimum
time and for zeroing the errors with mini
mum fuel.
The method of Pontryagin is used to solve the

problem. The brief description of the method
presented here is based on the work of Rozo
noer.l

II. PONTRYAGIN'S MAXIMUM PRINCI
PLE

Given the system state variables described
by n first order differential equations

Xi = fi (x,u,t) i== I, , n (1)
where x is a column vector in phase space and

U is a column control vector consisting of r
control elements.

The control u(t) mu~t belong to a closed sub
set U of admissible controls and must be piece
wise continuous. The trajectory x(t) in the
phase space is uniquely determined by (1) when
control u(t) and the initial conditions

(2)

are given.

The control u(t) of a system may be consid
ered optimum under a variety of criteria. A
large class of optimization problems may be
solved by presenting the criteria in such a way
that the solution is attained by· minimizing a
linear function of the final value of the state
space variables. A control must be selected
from U that will transfer the system (1) from
XO to some fixed closed set G of the phase space
such. that

n+1

S == L cjxi(T) (3)

I
is a minimum. The constants Cj and the Xn + 1

coordinate are chosen such that minimizing
(3) optimizes the system.

In a great many cases optimization of only
one of the coordinates of the system is desired.
For example, in order to optimize the magni
tude of

T

f F (x (t) ,u (t» dt (4)

°
for T and x(T) either fixed or free in a system
(1) for u(t)t:U, a new variable is introduced:

X n +l == f~(x(t),U(t))dt (5)

XOu+l == 0

and another differential equation

Xll+l == F(x(t),u(t»

is added to (1). The problem of optimizing the
integral leads to optimizing xn +l(T) at t== T.

DISCONTINUOUS SYSTEM VARIABLES IN THE OPTIMUM CONTROL OF SECOND ORDER 183

Minimizing Xn + 1 (T) in the system (1) with
Xn+l (t) adjoined is accomplished by putting the
problem in functional form (3) and applying
the maximum principle to gain the solution.
That is

n+l

S == L CiXi (T) == Xn+ dT) (6)

1

is the functional to be minimized. Here
it may be seen that Cl == C2 == ••. , Cn == 0 and
Cn +1 == 1.

A new dependent variable p (t) is now formed
such that

n+1

Pi(t) ==- L p"

The function

n+1

at. (x,u,t)
aXi

i == 1, , n+1

H == L p,.f" (x,u,t)

1

(7)

(8)

is introduced from which equations (1) and
(7) may now be written

riH riH _ _ .
Xi == ~a~~ Pi == - a--- .i == 1, ,n+l (9)

Pi Xi

The control u*(t) is said to satisfy the maxi
mum condition if H(x*(t),p*(t),u*(t» reaches
an absolute maximum at each time t
;(IOL t .L T) 'where x* (t) and p* (t) are the
values of the variables at time t with u*(t) € U
controlling. For linear systems of the type dis
cussed in this paper, the necessary and sufficient
condition for minimizing

n+l

S == L cixj(T)

1
optimally with admissible control is that the
control satisfy the maximum condition.

To use the maximum principle, H is formed
and maximized with respect to u (t). This pro
duces a

u* (t) == cp(x,p) (10)

which may be used with Equations (9) and the
boundary conditions to find u * (x) . If the end

point of x(t) is not fixed, it becomes necessary
to obtain boundary conditions on p(t) in order
to arrive at a 'solution. The conditions p(T)
may be found using a function F(x) ==-~ 0 which
describes G and Xl (T) E G, the end point of an
optimum trajectory. The form of p(T) will be
stated without detailed explanation; however,
it may be noticed that at time t == T, p(T) is
orthogonal to a hyperplane

n+l

L ai(Xi -Xi} == 0

I
through the endpoint of the trajectory and
directed toward that portion of G where

n+l n+l

L C;Xj -"::::::. I C:X-, (T).

1 1

The coefficients ai may be expressed as a linear
combination of the Ci and bi (Xl (T», the latter
being coefficients of a hyperplane through
Xl (T) bracketting G. Thus

Pi (T) == - ACi - p.bi (Xl (T» (11)

where A and p. are non-negative numbers one of
which may be set equal to unity as it is only
the ratio that is important.

Generally, three situations arise as to final
boundary conditions.

(i) If Xi (T) are specified for i == 1,2, ,
m then these become the boundary con
ditions for (9).

(ii) If XiI (T) are internal points of G for
i (l L i L n+ 1) then bi (Xl (T» == 0
and Pi (T) == - Ci o

(iii) If Xi,l(T) are boundary points of G for
some i(1 L i L n+l) then F(x(T» == 0
and the Pi, (T) are as in (11).

When F is differentiable, the bracketting
hyperplane through Xl has coefficients

(12)

If finding the optimum control for minimum
transit time another condition must be fulfilled
since T is not fixed beforehand. This condition
is that H(T) == O.

184 PROGEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

III. DEVELOPMENT OF SYSTEM EQUA
TIONS

The equation of a second order system with
zeros may be written

C + 2,o)c + (J)2C == a1u + a.u (13)
where c is the output variable of the system
and u is the output of a controller.

This paper is concerned with control of simi
lar systems that are purely oscillatory in nature,
i.e., E~ == O. To facilitate ease of computation in
the analysis, Equation (13) is scaled to

(14)

which when written in terms of the Laplace
transform of the output variable becomes

C(s) == (als st ~y(S) (15)

This system is represented in block diagram
form in Fig. 1.

Figure 1. Block Diagram of Control System.

The response of the system to a step input is
investigated more readily by means of the error
variable

e==r-c (16)

If the input r is fed forward as in Fig. 2, the
Laplace transform of the error, given

Figure 2. Controlled System with Input Fed Forward.

becomes

E (s) ==

c (0) == CO
c (0) == CO
R (s) == ru/s (17)

(ro - CO)s - (CO + a]r,,) - (als + 1) U (s)
S2 + 1

(18)

N ow the problem of zeroing the error states
reduces to that of zeroing the error initial con
ditions in the system.

Finally with the introduction of state space
variables

(19)

the system equations can be written in vector
matrix notation

IV. THE MINIMUM TIME PROBLEM

The problem is stated as follows:

Given the system (20) and a control force of
bounded magnitude lui L. 1, find the optimum
control u * (t) to transfer the state variables
from some initial point in the phase space to
the origin of the phase space in minimum time
T.

That is, given
e (0) == en

e(T) == 0

Inl L. 1

and the system (20), find u* (t) such that

T

(21)

S == f a dt (22)

is a minimum where a is a positive constant.

Introduce
T

en+1 == e, == S == f a dt (23)

°
The system equations then become

e = [-n ~] e + r~ u + u 1
Because of (21), the functional

3

S == L clel (T) == c:{ea (T)

(24)

(25)

DISCONTINUOUS SYSTEM VARIABLES IN THE OPTIMUM CONTROL OF SECOND ORDER 185

and since we wish to minimize this, c:{ == 1 is
chosen. ea (T) is not limited, hence the boundary
condition becomes

p:1(T) = - C:1 == -I (26)

By (8), the hamiltonian becomes

H == pte:! -p:!et +p:!(atu + u) + P:1a (27)

Since

-aH
Pa==~=O

it is evident that Pa is a constant and therefore
Pa == Pa(T) == 1 and now H is

H == PIG:! - P2eI + P2(alu + u) -a (28)

which is maximized in u if

atu + u == N[sgn P2] (29)

where N == max I al u + u I for each fixed
t(O L. t L. T). The control u* (t) which satis
fies these conditions is a "bang-bang" type con
trol where u == 1 at all times and u at the mo
ment of switching is unbounded.

Since ea has served its purpose in the optimi
zation process, we may now return to the sec
ond order system and solve for the "impulse"
variables. By (9),

r OIl
P==L-10JP

and the solution for u * (t) becomes

u * (t) == I . sgn [cos (t + e)]

where e is a phase angle dependent on xo.

(30)

(31)

Several properties of the optimum controller
are now known. First, the control is a bang
bang type which applies maximum effort at all
times in one of the two "dir€ctions.H It i3
switched periodically from one state to the
other every half cycle until the origin is
reached. Notice that each time the control is
switched, a discontinuity appears in the e2
variable. This occurs because u contains an
impulse.

t~+

.6.e2 == f (- el + alU + u)dt ==
t~-

ts
f at udt == al [u (tfl) - U (til)]

t s- (32)

where .6.e:! is the discontinuity in e:! at the time
of switching t".

One would now like to find a switching curve
L(e) which divides the phase plane el vs. e:! in
such a manner that control u* == +1 is optimum
in the space to one side of the curve and u * ==
-1 elsewhere. Control would be switched when
the trajectoty e* (t) crosses the curve. The dis
continuity .6.e:! precludes this possibility. For
example, examine the trajectory e* (t) for some
initial conditions that dictate u* == -1 for op
timum control. At the point where this trajec
tory crosses L (e) the optimum becomes u * ==
+1. The control switches and .6.e:! == +2al
occurs which places the states back in the space
where u* == -1 was optimum. Here the con
trol switches again, .6.e:!, == -2a, occurs and
chatter motion begins. The fact that e:! is mul
tiple valued at the instant of switching makes
a simple realization of L (e) impossible.

For periods between switchings where u == 0,
the system is well behaved with the solution
for the kth interval

100\
\<.J<.JI

where S == 1 . sgn p:! and K, <Pk depend on con
ditions of states at the start of the kth interval.

4.1 The transformed variable

The search for a variable of the system on
which to control leads to the possibility of "sub
tracting out" the discontinuity present in e2 at
times of switching.

The Laplace transforms of the system vari
ables are

E () _els+e2+ (als+l)U(s)
1 s - S2 + 1

where

e2S - et + s(ats + I)U(s)
S2 +1

(34)

U (s) == a (! - ! e-t," + ! e-t~" -)

(35)

which for any instant of time t (0 L. t < t 1)

a
U(s) (36)

s

186 PROCEEDINGS-SPRING JOINT COMPUTER CONFEREN.CE, 1964

Equations (34) then become

EI (s) _ e~s2 + (eg + at8)s + 8
S(S2 + I)

(eg + at8)s + (-e? + 8)
S2 + I)

(37)

By means of the initial value theorem, it is
seen that

lim e) (t) == lim sEt (s) == e?
t~O s~oo

(38)
lim eAt) == lim sEt(s) == et + at()
t~O s~oo

At time t == 0, et jumps to e!! + at.8 To remove
this discontinuity consider the transformed
variables

Y t (s) == E t (s)
(39)

) E
at()

Y!!(s == 2(S) - S

By virtue of (39) and (20)

or

sYt (8) == sEt (s) == E 2(s) == Yt(s) + at()
s
(40)

8
sYt(s) == sE!!(s) - a l 8 == -Y!(s) + -

s

y=[-~ ~JY + [:'J8 (41)
where 8 is a unit step function with sign to be
determined. The system (41) is identical to
that of (20) except for the action at time of
switching. It should be noted, however, that
care must be taken in assigning final values to
the system described by (41) if the two plants
are to be controlled in parallel. The final value
theorem and (39) gives

lim Y2(t) == lim sYt(s) == lim s(E2 (s) -
t~oo s~O s~O

a~(») == -al() (42)

From this it is observed that zeroing the final
states in (20) is analagous to zeroing Yl (T)
and attaining a final value

Yt (T) == -at()

in the system (41).

(43)

4.2 Boundary conditions and final control

From (38) and (39) it is clear that the initial
conditions on the e and y variables are identical.
From (39) it is also seen that

Yt (T) == el (T)
Yt (T) == e2 (T) -al()(T) (44)

At this point in the pursuit of the optimum con
trol, it becomes necessary to investigate the
system action possible at time t == T under ad
missile control. Ae2 of (32) provides a means
of changing the value of e2 instantaneously by
an amount dictated by the constraints on u(t).
With this in mind, it is noted that appropriate
use of Aet within the bounds of allowable con
trol may zero the e2 variable in zero time given
that e2(T) is within range. The conditions (21)
and (44) with (32) indicate that for

IY2(T) I La] (45)

the system (20) may be zeroed instantly. * The
boundary conditions on (41) then become

Yi(O) == Yi == ei i == 1,2
Y 1 (T) == 0 (46)

IY2(T) I L at
The final controller u2(T) that must zero the

errors for t > T has two conditions imposed
upon it, i.e.,

ut(T) - ()(T)

The solution to (47) is

(47)

u!!(t) == - Y2(T) exp (- t + T) t L T
a l a l (48)

It is assumed then that uAt) is available at
time t == T so that the boundary conditions on
the system are as stated in (46).

4.3 Switching functions

The method of finding a function L(y) with
which to describe the switching criteria for the
optimum trajectory proceeds as follows. As in
the discontinuous case, it is desired that

T

S == f adt (49)
o

* The conditions are stated in terms of the y variable
for convenience in order that notational problems aris
ing from multiple value of e!!(O) be avoided.

DISCONTINUOUS SYSTEM VARIABLES IN THE OPTIMUM CONTROL OF SECOND ORDER 187

---rs=-I
- -rs=+1

• direction of
positive time

Ya

Figure 3. y 1 VS. Y 2 Phase Plane with Trajectories
for 0 = ± 1.

be minimized, therefore, another variable Ya ==
S == c~Y~(T) is adjoined to the system and
once again Cl == C2 == O. The hamiltonian be
comes

H == P1Y2 + p]a]o - P2Yl + P20 - a (50)

This is maximized in 8 when

0==1 . sgn (alPI + P2) (51)

With this control, trajectories are circular
about (0, -alo) with radius determined by yO.
(See Fig. 3.)

Previous agruments have determined that
the conditions on the system are

Y,,(O) Yi i == 1,2,3

Yi,(T) 0

IY2 (T) I L'::::: al (52)

H(T) == 0

P3(T) -1

The function

1
F ==2(Y~ - ad L. 0

may be used to describe G. From this

(53)

- possiIIIt IIIII!II of p(T) forlms-a
--aritt:IIi!Ig cerve

and

Figure 4. Concurrent Action of p (t) and y (t)
for y~(T) = -a l •

p~(T) =-'\C2-fLb:!(y:!(T» =-fLY:! (54)

where fL>O with modulus such that F (T) = O.
In the phase plane of p] vs. P:! it is sufficient to
note that for trajectories terminating at YI (T)
= -at, pAT) 2:: 0 and for trajectories ending
at Yl (T) = a" p:!(T) L. O. This information
in addition to the control (51) completely de
fine L(y) for trajectories ending on the ex
tremes of the line segment yAT) I L. al'

Fig. 4 depicts representative action for opti
mum trajectories terminating at Y2(T) == -R},

ydT) = O. Trajectories ending at Y2(T) ==
+a}, Yl (T) = 0 are mirror images. The opti
mum switching curves are generated by picking
arbitrary values of p (T) from the admissible
set for the corresponding boundary values of
y(t) and working backwards in time plotting
the switching points determined from p (-t)
on the y] vs. Y 2 phase plane.

For trajectories ending in the interior of the
line segment where I Y2(T) I < a}, b2 (Yl (T»
= 0 and, therefore, P2(T) == O. This completes
the information necessary to describe L(y).
Fig. 5 shows a representative trajectory arrived
at by translating switching criteria from the
p plane to the y plane. Fig. 6 portrays the curve
with all dimensions.

V. THE MINIMUM FUEL PROBLEM

The minimum fuel problem is solved by mini
mizing the integral

188 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

P2

- - - switching curve

Figure 5. PI vs. P:! and Yl vs. Y:! Phase Planes with
Complete Switching Curves.

T

J = f (lui) + lalul)dt (55)
o

in the system (20) where T is not specified. It
appears simpler, however, to once again make
use of the transformed variable y(t). By mini
mizing

T

J = f iu dt (56)

o

in the transformed system (41), the desired
result can be obtained provided

i) the switchings in the time interval 0 L

t L T are kept to a minimum.

ii) adjustment is made at time t = T when
fuel is consumed zeroing the error states
e(t) with the exponential control u2(T).

After adj oining (56) to the system (41), the
hamiltonian becomes:

H = PIY:!- P:!YI + u(alPI + p:!) -lui (57)

Since T is not specified H(T) = O. With u(t)
constrained as before, the control that maxi
mizes H with respect to p(t) is:

u* = I . sgn (alPl + P:!) lalPl + p:!1 > I
u* = 0 lalPl + p:!1 < I

(58)

5.1 Initial conditions

Taking the time derivative of H

dH du dlul
dt = (alPl + Pz)Tt- dt

-3 -I

8=+1

- - - construction lines
--- switching ClFve

Y2

3o, 8=-1

" \
\
\
I

/

(59)

Figure 6. Optimum Switching Curve (minimum time).

h"Z

./

~~ "'»,
+ 0,

8=+1

--------:+"--.p.!.!.!.-----~y ... ,
-I

'm~","", switching curv.
traj.ctories

Figure 7. Optimum Trajectories of e(t) and y(t)
(minimum time).

DISCONTINUOUS SYSTEM VARIABLES IN THE OPTIMUM CONTROL OF SECOND ORDER 189

'I' e,
-I

- - - switclling curve
--trajectories

Figure 8. Optimum Trajectories of e (t) and y (t)
(minimum time)

it can be seen that ~~ = 0 if ~~ = O. It may

also be argued that the change in the hamil
tonian with time is zero if

ap +p -il.&- diu I
I I :! - du - dU (60)

Since u (t) is switching between u = 0 and u =
± 1 and vice versa, this means that the
hamiltonian remains constant if the control is
switched at alPI + P:! = 1 . sgn (dU). (See Fig.
10.)

By choosing control u * (t) the hamiltonian
remains at its maximum value, i.e., identically
zero from time t = 0+ after initial control has
been applied until time t = T. This control
minimizes the integral (56) but does not neces
sarily minimize total fuel when fuel consumed
at switchings is added. In order to minimize
switchings, it appears necessary to choose the
degenerate case, i.e., u = 0 until such time as
alPI + P:! = 1 . sgn (d u) where dU is the
change in u (t) when turning the control on.
Notice that this choice guarantees that R(t)
= 0 f01" all t, 0 L t LT. With this in mind, the

-I

tr -+1

.. _ .,...switching curve
__ trajectories

Figure 9. Optimum Trajectories of e(t) and y(t)
(minimum time).

problem remains to minimize fuel in the non
degenerate case. For this purpose it will be con
sidered that time t = 0 is that time when

alPI + P:! = I . sgn (dU) (61)

and initial control is applied.

At t = 0 it may be verified from (61) and be
cause R(O) = 0 that

-+---4:---+-......;.It;---t-I~PI

~w- _ switching
curve

(62)

Figure 10. Switching Criteria in PI VS. P:! Phase Plane.

190 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

,
u=+1

~~_{L
+-~_+-""":"~I--_';Pt '-admissible

points peT)

Figure 11. Admissible Points p(T) for y!!(T) = -at.

5.2 Final boundary conditions

In order to investigate final value boundary
conditions, the optimum trajectories terminat
ing such that Yt (T - At) > 0 are considered.
Trajectories in the rest of the space are mirror
images. As in the minimum time problem, an
optimum trajectory terminating at yAT) ==
-a), Yl (T) == 0 is investigated first. The deter
mination that P!!(T) ~ 0 as argued in (54) is

still valid. This condition on pAT) along with
the fact that H(T) == 0 precludes the possibility
of a trajectory terminating as above with u (T)
== -1. The following cases, however, do apply.
Consider

H (T) == - alPI (T) + u (T) [alPI (T)

1-="

+p:! (T)] - iu (T) == 0 (63)

I
I

: ID

\
\
\
\ , ,

" ---

1-

+

"" ,'"

/
/

","

I

\

I

\
\
\
\ 1+=" ,

I ,
I

I
I

I

\
I
I
I
I

0="

Figure lla. Switching Criteria for y:!(T) = -a)
(minimum fuel).

This condition implies that if u (T) == 0 then
pt(T) == 0 and if u(T) == + 1 then p(T) ~ 0

and P2(T) == +1. Fig. 11 portrays the locus of
admissible points p(T) and the switching
curves generated by these criteria in the Yt vs.
y!! phase plane are as in Fig. lla.

Optimum trajectories terminating on the line
segment Yt (T) == 0, I y!!(T) I < at must be in
vestigated in a fashion similar to that used with
the minimum time problem. Since a final
boundary point y!!(T) is not fixed, we may sub
stitute a final condition on P2(T) to reach a
solution. At this point it becomes necessary to
decide on the final value functional to be mini
mized. It is first noted that if the final control
to the line segment is u(T) == 0, then -al < Y2
(T) < O. (It must be remembered that investi
gation is of trajectories such that Yt (T-At)
> 0). If u(T) == 0 then also yAT) == eAT) and
in order to minimize the fuel consumed by u:!
(T) to zero e2 after time T then I e:!(T) 1==1 y:!.
(T) I must be minimized.

If the final control is u(T) == -1 (u(T) ==
+1 is not possible for trajectories terminating
on this side of the line segment) then e:!.(T) ==
y:!(T) -a) and, therefore, ly:!.(T) -at I must be
minimized. In both of the above cases, it may
be seen that y:!.(T) must be maximized on the
line segment in order that fuel consumed by u:!.
(T) to zero the error states be minimized.
Therefore, the functional to be minimized is

3

S== L CiYi (T) == - y:! (T) + y:~ (T) (64)

where
t

Ya(t) == f luidt (65)

o

By prior arguments p:!(T) == -c:!. == +1 and
Pa(T) == Pa(t) == -Ca ==-1.

5.3 Generating the switching CU1've segments
It is now helpful to look at the hamiltonian

under each of the above conditions, i.e., u (T)
== 0 and u (T) == -1. In the first case

u(T) 0
H(T) H(t) ==0
ydT) 0 (66)
p:!(T) + 1
-a) < yAT) < 0

DISCONTINUOUS SYSTEM VARIABLES IN THE OPTIMUM CONTROL OF SECOND ORDER 191

and
H (T) PI (T) y:! (T) == 0

which implies that PI (T) == o. Fig. 12 shows
the switching generated by this condition.

~ ,
,"'" ,.

, -/ ,.
/u=O /'

I I + al I I , ,

" \
\

\ \
lU=-I,
I ,

" I

Figure 12. Swit~h 'ng Criteria for u (T) = 0
(minimum fuel).

Next is considered the case where

and

u(T) ·-1

H(T) - H(t) == 0

Yt (T) - 0

p:!(T) +1

H (T) :::: P1 (T) y~ (T) -1 [alP1 (T) +
1] -1 :::: 0

from which

2
Pt (T) == (T)

y~ -a)

(67)

(68)

Since u(T) == -1 and P2(T) == +11 conditions
(58) are met only when

-2
pt(T) <-

at
which implies y:!(T) > O. In Fig. 13 these tra
jectories and switching curves are plotted.

admissible
points pm

Figure 13. Admissible p(T) where u(T) = -1.

Y2

,,-

u=O)(
/

',/
I

I I +
I I

u=+I~/
I Yj
I I -I I , , ,

: I -°1 +

Figure 13a. Switching Criteria where u (T) = -1.

5.4 The co'mplete switching curve

Because T was never iSpecified and because
the fuel consumed at switching was handled as
a side condition, a co~posite of all the cal
culated switching CUlwes iindicates areas in the
phase plane where ,Ql"itenia ;for optimum control
appear contradiCllQljV.. .lLn tllhese areas, analysis
by graphica!lmeans or actual computation will
clear .up the £!ituation. Fig .. 14 depicts the com
.J>OSlWe 6fthe first two criteria analyzed.

+ °1

YI

i I =1

~ " II + , ,
Figure 14. Region of Conflicting Optimum Criteria.

In Fig. 14, region A is an area where there
is a question concerning whether it is optimum
to switch for i yAT) I == at or ly:!(T) I < al' By
graphical analysis, it may be seen that it is
optimum to switch so that I yAT) I == at.

A similar contradiction between trajectories
switching for 0 < yAT) < at and -at < yAT)
< 0 may also be resolved graphically. * The final

* Appendix I presents computational analysis of the
rEsolving process.

192 DISCONTINUOUS SYSTEM VARIABLES IN THE OPTIMUM CONTROL OF SECOND ORDER

result consisting of switching criteria to zero
the errors in the system (20) with minimum
fuel is given by Fig. 15.

Figure 15. Switching Criteria for Minimum Fuel,
a1 = 1.0.

VI CONCLUSIONS

The methods used in this paper to arrive at
a solution may be used to good advantage in
the investigation of any nth order system with
no more than n-l zeros. The maximum
principle provides a powerful tool in optimiza
tion, particularly for linear systems. Often the
method of Pontryagin will indicate areas of
interest to investigate when searching for an
optimum control even if the unique solution is
not readily forthcoming.

~(T)

F:gure 16. Block D~agram of the Controlled Plant.

The problem of controlling a plant with zeros
is analagous to controlling a plant without zeros
using an impulse-step type controller. Results
obtained in this paper can be adapted to formu
late the logic of this type control.

The realization of the true optimum switch
ing logic in a practical system may in many
cases not be worth the effort. Quasi-optimum
control using simple switching functions that
are for the most part linear is a subject for
further investigation. Setting time for the sys
tem is relatively insensitive to limited varia
tions from the optimum when trajectories are
out beyond the first cusp of the switching curve.

APPENDIX I

In the past, the electrical engineer, has usual
ly turned to the analog computer for problem
solving and his reference of familiarity is
strongest there. To test the drift of the ampli-

6=0.628

r= 6.lf

Figure A-1. Trajectories showing the effects of differ
ent integration step sizes (L~) on the Runge-"Kutta
method. Period of unforced system being integrated

was T = 6.2836.

DISCONTINUOUS SYSTEM VARIABLES IN THE OPTIMUM CONTROL OF SECOND ORDER 193

fiers, a common method was to plug in a simple
oscillatory system

y = [-~ ~J y

and to study the decay of the circular trajectory
in the phase plane (y vs. y).

This same procedure was used here to study
the different integration schemes used and to
determine the proper integration step size. The
forcing function (u = ± 1) was introduced to
give breaks in slopes and also discontinuities in
the steady state limit cycle described by

y = [_~ ~] y - [~J sgn (Yt - y"l

! l:!-0.126
i r.,oo

j 1l=0.628
. .,.= .300

A=I.26

Figure A-2. Trajectories showing the effects of differ
ent integration step sizes (6.) on the Runge-Kutta
method. Period of unforced system being integrated

was T = 6.2836.

This graphical means of analyzing gave con
siderable insight in evaluating the integration
schemes. The following figures give a brief re
sume of these studies.

The 4th order Runge-Kutta method was found
to be the most foolproof when dealing with dis
continuities in the state variables. In the con
tinuous variables the Adams Bashforth predic
tor-corrector4 with a Taylor expansion or
Runge-Kutta starter were found efficient and
useful.

The system was also tested with the plant on
the analog computer and the control with its
nonlinear switching function being generated
on an on-line digital computer.

BIBLIOGRAPHY

1. ROZONOER, L. 1., "L. S. Pontryagin's Maxi
mum Principle in the Theory of Optimum
Systems-Part I," A vtomatika i Telemek
hanika, Vol. 20, pp. 1288-1302, October
1959.

ROZONOER, L. 1., "L. S. Pontryagin's Maxi
mum Principie in Optimai System Theory
-Part II," Avtomatika i Telemekhanika,
Vol. 20, pp. 1405-1421, November 1959.

2. FLUGGE-LoTZ, 1., and TITUS, H. A., "Opti
mum and Quasi-optimum control of third
and fourth-order systems," Division of
Engineering Mechanics, Stanford Univer
sity Technical Report No. 134, pp. 8-12,
October 1962.

3. FLUGGE-LoTZ, 1., and ISHIKAWA, T., "In
vestigation of Third Order Contactor Con
trol Systems with Zeros in Their Transfer
Functions," NASA TN D-719, January
1961.

4 . HAMMING, R. W., "Numerical Methods for
Scientists and Engineers," McGraw-Hill
Book Company, Inc., New York, 1962.

TWO NEW DIRECT MINIMUM 'SEARCH PROCEDURES
FOR FUNCTIONS OF SEVERAL VARIABLES

B1'uno F. W. Witte Design Specialist
and

Willia'm R. Holst Senior Research Enginee1'
General Dynamics/Astronautics

San Diego 12, California

(1) LINEAR SEARCH METHOD FOR
n VARIABLES

(1.1) Summary Of The Method
The method can somewhat vaguely be classi

fied as a modified "steepest descent." It is, of
course, an iterative procedure. Each cycie, to
be iterated on, consists essentially of two parts:
in Part I a "best" line is found, in Part II an
attempt is made to minimize the given function
along this line. Thus, each cycle resembles the
corresponding cycle in the method of steepest
descent. The method of steepest descent differs
from our method in the manner in which in
Part I the "best" line is found. Steepest descent,
in fact, implies that this line (let us call it the
"baseline" from now on) be defined by the
starting point for the cycle and the gradient of
the function at this starting point, where the
starting point, in turn, is the minimum point
of the preceding cycle. Well known modifica
tions of the steepest descent are concerned with,
for example, baselines restricted to a subspace
normal to the preceding baseline, or with differ
ent ways of minimizing along a given baseline,
or perhaps with the question as to how feasible
it is to seek a minimum at all along a given
baseline during each cycle before switching to
the next baseline.

(1.2) Symbol Explanations
y - The ordinate of arbitrary points in the

195

space <1>, i.e. that coordinate which is
plotted in the same direction as is the
function value.

F - The function to be minimized.
n - Number of independent variables in

~-~(v v \
•• : - .1: \ ~ 1 ••• ~n' .

S - Designates the hyper-surface defined
in <I> by F.

cI> - Designates the space spanned by the n
independent variables x] . . . Xn, the
abscissas, and by y, the ordinate.

cp - The space spanned by the n independ
ent variables Xl ... xu'

Xi - The abscissas, i.e. the independent
variables, i = 1 ... n.

x - The point with coordinates Xb i.e. x =
(Xl'" Xn).

Xk - The starting point in cp for minimizing
F along bk in cycle Ck. Also the mini
mum point found by minimizing F
along bk- 1 in cycle Ck -1. X1 ... xf.),
k = 0,1,2,

Ck - Designates the k-th cycle of the itera
tive procedure leading to the minimum
of F. k = 0, 1, 2, 3,

Fk - An abbreviation for F (Xk).
Sk - The starting point in cI> corresponding

to Xk, i.e. Sk = (Xk, Fk), k = 0, 1, 2,
Tk - The n-dimensional hyper-plane tangent

on Sin Sk.

196 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

bk - The baseline chosen in cycle Ck.

grad - An n-vector in the space cp pointing in
the direction of steepest acscent of any
subspace of 4> or manifold of 4> with
dimension 1, 2, ... , or n. The magni
tude of this vector is equal to the slope
of steepest ascent. For linear subspaces
this vector is independent of x. For the .
subspace S this vector is the familiar
gradient of F.

A - An operator designating the intersec
tion of the' two subspaces between
which it stands.

pi _ A subspace of 4> with dimension n - i
defined by pi = TO ~ Tl ~ ... ~ Ti.

Qi _ A straight line in 4> defined by Qi =
Ti-n+l A Ti-n+:.! A ... A Ti, (i>n-l).

pi _ The intersection pi A cpo
qi _ The point Qi A cpo

Li - The point on Qi with y = 1.
i-The projection of Li on cpo

Ek - The equation of a hyper-plane parallel
to Tk through the origin of 4>.

Aj - Lagrangian undetermined multipliers.

1]k - t The running coordi
~k _ ~k = (~t ... ~~) (nates of an arbi-

) trary point on Tk.

a~ - Defined by a~ = -aF /aXh evaluated at
Xk.

s - The distance from xk to a point on bk.
s is positive in the downward direc
tion.

G - The function F considered as a func
tion of only s, i.e. G (s) = F (xds), .. ,
xn(s».

G' - The derivative dG/ds.

(1.3) The Baseline Choice

The method used to choose the next baseline
can best be visualized as follows: The function
y = F (Xl ... xn) defines an n-dimensional
hyper-surface, S, embedded in the (n + 1) -
space, 4>, spanned by the n-spaced, cp, of the
independent variables Xl ... Xn and the depend
ent variable y. Let XO = (xf ... x~) be the start
ing point of the first cycle, Co, of our search
procedure, and let Fn = F (xo) and xn define the
corresponding starting point So = (xu, Fo) on

the hyper-surface. * Let To designate the hyper
plane tangent in So on S (whenever necessary
we will assume that such tangent hyperplanes
exist). The baseline, bo, for the first cycle, Co,
is then chosen to be the line through x" and with
direction defined by the gradient of To, grad To.
Naturally, we have for this cycle grad To =
grad F (xo). We will now assume for the mo
ment that we know how to proceed with part II,
and that at the end of part II we obtain an ap
proximation Xl = (xt ... xA) for the minimum
of S along boo Xl is also the starting point of
cycle CI. (In general, Xi designates the starting
point and Si+ I the minimum point of cycle Ci;
Si = (Xi, Fi) is the point on the hyper-surface
corresponding to Xi, and Ti is the hyperplane
tangent in Si on S; finally b is the baseline for
cycle Ci). The next baseline bI is then chosen
to be the line through SI and with direction de
fined by grad (To A TI), where TO A Tl is the
intersection of T' and TI, i.e. an (n -1) -dimen
sional linear subspace of 4>. Assuming again
that we know how to find X2, the minimum point
along b l , b2 is found as the line through X2 in a
direction given by grad (Tn A TI AT:.!).

In general, for i < n-l, bi is determined so
that it becomes the baseline through Xi with a
direction given by grad (To A Tl A ... A Ti).
The argument of the gradient, pi = To A Tl A

T:.! A ... A Ti, is a linear subspace of 4>, and has
dimension n-i. For i=n-l, pi would then be
a straight line; for i = n, it would be only one
point, for i>n, pi is an empty set; for i>n,
therefore, grad pi is not defined. For 0 L.

i < n-l, grad pi is defined, of course, as the
direction in cp along which pi ascends most
rapidly. Since all pi are linear, grad pi is inde
pendent of x.

For i~n-l, bi is determined so that it be
comes the baseline through Xi with a direction
given by grad Q\ where Qi = Ti-n+l ATi-n+2 A

... A Ti. Thus, all Qi are straight lines in 4>, and
their gradients are parallel to their normal pro
jecti(ins on cpo

* An attempt is made in the above and subsequent
notation to designate by lower-case letters all points,
or point sets, or subspaces, which are completely em
bedded in the n-space of the independent variables
Xl ••• xn' and to use capital letters if they are not com
pJetely contained in this n-space.

TWO NEW DIRECT MINIMUM SEARCH PROCEDURES FOR FUNCTIONS OF VARIABLES 197

In general, for all i, the above de
fined gradients are determined as follows:
Let pi and qi be defined by pi == pi A <P (for
OLi<n-l), qi==QiA</> (for n-l:::::'i). Then
all qi are single points. Next consider the point
V (i>n-l) with ordinate y==l on one of the
lines Qi, and its projection r on </>. The directed
line from qi to Ii is parallel to grad Qi, and
: grad Qi : == 1/ ! qi_/i I. The n coordinates of
r == (f ~ ••• f ID are found by solving simul
taneously the n linear equations, Ek, corre
sponding to the n Tk in the expression for Qi
and setting y == 1. Setting y == 1 is arbitrary,
and insures only that y =1= o. The n coordinates
of qi == (ql . .. qi.) are found by solving the same
system with y == o. Next consider some arbi
trary point V (OLi < n-l) with ordinate
y == 1 on one of the linear subspaces pi of
dimension n - i, and its projection fi on </>. Let
qi (for OLi < n-l) be the point on pi closest to
!i. The directed line from qi to f i is then, again,
parallel to grad pi, and also I grad pi I ==
1/ I qi - r . Since V can be chosen arbitrarily
from all the points on pi with y == 1, we set
It == 0 (for k == i + 2, ... , n), and find the first
i + 1 coordinates of t == f~ ... lii+ h N+2 ... NJ
by solving simultaneously the i + 1 linear equa
tions, Ek, corresponding to the i + 1 Tk in the
expression for pi, again also setting y == 1. The
n coordinates of qi == (q; ... qD are determined
by requiring that the square of the distance
from Ii to qi be a minimum, i.e. d:! == (I; _ q~) 2

+ (tJ - q~):! + ... + (ll~ - qD2 == min.
Furthermore j we note that the q~ must satisfy
the constraint that qi is to be on pi, which is the
same as saying that the q~ must also satisfy the
i + 1 linear equations, Ek (k == 0 ... i), corre
sponding to the i + 1 Tk in the expression for
Pi, but now setting y == o. The Lagrangian
method of undetermined multipliers leads us
then to the unconstrained minimization of the
function g (q: ... q)il' Au ... Ai) == d:! + J\.Eo +
.. + AiEi. Equating to zero the partial deriva
tives of g with respect to the n q~ and the i + 1
Aj, we obtain again a system of linear algebraic
equations, here of order n + i + 1. Note that
this way of finding qi applies only to the initial
cycles of the search for which i < n - 1 ; hence
the largest linear system to be solved here will
have order n + (n-2) + 1 == 2n-1.

The linear equations Ek (OLk) correspond to
our hyperplanes Tk which are tangent to the
hyper-surface S at the locations Xk. The ana
lytic expression for one of the Ek can readily be
obtained from a Taylor expansion of F about
Xk: F (x) == F (Xk) + (X_Xk) . grad F (Xk) +
higher-order terms. If we replace F(x) by 'Y}k and
x == (Xl ... x n) by ~k == a~ ... ~~), delete the
higher-order terms, collect all constant terms,
and rewrite this expansion in terms of the indi
vidual running coordinates on the tangent
plane, we obtain with grad F(Xk) == -(a~ ...
a~): a~ ~r+ a~ ~~ + ... + a~ ~~ + 7Jk == bk. This
can be simplified considerably for computa
tional purposes by always setting bk == O. This
is permissible because we are only interested in
the slopes of the Tk, or in the slopes of subspaces
common to several Tk. The Ek are then ,~
plicitly: Ek == a~ ~~ + ... + a~ ~~ + 7Jk== 0, and
they describe hyperplanes which are parallel to
the tangent planes, and contain the origin of
the space <P. The af could be evaluated directly
at xk as the partial derivatives of F with respect
to Xj. Or they may be approximated by finite
difference approximations to these derivatives.
The computer program referred to in the ab
stract uses first-order difference approxima-
tions.
(1.4) Jl;linimizing along the Baseline

The search for the baselines was explained in
the preceding section. In this section we de
scribe what io do with a baseline once it is se
lected, i.e. how to minimize the given function
F (Xl' .. XII) along this line. Let us introduce an
(s, G) -coordinate system with origin at xk, with
the positive s-axis in the downward direction of
the baseline, and with the positive G-axis in the
positive y-direction. The function G (s) is de
fined as G(s) == F(XI (s) ... xll(s». We re
state now our problem more precisely: given
So == 0, Go == G (s,,), G" == G' (s,,), and 81 (the.
initial step size), find a "bracketed" approxima
tion, Slll'_ to a relathle minimum of G (s), and
verify the existence of two bracketing numbers
Sa and s", such that Sa < Sm < s" and G(sa) >
G (Sill) < G (s,,). The procedure is described be
low in several steps.

STEP (1)

81 is equated to SJ, and G == G (SI) is evalu
ated. This defines the point Pi == (S1, GJ for
i == 1, and with Gi == G (sJ.

198 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Question: Is G1 :::::".. Go ?
If yes, a parabola is passed through Po with
the given slope Go, and through Pl. This is
done in the following Step (2).
If no, we go directly to Step (3) to check
whether PI is above or below the line through
Po with slope G-o.

STEP (2)
The minimum location S2 is found for the
parabola through Po and PI with slope Go at
Po. S2 will satisfy: Isol < IS21 L. IS11/2. G2 ==
G (S2) is evaluated.

Question: Is G2 < Go ?

If yes, we have solved our problem, i.e. we
have obtained a bracketed 'approximation to
the minimum, with Su == so, Sm == S2, Sb == Sl.
However, our experience showed that the ex·
penditure of one more function evaluation
often allowed a considerable improvement of
the value for Sm. This is particularly desirable
toward the end of our search for the minimum
of F (Xl ... xn). The improvement of Sm is
obtained by cubic interpolation, 'and is de
scribed in Step (4). Before going there, how
ever, the indices 1 and 2 are interchanged on
the quantities Ph Gh Sl and P 2, G2, S2 so as to
number the points Po, Ph P2 in the order of
increasing lsi-values.

If no, we substitute P2 for Ph and repeat Step
(2) until either G2 < Go, or IS21 < 1811/100.
In the latter case we replace Si by -8h Go by
the slope of the line (Po, P 2), and return to
Step (1). This starts a search for tbe mini
mum of G in the range of'negative s-values
(assuming that Go was inaccurate). In case
our search should then again lead us back to
the vicinity of the same s-value, s == so, we set
Sm == So with brackets s" == -Is] 1/100 and Sb ==
1"811/100. In this case our starting point and
our approximation to the minimum are one
and the same point. That situation will al
ways happen at the final minimum of F (Xl ...
Xu), but may also happen occasionally sooner.
The termination procedure, described further
below, then is triggered.

STEP (3)

Question: Is PI above the line through Po
with slope Go ?

If yes, the minimum location S2 is found for
the parabola through Po and PI with slope Go

at Po. It satisfies IS21 > IS11/2. If IS21 < !s11,
the indices 1 and 2 are interchanged.
If no, the minimum locatIon S2 is found for the
cubic with clope Go at Po and with its point of

inflection at Pl. It satisfies IS21 > 21st!.
Question: Is G1 < G2 == G (S2) ?
If yes, we found a bracketed approximation to
Smiu, and proceed with Step (4).

If no, we re-define Go to be the slope of the
parabola through Po, Ph P 2 at point Ph then
subtract 1 from all index values occurring in
Pi == (Si, Gi) (i == 0, 1, 2), and return to Step
(3).

STEP (4)
A cubic is passed through Po with slope Go,
and through PI and P2. ~ll is the location of
the minimum of this cubic. Note that the
existence of brackets for Sill guarantees the
existence of the minimum.

STEP (5)

We test next the three lowest values of G,
found so far, whether they agree with each
other within a given tolerance.
If yes we set Sm equal to that si-value for
which G (Si) is smallest. (Sm usually is, but
need not be, that sj-value.)
If no, a parabola is passed through the lowest
three points, and the minimum value of this
parabola is compared with the two lowest
available values of G. If these three values
agree with each other within the given toler
ance we have found Sm; if they do not agree,
we evaluate G for that s-value for which the
parabola had its minmium, and go to Step
(6) .

STEP (6)

We test the two lowest values of G with the
minimum value of the last parabola. If these
three values agree with each other within the
given tolerance we have found Sm; if they do
not agree, a parabola is passed through the
lowest three points of G and we compare the
minimum values of the last two parabolas
with the lowest value of G.
If these three values agree with each other
within the given tolerance, we have found Sill;
if they do not agree, we evaluate G for that

TWO NEW DIRECT MINIMUM SEARCH PROCEDURES FOR FUNCTIONS OF VARIABLES 199

s-value for which the last parabola had its
minimum, and repeat Step (6).

(1.5) Detection of the Minimum
The iterated execution of the procedures for

Parts I and II of each cycle may be discontinued
whenever one of the following conditions is
detected:

Condition A: The partial derivatives of F ==
(x~ ... xft) satisfy laF /ax~1 LEfor all i == ... n,
and for a given small value of E, say E - 10-6

•

As explained at the end of section (1.3, these
partial derivatives are evaluated to obtain the
coefficients ak in the equations Ek.

CondiUon B: The starting point and the ap
proximation to the minimum point on the base
line are one and the same point. How this can
happen was explained in Step (2) of section
(1.4).

Condition C: The matrix of the linear equa
tions Ek, discussed in section (1.3), is very ill
conditioned or singular. This may occasionally
happen before either Condition (A) or Condi
tion (B) is satisfied.

Condition D: The numerical values of the co
ordinates of the minimum location and/or the
minimum of the function have stabilized to a
given number of significant figures.

Whenever one, or perhaps two of the above
conditions are satisfied, there is an excellent
chance that the minimum has been found. One
may then do one of two things: (i) terminate
the execution of the program, or (ii) begin a
somewhate more extensive testing procedure
in the course of which the vicinity of the sus
pected minimum location is explored, and it is
thereby made even more likely that the solution
has been found. This is what was programmed
at G.D'; Astronautics. Preference was given
to method (ii) because it also provides an an
swer to the question how sensitive the function
is to small deviations from the minimum loca
tion. The knowledge of this sensitivity is usu
ally desired together with the minimum location
itself.

(2) CIRCULAR ARC SEARCH METHOD
FOR 2 VARIABLES

(2.1) Summary of the Method
The iterative circular search is preceded by a

starting procedure, which finds five points near

the spine of the valley of the function to be
minimized. Thereafter, each iteration begins
with an attempt to approximate by ap.ortion of
a circle the course of the projection of the valley
onto the space of the independent variables.
The first circle is fit to three of the five valley
points found. All succeeding circles are fit to
four or more valley points. As the iteration
progresses toward the minimum these circles
approach the osculating circle at the minimum
location. During each iteration the determina
tion of a circular arc approximation to the spine
of the valley is followed by an attempt to pre
dict a point on this arc which is closer to the
desired minimum than any other point obtained
so far. Again during each iteration, the predic
tion of such a point is followed by a steepest
descent from this point into the valley, which
amounts to a minor, yet important correction.
The correction is important since it insures that
deviations between the courses of the circular
arcs and the portions of the spine of the valley
approximated by the arcs will not accumulate
as the iteration progresses. The new valley
point then replaces the highest of the four low
est valley points found before, and this predic
tor-corrector type method is repeated in the
next iteration. Empirical results show that the
sequence of valley points obtained converges
quite rapidly to the desired minimum. In the
following sections we emphasize again the geo
metric aspects of the more important steps
summarized above, rather than to give the alge
braic details. This is done since some of the
details are still subject to experimentation and
analysis.

(2.2) The Starting Procedure
We assume that a first guess is available as

a starting location Xl. We find its valley point
VI. A valley point Vi will always mean the loca
tion of the minimum of the given function F
along a line through Xi in the direction of
-grad F (Xi). We find the distance d1 ==
Ivl - xli and a unit vector el in the direction of
the projection of -grad F (VI) on a line normal
to -grad F (Xl). We then find four more valley
points Vi (i == 2 ... 5) by taking a step di ==
(3/4)i-2dl in the direction of ei'-l from Vi - 1 to
Xi, and then by minimizing from Xi to Vi. The
directional minimizations are done by using the

200 PROCEEDINGS---<SPRING JOINT COMPUTER CONFERENCE, 1964

same method which was described in section
(1.4) .

(2.3) The Approximating Circula1' Arcs

The circular arcs are obtained as arcs of "best
fitting" circles to the locations Vi of the lowest
three, four, or five valley points. Three valley
points are chosen only once, i.e. for the first
circle; four are usually chosen thereafter; if it
happened, however, that the last valley point
found had a function value higher than the
highest of the four lowest valley points previ
ously known, then five points were chosen.

(2.4) The Predict01'-COr1'ector Step
A "best fitting" two-dimensional plane E;,! is

found for the valley points Vi = (Vi, Fi) in space
4>, where Vi and i were explained above, and
Fi = F (Vi). It is helpful to visualize now a
cylinder in 4> parallel to the y-axis and intersect
ing cJ> along the circle of the preceding section.
This cylinder and the above plane E;,! intersect
in an ellipse. The location u of the point on this
ellipse with the smallest y-value is our pre
dicted point. The distance of the point u from
the spine of the valley decreases rapidly as the
iteration p~ogresses, and appears to become
insignificantly small long before the minimum
is reached. Nevertheless, it is unknown at the
present time how damaging the cumulative
effect woud be. \Ve are employing, therefore,
during all iterations a straight steepest descent
correction which leads from u to the next valley
point. The correction is done in the same way
as was explained for the five starting points in
(2.2), i.e. by using the method described in
(1.4). The initial step taken in minimizing
from the low point on the circle to the valley is
set equal to one-half the length of the gradient
vector at the low point divided by the coefficient
of the second-degree term of the parabola ap
proximating the shape of the function along
the previous line of minimization. We expect
that further studies of this particular correc
tion will lead to considerable sa vings in the
number of function evaluations. For example,
it appears that the correction usually need be
made only in a radial direction rather than the
negative gradient direction, while the latter is
needed only occasionally. Moreover, it is doubt
ful whether any such correction is needed at all
in each iteration.

(2.5) The Switch to Pa.rabolas
The above predictor-corrector step is taken

at least four times. If thereafter the function
value of the lowest valley point is within t/:! 7<
of the function value of the second-lowest valley
point, the method of predicting a new point u on
the circle is modified somewhat. Instead of find
ing the above described plane E;,!, we find the
"best-fitting" line L to the same four points Vi
defining our circular arc and in the same· plane
with this circular arc. The lowest three Vi are
then projected on L to give the three points Wi
on L. These and the Fi -values associated
with the Vi define three points Wi = (Wi, Fi) in
the plane through L and parallel to the y-axis.
The location Will on L of the minimum of the
parabola through the three points Wi is then
projected back onto our circular arc to give our
predicted point u. The steepest descent correc
tion is gain applied to u, and produces the next
valley point.

(2.6) The Tail Correction
After successive approximations to the mini

mum value of the function have stabilized to
five figures, the search terminates with a simple
tail correction, which consists in minimizing
the function along the line through the two low
est valley points, and which usually adds sev
eral significant figures to the answers.

It is interesting to observe the behavior of
the radii of the circular arcs after the iteration
has begun to converge. As was said before in
Section (2.1) the circles approach the osculat
ing circle of the spine of the valley at the mini
mum location. However, once the sequence of
valley points has converged to the minimum, all
subsequent points fall very close to each other;
they then no longer define the course of the
valley nor do they define its osculating circle.
Instead, the radii of the "best-fitting" circles
suddenly shrink by several orders or magnitude
to dimensions comparable to the inaccuracies in
the coordinates of the minimum location. When
this shrinkage occurs the search should be ter
minated. Usually, however, this does not hap
pen before the search had already been termi
nated with the above described tail correction.

(2.7) An Extension to n Variables:
The Spherical Shells Method

The good results obtained with the two-

TWO NEW DIRECT MINIMUM SEARCH PROCEDURES FOR FUNCTIONS OF VARIABLES 201

dimensional Circular Arcs Method suggest its
extension to n independent variables as follows:

(-1) ST ART. A starting point Xi is given in
n space as a first approximation. Find its valley
point VI, the distance dl == !Vl - xli, the n - 1
space El normal to grad F (Xl), and the direc
tion e1 in EI as the projection of -grad F (VI)
on E I. Find n + 3 more initial valley points Vi
(i ==2 ... n + 4) by taking steps di == (n + 1) I
(n + 2» i~2dl from Vi- 1 in the direction ei- l

to Xi, and then by minimizing F in the direction
of -grad F(Xi) from Xi to vi, for all values of
i == 2 ... n + 4.

(- 2) FLA TS. Fit an m fiat (Le. a linear m
space) to the lowest m + 2 valley points in n
space, such that its dimension m is as small as
feasible. (The feasibility could be judged by
observing successive standard deviations CTIlI of
the points from the m fiats for the sequence of
decreasing m - values: m == n, n - 1, ... , 1.
A sudden large increase of CTk - lover CTk would
indicate that m == k is feasible while m == k-I
is not feasible.) Skip to (- 4) if m == 1.

(- 3) SPHE RE S. Fit the surface of an m
dimensional sphere to the projections of the low
est m + 2 valley points on the above m fiat.

(3.1) ROSIE IOO(y-x:.!):.!
(3.2) SHALOW == (y - x:.!):.!
(3.3) STRAIT (y - x:.!):.!
(3.4) CUBE 100 (y - x:{):.!

Some shell of this sphere will approximate the
course of the (hyper -) valley. Pin-point next
an optimum surface point on this shell to which
to go next, find its valley point, and return to

(-2).

(- 4) PARABOLAS. Find the parabola
through the projections of the lowest three val
ley points on the plane spanned by the function
axis and the regression line found in (-2). Go
to the minimum of this parabola,find its valley
point, and return to (- 2) unless the minimum
value of the function has begun to stabilize.

(- 5) T A I L. Minimize the function along a
line through the lowest two valley points "in n
space. Find the valley point corresponding to
this directional minimum. Repeat (- 5) till the
function minimum has stabilized to the desired
number of figures.

The above described Spherical Shells Method
will be programmed at General Dynamics
Astronautics in the near future, and results will
be published when available.

(3) EXAMPLES AND COMPARISONS

The following functions of x and y were mini
mized. (r == (X2 + y2) % and () == tan-1 (y Ix).)

+ (1- X)2

+ (I-x):.!

+ 100(1- X)2

+ (I-x):.!
(3.5) DOUBLE 100 (r - 1)2 (r - 2)2 + O.I(2-x):.!
(3.6) HEART ---: 1000 (1 + cos () - r II O):.! + y:.! (x - IO)-l

All were programmed in double-precision for
an J .B.l\1. 7094 computer. Results are listed in
the following tables, and the results for ROSIE
are discussed in detail and compared with other
methods.

(3.1) ROSIE

Minimum (F == 0) at (1, 1), with a steep
valley along y == x:.!, and a side valley along the
negative y-axis.

Table (3.IA) summarizes the end results of
various investigators. Table (3.IB) summarizes
the rapidity of convergence of some of these
methods. Table (3.1e) shows the rate of con
vergence of the circular arcs method for various

starting points. Table (3.ID) gives minimiza
tion details for the circular arcs method.
Table (3.1A) End results of various methods of
minimizing the function ROSIE when starting
from the point (x, y) == (-1.2, 1)

k == number of valley points found.

N == number of function evaluations

Note: The value of the function given by ref.
(5) in the table is not consistent with the values
given for x and y. The correct value of F equals
1 (- 6) for (x, y) == (1.0001, 1.0001).

Discussion: Parentheses in column N indicate
that the number of function evaluations was not
published in the indicated papers, but instead

202 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

was estimated by us to correspond to each indi
vidual method, assuming an average number of
8 function evaluations for minimizing the func
tion in a given direction. The method of row 5,
ref. (7), requires the programming of the
analytic expression of the gradient of F; none

of the other methods do. The numbers in paren
theses in the (min F) column give exponents of
the powers-of-ten factors. It is obvious that the
method of ref. (10) is the least efficient, while
the circular arcs method is the most efficient for
the function ROSIE.

Table (3.1A)

k N minF x y Method
17 146 6(-8) 0.999957 0.999938 "Lin. Search", this paper, 1953

200 2(-5) 0.995 0.991 Rosenbrock, ref. (4), 1960
33 (264) 8(-9) 1.0001 1.0001 Powell, ref. (5), 1962
85 (765) 6(-5) 1.000653 1.002077 Baer,ref. (10),1962
18 (144) 1(- 8) ? ? Flethcer,ref. (7),1963
12 103 3(- 9) 1.000008 1.000010 "Cir. Arcs", this paper, 1964

Table (3.1B)

References:

(E) (G)
Ref. (5) Ref. (7)

k
0 2.4+1 2.4+1
3 3.6 0 3.7 0
6 2.9 0 1.6 0
9 2.2 0 7.5-1

12 1.4 0 2.0-1
15 8.3-1 1.2-2
18 4.3-1 1 -8
21 1.8-1
24 5.2-2
27 4 -3
30 5 -5
33 8 -9

Table (3.1B) Rate of minimization of function
ROSIE for four different methods, all starting
from (- 1.2, 1). All function values are in the
powers-of-ten notation, e.g. 2.4 + 1 = 24 or
3.4 - 9 = 0.0000000034.

k = number of valley points found

The table clearly shows the better rate of con-

"Linear "Circ.
Search" ArcsH

k
2.4+1 2.4+1 0
3.5 0 3.5 0 3
1.9 0 7.3-2 6
8.3-1 8.9-3 9
3.4-1 3.4-9 12
1.1-1 15
6.0-8 18

21
24
27
30
33

vergence of the circular arcs method for the
function ROSIE.

Table (3.1C) Rate of minimization of function
ROSIE with the circular arcs method for five
different starting points (x, y). Bottom row
gives the total number, N, of function evalua
tions. The location of the minimum is at x = 1
and y = 1.

TWO NEW DIRECT MINIMUM SEARCH PROCEDURES FOR FUNCTIONS OF VARIABLES 203

Table (3.1e)

x -1.200 5.621 -0.221 -2.547 -2.000 x
y 1.000 -3.635 0.639 1.489 -2.000 y

k k
0 2.4+1 1.2+5 3.6+1 2.5+3 3.6+3 0

1 4.1 0 9.8+2 2.0 0 5.4 0 2.2+2 1
2 3.8 0 2.6+1 8.9-1 3.2 0 2.6 0 2
3 3.5 0 1.5 0 5.5-1 1.4 0 1.4 0 3
4 3.3 0 2.4+2 2.7-1 8.6-1 2.1-2 4
5 3.2 0 1.1-4 1.4-1 2.2-1 5.2-2 5

6 7.3-2 7.5-1 5.8-2 1.9-1 1.7-3 6
7 3.3-3 4.7-1 3.5-2 1.8-1 1.6-3 7
8 8.4-3 5.3+2 1.2-2 7.4-2 1.4-4 8
9 8.9-3 4.7-1 2.6-3 1.9-2 7.5-6 9

10 7.0-7 4.9-1 4.1-4 5.1-3 6.1-8 10
11 4.4-6 3.2-2 1.2-5 2.7-3 3.7-11 11
12 3.4-9 4.2-3 2.6-7 6.4-5 - 12
13 - 2.6-5 6.6-10 3.4-6 - 13
14 - 1.3-7 - 4.3-8 - 14
15 - 5.3-10 - 2.1-11 - 15
16 - 8.9-14 - - - 16

N 103 195 93 118 101 N

Table (3.1D)

k N F t x y Tl grad I total n. I
correction

0 1 24.2 -1.2000 1.0000

1 9 4.1 1-2 -1.0298 1.0694 2-1
2 17 3.8 1-2 -0.9464 0.9043 2-2
3 25 3.5 1-2 -0.8800 0.7829 2-2
4 33 3.3 1-2 -0.8266 0.6924 1-2
5 41 3.2 1-2 -0.7852 0.6256 2-2

6 I;9 7-2 1-2 1.2705 1.6151 4.1 5-0 2-0
7 69 3-3 1-2 0.9427 0.8885 1.2 3-1 8-1
8 75 8-3 4-3 1.0918 1.1923 1.3 5-2 3-1
9 82 9-3 4-3 1.0940 1.1972 1.4 3-2 3-1

10 89 7-7 3-3 1.0008 1.0017 7.1 4-4 1-1
11 95 4--.:6 3-6 1.0021 1.0042 5.8 6-6 3-3

12 103 3-9 7-7 1.000008 1.000010 2-3

Table (3.1D) Details of minimization prog- F = function value:
ress with function ROSIE using circular arcs for k = 0 ... 5 in decimal notation,
method and starting at (-1.2, 1). for k = 6 ... 12 in powers-of-ten notation,

k = number of valley point
e.g. "7 - 2" = 0.07.

t = accuracy achieved by F (k),
N = number of function evaluations = tolerance to be satisfied by F (k + 1).

204 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

The t-values are calculated from (F (k) -
F (m» / (F (m) + C), where F (m) is the low
est available valley point prior to F (k), and
where C is a suitably chosen constant (here
C == 1,23456) to avoid the possibility of the
divisor tending to zero. These t-values are then
used as a tolerance when making the next
gradient correction to find F (k + 1). This
automatically tightens the tolerance as the
minimum is approached.

x, y== coordinates of starting points
and all valley points.

R== radius of circle fitted to low
est three or four valley
points.

grad correction = distance from predicted point
on circular arc to gradient
corrected point in valley.

total correction == distance from previous low
est valley point to new valley
point.

The first five valley points (k == 1 ... 5) were
found by the starting procedure described in
(2.2). The first circle (with radius R == 4.1)

is a circle through points 3, 4, and 5; its pre
dicted low point was at x == 6.4 and y == 12.2.
It was corrected to give the indicated valley
point (k == 6). The next valley point (k == 7)
was obtained from a circle fitted to points 3, 4,
5, 6. Likewise (k == 8) was obtained from 4, 5,
6, 7; and (k == 9) from 5, 6, 7, 8. Valley point
(k == 10) was obtained from a circle which
was no longer fitted to any of the five starting
points, but instead only to the much more accu
rate points 6, 7, 8, 9; hence, we had a sudden
speed-up in the convergence from point 9 to
point 10, as evidenced also by the sudden de
crease in the ratio of the grad correction to
the total correction. Also, the radius R began
to approximate more accurately the radius of
the osculating circle (R == 5.59) of the valley
y == X2 at the minimum point (1, 1). Also, the
program had automatically switched at this
time from the regression plane to the regres
sion line when predicting point 10 on the cir
cular arc (sec. 2.5). The last valley point
(k == 12) was the result of applying the tail
correction (2.6); note the sizeable increase in
accuracy.

(3.2) SHALOW

Minimum (F == 0) at (1, 1) with valleys along y == X2 and x == 1. SHALOW is similar to the
function ROSIE, but has a shallow valley compared with the steep valley of ROSIE.

Table (3.2)

x -2.000 1.184 0.803 0.211 0.820 x

y -2.000 0.574 -0.251 3.505 4.690 y

k k
0 4.5+1 7.2-1 8.4-1 1.3+1 1.6+1 0

1 3.0 0 2.1-2 3.3-1 1.1-1 9.5-1 1
2 2.2-1 3.6-6 1.1-] 2.7-1 4.0-1 2
3 5.9-2 4.3-3 4.7-2 4.6-2 1.0-1 3
4 9.0-2 1.1-3 1.3-2 5.6-2 2.1-3 4
5 1.6-2 6.1-4 3.0-3 1.6-2 3.3-2 5

6 4.9-4 7.7-6 9.9-5 2.8-4 3.4-4 6
7 4.6-4 8.1-6 1.1-4 1.9-4 4.4-4 7
8 3.3-4 5.2-8 9.9-6 1.7-4 2.4-5 8
9 4.5-6 2.7-10 6.0-8 2.5-8 5.8-5 9

10 7.1-6 4.7-13 1.1-10 1.2-7 6.7-9 10
11 5.4-7 - 2.8-16 8.4-13 1.1-10 11

N 93 92 86 94 96 N

TWO NEW DIRECT MINIMUM SEARCH PROCEDURES FOR FUNCTIONS OF VARIABLES 205

Table (3.2) Rate of minimization of function SHALOW with the circular arcs method for five
different starting points (x, y). Bottom row gives the total number N, of function evaluations.

(3.3) STRAIT

Minimum (F = 0) at (1, 1) with a steep valley along x = 1.

Table (3.3

x 2.000 2.000 2.019 1.992 1.986 x

y -2.000 -2.322 -1.505 -3.222 5.227 y

k k
0 1.4+2 1.4+2 1.3+2 1.5+2 9.9+1 0

1 8.4 0 1.0+1 5.8 0 1.7+1 1.7+1 1
2 3.4 0 4.6 0 1.8 0 9.0 0 1.0+1 2
3 1.3 0 2.1 0 3.9-1 5.4 0 7.3 0 3
4 3.0-1 7.3-1 1.6-3 2.9 0 4.8 0 4
5 1.7-2 1.9-1 1.6-1 1.7 0 3.5 0 5

6 5.5-8 6.2-6 9.0---.:11 1.6-3 3.7-2 6
7 3.4-5 4.6-3 8.9-9 1.9-1 3.8-1 7
8 9.6-9 3.6-6 2.2-4 1.2-2 8
9 3.9-5 1.8-8 1.9-5 5.1-5 9

10 0.0 0 2.7-14 1.6-12 2.7-5 10
11 6.4-15 0.0 0 5.7-8 11
12 2;5-11 12
13 0.0 0 13

N 78 83 58 83 95 N

Table (3.3) Rate of minimization of function STRAIT with the circular arcs method for five dif-
ferent starting points (x, y). Bottom row gives the total number, N, of function evaluations.

206 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

(304) CUBE
Minimum (F = 0) at (1, 1) with a steep valley along y = x3•

Table (3.4)

x 1.200 1.391 1.243 0.284

y -2.000 -2.606 -1.974 -3.082

k
0 1.4+3 2.8+3 1.5+3 9.6+2

1 4.6 0 1.7+2 8.2+1 2.1 0
2 4.8-1 1.8 0 1.2 0 5.4 0
3 5.2 0 2.4-3 1.2-1 1.0+1
4 1.8-1 3.5-1 7.2-1 1.7-1
5 1.3-3 4.8-3 2.3-2 3.8-1

6 1.9-2 1.3-5 4.5-2 1.5-1
7 2.4-2 1.6-5 3.7-2 6.0-2
8 6.3-4 8.5-6 2.5-2 7.4-2
9 1.2-6 2.5-9 1.7-2 1.0-1

10 6.7-7 8.8-11 2.0-3 7.9-2
11 7.5-10 - 5.5-4 1.6-2
12 - - 5.9-5 6.4-3
13 - - 1.8-6 2.4-3
14 - - 3.6-8 2.5-4
15 - - 5.6-11 2.3-5
16 - - - 8.5-7
17 - - - 7.2-9
18 - - - 4.7-12

N 99 98 113 135

-1.200 :x

-1.000 y

k
5.8+1 0

4.1 0 1
3.8 0 2
3.6 0 3
3.4 0 4
3.3 0 5

1.5+2 6
3.4 0 7
6.7-4 8
4.9-3 9
1.9-3 10
6.2-5 11
2.6-6 12
1.9-8 13
4.2-11 14

- 15
- 16
- 17
- 18

162 N

Table (3.4) Rate of minimization of function CUBE with the circular arcs method for five dif
ferent starting points (x, y). Bottom row gives the total number, N, of function evaluations.

TWO NEW DIRECT MINIMUM SEARCH PROCEDURES FOR FUNCTIONS OF VARIABLES 207

(3.5) DOUBLE

One minimum (F == 0.099899899) at (x == 1.001005; y == 0), another minimum (F == 0) at (x
== 2; y == 0) ; with one steep valley along r == 1,and another steep valley along r == 2; saddle points
around (-2,0) and (-1,0).

x

Y

k
o
1
2
3
4
5

6
7
8
9

10
11
12
13
14
15

N

-4.000

0.000

3.6+3

1.6 0
7.3-1
5.1-1
1.8-1
7.5-1

2.4-1

1.3-1
1.1-1
1.0-1
1.0-1
1.0-1
1.0-1
1.0-1

115

-3.709

-0.957

2.7+3

1.5 0
6.5-1
1.1 0
1.5-1
4.4-1

1.6-1
1.5-1
1.2-1
1.3-1
1.0-1
1.0-1
1.0-1
1.0-1

113

Table (3.5)

-3.935

0.042

3.2+3

1.6 0
7.3-1
7.3-1
1.8-1
6.2-1

2.2-1
o <) "1
"'.0-.1.

1.8-1
1.1-1
1.0-1
1.0-1
1.0-1
1.0-1
1.0-1
1.0-1

118

-5.392

-1.708

2.9+4

1.5 0
5.8-1
7.2-1
2.2-5
7.9-2

4.4-4

2.9-5
1.8-6
1.5-6
1.2-6

106

-7.633

-3.785

2.4+5

1.4 0
1.7 0
2.5 0
1.0 0
2.4 0

1.0 0
1.1 0
1.4-1
1.1-1
1.2-8
5.7-6
2.3-6
1.2-8

-14

139

x

Y

k
o
1
2
3
4
5

6
7
8
9

10
11
12
13
14
15

N

Table (3 .. 5) Rate of minimization of function DOUBLE with the circular arcs method for five dif
ferent starting points (x, y). Bottom row gives the total number, N, of function evaluations.

208 PROCEEDINGS---.,SPRING JOINT COMPUTER CONFERENCE, 1964

(3.6) HEART

Four minima (all with F == 0) at left (0,0), at right (20,0), at top (10, +12.72), and at bot
tom (10, -12.72). Three valleys: along the x-axis, along x == 10, and along the cardioid r == 10 (1
+ cos 0).

Table (3.6)

x -1.000 -9.870 -11.43 -6.255 -7.539 x

y 0.000 >-2.159 -7.344 -21.13 -27.04 y

k
0 1.0+3 7.3+5 1.1+7 3.1 +7 6.9 +7 0

1 9.5+1 8.8+2 4.1+2 5.3 +1 8.6 +2 1
2 9.9+2 5.2+2 7.6+2 1.0 +3 1.4 +3 2
3 4.8+2 3.1+2 4.2+2 1.9 +1 6.2 +1 3
4 1.6+1 1.9+2 1.2+2 3.9 +2 7.4 +2 4
5 8.3-2 1.1+2 5.8-2 2.5 +2 3.6 +0 5

6 1.8-2 1.4+1 3.4 0 3.0 +1 3.6 +0 6
7 1.4-4 2.2 0 1.8-3 4.5 +0 1.8 -1 7
8 1.3--3 2.3+1 2.2--3 2.4-8 4.3 -6 8
9 9.1-4 8.7 0 3.7-5 1.2 -2 2.7 -3 9

10 3.1-4 6.2 0 3.5-9 3.3 -10 4.1 -3 10
11 1.7-4 2.1 0 6.7-7 6.9 -4 4.1 -4 11
12 7.7-5 5.6-3 8.2-12 5.7 -11 3.3 -5 12
13 4.8-4 8.3-6 (bottom) (right) 6.8 -6 13
14 9.7-5 1.7-7 - - 2.0 -6 14
15 7.3-5 1.7-7 - - (bottom) 15
16 7.1-5 (left) - - - 16

(top)

N 149 127 119 121 150 N

Table (3.6) Rate of minimization of function HEART with the circular arcs method for five differ
ent starting points (x, y). Bottom row gives the total number, N, of function evaluations.

CONCLUSION

We feel that the foregoing results conclusively
show the gain in efficiency obtainable for a
direct minimum search procedure when an
attempt is made to approximate by suitable
curves the valleys of the function to be mini
mized. The circular arcs method which strives
to do so can only be a beginning. Various steps
and details of its procedure can and will doubt
lessly be improved in the future; most interest
ing should be the results of its generalization to
n variables. It is possible that the gain in effi
ciency is larger when the circular arcs method
is applied to functions with steep-sided valleys
than when it is applied to functions with more

clearly defined minimum points and less clearly
defined valleys. On the other hand, when pen
alty terms are added to an objective function,
in order to also observe inequality constraints,
functions with steep-sided valleys will auto
matically be generated; thus, the methed may
become useful in the field of non-linear pro
gramming. The authors wish to acknowledge
the constant support and encouragement they
received from Dr. Wm. J. Schart, Chief of
Mathematical Analysis at General Dynamics/
Astronautics, and Mr. Carl E. Diesen, Manager
of Scientific Programming and Analysis at
General Dynamics/Astronautics. We also wish
to thank Mrs. Marilee Culver for the efficient
and neat typing of the manuscript.

TWO NEW DIRECT MINIMUM SEARCH PROCEDURES FOR FUNCTIONS OF VARIABLES 209

LITERATURE REFERENCES

1. BROWN, R. R.-"A Generalized Computer
Procedure for the Design of Optimum Sys
tems." Presented at the Winter General
Meeting of the American Institute of Elec
trical Engineers, New York, N.Y., Feb.
2-7, 1958.

2. JOHNSON, S. M.-"Best Exploration for
Maximum is Fibonaccian." RAND Corpo
ration, Santa Monica, Calif., Report No.
P-856 (1959).

3. G;ELFAND, I. M., and TSETLIN, M. L.-"The
Principle of Non-local Search in Automatic
Optimization Systems." Soviet Physics
Doklady, Vol. 6, No.3, Sept. 1961, pp. 192-
194.

4. ROSENBROCK, H. H.-"An Automatic Meth
od for Finding the Greatest or Least Value
of a Function." Computer Journal, Octo
ber 1960, Vol. 3, pp. 175-184.

5. POWELL, M. J. D.-"An Iterative Method
for Finding Stationary Values of a Func
tion of Several Variables." Computer J our
nal, July 1962, Vol. 5, No.2, pp. 147-151.

6. FORSYTHE, G. E., and MOTZKIN, T. S.
"Acceleration of the Optimum Gradient
Method, Preliminary Report" (Abstract).
Bull. Amer. Math, Soc., Vol. 57, 1951, pp.
304-305.

7. FLETCHER, R., and POWELL, M. J. D.-"A
Rapidly Convergent Descent Method for
Minimization." Computer Journal, JUly
1963, Vol. 6, No.2, pp. 163-168.

8. DAVIDSON, W. C.-"Variable Metric Method
for Minimization/' A. E. C. Research and
Development Report, ANL-5990 (Rev.).

9. SHAH, B. V., BUEHLER, R. J., and KEMP
THORNE, O.-"The Method of Parallel Tan
gents (Partan) for Finding an Optimum."
Office of Naval Research, Report NR-042-
207 (No.2).

10. BAER, R. M.-"Note on an Extremum Lo
cating Algorithm." Computer Journal, Oct.
1962, Vol. 5, No.3, p. 193.

11. KROLAK, P., and COOPER, L.-"An Exten
sion of Fibonaccian Search to Several Var
iables." Communications of the A.C.M.,
Oct. 1963, Vol. 6, No. 10, pp. 639-641.

ON THE EVALUATION OF THE COST-EFFECTIVENESS
OF COMMAND AND CONTROL SYSTEMS

N. P. Edwards
Weapons Systems Evalwtion Group

Washington, D. C.

INTRODUCTION

1. some time now I have been previleged
to be associated with a project which has been
taking a critical, and hopefully, constructive
look at the workings of the National Military
Command system. Working in the Pentagon one
regularly hears the expression "Cost-effective
ness." Sooner or later someone had to combine
cO!!lmand 'and control with cost-effectiveness.
This paper then addresses the cost-effectiveness
of military command and control systems.

2. Command and control is a broad and very
active field as can be seen from the many
articles in military and trade publications and
in the ,popular press. For instance, the Armed
Forces Management magazine devoted its July
1963 issue to command and control. ! would like
to review some of the titles of the various
articles:

-"NMCS: The Command Backup to
Counterforce"

-"Total Command Control Through Com
puters?"

-"Taylor's Flexible Response Strategy
Shifts C&C Perspective"

-"Electronic C&C Will Aid Army Com
mander, Not Replace Him"

-"We Have More Than 800 C&C Systems"
-"Resource Management: A New Slant on

C&C"
-"Real Time C&C Aids USAF, NASA"

211

One of these also states " ... C&C system is a
communications system ... "1 Under the' aegis
of C&C, Electronic News reports that Mitre has
developed ". . . a new approach, whereby com
puters will be provided with a broad, flexible
program which contains nothing regarding the
using commanders' specific problems. The pro
gram-which will be a 'learning program' based
on artificial intelligence-will enable the COffi-
_ •• L __ L_ 1 ____ 1.. ________ ! ______ L1.. _ ____ ~ ___ ~_

pUL~I- LV I~CiJ.-l1 uy ~Av~.n~uc~ (:LO:S Ll1~ O:SyO:SLt::1U CVIU-

mander feeds his specific problems into it."2

3. From this small sample of the current
literature, it ean be seen that the expression
"military command and control systems." has a
wide range of meaning to different users, and
covers a broad scope of systems and activities.
If a meaningful attempt is to he made to discuss
cost-effectiveness of command and control sys
tems, it is essential to find out what we mean by
command and control. So let us begin by de
fining the individual terms and attempting to
break the problem of cost-effectiveness into
manageable segments for examination.

4. "Command and control" as defined in the
Dictionary of the United States Military Terms
for Joint Usage (JCS Pub. 1) is "An arrange
ment of personnel, facilities and the means for
information acquisition, processing and dis
semination employed by a commander in plan
ning, directing and controlling operations."
Note that the word "system" is not used.

5. A "command and control system" as the
term is normally used, includes many different

212 ~ROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

functions. In order to begin to seperate these
so that they can be handled individually, let us
differentiate between the comm'and function
and the control function. We will first define
and describe the characteristics of control sys
tems: These are a class of systems sometimes
included in the general definition of command
and control, but which we propose to exclude
from the subsequent discussion, except for use
as a basis for analyzing the command subsys
tems we are really interested in.

CONTROL SYSTEMS

6. As normally used in the technical sense,
'a control system regulates the action or activity
of a person or device in order to perform a
prescribed function. The key point here is that
the mission to be accomplished is understood
exactly and the means of accomplishing this end
are also well understood. A control mechanism
operates in accordance with precisely defined
laws. It senses the performance of the con
trolled device and corrects deviations from the
desired course in accordance with mathematical
formulae. Control systems frequently have
people in the control loop. An aircraft controller
is an example of a human link in a control
system. While the controller does not operate
in a completely predictable mode, the majority
of his actions are predictable in any except an
emergency situation. In a weapons control sys
tem, of which SAGE is probably the largest
single example, the majority of the functions
can be described mathematically. Those func
tions which cannot be described mathematically
are referred to human judgment. However,
the ultimate goal is to eliminate the require
ment for human judgment from the control
system once the command to execute has been
issued. Some systems, such as missile weapons
systems' and antimissile systems, operate at
such a high speed that it is necessary to elimi
nate the human operators from the control
system loop. A distinguishing characteristic of
control systems (as defined in common technical
usage) is "feedback." This is true regardless of
whether the system controls things or people.
"Feedback" is the process by which a control
system constantly senses what is occurring and
adjusts the system to achieve the desired result.
An aircraft controller directing the landing ap-

proach of an ai.rplane uses feedback. He con
tinually follows the actions of the plane and
gives correcting instructions in case the plane
is not following the desired course.

7. The diagram in Figure 1 is an oversimplifi
cation but it is intended to illustrate the de
pendence on sensors and feedback, and the
prescribed nature of the action.

COMMAND

GO-STOP

ANALYSIS
CONTROL

FEEDBACK

SENSOR ACTION

CONTROL SUBSYSTEM
Figure 1.

COST AND EFFECTIVENESS OF
CONTROL SYSTEMS

8. Various control systems which are com
pletely (or fo.r the most part) mechanized, have
been in production for many years. Such sys
tems include aircraft autopilots, instrument
landing systems, missile guidance systems, tank
and naval gun stabilizing and aiming systems,
and many industrial process control systems.
In the case of an industrial control system, such
as a system controlling the operation of an oil
refinery, cost and effectiveness trade-offs have
been very carefully examined and are well
understood. This is possible because the proc
esses, procedures and desired end products are
well defined. This is also the case in many small
military control systems. Although the value of
increments of improvement in the performance
of a military control system may be difficult or
impossible to measure, the value of an improve
ment in the performance of a public utility
generating plant can be measured with great
precision. An increase in operating efficiency
of 0.1 % may represent a significant increase in
the profit margin.

ON THE EVALUATION OF THE COST-EFFECTIVENESS OF COMMAND 213

9. There are three factors which predominate
in their effect upon the accuracy of a cost
effectiveness estimate for a new control system.
These factors are: value of performance, how
well the function to be performed has been
defined and the performance level desired.

a. Value of Performance. Can a value be
assigned to an incremental improvement in
the performance of the system? In many
instances it is possible to identify :a signifi
cant im·provement in performance and assign
a value to it. Two performance factors of
interest in the control subsystem of a weapon
system are:

(1) Reliability-If the reliability of the
weapons control system can be im
proved, this improvement can be
reflected in the overall reliability of
the weapon. If the control is the least
reliable subsystem, then the improve
ment will probably be quite significant.
If the control subsystem is already the
most reliable part of the system, then
the improved reliability may have
little effect on the weapon's ·perform
ance. However, it might still be well
worthwhile because of a reduced neid
maintenance problem. The total sys
tem cost and increased efficiency must
be taken into account.

(2) AccuracY-An improvement in the ac
curacy of the control system may
significantly reduce the number of
weapons required if the target loca
tion is known to a higher accuracy
than the accuracy of the weapon. Sup
pose the target location is known
"exactly." If the accu.racy of delivery
of the weapon is such that the target
will always be within the radius of
destruction, only one weapon (shell,
iron bomb, or other) is required. If
the error in aim and delivery is greater
than the kill radius, we have a more
expensive and probably less efficient
situation (see Figure 2). The number
of weapons required goes up loga
rithmically as the .probable dispersion
gets significantly larger than the
radius of destruction of the weapon.

WEAPON
EFFECT
RADIUS

CIRCLE OF
ERROR
PROBABILITY

Figure 2.

IMPACT
POINTS

AIM POINT
TARGET

Formulae and nomographs exist for
calculating the weapons required for a
desired probability of destruction of
the target.3

If you cannot assign a meaningful value to
incremental improvements in the system, a cost
effectiveness projection cannot be made. How
ever, analysis can still be used, and it still may
be possible to make a relatively accurate com
parison of the projected cost of different ap-

make a proper (or best possible) decision using
the facts nlade available by careful analysis.

b. Definition of Function. Are the functions
to be performed by the control system defined
and will they remain constant during the de
sign, test, and production of the system? If so,
one of the necessary conditions for an accurate
cost projection has been met; If not, it is certain
that the initial cost estimates will be signifi
cantly in error. The more poorly defined are the
functions to be finally performed, the greater
the probable error in the cost estimate. It would
appear that it should be relatively easy to deter
mine the functions required.of a control system.
However, if the device to be controlled is being
developed concurrently, and by a different engi
neering group or company, as is frequently the
case, it is probable that control requirements
will occur which were not anticipated. It is
impossible to describe this risk numerically in
the abstract, as each case will be different.

c. Performance Levels. Is the system's per
formance specified? Will this performance re-

214 P-ROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

main essentially constant during the design,
test, and production of the systems? If so, an
other necessary condition for a good cost esti
mate has been met. If not, the estimate has a
high probability of being wrong. Is the per
formance required comfortably within the pres
ent state of art? If so, a major condition
necessary to permit an accurate cost estimate
has been met. If not, R&D is required and the
estimate may be in error by factors of tens
or hundreds.

10. Even where a new hardware/software
system is of a kind which has been designed
and produced repeatedly, accurate cost-effec
tiveness measurements or predictions cannot be
made unless the value of what is to be accom
plished is known, how it will be accomplished,
and whether it C'an be done without R&D. This
discussion has been included to illustrate the
minimum conditions which must be met before
reasonable cost-effectiveness projections can be
made of any system or equipment.

COST-EFFECTIVENESS OF "COMMAND
AND CONTROL" SYSTEMS

11. For this discussion, three parts of the
"command and control" function will be con
sidered. These are more accurately called "Com
mand and Support Systems." Figure 3 is a very
simplified version of a very complex and per
sonal activity, It is complex because it is an
activity of sophisticated people in a complicated
and changing environment, reacting to ambigu
ous situations which are inaccurately and in
com,pletely reported. It is personal because each

CO ANDER

COMMAND SUBSYSTEM
Figure 3.

commander has his own particular likes, dis
likes, prejudices and means of operating. The
commander will augment any formal "subsys
tem" we may build in any way he sees fit. The
augmentation may be temporary or permanent
(for the tenure of the commander) but it is not
part of the subsystem discussed here. Realizing
that we are discussing command support sub
systems, let us consider each of the three
selected which are:

a. Data-Gathering Subsystem. A subsys
tem which gathers information necessary to
support a command decision.

b. Analysis Subsystem. A subsystem which
provides or supports the analysis of the infor
mation. (The command function is not con
sidered a subsystem.)

c. Transmission Subsystem. A subsystem
for the ,promulgation of the decision to the
appropriate subordinates.

12. The function of command, i.e., evaluation
of the information and the comm'and decision,
is not addressed. This simplified diagram would
emphasize the facts that:

a. Commanders use many inputs, including
feedback.

b. The commander knows and relies on the
intelligence and experience of the person re
sponsible for executing the order.

13. Webster's New World Dictionary uses
the phrase "Command . . . when it refers to
giving orders, implies the formal exercise of
absolute authority ... order sometimes suggest
ing an arbitrary exercise of authority ... " This
is a clear recognition of the fact that it is not
possible to describe rigorously the transfer
function involved in the command 'process. This
is true not only in general; it is difficult to think
of a single specific command situation in which
a series of logical conditions can be defined
which describe the specific performance re
quired of the commander. However, it is pos
sihle to describe a few selected situations in
which the correct performance can be readily
predicted and completely defined. A doctrinal
response is such a case. However, it is easier
to describe one of the infinite number of
situations in which the correct performance

ON THE EVALUATION OF THE COST-EFFECTIVENESS OF COMMAND 215

cannot be completely defined in advance. Also,
it will probably not be possible to determine if
the decision was correct for days, or even
months or years.

14. Since the com'mand -process itself cannot
be described precisely, or for that matter with
any degree of precision whatever, it is mean
ingless to talk about cost-effectivenesspredic
tions for the command function. Specific
arbitrary situations can be defined (as is done
in a war game), decisions postulated and the
predicted results evaluated. This is useful to
contribute to the learning process of com
manders. It may also be useful to assist in
evaluating a commander's thinking in the
absence of a real war (certainly one would not
want to leave the fate of a real military decision
exclusively in the hands of a computer war
game). While industry has for some years used
a husiness game as a means of training and
evaluating executive management, they do not
leave real business decisions in the hands of
this business game.

DATA-GATHERING SUBSYSTEM

15. Any cOfiifiiander (or business executive)
needs information on which to base his decision.
Military data-gathering systems have existed
since before man first picked up a club. General
Custer had a data-gathering system which pro
vided him with adequate information to have
prevented the massacre. His scouts told him
that the Sioux were as numerous as blades of
grass on the -prairie. It was in the data evalu
ation that Custer's command system was at
fault.

16. Since some data-gathering systems are
well understood, it should be possible to estab
lish a cost-effectiveness comparison ,between
various systems designed to achieve a specific
performance. However, remember that this
comparison is subject to all the conditions which
limit the accuracy of cost-effectiveness esti
mates described above for control systems. It
should also he possible to predict (with varying
accuracy) the cost and performance of a given
data-gathering system. However, it is certainly
not always possible to accurately assess the
value of increments of performance of a data
gathering system. No generalized observations

can be made concerning timeliness, accuracy or
reliability of the system. These are functions
of the specific situation. Consider these major
performance factors:

a. Timeliness. How much is it worth to
have the data a day, hour, five minutes, or
ten seconds sooner? This is completely de
pendent upon the nature of the system, the
nature of the situation, and the nature of the
data. Given a specific data requirement, it is
probably possible for an experienced military
commander to put an arbitrary (approxi
mate) value on the timeliness of the data. It
is the commander's responsibility to make
this decision since he is the one person who is
held responsible for the consequences of his
decisions.

b. Accuracy. How much is accuracy worth
in a data-collection system? This again is
dependent upon all the factors listed above
and also on the accuracy of the raw data and
the quantity of the data. Given a specific re
quirement for data, arbitrary and approxi
mate values can be assigned by the com
mander. It is not possible to do this in the
abstract. (The accuracy of the system could
be defined as the percentage of the data en-
tered into the system \vhich arrives UD-

changed at the output of the data-collection
system.)

c. Reliability. This could be d~fined as the
percentage of the time that the system is
performing in its normal manner. What
effect will a temporary or permanent failure
ha ve ? Here again, the finai answers are de
pendent on the specific system and can be
assessed by experienced judgment only.

17. To reiterate, it is possible to compare the
relative cost and performance of various data
collection systems designed to do a specific job.
If the perform'ance is equal, or assumed to be
equal, the relative cost can be compared. The
problem is, proposed systems are, likely to be
only approximately equal and then only where
a system has been designed in response to a
rigid set of specifications such as may be th~
case when contractors respond to a request for
proposal. Even here a data-collection system is
usually rather complex and the variations of
system performance implicit in the proposals

216 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

are very likely to be of significance to the mili
tary commander.

18. Certain types of command situations per
mit a relatively accurate and profitable assess
ment of the value of timeliness, accuracy and
reliability. Consider the case of a moving tar
get with a known top speed. Knowledge of its
exact present location is limited by the speed,
accuracy and reliability of the reporting system.
If we don't know of any restraints on its direc
tion of travel, we must assume the target has a
certain probability of being within a circle
whose radius is determined by its speed and the
age and quality of our knowledge of its last
position. If we assume, for simplicity, that we
have an accurate, reliable delivery system and
a certain radius of kill, we can calculate the
number of weapons which must be applied to
the target area to give a desired probability of
destroying the target. A method giving mini
mum overlap of destructive areas is the in
scribed hexagon model. 4 The target area is
covered by hexagons inscribed into radius of
damage circles. If the radius of the target and
the radius of desired damage are equal, one
wea:pon is required. If the radius of the target
is 5 times the radius of destruction, 37 weapons
are required. (See Figure 4.) The number of
weapons goes up as a function greater than, but
asymptotic to, the square of the linear uncer
tainty as to the location of the target. This
uncertainty includes, when you are estimating
the number of weapons to stock:

a. Reporting accuracy.
b. (Speed of target) x (Probable reporting
time loss).

Figure 4.

LAST TARGET
REPORT
POSITION

c. A safety factor to allow for the fact that
the information you have may be older than
you think (reliability of the reporting sys
tem).

This analysis still will not give you the total
cost of being effective, because it does not
include such things as the 'probability of being
able to deliver more than one weapon, time loss
if weapons are delivered sequentially, or the
reaction of the target if you miss the first time
and get it excited, etc., etc. This simple example
is virtually a control problem, but illustrates the
point.

19. Assignment of absolute values to the total
aspects of the performance of these systems
requires the highest knowledge of the situation,
the military strategy, policy and innumerable
other factors relating to the national welfare.
Hence, it is necessary that judgment be exer
cised in making the decision as to which system
is selected. This judgment can never be made
with full possession of all pertinent facts. It
will always be subject to human error and can
always be challenged. The military commander
is held responsible for the consequences of this
decision and, therefore, must have final respon
siblity for making the decision. This does not
belittle the contributions that can be made by
proper application of analytical techniques.
Careful analyses and cost projections of com
petitive systems can highlight areas of uncer
tainty as well as 'provide evaluations of known
facts, and should greatly enhance the prob
ability of the commander making the correct
decision.

ANALYSIS

20. While the function of analysis has oc
curred in the commander's mind, with the aid
of his staff, since the beginning of military
action, it is possible to describe precisely only
very limited aspects of the total field of infor
mation analysis for military command. In spite
of this, much of the analysis requires the rapid
and orderly retrieval of data from a large body
of reference and current operational informa
tion. Facts relating to force status, logistics of
supply and movement, geography, climate and
installations are required, to name some of the
more important. These must be stored in an

ON THE EVALUATION OF THE COST-EFFECTIVENESS OF COMMAND 217

orderly fashion. However, to support analysis,
the facts must be related and sorted into many
different orders or categories. Various manual
or mechanized systems to aid this activity can
be compared for cost, convenience, speed and
other factors. Statements can be made regard
ing cost and relative performance. In some
cases it may he possible to put a specific value
on a difference in performance, but usually it
requires command ex'perience and judgment to
make the decision. And the decision as to the
worth of a particular fact, array of facts in a
category, or the worth of specific analysis may
change drastically when the commander
changes. Here, perhaps more than in any other
command support subsystem, the effectiveness
can be assessed only in the mind of the com
mander. What does he think he needs?

SYSTEM FOR THE PROMULGATION
OF ORDERS

21. Here again we have a function which has
been performed by the military since the begin
ning of organized warfare. Given a specific
situation, or a general requirement, it is pos
sible to descrihe many different approaches to
disseminating command information. These
have included word of mouth, runner, carrier
pigeons, bugles, drums, flags and rockets.
Again, it is possible to com'pare the relative cost
of various systems only if they have equal per
formance. Again, it is a matter of military
judgment as to the value of improved perform
ance in such a system. Accuracy is extremely
important. Reliability, Le., probability that the
command will be delivered, is of great value.
The value of speed may be dependent in part
upon the response time of the force commanded.
A command transmission which takes seconds
may be of no greater value than one which
takes minutes where the response time of a
military unit is a week. However, minutes or
hours may be important even though the re
sponse time of a unit is days or weeks. It is
possible to miss even a slow boat. To establish
values of various system performance factors
usually requires military judgment and cannot
be generalized. Each planned application can
be studied and in many cases definite, but not
definitive, values can be attached to improve
ments in performance of some part of the sys-

tem. Other factors which cannot be assigned
specific values, such as giving the order a
greater sense of urgency or authenticity, may
be more important.

22. It is worthwhile to single out the specific
case of a nuclear exchange. This is certainly
the most thoroughly studied of all the possible
military activities which are not yet a matter
of history. The nuclear exchange, 'once it is
initiated, is usually considered to be more
nearly a control problem than a straight com
mand 'problem. It is bounded by doctrine,. a
finite number of weapons and target choices.
Command support subsystems with specific
tasks can be evaluated for specific cost and rela
tive effectiveness. A missile detection system
can be evaluated-with existing missiles-and
its performance against hypothetical new mis
siles estimated. An analyst can even assess
many of the advantages of having a few min
utes more warning time. But an evaluation of
the dollar worth of this time is a task for the
top military policy makers. Values can be as
signed to degrees of reliability and accuracy.
These can contribute to a sound decision, as
they would in any other weaPQn of destruction
system. In general these are like or are really
control subsystem problems and can be ad~

dressed hy an analyst with considerable hope of
obtaining some meaningful results.

23. The" command problem in the trans
attack and postattack period is mnre complex
and probably less understood than conventional
warfare. We don't have any relevant experi
ence since fortunately we have never had an
exchange. There are several questions we can
ask about any proposed subsystem for com
mand support:

a. Can the system survive to do its job?
b. Will there be anyone to use it?
c. Will there be any data to feed it?
d. Will it help?
e. What will it cost?

24. Prior to this point an assumption has
been made that hasn't been stated. It has been
assumed that the subsystem or system compo
nent does something useful-it contributes to
the better solution of the problem. This is the
first question: Is this system relevant? The

218 PlROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1964

answer to this may save a lot of analysis time
and many procurement dollars. If the answer
is "Yes, the subsystem is relevant and useful,"
the following general observations can be made:

a. Two or more approaches to the solution
of the problem can be compared as to cost
and performance factors.

b. With luck, one of the alternatives m!ay
be both better and cheaper.

c. If additiona) performance is offered by
the more expensive alternative, the problem
arises of assessing the value of the increment
of performance. Even if dollar values can
be assigned, there are always other less tan
gible operational factors which must enter
into the decision.

d. A choice may exist as to whether or not
to have a control system (or a particular
weapon or device), but no choice is offered
in the case of a command system. The com
mand systems exist now. So we are always
offered a relative choice. We can use present
methods or add support subsystems. These
can always be compared with the existing
way of doing business. In either event we
ha ve the basic command structure. Command
systems are not a question of hardware.
e. In all system component choices we may
be faced with the cost estimator's standard
dilemma. System A may use a part of an
existing system, while System B may have
growth potential or reduce the cost of future
systems.

f. The analyses and quantifications which
can be done using the techniques provided by
the engineering and scientific communities
are valuable tools which can assist the com
mander in making the best <;>f an extremely
difficult situation.

g. The final decision as to the cost-effec
tiveness of a military command and control
system should rest with the commander who
is responsible for using the system and for
the effect that it has on the success of his
mission and the national security, whether
he is a component commander or the Com-

mander-In-Chief of the U.S. Armed Forces.
He should have all 'available help, utilizing
the best analytic. techniques, in order to make
the best decision.

25. The commanders of the Unified and Spec
ified Commands have been, in fact, given the
responsibility for their command and control
systems by the Secretary of Defense on 26
October 1963, according to Armed Forces Man
agement, January, 1964. The Commanders will
be looking eagerly for help in solving their ex
tremely knotty and complex command support
problems. I believe that virtually everyone here
considers himself a professional, and many of
you will be called upon to help solve these prob
lems. Let us take a responsible attitude, and
recommend hardware and software only when
it is relevant to the problem, and can contribute
to the solution better than an improved manual
system, and only then after we are certain that
the improvement is worth the cost; and that
the user wants the kind of solution we propose.
And I mean the user, the man who will have
to make the system work as a part of his daily
job. Let us have the courage to 'say, when nec
essary, "Glamorous hardware and elegant soft
ware alone won't solve your problem." And
then work with the people who have the prob
lem, and together find out what the problem is.
And perha'ps find the solution, which may even
make use of good hardware and software. Our
professional ethics and pride require it.

REFERENCES

1. ROBERT G. PFEFFERKORN, "Taylor's Flexible
Response Strategy Shifts C&C Perspec
tive," Armed Forces Management, Vol. 9,
No. 10, Page 35, July 1963.

2. RAY CONNOLLY, "System Evaluation is
Underway at ESD," Electronic News, Vol.
8, Page 22, March 18, 1963.

3. JOSEPH S. TOMA, USAF, "Probability Ap
plications to Weapons Systems Analysis,"
AFSWC-TDR-62-59.

4. Ibid., page 29.

FRACTIONIZATION OF THE MILITARY CONTEXT

Dr. Frederick B. T h01npson
TEMPO, General Electric Company

Santa Barbara, California

INTRODUCTION

Every subject is said to have both an inside
and an outside. Its outside has to do with the
relationships between the subject and matters
external to it; while its inside is concerned with
the subject's own internal dynamics. My talk
concerns the dynamics of information in today's
institutions with specific reference to the prob
lems of command and control. Thus I shall leave
questions concerned with the relation of COill-

mand to strategy and the nature of future wars
to my colleagues who are well prepared, as I
am not, to discuss them.

Throughout my remarks I shall make a great
deal of use of the word "context." And so I shall
first clarify just what I mean to convey by that
word. I shall mean by context the total view a
man, or a group of men, has of his situation at
a given time. Thus context includes knowledge
of environment, historic perspective, plans for
action, motives, goals, all aspects of our under
standing of the what, how and whys of our
current situation. The context of a military
headquarters is rather well-delineated. It in
cludes the personnel records of the command,
intelligence, operational information such as
status of forces, logistic re ~ords and plans, oper
ational plans, communication procedures, and
certainly a clear understanding of the com
mand's mission.

In its broader meaning, command and control
are the means by which an org--d.nization main
tains adequate and interconsistent contexts for
its constituents. The inside problems of com-

219

mand and control are the problems of maintain
ing adequate, relevant contexts under changing
conditions and problems, and of insuring con
sistency across the varied and changing con
texts of the members of the organizational hier
archy. It is on these problems of contextual
dynamics that I would like to/focus your atten
tion.

THE SELF-ACCELERATION
OF CONTEXT

Our contexts tend to grow. The more we
know, the greater our curiosity, the more the
remaining unknowns provoke us. Each new
discovery seems to create more problems than
it solves, problems which beckon us to more
complex, more extensive theories and under
standing. This quest for knowledge is not only
for facts concerning the external world, but also
for a better understanding of ourselves, of our
wants and objectives, and of the relative values
to us of the alternatives we perceive. Context
is ever-expanding.

If our contexts were limited to those which
could be contained in the head of a single indi
vidual, our knowledge would be limited indeed.
We have learned to build communities, com
munities whose principal function is to build
and maintain a group context which exceeds in
information that of any of its constituents by
many orders of magnitude. Specialization can
be viewed as a fractionization of the group con
text in such a way as to maximize the total in
formation iri a community that can be brought

220 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

to bear on its various concerns. And the es
sence of organization is to insure intraconsist
ency across the group context while maximiz
ing its informativeness.

Our motivation for this insatiable quest for
ever greater knowledge is clear. The more we
know, the more efficiently we can modify our
environment to meet our desires. Certainly our
current standard of living is ample evidence of
what the expanding human context can mean
to us. But if expanding context brings greater
control over our environment, it also extends
our ability to gain knowledge itself. The great
extensions of context made by Copernicus and
Galileo and the observations of Tycho Brahe,
opened the door for the kinematics of Kepler.
In turn these advances showed the way for the
dynamics of N ewton, and so on through the
discovery of the Van Allen belt and solar winds.
This same effect is equally applicable in the
small as in the large. When a boy learns to ride
a bike, this new knowledge vastly increases the
world he can explore. Contextual growth is
self -accelera ting.

Look at .this fact very carefully: Context is
self-accelerating. If context were limited to a
single individual, there would be a ceiling on
contextual growth and this acceleration would
be controlled. But by building larger and larger
communities, we have removed this bound on
contextual growth. If the community context
were to grow steadily, one could conceive of
an ever-enlarging culture. But the self-acceler
ation does not permit steady growth. As the
rate of growth of knowledge increases, as well
as its overall extent, self-consistency of the total
construct becomes strained. Communication
across the context cannot keep up with the new
discoveries and conceptual extensions taking
place on all sides. The feeling of being out of
touch rapidly deteriorates to a fractionization
of community identification. The basis of com
munication, the commonality of context, disin
tegrates. Castastrophic fractionization of con
text ensues, and the result is the plummeting of
the amount of information remaining in the
community.

The symptoms of contextual fractionization
are many. Among them are, for example, a
feverish preoccupation with the problems of

military command and control, attempts to
centralize control of departmental or corporate
informational activities, acceleration of organ
izational change, greatly exaggerated evalua
tion of communication activities and increase in
"paperwork" of all kinds, and standardization
by fiat, rather than by community recognition
of common practice. And the final desperate
stage to secure the shattering informational
community is dictatorship.

Is such catastrophic fractionization of our
communities inevitable? I do not know. Cer
tainly the rea,ding of history gives us pause to
wonder. But there are ways of dealing with the
problem of contextual explosion. Context must
fractionate, because the strains on communica
tion do become excessive, strains which build up
faster than technological advance can relieve
them. But we can achieve orderly fractioniza
tion. The constituent communities can be or
ganized to retain through the organizational
hierarchy the means to bring to bear a total
body of know-how and understanding not
achievable by anyone element of the organiza
tion.

Gentlemen, the Department of Defense is
tending toward catastrophic fractionization.
The almost explosive rate of contextual expan
sion is all too clear. Intercontinental missiles
are the result of global concerns and scientific
advance, not vice versa. And the rate of expan
sion of the total defense context, indeed, of
every facet of that context, has become explo
sive. There is no reason here to recite examples
of the disintegration of communications, of in
consistencies of policy, or of the increasing dif
ficulties of initiating definitive actions. We are
all too aware, each in our limited sphere, of this
fractionization. And even the newspapers and
trade journals confirm our fear that it may be
widespread.

Those of us gathered here represent a sizable
part of the community that has both means and
mission to reverse this rapid decay in overall
information in our monolithic organizations.
We can assist in the achievement of ordered
fractionization that can in turn increase the
potential for information of today's institutions,
and thus our potential for decisive, efficient
action. But it is not in the increase in commu-

FRACTIONIZATION OF THE MILITARY CONTEXT 221

nication, the centralized data centers or the
paternal agencies established in the name of
efficiency, that this reversal will be achieved.
Efficiency in the informational activities of a
community come from entirely different sources.
Before discussing specific approaches that our
industry might undertake to give effective serv
ice at this critical time, I would like to take an~
overview of the kinds of measures a community
can take to accommodate its expanding con
text-measures I believe the Defense Depart
ment must take if it is to maintain an adequate
defense posture for our nation.

STEPS TOWARD PREVENTING
CATASTROPHIC FRACTIONIZATION

Organize to Minimize Communication
Requirements

The task is not that of maintaining a single,
all inclusive context where the centralized Sec
retary's Office has all the details of its far-flung
operations at its fingertips. No single context
can accommodate it. It is not just that no one
man can take it all in a single thought. It is
simply impossible to put such a context to
gether no matter what resources are brought
to bear. The means of communication are not
adequate, nor can they be made adequate, to
maintain the consistency of such a context
whose rate of .change in every facet is as high
as it is today.

The essence of traditional command doctrine
is the delegation of command prerogatives to
the responsible officer on the scene. Let us ex
amine this doctrine for a moment. What do we
mean "on the scene?" In a task force operation
the man on the scene is the task force com
mander. He is directly in touch with his sub
ordinate command elements which he controls
and maneuvers in· the accomplishment of the
task force objective. However, if we consider
one of these subordinate units, say a combat
ship or combat wing, the commander of that
unit is on the scene relative to its control and
the coordination of its operation. In turn, for
the operation of the ship's power plant, the en
gine room officer is on the scene; for the opera
tion of a particular aircraft, the aircraft com
mander is on the scene.

A military operation - any operation - di
rectly deals with reality; not with hypothetical
plans, nor with far-flung systems which can
never be fully sensed or directly experienced,
but with individual men and individual items of
equipment, and individual reports and individ
ual points of view. This reality is strangely
peculiar to the particular operation. It may be
an operation at the highest level, such as dealing
with Rusk and McNamara, Khrushchev and De
Gaulle. It may be an operation at a middle level,
such as the execution of a blockade of Cuba
dealing with particular ships, the personalities
of well-known officers and with weather condi
tions you have personally tasted on many a
watch. Or it may be an operation at the lowest
level such as knowing instinctively the coverage
pattern for a radar and the kind of returns to
expect, and the sense to be able to distinguish
the moon from incoming missiles. Traditional
military command doctrine gives the responsi
ble officer, who is in the position to directly
sense the reality, the means and the preroga
tives to deal with that reality "on the scene."

The essence of this doctrine is twofold. First,
the responsible officer on the scene is in the best
position to have the relevant information. Sec
ond, the delegation of prerogatives assunles
responsible reporting of the relevant facts
upward. As a result, the 1'equi1'ements for com
munication are reduced to a minimum and the
relevance of communication is maximized.

To attempt to obtain at a far-away headquar
ters the essential details, the peculiarities of an
operation, and to exercise detail control from a
distance puts impossible strains on communica
tions. I do not mean by "communication" solely
the transmission and reception of signals, but
all that is implied when we say two men are
communicating, one to the other. Those who
think that this problem can be solved by great
automatic data systems-and there are many
people who think this in our industry-have no
appreciation for the complexities of military
operations, though they would decry the diffi
culties of debugging a simple computer pro
gram by telephone. The result of such systems
is inevitably the inundation of the higher head
quarters with noise and the rapid deterioration
of the effectiveness of the subordinate.

222 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

The notion is also popular that one can cen
tralize a portion of an operational task in a
central agency, far removed from the realities
that give meaning to the subtask in the first
place. Thus, for example, major functions of
military intelligence and military communica
tion are centralized for the sake of efficiency.
But the sources of feedback and the measures
of relevance germane to the operational realities
and requirements are missing in such central
ized agencies. The relevant measures, heard
only indistinctly, are all too easily replaced by
feedback from the local environment which are
all too often at cross purposes with the needs of
the field.

One of the control centers of a unified com
mand wished to move a telephone fJ;:om one side
of an office to the other. I t took two years for
the paperwork to be processed through Wash
ington before official permission was given. Of
course, the phone was moved long before that.
But it is precisely the inconsistency as well as
communication strains which result from such
foul organization and failure of delegation
with which we are concerned.

An equally ridiculous example is that a major
military command now is in the process of put
ting all. their personnel records for the last ten
years on punch cards and sending them to
Washington. Washington may be able to proc
ess punch cards very fast, but any manager
who has had to match man to job and stay on
top of the personnel matters of his employees
can imagine the reduction to primitive levels
that managers on the scene will be forced to
employ and the stratagems that will be used to
keep Washington permanently misinformed.

To delegate operational tasks to men on the
scene calls for attention to the kind of tasks
which are likely to occur, the kinds of control
which must be maintained at higher headquar
ters and strategic considerations. These are the
outside aspects of command and control. But
once these are properly assessed, the inside
principle must be followed: organize and dele
gate to minimize the volume and maximize the
relev!Lnce of communication. And the key to
this principle is to assign responsibility and
prerogaUves to the man on the scene.

To Stay Consistent, Stay Close to Reality

One of the greatest deteriorating factors in
any organization is incipient conviction on the
part of a constituent that 'others with whom
they must deal are out of touch with the reali
ties of the situation. If the higher military
headquarters appears to be functioning on the
basis of assumptions that the field knows by its
direct observation to be false, or even if the
field only believes them to be false, the field will
inevitably respond by subverting the informa
tion structure to its own ends. If the higher
headquarters loses confidence in the meaning
fulness of the reports it receives from the field,
it will ignore those reports in making its de
cisions. The result is rapid collapse of com
munication, a collapse that cannot be detected
in bit rates. The problem of maintaining touch
with reality is greater now than ever before,
for we have so few bench marks on which to
lay our conceptions of military operations. We
had not had operational experience under full
scale war time conditions with weapon systems
and unit organizations with which we are now
equipped. There is no underlying body of ex
perience that, among other things, assures the
consistency of view that is so necessary to main
tain the cohesion of the military organization.
Thus we must insist with uncommon concern
and tenacity that the operational realities of
which we are cognizant are kept firmly in mind,
let the chips fall where they may.

In many cases, the knowledge of our senior
military officers concerning what is actually
going on in their commands is simply inac
curate or misinformed. It is generally accepted
that the SAGE command and control system
led the way in the development of modern
automated command control techniques; that
SAGE was the great prototype of automated
command and control. The indications are,
however, that many SAGE sites are not ex
ercising their equipments from one inspection
to the next, that some have even put cellophane
overlays over their scopes and returned to
essentially manual operation. What confidence
can we put in the development of future com
mand and control systems when SAGE is
named as the great prototype?

But it is not only that our higher headquar
ters are net looking. Of much greater concern

FRACTIONIZATION OF THE MILITARY CONTEXT 223

is that we are ignoring at all levels realities all
too apparent to the analyst who will but un
flinchingly layout the known facts. How many
systems, organizations, bureaus and military
commands live on when both they and their
missions are obsolete? What is the degree of
collusion in the conduct of military exercises?
What studies have been buried? Who has not
felt too often the pressure to justify rather
than establish, and witnessed too many con
trived demonsrations?

We are not looking; we are not probing be
low the surface. But we have found a substi
tute: the operations analysis that purports to
"simulate" military operations in a computer
or establish formulas for determining the cost
effectiveness of weapon systems. Operations
analysis can be useful, but only if soundly estab
lished on ~dequately developed experimental
evidence from the field.

It is important that those who are applying
the results of such analyses at the strategic level
understand our technical deficiencies in the
basic and crucial assumptions of these studies.
A few specific examples of such deficiencies are:

• there is no adequate method of discounting
over the long haul in cost/effectiveness
studies;

• economic comparisons or economic re
source cost estimates involving the Soviet
Union depend on an adequate analysis of
the ruble/dollar ratio, which has proved
intractable to date;

• the "soft" effects of nuclear weapons on
population, communications and organi
zation appear to dominate the "hard"
effects, yet we have no adequate means be
yond intuition to project these "soft"
effects;

• there is no adequate method to assess the
effectiveness or the effects of deterioration
of combat communications of any of the
military or diplomatic services.

Yet these deficiencies lie across the very roots
of every major operations analysis today.

Eight years ago I participated in a study to
determine whether the results of a certain class
of effectiveness studies were sensitive to the

underlying parameters of the studies. We
found that the degree of sensitivity, relative to
our knowledge of the parameters, reduced the
significance of the results to a point where their
usefulness was in grave question. I recently
examined this same area to see what improve
ments had been made. I not only found the same
practices, but the same reports which I had pre
sumably established as inadequate were quoted
as the basis for current studies.

Is it not the case that our studies grow from
roots that penetrate only as far as the intuition
of the analyst? One of the best known and re
spected operations analysts once showed me his
notebook where he wrote down prior to under
taking a study what results he expected to
prove. He was very proud that he had never
failed to predict his results correctly. If I were
to be asked to choose between the expertise of
a Ph.D. mathematician and a flag officer of our
armed forces in matters of mathematics, I
would pick the mathematician. As a mathe
matician, I do not have the arrogance to hold
that the mathematician's "guesstimates" and
intuition should hold sway in the arena of mili
tary operations.

I am not here decrying lack of objectivity as
such, or pointing in alarm at malpractice. What
I am saying is that if we are to reverse the
catastrophic fractionization of context which is
occurring in the Department of Defense, we
must insure by all available means that con
sistency which can legitimately be found. The
best source of consistency is reality itself. We
must get out of our nonprofit ivory towers, ad
ministrative labyrinths, and self-mesmerizing
brochures. \Ve must insure that our context
matches the reality that is there, if we bother
to look. Experience must again be valued, the
man on the scene respected, and the hunch
heeded that tells us we had better drop. in un
expectedly to get a first-hand look.

The Importance of Purpose
Modern communication theory teaches us

that information can be measured in terms of
our relative uncertainty concerning a set of
alternatives. What it does not tell us is where
these alternatives come from in the first place.
Once the alternatives are clearly defined, then
that part of a communication which does not

224 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

properly reduce our uncertainty is identified as
noise. However, if we were to change our selec
tion of alternatives, what was once noise may
become highly informative communication.
Thus the selection of alternatives is a crucial
aspect of obtaining information.

However, it is in the selection of alternatives
that we often go astray. It is far too easy, when
we come across a new facet of a situation, to
either make simplifying assumptions related to
the techniques of the analysis rather than the
problem, or to simply ramify the alternatives,
establishing new requirements for data. In
either case, communication theory gives us
neither reason nor warning for the resulting
dilution of relevance. We pay homage to sys
tematic methods, and, like the physicist who
ignores viscosity in favor of Newton's laws,
forget about the sticky aspects. We must be
sure to get all the hard facts; to distrust-in
deed fear-the man who is outspokenly biased.
We dare not make judgements of relevance, and
the only limitations on alternatives are those
made in favor of allowing more precise analysis.
And as a result, we are faced with the paradox
that since there is nothing we dare call noise,
it is all noise. I know of one office of the De
fense Department that has stored away over
7000 magnetic tapes, each containing a million
and a half words. They never have and never
will have the capability to look at them, yet they
are reluctant to throw them away.

The selection of alternatives is where our
purpose is revealed, where our measures of
relevance are established. It is only when there
is clear purpose that there exists the means for
establishing relevance. And it is only through
a sense of relevance that we can winnow out
the essential elements of information from the
swirling, encompassing chaff of data and re
ports. When we have our purpose clearly in
mind, then the one or two alternatives that we
actually have stand out clearly in front of us.

What is purpose? Purpose is not something
set down in writing under the subhead, objec
tives; nor is it the first few paragraphs of a
justification paper. I imagine that each of us
has on occasion sat with tablet and pencil before
us trying to put into a position paper or pro
posal a meaningful statement of purpose, and

finding our words empty and unconvincing.
Purpose is not expressed that way.

Purpose is only truly meaningful to the man
on the scene who has at his command the means
of accomplishing something and is caught up,
engrossed, in getting a task done. Such a man
is not objective; indeed, he is vehemently biased.
But this is the kind of bias we so desperately
need. He ignores most of the facts, and in so
doing has time to attend to his job. He is too
preoccupied to fill in all the data forms; but
when he communicates, the message both de
mands attention and clarifies by its clear
relevance.

Purpose is the man on the scene, struggling
with a task, who can get direct feedback from
his actions, who has at hand the measure of his
accomplishment or failure. I do not think you
can separate the two. Separate the man from
the means for accomplishing his task, and pur
pose goes also. Remove him from the scene,
from the source of direct feedback, and you re
move purpose as well.

In designing information systems for com
mand and control there seems to be no atten
tion given to conveying purpose. How is pur
pose conveyed? Purpose is conveyed by saying
what the alternatives are, not by evaluating
their cost effectiveness. Purpose is conveyed by
saying what the measures of effectiveness will
be. Purpose is conveyed by asking questions,
not for the sake of the answer, but to be sure
the man questioned got the gist of your order.
Purpose is conveyed by leadership and follow
through.

The systemization of human knowledge has
grown to such an extent that we find ourselves
entrapped in a great web in which it seems that
any strand we pull ties in with all the others
tugging us in ways we did not anticipate. We
tend to replace the question as to which way we
wish to go by the question as to which way we
can go. And we assume this latter question can
be solved by simply getting our facts untangled,
tracing through the scientific web of cause and
effect, and thus clarifying the old alternatives
and their cost effectiveness.

The realities with which the military must
deal today a're beyond such scientific explana-

FRACTIONIZATION OF THE MILITARY CONTEXT 225

tion. I am not talking about the "intangibles,"
nor about the role of "judgement," nor any of
the other cliches used to justify intuitive be
havior. The self-acceleration of context, in par
ticular of our scienti~c/military context, has
reached the point where changes are taking
place in the system faster than our ability to
properly take them into account. I have stressed
above that fractionization is occurring, and the
essence of fractionization is that overall
rationalization of the total system becomes
more and more impossible.

If science is inadequate for the direction of
our military programs, by what should we sup
plement science? Under these conditions of
fractionating context and decay of overall in
formativeness we must find some means to re
establish relevance and spur and inspire pur
poseful action with a unity of direction. Our
current attempt to gather all possible informa
tion into one place and then use scientific
methods to reduce it to a point where deCisions
can be made is resulting in just the opposite of
what is req,uired.

Indeed, the very cry of our operations
analysts for clearer statement of requirements
points up the almost total loss of measures of
relevance and sense of purpose.

Let us recognize that some men have a better
sense than others for where we are going and
what can be done about it; and that some men
have the capability to inspire and lead. Just as
we look for the finest intellects to become
scientists, ,\-ve should similarly look for and
esteem our men of judgement and our men of
leadership. How much money are we spending
today to encourage those who rate high on the
college board examination compared to the in
centive we are giving to courage of conviction,
personal initiative, and the qualities of leader
ship? We do not breed leadership by centraliza
tion of decision making, by defiling the image
of those who have achieved prominence as
leaders and men of judgement by casually re
versing their decisions, by giving precedence to
the mathematically encapsulated intuition of
men whose judgement has never been tested in
operational situations, by occupying the time of
our field officers with routine paperwork and
the exclusion of honest tests of their effective-

ness in successful operation and sustained oper
ational preparedness.

It is in the practices of command and con
trol that we determine the quantity and the
quality of judgement and leadership that we
shall be able to call upon in the future. It is the
practices of command and control that allow
the quantity and quality of judgement and
leadership we now have to be exercised effec
tively. And it is the quantity and the quality of
judgement and leadership that will determine
whether the exploding context will fractionate
in an orderly fashion, giving us the defensive
capability that will sustain our great country,
or will hasten the catastrophic fractionization
that is now rotting our defensive capability
from within.

To summarize:

• the requirements for communication must
be minimized and the relevance of com
munication must be maximized by placing
the prerogatives of command and the re
sponsibility for reporting upward in the
hands of the responsible official on the
scene;

• the interconsistency of context must be
maintained by keeping close to reality, by
delegation to the point where feedback
from the real world can be felt, by follow
through in insuring that things are as they
are reported to be, and by facing up to
realities that we know but are now ignor
ing;

• relevance and purpose must be stimulated
by attention and esteem for judgement and
leadership and by the stimulation of these
qualities by allowing them to be exercised
at all levels of command.

These three principles are the central issues
of command and control today. Our attention to
them will mark the success or failure of the
establishment of effective command and control
across our military organizations. Do not be
misled that the only problems that remain are
how to automate decision making, store and
retrieve documents or harden communication
centers. Let us turn now to these central issues
and what our industry can do to resolve them.

226 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

IMPLICATIONS FOR THE COMPUTER
INDUSTRY

Exploitation of the Adaptability of the
Co'mputer

The development of the digital computer has
provided us with a machine whose combination
of adaptability and computational power is way
beyond anything previously available. As a
means of manipulating great q,uantities of data
and carrying out extremely complex data proc
essing, the computer opens whole new avenues
by which we can bring to bear distant observa
tions on current concerns. Furthermore, the
high speed, stored program computer has the
potential of placing these capabilities at our
fingertips.

However, the exploitation of these two great
virtues of the computer cannot be carried out
independently. There is a trade-off between the
computer as an adaptable instrument and the
computer as a data processing instrument. To
make the most efficient use of the computer as
a data processing instrument requires efficient
programming, minimizing of housekeeping and
input-output functions, and careful scheduling
of the computer's utilization. To make the most
efficient use of the adaptability of the computer
requires, in contrast, that the computer respond
directly to the sometimes ill thought out instruc
tion of the user, with much time spent on input
and output to deal with the elaborate re
dundancies and conventions by which we nor
mally communicate, and that the computer es
sentially wait ·for the user rather than the other
way around.

Now the principal uses of the computer today
are in applications where the maximization of
its data processing capabilities are required. It
is indicative to recall that the biggest sources
of funds by far for the development of com
puters have been the Atomic Energy Commis
sion and the data handling aspects of military
intelligence. In both cases the emphasis is al
most entirely on speed of processing. Even the
output required is in the concise and sophisti
cated language of mathematics. No wonder the
current generation of programmers and com
puter engineers place efficiency of computation
and efficient use of the computer ahead of all

other measures in deciding the appropriate way
to apply computers.

Further, when the problem that the computer
programmers and computer engineers see are
so very large and complex and so distant from
the underlying uncertainties giving rise to the
computation, the idea that the data are suspect
and the answer only an indication of what new
question to ask, immediately requiring a new
program, or second guess at inputs, is foreign,
indeed. Thus the adaptability of the computer,
which makes it such an ideal tool of conceptual
exploration, has been downgraded. Little has
been done until recently toward exploiting the
other half of the computer's great capabilities.
Indeed, relative to tot?-l expenditures or total
population in our industry, little is being done
today.

In particular, our command and control sys
tems are not responsive to the rapidly changing
environment, capabilities and objectives of the
user. In fact, the principal result of all the push
in command and control to date is the prolifer
ation of organizations inserted between the ulti
mate user and his computer. There is the EDP
office of the using command, his counterpart in
the procuring command, the system monitors,
the contractor's project office and finally the
programming and design people. I t is in the
interest of each of these offices to seal the sys
tem requirements years before its operational
date and see to it that the most efficient-and
thus necessarily the most immutable-configu
ration of programs and equipment are provided.
For example, soon after the initiation of one of
the Air Force L systems, it became evident that
the requirements stated in the request for pro
posal (by then 15 months old) did not take
cognizance of the user's trends and plans for
reorganization. The system contractor duly
recommended a rather complete reorientation
in his effort. Not only was this recommendation
ignored, but 10 months later, 6 months after a
reorganization of the user that made the work
statement obsolete, the system contractor was
required to deliver a detailed systems design and
establish by detailed analysis that it filled, but
did not go beyond, obsolete requirements of a
nonexistent organization.

FRACTIONIZA TION OF THE MILITARY CONTEXT 227

In the first part of this talk, I stress the grow
ing problem of catastrophic fractionization of
the context of the Department of Defense. I am
convinced that a by no means insignificant con
tribution to this impending catastrophe is being
made by past and current efforts in command
and control systems. The huge, inflexible data
systems with their insatiable demands on the
field for irrelevant, often unused data, the cum
bersome automation of decision processes
whose development time cannot keep pace with
changing requirements are contributing not
only to the inflexibility of our defense posture,
but immeasurably contributing to the incon
sistencies they are supposedly resolving. There
is nothing easier to corrupt than a complex,
highly formalized data system. And there is
nothing for which the coercions to corruption
are stronger. I shall never forget the conversa
tion I had some years ago with one of the lead
ing contributors in our industry. At the time
he was at a Naval shipyard, in charge of their
computer installation. He described the prob
lem. there as having nothing to do with efficient
methods of inventory control or production
scheduling. Rather their then current data sys
tem had been so completely corrupted at the
grass roots level that one could place no reliabil
ity on any available data, and as a consequence,
the yard management was in a very real sense
helpless in face of the working level control of
shop foremen. How much farther has this gone
today?

The real damage, though, is not being done by
the command and control systems that are
working; there are too few of these. It is the
great promises and strange delusions that in a
centralized data system we have the panacea of
all our command and control problems. Mr. Gil
patric, when Assistant Secretary of Defense,
said, "The machinery for gathering, analyzing,
and presenting the data necessary for decision
making has, due largely to the extensive and
imaginative use of automatic data processing by
the military, advanced to a point where central
ized decision-making is both efficient and effec
tiv.e." Mr. Esterly Page, Director, National Mili
tary Command System (Technical Support),
repeating the above quote from Gilpatric, went
on to elaborate on the choice that has been
made: "During the past two years this nation

has undergone a basic change· in the philosophy
of command and control which has resulted in
new enlphasis on the requirement for large
quantities of finite and precise information to
form the basis for consideration at the highest
level of problems that previously were con
sidered and unfortunately decided at a much
lower one." Like the wooden walls of Athens,
computers may be the key to our survival. But
what happens when those high up in the lonely
citadel find they chose the wrong wooden walls,
and the ones they chose have been rotted a way
by the proper corruption which seeps in when
the traditional coercions for responsibility have
been taken a way?

However, there is a bright spot in this other
wise disturbing picture. The Advanced Re
search Projects Agency is supporting a number
of well-chosen programs for the development
and exploitation of the adaptive capabilities of
computers. Certainly one of the most ambitious
of these programs is Project MAC, undertaken
by the Massachusetts Institute of Technology.
The Air Force is also turning toward develop
ments along somewhat similar lines, as was
stated by General Terhune3 at the Fall Joint
Computer Conference in Las Vegas. * There
are, as well, programs sponsored by other
agencies, both public and private. Forexample,
the commercially supported project undertaken
by the Control Data Corporation concerning
computer .supported engineering design.

These projects have as their general objec
tive making the computer directly available to
the individual researcher, analyst, and staff
officer, as an adjunct to his creative thinking.
The technical objectives are threefold. First,
by means of remote consoles, interrupt features,
and associated software, to provide a number
of users direct and parallel access to the com
puter. Second, by means of problem oriented
languages, including graphic and natural lan
guages, to provide access to and response from
the computer in a form that is natural and effi-

* This point of view was anticipated by "A Concept
for the Navy Operational Control Complex of the
Future," by R. W. Callan and F. B. Thompson,! and
"Fundamentals Underlying Military Information Sys
t3ms Design," by F. B. Thompson, a paper presented
at the First Congress on the Information Systems· Sci
ences, November 20,1962.2

228 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

cient for the user. Third, by organization and
advanced concepts of software logic, to pro
vide more and more intelligent responses to an
increasing variety of possible requests. These
capabilities will take the computer from down
the hall and behind the counter, and place it
as a direct adj unct of the staff officer.

Command and Control Implications of Direct
Access Systems

The general nature of these technological de
velopments is probably known to you. What I
should like to bring into sharp focus here is the
implications these technological developments
hold for the central issues of command and con
trol. A computer as a direct adj unct of the staff
officer is a very different thing than a computer
as the central instrument of a great data sys
tem. Those who speak of direct access systems
often describe how they will allow the staff offi
cer to make use of some central data base, and
the implication seems to be that the staff officer
will have direct access to the great assemblage
of fact that now stands assembled but inacces
sible by the great data system. This is a false
view. Acces~ to a base of fact can be meaning
fully accomplished only if the user has a feel for
the relevance, the source, and the units of those
facts. In a very real sense, they must be his
facts, his data. We too often assume that the
number of missiles in Cuba, or the number of
atomic weapons we could deliver to enemy tar
gets are sufficiently well defined when in fact
their uncritical application by the uninitiated
is fraught with danger.

This point needs to be stressed. Meaningful
data is a fragile, subjective thing. The intelli
gent analyst knows this when he insists on
knowing the use that is going to be made of his
estimate before he is able to produce it. The
contracting officer knows this when he refuses
to allow even a unilateral passage of informa
tion during deliberations on a source selection.
The combat commander knows this when he
gets out among the troops to sense the situation
on the spot. One can reasonably and respon
sibly use data only if it is one's own data.

There is a second aspect of this matter of the
data base underlying these direct access sys
tems. The amount of data that could be ac-

cumulated in, say, a major command head
quarters is astronomical. The choice of just
what data is to be found in the system thus be
comes an important command decision in itself.
That choice embodies the sense of relevance of
the headquarters. Further, the implementation
of that choice by directives on subordinates and
requests to lateral and higher headquarters, is
a principal means of conveying purpose and
establishing direction. The headquarters whose
reporting requirements are static and all
inclusive gives up one of its principal tools of
control and opens the door to subversion of its
leadership. It is the direct access system that
can give new vitality to data as a sensitive in
strument of command and control.

Therefore, the implication of the technologi
cal development of direct access systems is that
there will be closely knit staffs addressing rela
tively small but dynamic bases of highly rele
vant data as they deal intensively and purposely
with problems local to their scene. Such direct
access systems cannot be reasonably justified
on any other grounds.

Thus the technological development of the
computer as an adaptable instrument, respond
ing directly to the requirements and local con
text of the user marks the beginning of the
counter trend. Not only are the continuing
failures of the automated information systems
becoming more and more obvious, but the seeds
of a new.type of system suited to the needs of
the purposeful headquarters on the scene are
being sown. The catastrophic fractionization
of the Defense Department is being accelerated
by the obsolete centralized information systems.
It is the latter, the system that can be used re
sponsively by the purposeful staff, that can
bring the necessary vitality and responsiveness
to orderly fractionization.

The Promise and the Needs of the Highly
Responsive Staff

Throughout this paper, the underlying prob
lem has been how to deal with the exploding
military context. We have emphasized (1) the
need to place the prerogatives of command and
responsibility for reporting upward in the
hands of the responsible officer on the scene;
(2) the need to maintain a direct hold of

FRACTIONIZATION OF THE MILITARY CONTEXT 229

reality; (3) the need to establish purpose and
measures of relevance through leadership. How
can this be done, say in the environment of mili
tary command?

The essence of orderly fractionization is that
the units of command must be in a position to
maintain a viable context, a cohesive and con
sistent view -that integrates their capabilities,
environment and objectives in a way that is
responsive to the reaHties with which they
must deal. The commander and his staff must
know what he wants to do, what it will take to
do it and what he has to do it with, and they
must have a sense of readiness that his objec
tives, his requirements and his capabilities add
up with possibly a margin of capability in re
serve. Noone of these three ingredients of his
context-objectives, situation and capabilities
-is given to him immutable. He must be able
to modify his detailed objectives, reassess his
situation, reorganize and redeploy his capabil
ities. That is, he must maintain the consistency
of his context of command. But more than that,
he must make sure of this intelligence, test and
exercise his forces, prod and react to his supe-
riors; he must maintain the validity of his con~
text of command. This maintenance of context
is the essence of staff work and the foundation
of command and control. The orderly frac
tionization of command is tantamount to the
establishment and reestablishment of a hier
archy of command in which each headquarters
can maintain such a context peculiar and ap
propriate to its position in the hierarchy.

As the rate of expansion of overall context in
creases, this hierarchy of command must ex
pand and deepen. Each element in turn must
increase the efficiency and maintain the rele
vancy of its context. If this is' done there will
indeed be fractionization, for the contexts of
forward elements, in touch with the rapidly
shifting local situations, will responsively shift
and move in ways the contexts of higher ele
ments cannot moment by moment respond.
These higher elements, however, operating at
higher levels of abstraction, will follow at their
appropriate rate, their appropriate realities, of
their appropriate scene. Fractionization of the
overall context inevitably will occur.

Let me restate that in the bluntest possible
terms: In the Department of Defense today, in
consistencies between the contexts of the vari
ous elements of the organization are inevitable.
It is the character and source of these inconsist
encies that must be controlled. If that frac
tionization is realized in terms of the responsive
ness of the disparate elements of the command
hierarchy, it will accommodate greater and
greater responsiveness to change, and permit an
orderly control of a vast and vastly informed
organization. Consistency of overall context
cannot be maintained in the face of change. But
orderly fractionization of context that places
the prerogatives of control at the point where
the sense of change is most meaningful, that in
sures the degrees of change will be felt at the
appropriate level and that inserts purpose into
change, such orderly fractionization can permit
our organizations to live a'nd grow and prosper.

In Surn1nary

Thus the crucial informational problem is
the maintenance of relevant, consistent, valid
context in each separate, disparate organization
or military headquarters. This is the central
task of staff work, the essence of command and
control. It is in the perspective of this task that
our information systems must be planned and
developed. The appropriate information sys
tem must be a direct tool of staff, as natural and
direct to use as the te~phone. The data held
by the system must be put there by the staff,
must be the intimate changing product of the
staff, the factual base of their context whose
relevance is their most crucial task. And that
system must be the staff's system, not a uni
versal system, not a standard system, but one
that is recognized as what it is, inconsistent
with all others, to a degree irrelevant to all
others, and thus free to be responsive to the
sense of relevance of its staff, the purpose of its
commander or administrator. From such a con
text, communication will be relevant. And this
communication, by its very shifts and changing
emphasis, will convey purpose and direction as
well as fact.

This is a very different kind of system than
the great data systems and automated control
systems. It is a system that allows direct access
in natural language, it is a system whose files

230 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

and formats, whose inputs and vocabulary are
always changing, continuously changing.

The Department of Defense is tending to
ward catastrophic fractionization. The reversal
of the process of this explosion may still be pos
sible. It rests in the hands of two groups:
First, those in control of d~fense policY, in par
ticular those who are determining the policies
for military command and control. Second, it
rests on us, for it is our industry that can turn
to the development of systems that will exploit
the adaptability of computers and will place
them as the tools of staff in maintaining rele
vant, responsive contexts of command. The
challenge to realize orderly fractionization is
very real and urgent today, a challenge to which
we must respond.

REFERENCES

1. CALLAN, R. W., and F. B. THOMPSON, "A
Concept for the Navy Operational Control
Complex of the Future" (General Electric,
TEMPO, RM62 TMP-49, July 1962).

2. THOMPSON, F. B., "Fundamentals Underly
ing Military Information Systems Design"
(General Electric, TEMPO, SP-183, Novem
ber 1962), to be published in Military Infor-
1nation Systems, edited by Edward Bennett
(Praeger, New York, in press).

3. TERHUNE, T. H. An Address to the Ameri
can Federation of Information Processing
Societies, Fall Joint. Computer Conference,
Las Vegas, Nevada, November 12,1963.

SOME OBSERVATIONS CONCERNING LARGE
PROGRAMMING EFFORTS

Almon E. Daniels
Weapons Systems Evaluation Division

Institute for Defense Analyses

INTRODUCTION

The requirement to construct large systems
involving both men and computers to assist in
the evaluational and decision making processes
of command and control leads very quickly to
the development of large and complex computer
programs. While my own efforts have been
largely devoted to the development of detailed
computer simulations of strategic air war
fare;1 I have had an opportunity to follow in
more or less detail the progress on a few of
the command and control systems. The observa
tions which are made here relate to a broad
class of computer data systems and certainly
apply to the ones evolving in the command and
control area.

One may think of a computer program as a
progression of smaller programs or routines.
Among these routines are ones which alter data
presented to them, perform calculations, make
new arrangements or combinations of the data,
provide for employing alternate paths in the
program, etc. Of considerable importance also
are the control routines which bring together
at the proper time the correct routine with the
data on which it is to operate. In more com
plex programs, the sequence of use of the
routines and data is subject to modification by
external events.

The tougher problems in the design of com
puter programs begin to arise when the in-

ternal memory of the computer is too small to
contain all of the routines and data involved.
For the large man-machine systems the internal
memory might be likened in size to a teacup
used to dip a mixture of program and data
from a barrel. Much larger memories will
simplify some of the problems, but they will
not eliminate nearly all of them.

These remarks have been made to clarify,
for the present purposes, the meaning of the ex
pression "large computer program."

The development of a large system goes
through several phases. First, there is a for
mulation of system requirements. Then fol
lows a period of system analysis, problem defi
nition, and design. The computer hardware is
selected, a detailed design is made and im
plementation is undertaken with numerous
changes and delays. Experimental applications
are made, redesign occurs, and modifications of
the computer program are made. Further
trials are made, and the cycle is repeated.

The elapsed time for the accomplishment of
these phases is measured in years. The design
and implementation of most of the Air Force
"Big L" systems have extended for three to
five years. The other services have faced similar
schedules. Under very favorable circumstances,
a substantial application can be brought to a
productive state in about two years.

232 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

DESIGNERS' DILEMMA

'\
\

Designers of large data systems begin at
condition A and envision a solution B, hurdling
a number of intermediate steps. Because of
the anticipated elapsed time of three to five
years, embarking on the task of attaining
solution B without intermediate steps requires
the acceptance of a fairly bold assumption. It
has to be assumed that solution B, which has
been arrived at in terms of present day prob
lems, will in fact be suitable for the intended
task when the system is operational. In other
words, ,the assumption must be made that the
problem and the solution will remain relatively
constant. Experience has shown that this
happy state does not exist. The more distant
the goal, the less certain the solution becomes.
Furthermore, because the problem exists at
condition A, there is pressure to arrive at a
useable solution as soon as practicable. Con
sequently, as work progresses, several compro
mises are made. Call these less elegant solu
tions in succession Bh B2, and B3• As time
passes, additional knowledge is acquired, and
the actual requirements of the problem change
to B' while the compromise solution is still Ba•
A person not troubled by the esthetics of pure
design could set out toward the not-crystal
clear goal B by making the step from A to A'
(which may be rather close to B3) with much
greater chance of early accomplishment of the
lesser goal.

Our experience with computer applications
verifies the comment of one keen observer in
the profession: "When we cease to change a
program, we cease to use it."

If there is any ~onclusion to be drawn from
considering these two ideas together, it is the
following: Make as complete a system study
as possible, but design the implementation in

such a way that a portion of the system can be
exercised usefully at an early date. One must
attempt to build the system and its modifica
tions so that the user can operate the system
while its usefulness is being extended incre
mentally. It is almost inevitable that exhibit
ing sample products of the system will lead to
changing the design of the system; and the
sooner this restatement of the requirement
occurs, the sooner the first round of modifica
tions to the system can be undertaken. Changes
will be required on a continuing basis as the
users of the system better understand what the
system can do for them.

USER PARTICIPATION

It is next to impossible for the system
analysis team to discover the full extent of the
system being studied or to find all the boundary
conditions unless the cooperating representa
tives of the user are sufficiently experienced in
both the operational and computer aspects of
the application to exhibit all the pertinent
facets of the problem. The distinction is here
made between the ultimate user of the system
and his representatives who are assigned to
assist with the design and incremental imple
mentation of the system. The backgrounds and
perspectives of the representatives may result
in the incorporation of some undesirable
features in the system, if they are not able to
project their thinking to the needs of the
ultimate user. If the ultimate user can be in
volved in the early exercising of the incom
plete system, clarification as to emphasis and
detail should occur before the whole design is
implemented in an unsatisfactory fashion.

Despite the possibility that guidance from
representatives of the ultimate user may in
troduce some ideas into the design which will
have to be modified at a later date, the partici
pation of carefully selected representatives of
the user throughout the design, implementa
tion, and testing of the data system is vital.

Without such participation, the user's organi
zation will be ill-prepared to understand the
series of compromises which have been made
to bring the system to an operational state, and
will not understand that asking for too much
in a hurry is likely to delay the completion of

SOME OBSERVATIONS CONCERNING LARGE PROGRAMMING EFFORTS 233

the initial portion of the system and its in
cremental extensions.

The user's personnel must be able to under
take the maintenance and modification of the
system after the team from outside the organi
zation has completed its work. In order to
supply this capability, the user organization
must provide sufficient personnel of suitable
talent to participate in the implementation of.
the system. These participants must be deeply
involved in translating the design to language
acceptable to the computer, debugging the
routines created, developing test problems of
proper' sophistication, producing the docu
mentation, etc. As the key personnel assigned
this duty may require two years or more to
become proficient in substantial portions of the
system, care must be taken to assure continuity
in their assignments. Until the problem of
rapid turnover among .computer programmers
becomes less acute, it is likely that most of
the more stable personnel involved will be
among those in the employ of the using organi
zation.

TESTING

For computer programs of considerable size,
it is useful to distinguish three levels of testing.
The programmer devises a test or tests for
each subroutine he builds in order to assure
that the computer reacts as anticipated to all
the circumstances he considered in designing
the subroutine.

As these building blocks are completed, they
are, ready for testing in combination with other
subroutines and other aspects of their intended
environment. Their input and output conven
tions are checked for compatibility. Larger
test procedures are devised to exercise the
joint functions of the program complex. Ap
propriate adjustments are made in' the pro
gram until all anticipated results are pro
duced.

The third stage of program testing2 con
sists of putting the program into limited op
eration to observe its behavior when dealing
with the many variations of data which arise
in practice. I t is very difficult to devise test
problems which employ all the possible paths

in a program. Even though the program re
sponds correctly in a limited test, it is possible
after' several weeks of successful operation for
the program to encounter some new combina
tion of inputs against which it was not ade
quately protected.

DOCUMENTATION

Documentation of the system created in one
of these three-to-five-year projects is an im
portant though time-consuming endeavor. The
description of the program in the language ac
cepted by the computer is a key part of this
record and must be kept up to date as program
changes are made. This level of documentation
is the "court of last resort" in isolating pre
cisely what some routine does, but the technical
remarks or diary prepared by the programmer
while he has all the facts in mind will reduce the
amount of detective work which must be done
some months later when an unanticipated
change must be made. Two or three other
descriptions of the system may also be re
quired at decreasing levels of detail.

Adequate documentation is important to the
person who created the computer program, as
even he soon finds the maze of detail confusing
without rather complete records. The person
who creates one program is never free of it
unless he makes it possible for others to modify
his program without performing major re
search. The documentation must be generated
so that a given programmer may be assigned
to a different project. This documentation is
essential, for the protection of the user, as the
programmer may at some critical time no longer
be available for consultation.

SIMULATION

Simple exercising of a large man-machine
data system with the use of a single bank of
information in a fixed pattern will bring into
focus the utility of such a system to aid mili
tary decision makers only under rather limited
circumstances. A simulation technique should
be superimposed to alter the data flow accord
ing to various assumed alliances, postures,
strategies, or the like. Such simulation exer
cises of the system in the operational environ
ment by users of appropriate echelons will give

234 PROCEEDINGS-,sPRING JOINT COMPUTER CONFERENCE, 1964

them synthetic experience about situations
which have not been encountered in sufficient
detail in any other medium. Only by exercising
the system with data flowing at an accelerated
pace will many of its weaknesses be discovered.
The simulation must, of course, incorporate
uncertainty, conflicting information, degraded
communications, etc., if realism is to be ob
tained.

Considerable effort has already been devoted
to the development of detailed computer simu
lations of the air interactions in a nuclear ex
change.3 It would be hoped that these simula
tions might be used to generate under various
assumptions much of the information required
to alter the behavior of the man-machine data
system.

It should not be assumed that providing the
simulated environment to influence the large
data system is a small undertaking. Depending
upon the detail introduced, the project may be
even larger than the original one.

Thus far this discussion has dealt with the
notions of system design, incremental imple
mentation, inevitability of modifications, user
participation throughout the project, testing at
three levels, integrating documentation with
the development of the program, and the use
fulness of providing a simulation environment
for the data system.

It also seems appropriate to record some addi
tional remarks based on participation in or
observation of several large programming
efforts. These remarks will range over the
topics: level of effort, estimation of time re
quired, hardware considerations, reaction to
frustration, and programming systems. While
these topics are not clearly related, the com
ments are intended to provide at least a partial
check list for those who are brave enough to
undertake the development of a large computer
program.

LEVEL OF EFFORT

It requires great skill and unusual circum
stances for a large system of programs to ar
rive at a satisfactory operational state in less
than three years. Even though the period since
1955 has provided several instances of this bit

of truth, every new group which embarks upon
a new project is dominated by persons who be
lieve that they can avoid the mistakes made on
other projects and shorten their own schedule.
To some extent they do profit from the experi
ence of others, but they usually make a few new
mistakes of their own.

It is important to understand that a small
team of four or five experienced analysts can
accomplish about as much in the first four
months as a team of twenty. Toward the end
of the initial phase, the small team should be
supplemented by specialists in various areas as
required. There will be no advantage in gather
ing a team of 100 technicians at the beginning
of the effort. As a matter of fact, such an action
will probably delay the project.

A healthy growth in the effort applied to the
project is important. A modest beginning with
thorough indoctrination in the early months
of the user-contractor relationship will payoff
in the end.

Wide fluctuations in the support given the
contractor will cause serious difficulties. If
enough money is provided to acquire too large
an increment of personnel, most of the old hands
will be devoting too much time to training the
new arrivals. If too little support is provided,
progress lags and morale suffers. As new ar
rivals on the project will not contribute much
for several months, the project is relatively in
sensitive, in the short run, to small personnel
increases.

ESTIMATION OF TIME REQUIRED

Aside from the scarcity of experienced per
sonnel capable of performing the scientific and
engineering tasks involved in the development
of a large computer data system, there are some
administrative problems which lead to fixing
the minimum time at two years regardless of
the complexity of the system. Among the ad
ministrative problems are the following: budget
justification and funding release practices, site
construction schedules, and equipment delivery
schedules.

I t has been customary in some quarters to
estimate the productivity of skilled program
mers at 3000 instructions per man year. When

SOME OBSERVATIONS CONCERNING LARGE PROGRAMMING EFFORTS 235

a great deal of on-the-job training is involved,
the estimate should be set at about 1000
instructions per man year. When smaller teams
are given the responsibility for well defined
sub-projects, instances of 12,000 to 15,000 in
structions per man year have been observed.

In estimating costs, it appears necessary to
allow for each programmer two other persons
classed as analysts, administrators, or engineer
ing support personnel.

The more complex data systems fall in the
100,000 to 200,000 instruction class.4 Using the
factors just given, one can begin to estimate
the manpower required and the cost of im
plementing such systems. By imposing limits
on the size of the team to be involved and
taking into consideration the funding schedule,
it is then possible to obtain a first approxima
tion for a completion date.

After the design is relatively complete. the
users and designers must agree that the design
meets the requirements of the project. After
the detailed programming effort begins, a
major re-orientation of emphasis which re
quires a redesign of a major segment of the
system will normally delay considerably the
completion of the project.

Once agreement has been reached on the de
sign of a specific large computer program, the
user must exercise a great deal of patience and
forbearance. No amount of exhortation will
materially affect the progress of the project
and may even cause delays. The user who sched
ules other events very closely on the basis of
the promised completion date of a large pro
gramming effort is almost certain to have
major disappointments.

Some attempts have been made to apply
PERT techniques to programming efforts. Un
til estimating techniques in the programming
field are more reliable and the addition of extra
manpower on lagging subroutines has a more
predictable effect in the short run, the develop
ment of a PERT network will serve only to help
the managerial echelons to understand the re
lationship of the various pieces of the program
being constructed and to make the initial as
signment of effort more intelligently.

HARDWARE CONSIDERATIONS

Rapid strides are still being made in com
puter hardware development, and significant
improvements as to speed, reliability, capacity,
and flexibility are available every two or three
years. It has been pointed out that the design
and programming effort for large problems
takes a minimum of two years.

It is hard to imagine the confusion which
would arise if a computer, of not too well de
fined characteristics, were being constructed
for a large problem which was being pro
grammed at the same time. First, it would
require most of the hardware construction
period to create the sophisticated programming
system required to permit the large problem
to be accepted by the computer. Further, about
half way through the period, there would be a
requirement to debug some of the routines of
the large problem.

As the problem has probably changed mate
rially during the programming period and most
certainly will change as soon as the program
has been used a few times, most persons who
have considered these facts have agreed that
nothing is to be gained by trying to specify
the characteristics of a large-scale special pur
pose computer. If it is built to satisfy the re
quirements of a problem as defined now, there
is a good chance that it will not be adequate
for the problem as it is understood shortly
after the computer is completed three years
from now.

A useful competition among the computer
hardware manufacturers is in progress. For
reasons which need not be considered here, dif
ferent . types of computers are being selected
for installation at various locations on th basis
of current requirements with well-documented
justifications. Much of what is to be done at
location A on computer X may also at some
time have to be done at location B on computer
Y, etc. If a programming system implemented
on computers X and Y would, in fact, accept the
programs first written for the other computer
with only modest changes, considerable savings
would result.

236" PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

REACTION TO FRUSTRATION

Any person who has the tenacity to spend
several weeks trying independently different
approaches to the solution of a puzzle before
success can appreciate in some small measure
the frustrations of the programming activity
and the final feeling of personal triumph when
the last important programming bug is cor
rected. As the process of preparing a large pro
gram often extends over more than a year and
the mistakes of many people are involved, the
frustrations are of a higher order. In the nor
mal course of events, nerves become frayed,
fingers are pointed, neuroses appear, and other
psychological and physiological reactions are
not unknown. A few persons on the project
who accept the ultimate technical responsibility
for the completion of the project will find the
pressures unabated for a period of months. It
is small wonder that persons, who have experi
enced this trauma a time or two, have fairly
firm ideas as to the circumstances under which
they will accept such a responsibility again. The
completion of the project will lag unless this
concentrated effort does occur, and the mana
gerial chain on the project cannot, at the be
ginning, predict which members of the team
will punish themselves in this fashion.

One of the important contributions being
made by the more powerful programming sys
tems is the elimination of many of the frequent
recording and cross-referencing errors so that
the more important logical blunders do not re
main concealed for long in the debugging proc
ess. This alone materially reduces the length
of the effort and permits more concentration
on the solution of the important problems.

PROGRAMMING SYSTEMS

Because of the general confusion in connec
tion with the use of the words "programming
system," it may be helpful to distinguish (1)
programming languages, (2) compilers, and
(3) operating systems.5, 6

A programming language is the set of sym
bols and conventions which are designed for
the convenience of the programmer to express
his detailed solution to the logical, manipula
tive, and computational problems encountered.

A compiler translates the expressions of the
programming language into sequences of in
structions in the basic language of the com
puter hardware.

An operating system augments the capabili
ties of the computer in such a fashion as to
relieve the programmer of the requirement to
provide in detail for input/output scheduling
and assignment, memory allocation, etc., so
that the programmer need not resolve these re
curring problems in numerous variations and
can devote his efforts to implementing the data
system design.

The JOVIAL system includes all three of
these components and has been implemented on
several large-scale computers, but the versions
of the language are not identica1.7

NELIAC has been widely used and consists
of a language and a compiler. The data rou
tines are incorporated during the compilation.
This technique has permitted the larger com
puters to compile programs for computers with
memories too small to accommodate a com
piler.s

The CL-II programming system consists only
of a compiler and an operating system. The
compiler is described as "syntax-directed" and
can accept any of the present algebraic lan
guages for which it is provided the necessary
input tables. It has been demonstrated that
careful preparation of these tables enables the
compiler to generate as compact code as an
experienced programmer. The sophisticated
operating system of CL-II is based on the con
cept of the "extended machine" first expressed
by Holt and Turanski. 9, 10

A good programming system should

(a) Encourage modular construction of
the computer programs.

(b) Provide for data descriptions which
are independent of the program until
compilation occurs.

(c) Relieve the "programmers of the neces
sity of constructing substantial debug
ging environments.

(d) Eliminate the need for developing
elaborate control programs.

SOME OBSERVATIONS CONCERNING LARGE PROGRAMMING EFFORTS 237

There seems to be no way to a void all the
human errors which are made in the course of
developing a large computer program, but a
good programming system can relieve the pro
grammer of many of the housekeeping prob
lems so that his thoughts can be directed to
the peculiarities of the data system being auto
mated.

If there is to be reasonable progress in the
production of a large computer data system,
the programmer's work should be reduced as
much as possible, and the initial system should
be constructed with the anticipation that
changes and extensions of the system will be
required on a continuing basis.

SUMMARY

In closing, it seems worthwhile to summarize
the main points of this discussion:

(a) The users of the data system must col
laborate with the technicians through
out the design, construction, and test
ing of the system.

(b) A full design is desirable, but a path
should be chosen through this design
so that a useful sub-system is avail
able as soon as possible.

(c) Anticipate changes and extensions to
the system.

(d) Do not stint on the documentation.

(e) Exercising the system fully will prob
ably require building a simulated
environment.

(f) Putting extra manpower on a project
at the wrong time to accelerate the
effort will usually accomplish little
except to heighten the disappointment.

(g) Large-scale special purpose computers
still seem inadvisable because of
changing requirements.

(h) The programmer who takes his pro
fession seriously does not find it to
be an easy life.

(i) Programming systems may not have
reached perfection, but they offer the
programmer some relief from many

of the troublesome housekeeping de
tails.

(j) Standardizing on a single algebraic
programming language is apparently
no longer required.

No claim is made that these observations
form an exhaustive list of all matters to be
considered by a group embarking upon the
development of a large computer data system
to assist in the evaluational and decision making
processes of command and control. Each per
son who has been involved in such an effort will
have a few items to add. Perhaps even this
partial list will help some group to avoid a
few of the mistakes others have made.

REFERENCES

1. DANIELS, A. E., "The User's Viewpoint on
the Creation and Application of a Large
Simulation Model," Proceedings, First War
Gaming Symposium, Washington Opera
tions Research Council, 30 November 1961.

2. SAMS, BURNETT H., "Some Observations on
the Development of Large Programs,"

Sciences, Air Force Electronic Systems
Division .and The :rvHTRE Corporation,
November 1962.

3. PENNINGTO~, A. W., "A Description of the
STAGE System," Proceedings, 11th Mili
tary Operations Research Symposia, April
1963.

4. HEINZE, K., N. CLAUSSEN, and V. LABoLLE,
"Management of Computer Programming
for Command and Control Systems," Sys
tem Development Corporation, 8 May 1963.

5. KROGER, MARLIN G., et al., "Computers in
Command and Control," Institute for De
fense Analyses, Resarch and Engineering
Support Division, Technical Report Num
ber 61-12, November 1961.

6. HAVERTY, J. P., and R. L. PATRICK, "Pro
gramming Languages and Standardization
in Command and Control," RM~447-PR,
The RAND Corporation, January 1963.

7. SHAW, C. J., "The JOVIAL Manual, Part
3: The JOVIAL Primer," TM-555/003/00,

238 PROGEEDING~SPRING JOINT COMPUTER CONFERENCE, 1964

System Development Corporation, 26 De
cember 1961.

8. HALSTEAD, M. H., "Machine Independent
Computer Programming," Spartan Books,
1962.

9. HOLT, A. W., and W. J. TURANSKI, "Man to
Machine Communication and Automatic

Code Translation," Proceedings of the
Western Joint Computer Conference, 1960.

10. CHEATHAM, T. E., JR., and GENE F. LEO
NARD, "An Introduction to the CL-II Pro
gramming System," CA-63-7-SD, Com
puter Associates, Inc., Wakefield, Mass.,
November 1963.

SOME COST CONTRIBUTORS TO LARGE-SCALE
PROGRAMS

Burt N anus and Leonard Farr
System Development Corporation

Santa Monica, California

INTRODUCTION

In the early days of computer technology,
only a small handful of highly competent, sci
entifically -oriented researchers were familiar
with the programming arts. In those days, the
management of programming effort was only
slightly different from the management of other
types of research activities. Each project was
unique and its probability of success uncertain;
experience was severely limited; tools and tech
niques were custom-built for each job. In the
c·omputer field today, despite many thousands
of man years of experience in program develop
ment, we still tend to plan and to manage as if
each program were a unique research project.
This is partly due to the immaturity of the field,
and partly because we have not yet fully recog
nized that the similarities between computer
programs and their development are far more
extensive than the differences between them.
We have seen the development of many new
tools to make the programmer more effective
in his work; we must now ask whether we can
develop new tools to make the program man
ager more effective in planning and organizing
his scarce resources of talented manpower and
expensive computer time.

One of the most important requirements for
management planning is an accurate estimate
of the resources required for the completion of
tpe project. In programming management, the
two principal resources to be estimated, sched-

239

uled and controlled are man months and com
puter hours. Together, these resources may be
considered the cost of producing the program.
Historically, these costs have been very poorly
estimated; there are abundant examples of
actual costs that exceeded estimated costs by
100 per cent or more.

Because better cost estimation is an impor
tant step toward more effective programming
management, because the costs of programs
may be a significant portion of the total costs
of large management or command information
systems and because the estimates have been
little better than guesswork to date, the Ad
vanced Research Projects Agency of the Office
of the Director of Defense Research & Engi
neering sponsored some research in this area
at the System Development Corporation (SDC).
Early efforts were aimed at data collection and
analysis of several large-scale command and
control programming efforts representing a
total of more than two million instructions and
1500 man years of work.2, 3, 6, 7 This paper is a
summary of a subsequent effort to (a) identify
the common factors that influenced the cost of
developing programs and (b) perform a pre
liminary analysis on some of the data. * These
are viewed as necessary first steps toward
the development of a more accurate cost esti-

* The full reseach report upon which this paper is
based will be published as TM-1447, Factors that Affect
the Cost of Computer P'rogramming, System Develop
ment Corporation.

240 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

mating ·procedure. Further progress depends
upon more systematic data collection, and one
of the purposes of this p'aper is to recommend
the types of data that should be collected by
programming managers for estimation pur
poses.

PROBLEMS ENCOUNTERED IN
DETERMINING COST FACTORS

In the process of identifying and analyzing
cost factors, one soon encounters a number of
limitations in the 'programming field th~t may
not exist in other, more mature disciplines.
Some of these problems include the following: .

1. Lack of Agreement on Terminology
There are no universally acknowledged
definitions of m'any of the terms used in
the computer programming process. For
example, the words "debugging," "param
eter test" and "program validation"
may all describe the same process; a "pro
grammer" in one organization may be
called a "coder" in another and a "system
analyst" in a third. Although we at
tempted to keep within the more limited
context of command and control pro
grams in our research, we found, even in
this narrower field of programming, a
widespread lack of agreement on termi
nology.

2. Poor Definition of Product Quality-Ap
parently there has been little success in
defining those attributes that characterize
the nature or the quality of a computer
program. For example, one hears pro
grammers . talking in terms of flexibility,
economy of memory, and maintainability,
but there seems to be no generally agreed
upon criteria for comparing programs on
the basis of these attributes.

3. Poor Quality of Cost Data-Present cost
collection methods seem to be designed
primarily for accounting purposes and not
for planning or control. For example, the
collecti~ns of costs are usually grouped by
organizational units rather than by prod
uct or function to be performed.

4. Dynamic Nature of the Field-Although
computer programming is maturing as

a discipline, there is still a wtde diversity
of techniques and approaches being de
veloped and used. As a result, any study
of cost factors must consider the history
and likely future trends of programming
technology .

5. Nonquantitative Nature of Some Factors
-Experience has shown that many of the
factors that affect the cost of computer
programs are qualitative in nature. In
some cases, it is ·possible to predict at
least the direction that cost will be af
fected by an increase in a given factor.
For example, one would expect that the
more experience one had with the particu
lar type of program or computer involved
in a given task, the less it would cost to
perform that task. In other cases, qualita
tive factors appear to have a nonmono
tonic effect as when an increase in a given
factor (e.g., management planning) first
decreases and then increases total cost.
Of course, determination of the magni
tude of the effect on cost of qualitative
factors is even more difficult than deter
mining the direction of the effect.

Although these problems combine to make an
analysis of computer 'programming cost factors
somewhat difficult, a start must be made if pro
gram development efforts are to be more effec
tively planned and managed.

COST FACTORS

It is possible to identify hundreds of factors
that contribute to the cost of computer pro
grams, if such a level of detail is desired. In
this paper, we will present a list of approxi
mately 50 such factors, consolidated from a
much larger list. Obviously, some classification
scheme is necessary for discussion or analysis
purposes. Factors might be grouped by work
phase, such as program design or test; by man
agement activity, such as planning or evalua
tion; by general categories such as resources,
requirements, or environment; by units of cost
measurement, such as man months or dollars;
or by the classic accounting method of direct
and indirect costs. However, these schemes
seemed to cause difficulties because of ambi
guities and overlap; as a result, a new classifi-

SOME COST CONTRIGUTORS TO LARGE-SCALE PROGRAMS 241

cation scheme was developed and is illustrated
in Table I, in which factors are divided into
these categories: The Job to be Done, The
Resources that are Available, and The Nature
of the Working Environment.

Since a full discussion of all of the factors
is not possible here, only the most important
one or two in each category will be briefly pre
sented; the complete list is included as an ap
pendix.

TABLE I-COST FACTOR CLASSIFICATION SCHEME

Logical Grouping

THE JOB TO BE DONE

THE RESOURCES
THAT ARE
AVAILABLE

THE NATURE OF
THE WORKING
ENVIRONMENT

THE JOB TO BE DONE

Category Name

1. Operational Require-
ments and Design

2. Program Design and
Production

3. Data Processing Equip-
ment

14. Programming Person
ne~

5. Management Proce
dures

6. Development Environ
ment

Category Definition

Includes cost factors associated with the
operating characteristics of the system
for which the program is being written.

Includes cost factors associated with
both support and operational programs
as determined by the constraints im-
posed by personnel, hardware and oper-
ational requirements.

Includes cost factors associated with the
data processing equipment required to
produce and test a program, including
all input, output and peripheral equip-
ment.

velop a program.

Includes cost factors associated with the
plans, policies, practices and review
techniques used in the administration of
all phases of program development.

Includes cost factors resulting from
relationships of the programming staff
with other organizations, such as cus
tomers and other contractors.

7. Facilities, Services and Includes cost factors related to supplies,
Supplies physical plant, indirect labor and over

head.

1. Operational Requirements and Design

known?" or, "How well is the problem de
fined?" Unfortunately, it is virtually impos
sible at the current state-of-the-art to evaluate
the cost-contributing effect of many of the fac
tors which relate to this question.

The factors in this category tend to center
around the question, "How well are the opera
tional requirements of the information system

242 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

The primary cost factor in this category
would appear to be the extent of innovation in
the system, in its components, and especially
in the automatic data-processing function. The
extent of similarity of the new system to older
systems may be a clue to estimating how clearly
or easily the requirements of the new system
can be stated. If the requirements are well
known to the program designers, the program
ming job is more straightforward and less
costly. Somewhat related to this factor is the
extent to which the programming organiza
tion will participate in the formulation of re
quirements; the less active its role in deter
mining requirements, the more likely misunder
standings will develop, resulting in costly er
rors, omissions and ambiguities.

2. Program Design and Production

In a large-scale program system, program
design involves the determination of the broad
logical subdivisions of the computer system, the
design of an executive program to control the
sequencing of programs, the design of the data
base structure, the allocation of computer stor
age, and specifications for utility and support
programs. As in the first category, these fac
tors center around the question, "How clearly
understood are the program requirements?"
The factors also are concerned with the size and
complexity of the job; the resources and tools
available; and the plans for documenting, veri
fying and testing the product.

Undoubtedly, the most important cost factor
in this category is the number of computer pro
gram instructions and the types of programs
that must be produced. In current techniques
for estimating cost, the size of the program is
often used as an intermediate measure to esti
mate the number of men who will be assigned
and the number of computer hours required.
Despite this reliance on size as the key to cost
estimation, it appears that little research has
been done to develop systematic and reliable
ways to predict the number of instructions.*l
So far, the experience of m'any program man
agers is that the number of instructions is often

* R. Bleier of SDC has reported on our attempt to
relate total program length to the frequency of certain
decision-class instructions, TM-1603.

8,000
INCOMPLEY

V t

/
V

7,000

6,000

5,000

4,000

3,000 ~ ,..,.,.,.

/ -" ..
10--_

~~ ~_-C"

/.
",- ..
• •

2,000

1,000

100 200 300 400 500 600

No. Machine In5truction5 (Thou50nd5)

Figure 1. Man Months Versus Program Size
for Eleven Large-Scale Programs.

700

grossly underestimated, except when very simi
lar programs can be used for com'parison. **4,8

The conversion of the estimate of number of
instructions to programming man months for
large-scale systems is frequently done by allow
ing one man month for each 200 instructions.
To test this rule of thumb, empirical data on
the number of machine language instructions
in eleven large command and control systems
were compared with the 200- instruction-per
man-month guideline (Figure 1). The pro
grams represent a variety of command and
control systems using several different compu
ters and languages. The number of man months
includes program design, testing and coding.
A further analysis of the data revealed that the
production rate for operational programs aver
aged 225 instructions perman month while the
rate for utility programs was 311 instructions
per man month. The explanation for the higher
rate of utility program production was that the

** For example, a report of the Controller's Institute
stated, " ... almost all EDP groups have at one time
or another seriously underestimated the number of
steps required. . . . Every company we visited added
a substantial safety factor varying from 20% for a
company which claimed, due to experience, a reasonable
accuracy in its estimating procedurES, to 400% for a
company which had found itself that far out on a
previous estimate." (Business Experience with Elec
tronic Computers, New York Controller's Institute Re
search Foundation). "Measuring the Profitability of a
Computer System." See also J. D. W. JameS.

SOME COST CONTRIGUTORS TO LARGE-SCALE PROGRAMS 243

program developer is his own customer for the
program system and, therefore, can write his
own requirements with little external coordina
tion. For smaller programs not shown on the
figure (Le., less than 10,000 instructions), rates
of as much as 400 to 1000 instructions per man
month for individual programs were reported.

The conversion of the estimate of number of
instructions to computer hours is also ~ubject
to various rules of thumb. Figure 2 is based
on experience with eight large ,programs. The
three points falling below the line represent
efforts in which a procedure-oriented language
was used, indicating that such use may reduce
the amount of machine time required for pro
gram development. As shown in the figure, one

16,000

14,000

12,000

510,000
o
J:

! 8,000

a.
~ 6,000

•

V
.V

V
V

• .v
::~b¥1 I I I I I

100 200 300 400 500 600 700

.£

~
~

No. Mochine Instructions (Thousonds)

Figure 2. Computer Hours Used as a Function of
Program Size for Eight Large-Scale Programs.

7,000
I·

I(

6,000

5,000

J

/
4,000

3,000

2,000

1,000

/
//

./
V

./
".,

.->'
,..,.,- .

4 10 12 14

Computer Houn (Thousands)

16

Figure 3. Man Months Versus Computer Hours for
Seven Large-Scale Programs.

computer hour is required for approximately
every 53 instructions.

Another hypothesis resulting from the same
data is illustrated in Figure 3. This shows a
near-linear relationship between the two re
sources of manpower and computer time. It is
likely that better information for 'predicting
the number of computer hours required for the
production of programs of various sizes and
complexities is available in most programming
organizations although it is often buried in ac
counting data.

A second important factor in this category
is the extent of support program availability,
reliability and documentation, including utility
programs, debugging programs and library
routines. Clearly, the more support ,programs
that have to be produceq "from scratch," the
more manpower and computer time will be re
quired for the total program development.

One other factor that may have a considera
ble influence on cost is the number and types
of documentation produced for various types
of programs. The graph in Figure 4 is based
upon an analysis of five large-scale -program
ming efforts. It suggests that there is a linear
relationship between the number of pages of
documentation actually produced to satisfy con
tract requirements and the number of instruc
tions in the program. These data represent

7,000

6,000

c:
5,000 .~

E
c:
III 4,000 E
::I
U
0

Q
3,000

'0
Qj
0) 2,000 0 a..

1,000

./
~

~
~

~
0

100 200 300 400 500

No. Machines Instructions (Thousands)

Figure 4. Pages of Documentation Versus Program
Length for Five Large-Scale Programs.

244 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964.

documents delivered to customers. There may
be many times this number of pages actually
written in a large programming effort.

Some other guidelines for estimating the
costs of documentation have been suggested. A
drafting rate of 3 to 5 pages per day (750-1250
words) is a good rule of thumb for various
types of programming documentation. A tech
nical review rate of 20 p'ages ·per day seems
average, but reviews that do not require exten
sive rewrites may run to 50 or 100 pages per
day. Estimates on typing rates, illustrating
rates and duplicating rates are usually fairly
easy to obtain in most organizations.

RESOURCES THAT ARE AVAILABLE

3. Data Processing Equipment

The development of computer hardware is
proceeding at such a rapid rate that it is diffi
cult to make long-range estimates (beyond a
few years) concerning its effect upon program
ming. Such improvements as faster add times,
greatly increased memory capacities and speeds,
multi-processors and new input/output devices
may profoundly affect the accuracy of program
ming:cost estimation.

With respect to equipment, a critical factor
is the number of hours per day that the com
puter is available to the programming staff. A
commonly held intuitive notion is that the more
hours per day the computer is available to
programmers, the lower the over-all cost of the
programming effort. Among the considerations
in determining the number of hours per day of
availability are the number of shifts per day,
the time required for preventive maintenance
and the number of other computer users shar
ing the equipment. Of course, another strong
influence is computer capability; for example,
large memory capacities seem. to make pro
gramming easier. Further considerations are
the power of the order code, the speed of access
to primary and secondary memories, operating
time and speed of input/output gear.

4. Programming Personnel

The most important factor in this category
rela tes to the experience of the programmers

assigned to the job. There are three particu
larly important types of experience:

(a) Experience with the particular com
puter-Clearly the more experience a
man has with the particular machine for
which the program system must be de
signed, the more apt he is to be familiar
with its capabilities and therefore the
less time it should take him to do the
programming and testing.

(b) Experience with the 'particular language
-Programming languages differ in
their suitability for various types of
programming efforts. Familiarity with
an appropriate special language, such as
NELIAC or JOVIAL, certainly makes
the programmer more efficient and re
quires a smaller number of man months.

(c) Experience with the particular applica
tion-If the programmers have eXlperi
ence with the particular type of system
application and/ or design being pro
grammed, then less time should be
needed for the early analysis and defini
tion phases of the job.

In addition to experience, cost is affected by
the number of man months of programmer
training required for the project. A possible
hypothesis is that the cost of programmer
training may take the form of aU-shaped
curve. That is, for any given task there seems
to be an optimum amount of training that the
programmer should have. More training pre
sumably would not produce a commensurate
return, while less would lead to errors and con
fusion in the programming.

The number of people to assign to a given
function or task also has an important impact
on cost. There is ,probably an optimum number,
for each type of programming effort, although
research has not been conducted to determine
what this is. In the field of research and de
velopment, which has some similarities with
programming, the optimum number in a work
group seems to be between 4 to 7.5

There are also costs associated with obtain
ing personnel-either in hiring or in transfer
ring from other contracts and in relocating
them, if necessary. This is a function of both

SOME COST CONTRIGUTORS TO LARGE-SCALE PROGRAMS 245

employee turnover and the size and type of the
project. A study is currently being sponsored
by the Navy at the University of Southern
California to analyze the job of the computer
programmer, develop criterion measures of per
formance and determine optimal personnel se
lection and classification procedures.9

NATURE OF THE WORKING
ENVIRONMENT

5. Management Procedures

The design and institution of clear-cut man
agement procedures may seem costly at the out
set, but their true value must be determined by
comparing the cost of the plan with the cost
of not having the plan. Both these costs are
extremely difficult to determine but experience
in many programming efforts indicates that
well planned projects enjoy higher productivity
rates.

The most im·portant effect upon total cost in
this category is the use, maintenance, and
monitoring of a management plan that includes
at least communications and decision-m'aking
procedures, mechanisms for handling changes
in the program, delineations of responsibility
and authority, and schedules for major mile
stones and products. The plans should also
specify standards for flow charts and docu
mentation 'and quality,control procedures. There
is probably some optimum per cent of time that
should be spent in planning for ,program devel
opment.

Another important cost factor is the number
of computer runs permitted to each program
mer each day. One of the reasons for the cur
rent activity in the development of time-sharing
procedures is the belief that a larger number
of computer runs per day for each programmer
will shorten lead times 'and decrease costs. An
equally reasonable hypothesis is that a cost
trade-off exists between desk checking and com
puter testing such that some optimum number
of computer runs will minimiz'e total cost, the
optimum depending upon the relative cost of
computer time and programmer time.

6. Development Environment

A particularly important problem is the num
ber of agencies with which the programming

staff must coordinate. In addition to the user
or customer, there may be separate agencies
responsible for the contracting and for the
other aspects of the system, such as hardware
development. Problems of coordination and con
currence multiply as a function of the number
of groups with which the programming staff
must deal. Often, mutual education between
these various staffs becomes necessary and the
cost of briefings and meetings for such purposes
may make the cost per instruction higher for
large-scale program systems than for smaller
ones.

7. Facilities, Services, and Supplies

In most accounting systems, nor~al overhead
and miscellaneous supplies are covered by a
percentage addition to the estimated direct
labor and materials. However, unusual expendi
tures associated with large-scale programming
efforts may not be adequately covered by the
average overhead burden rate. For example,
various types of technical and administrative
support are needed to assist the programmer.
Computer operators and EAM personnel save
the programmer considerable time during test
ing. Effective and experienced management and
administrative personnel assure that the work
is efficiently organized and fre~ the program
mer to cQ,Ilcentrate on technical matters. Tech
nical editors help to ensure that documentation
is adequate and understandable. There is some
optimum mix of such support personnel that
will ensure minimum cost.

Another important factor in this category is
travel and communication cost. Trips may be
required for briefings and conferences with
user organizations and associated develop
mental agencies; for data gathering; for train
ing and familiarization; and for concurrence
on requirements or design. There is a strong
tendency to underestimate these costs or to
curtail them as an economic or political meas
ure; this often results in delays in getting data
or concurring on programming details, and
these delays may be very costly in terms of
time and manpower.

In some cases an important consideration is
the cost of special facilities, e.g., simulation de
vices, special office equipment, or computer

246 PROCEEDINGS~SPRING JOINT COMPUTER CONFERENCE, 1964

room facilities. Special wiring and air condi
tioning, false flooring, space for storage and
movements of parts and equipment, mainte
nance and test hardware, etc., all contribute to
the cost.

SUMMARY AND CONCLUSION

In this paper we have listed some cost factors
that represent a consolidation and skimming of
a larger list of factors that contribute to the
cost of computer programming efforts. In many
cases, the factors are very difficult to measure
or quantify; further, their effect upon other
factors and upon the total costs of the program
ming effort is often difficult to determine. For
many of the factors, some data exist in current
accounting records, but these data have not
been collected, compiled and analyzed.

The mere listing of cost factors in program
ming is only a first step, albeit an important
one, toward the development of a more scien
tific and, hopefully, a more precise method of
estimating the cost of programming efforts.
Ultimately, one would hope to discover by
analysis of data some predictors that would
enable a more accurate estimate of the number
of instructions, man months and machine hours.
Among the cost data-both estimated and real
-that we would hope programming managers
would begin to accumulate for the various types
of products and activities in their projects are
the following:

1. The number of machine instructions and
the programming' language used. Also,
the percentage of the finished program
consisting of library routines and sub
programs from previous programs.

2. The number of man months of program
mer effort, including the first level of
supervision, and the experience level of
the programmers.

3. The number of hours of machine time re
quired for testing and debugging pur
poses and the types of machines used.
Also, the pattern of machine usage in
terms of runs per day and hours per run.

4. The number, types, and timing of impor
tant program changes and, in at least a
qualitative sense, the effects of these
changes on the final product.

5. The types and number of pages of docu
mentation required, including a notation
as to whether they are single or double
spaced.

In addition, it would be useful if a log could
be kept by a project "historian" describing cer
tain qualitative attributes such as those de
scribed earlier in this paper. This section should
describe the data-processing functions of the
program system and its relationship to other
systems. It should also identify all interim and
end products, such as types, listings and de
scriptive documents.

A series of experiments to study those fac
tors that can be analyzed only in controlled en
vironments ideally should be conducted simul
taneously with the collection of new and exist
ing data on program costs. For example, well
designed, statistical experiments would be use
ful for determining the,effects of different types
of programming languages upon total cost, the
effects of greater or lesser machine availability
upon costs, the optimum size of 'programming
staff for different types of programs, and the
best mix of programming talent (experienced
versus inexperienced) for given types of jobs.

Obviously, it may be quite some time before
a valid predictive set of equations can be de
veloped for program cost estimation. N ever
theless, it is to be hoped that each small step
in this direction will represent a useful experi
ence in itself in terms of increased insight into
the programming process. Certainly, resea~rch
into techniques for improved programming
management should be encouraged if the in
dustrY'is to keep pace with the increasing de
mands for its services.

APPENDIX I LIST OF COMPUTER PRO
GRAMMING COST FACTORS

Summarized below for the convenience of the
reader is the complete list of cost factors dis
cussed in this paper.

Operational Requirements and Design

1. Extent of innovation in the system, its
components, and especially the automatic
data-processing function.

SOME COST CONTRIGUTORS TO LARGE-SCALE PROGRAMS 247

2. Extent to which the programming contrac
tor will ,participate in a determination of
the information processing needs (i.e., the
system and operations analysis, and the
system and operational design).

3. Number, size, frequency, and timing of
system design changes.

4. Extent of command and control system de
centralization and number of interfaces.

5. Number of other components and subsys
tems being developed concurrently as part
of the command and control system (e.g.,
intelligence, sensor, etc.).

Program Design and Production

1. Number of computer program instructions
and the types of programs that must be
produced.

2. Number, types, and frequency of inputs
and out'puts to the computer (s).

3. Extent of innovation required in the pro
gram system; that is, the degree to which
programs are similar in nature to those
previously written.

4. Number, types, and quality of publications
and documentation for both 'customer and
internal use.

5. Extent of complexity of the data-process
ing functions.

6. Degree to which the following program
design characteristics are recognized and
must be incorporated.
(a) Maintainability-the ease with which

program errors can be detected and
corrected.

(b) Changeability-the ease with which
new functions can be incorporated in
the program.

(c) Usability-the ease with which per
sonnel other than designers can use
the program.

(d) Flexibility-the ease with which the
program can be used for other pur
poses with only slight modification
(e.g., SAGE programs for air traffic
control) .

(e) Generality-the ease with which a pro
gram can accept a wide range of in
puts.

7. Extent of the constraints on program de
sign (e.g., real-time requiremnets).

8. Number, size, frequency, and timing of
program design changes.

9. Extent to which data for data base is avail
able, or data collection is required.

10. Number of entries (total size) for the data
base, the number of different types of data
needed for it, and the extent to which each
can serve many programs or subprograms.

11. Efficiency of the programming language
and the com'piler or assembler.

12. Extent of the. completeness and clarity of
the system test and acceptance test re
quirements.

Data Processing Equipment

1. N umber of hours 'per day of computer
availability.

2. Extent of capability of the computer and
its suitability for the job to be done.

3. Extent to which the operation of the com
puter and peripheral equipment is reliable,
well tested, and well documented.

4. Number of equipment components being
developed concurrently with the program.

5. Number of different computers for which
programs are being prepared.

6. N umber and types of displays used.

7. Extent to which adequate EAM support
will be available.

8. Extent to which routine preventive and
emergency maintenance will be available.

Programming Personnel

1. Types and quality of programmers.

2. N umber of man months of programmer
training required.

3. Number of programmers to be assigned to
a given function or task.

4. Policy of obtaining and phasing of person~
nel to staff a new contract.

5. Rate of turnover.

Management Procedures

1. Extent of use, maintenance, and monitor
ing of effective management plans within

248 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964:

both the customer's and program devel
oper's organizations.

2. Extent of form,alized procedures to use the
computer facility.

3. Extent to which there is a well defined and
controlled system change procedure.

4. Extent of an error-reporting and -correct
ing procedure.

5. Extent of contingency plans in the event
the computer is overloaded or otherwise
unavailable.

6. Extent of quality control that is exercised
during testing (e.g., reliability require
ments).

Development Environment

1. Number of agencies the programmer con
tractor must deal with and their level of
experience with system development.

2. Average number of days and effort re
quired for concurrence.

3. Travel requirements.

4. Extent to which delivery dates for re
quired 'programming tools are reliable, and
correspondingly, the amount of pressure
caused by a tight schedule.

5. Extent to which the computer is operated
by another agency.

Facilities, Services, and Supplies

1. N umber of computer operators and EAM
personnel required.

2. Number and experience of technical man
agement personnel, administrative person
nel, and technical editors.

3. Cost of special simulation facilities, com
puter room facilities or special office equi'p
ment.

4. N umber of square feet of new office s'pace
or building required.

5. Exceptional costs of graphic arts and re
production.

6. Cost of punched cards, magnetic tape and
other special supplies or equipment.

7. Cost of special security requirements (e.g.,
Top Secret vault).

BIBLIOGRAPHY

1. BLEIER, R. E. Frequency Analysis of Ma
chine Instructions in Computer Program
Systems, TM-1603, System Development
Corporation, 19 November 1963.

2. FARR, L. A Description of the Computer
Program Implementation Process, TM-
1021/002/00, System Development Corpo
ration, 25 February 1963.

3. HEINZE, K. P., N. CLAUSSEN and V. LA
BOLLE. Management of Computer Pro
gramming for Command and Control Sys
tems, A Survey, TM-903/000/02, System
Dt\felopment Corporation, 8 May 1963.

~_ JAMES, J. D. W. "Measuring the Profita
bility of a Computer System," The Com
puter Journal, 5 :4, January 1963, pp. 284-
293.

5. JOHNSON, ELLIS A. "A Proposal for
Strengthening U.S. Technology," in Bur
ton V. Dean (editorL Ope'rations Research
in Research and Development, New York,
John Wiley and Sons, Inc., p. 34.

6. LABoLLE, V. Management Aspects of Com
puter Programming for Command and
Control Systems, SP-1000/000/02, System
Development Corporation, 5 February
1963.

7. NANUS, B. Cos,t Estimation Bibliography,
TM-1430, System Development Corpora
tion, 20 August 1963.

8. New York Controller's Institute Research
Foundation. Business Experience with
Electronic Computers, 1959, p. 48.

9. RIGNEY, J. W., R. M. BERGER and A.
GERSHON. Computer Personnel Selection
and Criterion Development: I. The Re
search Plans, Los Angeles, Department of
Psychology of the University of Southern
California, February 1963.

HYBRID COMPUTATION ... WHAT IS IT? ...
WHO NEEDS IT? ...

Thos. D. Truitt
Electronic Associates, Inc.

Research and Computation Division
Princeton, N ew Jersey

INTRODUCTION

Some Historical Notes

During the nineteen-fifties the capabilities of
electronic computers expanded so fast as to stay
well ahead of the needs of the average computer
user. Such was the case in both the analog com
puter and scientific digital computer fields. One
effect of this situation was the formation of two
schools of experts with opposite views on the
choice of the "best" general purpose scientific
computer. Differences of training, experience,
and semantics led to a serious barrier to com
munications between :these two groups. At best,
the fashionable, middle-of-the-road position was
to admit that each computing technique "had its
place," which did little to break down the bar
rier. Only with the appearance of a computa
tional task that could not be accomplished sat
isfactorily by either type of general purpose
computer-only then was the barrier cracked
and a small opening made.

In the aircraft and the budding aerospace
industries lthe analog computer had long been
the primary, if not the only, means employed
for simulation of new or proposed engineering
designs. In fact the analog computer grew up
as the aircraft simulation tool. A mathematical
model of each new design was formulated and
an electronic analog model formed on the com
puter. Performance data obtained from wind
tunnel tests were added to complete the model,
and large numbers of experimental "flights were

249

flown" as the effects upon the dynamic behavior
of the model, wHh changes in design parame
ters, were examined. The characteristics and
performance of the simulation model often pro
vided input data for a digital computer program
that would evaluate, optimize, and calculate
final design specifications. The digital computer
was also useful as a simulation tool in calculat-
ing orbits and ballistic trajectories and in de
signing guidance and control systems for such
aerospace flights.

While conventional computer simulation tech
niques were quite adequate for most aerospace
design problems, the exceptional costs and haz
ards involved in missile and manned vehicle
missions required computer simulation of com
plete missions. Some full mission simulations
required inclusion of actual control mechanisms
and of a manned cockpit, thereby dictating
simulation on a real-time scale. It was apparent
that such total system simulations exceeded the
capabilities of any single type of computer. Only
by the combined application of analog and digi
tal computers could adequate simulation be
accomplished. It was hoped that the special
features of the two computer types could be
combined to form a hybrid simulator of su
perior performance.

Thus the earliest attempts :to combine the
computation of analog and digital computers
took place in about 1958 at the Convair Astro
nautics plant in San Diego and at the Space

250 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Technology Laboratories in Los Angles.19,21 ,::19
In both cases the job at hand was the complete
mission simulation of the trajectory of a long
range missile. The speed of the analog com
puter was a necessary element in the study to
permit a "real time" simulation of the rapid
motion of the vehicle and of control surfaces.
However, the dynamic range required of the
simulation was in excess of that of the best
analog computers. That is, the ratio of the total
range of the traj ectory to the required terminal
phase resolution (a dynamic range of 105 to
107) was greater than 104, the upper limit of
analog computer dynamic range for small pro
grams. Hence the digital computer was used to
calcula~those variables for which such dy
namic range was necessary. The most im
portant of these were the navigational coordi
nates-the digital computer performed the open
integration of velocities to determine the
vehicle's position, plus the dynamic pressure, a
function that is very sensitive to altitude and
velocity.

It is fortunate that in such long range aero
space trajectory simulations the variables with
wide dynamic range requiring precise calcula
tion are not, at the same time, rapidly changing.
Moreover the "high speed" variables do not re
quire precise calculation. The early combined
computer. systems employed the largest and
fastest digital computers available at the time
Univac 1103A and IBM 704-together with 300
to 400 amplifiers of general purpose PACE
analog equipment. In both cases even these fast
digital computers were only just fast enough to
perform the required repetitive calculations for
the slowly changing variables of the simulation
in real time.

Since the installations of the first combined
computers at least a dozen computer labora
tories have employed general purpose analog
and digital computers together to solve simula
tion problems, and a number of attempts have
been made to devise spacial purpose systems
of analog and digital devices. Among the latter
are the CADDA of the National Bureau of
Standards and the "pulsed analog computer" of
the MIT Electronic Systems Laboratory.l0,ll,12,
13,35,42 Hybrid computers of a unique type are
the combinations of a general purpose digital
computer and a digital diff-erentjal analyzer

(dda), illustrated by the Bendix G 15 with the
DA-1 attachment and the Packard Bell PB250
with the Trice dda.27 The former system con
sists of a small, slow computer with an even
smaller serial dda ($50,000· and $10,000 re
spectively). In contrast to this the Packard Bell
system combines a small, m'edium speed com
puter ($40,000) with a large serial-parallel dda
($500,000). Among the systems of general pur
pose computers, generally large analog com
puters have been combined with both large
(IBM 7090) and small digital computers (PB
250, LGP 30) .2,3,7,17,19,21

A brief analysis of the applications to which
existing installations of combined systems have
been applied leads to these generalizations. For
the most part the analog computers in these sys
tems have been employed in a normal manner
to simulate the dynamic behavior of physical
systems by solving sets of non-linear, ordinary
differential equations, while the digital com
puter has performed one or more of the follow
ing three functions: complex control logic, stor
age of arbitrary functions or sampled analog
functions, and high precision arithmetic pri
marily for numerical integration. Examples
of the applications are:

a. Analog computer plus digital control logic.

A system that in itself contains discrete con
trol functions of continuous dynamic variables
is appropriately simulated by a hybrid com
puter. The kinetics of a chemical process are
simulated by continuous analog means while its
digital control system is represented by a digital
program.29,41 Similarly an aerospace vehicle
with an on-board digital computer, control sys
tem, or autopilot is simulated by hybrid tech
niques.

h. Analog computer plus digital memory.

A very common difficulty in the simulation of
a chemical or nuclear reactor is providing an
adequate representation of the transport of
fluid in pipes from one point to another - from
reactor to heat exchanger. The simulation of
this transport delay of a dynamic variable, such
as the time variation of the fluid temperature,
is very nicely accomplished by the use of a digi
tal computer for storage of the temperature
function for a fixed, or variable, length of time.

HYBRID COMPUTATION ... WHAT IS IT? ... WHO NEEDS IT? . . . 251

Digital computer memory has also been used
effectively to store multivariable arbitrary func
tions - an operation which is seriously limited
in the analog computer.

c. Analog computer plus digital arithmetic.

This type of application is the "classic" one
where the digital computer is used to perform
precise, numerical integration of space vehicle
velocities to keep track of the exact position of
the vehicle over a very long range flight.

It should be noted that a significant difference
is apparent in the applications of computer sys
tems employing a very small digital computer
and those with large, very fast computers. In
general the small machines are limited to execu
tion of control logic programs, one or two chan
nels of transport delay simulation, or limited
function generation programs. Since numerical
integration and complex function generation by
digital programs require considerable time for
each calculation, for each discrete step in time,
only the fastest digital machines can be used
effectively for these tasks.

SOlVIE COMMENTS ON THE EVOLUTION
OF HYBRID SIJVIULATION

The term "computer simulation" appears in
so many contexts it is important to emphasize
that its use in these pages is limited to the
modelling of complex physical systems for the
study of their dynamic behavior. These systems
are represented by sets of differential equations,
algebraic equations, and logic equations. As in
most simulation studies the objectives of hybrid
simulation may be experimental design, pre
diction and control, and design evaluation, veri
fication, or optimization. It is not expected that
the important applications of hybrid simulation
will include: data processing system simula
tion; information handling simulation; business
system simulations; siInulation of television
coding, character reading machines, communi
cations coding systems, (;tc These are all
digital computer simulatiJn applications. Simi
larly hybrid computers are not warranted for
the simulation of circuits, devices, and systems
for which the analog computer is quite adequate.
It is in the simulation of total systems that
bring together components, some of which are
suited for digital and some for analog simula
tion, that the newer hybrid techniques are re-

'quired. There probably are few, if any, simple
hybrid computer applications.

If hybrid computation can be said to be a
field of endeavor it must be considered to be in
the formative stage. Developments to date have
led to equipment configurations and program
ming techniques that were dictated by specific
problems and limited objectives. The growth
rate of the field will be determined by the ex
teI1lt to which a broader view is taken of hybrid
computer programming techniques and appli
cations. The greatest advances in computers
have been made when the experiences of users,
programmers, have been brought to bear on
design of equipm'ent. For the most part, hybrid
computers of today consist of general purpose
analog and digital machines, which are not ae
signed for hybrid operation, tied together by
"linkage equipment" designed only to solve the
communication problem. This has been a nec
essary first step. Newer hybrid systems will be

I
designed not just for· communications but for
efficient solution of hybrid problems and for
convenient programming. The purpose of the
following discussions is to bring attention to
the essentials of hybrid computation and their
relationship to problem solutions. Out of this
should come some indication of how present day
computers can be most effectively employed.
The next generation of hybrid computers will
undoubtedly achieve a greater degree of inte
gration of parallel computing elements with the
sequential stored program principle. Eventu
ally patch panel programming of parallel ele
ments will be replaced by an automatic system,
thus affording a fully automatic method for
computer set-up and check-out. Even today a
secondary activity of the digital part of the
hybrid machine is the partial automation of set
upaiId check-out of tbe analog computer. This
feature becomes increasingly important as the
computer system grows in size and the pro
grams grow in complexity, for the attention of
the programmer and problem analyst needs to
be directed to the simulation itself rather than
the simulator.

THE ELEMENTS OF HYBRID COMPUTERS

Digital Computers

Many conflicting factors have influenced the
choice of digital computers used in hybrid sys-

252 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

terns. Computer speed and economics have
probably been dominant. Since there are so
many computers on the market today that have
sufficient speed and that span the complete
range of prices, it is more instructive to ex
amine the features that are essential for hybrid
computation.

Speed. The speed of execution of arithmetic
operations is most important, and this is a func
tion of memory access time and multiplier
speed. The access speed of drum and delay line
memories is too slow. Magnetic core access
times of 2 to 5 microseconds are currently popu
lar. This means the time for addition of two
numbers is 4 to 10 microseconds. Multiplication
and division take longer-times of 15 to 40
microseconds are generally available and quite
satisfactory. Overall program speep can be in
creased by the use of index registers-three
registers is desirable; more are useful. Special
instructions for subroutine entry, for executing
commands out of sequence, and for testing and
skipping can help increase computing speeds.

Word Structure. The basic requirement is for
a fixed point, binary word of at least 24 bits.
Since round-off errors affect the last several
bits a smaller word size would result in a
dynamic range limitation of less than 106• A
longer word may be useful in a few applications
where fixed point scaling may be difficult. Float
ing point computations may make things easier
for the programmer but should not be depended
upon at the expense of computational speed.
It may be noted that the equivalent of fixed
point scaling is a necessary part of the analog
program, and hence floating point operations
may not prove as advantageous as for some all
digital programs. Decimal format and char
acter oriented machines do not offer any advan
tages for hybrid computation, and usually they
are slower than equivalent sized binary com
puters.

Input/Output. High data rates in and out of
core memory and any feature that minimizes
loss of computing time for input/output opera
tions are highly desirable. In addition a fast,
flexible means for communicating control sig
nals to and from the analog section of the
hybrid system is necessary. Three kinds of con
trol signals are usually provided: interrupt and
sense lines, and output control signals. It is by

means of these controls that the sequential op
erations of the digital machine are made com
patible with the parallel, simultaneous opera
tions of the ana10g machine. Since communica
tions must be made with many points in the
analog computer, a number of these control sig
nals are needed. Interrupt signals, from out
side the computer, stop the current sequence of
calculations and force transfer to another
sequence. Sense lines simply indicate to the
digital program the current state of devices
outside the computer. They may be sensed by
specific programmed instruction. Other pro
grammed instructions will send control signals
outside the computer on the output control
lines.

Memory. As noted above the digital com
puter main memory should be a high-speed
magnetic core. Since most hybrid applications
do not require a large memory for either pro
gram instructions or data, four, eight or twelve
thousands words of core memory should suffice.
Larger memories may be desired for special
digital programs and larger hybrid problems
when more experience has been gained in this
field, thus expandability of a memory to 16K
words is a good feature. N ewer computers are
being introduced with small, very high speed
"scratch pad" memories. Such memories may
ha ve cycle times less than a microsecond and
are used to store intermediate arithmetic re
sults. This feature increases the overall compu
tation speed of the computer.

The normal manner of operating an analog
computer involves a fair amount of non-com
puting time when the computer remains in the
Hold or Reset mode. These intervals may range
from seconds to minutes while adjustments are
made, pots are set, or recorders changed, or
while the programmer analyzes results. It is
not possible for the analog computer to operate
on other programs at these times, however,
with a hybrid system, where such waiting
periods are likely to occur also, it is reasonable
to consider having the digital computer work
on a different program during the intervals,
whatever their length. Appropriate "interrupt"
and "memory lock-out" features are possible to
permit time sharing of the digital machine
without affecting the hybrid program and with
out the danger of one program interfering with

HYBRID COMPUTATION ... WHAT IS IT? ... WHO NEEDS IT? . 253

the other. The secondary program (a strictly
digital problem) is simply stored in a "pro
tected" part of the core memory and utilizes all
the bits of time not required by the hybrid
program.

Peripheral Equipment. In many digital com
puter installations the investment in peripheral
equipment rivals that in the central computer.
Current hybrid computer applications require
only a minimum of digital peripheral equip
ment. The graphic output equipment associated
with the analog computer is sufficient for com
putational results. Punched paper tape reader
and punch and typewriter may be all that is
required for programming. Larger systems in
the future win employ punched cards and mag
netic tape, primarily for rapid change-over of
problem and automatic check-out. Large off
line data storage does not appear necessary for
most applications.

In summary the digital computer must be
characterized as a sequential machine. For
effective use within a hybrid system the ma
chine (a) must have sufficiently high internal
speed for it to appear as though a number of
calculations were taking place simultaneously;
(b) must be organized for maximum speed in
executing mathematical calculations; and (c)
must have efficient means for input and output
of data during calculation (Figure 1).

OC·~---'

INT---..

SENSE -----'

Figure 1. The digital computer must be characterized
as a sequential machine. For effective use within a
hybrid system the machine must have sufficiently high
internal speed for it to appear as though a number of
calculations were taking place simultaneously. It must
be organized for maximum speed in executing mathe
matical calculations; and it must have efficient means
for input and output of data during calculation.

Analog Computers

In contrast to the above the analog computer
is a parallel machine, with many computing
components and I/O devices operating in con
cert. There are few, if any, features of the mod
ern analog computer that are not appropriate
to a hybrid system. However, only the largest
analog machines have been used for general
purpose hybrid simulation. The common meas
ure of a large computer is that it has 100 to 200
operational amplifiers. Since two or more com
puters may be "slaved" together, larger systems
are possible when required.

Analog computer features that are important
for hybrid systems can be simply listed as:

-Integrators with multiple time scales
-Amplifiers for tracking and storing volt-

ages
-Very fast control of the modes of indi

vidual amplifiers
-Automatic, remote control of the setting of

potentiometers
-Fast, accurate multipliers and trigono

metric resolvers
-High speed comparators with logic signal

outputs
-Electronic switches (logic signal gating of

analog signals)

In the early days logic equations or switching
functions were programmed with relays and
stepping switches, which were connected to the
patch board by various means. Present day
technology employs electronic switching of inte
grator modes and voltage signals at high
speeds, and the delays inherent in relay devices
can no longer be tolerated for logic operations.
The logic building blocks common to the digital
computer designer (fiip-fiops,gates, inverters,
monostable multivibrators, .. shift registers, and
counters) are ideally suited to these operations.
Thus with electronic switches replacing relay
contacts, logic modules have become an integral
part of all new, large, analog systems. These
modules are programmed like the other analog
components oy interconnections at a patch
panel. Many signals occur simultaneously but
they are logic signals-two values, Zero and
One, that change as functions of time. Input
signals to logic programs come from compara
tors, manual switches, and external control sig-

254 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

nals. Logic program outputs go to integrator
mode controls, storage amplifier controls, elec
tronic switches(DA switches) to gate analog
signals. As will be shown later, it is essential
for a hybrid system to have a very significant
complement of digital logic components. A few
gates and flip-flops are not sufficient. The
potentialities for use of logic components in· an
analog computer for hybrid operation are so
great that the EAI HYDAC Digital Operations
System is an entire computer console with its
own patching system used entirely for the pro
gramming of digital components for parallel
computation. This console is really a complete
logic computer. It is used together with a con
ventional analog computer to form what is truly
an all parallel hybrid computer. 1, 9,23,24,29,40,41

In summary· the modern analog computer
must be characterized as a parallel machine. It
is not solely a computer for continuous vari
ables. I t is a parallel assemblage of building
blocks: integrators, multipliers, etc., for con
tinuous variables; and flip-flops, gates, count
ers, etc., and "digital" circuits for discrete vari
ables. It is organized for convenient represen
tation of an "analogous" physical system by
means of a computer model constructed of these
building block (Figure 2) .

Figure 2. The modern analog cOplputer must be char
acterized as a parallel machine. Not solely a computer
for continuous variables, it is a parallel assemblage of
building blocks: integrators, multipliers, etc, for con
tinuous variaw.s; and flip-flops, gates, counters, etc.,
and "digital" eircuits for discrete variables. It is
organized for convenient simulation of an "analogous"
physical system by a computer model that is constructed
of these building blocks.

Conversion Devices

In providing data communication between a
sequential computer and a parallel computer
three kinds of devices are commonly used: the
multiplexer, the analog-to-digital converter
(ADC), and the digital-to-analog converter
(DAC). In addition, all early systems have
employed a timing and control unit which per
forms a relatively fixed set of operations, with
manual switches to select options such as
sampling frequency, and number of channels.
Such "linkage systems" thus consisted of a
timer unit plus a group of linkage building
blocks prewired to perform a specific task. With
the integration of digital logic components into
the parallel computer, however, greater pro
gramming flexibility is possible by use of these
logic units for timing control of the data con
versions. Furthermore, the converters and
multiplexer can act very naturally as additional
building olocks in the parallel computer. Thus
it is likely that future hybrid systems will
simply incorporate the "linkage system" within
the parallel computer.

Usually several or many analog signals in a
hybrid program will be sampled, converted and
transmitted periodically to the sequential digi
tal program. The numbers, of the several
sequences of numbers to be entered into the core
memory, can be accepted only one at a time.
Since this is so, the conversions from voltage
to number form can be performed one at a
time-first from one analog variable and then
from another. The multiplexer is used to select
one from many analog signals, to step through
a sequence of signals, and thus to furnish volt
age input signals to the ADC.

The output of commonly used ADC's is a
binary number of 10 to 14 bits. A 13 bit binary
output probably is the best compromise; it
represents a resolution of one part in eight
thousand, and resolution of analog voltage sig
nals is at best one part in ten thousand. Conver
sion times range from 50 to 300 microseconds.
A typical time of 100 microseconds would allow
the converter to be shared by 16 analog signals
each with a frequency spectrum extending to 20
or 30 cycles per second. This will be explained
later.

DAC units should have the same binary word
size as the ADC, except for special low accuracy

HYBRID COMPUTATION ... WHAT IS IT? ... WHO NEEDS IT? . . • 255

uses. Conversion times are not determined by
the converter but rather by the bandwidth of
the analog amplifier following the converter.
Data from the sequential computer appear only
one word at a time, and some means for retain
ing the latest value, of each sequence of num
bers, for each output function is needed. The
sequence of numbers coming from the computer
may first be converted to voltage values by a
single DAC, and then distributed to storage
amplifiers for each channel. It is more cus
tomary, however, to hold each of the latest
words for each channel in a digital register
which is an integral part of the DAC assigned
to each channel (Figure 3).

Special Forms

As a passing thought it may be noted that
while the primary emphasis here is being
placed on the distinction between parallel and
sequential operation, the term "hybrid," his;..
tori cally, has been used to imply the combina
tion of continuous and discrete calculations, and
that therefore consideration might be given to
two special kinds of hybrid computers:

The Parallel Hybrid Computer; which is a
proper term for the EAI HYDAC 2000 machine.
This system combines an analog computer with
a general purpose system of programmable
logic building blocks, multiplexer, ADC, DAC's,

Figure 3. ADC's and DAC's are format converters,
changing voltage to numbers and vice versa. As com
ponents of the parallel machine the converters together
with logic components must act to "match impedances,"
i.e., resolve the incompatibility between the parallel
and sequential programs.

digital memory units for storage· of sampled
analog functions, and several digital numerical
adders and subtractors. The application of this
system encompasses an intermediate range of
hybrid problems, such as:

a. Transport delay simulation 24
b. Single and multi-variable function genera

tion
c. Logic control systems23
d. Automation of the analog computer for

parameter searches and optimization
studies 41

e. Simulation of numerical and sampled data
control systems 1,9

The Sequential Hybrid Computer, which is
exemplified bytthe experimental "pulsed analog
computer" techniques developed at M.LT. for
use in an ai~craft flight trainer.1° This system
employs a [:sequential digital computer which
controls a small number of analog functional
components--one multiplier, one reciprocal
generator, one integrator, and several adding
units. These units are interconnected and re
ceive inputs by digital program control. They
form, in effect, "analog subroutines" for the
sequential computer.

THE SEQUENTIAL/PARALLEL HYBRID
COMPUTER

The term "hybrid" is most appropriately
used to indicate the combined use of sequential
and parallel computing techniques, first because
the future growth in hybrid simulation will be
predominantly in this direction. Second~ and
more important, is that from the standpoint of
the programmer who must bring the two types
of computers together to find a useful solution
to a problem, the only really significant dis
parity lies. between sequential and parallel op
erations. The difference between continuous
voltage and discrete number is simply one of
format. It would make little difference if the
analog signals were frequency modulated, pulse
code modulated, hydraulic, or pneumatic
appropriate format converters could be found.
The feature of hybrid computation that is of
importance is: in part of the machine many op
erations are taking place simultaneously, and
many time-varying problem variables exist in
parallel; while elsewhere a number of opera
tions take place, one at a time in a repetitive

256 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

manner, so as to effect the generation of several
problem variables, as if they occurred simul
taneously. Furthermore, the parallel computa
tion is tied to a real-time base: the very passage
of time itself accounts for the changing of the
basic independent computer variable. The
sequential program is asynchronous-not con
trolled by a clock. Operations are executed in
sequence at whatever rate is possible, and for
any reference to be made to the actual elapsed
time, external communication is necessary. This
basic incompatihility requires that the interface
between the two types of operation embody
more than the simple format conversions per
formed by the ADC and DAC's. It is necessary
for data and control information in the parallel
machine to be available to the sequential ma
chine and conversely that the latter be able to
send data and control signals to many points in
the former. Coincidence or simultaneity of
events communicated to and controlled from the
sequential program are particularly difficult to
handle. The logic and data control of the inter
face equipment must resolve these differences
in timing and operation. What might be termed
an "impedance matching" device is needed be
tween the parallel and sequential program in
order to make most efficient use of both ma
chines. The exact manner in which this is done
will vary from problem to problem (Figure 4).

A Simple Example

An example will illustrate some basic con
siderations in defining a general purpose hybrid
system. First, the operation of the simplest of
linkage systems: an ADC and multiplexer, a

Figure 4. A hybrid computer is a compatible. system of
parallel computing components, both digital and analog,
and a stored program sequential machine. The hybrid
computer programmer must constantly be aware of the
relative timing of events in the parallel and sequential
parts of the program. "Matching impedances" between
these parts is accomplished by programming of the
interface components to suit the simulation.

number of DAC's, and an "interrupt clock."
The flexibility of the stored program digital
computer is relied on for control of these units.
Assume 10 analog signals are to be converted
one at a time. These. words are placed in mem
ory (average program time: 40 p.sec. per word
and then about 7.5 or 8.0 milliseconds of sequen
tial, digital calculations takes place, followed by
output from memory of ten words (20 p.sec. per
word) to ten DAC's. The entire cycle requires
7500 + 10 X 40 (input) + 10 X 20 (output) =
8100 microseconds of digital program time. If
it is assumed the conversion of the data (A to
D) requires 150 microseconds per word then 1.5
additional milliseconds, or 9 ms are needed if
everything proceeds sequentially. Assume
further that because of the frequencies, or the
analog signals, it is necessary to sample at least
some, and therefore all, of the channels at 100
samples per second. A "real4ime interrupt
clock" is set at 100 cycles per second. This
timer unit is an adjustable oscillator that sends
an interrupt pulse to the digital computer. The
latter then activates the ADC, waits 150 p'sec
for completion of a "Ready" signal, steps the
multiplexer to the next channel, stores the
converted word in memory, and then repeats
this cycle ten times. With the tenth step the
multiplexer resets to the first channel. The
program then proceeds with the 7.5 millisec
onds of calculation, outputs ten words, one at a
time, to ten DAC's, and then waits for the next

Figure 5. An early hybrid system configuration. The
sequential program controls the timing of the conver
sion cycle. The cycle is initiated by the "interrupt
clock." For a tyical problem the clock might be set
for 100 cps; and 7 to 8 milliseconds per cycle would be
available for calculation.

HY,BRID COMPUTATION

Figure 6. The sequential program flow diagram, for
the example hybrid system of Figure 5, shows the steps
required for control of the converters.

IN~~~~~PT 1....-_______ ---(,1-' _ ___" __

PULSE

ADC
OPERATING

TIME

DIGITAL
COMPUTER

TIME

IIII

iIIuu
I-- CALCULATE 7.4MS..j

~ 'OH'OH'O ~
TnT ~ ~ t, tl 1, L- 1NDEX II TltANSFER

COMPLETION I I
STEf' IIILTIPUXER '"'-~j --START "DC

--"':J L
~40~SEC--1

Figure 7. Typical times are shown for the steps in the
conversion cycle of the example system of Figure 5. All
ten channels are converted and stored in memory as
fast as possible before proceeding with calculations
at the expense of intervals of "waiting time."

interrupt pulse. (See Figures 5, 6, and 7.)
Manual controls are provided for selecting the
interrupt clock frequency and the number of
channels in the multiplexer stepping cycle.

This is certainly a simple system and it ap
pears to satisfy the basic requirements for com
munications. Some of the shortcomings of the
system are apparent: sampling and outputting
of each channel do not take place simulta
neously, 15 % of the sequential program time is
"waiting" time, and 3 to 5 % is used to select

WHAT IS IT? ... WHO NEEDS IT? ... 257

and control devices external to the sequential
computer. In other problems these percentages
may be higher. The other weaknesses in this
system lie in the fact that it was not designed
to be a general purpose system. It is restricted
in application to a class of problems for which
the periodic "input/ calculate/output" cycle is
useful.

System Improvements or Variatio~

By programming the parallel digital COM

ponents of the parallel computer to perform
timing and control functions for the system the
following changes to the above system are
suggested:

a. Simultaneous sampling. If the sequential
program operates on two or more of the input
numbers together to calculate an output, then
errors may occur since the input numbers were
sampled at different times and correspond to
different values of the independent variable. A
similar effect may occur at the output since the
numbers in a group of ten appear at the ten
DAC's at different times. It is certainly pos
sible by numerical means to compensate for the
errors, at the penalty of additional program
time.18, 28 The common soiution is to add mem
ory to each of the ten input and ten output
channels. Ten Track/Store amplifiers are added
before the multiplexer and a control signal
causes them all to sample, by storing the volt
ages, simultaneously. At the output, 13 bit
registers are added in front of the DAC's.
When all ten registers ha ve been loaded, a
transfer pulse causes all DAC values to be
updated at the same time.

b. External timing of ADC and multiplexer.
Sequential program time can be saved by per
mitting the control of the ADC, multiplexer,
track store cycle to be controlled externally. A
simple clock, counter, flip-flop, and group of
logic gates will permit the input conversion
cycle to run at its own rate-interrupting the
sequential program only at the completion of a
conversion. Thus the conversion time can over
lap the calculation time, eliminating the wait
ing time. Upon interrupt only 10 to 20 p.sec.
may be required per sample; many control steps
are eliminated. Similarly on output, the ad
dressing and selection of output channels can
be done by simple circuits rather than using
sequential program time (Figure 8).

258 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Figure 8. Several improvements to the interface system
of the example of Figure 5 include: simultaneous
sampling, external ADC and multiplexer timing by a
parallel logic program, use of sense lines to reduce
conversion channels, detection of random events,
multiple sampling frequencies, and/or asynchronous
sampling.

c. Real-time clock to establish sampling fre
quency. If the sequential calculation involves
numerical integration over a long term, the
accuracy of the sampling interval is just as im
portant as the round-off and truncation error
in the numerical calculation. Although numeri
cal means may be resorted to for very accurate
integration, in a hybrid program the calcula
tions still need to be referred to a real-time
base. This is done by using an accurately cali
brated source for setting the sampling interval,
or frequency. A good high-frequency crystal
stabilized oscillator is an important part of the
parallel digital subsystem. Sampling frequen
cies lower than the oscillator frequency are
selected by use of preset counters.

d. Use of sense lines to reduce number of
conversions. In the simple example problem
only whole number data are transmitted to the
sequential program. Thus, if the relative mag
nitude (greater or less than) of two analog
signals is needed in the digital calculation, the
two numbers must be converted, stored, and
then compared. This can be accomplished more
simply by use of an analog comparator the out
put.of which is sent to the digital computer by
a sense line--saving time and equipment. The
state of any parallel logic component may be
monitored conveniently by sense lines. These
are tested in one memory cycle (2-5 fLsec.). If

many such communications are needed the sav
ings will be significant. Sense lines should also
be added to allow the sequential program to
determine the mod~s of the analog computer,
the relative sizes and signs of error quantities,
and the states of recording devices.

e. Detection of random events. With fixed,
periodic sampling the sequential program can
not tell exactly when events take place in the
parallel machine. With comparators and parallel
logic, complex functions of analog variables can
be monitored. For example, it might be required
to determine when the overshoot in Xl exceeds
X2 after the third cycle, but only when X3 is
negative and X4 is less than X5. After determi
nation the sequential program can be inter
rupted to perform specific conversions and cal
culations-asynchronously with respect to the
primary conversion cycle. In this manner the
parallel logic avoids the delays in the sequential
program and uses the latter only when required.
The parallel logic program analyzes the data,
interrupts the sequential program, and sets up
the proper channels for conversion in and out
of the digital computer (Figure 9).

f. Multiple sampling frequencie.s. In the ex
ample problem all channels are sampled at a
frequency determined by the highest frequency
present in anyone channel. It may often be the
case that there are two or more groups of vari
ables with different ranges of variable frequen
cies. It may then be appropriate to sample each
group at different frequencies. Another ap-

-XI

-x..
x.

Figure 9. A parallel logic program is used to detect
random events in the parallel computer. The "desired
control signal" interrupts the sequential program when
the overshoot in Xl exceeds X2 after the third oscilla
tion; but only when Xs is negative and X4 is less than
X5. Xl through X3 are analog voltages.

HY·BRID COMPUTATION ... WHAT IS IT? ... WHO NEEDS IT? . . • 259

proach using different sampling rates is to use
several eight channel multiplexers in cascade so
that the output of two of them feed two chan
nels of a third which feeds the ADC. On each
cycle of the third unit the first two are stepped,
yielding different variables for those two chan
nels on each cycle. Alternatively, each time the
third steps to the two special inputs the corre
sponding multiplexer makes a full cycle. Tim
ing control of these operations is performed by
parallel logic components (Figure 10).

g. Asynchronous sampling. A completely
asynchronous conversion system has been de
signed by one computer laboratory, in which
the sequential program is interrupted only by
comparators. Twenty analog problem variables
are compared to reference values that are ad
justed by the digital computer when necessary.
Each comparator calls for conversion of some
group of variables (the same variables may be
called for by different comparators). When two
or more comparator signals occur simultane
ously or during a conversion operation, two
levels of priorities are set up by logic elements
to determine what interrupts are to be made.
While the system appears complex, it is accom
plished in a simple fashion in the paraHei com
puter and makes good use of the sequential com
puter time.

A longer list of useful variations in the con
trol and timing of sequential/parallel communi
cations can be compiled. For the most part,
however, they should be explained in terms of
the particular problem applications.

ANALOG
SIGNALS

Figure 10. Cascaded multiplexers, in this or other con
figurations, can aid in establishing mUltiple sampling
rates for different groups of analog signals.

Operating Times for Typical Mathematical
Functions

The repeated emphasis upon the efficient utili
zation of the sequential program time, high
arithmetic speeds, and programming tricks to
gain speed can be seen to oe warranted when
one examines the sequential operating times for
several typical mathematical functions, which,
on the analog computer, would be executed con
tinuously and in parallel.

a. The sum: a + b + c + d 40 microsec.
b. The expression: ax + by + cz

c. Sinwt or coswt
d. Square root of X2 + y2

e. Generate z == f (x, y), where
two dimensional interpola
tion is required between
functional values evenly

160 microsec.
215 microsec.
432 microsec.

placed in x and y: 0.5 to 1.5 millisec.
f. Rotate a vector through

three coordinate angles: 2 to 6 millisec.
g. Perform one integration of a

single derivative for a single
time step: 0.1 to 1.3 millisec.

A program of three first-order differential
equations, where the derivatives are calculated
from the functions above (items a through f)
would not be a large program; and yet for a
single step in time, the calculation time would
be about 11.2 milliseconds.

dx
dt - x + y + z + f (x,y)

dy
dt == ax - by + cz

dz 2 2 • t dt == x + y + Slnz

Allowing another millisecond or two for control
and input/output instructions one can estimate'
the real-time speed performance of this pro
gram. The speed is best expressed in terms of
the useful upper frequency (at full scale), in a
problem variable, that can be represented by
the computer. Although the example equations
have no real meaning, the frequency limit for
such a program is about 1 :1f2 cps. This does not
seem like very fast performance for so few,
simple equations. On the other hand, it is fast
compared to frequencies of some of the vari-

260 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

abIes in an aerospace simulation program for
which digital precision is required. In any
event, it should be clear for best utilization of
the sequential computer, care should be taken to
reduce operating time whenever possible.

Sampling Rates

When parallel and sequential machines are
connected in a closed loop it is assumed that at
least part of the task of the sequential program
is to accept sequences of sampled values of con
tinuous inputs, calculate functions of these in
puts, which are then transferred out as
sequences of numbers to be smoothed into con
tinuous signals. The digital computer attempts
to appear as if it were a parallel computer, and
as in a movie projection the effectiveness of
this approximation is determined by the ratio
of the frame or cycle rate to the rates of change
of the signals communicated, and the time reso
lution of the person or computer receiving the
information. Thirty frames per second will not
catch the information in the trajectory of a
humming bird. A higher rate is needed for an
accurate recording of the flight. The human
eye, however, cannot resolve time intervals less
than 1/30 of a second. Thus an accurate record
ing can be transmitted to the eye only by a time
scale change to slow motion. Fortunately, the
parallel computer has a time resolving power
sufficient to detect the shortest practical cycle
time on the sequential computer, so the limiting
factor in determining useful cycle frequencies
is the rates of change of the variables that pass
between the two computer sections. It is cus
tomary to speak of the bandwidth or spectrum
of these signals-or more particularly the high
est useful frequency that must range over the
full magnitude scale. The sampling rate or
cycle rate must be selected in terms of the num
ber of discrete numbers or voltage samples
necessary to represent this highest frequency at
the desired accuracy.

In sampled data theory the "sampling
theorem" states that the sampling frequency
must exceed two times the highest signal fre
quency if all the information in the original
signal is to be retained.36 That is, some number
greater than two samples per cycle is necessary.
Another important point comes from the
theory: in sampling voltages at the input to the
digital computer the rate must exceed twice the

frequency of any signal present. If noise sig
nals are present that are higher in frequency
than the desired signal and exceeding 112 the
sampling frequency it is possible for this noise
to be reflected Into the signal spectrum, thereby
destroying useful information. This can be
avoided with appropriate noise filters. If this
were the only limitation it would be fortunate.
However, too few samples per cycle makes it
difficult for the sequential program to extrap
olate and predict what takes place in between
samples. I t is possible to do this, of course, by
numerical means, but at cost in program time.
Furthermore, numerical algorithms for integra
tion are sensitive to the ratio of sampling inter
val to the rates of changes of the variables, and
the calculations may become unstable if too few
samples per cycle are used (Figure 11).

The most important criterion for determin
ing sampling rates appears in the conversion of
the discrete data to continuous analog func
tions. Two sources of error affect the accuracy
of the resultant continuous function. The first
is the delay due to conversion and the sequential
program itself. The output numbers are func
tions of input numbers that were sampled at an
earlier time. Since the delay is unavoidable, but
is predictable, numerical means are used to
extrapolate the data to the time of actual digital
to-analog conversion. 18, 28 The second error
source is in the mechanism for conversion from

Sampling
a

Multiplexing

Oemultiplexing
a

Smoothing

Figure 11. A Sequential-Parallel Hybrid Computer:
The noise and delays due to sampling and multiplexing
on the one side and the magnitude and phase errors due
to demultiplexing and smoothing on the other are domi
nant factors in determining the proper sampling fre
quency.

HYBRID COMPUTATION ... WHAT IS IT? ... WHO NEEDS IT? . 261

discrete to continuous form. A sequence of dis
crete values fed to a DAC results in a "stair
case" analog function. The desired output is a
smooth curve passing through each data point
(the left corner of each step). If the staircase
is smoothed with an analog circuit the result is
a smooth curve shifted in time 1hat, passing
through the center of each step. The amplitude
of this curve is attenuated from what it should
be. This technique of smoothing is called "zero
order" filtering. (See Figure 12.) The size of the
errors is a function of the number of samples
per cycle. At ten samples per cycle the magni
tude attenuation is about 1.1 % and the phase
shift is 18 degrees. At 30 samples per cycle the
errors are 0.7% and 6.5 degrees.

A first order filter may be applied to the DAC
output to reduce the errors. For special pur
poses higher order extrapolating filters are
feasible. These filters are programmed from
analog components. The first order filter extrap
olates from the last two discrete values to gen
erate intermediate values until the output volt
age is reset to the next discrete value from the
DAC. The first order filter has a much improved
phase characteristic but at low sample rates the
magnitude is erroneously accentuated. The

IDEAL
OUTPUT

Figure 12. The discrete to continuous signal conversion
requires smoothing and hence yields only an approxi
mation to the ideal output from the sequential com
puter. The zero order conversion simply holds the
output voltage at the last sampled value until the next
arrives. When the "steps" are filtered out the result is
shifted in time by the width of one half step. ThE:. first
o;der scheme uses the past two converted values to
predict the value between points, before "resetting" to
the next value.

... ----
"

0.1 %
\

,'-
" ~ Zero Order

Sample I Cycle
10 20 30 40 50

~ , ,
" "

Figure 13. Zero and first order conversion methods are
compared, after filtering. The errors are functions of
the number of samples per cycle of full scale signal
frequency. A good rule of thumb for the zero order
filter is that 50 samples per cycle, the errors are less
than 0.1 % and 3.6 degrees.

error characteristics of the two filters are
shown in Figure 13. A good rule of thumb for
the simple zero order filter is that for 50
samples per cycle the errors are less than 0.1 %
and 3.6 degrees. The above rule is convenient
for estimating the required sample rate and
hence the time available for the sequential pro
gram. If the variables converted from digital
vary at a maximum frequency of 2 cps, then
100 samples per second are needed, and 10 milli
seconds is the cycle time for the sequential pro
gram, for primary calculations and input/out
put operations.

Dynamic Range of Dependent and Independent
Variables

The time resolving power of the analog com
puter was mentioned above in connection with
an analogy to the resolution of the human eye.
It is instructive to pursue this concept further.
The time resolving power of a computer is
measured by the shortest time interval that can
be accounted for in a calculation. For all signals
in an analog computation, the resolution is
directly related to the bandwidth of the com
ponents; however, the computer's ability tore
spond to on-off signals and very short pulses, or

262 PROCE.EDINGS-,SPRING JOINT COMPUTER CONFERENCE, 1964

to discriminate between two closely spaced
events is a closer description of time resolution.
In a digital computer the absolute minimum
resolution might be taken as the time to execute
three instructions; however, within a hybrid
system the resolution of the sequential program
is either the sample interval discussed above, or
at best, for asynchronous operation, the time
for a complete interrupt program to respond to
an event. In the parallel computer the time
resolution is, of course, much greater because
computing elements need not be time-shared.
For relay circuits the resolution is about 1 milli
second, for electronic switching of analog sig
nals from 10 to 100 useconds, and for parallel
digital operations from 0.1 to 10 useconds. If
these numbers are compared to the total length
of a typical computer run, say 1.5 minutes, com
puter time resolution can be measured by a non
dimensional number:

Parallel digital logic operations
Parallel digital arithmetic

operations
Parallel analog, electronic

switching
Sequential program, minimum

useful program
Parallel analog, relay switching
Sequential program, typical

sampling

.. 1: 109

1: 101

1: 5 X 106

1: 3 X 105

1: 105

1: 5 X 103

The digital computer is employed in a simu
lation where the dynamic range of dependent
variables requires a wide dynamic range (re
ciprocal of resolution) in the computation. It is
seen that resolution of the independent variable
is traded for that of the dependent variables
when a particular calculation is moved from
analog to digital computer. Figure 14 shows
these functions plotted against each other for
different computers. The flat part, or "operat
ing range," of the sequential computer plot is
seen to be limited on one end by truncation error
and the 'other by round-off error. This is to be
interpreted as meaning that for a given set of
mathematics short cuts and approximations
may be used to improve the time resolution up
to a point where the truncation error becomes
serious. On the other end, special techniques
may be used to reduce round-off error, including
double precision operations, at the expense of
time resolution.

REAL TItt£ FREQ. (CPS) 0.1 10 100 1000
I I I I

z ~
2 § 10

3 I 10
i
III f"1O II:

~ •
~

Z 10

~
10

10
~
Z 10
~ z 10
~
I!: 10

' i
! I .

1
I " ...

........... 1 7C ~ I

.... , r--_ \ 7

&
DDP 24 \

r---r\ PlIRAW LDIGI ~AL ,
. . ,r\

"AU AillL 'ANAL PG "
~

1 1'0....

2

.......
........

I I I I I I I I I
I 10 102 10 1 10" 10' 10& 107 10" 10'

J MIN. I SEC. 1m. SEC. I" SEC.

INDEPENDENT YARIA8l.£ OWE) RESOLUTION

Figure 14. Certain performance characteristics of com
puters can be deduced from this comparison of the
available resolution in the computer representation of
dependent and independent variables. Notes: (1) The
limits on the "Parallel Digital" curve are given as those
of the EAI Hydac, 0.5 ,usec. in time and 16 bits in
magnitude; (2) the attenuation on the right hand end
of the DDP-24 and 7094 curves corresponds to trunca
tion errors; (3) the slope at the left of these curves
corresponds to reduction of round-;off errors at the
expense of speed including use of double precision
methods (broken lines); (4) The "Real Time Fre
quency" scale refers to signal frequencies passed by the
sequential program (DDP-24, 7094) assuming a maxi
mum sampling rate of 100 samples/cycle.

When the digital computer curves are related
to the frequency scale, at the top of Figure 14,
a particular size program must be considered.
For example, at the 2 cps point, six second order
differential equations for a trajectory simula
tion could be calculated, for throt point corre
sponds to a 10 millisecond (bottom scale) se
quential program time interval. At the 20 cps
point, either very crude integration algorithms
and approximations are used for the same prob
lem, or one would be considering a much smaller
calculation. Moving to the left on the curve,
more time is available either for more accurate
calculation or for computation of more func
tions. The useful operating ranges for the dif
ferent techniques are evident from this figure,
and this point of view should be useful to the
problem analyst in considering hybrid simu
lation.

FORMULATION OF THE SIMULATION
MODEL AND PROGRAMMING

Mathematical analysis of the behavior of
physical processes and systems is a basic tool

HYBRID COMPUTATION ... WHAT IS IT? ... WHO NEEDS IT? . . . 263

for the design engineer, and the frequency of
its use has been growing for many years at an
increasing rate. At first, analysis was restricted
to the smaller elements in a system, to linearized
approximations, or to phenomena that can be
isolated from interaction with its environment.
For example, there have been many studies of
noninteracting servo control loops, heat diffu
sion in devi,ces of simple geometry, the "small
signal behavior" of aircraft and their control
systems, and batch and continuous chemical
reactors of simplified geometry. Analysis starts
from a consideration of the basic laws of physics
as applied to the process at hand and proceeds
to develop a mathematical model. The solution
to the equations of this model for a range of the
independent variable (s) constitutes a simula
tion of the process. The nature of the designer's
task and the very fact that the analysis has been
limited to an element of a more complex system,
requires that many such solutions be calculated.
The simulation is performed numerous times
over to determine the variations in the process
behavior with changes in (a) internal design
parameter~ of the process, and (b) environmen
tal conditions. Electronic computers, of both
types; have aided immeasurably in reducing this
task to a manageable one. The facility in ob-
taining simulation results ~tp~t compu·ters have
afforded the designer and analyst has acceler
ated the general acceptance of the analytical
approach to difficult design problems.

In addition to the wider use of simula.tion the
successful correlation of experimental results
with analytical predictions has built confidence
in these techniques, which has led to the under
taking of simulations of more complex systems.
It was once felt that a simulation model could be
made so large that the analyst would have diffi
culty coping with the variables. Indeed this can
happen, when poor engineering judgment leads
to a model with many more variables than
known conditions and assumptions. However,
a complex model carefully built up from veri
fied models of subsystems may lead to valuable
results attainable by no other means. Thus as
analysis and simulation have yielded under
standing of the behavior of small systems, a
natural process of escalation has led to simula
tion of systems of greater and greater com
plexity. The increased sophistication of simula
tion models has made the analyst even more

dependent upon computers for effective control
of the simulation and for interpretation of
results.

The rapid growth of analytical methods and
the exploitation of computer technology have
paralleled an even faster expansion in com
plexity of engineering systems. Aerospace
systems, moon missions, space satellite labora
tories, nuclear reactor power systems, and
automated chemical plants are examples of en
gineering systems that are so expensive and/or
potentially hazardous that the design cannot be
undertaken without computer simulation to pre
dict ultimate performance. It is no longer feasi
ble to restrict analysis to linearized or isolated
subsystems in development of such systems. As
technology continues to expand reliable methods
must be found to predict, by simulation, the per
formance of total systems. For only with such
analysis and prediction can decisions, involving
capital investment as well as design features, be
made. It is in this context that hybrid computa
tion can be seen to fulfill a growing need.

One might well ask what are the implications
of t.his escalation of complexity. If simulation
models must necessarily grow larger, just ho\v
does this affect the procedures of analysis, com
puter progr~"'TIming, computation, and inteL-vre
tation of results? How are the hazards, which
were o~ earlier concern, of becoming over
whelmed with useless data and meaningless
computation be avoided? There is a pernicious
theory about programming for very large digi
tal simUlation, that says if two men can do the
job in six months, four men will take twelve,
and eight men would never complete it. How
can the step from mathematical model to the
first computer simulation run be held within
bounds--to avoid inordinate investment in pro
gramming that may never work or may have to
be scrapped for a better approach? How can
the analyst or design engineer stay in touch
with his model?

Surely there are no answers that yield guar
anteed results. But these are serious questions
and some direction is needed in order to eval
uate properly the true potential of advanced
computer techniques. The implications in the
field of hybrid simulation may be divided into
three categories:

264 PROCEEDINGS-SPRING JOINT COM·PUTER CONFERENC.E, 1964

(a) Model building in programming
(b) Software
(c) Automation

Model Building in Programming

The analyst, design engineer, and program
mer of a large hybrid simulation must all (if
they are more than one person) become in
volved in all phases of the simulation process.
Responsibility cannot be divided up, as it often
is at the digital "closed-shop" facility, between
analyst and computer programmer. The hybrid
computer laboratory must be operated, as many
analog laboratories, on an open-shop basis with
expert programming support available from
the laboratory. The design engineer must have
a genuine understanding of the computers to be
used, even though he may not do the actual
computer programming. Since the' computer
actually becomes the model of his system, he
must know the limitations imposed by the
machine as well as by the mathematics, and he
must be able to communicate effectively with
the computer. Moreover, during the construc
tion of the mathematical model the analyst must
keep in mind the features of the parallel and
sequential parts of the hybrid computer in order
to achieve a proper partitioning of the mathe
matical model to suit the computer.

Much attention has been given here to the
relative speeds of computation inherent in the
different computing techniques. It may be evi
dent at this point that the presence of a very
wide range of signal frequencies in a system to
be simulated is the one characteristic that most
clearly indicates the need for a hybrid computer.
As an example, consider the simulation of a long
range flight of a space capsule. In "real time"
the position coordinates probably vary at 0.01
cps over most of the range, and, at most, at
3 cps during launch and re-entry. At the same
time, pitch, roll, a!ld yaw rates and thrust forces
may reach 10 cps or more. Adaptive control
functions and control surface forces may have
transient frequencies as high as 50 cps; and a
simulation of reaction jet control forces may
require tO'rque pulses as narrow as one milli
second. Since there is little or no damping in
an orbital flight,these pulses have a long term
eifect, and accuracy in their representation is
important. If an on-board predictive computer

is included in the simulation, iterative calcula
tions on the analog computer may involve signal
frequencies of 100 to 1000 cps. Thus, this simu
lation spans a frequency range of 105 as well as
a dynamic range in some dependent variables of
105 or 106 (Figures 14, 15, and 16).

The following observations may be fairly ap
parent, but in considering division of a problem
between computers it is well to note the types of
mathematics for which each is best suited. The
forte of the digital computer is the solution of
algebraic equations. If the equations are ex
plicit, the calculation time is easily determined.
Implicit equations often require a variable
length of time, and if there are not too many of
them they may be readily solved continuously
on the analog computer. Numerical integration
comes as a by-product of the computer's power
in solving algebraic problems. Time is the only
penalty; If the high precision is not needed, the
integration is better done by the analog com
puter, for the solution of ordinary differential
equations is its strong feature.

Evaluation of arbitrary functions is per
formed with ease by both computers, as well as
by parallel digital components; however, if

Figure 15. The relative speeds of computation inherent
in the different computing techniques are important
considerations in the planning of a computer simulation
of a large complex system. The presence of a wide
range of signal frequencies in a system to be simulated
is the one characteristic that most clearly indicates the
need for a hybrid computer.

HYBRID COMPUTATION ... WHAT IS IT? ... WHO NEEDS IT? . . . 265

Figure 16. (Note: place figure horizontal with the
word "time" on the left). A wide range of signal fre
quencies is suggested here: although not to scale, for
a dynamic range of 106 could not be illustrated con
veniently. Consider the simulation of a long range
flight of a space capsule. The curves might represent
(1. to r.): position coordinates varying at 0.01 cps;
deviation from a desired path, 0.1 cps; pitch, roll, or
yaw rate, 1-5 cps; reaction jet control pulses, 1 ms.
pulses at several hundred pulses per sec.; thrust forces
or control surface transients, 1-50 cps; iterative
calculations for trajectory predictions, 100-1000 cps.

speed is important, and if the data are func
tions of two or more variables, a digital pro
gram is the best choice. Simulation of non
analytic non-linear functions, such as limits,
back-lash, dead-zone, stiction, and hysteresis
again are amenable to both techniques but ana
log is probably more economical. Evaluation
of trigonometric and hyperbolic functions also
can be done both ways and the choice seems to
depend on the particular problem. In this case
there is a third choice, for there are techniques
and equipments for executing these functions
by parallel digital components.37

Logic equations that must be evaluated con
tinually with respect to their relation to analog
variables clearly must be programmed with
parallel logic elements. On the other hand, de
cision and control functions that have to do
with the occasional evaluation of states of the
computer and errors signals and with sequenc
ing various sections of the total system through
different modes and states of operation, may
require both parallel and sequential oPerations.

Hybrid simulation requiring solution of par
tial differential equations opens a whole new
subject for discussion. Let it just be said that
although there is very little practical experience
in this field, it appears to offer one of the most
promising areas of growth for hybrid simula
tion. The digital computer approach to the solu
tion of PDE is often limited by available com
puter time-particularly in simulation problems
where it is desired to solve the problem many
times for various conditions. The analog com
puter can solve some PDE problems very effi
ciently but it is often seriously limited by the
necessity of large amounts of equipment for
complex problems. Moreover, only with memory
to store complete functions (either in a parallel
_l! __ !L_' _____ L ___ ____ __ ~ .. ___ L!_1 _____ .. L __ '\ __ _

ulglLal SyS('~UI or a S~Ut:U('lC:U CUIUPULt:::l-, can
certain kinds of boundary value problems be
approached. The hybrid computer has the abii
ity to store boundary conditions as well as com
plete sets of intermediate solutions so that
parallel computer programs can be used for
speed, but then be time-shared over again for
different parts of the space domain. Some very
challenging problems and some promising pos
sibilities face the experimenter in this field.

Returning now to the implications of the
growth of complexity in simulation, the im
portant point in programming is that who
ever prepares the computer program must
himself be a model builder and be familiar with
the system to be simulated. The program should
be designed, constructed, and checked out in
much the same way that any other kind of
model of a complex system would be built. The
computer model should be put together from
working models of subsystems. Each subsys
tem, or group thereof, is verified for ;correct
performance in a linear or simplified mode be
fore connecting it to other parts of the model.
At each point in the expansion of the model,

266 HY;BRID COMPUTATION ... WHAT IS IT? ... WHO NEEDS IT? ...

including the final one, at least one test case of
a linear mode of operation should be checked
against known or precalculated behavior.

Computers can extend the analytical powers
of man, but they cannot work magic. The com
puter is a storehouse of answers, but the burden
is upon the analyst to ask meaningful questions
if he is to receive useful answers. Only with a
step by step process, asking questions of the
computer at each step, can a valid and useful
computer model be built for a large, complex
system.

Software

Standard programs and routines for digital
. computers, of general utility to programmers,
known as "software," are in such wide use that
the production of software is virtually an in
dustry in its own right. "Automatic program
ming systems," which make computer pro
gramming easy for the non-computer expert,
are responsible for the almost universal accept
ance of digital computers in scientific research
and development.

The development of sophisticated software
has made it possible to increase computer utili
zation, to gain wider use of computers with
minimum training of personnel, and to reduce
duplication of programming effort for programs
of general utility. A total dependence upon
automatic programming has the disadvantage
of isolating the problem analyst, and ·even the
programmer himself, from the computer. The
analyst is restricted from communicating with
his computer model while computation takes
place. The programmer is limited in taking full
advantage of the computer's special features.

On the other hand, in the analog computer
field the reverse situation exists. No compa
rable "software" usage has shown up. There is
little in the way of automatic programming
and preserving of standard programs by analog
computer programmers. However, another
characteristic of simulation by analog computer
is that the problem anayst is involved in build
ing the computer model and he maintains rap
port with his model during the simulation.

The role that software must play in hybrid
simulation of large complex systems is evident.
"Hybrid software" must ease the programmer's

buraen, as it does for the digital programmer,
and at the same time it must bring the analyst
closer to his model rather than isolating him
from it. Hybrid software must include not only
coding for the sequential computer but also
interconnection diagrams and prewired patch
panels for the parallel machine. The following
types of software are needed to support growth
of hybrid computation to meet the simulation
needs of today.

a. Compilers and Assemblers. Conventional
compilers and intepreters have their useful
place in hybrid computation, to aid in process
ing data prior to computation and processing
results for interpretation. Automatic program
ming systems for hybrid computation may differ
from conventional systems only in three ways:
running time of the objeCt program is mini
mized at the expense of compiling time; actual
running time for each program statement is
precalculated or estimated to aid the program
mer with timing of the parallel/sequential inter
face; and while the programmer's language is
"problem oriented," it is required to be machine
dependent. The programmer must be able to
utilize special machine features and to program
for control of all interface operations.

b. Utility LibranJ. In addition to the con
ventional utility routines for mathematical
functions, format conversions, and input/output
operations, the hybrid simulation library should
expand with routines for specific transfer func
tions of useful subsystem models that have be
come standard and are used in larger models,
e.g., a typical servo controller. Another type of
example is a function generator program to any
number of aerodynamic functions. A standard
program for a complete aerodynamic vehicle
simulation is also feasible.

c. Input/Output Routines. Direct on-line
control of the computer model by the analyst is
needed. In a convenient language it must be
possible to experiment with time scales, param
eter values, and even to make substitution of
mathematical algorithms (particularly integra
tion algorithms), without any penalty in run
ning time. This means that a complete symbol
table and all definitions of parameters must be
available to an executive routine that will ac
cept operator instructions to modify a particu
lar problem variable and proceed to calculate

HYBRID COMPUTATION ... WHAT IS IT? .•. WHO NEEDS IT? . . . 267

changes in all the "machine va·riables" that are
affected. The executor also permits interroga
tion of the state (and time history) of any
problem variable, in engineering units. Upon
operator command the model can be modified by
changing the linkages between submodels or
subroutines. It may, for instance, be desired to
linearize part or all of the model for checking
purposes, or to isolate or "freeze" certain parts
of the model. In monitoring and adjusting the
model the executor must not be limited to the
sequential computer but should have full access
to the parallel elements in the computer system.

Automation

One important aspect of hybrid computation,
which is barely mentioned above, is the oppor
tunity for automating much of the routine parts
of programming and check-out of the analog
computer. It is evident that a necessary fea
ture of any hybrid computer system is the
mechanization of, and sequential program con
trol of, as many of the manual operations on
the analog computer as possible. This includes
setting of potentiometers, switches, modes, time
scales, recorders, and the selector and readout
system. This kind of control is import....ant for
some of the software functions mentioned
above. Also it makes possible automatic set-up,
testing, and diagnosis of machine and program
faults. Some interesting diagnostic program
ming for such a hybrid computer was developed
in 1959-60 at General Electric MSVD in PhHa
delphia.15,17,32

A different type of programming automation
is offered by the Apache system developed at
Euratom, Ispra, Italy, for the IBM 7090 and
P ACE analog computers.14 This is a digital pro
gram that translates a mathematical statement
into detailed programming instructions for the
analog computer. While Apache is not intended
for hybrid computing the appropriateness of
such a program should be apparent.

One last important characteristic of hybrid
simulation concerns the automation of the model
building process itself. Simulation inherently
involves trial and error experimentation. The
elements of a model are verified; sensitivity to
environment is explored; and variation of per
formance due to parameter changes are evalu
ated. When a criterion for optimality can be

specified, experiments are made to obtain opti
mum performance. The sequential computer
is perfectly suited to the automation of these
procedures. Between calculations the digital
computer can evaluate the results, decide upon
changes to the model or the data, and implement
the changes. At the same time the analyst can
monitor the progress of the simulation and
interrupt the automatic process whenever hu
man judgment is required.

CONCLUSIONS

The main points developed in this paper may
be listed simply.

a. Hybrid computation is built upon the tech
nology of analog and of digital computers and
is equally dependent upon the programming
methods, software, and procedures of problem
analysis that have been developed for each.

b. A hybrid computer is a compatible system
of parallel computing components, both digital
and analog, and a stored program sequential
machine. The hybrid programmer must be
constantly aware of the relative timing of com
putationa! events in the para!!e! and sequential
parts of the system.

c. There is an ever growing need for simula
tion of very complex engineering systems. The
process of analysis and building of a computer
model for evaluation and prediction of behavior
are a required step in many large development
programs. The hybrid computer offers a means
for many such simulations that would- be im
practical by other means. Hybrid computation
is inherently a tool for very complex simula
tions rather than simple studies.

BIBLIOGRAPHY

1. BARNETT, R. M., "N ASA Ames Hybrid
Computer Facilities and Their Application
to Problems in Aeronautics," Internati01zal
Symposium on Analogue and Digital Tech
nique Applied to Aeronautics, Liege, Bel
gium (September 1963).

2. BAUER, W. F., and WEST, G. P., "A System
for General Purpose Analog-Digital Com
putation," JACM, Vol. 4, No.1 (January
1957), p. 12.

268 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

3. BAXTER, D. C., and MILSUM, J. H., "Re
quirements for a Hybrid Analog-Digital
Computer," National Research Council of
Canada, Mechanical Engineering Report
MK-7, Ottawa (October 1959), and Amer
ican Society of Mechanical Engineers,
Paper No. 59-A-304.

4. BERTRAM, J. E., "Effect of Quantization in
Sampled-Feedback Systems," U.S. Govern
ment Research Reports, Vol. 31 (January
16, 1959), p. 19 (A), PB 133341.

5. BIRKEL, G., JR., "Hybrid Computers for
Process Control," Communication and
Electronics, No. 52 (January 1961), pp.
726-734; discussion, p. 734.

6. BLANYER, C. G., and MORI, H., "Analog,
Digital, and Combined Analog-Digital
Computers for Real-Time Simulation,"
Proc. EJCC (December 1957), p. 104.

7. BURNS, A. J., and Kopp, R. E., "A Commu
nication Link Between an Analog and a
Digital Computer (DATA-LINK) ," Grum
man Aircraft Engineering Corp., Research
Department, Research Report RE-142
(October 1960), ASTIA, No. AD 244 913.

8. , "Combined Analog-Digital Sim-
ulation," Proc. EJCC, Vol. 20 (December
1961), pp. 114-123.

9. CAMERON, W. D., "Determination of Prob
ability Distribution Using Hybrid Com
puter Techniques," International Sympo
sium on Analogue and Digital Techniques
Applied to Aeronautics, Liege, Belgium
(September 1963).

10. CONNELLY, M. E., "Simulation of Air
craft," Servomechanisms Lab. Report 7591-
R-1, M.LT. (February 15, 1959).

11. , "Analog-Digital Computers for
Real Time Simulation,". M.LT. Report
DSR8215, Final Report, ESL-FR-110
(June 1961).

12. "Real-Time Analog-Digital
Computation, IRETEC, Col. EC-11, No.1
(February 1962), p. 31.

13. Cox, F. B., and LEE, R. C., "A High-Speed
Analog-Digital Computer for Simulation,"
IRETEC, Vol. EC-8, No.2 (June 1959),
pp. 186-196=

14. DEBROUX, A., and GREEN, C., and D'Hoop,
H., "Apache--A Breakthrough in Analog
Computing," IRETEC, Vol. EC-11, No.5
(October 1962).

15. FEUCHT, K.; "Diagnostic Programs for a
Combined Analog-Digital System," Pro
ceedings of the Combined Analog Digital
Computer Systems Symposium, Philadel
phia (December 16-17, 1960).

16. GAINES, W. M., and FISCHER, P. P., "Ter
minology for Functional Characteristics of
Analog-to-Digital Converters," Control En
gineering, Vol. 8, No.2 (February 1961),
pp. 97,8.

17. GELMAN, H. D., "Evaluation of an Inter
cept Trajectory Problem Solved on a Com
bined Analog-Digital System," Proceedings
of the Combined Analog Digital Computer
Systems Symposium, Philadelphia (De
cember 16-17, 1960).

18. GELMAN, R., "Corrected Inputs-A Method
for Improving Hybrid Simulation," Proc.
FJCC, Vol. 24 (November 1963).

19. GREENSTEIN, J. L., "Application of ADDA
Verter System in Combined Analog-Digital
Computer Op2ration," Pacific General
Meeting, AlEE (June 1956).

20. HALBERT, P. W., "Hybrid Simulation of an
Aircraft Adaptive Control System," Proc.
FJCC, Vol. 24 (1963).

21. HARTSFIELD, E., "Timing Considerations in
a Combined Simulation System Employing
a Serial Digital Computer," Proceedings of
the Combined Analog Digital Computer
Systems Symposium, Philadelphia (De
cember 16-17,1960).

22. KORN, G. A., "The Impact of the Hybrid
Analog-Digital Techniques on the Analog
Computer Art," Proc. IRE, Vol. 50, No. 5
(May 1962), pp. 1077-1086.

23. LANDAUER, J. P., "Simulation of Space Ve
hicle with Reaction Jet Control System"
(1962), EAI Bulletin No. ALHC 62515.

24. , "The Simulation of Transport
Relay with the Hydac Computing System,"
EAI Bulletin No. ALHC 63011.

25. McLoED, J. H., and LEGER, R. M., "Com
bined Analog and Digital Systems-Why,
When, and How," Instrument and Automa
tion, Vol. 30 (June 1957), pp. 1126-1130.

HYBRID COMPUTATION ... WHAT IS IT? ... WHO NEEDS IT? . . . 269

26. MITCHELL, B. A., "A Hybrid Analog-Digi
tal Parameter Optimizer for ASTRAC-II,"
Proc. SJCC, Vol. 25 (April 1964).

27. MITCHELL, J. M., and R UHMAN, S., "The
Trice-A High Speed Incremented Com
puter," IRE Nat. Conv. Record (1958),
Pt. 4, pp. 206-216.

28. MIURA, T., IWATA, J., "Effects of Digital
Execution Time in a Hybrid Computer,"
Proc. FJCC, Vol. 24, (November 1963).

29. NORONHA, L., "An Integrated General Pur
pose Hybrid Computing System," Interna
tional Symposium on Analogue and Digital
Techniques Applied to Aeronautics, Liege,
Belgium (September 1963).

30. PALEVSKY, M., "Hybrid Analog-Digital
Computing Systems," Instruments and Au
tomation, Vol. 30 (October 1957), pp 1877-
1880.

31. , "The Digital Differential Ana-
lyzer," Computer Handbook, Edited by
G. A. Korn and H. O. Huskey, New York:
McGraw-Hill (1961), Chapt. 19.

32. PASKMAN, M., and HElD, J., "Combined
Analog-Digital Computer System," Pro
ceedings of the Cmnbi'ii£d Analog D-ig-ital
Computer Systems Symposium, Philadel
phia (December 16-17, 1960).

33. SHAPmo, S., and LAPIDUS, L., "A Combined
Analog-Digital Computer for Simulation
of Chemical Processes," Proceedings of the
Combined Analog Digital Computer Sys
tems Symposium, Philadelphia (December
16-17,1960).

34. SHILEIKO, A. V., "A Method for Selecting
the Optimum Structure of a Digital Analog
Computer," Automation and Remote Crm
trol (Avtomatika i Telemekhanika) , Vol.
22, No.1 (August 1961), (originally pub
lished January 1961), pp. 76-81.

35. SKRAMSTAD~ H. K., ERNST, A. A., and
NIGRO, J. P., "An Analog-Digital Simula
tor for Design and Improvement of Man
Machine Systems," Proc. EJCC (Decem
ber 1957), p. 90.

36. SUSSKIND, A. K., "Notes on Analog-Digital
Conversion Techniques," M.LT., Technol
ogy Press (1957).

37. VOLDER, J. E., "The Cordie Trigonometric
Computing Technique," IRETEC (Septem
ber 1959), pp. 330-334.

38. WEST, G. P., "Computer Control Experi
ence Gained from Operation of a Large
Combined Analog-Digital Computation
System," Proc. of Computers in Control
Systems Conference, Atlantic City (Oc
tober 1957), p. 95.

39. WILSON, A., "Use of Combined Analog
Digital System for Re-entry Vehicle Flight
Simulation," Proc. EJCC, Vol. 20 (Decem
be-r 1961), pp. 105-113.

40. WITSENHAUSEN, H., "Hybrid Simulation of
a Tubular Reactor" (1962), EAI Bulletin,
Noo ALHC 6252-25.

41. , "Hybrid Techniques Applied to
Optimization Problems," Proc. SJCC, Vol.
21 (May 1962).

42. WORTZMAN, D., "Use of a Digital! Analog
Arithmetic Unit within a Digital Com
puter," Proc. EJCC (December 1960),
p.269.

43. ZETKOW, G., and FLEISIG, R. (Grummen
Aircraft Corp.), "Dynamic Analysis of
OAO Spacecraft Motion by Analog-Digital
Simulation," IRE Convention, Space Elec
tronic Session (March 1962).

A HYBRID ANALOG-DIGITAL PARAMETER OPTIMIZER
FOR ASTRAC II

Baker A. Mitchell, Jr.
Deparbnent of Electrical Engineering

UniveTsity of Arizona
Tucson, Arizona

INTRODUCTION

This paper describes an optimizer designed
to find system parameter combinations which
optimize a functional, F, such as

'1'

F (a" ... ,an) = f [y2 (t) + u2 (t)] dt

o
where

y(t) = y(t, at, ••• , an)

u(t) = u(t, at, ••• , an)

are state and control variables depending on the
unknown parameters at, ••. , all in accordance
with the system equations

The new optimizer is designed to work with
a fast all-solid-state iterative differential 'an
alyzer (ASTRAC II) which is capable of pro
ducing complete solutions Yi (t) and the corre
sponding values of the performance measure
F (aI, ••• , all) for up to 1000 new parameter
combinations per second.!

To simplify optimizer logic and memory re
quirements in problems involving many param
eters, we simultaneously implement random
perturbations2 on all parameters ak and step to
the perturbed point whenever the perturbation
yields an improvement in the performance
measure F (at, ... ,all)'

Simple all-digital logic permits implementa
tion of different sequential optimization strate
gies, including correlation between random
perturbation vectors and step-size changes de
pending upon past successes and failures. The
analog integrator/multipliers commonly used
to set system parameters have bEfen replaced by
simple, reversible binary counters driving D / A
converters3 for simplified design and improved
reliability.4 The principle' of the optimizer is
shown in the block diagram of Fig. 1.

~Q, y,
'.., ._-
- -- rF · System .

~
Success · : F(t,uj,Yj} ~ · Equations Detector

~an ~
~

I , I I

OpfimiHr S -iLoliJ1c --

Figure 1. Optimizer Block Diagram.

271

272 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Figure 2a. Optimum Gradient Method.

Figure 2b. Pure Random. Perturbations.

Figure 2c. Correlated Random Perturbations.

Figure 2. Typical Optimization Paths.

Figure 2a shows the parameter-space path
over which a conventional deterministic system
would optimize a simple two parameter system.
Starting with a trial set of parameters (lai the
conventional optimization logic employs the re
sults of successive differential analyzer runs to
obtain succeeding parameter values

IOal = 1'-1 + I'LaI

\vhich successively improve rF= F (raj, ... , ran).

The most frequently used method employs n
trial steps to compute approximate gradient
components LF / La in each parameter direc
tion; these gradient components are then stored
and used to compute the optimal correction Lai
for a working step, or for a series of working
steps in the same direction.8

Such deterministic methods require complex
logic and storage. Although they may converge
well for favorable performance functions F (ab
... , an), they may "hang up" on ridges or in
canyons of the multidimensional landscape of
the performance measure domain.5 Further
more, if the performance measure contains dis
continuities, nonlinearities, or large higher
order derivatives with respect to the param
eters, our information of past performances
will be of little value in determining succeeding
-steps; thus the step-size may have to be re
duced to such a degree that convergence to the
optimum is extremely time-consuming.

Figure 2b shows how a pure random
perturbation scheme might optimize the same
function. Here, Lai may be positive, zero, or
negative with equal probability; and the nomi
nal parameter point is moved as soon as the first
improvement in the performance function
occurs. No attempt is made to affect perturba
tions by past results or gradient methods.

On the other hand, if perturbations are to be
correlated with past successes or failures, then
the optimization path might appear as shown
in Fig. 2c. Such a scheme causes future incre
ments Lai to favor the direction in which past
improvements in the performance function
were made. Notice, however, that we still do
not require computation of individual gradient
components, as in deterministic gradient optimi
zation schemes. Hence, logic and memory re
quirements are reduced.

Motivation for Random Search
The basis for all direct computer methods of

parameter optimization is the same: using a
mathematical model or simulated system, we set
the parameters to some trial values and com
pute the performance criterion. Then according
to some rule, we reset the parameters to new
values and again compute the performance cri
terion. This procedure is repeated until some
desired degree of improvement is obtained.

A HYBRID ANALOG-DIGITAL PARAMETER OPTIMIZER FOR ASTRAC II 273

Naturally it is hoped that the rule for adjusting
the parameters will take maximum advantage
of the knowledge gained from observing previ
ous trials, and by so doing achieve the optimum
set of values for the parameters in the shortest
possible time. Usually, however, this rule de
pends solely upon the knowledge gained from
recent past trials and this is thought to be
equivalent to using this knowledge to maximum
advantage. If, however, the performance cri
terion contains discontinuities, nonlinearities,
or large higher-order partial derivatives with
respect to the parameters, our information of
recent past behavior (actually a total or partial
first derivative) may be of little value for the
determination of successive steps; and if the
step size is too large, this information from the
preceding step (or from a short forward trial
step) will be totally misleading. Thus, with con
ventional, deterministic perturbation such as
the gradient method, one may be .(orced to re
duce the step size to such a degree that con
vergence to the absolute optimum is excessively
time-consuming. For this reason it has been
suggested that randomness be introduced into
the search rule-perhaps in proportion to the
expected severity of the discontinuities, non
linec:rities, etc., present in the cost function
domain.

In reality, it may be difficult to make any
reliable prediction concerning the behavior of
the performance function. Even with reason
ably w~ll~behaved performance functions, it can
be quite c;lifficult to foresee "ridges," "temporary
plateaus," "saddle-points," and other features
which render deterministic rules far from fool
proof.

Reference 5 goes further into such motiva
tion for random-search methods (Figs. 3 and
4).

PRINCIPLES OF OPERATION

Most of the optimization strategies proposed
here can be based on the flow chart of Fig. 5.
The operation common to all the various strate
gies consists of incrementing all parameters
simultaneously by individual random incre
ments +6a, -6a, or zero; the common magni
tude 6a (step size) of these increments is sub
ject to. a separate decision. The term success

will be used to indicate that the incremented set,
ai + 6a, has yielded a more favorable value for
the performance measure than was obtained
with the unincremented set, ai' A failure will
mean that the incremented set yielded a less
favorable value for the performance measure,
in which case the failing increment is sub
tracted from the parameter before a new incre
ment is added. Successive fail"ures and successes
can be counted and used to decide when an in
crease or decrease in the step size might be

Fi~ure 3. The function defined represents a system com
po;ed by particular percentage~ of each of the four
compounds shown at the corners. Contour lines are
drawn in order to indicate values of a property on the
system. The heavy lines are lines of discontinuity in

slope.S

Figure 4. This sketch of a dynamic vibration absorber
shows the amplitude of vibration F plotted over the fre
quency range w for values of the parameter al. The
effect of only one of the three parameters, aI, a2, a3, of
the actual system could be drawn. A possible criterion
for an optimum absorber is to require that the maxi
mum amplitude of vibration yielded by a particular set
of parameter values, aI, a2, a3, be minimum over the

frequency range of interest.s

274 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Figure 5. Flow Diagram for a Typical
Optimization Routine.

advantageous. A binary noise generator7 to
gether with digital correlation logic decides
what th~ sign of each new increment will be.
Thus, the overall effect of the perturbation
scheme is an n-dimensional random walk.

THE ASTRAC II SYSTEM

The dynamic system and the performance
criterion are to be simulated on the Arizona
Statistical Repetitive Computer, ASTRAC II,
although ASTRAC I served for preliminary
studies. ASTRAC II is a ± 10 vol,t, all-solid
state iterative differential analyzer capable of
iteration rates of 1 Kc. as well as real time com
putation. The first 20-amplifier section of
ASTRAC II is to be completed in the fall of
1964.

The analog section has a large conventionally
appearing patchbay. 20 Mc. transistorized am
plifiers mounted in shielded cans plug directly
into the rear of the patchbay without any in
tervening wiring. The analog section will com
prise sample-hold memory pairs, comparators,
analog switches, swi~ched integrators, diode
quarter-square multiplifiers, and diode function
generators.

Timing and logical control is furnished by the
digital section, which provides timing pulses,

integrator RESET pulses, and sampling pulses.
The digital section has its own patchbay with
removable patchboards for implementing vari
ous logic functions. Patchable gates and flip
flops are used in conjunction with the prewired
timing and RESET circuits. In view of the
amount of logic involved in the optimizer, how
ever, it was thought best to build it as a separate
digital section with its own removable patch
boards, devoted to this purpose. The complete
ASTRAC II optimizer will not only implement
the sequential random search optimization de
scribed here, but will permit comparison with
deterministic optimization schemes.

Optimizer Logic
The digital logic of the optimizer is sub

divided into basic functional units whose in
puts, outputs, and control points are wired to
its patchbay (Fig. 6). With a different prepatch
panel, these components are also available for
other uses besides optimization. In particular,
the parameter-setting circuits will also serve
for experiments with deterministic optimiza
tion schemes.

'. , :, !". !"!,.-
• - ~; •. !,-~

Figure 6. Photograph of the Optimizer. A D I A
multiplier card is shown at bottom left.

A HYBRID ANALOG-DIGITAL PARAMETER OPTIMIZER FOR ASTRAC II 275

The functional units are built of commercial
plug-in logic cards interconnected on racks with
wire-wrap terminations for ease of modification
and expansion.

The resistor networks and switches compris
ing the D / A multipliers are mounted in shielded
plug-in cans adjacent to the operational ampli
fiers behind the analog patchbay. Shielded digi
tal control lines connect each D/ A multiplier to
the optimizer patchbay.

Hybrid Analog-Digital Noise Generator

ASTRAC II will employ a new noise genera
tor10 producing pseudo-random maximum
length shift-register sequences at any desired
clock rate up to 4 Mc. We may obtain either a
single pseudo-random sequence repeating after
33 million bits, or four uncorrelated sequences
one-fourth as long.

Success-Failure I ndica.tor

Essentially, the function of this circuit (Fig.
7) is to compare the value of the best perform
ance measure, LF, obtained to date, with the per
formance measure just yielded by the last com-

R

U
I

______________________ ~n~ ________ ----
~ ____________________ ----JnL.. _____ ____

U3 n] If Success occur.

S r---L-

puter run, rF. If the last run was a fail'/!-re,
(e.g., rF < LF for maximization), then Ua and
~

S remain zero; and L F is still held as being the
best value. If, however,-· the last computer run
was a success (rF > LF), then Ua becomes "I"
which causes the second sample-hold to take on
the value just obtained, rF, as now being the
new optimum. The pulse Ua also causes flip-flop
7 to assume the "I" state (s-o) which indicates
to the digital optimization logic that a success
was obtained with the last set of incremented
parameters.

If it is known that F will always be mon
otonically increasing during the latter part of
the COMPUTE period, Switch 3 and U2 need
not be used.

Master Clock

The Master Clock provides all timing pulses
throughout the digital optimization routine. It
consists of a four bit Gray-code counter driven
by a 1 MC. pulse, Ch from the differential
analyzer digital control unit. C1 is gated to the
counter during the differential-analyzer RESET
period. With the exception of the Success-
Failure Indicator circuit, \vhere timing is under

a., ___ ~

c, _____ ---'

~--------'

~

~ rlL..~------------
~~ rlL.. _____ -=~ ____________ _

~ rlL.. _______________ _

NN ____________ ~

PI L-...J
M. _________ ~rI~ ___________ _

Pz L-.J
Mz ____________________ ~rlL.. _______ _

P3 L-J
M3 n~ ___ _

c ~

Figure 7. Success-Failure Indicator: Figure 8. Pulse Sequence from Master Clock.

276 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

control of the differential-analyzer, no optimiza
tion logic is performed during the COMPUTE
period of the differential analyzer.

Parameter 5 ettin9
From~

~~~,..--- -x CIICIIyz.r ..... 

+x 

O\A convert ... I muIIpIIer 

Figure 9. Parameter Setting. 

LC 

Lc 

Figure lOa. U -L-D Selector Circuit. 

The sequence of the tjming pulses from the 
Master Clock is shown in Fig. 8. S', as shown, 
occurs only after failures, i.e., S == 1; if S == 
0, S' == 1 throughout the RESET period. A suc
cess or failure also causes nH or nl<' to occur 
(Fig. 15). 

PARAMETER SETTING 

The flexibility needed to implement a variety 
of different optimization-logic schemes while 
maintaining simplicity, reliability, and low cost 
is achieved by using a unique method of param
eter setting. 

Binary-Counter Operation 

Referring to Fig. 9, the binary up-down 
counter increments whenever a pulse appears 
on the "I" line. The right-left shift register 
contains zeros in all except one of its stages, 
and the position of this "I" selects the stage of 
the binary counter which is to receive the "I" 
pulse. By controlling the D / A multipliers, the 
counter has then increased or decreased Ui by an 

S'_-__ --.· 

USi 

uC', 

Mj 
uo 

uti 

US;, 
UP-DOWN 

LOCK 

LS; 

LC i 

Lei 1 
LSi 
S 
BC 

C 

Figure lOb. U-L-D Memory. 



A HYBRID ANALOG-DIGITAL PARAMETER OPTIMIZER FOR ASTRAC II 277 

increment 6ai; the magnitude 6 is determined 
by the position of the "I" in the shift register, 
and the sign (+ or -) is determined by the 
logic level on the UD line (1 == count up, 0 == 
count down). 

U -L-D Digital Logic 
The U-L-D (UP-LOCK-DOWN) Logic is 

composed of two sections: a central U -L-D 
Selector Circuit (Fig. lOa), and a U-L-D Mem-

ory associated with the binary counter for each 
parameter (Fig. lOb). 

The selector circuit accepts two uncorrelated 
random bits IN}, IN:! obtained from the 
ASTRAC II noise generator. Depending on the 
interconnections of the selector-circuit gates G}, 
G2 , G:{, G4 to gates U, L, D, the gate outputs Un' 
Lo, Do will have different joint probability dis
tributions as shown in Table 1. 

TABLE I 

P(U == 0) P(L == 0) P(D == 0) Connect to Gates 

1 0 0 Gh G2, G3, G4 U 

% ~ 0 
G}, G2 , G3 U 
G4 L 

% 0 1,4 Gh G2 , G3 U 
G4 D 

112 112 0 
Gb G2 U 
G3 , G4 L 

~ . <" • G· U o 
L 

G G U " 
G:' 2 L I 

~ _____________________ G_4 __________________ .~~ 

1,4 1;2 

1;2 0 

0 1 

~ 1,4 

0 3,4 

0 112 

1,4 0 

0 1,4 

0 0 

1,4 

112 

0 

1;2 

1,4 

112 

3,4 

3,4 

1 

G1 U I 

~'~ ~ I 

U 
D 

L 

Effectively, these distributions 
can be obtained by placing a 
logical "I" on the RC line. 



278 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

The gate outputs, Uo, Ln, Do, determine the 
states of the dc set and reset level controls on 
the UP-DOWN flip-flops and the LOCK flip
flops of all U-L-D Memories (one for each 
parameter) simultaneously. The pulse Ml from 
the Master Clock now first sets the U-L-D flip
flops of the first parameter to their proper 
states as determined by the first set of random 
bits IN h IN2 • 

Next, the noise generators are pulsed again 
by the Master Clock (pulses NN) producing 
two new random bits, 2Nh 2N2, which determine 
a new set of states for the dc set and reset level 
controls of the U-L-D Memory flip-flops. Now, 
the pulse M2 to the U-L-D Memory of the second 
parameter sets its UP-DOWN and LOCK flip
flops in accordance with 2N h 2N 2. The process 
repeats for the remaining parameters. 

U-L-D Memor'lj 

Note that we shall require two decisions for 
each parameter. The LOCK circuitry decides 
whether ak is to be incremented or not incre
mented ("locked"). The UP-DOWN circuits 
decide the direction (up or down) of the incre
ments Dak, if any. We shall consider the UP
DOWN circuits first. 

If an UP-DOWN flip-flop is set (reset), a 
logical 1 (0) will appear on the "UD" line to 
the binary counter, if S' == 1. We now come to 
the LOCK decision. If the LOCK flip-flop is set 
or reset the incrementing commands "C" and 
"BC" from the l\1:aster Clock will or will not 
carry through the gates on "I" to increment the 
counters in the direction dictated by "UD" 

Correlation Circuit 

This circuit can be patched so as to introduce 
correlation between successive random pertur
bations according to some strategy selected to 
speed optimization. Suppose that the last set of 
increments succeeded in improving the per
formance function. Assuming that the perform
ance function is fairly well-behaved, the great
est chance for another success lies in weighting 
each parameter so that it, will probably incre
ment in the same direction as in the previous 
trial (strong positive correlation). By the same 
reasoning, after a failure a strong negative cor
relation might be introduced. After either a 

failure or a success, if a particular parameter 
had been locked (Le., its last increment was 
zero) then a probability function giving equal 
weight to all three states might be desirable for 
the next trial. 

Referring to Fig. 11 the correlation circuit is 
patched as desired and senses the sign of the 
last increment in each U-L-D Memory, starting 
with the first parameter. If Dak is positive, the 
RC line changes the selector gating so as to- in
crease the chance of a positive Dak for the next 
run if the last run was successful. The reverse 
can take place if the last run was a failure, de
pending upon the correlation control "CC". 

If, however, Dak was zero, as indicated by the 
state of the LOCK flip-flop, then the correlation 
line RC is turned on or off with equal probabil
ity by a random-noise input. This entire process 
is repeated for each parameter in turn, as they 
are sequenced by the pulses Pi from the Master 
Clock. 

S5 

I I 

I I 

cc- t 

CC 

nevCltive correlation after toilure 

I I 

I I 

pOlitive correlation after lucce .. 

nevotlve and pOliti". canelatlon 

nO correlation 

Figure 11. Correlation Circuit. 

RC 



A HYBRID ANALOG-DIGITAL PARAMETER OPTIMIZER FOR ASTRAC II 279 

OPTIMIZATION STRATEGIES 

1. Pure Random Perturbations 

Pure random perturbations are achieved if 
we preset the "1" in the shift register to gate· 
the count pulse into the binary counter stage 
yielding the desired step distance, e.g., V2, 14, 
... , 1/128. The noise generator is connected 
directly to the SET and RESET level controls 
of the Up:'Down flip-flop of each parameter. 
During the analog RESET period, the noise 
generator is pulsed once for each parameter 
shortly before the sequenced pulse to the proper 
Up-Down flip-flop arrives. Thus, the Up-Down 
flip-flops sequentially assume the successive 
states of the noise source. The count pulse, C, 
is then fed to all parameters simultaneously. 
Hence, all parameters increment by the same 
magnitude but with random signs during each 
analog RESET period, executing a random walk 
in the perturbation scheme. 

With pulses S, S' and BC added to the U-L-D 
Memory, the set of increments used in the pre
ceding run can be subtracted from the counters 
prior to the addition of increments for the next 
run. Thus, after a failure in an optimization 
run, the counters can be returned to the state 
which yielded the last success, before making 
another search. 

2. Random Walk with Reflecting Barriers 

This scheme is exactly the same as the pure 
random walk with one additional operation. 
Prior to assigning a new set of signs to the 
Up-Down flip-flops, a pulse to signify that a 
parameter has reached a barrier-possibly from 
a comparator in the analog system-can be 
gated to the U-L-D logic of the parameter to be 
reflected, causing its Up-Down flip-flop ~o com
plement and, later, to ignore the sign that is 
assigned to it by the noise source. In this man
ner, the parameter will have been reflected to its 
old position held two analog COMPUTE periods 
previously. 

3. Random Walk with Varied Step Size 

This scheme also contains only one addition 
to the pure random walk. When it is desired to 
increase or decrease the step size-possibly 
after a certain number of successive failures 

have been counted-one has only to insert the 
increase or decrease command, e.g., the counter 
output, into the shift-right or shift-left input 
of the shift register. This gates the count pulse 
either to the next higher or next lower param
eter counter stage. The noise generator then 
assigns polarities to the Up-Down flip-flops, and 
the parameters are incremented by the new step 
size. 

For this purpose, the optimizer contains two 
success-failure counters. 

4. Correlated or Biased Random Walk 

Since two independent noise sources are 
available, one can arrange P(N1N2) == 14, 
P(N1N2) == 14, pd~lN2) == 14, P(N1N2) == 14. 
These can combine to give P (X) == lh, or 

~ 

P (Y) == 34 , where X == N IN2 + N IN2, Y == 
~ ~ 

NIN2+NIN2+NIN2. There are three possible 
states for the U~L-D Memory: 1. Up; 2. Down; 
3. Lock. If a failure occurred in the Up state, 
after subtraction of the failing set of incre
ments, it would be desirable to assign weighted 
probabilities which would be more likely to re
sult in the next state being Down. The proba
bility distributions which can be' prepatched are 
listed in Table I. Likewise, if a success occurs 
in the Down state, the next assignment of states 
could be weighted on the same basis. 

This strategy can be combined with step size 
variations implemented with the aid of the 
success/failure counters. 

TESTS 

The following tests were carried out using 
the optimizer in conjunction with ASTRAC I, 
,a ±100 volt, 100 run/sec. iterative differential 
analyzer. 

In order to generate performance measures 
with the precise characteristics desired, only 
algebraic functions F (aI, a2) were used for 
quantitative evaluation of the various optimiza
tion strategies. For practical use in optimizing 
dynamic systems, the optimizer setup would be 
entirely unchanged, except that the function 
F (ah a2) would be generated as samples at the 
end of a differential-analyzer run. 



280 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

Also, the relatively slow repetition rate of 10 
runs/ sec. was employed only for recording pur
poses. 

Functions Optimized 
Initial tests were made with two different 

types of performance functions. 

Minimization of functions of the general type 

(al-kd
2 + (a!!-k:J2 (6) 

a b 

was carrIed out. The parameters al and a:.! were 
allowed to vary over ± 100 volts, and conver
gence of al, a:.! was considered to be satisfactory 
when they were within 0.78 volts of their values 
which optimized F. 

The next experiment involved maximization 
of a function F (al, a:.!) exhibiting sharp ridges 
formed by the intersection of three planes as 
shown in Fig. 12a. The equation for this func
tion is . 

a:!-al 
Max -a:,! +2al 

-a:,! - 1.5al 
100 

+ -3- (7) 

a:! (optimum) = 66.6; al (optimum) = 44.4 (8) 

Extremely sharp ridges or intersections were 
simulated by using accurate high-speed selector 
circuits (Fig. 12b). The parameters al and a:! 

Figure 12a. Ridge. 

were allowed to vary over ±100 volts. Conver
gence was considered to be satisfactory when F 
was within 0.5 volt of the maximum. 

Strategies Employed 
Parameters were allowed to step only after 

successful runs, i.e., unsuccessful parameter 
changes were subtracted out. 

Various types and degrees of correlation be
tween successive parameter runs were tried. 
(See Correlated and Biased Random Walk.) 

The step size, 6, was increased by a factor of 
2 after N R consecutive successes and decreased 
after Nl<' consecutive failures; Ns and Nl<' were 
varied. 

ISOK SOK 

+300 

cfJc 

~501( 1M 
- oi, 

/501( SOl< 

-dO 0 

- aLl. 

+ c.<t, 

150K 
·dOD 

- oil. 

-/.5 

+33.3 

Jb--<' 

F,'J 12 b: RI"dJ (!. S'-,.."v I .... nOJ-t 

Figure 12b. Ridge Simulation. 

F 
;;: 



A HYBRID ANALOG-DIGITAL PARAMETER OPTIMIZER FOR ASTRAC II 281 

Results 
For the paraboloids (Equation 6), several 

thousand optimization trials were recorded us
ing many variations within the general class of 
strategies outlined above. 

As the eccentricity of the contours of con
stant F was increased, convergence was slowed 
somewhat but not radically. In no casp were 
more than 70 runs required for convergence. 

For the case, a = b = 1, using no correlation 
in the perturbation scheme, resulted in an aver
age of 28 runs required for convergence with a 
standard deviation of 9 runs. 

For the case, a = b = 1 using strong positive 
correlation with successes and strong negative 
correlation after failures, CC = 1; the average 
trial converged in 16 runs. 

The most favorable step-size variation 
strategy was to increase 6. after 2 successes 
and decrease 6. after 2 failures. 

The initial points of 0 Ul, 0 u:! were always kept 
at the extreme of their ranges and only a slight 
decrease in convergence-time was noted as the 
initial point was placed closer to the optimum. 

The particular ridge (Equation 7; Fig. 12a) 
to be discussed here is one expressly designed 
to present the greatest difficulty to the opti
mizer. Referring to Fig. 12a, it is seen that 
improvement is quite difficult if the parameter 
point f.alls close to the ridge. Had the sides not 

Figure l2c. Optimization Paths. 

sloped so steeply, or had the ridge been oriented 
differently with respect to the parameter axis, 
the optimizer would have found convergence 
more natural. 

Fig. 13a shows the optimization of this func
tion without step size changes (path A in Fig. 
12c). Note that the parameter point followed 
the direction of greatest improvement until it 
reached the ridge, then both parameters were 
foreed to zigzag up the ridge to the peak. The 
step size was constant at 1.56 volts, and 1800 
runs were necessary to converge. In Fig. 13b, 
the step size was again held constant; but the 
binary counter for u:! complemented at the be-

Figure l3a. Optimization of Ridge. 

II I!'II' .1:"li ,I::II! • !I:II:II, 1 1[11:] I !ill: I' !I',;II' 1'1 !J:I !!I! III :1 ;,11 

:;, "IT 
"" '"! 
"I 

'II 
I 

~ 
IT ,-

Ii!: 'Iw 
lti';~ " ~!~ 

J, h In I: 

! ....... 

" 

~ 
I' 1--' , 
I : .. ... 

, .. .. 

lh 
.:.,,: 

:f I:il,' I It il' I'!I!!'II Ii',:. 1 1

::\ i: 1:[': 1,1 i'I" !" ,i 
I 

I ..,.., 
- " I: 

: , .. 'J ,., ,,:;, ; ." I' I, "'I :i .j"'''- j,L,' .,,1',·' .!,,"" "., >. ":' j"L",i .. :-
i'~~ L'·'1 , .. '- 1:; c· "! '1 

Figure l3b. Optimization of Ridge. 



282 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

ginning of both trials No. 1 and No.2. Thus, it 
was not necessary to climb the longest ridge. 
The paths converged more quickly up the 
shorter ridge (path B in Fig. 12c). This favor
able possibility is not present in ordinary 
gradient techniques. Path A in Fig. 12c is most 
nearly like a path resulting from conventional 
gradient techniques. 

Fig. 14a shows a correlated random search 
with step-size variations employed in the strate
gies. The optimizer is not confined to merely
zigzagging slowly up the ridge but can traverse 
great distances while searching for improve
ments. Correlation im-proved convergence time 
somewhat, but only when weak positive corre
lation after successes was used. For 45 trials 
using this correlation, the average time to con
verge was 73 runs if the step-size was decreased 
after 2 failures. Other types of correlation 
slowed convergence by 10--.:20 per cent. 

For comparison note that an optimizer going 
directly in a straight line to the optimum point 
would require 106 steps if a fixed step size of 
1.56 volts were used. 

Stopping Conditions 
When the optimum value of F is unknown, 

defining a stopping condition is subject to sev
eral factors. One such factor arises when we 
are not certain that only one peak exists in the 
domain of F. In this case, we would want to 
cycle the step size through its decrease-increase 
scheme several times before stopping. Then a 
rescaling of the simulation might be desirable 
in case the initial ranges of the parameters was 
chosen too large. 

Conclusions 
While experience with this optimizer is still 

quite limited, it appears that its performance 
can compare quite favorably with conventional 
techniques. Better conclusions can be made 
when this system is expanded to accommodate 
four parameters and the logic is enlarged to 
permit implementation of the conventional de
terministic schemes-permitting a direct com
parison between random and deterministic 
methods optimizing the same function. 

Presently, however, the random techniques 
seem well able to handle cases in which the 
performance measure is not well-behaved (Fig. 
3 and 4). 

Figure 14a. Optimization of Ridge. 

Figure 14b. Employing Step Size Variations. 

ACKNOWLEDGEMENT 

The project described in this report is part of 
a hybrid analog-digital computer study directed 
by Professor G. A. Korn. The writer is grateful 
to the Office of Aerospace Research, Informa
tion Research Division, Air Force Office of 



A HYBRID ANALOG-DIGITAL PARAMETER OPTIMIZER FOR ASTRAC II 283 

Scientific Research and to the Office of Space 
Sciences, National Aeronautics and Space Ad
ministration for their continuing support of this 
study under joint grant AF -AFOSR-89-63; and 
to Professors L. W. Matsch, Dean of Engineer
ing, and H. E. Stewart, Head, Department of 
Electrical Engineering, for their encourage
ment and contribution of University facilities. 

REFERENCES 

1. KORN, G. A., and T. M. KORN, Electronic 
Analog and Hybrid Computers, McGraw
Hill, N. Y., 1964 (in print) . 

2. MUNSON, J. K., and A. I. RUBIN, "Optimi
zation by Random Search on the Analog 
Computer," IRE Trans. PGEC, June, 1959. 

3. WAIT, J. V., and B. A. MITCHEL~, "A Sim
ple Solid-State Digital-to-Analog Con
verter for Hybrid Systems," ACL Memo
randum No. 61, University of Arizona, 
1963. 

4. MITCHELL, B. A., "A Hybrid Analog-Digi
tal One Parameter Optimizer," Ann. AlGA, 
January, 1964. 

5. KARNOPP, R., Ph.D. Thesis, Massachusetts 
Inst. of Technology, 1963. 

6. BROOKS, S. H., "A Comparison of Maxi
mum-seeking Methods," Operations Re
search, JulY-August, 1959. 

1 

n 

7. HAMPTON, R., G. A. KORN, and B. A. 
MITCHELL, "Hybrid Analog-Digital Ran
dom-Noise Generation," IEEE Trans. 
PGEC, August, 1963. 

8. WITSENHAUSEN, H. S., "Hybrid Techniques 
Applied to Optimization Problems," Proc. 
SJCG, 1962. 

9. HOWELL, M., "Automatic Parameter Op
timization as Applied to Transducer De
sign," Proc. SJCG, 1963. 

10. HAMPTON, R., "Hybrid Analog-digital 
Pseudo-random Noise Generator," Proc. 
SJCC, 1964. 

APPENDIX I 

The following units are contained in the 
optimizer digital and/or are wired to the opti
mizer patchbay. On the drawings, a small circle 
on the end of a wire indicates a patchbay termi
nation. 

1. 3 4-bit Gray code counters. One of these 
counters has a free-running multi vibrator 
for the input. This counter is used exclu
sively for sequencing operations through
out the logic scheme subroutine, e.g., the 
analog RESET period. The remaining two 
Gray code counters have their flip-flop 
outputs adjacent to two gates on the 

1 

Figure 15. Gray Code Counter Circuit. 



284 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

patchboard. These may be patched to yield 
outputs after any preset number of input 
pulses. These counters may reset them
selves or may be reset externally (Fig. 
15.) 

2. 1 8-bit right-left shift register. The DC 
set and reset lines, along with the set and 
reset outputs, appear on the' patchboard 
for parallel drop-in on command. Also the 
set and reset level controls for the first 
and last flip-flops are on the patchboard 
thus permitting operation as a ring coun
ter. Four inputs are provided for shifting 
in either direction. (Fig. 17b.) 

3. 4 8-bit up-down binary counters. The DC 
set and reset lines, along with the set and 
reset outputs, appear on the patchboard 
for parallel loading. A gated complement 
input for each flip-flop is brought out, 
allowing the counter to be stepped at any 
stage. A flip-flop with associated gates 
permits both pulse and level control of the 
up-down lines. (Fig. 17a.) 

•• 
z. ~. 

-x 
'!. 

51 " 
.5% 

It 
•• ... 

..L 
, . 

Re.lator .. 
Tolerance I ~o .. 'K 10 • 

aX 

1K 

,. 10. 

,. ZO· 

I. 

4K 10. 

I. 

Figure 16. D I A Multiplier and Switch. 

PI 

w 
RIGHT-LEFT SHIFT REGISTER ____ w' 

x ---- x' 

y 
---- y' 

Shift "'vhf Shift Lei'. 

Figure 17a. UP-DOWN Binary Counter . 

Psludo- Ma ... r ~ Gro, Cod. lola ... -~-RandOll! Clock Count.,. SlIift 
Nai,. NI 

R .... t.' 
G.n.r-'or 

"I 

"2 G· 

ProbOblllty 
Oiatributlan 
Selector Count.r 

RC 

Noi •• 
GI 

Corr.lotlon HI 
Circuit Count.r 

OIA 

Gj 

Figure 17b. Right-Left Shift Register. 



A HYBRID ANALOG-DIGITAL PARAMETER OPTIMIZER FOR ASTRAC II 285 

4. 4 8-bit D / A multipliers. The digital con
trol lines for the D/ A multipliers 
(mounted in shielded cans behind the 
analog patch bay) are wired to the digital 
patchbay. Each set of lines is associated 
with one of the up-down binary counters 
(Fig 16.) 

5. 2 pseudo-random discrete-interval, binary 
noise generators. The noise generator for 
ASTRAC II is a 25-stage shift register 
with modulo 2 adders in feedback, gen
erating a maximum length of 3XI07 ran
dom bits. This can be divided into two 
noise generators, each having a 1.5XI07 

random bit sequence. The noise generator 
shifts out a random bit when a pulse is 
applied to the shift "input. These inputs, 
outputs, and complement outputs appear 
on the optimizer patch bay as' well as on 
the noise generator patchbay. Figure 18. Digital Logic Block Diagram. 





A HYBRID ANALOG-DIGITAL PSEUDO-RANDOM 
NOISE GENERATOR 

R. L. T. Hampton 
College of Engineering 

Department of Electrical Engineering 
Analog Hybrid Computer Laboratory 

The University of Arizona 
Tucson, Arizona 

I. INTRODUCTION 

Analog and hybrid analog-digital computers 
used for random-process and statistical studies 
require noise sources capable of generating 
random signals whose amplitude distribution, 
d-c unbalance, spectrum, and RMS level are 
specified within the computer accuracy limits. 
Noise samples must not be correlated for time 
delays exceeding one-ten-thousandth to one
thousandth of a computer run. 

Noise derived from thyratrons in magnetic 
fields, noisy diodes and photomultiplier tubes 
coated with radioactive paint changes with 
various environmental conditions. Thus, elabo
rate gain-control, sampling and/or filter cir
cuitry is required in order to meet computer 
specifications. By using the random signal from 
such sources to trigger a flip-flop or threshold
sensing comparator, flat-spectrum binary noise 
with ±A volt output levels is obtained. Such 
binary noise can easily be filtered to produce 
Gaussian signals and is very useful in its own 
right: it can be used to drive analog or digital 
switching systems used to simulate random 
events, machine failures, etc., and lends itself 
to direct correlation with other signals without 
the use of analog multipliers. By precision 
clamping, the RMS level of binary noise can be 
closely controlled, but the non-stationarity of 
the circuits used to obtain electrical noise, even 

287 

from stationary mechanisms such as a radio
active source, still create problems and ex
pense.! For example, the 80 Kc random-tele
graph wave generator developed at The Univer
sity of Arizona's Hybrid Computer Laboratory 
and described in Ref. 2 required a iairly sophis
ticated and not completely satisfactory count
rate control loop. 

In the design of the University of Arizona's 
new ASTRAC II iterative differential analyzer, 
which is to be capable of taking statistics over 
1,000 random-input computer runs per second . ' 
It was decided to abandon analog noise genera-
tion completely. Instead, the machine win em .. 
ploy a digital shift-register sequence generator 
that can produce binary pseudo-random noise 
sequences at any clock rate between zero and 
4 Mc. This permits exact time scale changes or 
intermittent operation. The noise generator 
produces digital computer random numbers as 
well as analog noise. The digital numbers are 
easily stored or transmitted and may be used to 
produce binomially or normally distributed 
random analog coefficients. Digital multiplex
ing yields multiple uncorrelated noise signals 
from a single shift-register. These noise sig
nals are independent of any physical quantity 
except for the output clamping levels. Also the 
flat spectrum binary output permits direct logi
calor analog multiplication. The length of the 



288 :PROCEEDINGS---SPRING JOINT COMPUTER CONFERENCE, 1964 

pseudo-random output sequence is 33, 554, 431 
bits which is equivalent to several thousand 
computer runs. 

II. BINARY PSEUDO-RANDOM NOISE 
GENERATION WITH SHIFT-REGISTERS 

2.1 Pseudo-Random Binary Sequences 

Binary pseudo-random noise, as the term is 
used in this paper, differs in two important re
spects from purely random binary signals: 

1. A truly random binary signal is non
periodic, while a pseudo-random sequence 
repeats itself after some suitably long se
quence. 

2. In many random binary processes (e.g., a 
random telegraph wave) the transition 
from the "I" state to the "0" state (or 
conversely) can occur at any. time, and 
the state at any instant of time is inde
pendent of the state at any other instant 
of time. In the pseudo-random binary 
process the binary level transitions can 
occur only at specific clock pulse times, 
separated by intervals during which the 
binary state is fixed. In this case the state 
during the fixed time interval is independ
ent of the state in neighboring time inter
vals. 

A periodic binary sequence will be classified 
as a pseudo-random sequence if it satisfies the 
following conditions: 

1. In each period the number of "l's" must 
not exceed the number of "O's" by more 
than one (or conversely). 

2. In each period there must be twice as 
many sequences of "1's" or "O's" of length 
n as those of length n + 1. 

3. The autocorrelation function must have 
the form shown in Fig. 3b, Le., peaked in 
the middle (T == 0) and tapering off 
rapidly at both ends.s 

Such a binary sequence with a sufficiently long 
period-longer than a desired series of com
puter runs-can be used essentially like true 
random noise for computing purposes. 

Periodic binary sequences may be obtained 
from a digital shift-register with modulo-2 
adder feedback (Fig. 1). Module-2 addition 

generates the sum (A + B)Mod: 2 of any two 
binary inputs A and B according to the follow
ing table: 

Shift Pulses ____ -. 

x (t) Output 

+ Modulo - 2 adder 

Figure 1. 

A B (A + Bhlod: 2 

1 0 1 

0 1 1 

1 1 0 

0 0 0 

As can be seen from the above table, mcdulc-2-
addition can be implemented logically witp. an 
EXCLUSIVE-OR circuit. The shift-register 
consists of cascaded flip-flops driven at the de
sired rate by external clock pulses (shift 
pulses). The outputs of certain flip-flops are 
added modulo-2 and their sum is then fed back 
to the first stage of the shift-register. 

Figure 2 illustrates three shift-register peri
odic sequence generators and their correspond
ing sequences. Each column of "1's" and "O's" 
corresponds to the successive states of each 
stage of the register. It should be noted that 
No. 1 and No. 2 outputs are periodic every 
23 - 1 == 7 bits, while No. 3 is periodic every 



A HYBRID ANALOG-DIGITAL PSEUDO-RANDOM NOISE GENERATOR 289 

Inltlol 
Condition I 0 I I o I 

I I 0 o I 0 
I I I o 0 I 

1st 
0 I I I 0 0 Period 

: ~ ~} lat 
o I I PeriOd 

o 0 I I I 0 
I o 0 I I I 

I 0 I 

0 I 0 o I I 

I 0 I I o I 

Initial 000 000 
Condition 

o 0 0 

000 000 o 0 0 
: : : ; : : 

000 000 o 0 0 

Figure 2. 3-Stage Periodic Binary Sequence Generators. 

3 bits. In each case the periodic series is com
pletely determined by the initial state of the 
flip-flops and by the feedback connect~ons. The 
resulting sequences for an all-zero initial condi
tion are also shown. 

2.2 llfax'i'inw;n Length Seque'nces 

It is easy to show that the maximum length 
of any sequence produced by a shift-register is 
2n -1, where n is the number of flip-flop stages. 
For an n-stage generator, there are 2n possible 
states. The all-zero state can be ruled out as an 
admissible condition, since with modulo-2 addi
tion, each succeeding state wQuld also be all 
zero as illustrated in Fig. 2. Therefore, the 
sequence is periodic with a maximum of 2n - 1 
bits. Golomb has proven that every maximum 
length shift-register sequence satisfies the three 
conditions required for a pseudo-random se
quence.3 

The number of different maximum length 
series obtainable from an n-state shift-register 

is given by 0(2
n 

- 1) , where 0 (m) is Euler's 
n 

Phi Function, defined as the number of integers 
s such that 0 < s < m and s is prime to m. For 
a three-stage generator n == 3, m == 2n - 1 == 7, 

and the integers s are 1, 2, 3, 4, 5, 6. Therefore, 
fJ(23 - 1) 

3 == 2, so a three stage shift-register 

can produce two different maximum length se
quences, each corresponding to a unique feed
back arrangement. Generators No.1 and No.2 
in Fig. 2 show these two feedback arrange
ments. Generator No. 3 in the same figure is 
an example of a feedback arrangement that pro
duces a non-maximum length sequence. N on
maximum length sequences do not in general 
satisfy the three conditions required for pseudo
random sequences, and thus they are not useful 
for statistical studies. Consequently, to design 
a practical pseudo-random noise generato'r of 
n-stages, it is necessary to determine the feed
back connections which produce a sequence of 
2n - 1 bits in length. 

Another important characteristic of maxi
mum length sequences is the so-called "shift 
and add" property. That is, when any maxi
mum length sequence is delayed by an integral 
number of clock periods and then added mod·, 
ulo-2 with the original sequence, a third identi
cal sequence delayed with respect to the first 
two is formed.6 This property has a useful 
application, as will be pointed out in Section HI 
where the actual hardware design of a binar.{ 
pseudo-random noise generator is considered. 
The "shift and add" property is also used to de
rive the autocorrelation function for maximum 
length sequences (see Appendix). 

2.3 Obtaining the Maximal Period 

A mathematical technique for obtaining 
maximum length sequences is rigorously pre
sented in Refs. 3 and 5. The method consists of 
viewing each state of the n-stage shift-register 
as an n-dimensional vector and the shift
register /modulo-2 adder system as a linear 
operator, producing the successive states of the 
n-dimensional vector. Such an operation may 
be represented by an n x n matrix X. The first 
row of this matrix corresponds to the first stage 
of the register, the second row to the second 
stage, etc. The same is true for the n columns, 



290 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

i.e., the first column represents the first stage, 
etc. Each element of the matrix is either a "1" 
or "0". A "1" in any position indicates that the 
flip-flop stage denoted by the column drives the 
flip-flop stage denoted by the particular row. 
Otherwise, a "0" elements exists. Considering 
generator No.1 in Fig. 2, the X matrix may be 
constructed by observing that stage 1 is fed by 
stages 2 and 3; therefore in the first row, a "1" 
is entered in columns two and three. Stage 2 
is fed by stage 1, so in row two a "1" is placed 
in column one. Again stage 3 is driven only by 
stage 2, hence in row three a "1" is placed in 
column two. This completes the X matrix for 
generator No.1, viz., 

1 

o 
1 

Similarly, for generator No. 2 the defining 
matrix is 

o 
o 
1 

It should be noted that the diagonal below the 
main diagonal will always consist of a series of 
"1's", while the first row of the matrix repre
sents the feedback coefficients. Generalizing, 
the X matrix for n stages may be written: 

o o 

Ci · 

o 
o 
1 

·0 

o 
o 

1 0 

where the C's represent the feedback coefficients ("0" or "1"). The characteristic polynomial of the 
X matrix is thus, 

C1-A C2 Ci 

1 -A 0 

det [X-AI] == 0 1 -A' 

1. 

0 0 0 1 -A 

(_ A)n-l(C1-A)-C2(-A)n-2+Ca(-A)n-a ... (_A)n-n Cn 

== (_\)n(l_~_ C2 _ Ca _ _ Cn) 
I\, A A2 Aa . .. An 

1 
where () ==

A 

n 

The bracketed term [ 1 - . L C, f1. ] = 0 is 

1 == 1 
defined as the characteristic equation of the 
shift-registel" generator. A necessary, but not 
sufficient, condition for the period of the shift
register to be of maximum length is that the 

characteristic equation be irreducible (unfac
torable). In Fig. 2 both generators No. 1 and 
No. 2 have irreducible characteristic equations, 
but that for No.3 can be factored. Using a tech
nique known as the "sieve method," the irre
ducible polynomials which produce maximum 
length sequence have been tabulated, e.g., see 
Ref. 4. 



A HYBRID ANALOG-DIGITAL PSEUDO-RANDOM NOISE GENERATOR 291 

2.4 The Autocorrelation Function 

One of the most important properties of a 
maximum length sequence generator output is 
its time autocorrelation function. Since the 
sequence is periodic every 2n - 1 bits, the auto
correlation function will also be periodic every 
2n - 1 bits. Each bit represents one clock 
period, 6. t seconds in duration. In general, the 
autocorrelation function for the first period of 
an n-stage shift-register can be shown to be 

j 1 - , T I 2n 2n 1 for , T i L 1 bit 
Rxx (T) == 

- 2n -=- 1 for , T , > 1 bit 

Rxx (T), for T equal to an integral number of bit 
intervals, is derived in the Appendix. Figure 3 

xCt) 

-J=u 
Ca) 

2"-1 
Clock Periods 

~~-r~====~~~~~~~~==:'T 

L 1 Clock 
r Period. At 1 

2"-1 
(b) 

Figure 3. 

shows the autocorrelation function of a maxi
mum length sequence x (t). It can be seen that 
for time delays equal to or greater than one 
clock period, the correlation is essentially zero 
for large values of n. 

As opposed to the one-peak-per-period auto
correlation function of maximum length se
quences, the autocorrelation function of non
maximum length sequences has several positive 
and negative peaks per period.1II This results 
because, as stated before, non-maximum length 
sequences do not satisfy the three conditions 
for randomness. 

2.5 The Power Density Spectrum 

From the Wiener--Khintchine theorem, it is 
known that the power density spectrum Gxx(f) 
of a function x(t) is simply the Fourier trans
form of the autocorrelation function for x(t). 
As derived in the Appendix, the power density 
spectrum for a maximum length pseudo-random 
binary sequence x (t) is 

00 

a=-oo 
a=,F 0 

[Si::/,£Z r Il ( f _ ;f,) 
where Z == 2R_l = number of bits in one period 
of x(t) 

f~ = 1/ 6. t = clock frequency 

From the above expression, it should be noted 
that 

(1) Gxx(f) is a discrete spectrum with a 

harmonic separation of ~ c.p.s. 

(2) Nulls occur at integral multiples of the 
clock irequency Ie. 

(3) The bandwidth of Gxx(f) =0.32 f(" 

Therefore, for a 25-stage shift-register (Z = 
225 _ 1) and a 4 Mc. clock rate, Gxx(f) has a 
harmonic frequency separation of 0.123 c.p.s. 
and a bandwidth of 1.28 Mc. 

III. DESIGN OF A PSEUDO-RANDOM 
NOISE GENERATOR 

3.1 Overall Design 

The noise generator employs the same plug-in 
digital module cards (Computer Control Co. 
S-Pacs) standard in the new ASTRAC II com
puter. The block diagram of the entire noise 
generator system is shown in Fig. 4. This sys
tem will operate at clock rates as high as 4 Me 
and as low as desired. Multiplexing yields 4 
uncorrelated pseudo-random noise outputs from 
a single 25-stage shift-register. The clamping 
circuitry produces ±6 volt analog outputs 
which are easily filtered to generate Gaussian 
signals; diode function generators can be used 
to produce other types of analog noise with 



292 P,ROCEEDIN"GS--SPRING JOINT COMPUTER CONFERENCE, 1964 

specified amplitude distribution and power 
spectra. 

3.2 The Shift-Register and M odulo-2 Adders 

The shift-register consists of 25 general pur
pose flip-flops. The SET output of each flip-flop 
is connected to the Reset Level Control of the 
next stage, and the RESET output is connected 
to the Set Level Control (Fig. 5). The shift
register is normally driven from the main 4 Mc 
ASTRAC II Clock Oscillator. The maximum 
length period for n == 25 is 225 - 1 == 33, 554, 
431 bits. Since there are usually many feedback 
arrangements which will produce a maximal 
sequence, the one requiring the least hardware 
will be selected. Using the table in Ref. 4, it was 
found that if the outputs of stages 3 and 25 are 
fed back, only one modulo-2 adder is needed. 
Using this same table, the feedback arrange
ments, for n == 10 through n == 33, requiring 
only one modulo-2 adder to produce a maximum 
length were calculated and are listed in Table 

4~.Io'.d 
HoI .. Outputs 

Figure 4. ASTRAC II Noise Generator. 

F.F.I F.F.2 F.F. 3 

I 
F.F.2! 

NOISE GENERATOR RESET LINE 

Figure 5. Pseudo-Random Noise Generator Connections. 

1 of the Appen.dix. In terms of C.C.C. logic 
modules, a modulo-2 adder requires 4 NAND 
gates. The first 3 gates form an EXCLUSIVE
OR, and the fourth gate provides the comple
ment of the EXCLUSIVE-OR circuit (Fig. 
5) . The output of the modulo-2 adder is fed 
back to the Reset Level Control of the first 
shift-register stage, and its complement is fed 
back to the Set Level Control. 

The output of each flip-flop and its comple
ment are wired to a small patchbay (with a 
removable patchboard) provided for the noise 
generator. Since the binary sequence for any 
stage of the shift-register is the same as that 
of the preceding stage delayed by one clock 
interval, the patchbay allows access to 25 se
Quences--each delayed by one clock interval 
from the previous one. The DC SET and DC 
RESET input terminals of each flip-flop are also 
brought out to the patchbay so that any desired 
initial state may be patched into the shift
register from the computer NOISE GENERA
TOR RESET LINE at the start of each compu
tation. This resetting feature is of considerable 
interest for rechecking a series of Monte Carlo 
computations with different pseudo-random 
noise inputs. 

If the NOISE GENERATOR RESET patch
ing is omitted, the noise generator will run free 
and produce periodic sequences at a repetition 
rate not in general commensurable with the 
analog computer iteration rate. 

To provide the option of having two com
pletely independent noise generators, the con
nections between shift-register stages 11 and 
12 are patched rather than wired internally. 
The first 11 flip-flops require only one modulo-2 
adder to produce a maximum length sequence, 
but the 14 stage shift-register requires three 
adders to produce a maximal period. One 
arrangement used to obtain a maximum length 
sequence from the 14-stage generator is to add 
the outputs of flip-flops 3, 4, 5, and 14 modulo-2 
and to feed the sum back to stage 1. 

As one of many alternative patching combi
nations, two identical II-stage maximum se
quence noise generators, employing only one 
modul~2 adder each, may be constructed by 
using the same feedback connections for the 
14-stage shift-register as are used for the 11-



A HYBRID ANALOG-DIGITAL PSEUDO-RANDOM NOISE GENERATOR 293 

stage register (the outputs of flip-flops 2 and 
11 are modulo-2 added and fed back to flip-flop 
1). The sequence output of the 14-stage shift
register is then taken from the eleventh stage, 
leaving 3 stages unused. 

3.3 Multiplex Logic 

The purpose of the multiplex logic is to pro
vide several (in this case four) uncorrelated 
pseudo-random noise sources from a single 
shift-register. There are at least two ways of 
accomplishing this. The first method consists 
of sampling the shift-register output once every 
fourth clock interval. This method is used in 
the noise generator for ASTRAC II, because it 
requires less digital equipment. The second 
method utilizes the "shift and add" property of 
maximum length sequences. 

3.3.1 Method I-Output Sampling 

The output sampling technique uses four 
staggered 1 Mc pulse trains to sample the 4 Mc 
pseudo-random noise output. Each pulse train 
samples the shift-register noise output every 
fourth clock interval, e.g., the first sampling 
pulse train senses the state of the noise genera
tor output during the first, fifth, ninth, etc., 
clock intervals. The final result is four essen
tially un correlated 1 Mc pseudo-random noise 
outputs, each of ~ which is a maximum length 
sequence (33, 554, 431 bits if the 25-stage shift
register is used) . 

Since the 4 Mc noise sequence is sampled only 
once every fourth clock interval by anyone of 
the 1 Mc pulse trains, it takes 4 periods of the 
4 Mc sequence to produce the 33, 554, 431 bit 
period of anyone of the 1 Mc sequences. The 
1 Mc sequences do not become periodic after 
the first 4 Mc period because the number of bits 
in the 4 Mc period is not evenly divisible by 
four. In fact, by designating the four 1 Mc 
outputs as A (t), B (t), C (t), and D (t) respec
tively, it can be shown (see Fig. 6) that during 
the second 4 Mc shift-register period A (t) takes 
the same sequence B (t) had during the first 
period of the shift-register etc., until the fifth 
period. Then A(t) begins to repeat the sequence 
it had during the first shift-register cycle. A 
similar process holds for the other three se
quences B(t), C(t), and D(t). Actually, all four 

A B c o 
First period of the Shift-register 

o A B c 
Second period of the shift-register 

c o A B 

Third period of the shift-register 

B c o A 

Fourth period of the shift-register 

A B c o 

Fifth period of the shift- register 

Figure 6. 

outputs have the same binary sequence, but each 
of them is delayed from the previous one by 
approximately 8, 388, 608 bits. That is, for the 
outputs A(t), B(t), C(t) and D(t), 

A (t) == B (t + 8,388,608 bits) 
A (t) == C (t + 16,777,216 bits) 
A (t) == D (t + 25, 165,824 bits) 
A (t) == A (t + 33,554,431 bits) 

It follows that the cross-correlation function of 
A (t) and B (t) will peak only after 8, 388, 608 
bits. For the sampling rate of 1 Mc, 1 bit is 
equivalent to 1 microsecond in time. Therefore, 
the correlation peak occurs approximately 8.4 
seconds away from the time origin. The same 
is true for B (t) and C (t), or C (t) and D (t). 
This is long enough for, say, 500 computer runs 
using 15,000 bits per run from four essentiaUy 
uncorrelated noise generators. The digital cir
cuitry required to implement the above opera
tions is shown in the Appendix. 

Using the same approach, other combinations 
are possible. For example, the ASTRAC II 



294 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

pseudo-random noise generator is designed so 
two un correlated 2 Mc maximum length se
quences may be generated. Denoting them E (t) 
and F (t), then E (t) == F (t + 16, 777, 216 
bits). One digital bit in this case is equivalent 
to 1/2 of a microsecond. This added feature re",,
quires little additional circuitry, as can be seen 
in the Appendix. 

As with the shift-register, the flip-flops of 
the multiplex logic may be reset as desired by 
patching between the flip-flop DC SET or DC 
RESET terminal and the computer NOISE 
GENERATOR RESET LINE. 

3.3.2 Method II-HShift and Add" Property 

In effect, the sampling method described 
above merely produces four identical sequences 
delayed with respect to one another. In view 
of the "shift and add" property of maximum 
length sequences,6 similar results can be 
achieved by suitable modulo-2 addition of the 
various flip-flop outputs. By selecting the ar
rangement which produces four sequences de
layed by approximately 8 million bits from one 
another, four essentially uncorrelated noise out
puts are obtained. The main external difference 
between this method and the sampling method 
is that here the noise sequences are still 4 Mc, 
whereas before they were reduced to 1 Mc. 

3.4 Digital Equipment Requirements 

Using commercially produced (Computer 
Control Co.) 5 Mcplug-in cards, the entire 
digital system (25-stage shift-register, 3 
modulo-2 adders, and the multiplex logic) costs 
approximately $2,100. The following compo
nents are required: 

1. Eight MF -35 flip-flop cards (4 flip-flops 
per card). 

2. Four DI-35 NAND gate cards (8 NAND 
gates per card). 

3. One PN-35 power amplifier card (4 power 
amplifiers per card). 

4. One mounting rack (19 card capacity). 
5. Vector patchboard and frame (300 con-

tact&) . 

The design of the front panel and associated 
patchboard of the ASTRAC II Noise Generator 
is shown in Fig. 7. 

Removeable 
Patchboard 

ON 

~ 
OFF 

Figure 7. Front View of Noise Generator Panel. 

3.5 Level-Shifting and Clamping Circuitry 

To obtain precision-limited binary sequences 
of ±6 volts, it is necessary to pass the digital
noise sequences through level shifting and out
put clamping circuits. The voltage level shift 
is required since the standard outputs of the 
C.C.C. digital modules are -6 and 0 volts. 

Shown in Fig. 8 is the circuit used to accom
plish the level shifting and clamping operations. 
Transistors Ql and ·Q2 form a Schmitt trigger. 
Q" provides a current source for the Schmitt 
trigger, and Q4 provides a clamped emitter fol. 
lower type output. The rise time is less than 50 
nanoseconds as is the delay through the circuit. 

+15V +6 

-I5V 

Figure 8. Level-Shifting and Clamping Circuitry. 

3.6 Control of the Mean and Mean Square 
Value 11 

3.6.1 Mean Value 

At high digital-clock frequencies (10 Kc to 
4 Mc) used in typical repetitive computer appli
cations (10 cps to 1 Kc repetition rates), the 
DC level E [x] of the noise generator is best 



A HYBRID ANALOG-DIGITAL PSEUDO-RANDOM NOISE GENERATOR 295 

controlled by a DC blocking filter with the 
transfer function 

TS 
H(S) == 1 + TS (1) 

where T == RC (Fig. 9) is an appropriately long 
time constant. For "slow" analog computation, 
symmetrical precision clipping of the binary 
noise output is usually sufficient to control E 
[x], or the active filter of Fig. 10 may be used 
to generate the transfer function (1). 

x (f ) O~---U-":""""--____ ----O XO ( t ) 

R 

Figure 9. Passive DC Blocking Filter. 

xCt) o __ ~_.......;..11 
~ __ --.......... --_..oo xo(f) 

I 
.......... --~----O Xo ( t) 

Figure 10. Active DC Blocking Filter. 

3.6.2 Mean Square Value 

Finite time averages of the squared binary 
noise output X2 are not subject to fast random 
variations, and equal one-fourth of the squared 
peak-to-peak output when a DC blocking filter is 
used. However, even with a constant load 
(operational-amplifier input), the.peak-to-peak 
output of the clamped emitter follower in Fig. 
8 is subject to slow drift due to temperature 
variations of the break points of the clamping 
diodes. For example, a 10 0 F temperature 
variation could change the peak-to-peak output 
as much as 30 millivolts, or 0.25 per cent of the 
nominal 12 volt value. This corresponds to a 
0.5 per cent change in the mean square output 
E [X2]. Although drift should be negligible 

during anyone computation, the peak-to-peak 
voltage will be monitored during computation 
by oscilloscope comparison with a DC reference 
voltage read on the computer digital voltmeter. 
At low clock freq.uencies, simple analog pre
cision limiters may be used to clip the binary 
waveform. with an accuracy of approximately 
0.1 per cent. Still, at high clock frequencies 
improved transistor clamping circuits, as op
posed to more cumbersome AGC-type control, 
would be useful in regulating the mean square 
value. 

IV. EXPERIMENTAL TESTS 

The following experiments are now being 
conducted with the aid of the ASTRAC I repeti
tive statistics computer. 

4.1 Time Average and Mean Square Value 

The time average of the pseudo-random noise 
may be measured by filtering it with a low pass 
filter. The filter output is then sampled and 
converted into the appropriate number for a 
digital counter. The direction of the count is 
determined by the polarity of the sample. When 
the preset run counter stops, say, at m computer 
runs, the number indicated in the counter will 
be 

m 

L Xk==mx 

k==l 
Alternately, the time average may be found by 
using an analog integrator with a long time 
constant. 

By using a diode squaring circuit and the 
same "sample and count" method used to find 
the time average, the mean square value is ob
tained. After m runs the counter will readS 

m 

Lx==mx 2 

k==1 

4.2 Amplitude Distribution 

This measurement is made by using the 
Amplitude - distribution Analyzer built into 
ASTRAC 1. The analyzer uses a slicer-circuit 



296 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

which enables its output counter to register one 
pulse per computer run if and only if the ana
lyzer input voltage x(t) lies between the preset 

values ( X - 6;) and ( X + 6;) . The result

ing count estimates the Probability that 

[ 
6X 6X] X - """2 < x (t1) L X + ""2 . 

If 6X is made sufficiently small, an approxima
tion of the density function is obtained.9 

4.3 Correlation Experiments 

A unique method for measuring the autocor
relation function of pseudo-random noise con
sists of wiring two pseudo-random generators 
to produce identical maximum length sequences. 
One of the generators is then driven at a clock 
frequency of fl and the other at a clock fre
quency of fl + 6f, where 6f is very small com
pared to f 1 ; thus the noise generator outputs 
appear with a continuously varying delay with 
respect to one another. The generator outputs 
are then multiplied together and low-pass fil
tered to give the approximate autocorrelation 
function for direct oscilloscope or recorder 
presentation. 10 

A more accurate estimation of the autocor
relation function may be obtained by using the 
ASTRAC I computer to generate the following 
functions8 : kX(t1 ) + kX(tl + T) and kX(t1 ) -

kX (t1 + T), k is the kth computer run and the 
samples at tl and tl + T are taken during each 
computer run. The two functions are then 
square to give 

(i[x(t1 ) + kX(tl + T»)2 and 
[kX(t1 ) - kX(tl + d]2 

After m runs, the final result stored in the 
counters is 

m/2 

%. L {[tX(t1) + 'x(t1 + .)], 
k==l 

_[kX(tl) - 'x(t, + .)]'} 
m/2 

== L kX(tt} kX(tl + T) 

k==l 

For a large number of runs, 

, m/2 

estimated Ru (T) ==! L kX(t1 ) kX(tl + T) 

k==l 

4.4 Probability Distributions of the Pseudo
Random Sequence 

Assuming the sequence period is large, bi
nomially distributed random numbers q are 
obtained by counting the noise generator "l's" 
occurring during Q clock periods. 

p (q) == ( ~) (~ )Q q == 0,1,2, ... 

E {q} == Q/2 

Var {q} == Q/4 

Note that, the random variable q is asymptoti
cally normal as Q ~ 00 • Thus, the random 
variable u, where 

q-Q/2 2q-Q 
u == Q/4 == Q 

converges in probability to a standardized nor
mal random variable. 

V. CONCLUSION 

In conclusion, it should be pointed out that 
such a hybrid noise generator has several strik
ing features not generally shared by existing 
analog noise generators: 

"1. The analog noise output is independent of 
any physical quantity other than the out
put clamping levels. 

2. The shift-register can be reset at any time 
to repeat a sequence of random events 
exactly. 

3. The binary noise bandwidth is propor
tional to the shift register clock rate, 
which can be changed (and modulated) 
at will. This permits exact time scale 
changes or intermittent operation. 

4. The noise generator produces digital com
puter random numbers as well as analog 
noise. Random digital words are easily 
stored and transmitted and also may be 
used to produce binomially distributed 
random analog coefficients with the aid of 
D / A-converter multipliers. 



A HYBRID ANALOG-DIGITAL PSEUDO-RANDOM NOISE GENERATOR 297 

5. Digital multiplexing yields multiple un
correlated noise signals from a single 
shift-register. 

6. The binary output permits direct logical 
or analog multiplication. In addition, the 
group-alphabet property of shift-register 
sequences yields delayed sequences, with 
the aid of digital logic; which is useful 
for correlation experiments." 1 

7. The flat spectrum binary noise yields 
Gaussian noise with any reasonable spec
trum by filtering; diode function gener
ators may then be used to produce differ
ent amplitude distributions. 

8. One noise generator may also be broken 
into two or more completely independent 
generators if desired. 

In view of the versatility of pseudo-random 
noise generators and the reliability and decreas
ing prices of digital-logic modules, the conven
tional analog noise generator may well become 
obsolete. 

REFERENCES 

1. HAMPTON, R., G. A. KORN, alld B. 1YIITCH

ELL, "Hybrid Analog-digital Random-noise 
Generation," I.E.E.E. Transactions on 
Electronic Computers, August 1963. 

2. MANELIS, J. B., "Generating Random Noise 
with Radioactive Sources," Electronics, 
September 8, 1961. 

3. GOLOMB, S. W., Sequences with Random
ness PrlYperties (Internal Report) , Glenn L. 
Martin Co., Baltimore, Md., June 14, 1955. 

4. I{EPCKE, J. J., R. M. TAYLOR, and W. S. 
WYROSTEK, Geese Techniques for Pseudo 
Noise Generation, Defense Systems Dept., 
General Electric, Syracuse, New York, 
August 1962. 

5. BIRDSALL, T. G., and M. P. RISTENBATT, 
Introduction to Linear Shift-Register Gen
erated Sequences, Technical Report Num
ber 90, University of Michigan Research 
Institute, Ann Arbor, Michigan, October 
1958. 

6. PETERSON, W. W., Error Correcting Codes, 
The MIT Press and John Wiley and Sons, 
Inc., New York, 1961. 

7. Instruction Manual for 5-Mc S-Pac Digital 
Modules, Computer Control Company, Inc., 
Framingham, Mass., July 1962. 

8. CONANT, B. K., "A Hybrid Analog-Digital 
Statistics Computer," ACL Memo Number 
45, The University of Arizona, Tucson, 
Arizona. 

9. BRUBAKER, T. A., G. A. KORN, "Accurate 
Amplitude-Distribution Analyzer Combines 
Analog and Digital Logic," Rev. Sci. In
struments, March 1961. 

10. STERLING, J. T., Introduction to Pseudo
Noise Codes and Correlators, Defense Sys
tems Dept., General Electric, Syracuse, 
New York, May 1962. 

11. KORN, G. A., unpublished lecture notes, 
University of Arizona, 1963. 

ACKNOWLEDGEMENT' 

The project described in this report is part of 
a hybrid analog-digital computer study directed 
by Professor G. A. Korn, who suggested the 
project and contributed a number of ideas. The 
author is grateful to the Office of Aerospace 
Research~ Information Research Division, Air 
Force Office of Scientific Research and to the 
Office of Space Sciences, National Aeronautics 
and Space Administration for their support of 
this study under joint grant AF -AFOSR-89-63 ; 
and to Professors L. Matsch, Dean of Engineer
ing and Harry Stewart, Head, Electrical Engi
neering Department, for their encouragement 
and contribution of University facilities. 

APPENDIX 

Multiplex Circ1-titry 

To obtain the four staggered 1 Mc sampling 
signals, a Gray-Code logic circuit driven by the 
4 Mc ASTRAC II clock is used (Fig. A). The 
Gray-Code effectively divides the clock input by 
four. The required sampling pulses exist at the 
outputs of the four NAND gates. They are 
denoted by Q), ®, ®, and 0 (Fig. B). The 
multiplexing is accomplished by inverting one 
of the sampling pulses, for example 0, and 
applying it to the AC input of a flip-flop. The 
inversion is necessary for correct triggering. 
The 4 Mc pseudo-random noise sequence and its 



298 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

NOISE GENERATOR RESET LINE 

I I 

Set 
t>utput 

A 
Reset 
Output 

_~l.J1JlI1J 
4Mc. 

B Clock Pulses 

B 

B 

Figure A. Gray-Code Circuit. 

complement are applied to the flip-flop Set and 
Reset Level Controls as shown in Fig. C. The 
flip-flop output is then the desired 1 Mc pseudo
random noise. The other three 1 Mc noise 
sources are similarly derived. 

Two staggered 2 Mc sampling pulses are 
easily obtained by NAND-gating pulse trains 
CD and ® to give the first 2 Mc sampling signal 
and NAND-gating ® and ® to give the second. 
They are then applied to the AC input of a flip
flop, as was done with the 1 Mc sampling pulses, 
to obtain two un correlated 2 Mc maximum 
length sequences. 

A Gray-Code circuit is used instead of two 
cascaded flip-flops to provide the "divide by 
four" operation, because only one of the flip
flops shown in Fig. B changes states per clock 
pulse. On the other hand, with two cascaded 
flip-flops, both go through a transition of states 
every second clock pulse. This would create un
desirable coincidence spikes when the cascaded 
flip-flop outputs were NAND-gated to obtain 
the four staggered 1 Me sampling trains. 

Derivation of the Autocorrelation Function 
R:r.:r. ( T) of Maximum Length Sequences lO 

(For T equal to an integral number of bits or 
clock periods) 

Previously, the pseudo-random noise from a 
shift-register has been considered to be a se-

0 

-6 
-t*~.1-

A_:n 
Aj 
B -:n L 

i °LJ -6 

°-:1 n L..--. __ ---Jn ...... __ 
~-:I n '----------~~~--------
~o 

-6 

0 
@ 

-6 

Figure B. Four Staggered 1 Me Sampling Pulses. 

NOISE 

yo-------r 

y 0--------1 

RESET LINE I 

s.t 
Out ut 

Reset 
Output 

>IMC. 
Pauedo
Random 
Nol •• 

y= 4Mc. Pseudo- Random Noise 

Y = Complement of 4 Mc. Pseudo - Random Noise 

Figure C. 



A HYBRID ANALOG-DIGITAL PSEUDO-RANDOM NOISE GENERATOR 299 

quence of "O's" and "1's", representing the two 
stable states of the flip-flop stages. If instead, 
the two stable flip-flop states are designated as 
"I" and "-I" respectively, it can be shown that 
modulo-2 addition with "0" and "I" is equiva
lent to arithmetic multiplication with "I" and 
"-I". 

A B (A+B)MOD 2 A B A.B 

1 0 1 -1 1 -1 

0 1 1 1 -1 -1 

0 0 0 1 1 1 

1 1 0 -1 -1 1 

Thus, the "shift and add" property for "I" and 
"0" sequences becomes the "shift and multiply" 
property for "-I" and "I" sequences. Since 
for maximum length sequences of "1's" and 
"O's", it is true that 

x (t) + x (t + 7"1) == X (t + 7"2) , 

where 7"] and 7"2 are equal to some integral num
ber of clock periods. It follows that for maxi
mum length sequences of "-l's" and "l's", 

x (t) x (t + 7"1) == X (t + 7"2) . (1 ) 

The time autocorrelation function for a func-
tion x (t) is by definition 

T/2 

Rxx(7"])==lim if x(t)x(t+7"])dt.(2) 

T~oo 

-T/2 

When x (t) is periodic, as is the case for a maxi
mum length shift-register seq,uence, no limiting 
process is needed. Therefore, the autocorrela
tion equation becomes 

T/2 

R xx (T1) == i f x(t) x(t + 7"1) dt. (3) 

-T/2 

Since 1 bit is equivalent to 1 clock interval in 
time, the period T == 2n - 1 bits. Now substi
tuting equation (1) into equation (3) and ex
pressing the limits in terms of n, we have 

2n-1 
2 

Rxx ( 7"1) - 2n -=- 1 f x (t + 7"2) dt 7"1 =1= 0 

(2n - 1) 

1 
2n -1 times 

2 (5) 

[

Number of "l's" in] 
the sequence minus 
the number of "-l's" 
in the sequence 

Since the all "I" state (or equivalently, the all 
"0" state in terms of modulo-2 addition) is a 
forbidden condition, a maximum length se
quence always has one more "-I" state than it 
does "I" state. Consequently, 

Rxx ( 7"1) == - 2n -=- 1 / 7"1 =1= 0 (6) 

If 7"1 == 0, the autocorrelation function may be 
written, 

2n-l 
2 

R { 0 \ 1 {v2 It \ tlt 
~"xx,"",_ == 2n -1 J ..... ,"', ..... 

- (2n -1) 
2 

2n-l 
2 

2n -=-1 f 1 dt 
- (2n-l) 

2 

==1 

Derivation of the Power Density Spectrum 
Gn·(f) of Maximum Length Sequences 

00 

Gxx(f) == F (Rxx(T» == fRxx(T)e-27rfT d7" 

-00 



300 PROCEEDINGS-SP~RING JOINT COMPUTER CONFERENCE, 1964 

using a Fourier series representation for Rxx ( T ) 

00 T/2 
Rxx( T) = L raja 2Tr fo T ,ra 

0.=-00 

i f R(T)e- ja 
2Tr foT dT, fo - i 

-T/2 

00 00 

Gxx(f) = f L rae ja 2Tr fo T e -j 2TrfT dT 

-00 0.=-00 

since the Fourier series for Rxx( T) converges uniformly, the order of integration and summation 
can be reversed, giving 

00 00 

G (f) \' f j 2 f e- j 211"fT <iT xx == L ra e a Tr 0 T 

0.=-00 -00 

00 

L ra 8 (f - afo) 

0.=-00 

00 T/2 

[i f R(T) e~j.2rf.TdTJ a(f-ato) 

0.=-00 -T/2 

T/2 00 

= ~ f R(T)e- j 
211'"fT dT L 8(f - afo) 

-T/2 0.=-00 

00 

- ~ GT(f) L 8(f - afo) 
Cl=-oo 

T/2 
where GT(f) == f Rxx(T) e -j 2TrfT dT is the Fourier transform of Rxx(T) defined over one period. 

-T/2 

RxxH = {I ilTI (Z;l) 
whereZ = 2n_l 

n = number of shift-register stages. 



A HYBRID ANALO~DIGITAL PSEUDO-RANDOM NOISE GENERATOR 301 

Evaluating the integral for GT(f), 

G (f) - ~ (Z+l) [Sin 2rf T/2Z] 
2 

_ L[Sin 2rf T/2] 
T - Z2 2rf T/2Z Z 2rf T/2 

co 

• Gxx(f) = T1 \' (~(Z+l) [Sin 2r a fo T/2Z] 2 _ 1. [Sin 2r a fo T/2]) 8(f _ afo) 
L Z2 2r a fo T /2Z Z 2r a fo T /2 

A=-oo 

co 

= \' (Z+l [Sin a 1:' /Z] 2 _ 1-. [Sin a'lt']) 8(f _ afo} 
L Z2 a 1:' /Z Z a 1:' 

A=-CO 

co 

1 \' Z+l [Sin a r/Z ] 2 8(f _ afe) 
= Z2 8(f) + L Z2 a'1r/Z Z 

A=-oo 
A~ 0 

where fe = clock frequency = Zfo. 

n 

10 
11 
15 
17 
18 
20 
21 
22 
23 
25 
28 
31 
33 

II 

Add Modulo-2 the 
Outputs of Stages 

3,10 
2,11 
1,15 
3,17 
7,18 
3,20 
2,21 
1,22 
5,23 
3,25 
3,28 
3,31 

13,33 

(n equals the number of stages) 

Those values of n between 10 and 33 not appear
ing above can not produce a maximum length 
sequence with one modulo-2 adder. 

FEEDBACK CONNECTIONS REQUIRING 
ONLY ONE MODULO-2 ADDER TO PRO
DUCE A MAXIMUM LENGTH SEQUENCE: 

n = 10 through n = 33 

TABLE 1 





A DELTA-SIGMA MODULATION SYSTEM FOR TIME DELAY 
AND ANALOG FUNCTION STORAGE 

H. Handler 
Instructor, Electrical Engineering Department 

University of Arizona 
Tucson, Arizona 

and 
R. H. Mangels 

Research Assistant, Electrical Engineering Dept. 
University of Arizona 

INTRODUCTION 

The advent of fast iterative· analog com
puters1,2.,3 poses the requirement for storing 
analog functions for integral multiples of the 
computer repetition period which is typically 
of the order of 1 to 10 milliseconds. In addition 
to function storage for one computer run, it 
would be desirable to store analog functions for 
indefinite time intervals to permit table lookup. 
Typical accuracy requirements might be 0.1 to 
0.5 per cent of half-scale at ten times the com
puter repetition frequency (10 cps to 1000 cps) 
with somewhat lower accuracy at higher fre
quencies.4 

For most iterative-differential-analyzer ap
plications, existing function storage schemes, 
such as capacitor wheels, reed-relay matrices, 
cathode-ray storage tubes, storage integra
tors, lumped-parameter operational amplifier 
schemes, and magnetic recording techniques 5,6 

all distinguish themselves by varying degrees of 
impracticality, high cost and low accuracy. 

Magnetostrictive (acoustic) delay lines have 
been used successfully in digital computers.7 

These lines are highly developed and widely 
available in packages which include all write 
and read circuitry. Bit rates up to 5 Mc with 

303 

several milliseconds of delay are possible. Pulse 
regeneration with clock-gated logic permits cas
cading of delay line sections and indefinite re
circulation of digital data. 

The magnetostrictive delay line is for all prac
tical purposes designed for digital pulsed sig
nals. Consequently, in order to use this type of 
line it is necessary to encode the signal into a 
pulse modulated form. Pulse amplitude modu
lation is unsuitable because attenuation and 
reflection in the line result in poor signal to 
noise ratios. Since pulse frequency modulation 
and pulse position modulation require precise 
timing circuits to effect pulse regeneration, it 
would seem practically impossible to use these 
schemes for indefinite recirculation of analog 
stored data. 

True pulse code modulation (PCM) is with
out question the most efficient modulation 
scheme. PCM will, however, require a complete 
set of A to D and D to A converters to achieve 
modulation and demodulation. This method is 
used in the Electronics Associates HYDAC com
puters but true PCM seems prohibitively ex
pensive for all but the largest computer instal
lations. 

Delta modulation,9 i.e., pulse modulation 
through suppression of pulses in a constant 



304 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

frequency clock pulse train, appears especially 
attractive, for it combines inexpensive modula
tion and demodulation with the possibility of 
pulse regeneration with clock gated logic just 
like true PCM. Conventional delta modulation 
which transmits the time derivative of an 
analog input is suitable for voice communica
tions, but not for transmission of absolute d-c 
levels. 

Inose et. al.10 circumvented this drawback to 
delta modulation by modifying the transmitter 
so that the pulse train represents information 
about the signal rather than its derivative. This 
modified delta modulation or delta sigma modu
lation meets the requirements for an analog 
signal encoder which can handle signals extend
ing down to zero frequency. The modification 
has not altered the intrinsic simplicity of the 
delta modulation system making it very attrac
tive for medium size computer installations. 

CIRCUIT OPERATION 

Referring to the block diagram of Fig. 1, the 
input signal is summed into an integrator along 
with the flip-flop output signal, -F (t). The 
integrator output sets a two-level comparator 
which then determines whether a gating circuit 
will allow a set or reset pulse to pass. If the 
integrated sum of the input and output signal is 
less than zero at the "sampling" time a reset 
pulse is gated out. If the amplitude of the inte
grated sum is greater than zero a set- pulse is 
released to the flip-flop. 

The waveforms which appear in the system 
for a zero input signal are shown in Fig. 2. An 

Figure 1. Block Diagram of Analog Delay Unit. 

c(t) 

X(t) t---~------'-L-----~---....L.J.-

F(t) 

Figure 2. Modulator Waveforms for Zero Input Signal. 

examination of these waveforms will clarify the 
behavior of the system. If the transmitter is 
in a non-saturated condition, the feedback loop 
will attempt to keep the integrator output close 
to zero. Under these assumed conditions the 
integrated difference between the signal and the 
flip-flop waveform will be less than some arbi
trary number £, or 

t 

f (s (t) - F (t) )dt L dt) (1) 

o 

If one considers the quantity £ to be small then 
the flip-flop output F (t) is approximately equal 
to S (t) in an average value sense. Therefore, 
to recover the modulating signal it is only nec
essary to insert the flip-flop output into a low 
pass filter; the output of the Schmitt trigger 
may also be used for this purpose. As used for 
computer memory, gated clock pulses· taken 
from one of the feedback lines to the flip-flop 
are sent down the delay line and used to operate 
another flip-flop in the receiver rather than at
tempting to transmit and reshape the wider 
pulses occurring in the flip-flop's output. 

Five megacycle Computer Control Corp. 
( CCC) transistor logic cards were used for the 
digital logic along with Burr-Brown ± 10 v 
operational Type 1607 A amplifiers. The demod
ulator is a passive RLC filter of the Tchebysheff 
II typell designed for 50 kc cutoff and preceded 
by a wideband operational amp. (10 mc O-db 



A DELTA-SIGMA MODULATION SYSTEM FOR TIME DELAY / ANALOG STORAGE 305 

1.0 AMPLITUDE 

PH O· 

0.1 -30· 

0 

0 ct 
.J 

~ -60· 
ct a: 

O.DI ILl 
I/) 

ILl ct -90· 0 :I: 

~ Q. 

0 
> -120-

0.001 

10 100 1000 10,000 100,000 

FREQUENCY IN CYCLES 

Figure 3. Demodulating Filter Response. 

+1 

0 1.6 o· i= PHASE c a:: -I 

! 1.4 0 
-2 C 

d .J 

> 1&1 -3 en 
~ c 

1.2 :I: ~ A. -4 
A. 
~ 

5 AMPLITUDE -5 

1.0 
!50 500 5000 20.000 

FREQUENCY IN CYCLES 

Figure 4. System Response of Complete b.~ System. 

GAIN OF DEMODULATOR AMPLIFIER 

WAS LESS THAN UNITY 

+2~---4----~----*-----~--~----~--
-3 -2 -I o 2 3 

INPUT VOLTAGE 

Figure 5. Static System Response. 

bandwidth). Filter cutoff at 50 kc seems to be 
about optimum for a 2 mc bit rate; values above 
this admit excessive noise into the output. The 
demodulator has objectional phase shift above 
1 kc (see Fig. 3 for filter response, which was 
improved, at the expense of some amplitude 
response, by lead networks at the input, Fig 6.) 
The overall system response is shown in Fig. 4. 
The uncompensated system is flat out to 40 kc. 
Fig. 5 shows the static input output character
istic. This curve was obtained with a digital 
voltmeter and is seen to be quite linear. 

The output pulse widths of the CCC Delay 
Multivibrator Cards were narrowed to about 
half their normal minimum value. It was found 
necessary to add several additional logic cards 
to what could be considered a minimum compo
nent delta sigma system in order to prevent 
cross coupling effects from causing pulse-train 
jitter. Such jitter makes pulse reshaping more 
difficult, but has no noticeable effect on other 
aspects of system performance . 

Operation of the modular circuit, shown in 
Fig. 6, is straightforward. The 2 mc clock trig-

MODULATOR 
-----------"1 

DEMODULATOR I 

OUTPUT 3MHY 

.0044 
ILt T /LILt 

Figure 6. b.~ Modulator Demodulator. 

I 
I 



306 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

gers a delay multivibrator, whose complemen
tary output pulses are NAND gated so that one 
or the other is allowed to reach flip-flop FFl. 
The flip-flop output is added to the analog input, 
and the sum is integrated. The integrated out
put is fed into a Schmitt trigger which in turn 
controls the NAND gates in such a manner that 
feedback of the flip-flop output always tends to 
return the integrator output to zero. As a re
sult, the running average of the output pulse 
F (t) is proportional to the analog input to the 
integrator. 

SYSTEM RESPONSE 

Although it is difficult to determine the modu
lator response or pulse code pattern for an arbi
trary input, it is instructive to consider the sys
tem response to selected inputs. 

As Fig. 2 indicates, the flip-flop output for a 
zero input signal consists of a square wave with 
the transitions occurring at the clock intervals. 
Consider an input step voltage equal to one half 
the flip-flop voltage. The flip-flop pulse pattern 
which would result from this input is displayed 
in Fig. 7 along with various other waveforms 
in the system. The average value of the flip
flop voltage F (t) is E./2, one half its peak 
value where Eo is the amplitude of the flip-flop 
output. The fundamental frequency of the 
waveform for this input is 1/4T where T is the 
clock period. If this waveform is averaged by a 
low pass filter, the steady state output of the 
filter would be E/2 volts or the input signal. 

Input S (tl 

CUIJVS ZJ\ / 
V V 

ClocItO 0 0 0 0 n 0 0 0 0 

X (tl 0 0 0 
.!-. 

FIt) -.-lr==tR R 

Figure 7. Modulator Waveforms for Half Full 
Scale Input. 

o fc Frequency ~ 

Figure 8. Ideal Low-pass Filter. 

If the system is to be responsive to step volt
ages in a reasonable amount of time, it is nec
essary to keep the bandpass of the averaging 
filter as large as possible. On the other hand, 
too large a bandpass would permit an unaccept
able amount of ripple to appear at the output. 
If one assumes the existence of an ideal low 
pass filter as shown in Fig. 8 and if the cutoff 
frequency fe is set below 1/4 T cycles per sec
ond, no ripple components will appear in the 
steady state output. Unfortunately, the ripple 
frequency is a function of the input level and 
for inputs close to ± Ell volts, the fundamental 
frequency of the flip-flop waveform becomes 
arbitrarily small. In fact, for input levels equal 
to ± Eo the system reaches the limits of its 
dynamic range and the flip-flop remains perma
nently in one state. For an averaging filter with 
a bandpass fe cycles per second the static range 
of the input must be limited totO 

(feT) Eo <Ein < (l-feT) Eo. (2) 

In a dynamic situation, the input signal may 
have a maximum amplitude larger than E., 
volts. The stable pulse pattern responsible for 
Equation 2 does not result unless the level re
mains constant for periods of time commensu
rate with the averaging bandwidth, thus this 
dynamic range constraint does not hold for time 
varying signals. 

Triangle and square waveform response of 
this system were checked from .01 to 1200 cps. 
Amplitude response is linear and once the input 
and output are superimposed on a dual trace 
scope they remain superimposed as the input 
amplitude is varied throughout the system 
range. Waveform response for a 2 mc bit rate 
is shown in Figs. lOa through f. Input com
pensation was removed since it is not correct 
when a variable bandpass filter is used. 

Triangle waveform response at 500 cycles 
along with the modulating signal is shown in 
Figs. 9a and b for two values of demodulating 



A DELTA-SIGMA MODULATION SYSTEM FOR TIME DELAY / ANALOG STORAGE 307 

~oo CYCLE TR IANGLE liM! 
(t.) 110 KC FILTER 
(") :( KC :"TLrrTi 

SOL CYCLE S(;UARE WAVE 
(C) 80 ::C FIl.TER 
C j 7" ::~ . II T'T 

SINE ,1,Wi, RESpmiSE WITH 
II 50 KC FIl.Tf.R 
0) 500 CYCLE ;'AVE 
(i) 20 KC :11'iI: 

Figure 9. Waveform Response of L::.~ System. 

filter cutoff. Fig. 9a shows a wide filter setting 
of 110 kc in order to show quantizing effects of 
the system. Figure 9b shows a more normal 
filter setting of 20 kc which filters out much of 
the noise and effectively recovers the modulat
ing signal. Square waveform response at 500 
cycles is shown in Figs. 9c and d for two values 
of demodulating filter cutoff frequency. Figure 
9c is for a 80 kc filter and Fig. 9d for a 20 kc 
filter. The only effect of filter width on a square 
waveform is in the height of the grass on the 
horizontal segments. The extra height hides 
the overshoot in the wide filter. Note that there 
is no measurable difference in the rise time of 
the input and output and that the signal re
sponse is only dependent .upon the characteris
tics of the demodulating filter. 

Sine wave response was checked from .01 cycles 
up to 600 kC.12 While the system will still re
spond at these high frequencies, noise content 
becomes objectionable above 100 kc and sine 
wave response was not considered useful above 

this frequency. At frequencies below 50 kc 
amplitude response is excellent with the same 
general properties commented on for triangle 
and square waves at lower frequencies. Sine 
wave response is shown in Figs. ge and f for 
a 50 kc filter and a 500 cycle and 20 kc sine wave 
respectively. In Fig. ge the input is the lower 
amplitude wave while in Fig. 9f it is the wave 
occurring first in phase. At 20 kc the demodu
lating filter phase shift is quite noticeable. As 
predicted in the SIN ratio section there is less 
noise associated with the high frequency wave
form which is close to the filter cutoff frequency. 

ADAPTIVE FILTERING 

It is apparent that the requirements for good 
noise suppression and high frequency response 
do not coincide. However, it is possible to vary 
the bandwidth of the low pass filter, leaving it 
wide for rapidly varying signals and decreas
ing it for low bandwidth signals. 

Since the demodulator or low pass filter is 
on the receiving end of the delay line, the shape 
of the signal is known five milliseconds before 
the pulse code reaches the filter. It is, therefore, 
possible to examine the signa! at the input of 
the modulator and insert either a wide or nar-
row ban~width demodulator depending on· the 
nature of the input. The rate sensing circuit 
(Fig. 10) consists of an R-C differentiator feed
ing an absolute value circuit which sets a two 
level comparator. The demodulator then acts 
as an adaptive filter whose bandwidth is varied 
commensurate with the requirements of the in
put signal. 

DYNAMIC RANGE 

The system exhibits little, if any, threshold 
effect on input level below which the system 
does not operate. Measurable amounts of thres-

Absolute Comparator 
I Value 

t Circuit Circuit 

~ 

....L. 

Figure 10. Block Diagram for Demodulating Filter. 



308 P-ROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

hold can be introduced if the integrator capaci
tor is bypassed with a resistor; the amount of 
the threshold increases as the integrator time 
constant is decreased. Decreasing inputs in the 
unbypassed system eventually becomes lost in 
the system output noise at about -40 db below 
saturation. This figure" can be improved by suf
ficiently narrowing the bandpass filter. With a 
narrow filter, 200 cps, inputs ranging from 8v 
down to 5 mv or over a 64 db dynamic range 
can be detected. The dc level adj ustment on the 
integrator input was always set to center the 
input in the dynamic range, i.e., saturation 
occurs at the same level for positive and nega
tive excursions. This is the same dc level which 
gives an alternating on-off pulse pattern at the 
output for zero input, as shown in Fig. 2. 

OUTPUT SIGNAL TO NOISE RATIO 

Delta sigma modulation is a pulse code modu
lation system and like true" PCM systems, is sub
ject to quantizing noise. Fig. 9a is a photograph 
showing the output signal for a triangle wave 
input. The quantizing phenomenon is quite ap
parent from the photograph. Inose,lo using a 
somewhat simplified model, derives an expres
sion for the signal to quantizing noise ratio as: 

3/2 
~ == M ~ .&. (3) 
P x 47r fc 

where M is the ratio of the signal amplitude to 
the dynamic range, fr the clock frequency and fc 
the cutoff frequency of the low pass filter. 

There is one significant respect in which the 
quantizing phenomenon of a delta sigma sys
tem differs considerably from that of a true 

Delto Sigma 

Modulotor 

a 

b 

Figure 11. Equipment Setup for Measurement of 
Signal to Noise Ratio and Spectrum. 

PCM system. If the inpul signal is a constant 
d-c level, the modulator feedback will adjust the 
pulse rate so that the average value of the flip
flop waveform F (t) equals the input voltage. 
Hence, no measurable quantizing errors are 
encountered in the transmission of d-c levels. 
On the other hand a conventional PCM system 
initially quantizes the input signal, and the 
maximum error which may occur at this point 
is a/2 where a denotes the voltage of a quantiz
ing interval. 

Signal to noise ratio was measured as a func
tion of bit rate, input amplitude, fil:er cutofT 
frequency, modulating frequency and integra
tor time constant. The results are plotted in 
Fig. 12 against the theoretical Equation 3 as 
shown in Fig. lla. The normal fixed low-pass de-

II) 
o 35 

~ 

o 
..... 
<[ 
0:: 30 
w 
(/) 

(5 
z 

o 
..... 25 

2 MC BIT RATE 
50 K C FILTER CUTOFF 
M" 113 
- EXP. VALUE 
--- BY INOSE ,0 

- Theoret:col Value 

20~-----4----T--+-----
T lOT lOOT 

INTEGRATOR TIME CONSTANT 

Figure 12a. ~l: SIN Ratio Using Four 
Modulating Frequencies. 

modulating filter was replaced by an adjustable 
bandpass filter for use in the spectrum analysis. 
This was an active Kron Hite which has a cut
off of 24 db per octave and was modified to have 
a fixed low frequency cutoff of about 5 cycles. 
The HP Distortion Analyzer contains an 80 db 
rejection filter. The filter output was read on a 
true rms Ballantine voltmeter for accurate 
power evaluation. The measurement technique 
was to adjust the distortion analyzer to a con
stant output level on the Ballantine, tune out 
the fundamental, measure the new output and 



A DELTA-SIGMA MODULATION SYSTEM FOR TIME DELAY / ANALOG STORAGE 309 

CD 40 
o 

~ 

o 
i= 
<t 30 
a:: 

w 
en 
(5 
z 

0 20 
I-

....I 
<t 
Z 
(!) 
(j'j 

/ 
/ 

/ 
/ 

/ 

/ 

Theoretica/'value 

i 
/ 

/ 
/ 

/ 

/ 15 KC FILTER / ~I~~~: VALUE 
/ - -- BY INOSE 10 

10~--~----~--~--4------
.2 .4 1.0 2.0 3.0 

BIT RATE IN MC 

Figure 12b. ~~ SIN Ratio as a Function of Bit Rate. 

CD 50 
o 

6 KC 

~ 10 KC 

o 2MC BIT RATE 
i= M=1/3 6KC 
<t 40 - EXP. VALU~E_ ~ _ 10 KC 
a:: I ---BY INOSE'/" /~ 

~ -!~ ~ - - - - -7' /-- -- --/ 
o z 
o 30 
I-

....I 
<t 
Z 
(!) 

(j'j 

251(C 

50KC 

50 KC 

20~------~------~----~ 

20 200 2000 20,000 

MODULATING FREQUENCY IN CYCLES 

Figure 12c. ~~ SIN Ratio Using Four Filter 
Cutoff Frequencies. 

calculate the SIN ratio. The distortion analyzer 
has a bandwidth of 80 kc which had negligible 
effect on the SIN ratio of test signals. 

The exact value of M for this system is diffi
cult.to determine since the modulator saturates 
slowly and some judgment must be used in 
evaluating the maximum amplitude. Also most 
of the dIstortion resulting from mild saturation 
levels can be removed by sufficiently narrowing 
the demodulating filter. Saturation for these 
measurements was determined as follows. De, 
modulating filter cutoff was set to one tenth the 
bit rate and its output observed on a scope. The 

input level was redueed from obvious satura
tion until a continuous grass just formed across 
the 'top of the demodulated output. Using this 
method, M was found to be independent of bit 
rate, input frequency and of course filter cutoff. 
Belo,w a minimum value of integrator time 
constant, about 3T or 150 nsec (Fig. 12a) the 
saturation level decreases as T decreases, other
wise M is also independent of T; this arae in 
addition shows a poor SIN ratio. All other tests 
were performed at a time constant of 40T. 

It is noted that in most instances the meas
ured value of the SIN ratio is higher than the 

CD 
o 
~ 35 

o 
I-

~ 30 

w 
(f) 

(5 
Z 

~ 25 

....I 
<t 
Z 

40 
,./ 

Theoretical Value 
~-' 

./ 
,./ 

,./ 

2 MC BIT RATE 
50 KC FILTER CUTOFF 
- EXP. VALUE 
_ -- BY INOSE ,0 

~ 20 ,-I -----+1 -----It----+I ----+1 
.4 .6 .8 I.V 

INPUT VOLTAGE RATIO (M) 

Figure 12d. ~~ SIN Ratio Using Three 
Modulating Frequencies. 

CD 
0

40 

~ 

o 
~ 35 
a:: 

w 
(f) 

(5 
z 
o 30 
I-

....I 
<t 
Z 
(!) 

en 

100 CY MODULATING FREQ. 
M= 1/3 
-- EXP. VALUE 
- - - BY INOSE ,0 Theoretical 

\ \ . Values 
\ 

\ 
\ 

\ 3MC 

\ 
\ 
\ 

\ 

25 L--____ +-__ -'-~'---+-..:...;:..;'---_+_-
2KC 5KC 20KC 50KC 

FILTER CUTOFF FREQUENCY 

Figure 12e. ~~ SIN Ratio Using Four Bit Rates. 



310 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

theoretical prediction of Equation 3. For Fig. 
12b the values chosen were such as to be pro
portional to a similar plot given in Reference 
10 for which the experimental curve has the 
same shape, but is a few db below theoretical 
value. 

It is noted in Fig. 12c that the S/N ratio, as 
predicted by Equation 3, is independent of mod
ulating frequency except at the high end of the 
modulating range. In all cases the SIN ratio 
increases as the modulating frequency ap
proaches within four octaves of the filter cut
off frequency. This is not predicted by Equa
tion 3 but is anticipated from spectrum studies. 
Since the modulating frequency is always the 
lowest spectrum line more harmonics will be 
removed from the total noise content of the out
put ~s the fundamental frequency approaches 
the filter cutoff frequency. For a perfect filter 
only the fundamental and noise would be left 
when the fundamental is within one octave of 
the cutoff frequency. While the noise power is 
present across the entire filter bandpass, its 
level is very low for high bit rates (see Figs. 
13d, e, f). 

S/N ratio as a function of M is shown in Fig. 
12d. It is noted that the theoretical and experi
mental curves for low M follow quite closely 
over a wide range of modulating frequencies, 
falling off only above .6M. This result is 
derived theoretically 13 by consideration of a 
simplified modulating system so constructed 
that it may be analyzed mathematically. Simpli
fication is achieved by the elimination of the flip
flop from the feedback loop of the delta sigma 
system and removing one of the feedback lines. 
This results in the gated clock pulses being fed 
directly to the integrator input. The output of
the integrator then becomes a series of rectan
gular. pulses which can be expressed as a Fourier 
transform and multiplied by the demodulating 
filter frequency response function. Theoretical 
results obtained from this simplified system 
parallel quite closely the experimental results 
obtained from the Delta-Sigma system. 

Figure 12e shows the effect of varying the 
filter cutoff. While the theoretical and experi
mental curves tend to compare favorably at high 
cutoff frequencies, the SiN ratio falls off in
stead of continuing upward with continued de-

crease of the filter cutoff frequency as predicted 
by Equation 3. Figure 12c also illustrates this 
point for the 2 mc bit rate. 

PULSE-TRAIN SPECTRA AND 
FREQUENCY RESPONSE 

Spectrum studies were conducted on the flip
flop output. The test setup is shown in Fig. 11b. 
It was found necessary to impose a filter whose 
bandpass was slightly wider than the analyzer 
in order to prevent mixing of the spectrum at 
the analyzer input. The test procedure was 
simply to select a bit rate and sinusoidal modu
latin'g frequency and to measure the amplitude 
and frequency 9f the spectrum components at 
the filter output. The ratio of input voltage to 
maximum input, 1\1, as given in Equation 3 was 
maintained at about 0.8. 

Figures 13a to I shows pulse-train spectra for 
sinusoidal inputs plotted with frequency in kc 
and amplitude in mv. Besides the input fre
quency and some of its harmonics, other fre
quency components can be seen. The first few 
harmonics of the input frequency are often 
missing. As an example, with a 50 kc bit rate 
and a 20 kc filter cutoff the spectra for 1, 2, and 
4 kc inputs are shown in Figs. 13a, b, and c, 
respectively; spectra are plotted up to 16 kc, 
the analyzer limit. Note that the second har
me-nic is always missing. In Fig. 13a, most of 
the higher harmonics reappear, starting with 
the eighth. In Fig. 13b all harmonics above the 
first are suppressed with the appearance of a 
new frequency component halfway between 
each harmonic location. In Fig. 13c, the higher 
harmonics are present along with a new fre
quency component which is one quarter of the 
way between harmonics. A continuous noise 
spectrum is present for all but zero input; the 
noise level is a function of both modulating 
level and input frequency. This is assumed to 
be the result of intermodulation around the 
loop since there is no measurable output noise 
for zero input. The amplitude of the fundamen
tal was always exactly proportional to the input 
level, but the other spectrum lines increase and 
decrease as the input level is increased; a typi
cal result is shown in Fig. 14 for the spec
trum in Fig. 13b. Fig. 14a shows the amplitude 
of the fundamental frequency of 2 kc, which is 



A DELTA-SIGMA MODULATION SYSTEM FOR TIME DELAY / ANALOG STORAGE 311 

seen to be quite linear with input level, plus the 
next three spectrum lines resulting from the 
50 kc clock. Fig. 14b shows the amplitude of 
the final two spectrum lines obtainable with the 
test setup and the noise level as a function of 
input voHage. 

1000 

100 

'" 10 
I-
...J 

o 
> 0 
-
...J 400 
...J 

~300 

200 

100 

CJ 400 

16KC BIT RATE 
NO LATION 300 

32 KC BI T RATE 
1.5 KC MODULATION 

200 

h 400 

I KC 2KC 
MOOULATION 

300 
MOOULATION 

200 

100 

I 1 

10 15 0 10 15 

300 

2.5 KC MODULAnON hc MODULATION 

~IlLWJ 
10 15 0 5 10 15 0 5 10 15 

FREQUENCY IN KC 

Figure 13. Spectrum Study of Flip-flop Output. 

It was noted that spectra containing exclu
sively harmonjcs of the fundamental occur only 
when the bit rate is an integral multiple of the 
modulating frequency. The converse of this is 
not always true, however, as can be seen in 
Fig. 13b. 

Spectrum analysis was also performed for the 
2 me bit rate and 20 kc filter cutoff up to 16 kc. 
Under these conditions only harmonic frequen
cies of the fundamental were present. Typical 
spectra are shown in Figs. 13d, e, and f. For 
bit rates several orders of magnitude higher 
than the modulating frequency, the question of 
even division depends on the fourth and higher 
digits in the clock frequency, and these are sub
ject to random drift. Under these conditions 
only harmonics of the fundamental were ob
served. These amplitudes were much l'ess than 
that of the fundamental. 

Spectrums for low bit-rates are shown in 
Figs. 13g through 1. This allows the spectrum 
analyzer to cover more of the spectrum and 
gives a better insight into system operation. 
Figs. 13g, h, and i are for a 16 kc bit-rate in 
which the entire spectrum may be studied. In 
Fig. 13g there is no input and the main compo
nent is at one half the clock frequency as has 
been previously noted in Fig. 2. There is only 

200t 

lOOt 

I:'? 0 ~ 
51~ > 100 :: ~ 
~:f7'~ 
< 

~.::j~ 
.01-1 -===---t-----+------+------t--

o 25 .5 .75 1.0 

INPVT VOLTAGE RATIO 

Figure 14a. Spectral Line Amplitudes Versus M. 

~::~ 
> 

: 

200

1 UJ 100 
o 
::;) 
I- 0 
::; 
Q. 

~ 

~~:!~ 
o .25 .5 .75 1.0 

INPUT VOLTAGE RATIO 

Figure 14b. 

a small clock component and no measurable 
noise (note logarithmic millivolt scale). In Figs. 
13h and i the fundamental frequency evenly di
vides the clock frequency and all signal har
monic frequencies are present. Note that the 
amplitude of some harmonics are greater than 
the fundamental. 

A bit-rate of 32 kc is used for Figs. 13j, k, 
and I allowing half of the spectrum to be ob
served. In this case nonfractional modulating 
frequencies are shown. Fig. 13j has many of 
the harmonic frequencies missing and shows 
no pattern of recognizable order as compared 

8with the two spectrums to be described below. 
Fig. 13k has all signal harmonics present plus 
addi~tional frequencies four tenths of the way in 
between successive harmonics. Fig. 13-1 also 
has all harmonics present with the interven
ing space equally divided by two more spectral 
lines. Figs. 13k and I also show some spectrum 
lines with amplitudes above that of the funda
mental. 



312 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

CONCLUSION 

Providing time delay and memory in an 
analog computer opens up new classes of prob
lems which need to be solved. Simulations in
volving transport lags, correlation studies and 
communications problems require the fo.rmation 
of time delays. Iterative techniques for solving 
integral eqijations require analog function stor
age. 

The use of a magnetostrictive delay line for 
the storage medium is attractive because of the 
success this technique has had in digital com
puters. However, information must be intro
duced into this line in a digital manner. Al
though PCM is the most efficient method of 
digitizing, its equipment complexity and hi~!'h 

cost make it unattractive to small computer in
stallations. Delta sigma modulation, which en
codes an analog signal into a digital code, is an 
inexpensive technique which has excellent line
arity and good noise characteristics. Using this 
method of modulation in conjunction with a 
magnetostrictive delay line, 5 to 10 milliseconds 
delays may be obtained at 2 mc bit rates. The 
device will accommodate analog signals of up 
to 8 kc with phase shift below 2 degrees. The 
total dynamic error is within .2 per cent of half 
scale up to 1 kc. 

Magnetostrictive delay lines are limited at 
present to pulse rates of 5 mc. However, ad
vances which will be made in high speed digital 
storage techniques can be utilized for analog 
storage since the analog signal is encoded into 
digital form. This system, due to its fixed spac
ing of narrow pulses, also offers the possibility 
of multiplexing. That is, one delay line with its 
read-write circuitry could be used to store sev
eral analog functions. This would, however, 
bring back the problem of the use of precise 
timing circuits in order to separate the pulses 
belonging to e·ach analog function. 

APPENDIX 

Delta Sigma Modulator System Equations 

Consider the basic delta sigma modulator 
as shown ~n Fig. 1. The integrator output, (t) 
is given by 

d" 
dt E (t) == S (t) - F (t) (A-I) 

where S (t) is the input signal and -F (t) is 
the flip-flop output. Consider Equation A-I 
evaluated at t == nT where T denotes the clock 
period and n an arbitrary integer. 

:t E (nT) == S (nT) - F (nT) 

dt E (nT) may be approximated by 
dt 

hence, 

d[ (n + I)T] - dnT) 
T 

(A-2) 

E[ (n + 1)~] - dnT) == SenT) _ F(nT) 

(A-3) 
Now 

so 

F( T) -{ +Eo if (nT) ::::"'0 
n - -Eo if E(nT) <0 

E(nT) 
F(nT) == Eo I E(nT) , 

provided that 

E(nT) 
, dnT) I == 1 for dnT) == 0 

Rewriting Equation A-3, we find 

E(nT)T 
E[(n+l)T] -dnT) == T S(nT)-Eu 'dnT), 

(A-5) 

l]=TS(nT) 

(A-6) 

A-6 is the basic equation describing the behavior 
of the modified delta modula'tion system. Un
fortunately, the presence of the absolute value 
term (which has as its counterpart the compa
rator in the actual system) does not allow an 
analysis of the modulator on a linear system 
basis. However, Equation A-6 may be solved 
for specific inputs either on a digital com
puter,14 or by a step by step solution. 

BIBLIOGRAPHY 

1. KORN, G. A., New High-Speed Analog and 
Analog-Digital Computing Techniques: 
The ASTRAC System, Electronic Indus
tries, July 1962. 



A DELTA-SIGMA MODULATION SYSTEM FOR TIME DELAY / ANALOG STORAGE 313 

2. ECKES, H. R., and G. A. KORN, Digital Pro
gram Control for Iterative Differential 
Analyzers, ACL Memo No. 86, University 
of Arizona. 

3. KORN, G. A., High-Speed Iterative Analog
Digital Computation: The ASTRAC II 
System, ACL Memo No. 93, University of 
Arizona. 

4. KORN, G. A., Analog/Hybrid Storage and 
Pulse Modulation, IEEE Transactions;, on 
Electronic Computers, September 1963. 

5. KENNEDY, J. D., Representation of Time 
Delays in Huskey, H. D., and G. A. Korn, 
Computer Handbook, McGraw Hfll, 1962. 

6. JURY, S. H., Memory and Function Genera
tion in Analog Computers, Military Sys
tems Desi[ln, January 1962. 

7. DUNDON, T., Magnetosti-ictive Delay Lines 
for Digital Applications, Computer Design, 
January 1963 .. 

8. Hybrid Compute'r Course Notes, Electron
ics. Associates, Inc., Princeton' Computa
tion Center, Princeton, New Jersey. 

9. DE JAGER, Delta Modulation, A Method of 
PCM Transmission Using the One Unit 
Code, Phillips Res. Repts., Vol. 7, 1952. 

10. INOSE, H. Y., YASUDA and J. l\1URAKAMI, A 
Telemetering System by Code Modulation, 
IRE Transactions on Space Electronics and 
Telemetry, September 1962. 

11. STORER, J. E., Pass~ve Network Synthesis, 
McGraw Hill, 1957. 

12. HANDLER, H., Measurement of Phase Shift, 
IEEE TTansactions on Electronic Comput
e1'S, June 1963. 

13. INOSE, H., and Y. YASUDA, A Unity Bit 
Coding Method by Negative Feedback, 
IEEE Special Inte1'national Issue, Nov
ember 1963. 

14. TRIPP, J. S., A Deterministic Study of 
Delta Modul~tion, Kansas State University 
Bulletin, Special Report Number 17. 

ACKNOWLEDGEMENT 

The project described in this report is part 
of a hybrid analog-digital computer study di
rected by Professor G. A. Korn. The writers 
are very grateful to the Office of Aerospace Re
search, Information Research Division, Air 
Force Office of Scientific Research and to the 
Office of Space Sciences, National Aeronautics 
and Space Administration for their continuing 
support of this study under joint grant AF
AFOSR-89-63; and to Professors L. Matsch, 
Dean of Engineering and Harry Stewart, Head, 
Electrical Engineering Department, for their 
encouragement and contribution of University 
facilities. 





A COMPUTER-SIMULATED ON-LINE EXPERIMENT IN 
LEARNING CONTROL SYSTEMS 

J. D. Hill, G. J. McMurtry,.and K. S. Fu 
Control and Information Systems Laboratory 

School of Electrical Engineering 
Purdue University 
Lafayette, Indiana 

INTRODUCTION 

The structure of a learning control system 
combines digital memory and logic circuitry 
with an adaptive system. Data obtained 
through adaptation is stored (remembered) and 
later utilized to improve the system perform
ance. The learning control system will operate 
satisfactorily under changing environmental 
conditions in which an adaptive system fails to 
improve the performance. The general learning 
system operation is outlined in this paper and a 
simple experimental system which illustrates 
the improved performance is discussed. The 
example sys,tem is a second order plant in which 
the damping ratio and undamped natural fre
quency are considered to be affected by the en
vironment in a piecewise constant manner. The 
system was simulated on a GEDA analog com
puter and the memory and logic functions were 
supplied by an IBM 1620 through IBM 1711 and 
1712 analog .to digital and digital to analog 
equipment. 

LITURATURE SURVEY 

The words "learning system" and "self
organizing" appear frequently in the literature 
in the area of automata studies and artificial 
intelligence. Hawkins! has given an excellent 
review on self-organizing systems as well as an 
extensive bibliography, while Minsky2 has re
viewed various aspects of artificial intelligence 

315 

including hill-climbing, methods of classifica
tion for pattern recognition, reinforcement 
learning, problem solving machines and various 
other aspects of artificial intelligence. Nearly 
all of ,these systems utilize some form of mem
ory and do improve their performance with 
time. However, they require an off-line training 
period involving a human operator to judge 
whether or not their response to a given stim
ulus is satisfactory, i.e., they lack a bunt-in 
index of performance. 

A typical example of this is given by Gabor, 
Wilby and Woodcock3 who have constructed a 
universal nonlinear filter which will organize 
its internal parameters in such a way as to act 
as an optimum filter, prediotor, or simulator of 
an unknown mechanism, depending upon how 
it is trained. The important point is, however, 
that it must be trained by a human operator 
before it can function in the desired manner. 
This is typical of the general class of so-called 
learning or self-organizing pattern recognition 
machines. "Pandemoni urn," 4 "Perceptron," 5 

and "Adaline"6 are other pattern recognition 
devices with self-organizing capabilities. All, 
however, require off-line training by human 
operators. 

Thus, though some of the techniques which 
have been developed for pattern recognition and 
automata theory may be useful when applied to 
the learning control problem, there has as yet 



316 PROCEEDINGS SPRING JOINT COMPUTER CONFERENCE, 1964 

been very little direct application to control 
systems. 

In the hierarchy of automatic control systems, 
adaptive systems are more sophisticated than 
standard control systems. TruxaF gives a good 
general review of adaptive control systems 
while Mishkin and Brauns discuss several spe
cific examples. The next advancement beyond 
adaptive systems appears to be in the area of 
learning control systems. 

Krug and Letskii9 have suggested the use of 
a learning process for optimum control. In 
their paper they suggest that the optimum con
trol of slow but complex processes, such as 
chemical processes, might be found by a system
atic evaluation of input and output data and 
an index of performance. Probabilistic methods 
are suggested for organizing the memory for 
optimulll search procedure. The system as out
lined is very general and a human operator is 
left to make the final decision as to whether the 
control found by the so-called automaton is 
satisfactory. Only cursory attention is given to 
the possibility of replacing the human operator. 

A considerable effort has been directed to
ward the investigation of learning in automatic 
control systems at the Control and Information 
Systems Laboratory, School of Electrical Engi
neering, Purdue University. An informal in
troduction to learning control systems has been 
given by Fu.10 One of the specific systems in
vestigated at Purdue Universityll is discussed 
in this paper. 

Philosophy of Learning Cont-rol Systems 

The structure of a learning control system, 
as visualized at present, is distinguished from 
an adaptive system mainly in that in addi,tion 
to a conventional adaptive system the learning 
system has memory and logic. Data obtained 
through adaptation is stored and later utilized 
. to improve the system performance. Thus, 
whereas an adaptive system may take advan
tage only of its immediate past experience, a 
learning system is able to recall and use plant 
adjustment data obtained through adaptation 
while operating under similar environmental 
conditions in past time. An adaptive system 
will optimize a slowly time varying plant to a 
given index of performance (IP), often through 

a hill-climbing technique, by modifying the con
troller or plant parameters. Thus, if a sufficient 
range of parameters is available, the adaptive 
system will become optimum for a given index 
of performance. A basic constraint is that the 
plant should vary slowly enough that the adap
tive loop is able to track the minimum of the 
index of performance and maintain relatively 
constant performance. 

In some instances, the plant parameters vary 
so quickly that the adaptive loop cannot main
tain optimum performance although some adap
tive action does take place. This is one type of 
situation in which the learning system pro
posed by the authors may be applicable. Learn
ing systems of the type discussed also yield 
superior performance in systems with slowly 
varying parameters which change suddenly but 
are relatively constant between changes. The 
learning system would be designed so that it 
would store in memory a quantized measure of 
the plant parameters which are varying or of 
the environment causing the variation, the best 
index of performance obtained by the adaptive 
system, and the corresponding corrections nec
essary to obtain this performance. 

It is important to realize that the hill-climb
ing technique' used in the adaptive portion of 
the system may not converge to the minimum 
of the IP surface if the measurements of the IP 
are noisy. Thus all environmental parameters 
affecting the IP must be measured. Only if a 
separate hill-climb is performed for each com
bination of environmental parameters and all 
environmental parameters are considered will 
the IP surface be free of noise and the adaptive 
portion of the system operate properly. 

Thus when a previously occurring set of plant 
parameters is again encountered, the best 
learned corrections would be immediately set 
from memory and adaptation carried out from 
that point. The system would, of course, be de
signed so that the contents of the memory are 
continuously updated by storing the most recent 
best settings of the corrections. 

Assuming then, that the varying parameters 
may be quickly identified, and that the memory 
interrogation is faster than the adaptive action, 
the system performance, after sufficient operat-



A COMPCTER-SIMULATED ON-LINE EXPERIMENT IN LEARNING CONTROL SYSTEMS 317 

: : 
Figure 1. General Plant. 

ing time, would approach the optimum perform
ance. 

In the general learning sHuation the plant 
and plant parameters are shown in Fig. 1. In 
Fig. 1, e == (eh e2, ... , en) is the environment 
vector which is considered to be measurable but 
uncontrolled. It includes all plant inputs and 
environmental factors which cannot be changed 
in order to improve the IP. d == (dh d2, ••• ,dp ) 

is the plant parameter adjustment vector and 
includes plant inputs which may be changed in 
order to improve the IP. c == plant output vec
tor, and I is the plant index of performance. 

Now each component ei of the plant environ
ment vector e, corresponds to a separate en
vironmental or input variable such as tempera
ture, pressure, etc. 

For measurement purposes, each of these 
variables, ei, is assumed ,to be quantized into qi 
levels where the qi'S for different values of i 
(i == 1, .. ~, n) are not necessarily equal. Then 
the number N of possible different environment 
vectors e is 

n 

N == IT qi 

i==1 

e will thus be relabeled e == er; r == 1, 2, • . . , 
N when referring to the rth possible environ
ment. 

The index of performance, I, is considered to 
be a scalar function of er , d and c, i.e., 

I == f(e r , d, c) 

where c == F (er , d). Thus, for a given er , I has 
at most a single minimum as a function of d. I 
is then a p-dimensional hyper-surface in the 
adjustment parameters dj (j == 1, 2, . . ., p). 
There results, then, a p-dimensional hill-climb
ing problem corresponding to each different er • 

There are several methods of hill-climbing 
the d vector to the minimum of the IP surface, 
but the one chosen here is to hill-climb each 
component of d separately and sequentially, the 
best values of each of the p parameters being 
stored in memory corresponding to each er, 
along with the corresponding direction of in
crease or decrease in each parameter of d and 
the lowest value of I. The stored adjustment 
vector corresponding to er is labeled drM. (Su
perscript M indicates a stored or memorized 
parameter. ) 

The operation of the system is then as fol
lows. Upon recognition of the occurrence of er 
d is set to drM from a search of memory, and 
hill-climbing proceeds. The computer program 
should be arranged to facilitate a fast search of 
memory for previously occurring er. This may 
be implemented by programming the computer 
to search the most frequently occurring er's 
first. The program must also be capable of set
ting up new storage locations for er's which 
have not previously occurred. 

Now let us consider that a particular er 

occurs, given that it has previously occurred k 
times. Immediately drM (k) is set from memorv 
and parameter dj is to be adjusted, where: W 

j == k - a p .. These condi-

p::::::"j>O 

Then d{(k + 1) is adjusted to 

tions are ap
plied to indicate 
sequential na
ture of adj ust
ment of d/s as 
mentioned pre-

) viously. 

d{(k + 1) == d{M(k) + s{M(k) 6dj 

where 
6 dj == increment of dj 

S{M (k) == ± 1 (stored direction in which to 
increment d{M (k» 

Let us now consider the logic required to pro
gram the hill-climbing operation and the modi
fication of computer memory. Define 

m r(k + 1) _ {I for (Ir(k + 1)-IrM(k» L O} 
j - 0 for (Ir(k + 1)-IrM(k» > 0 

where 
Ir(k + 1) == I (er, dr(k + 1) 
IrM (k) == I (er, drY (k) ) 



318 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

The memorized compensation parameter then 
becomes 

d{M(k + 1) == d{ll(k) + 
m{(k + 1) s{M(k) 6dj 

The memorized compensation vector is given by 
drM (k + 1) == drY (k) - dj rll (k) + 

d{"AI(k + 1) 

where 
d{M (k) == (Oh O2, ••• OJ-h d{M (k), 

OJ+h ••• Op) 

d{M (k + 1) == (Oh O2, ••• OJ-h d{M (k + 1), 
OJ+ h ••. 01.) 

The memorized value of the index of perform
apce becomes 

IrM(k + 1) == IrM(k) + m{(k + 1) 
(Ir(k + 1) - IrM(k» 

and the stored direction in which to increment 
d{lI (k + 1) is given by 

s{M(k + 1) == - sgn [(Ir(k + 1) -
IrM(k» (d{(k + 1) - d{ll(k»] 

In the above development, all environmental 

u 

I 
T t 

parameters affecting the system are assumed 
to be measurable and measurement noise is 
neglected. All environmental parameters er 

are assumed to be constant during one hill
climbing step. In the experimental example the 
same assumptions were made except that er 

was assumed constant for four hill-climbing 
steps. 

Experimental System 

A learning system of the type discussed 
above with second order plant has been simu
lated on the IBM 1710-GEDA hybrid computer 
installation. The system was assumed to be 
subjected to a pseudo-random sequence of en
vironmental conditions which change the damp
ing coefficient and undamped natural frequency 
of the system at discrete intervals. The en
vironment was changed sufficiently often that 
purely adaptive action (i.e, hill-climbing on 
the IP surface) could not optimize the system 
during the period of constant environment. 

c 

I I 
r ----J .--------.1 

~--

10-__ .... ___ 

L ~--.-------------------=--=--=-:-====--=--=--=--=-

I 
I 

AnaIoc) to I 
di9tol I 

conve, .. 1 
I 
I 
I 

Figure 2. Experimental Learning System. 

Divital 

Compute, 



A COMPCTER-SIMULATED ON-LINE EXPERIMENT IN LEARNING CONTROL. SYSTEMS 319 

The system was subjected to a fixed amplitude 
square wave input in order to facilitate the 
computation of an index of performance of the 
quadratic type. In the plant, as shown in Fig. 
2, el and e2 are environmental parameters 
which are constrained to remain constant over 
two periods of the square wave input. Thus, at 
each occurrence of an (eh e2) pair four compu
tations of the IP are carried out, one at each 
transition of the square wave .. After each com
putation of the IP, the compensation param
eters dl and d2 are adjusted by a two-dimen
sional hill-climbing technique described above 
in order to minimize the performance index. 
Memory is used to store the current best values 
of dl and d2 for a given set of (eh e2) values, 
as well as the directions in which dl and d2 
were being adjusted, and the best value of the 
IP found previously. Thus when a previously 
occurring (et, e2) pair reoccurs, the best values 
of dl and d2 are set from memory and the best 
direction to increment dl and d2 is known. 
Adaptation then proceeds and the latest values 
of the best d1 and d2, direction and IP replace 
the old values in memory. 

For the particular system under investiga
tion, el and e2 were each allowed to take on five 
different values, Le .• ql - (12 == 5. Thus twenty~ 
five different (et, e2) combinations were possi
ble. In order to simulate the limitations on 
computer memory capacity, only the sixteen 
most probable (eh e2) combinations were al
lowed to have corresponding dh d2, etc. data 
stored with them. In this system no compensa
tion or hill-climbing took place on the nine least 
probable (eh e2) combinations. Probabilities 
were computed by counting occurrences of (et, 
e2) pairs and a continuous check was made for 
the 16 most probable. In the hill-climbing tech
nique, the increments used for changing dl and 
d2 were of fixed size and were not reduced even 
after learning was essentially complete. 

The changes in el and e2 were generated by 
storing in memory a pseudo-random sequence 
of (eh e2) pairs two hundred long. The (eh e2) 
pairs were set from memory on the digital pots 
just prior to the square wave transition and the 
sequence of (eh e2) pairs repeated after each 
two hundred values (fifty different (eh e2) 
pairs since each pair was repeated at least four 
times in a row) . 

The performance index (IP) used was of the 
form 

T 

IP == I-=-- f (Yl £2 + Y2 X22 + Ya u2) dt 

o 
where £, X2, U are as defined in Fig. 2, and Yh Y2, 
Y:kmay be changed as desired. In this example, 
the parameter el was allowed to take on the 
values 4, 5, 6, 7, or 8 and e2 to have the values 
20, 30,40, 50 or 60. 

An outline of the digital computer program 
and flow diagram for the system under consid
eration are given in Appendix A. 

DiscuSsion of Results 

An investigation of the IP surface, for the 
particular system and performance indices 
under investigation, was carried out. The sys
tem may be redrawn as shown in Fig. 3 if we 
let a == el + d1 and b == e2 + d2. Let the input 
R (s) be a step input of amplitude A. Then 

A 
R(s) 

s 

A(s + a) 
£(s) == 0 2 I ... "" I 'h 

~ ,Q"'TIJ 

A 
X2 (s) == S2 + as + b 

As 
u (s) == S2 + as + b 

For an index of performance given by 
00 

I == f (YI £2 + Y2 X22 + ya u2
) dt 

o 

c(s) 

Figure 3. Simplified System Block Diagram. 



320 PROCEEDINGS-SPRING JOINT COMPUTER CONFERE~CE, 1964 

Parseval's theorem yields 
jco 

1==_1_ f (-'II [ds) d-s)] + 
21rj 

-jco 

)'2 [X2 (s) X2 (-s)] + )'3 [u (s) U (-s)]} ds 

Aft~r some manipulation, the integrand be
comes 

A2()'1 + )'3) 

[
s + -),-2-+-a-2-),I] [_ s + )'2 + a2 )'1] 

)'1 + )'3 )'1 + )'3 

(S2 + as + b) (S2 - as + b) 

The IP may be evaluated from standard tables12 

to yield 

I 
_ A2[b()'1 + )'3) +)'2 + a2 

)'1] 

- 2ab 

Then for given )'h ),2, and ),s, contours of IP 
may be plotted in the (a, b) plane. 

I I 

\ 

1"---
60 

For the performance index used in this exam
ple 

)'1 == 0, )'2 == 1, ),a == 1 

Thus 

I 
_ A2 [b + 1] _ k[b + 1] 
- 2ab - ab 

The constant IP contours for this perform
ance index are shown in Fig. 4 for k == 1.0. 
We note that for this case, the index of per
formance is very insensitive to e2 + d1 == b but 
very sensitive to el + d l == a. This theoretical 
conclusion was verified experimentally as may 
be seen from the trajectories plotted in Fig. 4 
for several (eh e2) values. The system trajec
tories required approximately two and one
half hours operation to reach the points indi
cated. The hill-climbing was not completed at 
this stage but the time was sufficient to illus
trate that the system was learning. In this 

I I I 

l.P. -0;'01 

2.!5 hr. corr.ponds to 0 level on Fi9. 3.!5 

+ 

• o 

40 

"---
20 

r-

~ 
~ 

o 
o 

j/ 
·.t=0 

/' 

t =Z.5hr 
1.0 hr. corresponds to C level on Fi,. 3.!5 

I:l
Z
•
5
"', 8 level corr,sponds to 8 lev,1 ( .. adaptive 

.'f\. steps) on FiV. 3. !5 
0.03 

t·"o:·~~ '-. -
~""O" . 

~" 
\.t:lI.OIw. O.O~ 

~ 
.' ~/ - - Hillel .. ", 

// 
Trajectory 

.' 0.10 

~~ ..!..1.v.1 
t:o? .i:Q LQ. . 0.2!5 

'\. " 0.5 

40 80 120 160 200 

Figure 4. Index of Performance for I = k (bat 1) 



A COMPCTER-SIMULATED ON-LINE EXPERIMENT IN LEARNING CONTROL SYSTEMS 321 

60 

3 

IP. = 1 [X~ + U
2 

] dt 
0 

LEVEL A - INITIAL PERFORMANCE 

LEVEL B - AFTER 4 ADAPTIVE STEPS 

LEVEL C - AFTER I HOUR OPERATION 

LEVEL D - AFTER 2.5 HOURS OPERATION 
~ 

40 
ILl B 
0 
Z 
<{ 

:IE 
a:: 
0 
IL. 
a:: 
ILl 
a.. 
IL. 
0 20 

x 
ILl 
0 

~ 

Environment 

probability.06 

~ 40~ 
z 
<{ 

:IE 
a:: 
o 
IL. 
a:: 
ILl 
a.. 
IL. 

o 20 
x 
ILl 
o 
Z 

o 

r 
-

-

A 

-06 

A A A 

A 

.06 -06 ·06 .04 

3 

I. P. = f [x~ + u2 
] dt 

o 

ilr A CD ~ ~ ~ 

~ 
I 

A 

B 

.04 

1 

A A A 

A A 
A 

B B 

( ~ ) ( :0) (:: ) 
.04 -04 _04 .04 .04 .06 probability 

LEVEL A - INITIAL PERFORMANCE 

LEVEL B - AFTER 4 ADAPTIVE STEPS 

LEVEL C - AFTER I HOUR OPERATION 

LEIiEL 0 - AFTE" 2.5 HOURS OPERATlO~ 

~ 
-

~D 
~ ~ ABeD 

~ 

n I-r--

I 
1.-

la 
I 

I I I I I I I 

Environment (:~)(560) (6~) (2
7
0) (;0) (:0) (;0) (:0) (2

8
0) (~o) (:0) (5~) (:0) (:~) 

probability .02 .02 .02 .02 .02 -06 .02 .02 .02 .04 .02 .06 probability 

Figure 5. Learning System Performance. 

length of time the IP decreased by a factor of 
approximately six. The improvement in IP for 
each different (eh e2) pair may also be seen 
from Fig. 5, which was plotted from computer 
type-out data as discussed in Appendix A. Note 
the IP scale in Fig. 5 was not normalized as are 
the contours in Fig. 4. It is noted that this 

particular performance index becomes zero as 
a ~ 00, b ~ 00, and does not have a particular 
minimum. Thus after sufficient operating time, 
the d1 and d2 adjustments would simply reach 
the maximum values allowed for in the system 
design (100 and 1000 respectively). It appears 
that the IP is zero for b == -1 but this value 



322 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

of b invalidates the derivation for the IP since 
Parseval's theorem is valid only for asymp
totically stable systems. 

Fig. 5 is a plot of IP versus (eh e:!) pairs for 
the index of performance investigated. Four 
points are plotted for each (eh e2) pair corre
sponding to four different times in the learning 
process. Level A represents the IP measured 
before compensation. The particular sequence 
of (eh e2) pairs given in this test was such that 
the first twenty-five pairs seen by the system 
were all different (from left to right as plotted 
in Fig. 5). After all twenty-five pairs occurred 
once, the order of occurrence was no longer the 
same. Level B represents the IP for each pair 
after the first four adaptive steps for each 
(eh e2)' The first sixteen (eh e2) pairs seen by 
the system were compensated initially and in
formation was stored. The last nine, in order 
of first appearance, had no information initially 
stored, and thus showed no improvement. 

Level C represents the IP after approxi
mately one hour of running. Here it is seen 
that the system had determined the sixteen 
(eh e2) pairs occurring most frequently (most 
probable) and had continuously learned on 
them. The nine least probable pairs had not 
improved from their initial values. 

Level D represents the IP at the conclusion 
of the test for each pair. Here again, of the 
sixteen most probable, the ones with highest 
probability learned faster. Of course adapta
tion would normally be carried out on all (eh 
e2) pairs and not just on the 16 most probable. 

The learning system then operates as an 
adaptive system when a given (eh e2) pair or 
environment first occurs, but has the capability 
of utilizing past information about the best 
compensation parameter setting when a previ
ously occurring environment reoccurs. In this 
case, given sufficient operating time, the learn
ing system is capable of reducing the index of 
performance to the minimum possible value for 
the 16 most probable (eh e2) pairs (environ
mental conditions) even though the environ
ment is changing so rapidly that an ordinary 
adaptive system would fail to improve the index 
of performance significantly. 

Concluding Rema'rks 

Several particular problems currently under 
investigation are the application of stochastic 
approximation techniques1:i,H,lii to hill-climbing 
when the IP surface is disturbed by noise due 
to unmeasurable environmental parameters and 
the application of pattern recognition tech
niques to measurements of the IP surface in 
order to increase the rate of learning. Present 
studies are also concerned with methods of 
quantizing the environment parameters to yield 
efficient learning operation subject to the con
straint of finite computer memory capacity. 

The principle of learning outlined in this 
paper, that is, partial hill-climbing of the IP 
surface at each occurrence of a particular en
vironment and memorization of the best com
pensation found for that environment, seems 
to be a relatively simple idea; and yet, as illus
trated by the example, it yields great improve
ment in the system performance over that for 
a simple adaptive system. It is felt that this 
concept of learning control is particularly ap
plicable to process control. 

Acknowledgement 

The authors wish to thank Dr. J. E. Gibson 
for his stimulating discussions. This work is 
in part supported by the Research Contract 
AF AFOSR 62-351 and National Science Foun
dation Grant G-14609. 

APPENDIX 

Description of the Computer Program 

The flow diagrams shown in Figs. 6, 7, and 8 
illustrate the system logic and timing. A more 
detailed examination follows: 

1. The (eh e2) values were punched on cards 
and stored in memory at the beginning of the 
program. The program did not take advantage 
of this fact in determining the probability of 
each (eh e2) pair. 

2. The type-out of results was controlled 
manually by the computer operator by means 
of a Program Switch. If the switch was on and 
a cycle of 200 (eh e2) values had been com
pleted, the type-out was performed, except at 
the beginning of the program where type-out 
was performed after the first 100 (eh e2) values. 



A COMPCTER-SIMULATED ON-LINE E:JPERIMENT IN LEARNING CONTROL SYSTEMS 323 

Figure 6. Flow Diagram (Part I). 

Figure 7. Flow Diagram (Part II). 



324 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

CHANGE DIRECTION 

OF dj INCREMENT 

Figure 8. Flow Diagram (Part III). 

3. When 105 (eh e2) values had occurred, the 
total number of recorded occurrences of each 
(eh e2) pair was divided by ten and a counter 
was reset to count the next 10 5 values. Then 
each new occurrence of a particular (eh e2) 
pair caused the number of recorded occurrences 
for that (eh e2) to be increased by one. Thus 
the more recent occurrences were weighted 
more heavily. 

4. When a new pair, (eh e2), was selected, it 
was compared to the previous pair, (eh e2)i-l' 
If they were the same, the search procedure for 
(eh e2) and its information was bypassed, since 
the location of information for (eh e2L was the 
same as for (eh e2)i-l' . As shown in 8 below, an 
indicator was placed in memory for each (eh 
e2) pair showing which d j was operated on 1ast. 
Then the program would operate on the other 
d j when that (eh e2) pair occurred again. In 
order for the program to operate on the same d j 

when an (eh e2) pair occurred twice or more in 
a row, the indicator was changed when (eh e2)i 
was determined to be the same as (eh e2)i-l. 

5. If (eb e2)i =1= (eb e2)i-h then memory was 
searched to see if el had ever occurred previ
ously. Next e2 was checked for previous ocur
rence. Then (eh e2) i was assigned an address 

. where information was stored concerning its 
probability and location of index of perform
ance and compensation information. The prob
ability was incremented next (actually the num
ber of recorded occurrences for (eh e2) i was 
increased by one) . 

6. At this point memory was organized so 
that only the sixteen most frequent (eh e2) 
.pairs had compensation information stored. If 
(eh e2) i had no information stored, then d1 and 
d2 were set to zero. 

7. The following information was stored for 
the sixteen most probable (eh e2) pairs: 

a) whether d] or d2 was operated on most 
recently 

b) the value of d j (j == 1,.2) that resulted 
in the best (lowest) IP value 

c) the slope (direction of change) for d j 

(j == 1, 2) 
d) the sign of d j (j == 1,2) 
e) the best previous value of IP. 

8. If information was stored for (e], e2) h the 
program next determined from an indicator 
which d j was operated on last. Assume this was 
d1• The stored value of d1 was then set, and 
operations commenced on d2. The indicator was 
then set to show that the program acted on d2 
last (see 4 above). Next, the slope was deter
mined. 

a) If the slopE! was positive, the program 
added the standard increment, fj, d, to d2 and 
the sum was compared with 9999, since this 
was the maximum setting on the digital po
tentiometer. If the sum was greater than 
9999, then d2 was set to 9999. If not d2 was 
set equal to the sum in question. 

b) If the slope was negative, and d2 was 
greater than fj,d, then fj,d was subtracted 
from d2. If d2 was less than fj, d, the sign of 
d2 was changed and the magnitude of d2 was 
not changed. The sign of d j was made nega
tive or positive, respectively, by switching an 
amplifier in or out of the feedback loop (see 
Fig. 2). If the sign was negative the ampli
fier was in, thus yielding a subtractive cor
rection. 



A COMPUTER-SIMULATED ON-LINE EXPERIMENT IN LEARNING CONTROL SYSTEMS 325 

c) Note that the previous values of d1 and 
d2 were left in memory. The new d j were 
stored later only if the new IP to be meas
ured was lower than the previously stored 
value of the IP (see 13 below). 

9. The proper values of e}, e2, d1 and d2 were 
then set on the analog computer and the IP 
integrator was set for integration. 

10. The step input was generated next, using 
a comparator on the GEDA. A delay followed, 
during which the IP was computed. At the end 
of the delay, the IP was measured and the IP 
integrator was disconnected and reset to zero. 

11. If no information was stored for (et, e2)h 
the system had completed the cycle and the next 
(eh e2) pair was obtained. 

12. When information was stored for (et, 
e2) h and if the measured IP was greater than 
the stored best previous IP, then the slope indi
cator was changed on dj , so that dj would be 
incremented in the opposite direction the next 
time the same (eh e2) pair occurred. If the 
slope of dj was changed two consecutive times, 
then the present measured value of IP was 
stored and d] and d2 were not changed in mem
ory. This procedure was implemented to allow 
for the possibility that an erroneously low value 
of IP was stored due to any random noise pulses 
introduced into the system at some previous 
time. If the slope of dj had not changed twice 
consecutively, only the slope indicator was 
changed in memory and the system had com
pleted the cycle. 

13. If the measured value of IP was lower 
than the stored value, then the measured value, 
along with the present d1 and d2 values, were 
placed in memory and the cycle was complete. 

References 

1. J. K. HAWKINS, "Self-Organizing Systems 
-A Review and Commentary," Proc. of 
the IRE, Vol. 49, No.1, January, 1961. 

2. M. MINSKY, "Steps Toward Artificial In
telligence," Proc. of the IRE, Vol. 49, No.1, 
January, 1961. 

3. D. GABOR, W. P. L. WILBY, and R. WOOD
COCK, "A Universal Nonlinear Filter, Pre
dictor and Simulator which Optimizes It
self by a Learning Process," lEE Proc., 
Vol. 108, Part B, 1961, p. 422. 

4. 0.· G. SELFRIDGE, "Pandemonium: A Para
digm for Learning," Proceedings of the 
Symposium on Mechanization of Thought 
Processes, National Physics Laboratory, 
Teddington, England, Her Majesty's Sta
tionery Office, London, Vol. I, pp. 513-531, 
1959. 

5. F. ROSENBLATT, "The Perceptron, A The
ory of Statistical Separability in Cognitive 
Systems," Cornell Aeronautical LaDora
tory, Tr. No. VG-1196-6-1, January, 1958. 

6. B. WIDROW, "Pattern Recognition and 
Adaptive Control Symposium and Panel 
Discussion on Discrete and Adaptive Proc
esses," JACC, June, 1962. 

7. J. G. TRUXAL, "Adaptive Control," Pro
ceedings of the International Federation of 
Automatic Control, 1963. 

8. E. MISHKIN and L. BRAUN, "Adaptive Con
trol Systems," McGraw-Hill, 1961. 

9. G. K. KRUG and E. K. LETSKII, "A Learn
ing Automaton of the Tabular Type," Au
tomation and Remote Control, Vol. 22, No. 
10, March, 1962. 

10. K. S. Fu, "Learning Control Systems," 
COINS Symposium, June 17-18, 1963, 
Evanston, Illinois. 

11. J. E. GIBSON, K. S. Fu. et aI., "Philosophy 
and State of the Art of Learning Control 
Systems," Report TR-EE63-7, CISL, Pur
due University, November, 1963, AFOSR-
5144. 

12. H. M. JAMES, N. B. NICHOLS, and R. S. 
PHILLIPS, "Theory of Servomechanisms," 
pp. 369-370, McGraw-Hill, 1947. 

13. H. ROBBINS and S. MUNRO, "A Stochastic 
Approximation Method," Annals of Mathe
matical Statistics, Vol. 22, 1951, pp. 400-
407. 

14. J. KIEFER and J. WOLFOWITZ, "Stochastic 
Estimation of the Minimum of a Regres
sion Function," Annals of Mathematical 
Statistics, Vol. 23, 1952, pp. 462-466. 

15. H. J. KUSHNER, "Hill-Glimbing Methods 
for the Optimization of Multi-Parameter 
Noise Disturbed Systems," Trans. of 
ASME, Series D, Jour. of Basic Engineer
ing, Vol. 85, No.2, June, 1963. 





A HEURISTIC PROGRAM TO SOLVE 
GEOMETRIC-ANALOGY PROBLEMS 

Thomas G. Evans 
Air Force Cambridge Research,Laboratories (OAR) 

Bedford, Massachusetts 

INTRODUCTION 

The purpose of this paper is to describe a 
program now in existence which is capable of 
solving a wide class of the so-called 'geometric
analogy' problems frequently encountered on 
intelligence tests. Each member of this class of 
problems consists of a set of labeled line draw
ings. The task to be performed can be concisely 
described by the question: 'figure A is to figure 
B as figure C is to which of the given answer 
figures?' For example, given the problem illus-

A B c 

I . I 

I~I 
I I 

~ 

Figure 1. 

trated as Fig. 1, the geometric-analogy program 
(which we shall subsequently call ANALOGY, 
for brevity) selected the problem figure labeled 
4 as its answer. It seems safe to say that most 
people would agree with ANALOGY's answer 
to this problem (which, incidentally, is taken 
from the 1942 edition of the Psychological Test 

327 

for College Freshmen of the American Council 
on Education). Furthermore, if one were re
quired to make explicit the reasoning by which 
he arrived at his answer, prospects are good 
that the results would correspond closely to the 
description of its 'reasoning' produced by 

ANALOGY. 

At this point, a large number of questions 
might reasonably be asked by the reader. Four, 
in particular, are: 

(i) vVhy were problems of this type chosen 
as subject matter? 

(ii) How does ANALOGY go about solving 
these problems? 

(iii) How competent is ANALOGY at its sub
ject matter, especially in comparison to human 
performance? 

(iv) \Vhat has been learned in the construc
tion of ANALOGY and what implications might 
this study have for the further'development of 
problem-solving programs in general? 

The remainder of this paper constitutes an 
attempt to answer these questions in some de
tail. \Ve first deal with a variety of motivations 
for this investigation and attempt to place it in 
the context of other work in related areas. Next 
we turn to detailed consideration of the problem 
type and of the mechanism of the ANALOGY 
program. Finally, we present some answers to 



328 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

the remaining two questions raised above. (A 
more detailed discussion of all these issues can 
be found in Ref. 1). 

M otivaUons and Background 

In our opinion ample general justification for 
the development and study of large heuristic 
problem-solving programs has been provided 
(both through argument and through example) 
by previous workers in this area. We shall not 
attempt to add to it. Given that one is inter
ested in the construction of such programs, a 
number of reasons can be advanced for the 
choice of geometric-analogy problems as a suit
able subject matter. Some of these are: 

(i) Problems of this type require elaborate 
processing of complex line. drawings: in par
ticular, they require an analysis of each picture 
into parts and the determination and use of 
various relationships among these parts. This 
is an interesting problem per se and one which 
can reasonably be expected to be of great prac
tical importance in the near future. 

(ii) The form of the problems requires one to 
find a transformation that takes figure A into 
figure B and takes figure C into exactly one of 
the answer figures. This situation provides a 
natural opportunity for trying out certain ideas 
about the use of explicit internal 'descriptions' 
(here, of both figures and transformations) in 
a problem-solving program. Furthermore, more 
speculatively, it presents an interesting para
digm of 'reasoning by analogy,' a capacity 
which may playa large role in far more sophis
ticated problem-solving programs in the future. 
(In Section 5 we discuss the possible relevance 
of ANALOGY to the introduction into problem
solving programs of more powerful learning 
mechanisms than have yet been achieved.) 

(iii) Problems of this type are widely re
garded as requiring a considerable degree of 
intelligence for their solution and in fact are 
used as a touchstone of intelligence in various 
general intelligence tests used for college ad
mission and other purposes. This suggests a 
non-trivial aspect of any attempt to mechanize 
their solution. 

We shaD now attempt very briefly to place 
ANALOGY in the context of earlier work in re-

lated areas. Two aspects of ANALOGY must 
be considered: 

(i) ANALOGY contains a substantial amount 
of machinery for the processing of representa
tions of line drawings, including decomposition 
into subfigures, calculation of relations between 
figures, and 'pattern-matching' computations. 
Thus we must relate it to other work in picture 
processing and pattern recognition. 

(ii) ANALOGY is a complex heuristic prob
lem-solving program, containing an elaborate 
mechanism for finding and 'generalizing' trans
formation rules. Thus we must relate it to other 
work on the development of problem-solving 
programs. 

We turn first to the picture-processing aspect. 
The essential feature of the treatment of line 
drawings by ANALOGY is the construction, 
from relatively primitive input descriptions, of 
more 'abstract' descriptions of the problem fig
ures in a form suitable for input to the rule
finding program. The fundamental program
ming technique underlying this method is the 
use of a list-processing language, in this case 
LISP,2,3 to represent and process the figures in 
question. Work in picture processing, for pat
tern-recognition purposes, involving some ele
ments of description, is found in Grimsdale et 
al.;t Marill et al.,ri and Sherman/i among others. 
Sutherland 7 and Roberts R have used, for quite 
different purposes, internal representations of 
line drawings similar in some respects to those 
used in ANALOGY. Kirsch 9 has worked with 
complex line drawings primarily as a vehicle 
for programs involving the analysis of English
language sentences pertaining to such pictures. 
Hodes 10 and Canaday 11 have used LISP expres
sions for figure description in much the same 
way that we have, though the development of 
machinery for manipulating such descriptions 
was, of necessity, carried much further in 
ANALOGY. Evidently the first advocacy of 
'scene description' ideas (for use in pattern 
recognition) occurs in Minsky.l:! 

To place ANALOGY with respect to other 
work with problem-solving programs, we shall 
simply list a number of developments in the con
struction of problem-solving programs which 
have influenced, in a general way, our approach 
to the design of ANALOGY. These include LT 



A HEURISTIC PROGRAM TO SOLVE GEOMETRIC-ANALOGY PROBLEMS 329 

(the Logic Theorist) Ii! and, more recently, GPS 
(the General Problem Solver) 14 of Newell, 
Simon, and Shaw, the plane-geometry theorem
prover Jr; of Gelernter and Rochester, and 
SAINT, the formal integration program of 
Slagle.w 

Summary of the Solution Process, 
with Example 

To exhibit as clearly as possible the entire 
process carried out by ANALOGY, we now 
sketch this process, then examine its operation 
on an example. The sample problem we shall be 
considering is shown as Fig. 2 (where the Pi's 
are not part of the problem figures but labels 
keying the corresponding parts of the figures to 

A B 

I 2 3 4 5 

~~~!3Jrl 
Figure 2.

expressions we shall give below). Before treat
ing the example, we shall summarize the entire
solution process. Given a problem such as that
above, ANALOGY proceeds as follows: First,
the input descriptions of the figures are read.
Currently these descriptions, given as LISP ex
pressions in a format to be illustrated below,
are hand-made; however, they could well be
mechanically generated from scanner or light
pen input by a relatively straightforward, quite
'unintelligent' program embodying line-tracing
techniques already described in the literature.
The descriptions represent the figures in terms
of straight line segments and arcs of circles Xto
any desired accuracy, at the cost of longer and
longer expressions). Examples of the descrip
tions are given below.

The first step taken by ANALOGY is to de
compose each problem figure into 'objects' (sub
figures). The decomposition program originally
written, which was sufficient to handle many

Figure 3a.

cases, including ,the example to be discussed be
low, was quite simple. It merely separated a
problem figure into its connected subfigures;
e.g., figure A of the above example consists of
the three objects labeled PI, P2, and P3. It
later became desirable to have a more sophisti-

Figure 3b.

cated decomposition program with, in particu
lar, the capability of separating overlapped
objects on appropriate cues. For example, sup
pose problem figure A is as in Fig. 3a and figure
B is as in Fig. 3b. The decomposition program
should be able to separate the single object of
figure A into the triangle and rectangle on the
basis that they appear in figure B, from which
point the remaining mechanism of parts I and
II could proceed with the problem. While a de
composition program of the full generality de
sirable has not yet been constructed, the most
recent version of the program is capable, in par
ticular, of finding all occurrences of an arbi
trary simple closed figure x in an arbitrary
connected figure y; for each such occurrence the
program can, if required, separate y into two
objects: that occurrence of x and the rest of y
(described in the standard figure format-note
that this 'editing' can be rather complex: con
nected figures can be split into non-connected
parts, etc.).

330 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

The type of decomposition illustrated above
might be called 'environmental,' in that, e.g.,
figure A is separated into subfigures on the in
formation that these subfigures are present,
already separated, in figure B. An interesting
extension to the present part I of ANALOGY
might be to incorporate some form of 'intrinsic'

Figure 4a.

decomposition in which 'most plausible' decom
positions are generated according to Gestalt
like criteria of 'good figure.' Such an extension
could widen the problem-solving scope of
AN ALOGY considerably to include many cases
where the appropriate subfigures do not appear
already 'decomposed' among the problem fig
ures. For example, suppose problem figures A
and B are as shown in Figs. 4a and 4b, respec-

o
Figure 4b.

tively. A decomposition into the square, trian
gle, and circle seems necessary to state a rea
sonable transformation rule. This example, in
cidentally, illustrates one potentially useful
'intrinsic' decomposition heuristic: roughly,
choose decompositions into subfigures which
have as much internal symmetry (in some pre
cise sense) as possible.

Next, the 'objects' generated from the decom
position process are given to a routine which
calculates a specified set of properties of these
objects and relations among them. The program
is designed so that this set can be changed
easily. As a sample of a relation-calculating
subroutine, we cite one that calculates, for fig
ure A of our example, that the object labeled
P2 lies inside that labeled P3 and generates a
corresponding expression (INSIDE P2 P3) to
be added to the part I output description of fig
ure A. The method used involves calculating all
intersections with P3 of a line segment drawn
from a point on P2 to the edge of the field (all
figures are considered as drawn on a unit
square). In this case P2 lies inside P3 since the
number of such intersections is odd, namely one
(and P3 is known to be a simple closed curve
if it were not, the calculation just described
would be performed for each closed curve con
tained in P3). To do this, a substantial reper
toire of 'analytic geometry' routines is required
for part I, to determine, for example, intersec
tions of straight line segments and arcs of
circles in all cases and combinations. Other re
lation routines available in part I calculate, for
example, that in figure A of our example PI
is above P2 and P3 and in figure B that P4 is to
the left of P5.

The principal business of part I, aside from
decomposition and the property and relation
calculations, is a set of 'similarity' calculations.
Here, part I determines, for each appropriate
pair of objects, all members from a certain class
T of transformations which carry one object of
the pair into the other. The elements of Tare
compositions of Euclidean similarity transfor
mations (rotation and uniform scale change)
with horizontal and vertical reflections. Given
descriptions of virtually any pair of arbitrary
line-drawings x and y, the routines of part I
will calculate the parameters of all instances of
transformations from T that 'map' x into y.

A HEURISTIC PROGRAM TO SOLVE GEOMETRIC-ANALOGY PROBLEMS 331

More precisely, an acceptable 'map' is a member
of T for which T (x) is congruent to y up to
certain metric tolerances which are parameters
in the corresponding programs.

This routine is, in effect, a pattern-recogni
tion program with built-in invariance under
scale changes, rotations, and certain types of
reflections. It consists essentially of a topologi
cal matching process, with metric comparisons
being made between pairs of lines selected by
the topological process. In Ref. 6 Sherman in
troduced some topological classification into a
sequential decision tree program for the recog
nition of hand-printed letters, but the notion of
systematically usi~g the topological informa
tion to determine which metric comparisons ~re
to be made seems to be new. This type of organ
ization for pattern recognition has its own ad
vantages (e.g., flexibility-the metric parts can
be changed easily with no effect on the overall
structure) and difficulties (e.g., sensitivity to
metrically small changes in a figure which affect
the connectivity-but this sensitivity can be
largely removed by suitable pre-processing).
Incidentally, it may be worth noting that if we
suppress the metric comparisons entirely we
get a general, and reasonably efficient, topo
logical equivalence algorithm for graphs (net
works) .

The set of techniques we have just been
describing, based on the use of a list-processing
language to perform processing of line drawings
by manipulating their list-structured descrip
tions, is by no means limited in applicability to
the uses to which we have put it in part I of
ANALOGY. To the contrary, it is our view that
the representation of line drawings used here
and the corresponding processing routines form
a suitable basis for the development of a quite
powerful 'line-drawing-manipulation language'
with potential usefulness in a wide variety of
applications. Regardless of whether the present
investigation turns out to have a measurable
influence on the art of designing problem-solv
ing programs, it seems probable that the prin
cipal short-range contribution of ANALOGY
is in the picture-processing by-products just
described. (Incidentally, these techniques were
discussed briefly from an ANALOGY-independ
ent point of view in Ref. 17.)

After the similarity information is computed
for every required pair of objects, both within
a problem figure and between figures, this in
formation, together with the decomposition and
property and relation information, is punched
out on cards in a standard format for input to
part II. (For a typical set of figures, the total
output of part I, punched at up to 72 columns/
card, might come to 15 to 20 cards.)

Part II is given these cards as input. Its
final output is either the number of the solution
figure or a statement that it failed to find an
answer. Its first step is to generate a rule (or,
more frequently, a number of alternate rules)
transforming figure A into figure B. Such a
rule specifies how the objects of figure A are
removed, added to, or altered in their properties
and their relations to other objects to generate
figure B. Once this set of rule possibilities has
been generated, the next task is to 'generalize'
each rule just enough so that the resulting rules
still take figure A into figure B and now take
figure C into exactly one of the answer figures.
More precisely, for each 'figure A ~ figure B'
rule and for each answer figure, part II at
tempts to construct a 'common generalization'
rule which both takes figure A into figure Band
figure C into the answer figure in question. This
process may produce a number of rules, some
very weak in that virtually all the distinguish
ing detail has been 'washed out' by 'generaliza
tion.' Hence it is necessary at this point to pick
the 'strongest' rule by some means. This entire
process requires a complex mechanism for ma
nipulating and testing the rules and deciding
which of the several rule candidates, the results
of different initial rules or of different 'general
izations,' is to be chosen.

The principal method embodied in part II at
present is able to deal quite generally with prob
lems in which the numbers of parts added, re
moved, and matched in taking figure A into
figure B are the same as the numbers of parts
added, removed, and matched, respectively, in
taking figure C into the answer figure. A sub
stantial majority of the questions on the tests
we have used are of this type, as is our present
example; virtually all would be under a suffi
ciently elaborate decomposition process in part
I; this restriction still permits a wide variety o-f
transformation rules. It should be mentioned

332 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

that the methods of part II have been kept
subject.;.matter free; no use is made of any geo
metric meaning of the properties and relations
appearing in the input to part II.

The more detailed workings of both parts I
and II are best introduced through examining
the process sketched above at work on our ex
ample. To convey some further feeling for the
nature of the input to part I, we exhibit part of
it, namely, the input description of figure A.
The LISP expressions look like:

(DOT (0.4 . O.S»

(See «0.3 . 0.2) 0.0 (0.7 . 0.2) 0.0 (0.5 .
0.7) 0.0 (0.3.0.2»)

(see «0.4 . 0.3) 0.0 (0.6 . 0.3) 0.0 (0.6 .
0.4) 0.0 (0.4 . 0.4) 0.0 (0.4 . 0.3»)

)

The first line above corresponds to the dot (at
coordinates x == 0.4 and y == O.S on the unit
square; the coordinate pairs in the other ex
pressions are interpreted analogously). The
next two lines correspond to the triangle (See
stands for simple closed curve. All connected
figures are divided into three classes-dots
(DOT), simple closed curves (SeC), and all
the rest (REG). This is solely for reasons of
programming convenience; no other use is made
of this three-way classification). Each non
connected figure is represented simply by a list
of descriptions of its connected parts.

A curve (which may consist of an arbitrary
sequence of elements chosen from straight line
segments and arcs of circles) is represented by
a list in which coordinate pairs alternate with
the curvatures of the line elements between (all
curvatures are zero here since the lines in ques
tion are all straight). Similarly, the next two
lines above correspond to the rectangle; the en
tire description of figure A is then a list of the
descriptions of these three parts. The format
corresponding to the non-SeC figures like the
Z-shaped subfigure of figure e is similar though
somewhat more complex; it looks like:

(REG «VI V2 (0.0 (0.55 . 0.5) 0.0 (0~45 .
0.3) 0.0»

(V2 VI (0.0 (0.45 . 0.3) 0.0 (0.55 . 0.5)
0.0))))

where VI and V2 are the two vertices (here,
endpoints) of the figure. The coordinates of VI
and V2 are given to part I in a separate list.
They are VI == (0.45 . 0.5), V2 == (0.55 . 0.3).
Here, the top-level list describes the connectiv
ity by stating which vertices are connected to
which and how often-sublists describe in de
tail the curves making these connections. (By
vertex we mean either an endpoint of a curve
or a point at which three or more curves come
together.) The complete details of the input
format are given in Ref. 1, along with many
examples.

When the input shown above corresponding
to problem figure A and the corresponding
inputs for the other seven figures are processed,
the output from part I is, in its entirety, the ten
LISP expressions shown below. For brevity,
all similarity information concerning non-null
reflections has been deleted. Also, we have re
placed the actual arbitrary symbols generated
internally by ANALOGY as names for the parts
found by the decomposition program by the
names PI, P2, etc., which appear as labels on
our example figures above. The ten output ex
pressions are:

(1) «PI P2 P3) . «INSIDE P2 P3)
(ABOVE PI P3) (ABOVE PI P2)))

(2) «P4 P5) . «LEFT P4 P5»)

(3) «P6 P7 PS) . «(INSIDE P7 P6)
(ABOVE P8 P6) (ABOVE PS
P7»)

(4) «P2 P4 «(1.0 . 0.0) . (N.N» «1.0.
3.14) . (N.N»» (P3 P5 « (1.0 .
0.0). (N.N»»)

(5) «PI PS «(1.0 .0.0) . (N.N»»)

(6) NIL

(7) ((P9 PIO PII) (PI2 PI3) (PI4 PI5)
(PI6 PI7) (PIS))

(S) («INSIDE PIO P9) ABOVE PII P9)
(ABOVE PII PIO» «LEFT PI2
PI3» «(INSIDE PI5 PI4»
«ABOVE PI7 PI6» NIL)

(9) («P6 P9 « (1.0 . 0.0) . (N.N»» (P7
PIO « (1.0 . 0.0) . (N.N» «1.0 .
-3.14) . (N.N»» (PS PII « (1.0
. 0.0) . (N.N»»)

A HEURISTIC PROGRAM TO SOLVE GEOMETRIC-ANALOGY PROBLEMS 333

«P6 PI3 « (1.0 . 0.0) . (N.N»»)
(P7 PI2 « (1.0 . 0.0) . (N.N»
«1.0 .-3.14) . (N.N»»)

«P6 PI4 « (1.0 . 0.0) . (N.N»»
(P7 PI5 « (1.0 . 0.0) . (N.N»
«1.0 . -3.14) . (N.N»»)

«P6 PI6 « (1.0. 0.0) . (N.N»»
(P8 PI7 « (1.0 . 0.0) . (N.N»»)

«P7 PI8 « (1.0.0.0) . (N.N» «1.0.
-3.14) . (N.N.»»))

(10) ((«PI P1I «(1.0.0.0) . (N.N»»)
NIL NIL

«PI PI7 «(1.0 . 0.0) . (N.N»»)
NIL) . (NIL NIL NIL NIL NIL))

To explain some of this: The first expression
corresponds to figure A. It says figure A has
been decomposed into three parts, which have
been given the names PI, P2, and P3. Then we
have a list of properties and relations and simi
larity information internal to figure A, namely,
here, that P2 is inside P3, PI is above P2, and
PI is above P3. The next two expressions give
the corresponding information for figures B

about Euclidean similarities between figure A
and figure B. For example, P3 goes into P5
under a 'scale factor = 1, rotation angle = 0,
and both reflections null' transformation. The
next two expressions contain the corresponding
information between figure A and figure C and
between figure B and figure C, respectively. The
seventh list is a five-element list of lists of the
parts of the five answer figures; the eighth a
five-element list of lists, one for each answer
figure, giving their property, relation, and simi
larity information. The ninth is again a five
element list, each a 'similarity' list from fig
ure C to one of the answer figures. The tenth,
and last, expression is a dotted pair of expres
sions, the first again a five-element list, a 'simi
larity' list from figure A to each of the answer
figures, the second the same from figure B to
each of the answer figures. This brief descrip
tion leaves certain loose ends, but it should pro
vide a reasonably adeq,uate notion of what is
done by part I in processing our sample prob
lem.

The ten expressions above are given as argu
ments to the top-level function of part II

(optimistically called solve). The basic method
employed by solve, which suffices to do this
problem, begins by matching the parts of fig
ure A and those of figure B in all possible ways
compatible with the similarity information.
From this process, it concludes, in the case in
question, that P2 ~ P4, P3 ~ P5, and PI is
removed in going from A to B. (The machinery
provided can also handle far more complicated
cases, in which alternate matchings are possible
and parts are both added and removed.) On
the basis of this matching, a statement of a
rule taking figure A into figure B is generated.
It looks like:

(

(REMOVE Al «ABOVE Al A3) (ABOVE
Al A2) (SIM OB3 Al « (1.0 . 0.0) .
(N.N») »)

(MATCH A2 « (INSIDE A2 A3) (ABOVE
Al A2) (SIM OB2 A2 « (1.0 . 0.0) .
(N.N»») . «LEFT A2 A3) (SIM
OB2 A2 « (1.0 . 0.0) . (N.N» «1.0 .
3.14) . (N.N»» (SIMTRAN « (1.0 .
0.0) . (N.N» «1.0 . 3.14) . (N.N)
I»~»~)

(MATCH A3 « (INSIDE A2 A3) (ABOVE
Al A3) (SIM: OBI A3 « (1.0 . 0.0) .
(N.N»») . «LEFT A2 A3) (SIM
OBI A3 « (1.0 . 0.0) . (N.N»»
(SIMTRAN « (1.0 . 0.0) . (N.N)
I»~»~)

)

The A's are used as 'variables' representing
objects. The format is rather simple. For each
object added, removed, or matched, there is a
list of the properties, relations and similarity
information pertaining to it. (In the case of a
matched object, there are two such lists, one
pertaining to its occurrence in figure A and the
other to its occurrence in figure B.) There are
two special devices; the (SIM OBI ...) - form
expressions give a means of comparing types of
objects between, say, figure A and figure C; the
other device is the lIse of the SIMTRAN expres
sions in the figure-B list for each matched ob
ject. This enables us to handle conveniently
some additional situations which we shall omit
from consideration, for brevity. They are
treated in detail in Ref. 1.

334 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

The above rule expresses everything about
figures A and B and their relationship that is
used in the rest of the process. (The reader
may verify that the rule does, in some sense,
describe the transformation of figure A into
figure B of our example.)

Next, a similarity matching is carried out be
tween figure C and each of the five answer fig
ures. Matchings which do not correspond to the
ones between figure A and figure B in numbers
of parts added, removed, and matched, are dis
carded. If all are rej ected this method has
failed and solve goes on to try a further method.
In the present case, figures I and 5 are rejected
on this basis. However, figures 2, 3, and 4 pass
this test and are examined further, as follows.
Choose an answer figure. For a given matching
of figure C to the answer figure in question
(and solve goes through all possible matchings
compatible with similarity) we take each 'fig
ure A -7 figure B' rule and attempt to fit it to
the new case, making all matchings between the
A's of the rule statement and the objects of
figure C and the answer figures which are com
patible with preserving add, remove, and match
categories, then testing to see which informa
tion is preserved, thus getting a new, 'general
ized' rule which fits both 'figure A -7 figure B'
and 'figure C -7 the answer figure in question.'
In our case, for each of the three possible an
swer figures we get two reduced rules in this
way (since there are two possible pairings be
tween A and C, namely, PI ~ P8, P2~P6,
and P3 ~ P7, or PI ~ P8, P2 ~ P7, and
P3 ~ P6).

In some sense, each of these rules provides an
answer. However, as pointed out earlier, we
want a 'best' or 'strongest' rule, that is, the one
that says the most or is the least alteration in
the original 'figure A -7 figure B' rule and that
still maps C onto exactly one answer figure. A
simple device seems to approximate human
opinion on this question rather well; we define
a rather crude 'strength' function on the rules
and sort them by this. If a rule is a clear winner
in this test, the corresponding answer figure
is chosen; if the test results in a tie, the entire
method has failed and solve goes on to try
something else. In our case, when the values
for the six rules are computed, the winner is one

of the rules corresponding to figure 2, so the
program, like all humans so far consulted,
chooses it as the answer. The rule chosen looks
like this:

(

(REMOVE Al «ABOVE Al A3) (ABOVE
Al A2) (SIM OB3 Al « (1.0 . 0.0) .
(N.N)))) »

(MATCH A2 « (INSIDE A2 A3) (ABOVE
Al A2» . «LEFT A2 A3) (SIMTRAN
(«1.0 . 0.0) . (N.N» «1.0. 3.14) .
(N.N)))))))

(MATCH A3 « (INSIDE A2 A3) (ABOVE
Al A3» . «LEFT A2 A3) (SIMTRAN
«(1.0.0.0) . (N.N»»»)

Again, it is easy to check that this rule both
takes figure A into figure B and figure C into
figure 2, but not ~nto any of the other answer
figures.

Further Examples and Comments

(a) Examples
We first exhibit several additional examples

of problems given to ANALOGY:

(i) (See Fig. 5)

A

00

Figure 5.

Here the rule involves changes in the rela
tions of the three parts. ANALOGY chose an
swer figure 3.

(ii) (See Fig. 6)
This case involves both addition and removal

of objects. ANALOGY chose answer figure 2.

(iii) (See Fig. 7)

A HEURISTIC PROGRAM TO SOLVE GEOMETRIC-ANALOGY PROBLEMS 335

B c

~ ~
I 2 3 4 5

~~§]~~
Figure 6.

A c

[§]
I 2 :3 4 5

[QJ@]~GE9
Figure 7.

Note that this case required the more power
ful decomposition program. Here ANALOGY
chose figure 3.

(iv) (See Fig. 8)
The rule here simply involved a rotation.

AN ALOG Y chose figure 2.

(v) (See Fig. 9)

Here ANALOGY chose figure 3, using an
extension of the part II techniques discussed
above. This extension, employed after failure
of the basic process, involves systematic substi
tution of certain specified relations (e.g., LEFT
for ABOVE) for others in the part II input
descriptions, thus making it possible for
ANALOGY to relate the 'vertical' transforma
tion taking A into B to the 'horizontal' trans
formation of C into 3.

(vi) In the problem of Fig. 1, the large circle
of answer figure 4 was replaced by a large
square and the problem rerun. Again figure 4
was chosen but by a different rule. Now, in
stead of the inner object being removed, as be-

A B c

OJ U [±J
I 2 3 4 5

[]0[±JG~
Figure 8.

A B c

B
2 3 4 5

Figure 9.

fore, the outer object is removed and the inner
one enlarged. This illustrates some of the flexi
bility of the procedure and the dependence of
the answer choice on the range of allowed an
swers as well as on A, B, and C.

(vii) (See Fig. 10)

Here is an example of a failure by ANAL-
0Gy to agree with the human consensus which
favors figure 5. ANALOGY chose figure 3.

A B c

Figure 10.

336 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

(b) C01nparison with Human Performance
We can only roughly compare the perform

ance of ANALOGY with that of humans on
geometric-analogy problems, since ANALOGY
has not yet been given the complete set of such
problems from any test for which scores are
available. However, as some indication, we cite
scores on the ACE tests based on a period of
years including those editions of the test from
which most of the problems on which AN AL
OG Y was tested were selected. These scores are
for a large population of college-preparatory
students; the median score, on a test consisting
of- 30 such questions, ranged from 17 for 9th
grade to 20 for 12th grade. pur estimate is that,
on the same tests, ANALOGY, as it currently
exists, could solve between 15 and 20 problems.
Given, in addition, certain changes (mostly in
part I, e.g., a more powerful decomposition
program and additional properties and rela
tions) for which we have reasonably well
worked-out implementations in mind, AN AL
OGY should be capable of perhaps 25 successful
solutions.

(c) The Use of LISP
The use of a list-processing language to con

struct the ANALOGY program appears to have
been a suitable choice; most notably, its capa
bility at handling intermediate expressions of
unpredictable size and 'shape' (such as our
figure descriptions and transformation rules)
is of great value. We especially wish to praise
LISP as a convenient and elegant language in
which to write and debug complex programs.
The ease of composition of routines, the highly
mnemonic nature of the language, and the good
tracing facilities all contribute greatly to effec
tive program construction. In return for the
use of such a language one pays a certain price
in speed and storage space, which, in the case of
ANALOGY, at least, was a very acceptable
bargain, since the necessity of machine-lan
guage coding would have made the entire proj
ect unfeasible. Incidentally, the ANALOGY
program (apparently the largest program writ
ten in LISP to date) is so large that parts I
and II must occupy core separately. The conse
quent limited (and one-way) communication
between the parts was a serious design con
straint but proved to have some compensating
advantages in simplicity.

ANALOG Y and Pattern-Recognition in
Problem-Solving Programs

In this section we shall consider certain
aspects of the design of problem-solving ma
chines. To aid this discussion we shall specify
(rather loosely) a subclass of problem-solving
machines and carry out our discussion in terms
of these though the ideas involved are by no
means limited in applicability to this class. The
machines we have in mind are typified by
GPSl-l in that the problem to be solved by the
machine is to transform one specified 'object' or
'situation' (whatever this may mean in a par
ticular subject-matter context) into another by
applying an appropriate sequence of transfor
mations chosen from a class available to the
machine. A wide variety of problems may be
cast in this form (again see Ref. 14 or other dis
cussions of GPS by the same authors). As in
GPS, subgoals may be generated and attacked
by such a machine and elaborate schemes of
resource allocation may be required. However,
these aspects do not concern us here. Our inter
est lies in the basic task of the machine; given a
pair of 'objects,' it must choose an 'appropriate'
transformation, i.e., one contributing to the goal
of transforming one of the given 'objects' into
the other.

It is a widely-held view, with which we agree
completely, that for a machine to be capable of
highly intelligent behavior on a task of this
kind, in a rich environment of objects and
transformations (and, in particular, to be capa
ble of learning at a level more advanced than
that of present machines), the critical factor is
that it have a good internal representation of
both its subject matter ('objects') and its meth
ods ('transformations'), as well as an elaborate
set of 'pattern-recognition' techniques for
matching transformations to object pairs.
Probably this means a quite 'verbal' represen
tation of both objects and transformations as
expressions in suitable 'description languages.'
Furthermore, these matching techniques must
be represented in a form in which they them
selves are capable of being improved as the ma
chine gains experience. The central role which
'pattern-recognition' techniques must play in
sophisticated problem-solving programs and the
corresponding importance for effective learning
of autonomous improvement in the perform-

A HEURISTIC PROGRAM TO SOLVE GEOMETRIC-ANALOGY PROBLEMS 337

ance of these techniques are well expressed in
Minsky.I2 There we find:

In order not to try all possibilities a re
sourceful program must classify problem situa
tions into categories associated with the do
mains of effectiveness of the machine's different
methods. T~ese pattern-recognition methods
must extract the heuristically significant fea
tures of the objects in question. Again from
Ref. 12 we have:

Again from 12 we have:
In order to solve a new problem one uses

what might be called the basic learning heu,ris
tic-first try using methods similar to those
which have worked, in the past, on similar
problems.

Here, the problem is, of course, to have pat
tern-recognition techniques possessing, or able
themselves to learn, criteria of 'similarity' ap
propriate to the subject matter in question.

The 'fixed-length property-list' schemes (see
Ref. 12) which characteristically have been used
to perform this pattern-recognition task in cur
rent problem-solving programs have two prin
cipal defects which limit their extension to
harder problems:

(i) ""hile, in principie, given enough suffi
ciently elaborate properties, one can make arbi
trarily fine discriminations, in practice a given
set of properties will begin to fail rapidly as
situations become more complex. In particular,
for 'situations' which must be treated as con
sisting of interrelated parts, the 'global' nature
of the scheme in question leaves it helpless.

(ii) Such a scheme is very limited in its learn
ing capabilities, since it has access to very little
information about its component properties; in
particular, it is incapable of "knowledgeably'
modifying its tests or adding new ones-it can
only modify the weightings given to the results
of these tests in its 'decisions.'

In view of the limitations of the 'property
list' pattern-recognition scheme just mentioned,
we can formulate some requirements for a pat
tern-recognition scheme suitable tc replace it
as a 'transformation-selecting' mechanism.
First, the scheme must have access to a repre
sentation of each 'object' in terms of a 'descrip
tive framework' for the subject matter in

question which is suitable in that useful rela
tionships between 'objects' can be extracted
relatively simply-from the corresponding rep
resentations. Furthermore, the transformation
selecting rules of the pattern-recognition appa
ratus should themselves be expressed in a
representation suitable for a 'learning mecha
nism' to revise the set of rules (i) by adding
new rules and deleting those old ones which
prove least useful as experience associates cer
tain object pairs with certain transformations
and (ii) by replacing a set of particular rules
by a 'common generalization' rule again repre
sented in the same language. Such facilities
could go far toward removing the limitations
of which we have spoken and providing both a
powerful rule language (the rules can be stated
in terms of the 'descriptive framework' we have
postulated for the 'objects') and a learning
mode more sophisticated than any yet incorpo
rated in such a general problem-solving pro
gram.

So far we have been enumerating desirable
features in a 'pattern-recognition' mechanism
to be used as a transformation-selection device
within a large problem-solver. What has all
this to do with ANALOGY, which is not even a
problem-solving program of the class we. have
been considering? We suggest that ANALOGY
can, under a suitable (rather drastic) reinter
pretation, be to some extent viewed as a pattern
recognition program having, to the limited de
gree appropriate for its particular environment,
all the features we have listed. First, the
'objects' are the problem figures of ANALOGY
and the suitable 'descriptive framework' ap
propriate to these objects is the 'subfigure and
relation' representation used as the input part I
generates for part II of ANALOGY. (Thus
part I of ANALOGY corresponds to the appa
ratus that generates this representation for
each object; that is, it goes from a representa
tion of the 'problem objects' which is convenient
for input to the problem-solver to one which is
in a form suitable for internal use.) The gen
eration·jn ANALOGY of a transformation rule
taking one answer figure into another can be
thought of as corresponding to the first kind of
learning we listed above, namely, the adding of
rules as, with experience, the machine associates
certain object pairs with certain simple or com-

338 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

posite transformations. Finally, the common
generalization of two rules in ANALOGY cor
responds to the second kind of learning we
mentioned, namely, the generation of a common
generalization of several rules associating 'ob
jects' and 'transformations.' Furthermore,
ANALOGY's process of choosing between 'com
mon generalizations' of different rule pairs mir
rors a process of selectively incorporating only
those generalizations with the greatest dis
criminatory power. Under this interpretation,
ANALOGY appears as a model for a pattern
recognition process with all the characteristics
mentioned. The potential value of ANALOGY,
viewed in this way, as a suggestive model for
the construction of such pattern-recognition
mechanisms for use within problem-solving pro
grams may prove to be the chief product of our
work with ANALOGY and the best justification
for having carried it out.

References

1. T. G. EVANS, PH.D. Thesis, Department of
Mathematics, MIT, June, 1963 (soon to be
available as an AFCRL Technical Report).

2. J. MCCARTHY, "Recursive functions of
symbolic expressions," Comm. ACM, Vol.
3, April, 1960.

3. J. MCCARTHY et al., LISP 1.5 Program
mer's Manual, MIT, revised edition, Au
gust, 1962.

4. R. L. GRIMSDALE, F. H. SUMNER, C. J.
TUNIS, and T. KILBURN et al., "A system
for the automatic recognition of patterns,"
Proc. lEE, March, 1959, Vol. 106, pt. B,
pp. 210-22l.

5. T. MARILL, A. K. HARTLEY, T. G. EVANS,
B. H. BLOOM, D. M. R. PARK, T. P. HART,
and D. L. DARLEY, "CYCLOPS-I: a second
generation recognition system," F JCC, Las
Vegas, Nevada, November, 1963.

6. H. SHERMAN, "A quasi-topological method
for the recognition of line patterns," Proc.
ICIP, Paris, France, June, 1959, pp. 232-
238.

7. 1. SUTHERLAND, "Sketchpad: a man-ma
chine graphical communication system,"
SJCC, Detroit, Michigan, May, 1963.

8. L. ROBERTS, PH.D. Thesis, Department of
Electrical Engineering, MIT, June, 1963.

9. R. KIRSCH, personal communication.

10. L. HODES, "Machine processing of line
drawings," Lincoln Laboratory Technical
Memorandum, March, 1961.

11. R. CANADAY, M.S. Thesis, Department of
Electrical Engineering, MIT, February,
1962.

12. M. L. MINSKY, "Steps toward artificial in
telligence," Proc. IRE, January, 1961, pp.
8-30.

13. A. NEWELL and H. A. SIMON, "The logic
theory machine," IRE Trans. on Informa
tion Theory, Vol. IT-2, #3, September, 1956,
pp. 61-79.

14. A. NEWELL, J. C. SHAW, and H. A. SIMON,
"Report on a general problem-solving pro
gram," Proc. ICIP, Paris, France, June,
1959, pp. 256-264.

15. H. GELERNTER and N. RuCHESTER~ "Intel
ligent behavior in problem-solving ma
chines," IBM J. Res. and Dev., Vol. 2, #4,
October, 1958, pp. 336-345.

16. J. SLAGLE, PH.D. Thesis, Department of
Mathematics, MIT, June, 1961.

17. T. G. EVANS, "The use of list-structured
descriptions for programming manipula
tions on line drawings," ACM National
Conference, Denver, Colorado, August,
1963.

Acknowledgements

The assistance of the Cooperative Test Divi
sion of the Educational Testing Service, Prince
ton, New Jersey, in providing a large set of
geometric-analogy questions from its files is
gratefully acknowledged.

Thanks are also due to the Educational Rec
ords Bureau, New York, N.Y., for the statistics
on human performance on geometrical-anal
ogy questions cited in Sec. 4b.

Most of the computation associated with the
development and testing of ANALOGY was
performed at the MIT Computation Center.

EXPERIMENTS WITH A THEOREM-UTILIZING PROGRAM
Larry E. Travis

System De'velopment Corporation
Santa Monica, California

1. SIGNIFICANCE OF THE THEOREM
UTILIZING PROBLEM

(1.1) Computers as Expert Problem Solvers

There are a large number of difficult intellec
tual tasks which consist of synthesizing a par
tialordering. To program a computer we must
synthesize a sequence of computer instructions;
one way of constructing a logical derivation is
by synthesizing a sequence of inference-rule
applications which transform given premises
into desired conclusion; one way of choosing
among alternative moves in a game is by syn
thesizing and evaluating trees of possibly ensu
ing moves. Can we program a computer to
perform such tasks? Can we program a com
puter to perform such tasks expertly, Le., well
enough that it can by itself surpass a skilled
human being in the performance of such tasks?

A decade of work on the subject by Gelern
ter, Minsky, Newell, Samuel, Shaw, Simon,
Slagle, Tonge, and others has given us a clear
yes in answer to the first question. But the
answer to the second is still very much in doubt.
The comparisons so far have been with Navy
boots, high school sophomores, and college
freshmen. The question at issue concerns the
difference between performing a sequence-syn
thesis task well and performing it poorly if at
all. We would ask: What is skill in tasks like
theorem proving and program writing?' Sup
pose we have two machines each of which is able
to prove at least some theorems but one rather
like an unskilled student and other rather like
a skilled mathematician. How do they differ?

339

(1.2) Synthesizing Sequences of
Sy'mbol Transf or'mations

\Ve must be a little more specific about the
kind of task we are interested in. In logic, con
structing a derivation is constructing a se
quenc~ of permissible symbol transformations
by which given premises can be transformed
into desired conclusions. The permissible sym
bol transformations are the basic rules of infer
ence. Thus in a system where the permissible
transformations include detachment (Le., trans
forming P and P ~ Q into Q), interchange of
conditionals and disjunctions (Le., transforming
P ~ Q into '"""' P v Q and P v Q into '"""' P ~ Q),
and commutation of disjunctions (Le., trans
forming P v Q into Q v P), an example of a
derivation is the following:

GIVEN PREMISES:

(1) P ~ (Q ~ R)

(2) P

(3) ,-,R

DESIRED CONCLUSION: '"""'Q

DERIVATION STEPS:
(4) Q ~ R Detachment transforma

tion of Premises (1) and
(2)

(5) ,-,Q v R

(6) R v ,-,Q

Interchange transforma
tion of Step (4)

Commutation transforma
tion of Step (5)

340 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

DERIVATION STEPS-Continued
(7) --R ~ --Q Interchange transforma

tion of Step (6)
(8) --Q Detachment transforma

tion of Premise (3) and
Step (7)

Similarly in computing, constructing a pro
gram is constructing a sequence of available
symbol transformations by which given input
can be transformed into desired output. The
available symbol transformations are the
primitive computer instructions. Similar char
acterizations can be offered for game playing,
puzzle solving, manipulating algebraic expres
sions, and other tasks. There are, of course,
important differences among these tasks, espe
cially in the way the tasks are defined for the
problem solver, but for the present our con
cern is with what they have in common.

(1.3) Skill at Sequence S"nthesis

It would appear that one thing most se
quence-synthesis tasks have in common, at least
insofar as human problem solvers are con
cerned, is a way in which skill at their perform
ance is acquired. Becoming a skilled logician
or a skilled programmer mainly consists in
learning useful combinations of the available
primitive transformations and in developing
a sensitivity to the occasions on which it is
appropriate to apply these combinations. As
we shall see, there is more to it than this, but
this is a good place to start.

Some examples will clarify our conception
of skill. The easiest examples to come by are
those where the skilled human being takes ex
plicit note of a useful combination of primi
tives. Thus the logician adds defined rules of
inference to his system. Or he just simply adds
a theorem to his list of established statements.
For instance, very early in the development of
a system for the propositional calculus the logi
cian will notice the usefulness of the transposi
tion theorem (Q ~ R) ~ (--R ~ ,..."Q) and,
after proving it with a sequence something like
Steps (4) through (7) of our example above,
will add it to his list of axioms and other proved
theorems. Henceforth in developing a deriva
tion, whenever he needs to transform an expres
sion whose structure is like the antecedent of

the theorem into an expression whose structure
is like the consequent of the theorem, he merely
cites the theorem. He does not indicate, as is
done in the example above, all the primitive
transformations, the primitive rules of infer
ence, which are required actually to effect the
transformation. Theorems are usually thought
of as additions to the stock of assertions rather
than as additions to the stock of transformation
rules of a logical system. But we shall be pri
marily interested in them in their role as ex
plicit representations of defined, complex trans
formations, i.e., transformations which can be
effected by combinations of primitives.

In programming, the defined, complex trans
formations are the subroutines and macroes,
some explicitly formulated, labelled, and stored
on tape but many more, accumulated in the
experience of writing many programs of many
different kinds, "stored" more or less com
pletely only in the programmer's head.

(1.4) Construction Problems and Existence
Problems

An important distinction is to be noticed be
tween the kinds of sequence-synthesis prob
lems represented by programming problems on
the one hand and by theorem-proving problems
on the other. The programmer has to produce
the actual sequence of primitive transforma
tions while the logician does not. This arises
from a difference in the reasons why the two
are interested in synthesizing sequences of
primitive transformations. In logic the question
of interest is whether such a sequence connect
ing premises and conclusion exists at al~; if it
can be shown to exist the logical problem is
settled, and though the logician may be worried
about problems of elegance and efficiency, these
are extralogical worries. The programmer, on
the other hand, must synthesize an actual se
quence of primitives. There is usually no ques
tion of whether such a sequence exists; the
programming requirement is production of one
to do some work. The programmer needs the
actual sequence, not just the knowledge that one
exists.

\Ve shall refer to the programmer's problems
as construction problems, opposing them to the
logician's existence problems. The distinction is

EXPERIMENTS WITH A THEOREM-UTILIZING PROGRAM 341

not a neat one because the logician usually uses
methods such that from a demonstration of
existence of a sequence of primitive inference
rules he could automatically (and tediously)
produce an actual sequence if called upon to do
so. But the distlnction is worth noting because
it is construction problems with which we shall
be primarily concerned in the present paper.

(1.5) Related Research

There has been a large amount of work in
the recent past concerned with programming
computers to prove theorems _ (e.g., Wang,42
Gilmore,7 Davis and Putnam,3 and Robinson l9)
and with programming computers to program
themselves (e.g., Kilburn et al.9 and Amarel).1
Though several of these authors, e.g., Wang
and Amarel, respectively, have commented on
the apparent importance of a mechanical
theorem prover's being able to save and utilize
previously-proved theorems and of a self-pro
gramming machine's being able to save and
utilize previously-developed subroutines, there
has been little work directly on the problems
raised. Programs with at least some ability to
utilize previously-proved theorems (or their
counterparts) are Newell, Shaw, and Simon's
Logic Theorist, 15,16 Gelernter's Geometry
Theorem Prover,5,6 Slagle's Automatic Integra
tor,22 and Simon's Heuristic Compiler.21 We
would suggest that it is because it attempts to
prove theorems by using previously-proved
theorems that the Logic Theorist is of special
importance even though it turns out to be a
rather weak theorem prover in comparison
with other systems which use alternative for
mulations and methods. Wang avers that
Newell, Shaw, and Simon's approach to prov
ing theorems by machine is rather like trying
to kill a chicken with a butcher knife. It is true
that there are more efficient ways to dispatch a
chicken, but there may be no better way to
learn how to use a butcher knife.

We turn, then, to reporting an investigation
concerned not with theorem-proving or self
programming machines per se but with the
more specific problem of how such sequence
synthesizing machines might be made efficiently
to exploit previously-developed sequences when
later given a problem of constructing a more
complex sequence. Our approach has been actu-

ally to write and run what can reasonably be
called a theorem-utilizing program. We shall
first describe the program. Then we shall re
port some results obtained with it and some
conclusions to be drawn from these results.
Finally, we shall indicate what appears to be a
reasonable direction for future research on the
problem.

2. DESCRIPTION OF A THEOREM
UTILIZING PROGRAM

(2.1) Criteria of Program Evaluation

Our goal has been to construct an automatic
theorem-proving system which proves theorems
by efficiently utilizing previously-proved theo
rems. The criterion of success is realization of
a theorem prover which becomes progressively
better as it accumulates and otherwise modi
fies its store of previously-proved theorems. It
should be remarked that improvement of the
store is not merely a matter of accumulation
and, as a matter of fact (as clearly demon
strated by Newell, Shaw, and Simon'sl8 work),
under certain conditions simple increase in size
of the store Gan hinder rather than help prob
lem-solving ability. This ability is more a
matter of what particular previously-proved
theorems are avaiiable and what information
is stored about them and how this information
is used, than it is a matter of how many are
available. It is specifically to these points of
how to select useful theorems for remember
ing, how to abstract them and their proofs, and
how to use the abstracted information that the
research here reported has been directed.

(2.2) The Program's Problem Domain

For our experiments with theorem proving
we devised a special problem domain rather
than selecting some standard domain such as
the propositional calculus, group theory, or
plane geometry. We shall presently give our
reasons for doing this, but first let us describe
the domain. It will probably be simpler if we
first present problems in the domain as if they
were problems of programming a very simple
computer best characterized as a vector adder.
The computer has no data memory. It is given
as input an ordered n-tuple of numbers and
operates on this n-tuple according to a given

342 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

program. The program is a simple sequence
with each of its constituent basic instructions
operating directly on the output of the immedi
ately preceding instruction in the sequence.
Each of the basic instructions adds a quantity
(possibly zero or negative) to each term of the
n-tuple on which it operates. Thus each of
these instructions can also be represented as an
ordered n-tuple of numbers.

Consider an example of a 4-tuple adder which
has as its basic instructions (S) <0,1,2,3>,
(T) <3,2,1,0>, and (W) <0,-1,1,0>. A typi
cal programming problem might be that of syn
thesizing a sequence of these instructions which
will transform <4,9,2,7> into <10,10,10,10>.
As can easily be verified, one program which
will do this is (S), (T), (T), (W), (W), (W),
(W). The first instruction (S) transforms
<4,9,2,7> into <4,10,4,10>, the second in
struction (T) transforms this into <7,12,5,10>,
etc., until operation of the final instruction (W)
gives an output of <10,10,10,10>.

Problems of the kind we are considering can
just as well be interpreted as theorem-proving
problems in what might be called a tally cal
culus. Thus, rather than the n-tuple <4,9,2,7>
we might have the expression

AAAA/BBBBBBBBB/CC/DDDDDDD

and we might ask whether

AAAAAAAAAA/BBBBBBBBBB/
CCCCCCCCCCIDDDDDDDDDD

can be derived from it given basic rules of in
ference corresponding to (S), (T), and (W).
These rules are to be interpreted in such a way
that (W), for instance, means: make no change
in the A's, delete one B, add one C, and make
no change in the D's.

In such a tally calculus there might well be
existence problems as well as construction prob
lems. Most of the calculi with which we have
actually worked, however, have been supplied
with basic rules of inference sufficient to make
possible the derivation of any expression in
the calculus from any other expression. Our
reason for choosing' such calculi has been that
we are interested in problem-solving mecha
nisms and not in whether some particular deri
vations are possible, and we learn little from

applying these mechanisms to problems which
have no solution. It will be a very long time
before we can hope to have non-algorithmic
problem-solving mechanisms powerful enough
that their failure to discover a solution is pre
sumptive evidence that no solution exists.

We have imposed on our problem solver re
quirements additional to those of simply con
structing a sequence of transformations which
will transform a given input n-tuple into a de
sired output n-tuple: (1) There are lower and
upper bounds on the numbers intervening be
tween input and output; thus we might require
that no intervening number be less than ° or
greater than 19. (2) Even within these bounds,
there can be certain proscriptions; thus we
might proscribe any n-tuple containing the
number 8 from intervening between start and
goal.

A comment is in order concerning our rea
sons for choosing such an apparently artificial
problem domain. Our intention was to design
a vehicle with which we could conveniently
investigate utilization of theorems or sub
routines, one simple enough that most of the
program design effort could be concentrated
directly on such utilization rather than on mat
ters of other kinds, e.g., pattern recognition.
As we shall see, in this we were only partially
successful. Further, we wanted problems pos
sessing some of the features of programming or
theorem-proving problems but not so many of
these features that an extremely complex pro
gram would be required to solve any problems
at all. Finally, we wanted a problem domain
which did not present difficult problems for us.
This allows us to take an Olympian view of
what our mechanical problem solver is doing.

Let us see how our problems of programming
a vector adder compare with programming or
theorem-proving problems which people actu
ally have to solve. In our case, there are no dif
ficulties associated with merging two lines of
processing into one. Formally this is because
the constituent transformations (the basic in
structions or rules of inference) are all single
argument functions, a situation which holds
neither in real-life programming nor in real
life theorem proving. Further, there are no
difficulties in our case associated with branch-

EXPERIMENTS WITH A THEOREM-UTILIZING PROGRAM 343

ing or iteration or recursion. Thus our prob
lems are far sinlpler than actual programming
or theorem-proving problems, but they have
enough of the features of these actual prob
lems to be interesting. In particular, our prob
lems involve discovering a combination of basic
transformations which will effect some particu
lar complex transformation and, further, of dis
covering an acceptable ordering of these basic
transformations. The requirement that they be
ordered in a particular way derives from our
imposing bounds and proscriptions on an ac
ceptable solution. Thus, in the example given
above, if we were to stipulate that no 4-tuple
containing a number larger than 10 might in
tervene between start and goal, the suggested
sequence (S), (T), (T), (W), (W), (W), (W)
would no longer be a solution but the identically
constituted though differently ordered sequence
(W), (W). (W), (W), (S), (T), (T) would be.
These various aspects of our problem domain
should become clearer with the examples to
follow.

(2.3) Spatial Interpretation of the Problem
Domain

An Olympian overview is facilitated by giv
ing the n-tuples a spatial interpretation. Thus
in the case of pairs (2-tuples), we can correlate
the start and goal pairs, the .intervening pairs,
and the proscribed pairs with cells in a grid.
In Figure 1, for instance, we correlate a start
pair <4,10> with the cell marked "S," a goal
pair <4,14> with the cell marked "G," and
the proscribed pairs with the blacked-out cells.
Given the pairs <2,1>, <2,-1>, <-1,2>,
and <-1,-2> as the basic transformations
available, the problem can be interpreted as
that of working out a path (like the one in the
figure) with these basic transformations as
constituent steps, with no step ending in a
blacked-out cell, and which begins at S and ends
atG.

By supplementing the set of basic transfor
mations of the example so that we have one
transformation for each of the eight legal
knight's moves in chess, we have the problem
of moving a knight around on a chessboard.
We have christened the system defined by the
four listed transformations the half-knight cal
culus (HKC) and that defined by the full set

19

16

15

14

13

12

II

10

o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19

Figure 1. Spatial Interpretation of a 2-Tuple
Transformation Problem.

The problem consists in constructing a path, like the
one indicated, from S to G. The path must be con
stituted only of allowed steps and none of these steps
can end in a blacked-out cell or out of bounds.

of eight the full-knight calculus (FKC). In
order to avail'ourselves of the two-dimensional
spatial interpretation, nlost of our work has
been with 2-tul'le systems like these. (Both
the HKC and FKC are, by the way, complete
in the sense that their basic transformations
are sufficient to transform any pair into any
other pair.)

The powers of human visual perception and
spatial intuition are very useful in analyzing
our mechanical problem solver's performance,
in comparing and evaluating its solutions and
attempted solutions, and in deciding on proce
dures which might be useful to it. There is some
danger in using this spatial interpretation,
however, for one is likely to be misled concern
ing the nature and difficulty of the problems
insofar as the computer is concerned. We would
specifically warn the reader against a tendency
to look upon the problems as problems of run
ning a maze with the connectivity of the nodes
corresponding to the directly perceived con
nectivity of cells in the grid. And we would
suggest that he can grasp the difficulty of solv
ing the problems involved without any aid

344 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

from visual perception and spatial intuition, as
the computer must solve them, if he thinks of
what his own situation would be in the five
or six-dimensional case.

(2.4) A Succession of Problems from Easy to
Hard

Stipulation of lower and upper bounds and
of proscribed n-tuples defines a problem field.
For our experiments with 2-tuples we defined
five fields, each with a lower bound of 0 and an
upper bound of 19 but with the differing sets
of proscribed pairs represented by the blacked
out cells in Figures 2 through 6. It should be
understood, again with respect to possibly mis
leading aspects of the spatial interpretation,
that the research has not been concerned with
designing a system which would learn local
properties of the five fields. Our reasons for
restricting the number of fields rather than
using a different one for each different problem
was solely one of convenience. Since only a part
of each field is relevant to a particular prob
lem, the five fields serve to determine a variety
of ordering constraints sufficient for our pres
ent purposes.

Given the five fields, a succession of 60 pro
gressively more difficult problems was deter-

18

17

16

15

14
1--1---4-+-

1--1---4-+-

o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19

Figure 2. First Problem Field.

The problem illustrated is Problem 6: within the
given field of pros~ribed pairs, transform <17, 10> into
<17,8>.

19~~~~-+-+-+~~~4-+-~~~-+-t-r~
18~~~-+-+-+~~1-~+-+-~~ri-t-t-r~
17~~~-4-+-+~~4-4-+-+-~~~-+~-r~
16~~~-4-+-+~~4-4-+-+-~~~-+~-r~
15~~~-4-+-+~~4-4-+-+-~~~-+~-r~

13~~~-4-+-+-+~~4-~+-~~~-+~-r~
12

II

10

8·1-~~f---+-+-+~~4-4-+-+-~HH~-+-+-I

o I 2 3 4 5 6 7 8 9 10 II 12 13 1<1 15 16 17 18 19

Figure 3. Second Problem Field.

The problem illustrated is Problem 24: within the
given field of proscribed pairs, transform <18, 6> into
<11,12>.

13
t---11-+-+-

12
.......... 1-+-+-

1I~~~-+-+~~4-4-+-+-~~~-+~~4-4
10
~~~-+-+~~~4-+-+-~~-+-+~~4-4 

o I 2 3 <I 5 ·6 7 8 9 10 II 12 13 1<1 15 16 17 18 19 

Figure 4. Third Problem Field. 

The problem illustrated is Problem 37: within the 
given field of proscribed pairs, transform <8, 9> into 
<18,19>. 

mined by using each of the fields 12 times and 
for each use defining the numbers for the start 
pair and the goal pair with a semi-random 
process controlled so that the difference be-



EXPERIMENTS WITH A THEOREM-UTILIZING PROGRAM 345 

19 

17 

16 

15 

14 

12 

II 

o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 

Figure 5. Fourth Problem Field. 

The problem illustrated is Problem 48: within the 
given field of proscribed pairs, transform <3, 8> into 
<11,18>. 

17 
~~-+~~4-+-~~-+-

13 

12 

II 

10 

o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 

Figure 6. Fifth Problem Field. 

The problem illustrated is Problem 55: within the 
given field of proscribed pairs, transform <9, 15> into 
<18,1>. 

tween the numbers was likely to be greater for 
the later problems in the succession. Figures 2 
through 6 represent Problems 6, 24, 37, 48, 
and 55, respectively. 

(2.5) Storage of Theorems 

We can now briefly describe the program 
with which we are investigating theorem uti
lization and which so far has been used to test 
some ideas concerning how utilization of solu
tions of the easy problems early in the succes
sion of 60 problems might facilitate solution of 
the more difficult problems later in the succes
sion. The most important idea was that once 
a problem was solved the solution should be 
generalized and precisely categorized in a cer
tain way, with the solution's possible relevance 
to the solution of later, more difficult problems 
being determined by its categorization. We 
wished to devise something more efficient than 
mere addition of new theorems to an unordered 
theorem list which then had to be scanned in 
its entirety each time a search was made for 
possibly useful theorems, as was the case with 
Newell, Shaw, and Simon's original Logic 
Theorist (with the exception of one experiment 
where the theorems were categorized and 
weighted on the basis of their experienced use
fulness in connection with particular methods) . 

One can use various techniques to make the 
selection of theorems possibly useful for a par
ticular problem more efficient than a brute
force search of an unordered list. For instance, 
Newell, Shaw, and Simon used certain similar
ity tests in the search of the Logic Theorist's 
theorem list; they experimented with enhanc
ing search efficiency by pre-computing the in:
formation for each theorem needed by these 
tests and storing it along with the theorem, 
thus obviating its computation each time the 
list was searched. Although the indexing was 
inverted, this represents a simple case of the 
kind of theorem categorization which we have 
wished to implement and test. Stefferud:!:1 has 
modified the Logic Theorist so that previously
proved theorems are stored not on a simple list 
but as part of a complex list structure (called 
a theorem map) which compactly represents 
the syntactical structures of all the theorems 
available. Theorems are selected for possible 
usefulness in connection with a given problem
atic expression by a single operation matching 
the syntactical structure of the expression 
against this theorem map. That part of the 
map with which an appropriate match is ob
tained determines the whole set of previously-



346 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

proved theorems which have the appropriate 
syntactical structure for use with the given 
expression. Our approach is not unrelated to 
Stefferud's but we would like to work out a 
theorem-selection system which uses clues to 
the usefulness of a previously-proved theorem 
more powerful and more selective than whether 
or not there is a precise match between the 
syntactical structure of part of the theorem and 
the syntactical structure of part of the ex-pres
sion to be proved. What such clues might be 
in the particular case of a propositional calculus 
like that with which Stefferud is working we 
leave for consideration in another place; here 
let us see what we mean for systems like the 
half-knight and full-knight calculi. 

It will be recalled that the problem of con
structing a derivation in one of these calculi 
consists in discovering what combination of 
basic transformations will transform a start 
pair into a goal pair and in ordering these 
transformations so that none of the interven
ing pairs are out of bounds or on the list of 
proscriptions. For the experiments here re
ported what was saved of any particular suc
cessful derivation was information about how 
many applications of each basic transformation 
were required plus the defined transformation 
which this combination was able to effect. This 
was abstracted from the order in which the 
basic transformations were needed and from 
the particular start pair and goal pair which 
had defined the problem. Thus, as illustrated 
in Figure 7, the sequence <-1,-2>, <2,1>, 
<-1,2> might be used to solve the problem 
of getting from <1,2> to <1,3>. What will 
be saved about this solution is that it uses one 
each of the indicated basic transformations and 
that this combination will effect the defined 
transformation <0,1>, i.e., it will transform 
any pair <X,Y> into <X,Y +1>. Now if the 
system is later confronted with the problem, 
perhaps as a subproblem of some larger prob
lem, of transforming <11,8> into <11,9> in 
the problem field also as illustrated in Figure 7, 
it might retrieve and try to use the information 
it has saved from the earlier solutions; but after 
it has retrieved the information it has the ad
ditional task of ordering the basic transforma
tions in a manner which satisfies the con
straints of the new problem. Be~ause of the 

19 

18 

17 

16 

15 

~~-+~~4-+-~-+-+~4-+-~-+-+-r4 

t--f--i-+-
1" 
~I--+-+-

13 
~~-+~~+-+-~-

12 
~~-+~~+-+-~-

11~~-4-+~~4-+-+-~-4-+-r-r;-+-~~ 
10 

o 1 2 3 " 5 6 7 8 9 10 11 12 13 1" 15 16 17 18 19 

Figure 7. Use of a Previously Developed Solution 
to Solve a New Problem. 

A combination of allowed steps which has been dis
covered to solve the problem <1, 2> to <1, 3> can 
later be used to solve <11, 8> to <11, 9>. But a differ
ent ordering of the steps will be required for an ac
ceptable solution. 

role they serve as defined transformations, let 
us call the abstracted solutions "theorems" 
even though they may not look much like what 
the logician usually refers to with this term. 

The categories on the basis of which theo
rems are filed and retrieved must of course be 
relevant to the information which is saved 
about the theorems. Four easily computable 
binary properties have been used to determine 
these categories. For each theorem let us call 
the change it makes in the first term of a pair 
on which it operates its X-value and the change 
it makes on the second term its Y -value. The 
four binary properties used to categorize a 
theorem are whether its X-value is positive, 
whether its Y -value is positive, whether its 
absolute X-value is greater than or equal to its 
absolute Y -value, and whether its absolute 
Y -value is greater than or equal to its absolute 
X-value. Tests to determine the values of these 
properties for a particular theorem are ar
ranged on a simple discrimination tree (which 
can easily be expanded or otherwise modified 
for experimentation with alternative proper-



EXPERIMENTS WITH A THEOREM-UTILIZING PROGRAM 347 

ties). When filed, a theorem is sorted down this 
three into one of eight categories correspond
ing to octants in a Cartesian coordinate sys
tem. The theorems in one category are put on 
an ordered list with the position of a theorem 
on the list being determined by the sum of its 
absolute X-value and its absolute Y-value. The 
basic transformations of a calculus are placed 
on these lists right along with the defined 
transformations. It will be noticed that the 
FKC has one basic transformation for each of 
the eight lists. 

(2.6) Retrieval of Theorerns 

For our problem domain, problems can be 
characterized with exactly the same properties 
used to characterize theorems. Thus the pri
mary technique used to select a theorem possi
bly relevant for solution of a problem is to sort 
the problem down the same discrimination tree 
used to separate and file theorems. Given the 
relevant list of theorems, the first selection is 
that one which leaves the smallest remaining 
problem. (More precisely: given a problem of 
transforming 8 into G, first selected is that 
theorem T for which the sum of the absolute 
X-value and absolute Y-value of the problem 
T (8) -to-G is smallest.) Lower priority selec
tions are made by alternately taking theorems 
from above and below the first choice on the 
theorem list being used or, if the list is too 
short to provide enough selections as deter
mined by an externally specified parameter, by 
making selections from the lists for neighbor
ing categories. 

We should make two clarifying remarks be
fore proceeding with program description. 
There is a difficult question when specifying a 
system such as the one being described concern
ing the criteria which should be used in select
ing a theorem to be tried. About the only thing 
which recommends the size of T (8) -to-G as a 
primary criterion in our case is that it is easily 
and quickly computable. A more sophisticated 
system would attempt an evaluation of the dif
ficulty of actually being able to realize T (8) 
with T given the ordering constraints; -and an 
evaluation, with measures better than size 
alone, of the problem T (8) -to-G. Gelernter's 
oft-cited use of a semantic model was directed 

toward evaluating the counterpart of T (8)
to-G for his Geometry Theorem Prover. (Work
ing backwards, what his system actually had 
to evaluate was 8-to-T-l(G). It did this by 
testing whether T-l (G) was true in a model 
determined by 8, the given premises.) 

A second clarifying remark concerns sorting 
problems down the same discrimination tree 
used to file theorems. In general, there might 
be properties which would be useful for cate
gorizing theorems but which would be inappli
cable to problems or vice versa. In our present 
case, for instance, the total number of basic 
transformations involved in their definition 
might be a property useful for categorizing· 
theorems. Problems have no such property. 
There would be, however, a corresponding prob
lem property whose value could be tested at the 
same point in the sorting tree. There would 
have to be such a problem property else the 
theorem property would not be a useful basis 
of categorization. It should not be forgotten 
that the categorization is for purposes of deter
mining relevancy of a theorem to a problem. 

To continue with program description: The 
first thing the program does when attempting 
to solve problems is to construct a tree of pos
sibly useful theorems .. The number of branches 
from each node is determined by an externally 
specified parameter N. The program selects N 
theorems possibly useful for the problem 
8-to-G; then it recursively selects N theorems 
for the problem T (8) -to-G determined by the 
best T of its first N selections; then it recursively 
selects N theorems for the problem U (T (8) ) -
to-G determined by the best U of its second 
N selections; etc. Recursion is terminated 
either when a closure is effected, i.e., when a 
sequence of selected theorems together trans
form 8 into G (ignoring the ordering con
straints) ; or when a maximum allowable depth 
of recursion, as determined by an externally 
specified parameter, is reached. At the point 
when recursion is first terminated, the tree will 
have the structure indicated in Figure 8. The 
non-maxim urn-depth terminal nodes will be ex
tended to full depth only if necessary, Le., if 
the theorem choices from the completed part 
of the tree do not result in a solution. 



348 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

Third N selections 

N =3 (for problem U(T(S»-to-G) 

Second N selections \ 
(for problem T(S)-to-G) 

\ :' First N selections 
(for problem S-to-G) 

\ 

Figure 8. Tree of Theorem Selections. 

The tree is extended in. the manner indicated until 
closure is effected or until a recursion limit is reached. 
If the top line of theorems (T, U. V, etc.) does not 
result in a solution, other lines (T, U, V', etc.) will be 
tried. The tree will be extended from the lower nodes, 
e.g., that for T', wh~n but only when necessary. 

(2.7) Application of Retrieved Theorems 

Given the tree of selected theorems, the pro
gram now picks up from the top down (as the 
tree is represented in Figure 8) sequences of 
theorems which effect a closure, trying one 
after another until it attains a solution, runs 
out of allowed time, or exhausts the tree. Given 
a closure-effecting sequence of theorems, the 
program still has a difficult task to accomplish 
for it must order the constituent basic trans
formations so that the path of pairs interven
ing between start and goal is in bounds and 
does not include any proscribed pairs. The 
ordering mechanisms constitute the longest and 
most complex part of the program. (The entire 
program is approximately 4500 IPL instruc
tions in length.) However, we shall not here 
describe these mechanisms because their opera
tion is not directly relevant to our present 
theme of theorem utilization (though, as we 
shall see, their complexity and the fact that 
they don't work very well are directly relevant 
to conclusions to be drawn concerning effective 
use of theorems by machine). One of these 

mechanisms uses a recursive technique of 
breaking problems into subproblems, and we 
shall say something about this particular, very 
important mechanism in the next section. 

(2.8) Breaking Problems into Subproblems 

A number of authors, especially Minsky,1l·12 
have remarked on the importance of enabling 
problem-solving programs to transform a large 
problem into a constellation of smaller prob
lems, "to plan" as Minsky calls it. This has 
turned out, however, to be a very difficult capa
bility to implement, and there are not many 
(if any) operating programs which have it, 

though Newell, Shaw, and Simon 17. 18 have done 
some work toward incorporating a planning 
capability in their General Problem Solver. We 
suggest that theorems (or, more generally, what 
we have called abstracts of previously devel
oped sequences) might well be primary instru
ments of planning. When planning, a human 
sequence synthesizer usually is especially inter
ested in discovering a special kind of subprob
lem, viz., one very like problems he has already 
solved. A good deal of human sequence-synthe
sizing activity is an attempt to transform a 
problem into a constellation of subproblems 
each of which belongs to a familiar kind of 
problem, familiar in the specific sense of the 
problem solver's having available abstracts of 
sequences previously developed as solutions for 
problems of just this kind. The kinds of fa
miliar problems will be more or less general 
and the abstracts of previous solutions more 
or less complete, and that's why, even after 
retrieval of the abstracts, the familiar prob
lems are still problems. So in our case, the re
trieved theorems often won't work. We shall 
presently want to examine why, but here we 
simply want to point out the connection between 
planning and theorem utilization. 

There are besides theorem utilization other 
kinds of planning, many of which appear to be 
special to particular problem domains. One 
such special kind is used by our present pro
gram when faced with the task of ordering a 
set of basic steps so that none of them result 
in a proscribed pair of numbers. When start
ing on any problem, the program has no way 
of determining which if any of the given pro
scriptions in the problem field are relevant to 



EXPERIMENTS WITH A THEOREM-UTILIZING PROGRAM 349 

the problem. The reader can grasp the nature 
of this difficulty by imagining himself given the 
proscriptions simply as a list of pairs of num
bers rather than in their spatially interpreted 
form. He then has no easy way of telling which 
of these pairs might get in the way as he at
tempts to work out a path between one pair of 
numbers S and another pair G. The program 
proceeds, to begin with, as if none of the pro
scriptions were relevant. As it tries one path 
after another it compiles a list of those pro
scribed pairs which have prevented success. 
This list's reaching a certain size, as deter
mined by an externally specified parameter, is 
taken to indicate that success is unlikely with
out taking into consideration the specific con
figuration of proscriptions which are relevant. 

Taking its occurrence on the list as evidence 
that a particular proscription is relevant, the 
program determines rows and columns (speak-

I ing in terms of the spatial interpretation) of 
relevant proscriptions and then looks for gaps 
in these rows and columns through which a 
successful path is apparently going to have to 
proceed. Cells within these gaps are then 
selected as midpoints defining possible sub
problems, each such cell M determining the sub
problems S-to-M and M-to-G. Several such 
1\1's might be selected at one time, and they 
are put on an ordered list with the position of 
an M on the list being determined by criteria 
like the number of proscriptions in its immedi
ate vicinity. The order of this list determin~s 
the order in which attempts are made to solve 
the subproblems determined by the M's. 

Given a pair of subproblems S-to-M and 
M-to-G on which to work, the system attacks 
these recursively, approaching each with the 
same mechanisms it originally applied to the 
problem S-to-G. Thus S-to-M might be broken 
into S-to-M' and M' -to-M, and so on. The only 
difference between operations of the program 
at one subproblem level and at another is that 
the lower the level the less the effort allowed 
per subproblem before reporting failure. The 
amount of effort expendable is controlled by 
reducing the potential size of the tree of 
theorem selections at each recursion onto a sub
problem, as illustrated in Figure 9. This reduc
tion also provides an effective means of ensur
ing that recursion will terminate. 

l)At SUbprobl .... Lev.1 0 

2)At Subproblem Level 1 

3)At Subproblem Lev.1 2 

Figure 9. Theorem Selection Trees at Different 
Subproblem Levels. 

The amount of effort spent on subproblems is controlled 
by reducing the potential number of theorem combina
tions which can be tried each time descent is made to 
a lower level. 

o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 

Figure 10. Recursive Solution of Subproblems of 
Problem 37. 

The original problem S-to-G was solved by breaking it 
into the subproblems S-to-M and M-to-G and recur
sively attacking these. The problem M-to-G was further 
broken into M-to-M' and M'-to-G before success was 
achieved. 



350 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

A solution obtained by the method of deter
mining subproblems and recursively attacking 
them is illustrated in Figure 10. The original 
problem <8,9> to <18,19> was broken into 
<8,9> to <1,12> and <1,12> to <18,19>, 
and the latter of these in turn into <1,12> to 
<1,14> and <1,14> to <18,19> before suc
cess was attained. This simple example does 
not illustrate the frequent occurrence of a num
ber of alternative midpoints being tried and 
discarded before usable ones are hit upon. 

(2.9) Deciding Which Theorems to Save 

We earlier raised the problem of improving 
a theorem file in ways other than simply adding 
to it. There is built into the program a mecha
nism for periodically culling from the file theo
rems which have been of little use. We shall 
not report more fully on the mechanism in this 
paper, however, because our experiments have 
not yet provided us with the opportunity to 
test the mechanism and to compare it with 
alternatives. 

3. RE$ULTS OF EXPERIMENTS 

(3.1) Vindication of Theorem Utilization 

Sometimes the designer's product doesn't 
work at all; the airplane crashes or the ship 
sinks. So the first questions to ask about a 
complex problem-solving program are "Does 
the program work when all the pieces are put 
together? Does it solve problems ?" We are 
happy to report in the present case that the 
answer is yes. The program does solve prob
lems, in some cases q.uite elegantly (Figure 11 
shows one machine solution of Problem 56 in 
the FKC), in other cases very inelegantly (Fig
ure 12 shows another machine solution of the 
same problem), but of course in some cases not 
all (Figure 13 shows a good but unsuccessful 
try for Problem 38 in FKC). 

More to the specific point of the experiments, 
the problem-solving power of the system was 
substantially increased by its ability to utilize 
theorems. We tested this by comparing its per
formance on Problems 51 through 60 without 
any transformations in its file except the basic 
ones of the FKC and its performance on these 
same ten problems with its file containing the 

17 

16 

15 

14 
I--~-+-

o I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Figure 11. A Good Machine Solution to Problem 56. 

The program is able to solve problems-in some few 
caS2S, elegantly. (The illustrated solution is in the 
FKC: allowed steps corr€sponding to the eight legal 
knight's moves in chess.) 

basic transformations of the FKC plus all the 
defined transformations (about 60) which it 
had accumulated from solving those which it 
could of Problems 1 through 50 and associated 
subproblems. Almost all of the time of the theo-

17 

16 

15 

14 

13 

t--t--1---t--

I--~-+-

~~~~~+-~r;-
12
~~~~~~~r;-

1I~~~~~~~+-~~-4~~~~+-~~ 
10 

o I 2 3 .. 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Figure 12. A Poor Machine Solution to Problem 56. 

The program is able to solve problems--but, in many 
cases, very inelegantly. (The illustrated solution is in 
the FKC.) 



EXPERIMENTS WITH A THEOREM-UTILIZING PROGRAM 351 

19 

18 

17 

16 

15 

104 

13 

12 

II 

10 

o I 2 3 4 5 6 7 8 9 10 II 12 13 104 15 16 17 18 19 

Figure 13. A Good But Unsuccessful Machine Try. 
The program in any of its versions was unable to solve 
Problem 38. To get an idea of the kind of ordering 
constraints the program is up against, the reader might 
try moving a knight from S to G without letting it 
touch down on any of the blacked-out cells. 

remless machine was spent in searching for 
combinations of the basic transformations 
which together would transform start pair into 
goal pair. Given its difficulty in discovering 
any combination at all which would effect this 
closure, it was unable to solve any but the sim
plest of the ten problems. Successful solution 
of the more difficult problems required having 
a variety of these combinations easily avail
able from which to discover one which could 
be ordered to satisfy the ordering constraints. 
The machine with theorems was quickly able 
to discover combinations of basic transforma
tions which effected a closure and could spend 
its time attempting to arrange these combina
tions in an acceptable order, quickly discover
ing an alternative combination in case further 
work on some given combination appeared 
futile. 

Examination of the relative performance of 
the two machines (the theoremless machine 
and the machine with theorems) on Problem 60 
is instructive. Figure 14 illustrates the solu
tion which the machine with theorems was able 
to achieve in 48.5 minutes (and in 1,276,809 
IPL cycles). This solution involved a total of 

19 

18 

17 

16 

15 

104 

13 

12 

II 

10 

o I 2 3 04 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 

Figure 14. A Hard-Won Machine Solution of 
Problem 60. 

Even with the use of previously-provided theorems, the 
achievement of this solution required a great deal of 
effort (over a million IPL cycles). Without theorem 
utilization the program was unable to sol'9'e the problem 
at all. (The illustrated solution is in the FKC.) 

13 different closures. In contrast, the thoorem
less machine in 60 minutes effected only two 
closures, with combinations which it was un .. 
able to order satisfactorily, and fruitlessly 
spent the rest of the hour allowed it trying to 
effect a third. 

In at least one important sense the HKC and 
FKC derivations required in the present experi= 
ments are not trivial; this is with respect to 
the very large number of basic transformations 
required to effect them. For the problem illus
trated in Figure 15, for instance, the solution 
achieved by our program (with theorems) is 
44 steps long; an apparently optimum solution 
(achieved by a human being) is 28 steps long. 
A question raised by these performanees is 
whether there are any general strategies 
(heuristics) , other than utilization of previ
ously developed subsequences, powerful enough 
to enable synthesis of very long sequences in 
non-trivial cases like theorem proving and pro
gramming. It might be suggested that all the 
machine needs is something like the space
perception ability which enabled the human 



352 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

17~~~~~~~~~~~4-+-~~-+~~ 
16~~~~~~~~~~-b~~~~~~H 
15 
i--~".q..J-

14 
1--~:!IIo.,A--

13 
i--1---4~-

12 
i--........ ~""" 
"~~~-N~~~~~~~~+-~~~~~ 

10 
I--~~~~~+-~~~-r~~r-~-+~, 

o I 2 3 4 5 6 7 8 9 10 " 12 13 14 15 16 17 18 .19 

Figure 15. Machine and Human Syntheses of 
Long Sequences. 

The machine-produced sequence (heavy lines) is 44 
steps long, the human-produced sequence 28 steps long. 
The human's visual abilities enabled him to get along 
without much prior experience on this kind of task. But 
without such abilities the machine needed prior experi
ence to synthesize a sequence so long. (The illustrated 
solutions are in the FKC.) 

being to synthesize his 28-step sequence without 
much prior experience on this kind of task. But 
this is just to shift the problem to another 
domain. Given the spatial interpretation of 
the problem, the human being makes extensive 
use of experience, if not ontogenetic then 
phylogenetic. 

So the question still stands. Certainly no 
mechanical game player which looks ahead 
move by move is able to come close to looking 
28 (or 44) moves ahead. Samuel's checker 
player20 might achieve such farsightedness but 
it is of interest to note that this is with a tech
nique which is a kind of utilization of pre
viously-developed (trees of) sequences. When
ever the checker player, using what Samuel 
calls its rote memory, applies to positions X 
moves ahead a previously-computed evaluation 
which involved looking "X moves ahead, this 
provides it with an evaluation identical with 
what it would achieve by directly synthesizing 
and evaluating sequences X+ Y moves in 
length. The effect is cumulative so that even-

tually the checker player is able to look ahead 
a very great distance. Samuel's work, by the 
way, leads to an important conclusion relative 
to what we have called the theorem-utilization 
problem: however powerful theorem utilization 
might be, attainable degree of theorem gener
alization and attainable efficiency of theorem 
retrieval impose limits. Samuel was able to use 
retrieval techniques as efficient as binary 
search but was unable to achieve any signifi
cant degree of generalization; as a consequence 
his file of experience would reach an unmanage
able size before it enabled his machine to play 
good checkers at any stage of the game. He had 
to turn to techniques other than "theorem uti
lization" in order to achieve good mid-game 
playing ability. It should be noted, however, 
that these other techniques were not alterna
tive ways of synthesizing longer sequences but 
were improved ways of evaluating given 
sequences of limited length. Hence, our ques
tion still stands: are there any strategies, 
other than utilization of previously-developed 
sequences, powerful enough to enable synthesiz
ing of very long sequences in difficult problem 
domains if this is what we have to do, say to 
program a computer? 

We might apply the question directly to 
Newell, Shaw, and Simon's General Problem 
Solver (GPS).17 The primitive operators used 
by GPS correspond to what we have called basic 
transformations of a sequence-synthesizing 
problem domain. Given this correspondence, 
the many similarities between the operation of 
our program in its theoremless mode and the 
operation of GPS are obvious. Of course, add
ing to GPS an ability to accumulate and effi
ciently to use defined operators may not prove 
especially difficult, though it raises questions 
of exactly the kind with which we are con
cerned in this paper. 

To complete our case for the indispensability 
of theorem utilization for difficult sequence syn
thesis, we might temporarily look up from our 
experiments and appeal to authority. After 
making the point that non-trivial logical deduc
tions usually require many steps of inference, 
Carnap2 (pp. 36-37) remarks, "In practice a 
deduction in science is usually made by a few 
jumps instead of many steps. It would, of 



EXPERIMENTS WITH A THEOREM-UTILIZING PROGRAM 353 

course, be practically impossible to give each 
deduction which occurs the form of a complete 
derivation in the logical calculus, i.e., to dis
solve it into single steps of such a kind that 
each step is the application of one of the rules 
of transformation of the calculus .... An ordi
nary reasoning of a few seconds would then 
take days." We suggest that, at least in this 
case, as it goes for men, so it goes for machines. 

(3.2) Failure to Satisfy Goal Criterion 

We must now turn to reporting and analyz
ing less positive results of our experiments. 
Over-all, our program was not a very good 
problem solver. For the HKC, in two runs (dif
fering in respects inessential to our present in
terest) through the entire succession of 60 
problems, the program was unable to solve 33 
in one case and 30 in the other. For the FKC, 
in two runs the numbers were 21 and 17. Of 
course, increasing the time allowed per prob
lem would have improved this performance 
somewhat, but we experimented enough with 
this variable safely to conclude that the time 
limit would have had to be extended unreason
ably to assure success with most of the un
solved problems and, in any case, time taken 
to achieve solution is an important measure of 
the power of a heuristic problem solver. Even 
more disappointing than these tallies of un
solved problems was their distribution. It was 
mainly problems in the later part of the suc
cession of 60 which were not solved, the dif
ficult problems requiring for their solution use 
of solutions obtained for problems occurring 
earlier in the succession. The obvious conclu
sion is that "theorem utilization" wasn't work
ing very well. 

At first we thought that perhaps the failure 
was a matter of the succession of problems not 
being long enough, i.e., that the program just 
needed more simple problems from which to 
build up a store of experience before being able 
successfully to attack the difficult ones. We at
tempted a minor "empirical test of this possi
bility by giving the program a second chance 
on the unsolved problems from the first run 
through the succession of 60, a second chance 
during which it could use for any given prob
lem theorems acquired after its first attempt 
on the problem in addition to the theorems 

which had been available at the time of the first 
attempt. No more of the difficult problems 
were solved with the additional theorems than 
had been solved in the first place. 

(3.3) Implications of the Failure for Theorem 
Utilization 

In the difficult cases the program was failing 
because it did not possess techniques powerful 
enough to deal with severe ordering constraints. 
For problems like Problem 48 illustrated in 
Figure 5, for instance, even when the program 
had discovered a usable combination of basic 
steps, ordering them in the precise way neces
sary to avoid the proscribed cells required some
thing the program does not possess, viz., a 
sharp sensitivity to patterns formed by these 
cells. The best the program could do on Prob
lem 48 is illustrated in Figure 16. 

Of course, the sharp sensitivity alone would 
be of little value. There would be no point to 
the program's being able to recognize a pat
tern of proscriptions if this didn't indicate 

17 
16~~-+~~+-~~-+~~~~~-+~~ 

15 
1.~~-+~~+-~~-+~~+-~~~~~ 

13 

12 

II 

10 

o I 2 3 • 5 6 7 8 9 10 I I 12 13 14 15 16 17 18 19 

Figure 16. Machine Inability to Achieve the Precise 
Ordering Required to Solve Problem 48. 

Appearances notwithstanding, the program is a long 
way from attaining an ordering of steps which will 
move it through the tight part of the illustrated prob
lem field. Most of the program's failures are attribut
able to weaknesses of its ordering procedures-despite 
the fact that these constitute the bulk of the program. 
(The illustrated attempt is in the FKC.) 



354 PROCEE:DINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

something for it to do. Recognition of a narrow 
channel through which the successful path must 
proceed would have to suggest procedures for 
selecting the particular basic steps and an 
ordering of them which would effect a path of 
acceptable dimensions; similarly for recognition 
of a required sharp right bend, or of a required 
detour to the left, or of a circumscribing rec
tangle within a certain size range and with 
entrance and exit required at certain places, etc. 
So the system would need" a much more power
ful pattern-recognition capability than it pres
ently has; but it would also need a system con
necting this capability with methods of 
behaving appropriately given certain patterns. 

It will be recalled that information about the 
order of basic transformations in a successful 
sequence is discarded by the present program 
when that sequence is abstracted and stored as 
a previously-proved "theorem." There is no 
point to saving information about order when 
the pattern-recognition system used for re
trieval of theorems relevant to the solution of 
particular problems is able to recognize only 
direction and distance aspects of the problems 
and nothing about ordering constraints. How
ever, given the appropriate pattern-recognition 
capability there would be reason for saving in
formation about order. For our particular prob
lem domain (as well as for many others), one of 
the things which makes a problem difficult is its 
ordering constraints. Because our system is un
able to recognize clues involving these con
straints, and with these clues to retrieve rele
vant information from its file of past experi
ence, it falls down badly on problems involving 
severe ordering constraints. We need, then, two 
complementary things: improved pattern-rec
ognition capability and different kind's of in
formation saved about our previously-proved 
theorems. 

It might be contended that we are begging the 
question. Surely there are ways to satisfy 
severe ordering contraints other than the re
trieval and use of orderings previously worked 
out. To this charge we reply that there might 
well be such alternative ways but there appear 
to be sharp limits on how far one can go with 
them. This is related to the point we made 
earlier about the apparent necessity of theorem 
utilization for the mechanical synthesis of non-

trivial, long sequences. One can, of course, 
write a more and more ~omplex program, but 
at some point he runs out of programming time 
or out of program storage space in his com
puter. The limits we are talking about are prac
tical. Also, a point of special importance for 
artificial intelligence research (see Kelly and 
Selfridge8 ), there is a serious question whether 
the more and more complex program would not 
necessarily have to be more and more ad hoc 
with respect to a particular problem domain. 
These possibly rash statements are at least 
partly based on our experience with the present 
program. 

We have tried a long list of techniques in
tend~d to increase the ordering ability of our 
program. Our hope has been to achieve a 
program of sufficient problem-solving capabil
ity that we could use it as a vehicle for experi
menting with alternate schemes for accumulat
ing, culling, abstracting, filing, retrieving, and 
applying theorems; and we did not want the 
ordering aspects of the problems in our prob
lem domain to enter into these inyestigations 
concerning theorems because of the very great 
difficulty of programming the pattern-recogni
tion mechanisms which would be required. 
Hence, our valiant try to get the program to 
handle the ordering aspects of its problems by 
means other than theorem utilization. The try 
has failed, however, and so we have not so far 
been able to experiment with alternate schemes 
of theorem utilization; the reason is that 
changes in performance due to changes in these 
schemes are masked by effects due to weak
nesses in parts of the program which were sup
posed to perform their functions without 
theorem utilization. 

We salvage something from the failure if we 
learn a lesson concerning the importance of 
theorem utilization even for those parts of our 
problems where we thought we could get along 
without it. The reader will be helped in decid
ing whether he agrees with us that we can't get 
along without it, if we indicate some of the 
things we did in trying to do so. We have al
ready described probably the most important 
thing, viz., having our program look for gaps 
through which a successful. path apparently 
will have to proceed and use these gaps as bases 
for breaking a given problem into subproblems. 



EXPERIMENTS WITH A THEOREM-UTILIZING PROG.RAM 355 

Several other things were tried, many of them 
rather difficult to implement. Actually the 
reason we conducted as many as four separate 
runs through the succession of 60 problems was 
that with each successive run we hoped (to no 
avail) that we had devised significantly im
proved ordering techniques. We tried a tech
nique for shortening paths, and thereby reduc
ing the likelihood of violating proscriptions, by 
replacing parts of unacceptable paths with 
theorems spanning the same gaps but involving 
fewer basic steps. This caused over-all per
formance to deteriorate; the program did better 
by considering many alternative paths, rather 
than considering only a few and spending a lot 
of time on each of these trying to edit it into 
acceptable form. We tried techniques so easy 
as blindly reversing the order of steps in a path 
and so difficult as determining and effecting 
permutations which would usually move a 
bothersome part of a path from an area con
taining proscribed cells into an area contain
ing none or at least fewer. We programmed 
and tried a complex process intended to relax 
the ordering constraints on a problem by dis
covering pairs, alternative to the given start 
and goal pairs, into which the given pairs could 
easily be transformed but lying in an area 
allowing greater freedom of choice. We pro
grammed and tried a complex process which 
packed the steps of a path into an area of mini
mum dimensions. None of these things worked 
very well. The simple fact of the matter is we 
have been unable to devise and realize effective 
ordering techniques which make no use of pre
vious experience on simpler problems. 

It might be suggested that we have boxed 
ourselves in with the kind of theorem utiliza
tion that we do have, that rather than selecting 
theorems which determine the constituent steps 
of a path and then being faced with ordering 
and re-ordering these steps, a problem solver in 
our domain should select basic steps one by one, 
selecting a step only if this can be combined 
with previously selected steps in a manner that 
satisfies ordering constraints. It seems to us 
that the experiment reported above with our 
program in theoremless mode is relevant to an 
answer. In this mode the program has no alter
native but to select basic steps ~ne by one, and 
it will be recalled what a difficult time it has 

merely selecting a long sequence of steps which 
will effect a closure let alone a sequence which 
satisfies severe ordering constraints as well. 

4. GENERAL CONCLUSIONS 

(4.1) The Significance of Theorem Utilization 
(Again) 

We want now to indicate the significance 
we find in our experiments for matters beyond 
better ways of programming a computer to 
move a knight around on a chessboard. First, 
let us repeat-for emphasis-our main point 
concerning the apparent importance of using 
previously-developed, defined transformations 
for tasks involving synthesis of long, order
constrained sequences of certain given basic 
transformations. That the ability to save and 
use previous experience in this way is impor
tant for a man is apparent enough to anyone 
who will carefully observe himself proving a 
theorem or writing a computer program. Per-. 
haps we have gone some way toward deter
mining just how important such an ability 
might be for a problem-solving automaton as 
well. But we have said enough about this. 

(4.2) Importance of Pattern Recognition for' 
Problem Solving 

Second, we would remark on the importance 
of pattern-recognition capabilities to effective 
theorem utilization and hence to effective prob
lem solving. The conclusion to which we are 
led is that a bottleneck presently preventing 
more powerful problem-solving machines is 
perceptual impotence. Our machines won't be 
good problem solvers until they are good theo
rem utilizers, and they won't be good theorem 
utilizers until they are good pattern recogniz
ers. Hard as this bottleneck might be to break, 
unfortunately it isn't the only thing inhibiting 
progress. 

( 4.3) Program Organization Difficulties 

Third, we would say something about some 
thorny problems of program organization that 
arise in connection with a complex heuristic 
program. We have discovered as have other ex
perimental programmers (e.g., cf. Newell13 ) 

that a problem-solving program which breaks 



356 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

problems into subproblems and recursively at
tacks these, breaks the subproblems into sub
subproblems and recursively attacks these, etc., 
will likely be a rather poor problem solver un
less there are some rather strict controls im
posed on its recursion. Such a program is likely 
to dig itself into a hole and never get up and 
out of the hole to a position from which it can 
recognize that it should have been digging in 
a different location in the first place. Perhaps 
even worse it is not able to relate the different 
subproblems which it defines at different levels 
of recursion to each other to discover overlap, 
duplication, and the possible significance of 
joint solution of subproblems quite separated 
from each other on the subproblem tree. And, 
finally, when it fails at some point and has to 
decide what subproblem to turn to next, obvi
ously it would be a better problem solver if it 
were able to base its decision on some kind 
of overview of the subproblem tree rather than 
turning automatically to the next subproblem 
one level up from the point in the tree at which 
it failed, but this is precluded in the case of 
uncontrolled recursion. We can report that all 
these difficulties (and more) arose in our case, 
and we have no general resolution of them to 
offer. However, it is perhaps worth reporting 
that we found very useful, indeed even indis
pensable, the technique of building up a tree 
of subproblem records (isomorphic with the 
tree of subproblems solved and unsolved, pend
ing and disposed of) which could be consulted 
by the program at any stage or level of recur
sion when deciding whether to create a new 
subproblem or whether to go to work on some 
previously created subproblem. Even though 
the techniques used for examining and compar
ing the records on this tree were quick and 
dirty, controlling recursion with the tree served 
to prevent much duplication of effort and mis
interpretation of the relative importance of 
particular subproblems. 

(4.4) Harder Problems (for Programs and for 
Programmers) 

Finally, something should be said about 
where we see the main difficulties if we are to 
implement an experience-utilizing system of 
the kind here discussed for proving theorems 
in a calculus of greater complexity and sophis-

tication than the HKC or FKC, say for the 
propositional calculus or the predicate calculus, 
or for programming computers more powerful 
and interesting than vector adders. The first 
problem will be in determining a useful set of 
properties with which to categorize theorems 
or subroutines and a corresponding set with 
which to categorize problems and then, of 
course, developing pattern-recognition proce
dures which enable detection of these proper
ties. The second, and it will be recalled from 
our discussion above that we consider this a 
problem complementary to the categorization 
problem, will be determining how successful 
solutions should be abstracted, i.e., what kinds 
of information about them ought to be filed, and 
then, of course, developing procedures which 
can perform the desired abstraction. But these 
two problems are overshadowed by one of a 
kind which has not yet been solved, by us or by 
anybody else, even for systems so simple as the 
HKC and the FKC. This is the problem of gen
eralizing a number of particular, previously
developed solutions into a single solution 
schema. 

We haven't said anything about this general
ization so far because our present program 
doesn't do it, instead saving and using only par
ticular solutions. But skilled human problem 
solvers obviously aren't so limited in their use 
of previous experience and much of their power 
derives from their ability to use general sche
mata which have been built from many sepa
rate, particular solutions. We can easily illus
trate the kind of general schemata we are 
talking about by looking at the HKC. Figure 
17 shows a human solution of Problem 58 in 
the HKC. (Problem 58 was much too difficult 
for our program, in any of its several different 
versions, to solve.) Several parts of the suc
cessful path might have been constructed by 
using general schemata (and were so con
structed, if we are to believe the intro
spection of the human who solved the problem.) 
Thus in synthesizing the lower part of the path 
manifesting a regular alternation of the basic 
steps <-1,-2> and <-1,2>, the problem 
solver could have put to good use a general 
schema enabling left movement through any 
required distance within minimum vertical 
dimensions simply by alternately applying 



EXPERIMENTS WITH A THEOREM-UTILIZING PROGRAM 357 

19 
~~-+~~~~~-+~~~+-~-+=T~~ 

18 
~~-+~~4-+-~-+~~~~~~~~~ 

17 
~~-+~~4r~~-+~~4,~~-+~~~ 

16 
~~-+~~~~~-+~~~~~-+~~~ 

15 

1-4 

13 

12 

11 

10 

~~-+~~+-~~-+~~~~~-+~~ 

~~-+-6~~~~~~~4-~~-+~~ 

o 1 2 3 -4 5 6 7 8 9 10 II 12 13 1-4 15 16 17 18 19 

Figure 17. Human Solution (of Problem 58) 
Requiring Extremely Complex Ordering. 

The human problem solver used general schemata. 
Thus rather than moving from <12, 2> to <4, 2> by 
remembering and applying some combination of steps 
which effects a specific <-8, 0> transformation, he 
used a general schema for moving left any distance 
required. (The illustrated solution is in the HKC; 
notice the allowed steps.) 

these two basic steps. As it now stands, the 
program saves from its experience much more 
specific information, viz., information about 
how to effect the left-moving transformations 
<-2,0>, <-4,0>, <-3,2>, <-5,2>, 
<-3,-2>, <-5,-2>, etc. But it can not 
generalize this specific information into the 
schema enabling left movement through any de
sired distance. A human being apparently has 
no difficulty making such a generalization. In 
fact, even rats don't have any difficulty in mak
ing a generalization as simple as the one illus
trated (cf. Krechevsky).lO But we are surely 
up against one of the hard problems of com
puter learning. 

For the present we are concentrating on 
methods of representing general schemata 
within a computer and methods of using them 
to solve problems. To take an elementary 
case, in the propositional calculus we are faced 
not with representing and using as inaepend
ent, isolated items the particular theorems 
(P ~ Q) ~ (-.,Q ~ ~P), (P ~ -.,Q) ~ 

(Q ~ -.,P), etc., but with representing and 
using the general transposition schema under 
which are subsumed all four theorems with 
which one can transpose a conditional. The 
problems of machine representation and use are 
hard enough. Maybe their solution will sug
gest some ideas about how to solve the more 
interesting problem of getting a machine to 
generalize and establish such schemata by it
self, or at least with no more help than a human 
student has. But these problems of machine 
learning of general concepts are so hard as to 
suggest that maybe we ought to relinquish this 
faith that artifacts can be made to think. May
be we ought to become Platonists all. 

ACKNOWLEDGEMENTS 

The research described is part of the inde
pendent research program of System Develop
ment Corporation. The particular computer 
program described was conceived while I was 
participating in the Research Institute in Heu
ristic Programming held at RAND during the 
summer of 1962. I wish to acknowledge my 
indebtedness to Institute staff members for 
their guidance during the initial stages of writ
ing and debugging the program. Also I want to 
thank J. Feldman, T. Ruggles, and S. Shaffer 
for helping me construct the list-processing 
system required for -efficient running of the 
program on a Philco 2000. Special credit is due 
Dr. Feldman as designer of the initial version 
of the system (see Feldman4). The system in 
its present form is a one-address variant of 
IPL-V ( see Newell et al, 14) , 

REFERENCES 

1. AMAREL, S. On the automatic formation 
of a computer program which represents 
a theory. In Self-organizing system, 1962, 
edited by M. Y ovits et ale Washington: 
Spartan, 1962. Pp. 107-175. 

2. CARNAP, R. Foundations of logic and 
mathematics. Chicago: University of Chi
cago Press, 1939. 

3. DAVIS, M., and PUTNAM, H. A computing 
procedure for quantification theory. Jour
nal of the ACM. 7 (1960) :201-215. 

4. FELDMAN, J. TALL-A list processor for 
the Philco 2000 computer. Communications 
of the ACM. 5 (1962) :484-485. 



358 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

5. GELERNTER, H. Realization of a geometry 
theorem-proving machine. In Information 
processing. Paris: UNESCO, 1959. Pp. 
273-282. 

6. GELERNTER, H., et al. Empirical explora
tions of the geometry theorem machine. 
Proceedings of the 1960 Western Joint 
Computer Conference. Pp. 143-147. 

7. GILMORE, P. A proof method for quanti
fication theory. IBM Journal of Research 
and Development. 4 (1960) :28-35. 

8. KELLY, J., and SELFRIDGE, 0. Sophistica
tion in computers: a disagreement. IRE 
Transactions on Information Theory. IT-8 
(1962) :78-80. 

9. KILBURN, T., GRIMSDALE, R., 'and SUMMER, 
F. Experiments in machine learning and 
thinking. In Information processing. 
Paris: UNESCO, 1959. Pp. 303-309. 

10. KRECHEVSKY, 1. "Hypotheses" in rats. 
Psychological Review. 39 (1932) :516-532. 

11. MINSKY, M. Heuristic aspects of the arti
ficial intelligence problem. Lincoln Labo
ratory Group Report 34-55, 1956. 

12. MINSKY, M. Steps toward artificial intelli
gence. Proceedings of the IRE. 49 
(1961) :8-30. 

13. NEWELL, A. Some problems of basic or
ganization in problem-solving programs. 
In Self-organizing systems, 1962, edited by 
M. Yovits et al. Washington: Spartan, 
1962. Pp. 393-423. 

14. NEWELL, A., et al. Information Processing 
Language-V Manual. Englewood Cliffs: 
Prentice:-Hall, 1961. 

15. NEWELL, A., and SIMON, H. The logic 
theory machine. IRE Transactions on In
form.ation Theory. IT-2(1956) :61-79. 

16. NEWELL, A., SHAW, J., and SIMON, H. Em
pirical explorations of the logic theory ma
chine. Proceedings of the 1957 Western 
Joint Computer Conference. Pp. 218-239. 

17. NEWELL, A., SHAW, J., and SIMON, H. Re
port on a general problem-solving pro
gram. In Information processing. Paris: 
UNESCO, 1959. Pp.256-264. 

18. NEWELL, A., SHAW, J., and SIMON, H. The 
processes of creative thinking. In Con
temporary approaches to/ creative think
ing, edited by H. Gruber et al. New York: 
Atherton, 1962. Pp.63-119. 

19. ROBINSON, J. Theorem-proving on the 
computer. Journal of the ACM. 10(1963): 
163-174. 

20. SAMUEL, A. Some studies in machine 
learning using the game of checkers. IBM 
Journal of Research and Development. 
3 (1959) :210-229. 

21. SIMON, H. Experiments with the heuristic 
compiler. Journal of the ACM. 10 (1963) : 
493-506. 

22. SLAGLE, J. A heuristic program that solves 
symbolic integration problems in fresh
man calculus. Journal of the ACM. 10 
(1963) :507-520. 

23. STEFFERUD, E. The logic theory machine: 
a model heuristic program. RAND Memo
randum RM-3731-CC, 1963. 

24. WANG, H. Toward mechanical mathemat
ics. In A survey of mathematical logic, 
by H. Wang. Amsterdam: North-Holland, 
1963. Pp. 224-268. 



ANALYTICAL TECHNIQUE FOR AUTOMATIC DATA 
PROCESSING EQUIPMENT ACQUISITION 

Solomon Rosenthal 
Directorate of Data A utoma.tion 

Headquarters, U.S. Air Force 
Washington 25, D. c. 

In this paper we describe inconsiderable 
detail the "Analytical Technique for Automatic 
Data Processing Equipment Acquisition" de
veloped and documented with Mr. Ernest L. 
Holt and Mr. Joseph T. Averitt for the Direc
torate of Data Automation, Headquarters, U.S. 
Air Force. This is the first public description of 
this Technique and how to use it. 

The Technique is designed to facilitate com
petitive selection of Electronic Data Processing 
Equipment regardless of the purpose for which 
the equipment is to be acquired. It is equally 
applicable for centralized or pick-your-own con
cepts of selection. 

There are four parts, each designed as part 
of an integrated whole. The parts are: 

I Instructions for preparation of specifica
tions for submission to vendors. 

II Instructions for submission of EDPS 
proposals. 

III Instructions for validation of EDPS 
proposals. 

IV Instructions for scoring of EDPS pro-
posals. 

Detailed knowledge of the other three parts is 
not required to implement anyone part, but to 
insure effective use of the Technique, those 
charged with the responsibility for its overall 
administration must be thoroughly familiar 
with all four parts. 

359 

This system, including a weighted factor se
lection method, was designed to be flexible, im
partial, efficient and effective. Flexibility is 
achieved by permitting factor and weight modi
fications which best suit each individual selec
tion. To maintain impartiality the factors con
sidered and the weights assigned are varied 
prior to solicitation of proposals. The develop
ment of the technique was not influenced by ap
plications to be processed on selected equipment,_ 
nor by specific equipment characteristics or con
siderations for any vendor. Equipment selec
tion time is shortened, the resulting selection is 
valid, and the documentation produced fully 
supports the selection. Due to the built-in 
flexibility, impartiality and efficiency of the 
technique, it is acceptable to the ultimate user 
of the selected equipment, to approval authori
ties, and to vendors-in short, it is effective! 

PART I 

The "Specifications Module," or "Specs for 
Specs" as some like to refer to it, was developed 
to provide a standard arrangement, organiza
tion and approach to the problem of preparation 
of the EDPS specifications for submission to 
vendors. A more complete description would 
provide a table of contents for specifications, 
and detailed instructions for the contents of 
each chapter and paragraph. Here" rather than 
present the prescribed format, we will discuss 
the material to be included in the specifications. 



360 ~ROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

Specifications prepared in accordance with the 
standard format provide sufficient information 
about the job to be done to permit interested 
vendors to submit proposals that are truly re
sponsive, and also to establish for the scorer a 
firm basis for application of the scoring module 
to be described later. 

Prospective bidders must be fully informed 
about intended locations and the user's organi
zational mission and objectives. The user's 
plans for conversion from any existing system; 
for centralized or decentralized programming 
in the case of multiple installations; his equip
ment delivery and implementation schedule; 
and his intention to pilot test before ordering 
more than one system, are all bits of informa
tion a vendor needs to know before investing in 
a proposal. 

Any conditions or minimum standards, with 
which the vendors must comply, must be docu
mented. These specific requirements, or restric
tive criteria, should be held to a minimum, and 
must not be designed to eliminate any vendors 
from consideration. If these rules are followed, 
it seems reasonable to state that non-compliance 
with any of these specifics could result in a pro
posal being eliminated from competition. Re
strictions might justifiably apply in such areas 
as: 

Delivery (Dates and Places) 
Cost (Maximum Funds Available) 
Timeliness (Allowable delay between remote 

station inquiry and response, etc.) 
Support (Programming, maintenance, sys

tems analysis, etc.) 
Physical Environment (Room size, controls, 

floor) 
Equipment Characteristics (Print positions, 

character sets, random access storage, etc.) 
Compatibility (With data banks, programs, 

other interface requirements) 
Expansion Capability (Anticipated work

loads) 
Software (Monitors, executives, scientific 

subroutines, common languages, etc.) 
Others 

We must remember that to qualify for inclu
sion in the above list an item must be a firm, 
unalterable requirement. 

The heart of a specifications package is that 
part which documents the job to be done. For 
each data processing task, a statement is re
quired which fully describes a representative 
sample of the total workload of that type. As 
large a percentage of the total as is practicable 
must be stated for each task. A sufficient num
ber of task statements must be made to in
dicate collectively the requirement for all com
puter characteristics involved, i.e., an adequate 
number to enable determination of the configu
ration and capacities needed to accomplish the 
tasks. 

A complete statement includes a general de
scription of the job and the function~l areas 
involved (personnel, materiel, accounting, sci
entific research, etc.). All processing require
ments must be described in narrative form. All 
items, documents, files, master files, tables, etc., 
which are to. be used during---or produced by 
each processing step, should be discussed. Sort 
runs, edits, and so forth should be explained. 
Flow charts, consecutively numbered, describ
ing the data system must be prepared. Each 
processing step must be identified and numbered 
to correspond to numbered paragraphs in the 
narrative. All inputs to, and outputs from, 
every chart must be clearly labeled to show their 
source or destination and to tie all the charts 
together. All inputs and outputs must be de
scribed in terms of the number of Alpha and 
Numeric characters contained. If sample docu
ment forms are available they should be in
cluded. 

A key item in our system is the "Workload 
Statement Chart" which must be supplied with 
the specifications; it provides a tabular sum
mary of the information contained in the job 
statement just covered. A separate page or 
chart should be produced for each application or 
task. A more complete description would leave 
nothing to the imagination in the instructions 
for completing this chart. Here, we merely pre
sent a recommended "Workload Statement 
Chart" (Figure 1). Just one word of caution; 
the entries must serve to explain what came be
fore, not to confuse the reader. In other words 
it should be simple for anyone to relate each 
entry to a corresponding part of the narrative 
and applicable flow chart. 



ANALYTICAL TECHNIQUE FOR AUTOMATIC DATA PROCESSING EQUIPME~T ACQUISITION 361 

FigUre 1. Workload Statement Chart. 

The final entry on the "Workload Statement 
Chart" for each task should be "The above state
ment represents 'X'% of the total workload of 
this type." The final entry on the last chart 
should be "The above statement (s) repre
sent(s) 'X'% of the known total workload." 
The percentages indicated will be used later in 
proposal preparation to project an estimate of 
the total time each proposed equipment will re
quire to accomplish the total requirements. 

In most cases it will be advantageous to give 
prospective bidders a des'cription of the intended 
site (s). Include such information as available 
floor space, loading factors, maximum distance 
allowable beteen main computer and remotes, 
etc. To enable the vendors to propose a com
plete system, including power converters, regu
lators and other items needed, tell them what 
kind of facilities exist. You might also ,vish to 
tell them your current inventory of such things 
as magnetic tapes and control panels to give 
them a basis for quoting some trade-in values. 

PART II 

The "Proposal Module" serves a dual purpose. 
First, it provides those requesting a proposal 
with a complete guide to designing that request. 
Second, it provides the vendors with a "recom
mended" standard arrangement and indexing of 
the many subjects to be covered in a proposal. 
Therefore this module should have two prefaces 
-one to be read by those preparing the request, 
the other to accompany the request, to be read 
by those responding with proposals. 

These prefaces should include, 
In the First: 

This part is used in preparation of instruc
tions to vendo1"s. These instructions must be 
tailored to the requirements of the particular 
selection by those forwarding specifications 
and requests for proposals to vendors. 

In the Second: 
We request that your proposal be prepared as 
outlined in the attached "instructions for pro
posalorganization." 

• * * * * * * * * * * * 
This format is not intended to restrict the 
contents of your proposal. The entire con
tents of Chapters I thru IX must relate to the 
specific configuration of equipment on which 
your proposal is based. 
Your proposal should include only that one 
equipment configuration adjudged by you to 
be the best for the purpose of this selection. 
If you consider it necessary to propose more 
than one configuration, each must be sub
mitted as a separate and complete proposal 
( Chapters I thru IX). 
Following Chapter IX, you may furnish any 
additional chapters which you consider perti
nent to your proposal. 

When proposals are prepared in a standard 
format a giant step has already been taken to
wards simplifying the comparison of proposals. 
I t will be possible to pull from each proposal a 
chapter or paragraph, a prescribed chart or 
table, and compare the proverbial apples with 
apples, not with oranges or mangoes. 

The ,standard format in which proposals 
should be submitted, and the kind of informa
tion to be included, is: 

Chapter I General 
A letter of transmittal and a brief summary, 
for executive review, of the highlights of the 
proposal. 

Chapter II Responsiveness 

A statement of the ability to satisfy the re
strictive conditions or minimum standards 
given in the specifications (see Part I-The 
"Specifications Module"). 

Chapter III Equipment configuration and costs 

A table (Figure 2) showing all components of 



362 ~ROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

IWl: III. IWl:IIIlo IQIJlI'IIIIr IWlITIIlIC& =::::::-- LIUI VITI CI1'Ja. 

~ 1II1IS2IPt'I<II .-I~ I~l 1::O USl 1o:!:O USI I~~.-

......!!!. 

..... "'1 - ~ 

!!!:!Ii! ~ 

'IDta1 P-t-.u 
I--- r---

- ~ 

!!.I!r.!l~ 

..... I-u.. >--

~to~::.'!...._ .... 

Figure 2. Equipment Configuration and Costs. 

the proposed system with complete pricing 
information. 

Chapter IV Systems and Timing 
1. An explanation, with flow charts of the , 
vendor's approach to the solution of the prob
lem, when the approach constitutes a depar
ture from that given in the specifications. (In 
some cases, vendors are asked to design or 
redesign a data system.) 

2. Tables (Figures 3 and 4), called "Timing 
Estimate-Detail" and "Timing Estimate-
Summary." These tabulate all time required 
by the main processor and associated periph
eral devices. When these tables are com
pleted properly, it is easy to compare them 
with the "Workload Statement Chart" (Fig
ure 1) and to determine whether or not each 
step has been timed. There must be line en
tries on the "Timing Estimate Charts" for 
corresponding entries on the "Workload 
Statement Charts." 

'- IIopot1c -. .. 
Quod ~ t_ -.... - o. I~ ::::. ~ I Proooaar I,....". ~r._ 1=> 

Totaln-.d 

Figure 3. Timing Estimate Stated Workload. 

......... 1D-IoIII 

..... - ..... - .......... ..... - ..._n.. Iot __ -
I ..... _n.. 

..... """"'J;r-
tift n.. t.qa1rC 

(1.>(--"" 
.... > ..... (_ ... 
-..u .. 
(1.>_ ..... 

Figure 4. Timing Estimate. 

Chapter V Questionnaire 
A questionnaire tailored by the requestor to 
the requirements ,of the submitted specifica
tions and characteristics of each component 
structions make it clear that every question 
must be answered, and that each question 
will be answered with a number, a percentage, 
a price or other such specifics. 

Chapter VI Equipment Factors 
Technical literature giving detailed descrip
tions and characteristics of each component 
of the proposed configuration. Requirements 
for site preparation should be made known 
here. 

eha pter VII Programming and Software 
A list and explanation of the software pack
ages available for use on the proposed equip
ment, ·with emphasis on those particularly 
useful in the work to be performed. 

Chapter VIII Support 

1. A description of the training available 
which meets the requirements of the pro
spective user. 

2. A general discussion of the proposed main
tenance plan, including a specific quotation of 
required preventive maintenance. 
3. A statement about back-up equipment 
available for use in emergencies. 

Chapter IX Contract 
A copy of the contract (GSA schedule in the 
case of Federal Government), and any con
tractual deviations proposed for negotiation 
which would apply to the proposal submitted. 

When both specifications and proposals are 
prepared in a standard way, vendors know what 



ANALYTICAL TECHNIQUE FOR AUTOMATIC DATA PROCESSING EQUIPMENT ACQUISITION 3,63 

their equipment, if selected, would be expected 
to do, they can prepare their proposals most 
efficiently and economically, and a sound basis 
for objective comparison and selection is estab
lished. 

PART III 

The "Validation Module" also serves two pur
poses. It provides the technicians with stand
ard guidelines for determining the proposal's 
compliance with the specifications and its ac
curacy and adequacy. The validators are not 
charged with determining which of the pro
posed equipments is best but with determining 
whether or not the proposals being validated 
are acceptable. They do not compare one pro
posal with another. 

First the specifications package and the in
structions (tailored for the particular acquisi
tion) to the vendors are read. N ext the pro
posals are examined. After the validator is 
familiar with the specs and the proposal which 
he is to validate, he is ready to check all state
ments, answers to the questionnaire, tables and 
charts in a vendor's proposal. Claims about 
storage capacities, simultaneity, time estimates, 
and special purpose devices are some areas re
quiring detailed consideration. 

The validator must have at his disposal a 
comprehensive library of other publications 
from the vendor whose proposal is being 
checked, recognized technical publications from 
other sources and a vast storehouse of personal 
knowledge and experience in both the equip
ment and subject matter fields. 

During this process the validator may deter
mine that a proposal does not comply with one 
or more of the requirements, is not adequate to 
accomplish the tasks described in the specifica
tions, or that some inaccuracies exist in the pro
posal. When any such determination is made, 
the validator is required to prepare a statement 
containing the specific area or portion of the 
proposal considered unresponsive, inadequate 
or otherwise in question. This statement, with 
recommendations for correction or elimination 
from further consideration, goes to a reviewing 
authority for ,decision. If the reviewing au
thority concurs with the validator's statements 
concerning non-compliance or inaccuracies, the 

(p) Coatrol or ~ 
(q) Operator loco iJlclmiDC' _ 

(J) Lobel_ 
7. Procr- pockapo ~ ror - OIl 

pr<lPOhCl confipraUOII 

(IV.F. Son.- Inter_nate) 

(IV. Yonior ~rt Major Seoro) 

Cod. 

Figure 5. EDPE Evaluation Sheets. 

jor 

submitting vendor may be called in for consul
/ 

tation and mutually agreeable changes. 

This module also contains the first pass of 
the "EDPE Evaluation Sheets" (Figure 5). A 
complete set of evaluation shfii;ts is processed 
for each proposal submitted. These sheets will 
already have beell modified to reflect the specific 
list of factors to be considered for the acquisi
tion at hand. The number and types of factors 
are, for all practical purposes, infinitely varia
ble. There are only two restrictions on the 
types: (1) Each must represent an item having 
a bearing on the applicable merits of a proposed 
configuration; and (2) it must be numerically 
rateable. There is no allowance in this system 
for evaluating the color of a sales engineer's tie, 
or the "reputation" of his employer, or "The 
one I got was a lemon-they're all no good" line. 
The tailoring could have been done as early as 
the time the specifications were sent to the 
vendors, but may be done at any time prior to 
receipt of proposals. 

The validators, who do no actual scoring, post 
all entries in the factors section of these sheets. 
Every blank must be filled in with a number, a 
check (V) for yes or no, an N / A or other appro
priate specifics as instructed. The basic sources 
for all data entered, except that resulting from 
computation, are the proposals and available 
technical publications. 



364 PROCEEDINGs.-:SPRING JOINT COMPUTER CONFERENCE, 1964 

At the end of this phase the evaluation sheets 
contain data which is accepted as accurate and 
complete. These sheets then become the inputs 
to be compared and scored. 

The validators must also prepare a written 
summary of each proposal. Thes·e reports must 
include actual costs and processing times, and 
differences between the proposal and the specs 
with respect to systems approach. 

We realize, that for any given selection, those 
determining which factors to consider may over
look some items. A validator might feel that the 
list of factors completely ignores some valuable 
features of a particular proposal. In the report 
~e may discuss any pertinent factors found in 
that proposal which are not reflected in the 
evaluation sheets. The report may also be used 
as a medium for a "sales pi,tch" for or against 
a proposal. This report, with the scores, will be 
considered in the final analysis by those making 
the selection. 

PART IV 

The "Scoring Module" is a technique for scor
ing validated proposals. Factors, already dis
cussed in Part III, relative weights, and detailed 
instructions for the scoring, all designed for 
each specific selection, must be completely docu
mented before proposals are in. While each se
lection to be made may be based on a different 
set of factors and different weights, the method 
of applying these weights does not vary. 

The inputs to the scoring scheme are the 
"EDPE Evaluation Sheets" (the factor section 
completed) and the weights and instructions 
for their application. The output is an "EDPE 
Evaluation Summary" (Figure 6). 

The scorers accept the validators' entries on 
the input side as gospel and are only concerned 
with comparing and scoring, not with valida
tion. The scorers are required to complete the 
comparison base section of the evaluation sheets 
and to compute the minor, intermediate, major 
and total scores as dictated by the weights and 
formulae supplied. This approach permits a 
rapid, unbiased selection, and the scorer's data 
added to that of the validators provides the 
much needed, formalized backup documentation 
sure to be required by the final- authorities. 

CASE 110: 

PROIiCT TITLE_ 

B ...... ,_,...... fr' 

D. Ifeo_ of Initial Em.na1on 

III. SYSTDI POTD'/'IlJ. 

B. p ... 

C ... _. ,",wort 

D. Jllaintenanee 

E. Pro ...... T .. t 

F .. Sot'bl.an 

IV.. YE'JU)a SUPParf 

Figure 6. EDPE Evaluation Summary. 

Let's look at a hypothetical set of factors. 
There might be any number of major categories, 
including overall cost, equipment characteris
tics, system potential, vendor's support and 
others as required. Within the cost category 
we might look into the actual cost of the equip
ment on both a lease and a purchase basis, the 
costs of operating, and installing. The charac
teristics checked might cover: capacities for 
program and data storage; compatibilities 
within the equipments proposed and with data 
banks; reliability; and total time required to 
process the whole job spelled out in the work
load statements. System potential could cover 
the investigation of the capability to expand the 
workload with or without additional equipment. 
Important aspects of vendor's support might 
be in the training, maintenance and software 
areas. 

This is a good time to explain what appear 
to be contradictory statements. In discussing 
the validation phase we said we do not rate the 
vendor's reputation. In this phase we say we 
might rate reliability. Reliability in this sense 
means the designed methods of insuring no 
errors or provisions for error detection and 
correction. There could be three types of re
liability insurers-validity checks (does each 
bit structure represent a "legal" character in 
that sYf;tem?), parity checks (does each char
acter contain the proper number of bits 1), and 
accuracy checks (does each character moved 



ANALYTICAL TECHNIQUE FOR AUTOMATIC DATA PROCESSING EQUIPMENT ACQUISITION 365 

compare with each character to be moved?). A 
possible accuracy check which no one yet em
ploys is optical scanning _ of a printed line on 
high speed printer output and a comparison 
with the data that was to be printed and is still 
stored in an output buffer. 

We will next develop the "Comparison Base" 
entries. For each factor to be compared we 
select the "best" vendor's figure. In the case of 
costs the lowest is obviously best as is the high
est figure in speed areas. The best is then en
tered on the appropriate line of the evaluation 
sheets. It is now possible to compare each 
vendor's figure with· the best figure proposed 
for reach item. 

Before we go into the actual scoring opera
tion we will discuss the weighting pattern. We 
will not presume here to even suggest what the 
weights should be for any factors. The user's 
requirements alone are the governing element 
in establishing relative weights as they were in 
developing the factors. 

The maximum score possible for any proposal 
is 100 points. This score, by the way, can only 
be achieved if one proposal is "best" in every 
factor-bar none! We take a deep look at the 
major categories of factors and assign a part of 
the 100 to each based on their relative impor
tance. We then determine what part of the 

maximum score possible for each major cate
gory is proper for each intermediate within that 
major. We then equate the intermediate maxi
mum possible to 100 and assign a portion of this 
to each minor within each intermediate. 

Another way of putting it is: the sum of the 
maximum points possible for all the major cate
gories equals 100. The sum of the maximum 
points possible for all the intermediates within 
a major equals that part of 100 assigned to· 
that major. The sum of the maximum points 
possible for all the minors within an intermedi
ate equals 100% of the maximum possible for 
that intermediate. 

N ow that we understand the weighting pat
tern we can 100k at the scoring itself. All of the 
minor scores for a proposal are developed, then 
the intermediates, the majors and the total, in 
that order. Minor scores are developed by either 
of two methods. Some minor factors are not 
compared, one proposal with another, but war
rant a predetermined score if certain conditions 
exist. For instance, if free maintenance is pro
vided 24 hours per day, "X" points may be 
awarded, if only for 8 hours per day, a lesser 
score is assigned, and so forth. 

The second method applies to the majority of 
the minors. If the SMALLEST is BEST, the 
score is computed with formula A : 

(Comparison Base) (Maximum Possible) == Minor Score 
("This Vendor" Entry) 

If the LARGEST is BEST we use formula B: 

("This Vendor" Entry) (Maximum Possible) == Minor Score 
Comparison Base 

The next step is to total all minor scores 
within an intermediate in preparation for calcu-

lating the intermediate scores. These are com
puted in this way: 

(Minor Total for "This Vendor") (Maximum Possible) I te d' t S 
100 == n rme la e core 

The intermediate scores within each major 
category are totaled to produce the major scores 
and the final scores simply require the summing 
of all the major scores. The scoring hierarchy, 
then, looks like Figure 7. 

As shown, the final score is derived from the 
major scores, the majors from the intermedi
ates and the intermediates from the minors. 

The final task of the scorers is to transcribe 
the intermediate, major and final scores from 



366 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

each evaluation sheet set to the EDPE Evalua
tion Summary (Figure 6). The completed 
summary and the validators' reports, discussed 
in Part III, become the basis for an intelligent, 
educated decision by a selection group. 

Several built-in safeguards further guard 
against the introduction of personal prejudices 
and political interests in the entire package 
from the writing of specifications through the 
recommendations by a selection group to the 
final authority. These tricks of the trade may 
not be obvious in what we have said so far so 
let us point out a few: 

1. Those who write the specifications (the 
ultimate user of the selected equipment) 
have nothing to do with scoring the pro
posals. They are consulted and their sug
gestions may be incorporated in establish
ing the factors and relative weights. 

2. Those who validate proposals never know 
·the weights assigned to any factors. 

3. Those who score do not know which ven
dor's proposal they are processing. They 
really don't process a proposal at all. They 
score a coded set of evaluation sheets. 

Figure 7. Scoring. 

4. Those establishing factors and weights 
can not be influenced by proposals re
ceived since their work must be done be
fore proposals are due. 

5. Those responsible for the final decisions 
have a sound basis for their decisions and 
might find it difficult to pick anything but 
the best overall system proposed. 

CONCLUSION 

The Analytical Technique, as described, is an 
integrated system which addresses itself to all 
of the important steps leading to an acceptable 
selection. Other methods of evaluating indi
vidual hardware systems have been designed. 
These other methods could be used as most valu
able aids during the validation of proposals. 
Such assistance can serve to make the valida
tor's work less tedious and more accurate. At 
least one system we know mechanizes a good 
portion of this area and might be especially 
useful in checking the timing estimates pro
posed. 

Other weighted. factor schemes for selection 
are in use today. Unfortunately, these are not 
necessarily based on actual requirements, nor 
are scores necessarily computed the same way 
for all selections. 

Standardized data systems specifications and 
vendors' proposals, comprehensive validation, 
and standard computational procedures, are 
treated in detail and as a single package in our 
technique. 

I t is possible to mechanize the scoring portion 
but the short time required to score manually 
does not seem to warrant the programming and 
debugging effort. 

This technique has been used a number of 
times by the Air Force, and it has provided 
valid selections based on requirements. 



COST-VALUE TECHNIQUE FOR EVALUATION OF 
COMPUTER SYSTEM PROPOSALS 

Written by 

Edward O. Joslin 
EDP Equipment Selection Office (ESQ) 

L. G. Hanscom Field 
Bedford, Mass. 

Edited by 

Martin J. Mullin 
EDP Equipment Selection Office (ESQ) 

L. G. Hanscom Field 
Bedford, Massachusetts 

INTRODUCTION 

The Cost-Value Technique of computer evalu
ation evolves from the computer evaluation 
and selection techniques used during the last' 
twenty years. The Cost-Value Technique has 
benefited by the frustrations, errors, and weak
l).esses of countless selections;· however, each 
selection has added some knowledge to the 
growing problems of computer· acquisition. 
Each forward step was accompanied by a tech
nique that was more realistic and meaningful. 
I consider the Cost-Value Technique a natural 
consequence of evolution, the successor to the 
Weighted Factors Selection Method, or any 
other known existing evaluation technique. 

The Cost-Value Technique is an evaluation 
technique which atterp.pts to make the function 
of computer selection more meaningful and 
understandable by eliminating some of the 
major weaknesses found in most of the evalua
tion techniques which are in use today. This 
is not to say that the Cost-Value Technique of 
computer selection eliminates all the problems 
found in any other type of objective eva1uation 
and selection technique. All it tries to do is 

367 

make the difficulties a little easier to overcome, 
the values assigned a little more realistic, and 
the resulting selection a little more meaningful 
and understandable. It does this through the 
incorporation of two important principles: 

1. First, in an effort to keep the selection 
simple and straightforward, the Cost
Value Technique recognizes only two 
categories of factors: 

a. Costs; which are a function of the 
equipment costs multiplied by the 
time required to complete the appli
cation, and many other cost items, 
and 

b. Extras; which are any items of 
value that are inherent in the costs 
of one system proposed, but not to 
all systems proposed, and do not 
directly influence the system's run
ning time. Thus, extra maintenance 
service or extra expansion capa
bilities which are procured as part 
of the basic system are extras, but 
equipment characteristics like speed 
of central processor and peripheral 



368 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

equipment, or memory size, are not 
extras since they directly influence 
the running time which in turn di
rectly influences the cost of the sys
tem. 

Thus, an item is only evaluated once, 
either by its influence on cost-directly 
or via the running time of the system
which in turn is a cost factor, or by its 
value as an extra. 

2. Second, by using dollar cost or value as 
the basis for scoring all the 'extras' 
offered, a common denominator is ob
tained by which values can be understood, 
discu&Sed, and changed independent of 
each other. Also, the 'extras' scores can 
be directly related to the 'costs' scores. 

The significance of these two principles might 
be better understood if before going into a dis
cussion of the Cost-Value Technique, we took a 
minute out to consider objective evaluation 
techniques in general, and the Weighted Fac
tors Selection Method in particular. 

Major Premises and Purpose 

Objective evaluation techniques for computer 
selection are based on the following three 
premises: 

1. The 'costs' considered in the evaluation 
process should be those costs which are 
associated with securing and maintaining 
the computer system equipment and the 
support necessary to satisfy the require
ments of the specified applications. 

2. The major 'value' sought in any com
puter selection technique is the ability 
of the selected computer to satisfy the re
quirements of the applications specified. 

3. Some important 'extras' of value such as: 
excess expansion capability, back-up 
available across the street, proven 99.5 % 
reliability, etc., will also be included by 
some vendors in the costs of the system's 
equipment and support proposed to sat
isfy the specified application require
ments. These 'extras' will be offered in 
varying amounts by the various partici
patIng vendors. These 'extras' are im
portant to the selection and, therefore, 
their 'value' should be evaluated. 

The purpose of any objective evaluation tech
nique might be compared to a series of weight 
measurements on a set of hhlance scales. For 
each 'weighting' (evaluation) the 'costs' neces
sary to obtain the computer system equipment 
and support necessary to satisfy the require
ments of the specified application, as proposed 
by each vendor, are weighted against the 'value' 
of having the application completed and the 
value of the extras offered by that vendor. The 
objective of the comparative evaluations is to 
select the 'weighting' (evaluation) that shows 
the scale tipped most in favor of the 'value' 
side. 

These are the same three premises and pur
poses that are used in the Cost-Value and the 
Weighted Factors Selection Method or any 
other objective evaluation technique. The dif
ference between techniques is in the ways in 
which these extras are evaluated. 

Weighted Factors Selection Method-Pro and 
Con 

The Weighted Factors Selection Method is 
one of the better evaluation techniques in use 
today. It recognizes the need for evaluating 
the 'extras' as well as the standard cost items 
and does so by assigning numerical values or 
point scores to all items, 'extras' as well as 
systems costs. In my opinion, however, there 
are still two major weaknesses in the Weighted 
Factors Selection Technique: 

1. The technique is likely to give an absolute 
weight or score to too many factors and 
then to score the details within each 
factor in too many different ways, i.e., 
points for speed of central processor, 
points for speed of input/output devices, 
points for time required to complete the 
full job, points for slack time remaining 
for expansion, etc. Thus, the same item 
(i.e. speed) may be awarded points in a 
number of different ways and for many 
seemingly different reasons. Soon it be
comes very difficult to determine the true 
worth or influence of that one item on 
the final selection. 

2. The assignment of point scores to specific 
elements of an evaluation would probably 
accurately reflect the experiences and 
knowledge of the evaluator who selected 



COST-VALUE TECHNIQUE FOR EVALUATION OF COMPUTER SYSTEM PROPOSALS 369 

the elements in either ascending or de
scending order of importance and then 
associated each with a fixed numerical 
value. Arbitrary, perhaps, but what else 
may the 'evaluator rely on save what he 
has learned from experience to be im
portant or, conversely, not important? 
And, moreover, how can he avoid giving 
that specific measure of value to elements 
of the evaluation that reflect in his per
sonal, subjective opInIon, their true 
worth? And, how does he assign scores 
and identify important elements? An 
example of such a point assignment is 
shown in Figure 1. So subjective is this 
system that "X" number of evaluators, 
if requested to assign point scores to a 
list of elements considered important to 
a computer selection, would produce "X" 
number of lists; each selective, each the 

EQUPMJ:::O>T CHARAC rEIUSTICS 

S;Jl.'c.:ci 

Instructions 
Peripheral Equlpmt"nt 

CapCit.:ity 

Main Memory 

Magnetic Tape 
Peripheral Equipment 

Compatibility 
Program 
Tapes 
Cards 

Switchability 
Magnetic Tap~ 
Printers 
Other Peripherals 

Reliability 
Specia.l Features 
Problem Timing5 

Central Proce5sor Limited 
Input/Output Limited 
Balanced 

Other Cr..aracteristics 

EXPANSION POTENTIAL 

Slack Time 
Central ProcesHor 
Peripberal Equipment 

MaxilTlllm Expanaiora 
Memory 
Peripheral Equipment 

SYSTEM SUPPORT 

Program A •• i.stance 
Development 
Writing 
Converting 

Training 
Maintenance Offered 
Progra.m Testing 
Exi .ting Software 

Sort/Merge 
COBOL 
FORTRAN 
Report Generator 
Other 

}4'igure 1. 

~\1\ 

iO 
,0 

';0 

~o 

I:: I !O I I 
'; 

10 

00 
10 
13 

's 

200 

150 
50 

100 

I 
50 

l5 
25 

100 

10 

10 
10 
20 
50 

10 
10 
10 
10 
10 

best from the evaluator's point of view, 
and each different. 

Minor differences would be understandable, 
but the differences are not likely to be minor. 
The magnitude of the differences can be 
glimpsed in the startling contrasts of two dis
tinct groups which are presently working their 
w;ay to management positions. One group has 
a background in Finance and the other in Engi
neering. If these two groups were asked, in
dependently, to use the Weighted Scoring Tech
nique to evaluate a computer selection, I suspect 
the results would be very interesting. Joined 
as they may be in a common cause, identifiable 
principally, perhaps, with corporate well-being, 
they still would regard the method in much 
different ways and in all likelihood the major 
weights assigned by these two groups would 
differ considerably. Shown in Figure 2 is an 
example of the way these two groups might 
assign weights to the four major categories 
listed in Appendix I. 

How do you reconcile such differ
ences of opinion? Moreover, does any 
reconciliation or compromise improve 
or enhance the acceptability of result= 
ant 'weighted scores' ? 

The difficulty-weakness--if you prefer, in 
the Weighted Factors Selection Method is that 
points assigned to the cost section cannot be 

SAMPLE WEIGlIT!NGS OF MAJOR CATE=RIES 

Cost 

Equipment Characteristics 

Expansion Potential 

System Support 

Group With 
Financial Background 

850/0 

50/0 

5% 

Figure 2. 

Group With 
Eng. Background 

25% 

250/0 

25'fo 

25% 



370 PlROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

reconciled to the points assigned to the equip
ment characteristics section or to any other 
section, or even from item to item within a 
section. In other words, as the four categories 
presently exist in the Weighted Factors Selec
tion Method, there is no common denominator 
between categories, thus there is no meaningful 
way of relating points from one category to 
another, or for that matter, between the ele
ments within a category. 

COST-VALUE TECHNIQUE-GENERAL 

The Cost-Value Technique, like the Weighted 
Factors Selection Method, also recognizes the 
necessity of evaluating the 'extras' offered in 
various computer systems. The Cost-Value 
Technique, however, is unique in its handling 
of these 'extras.' The Cost-Value Technique 
studies any extras offered in the proposals to 
determine whether the claimed 'extras' are 
truly important extras or mere incidental ele
ments that appear to be extras. For instance, 
a sixty-nanosecond memory and a ten-thousand
cards-a-minute reader in themselves are not 
important extras, if extras at all; the important 
extra is how much slack time exists in the pro
posed system because of these high-speed units. 
For every 'extra' considered important, a study 
must be initiated to determine the value for the 
extra. The really distinguishing feature of the 
Cost-Value Technique is in the assignment of 
the value associated with these important 
extras. The value assigned is in terms of costs 
(dollars). 

A brief explanation may be helpful at this 
point because the significance of the value as
signment in cost may not be readily apparent. 
By 'simply' assigning a cost-value to the various 
important 'extras' offered by the various ven
dors, a technique has been found to overcome 
the seemingly insurmountable problem (no ob
jective method of relating points assigned the 
various items evaluated) of the Weighted Fac
tors Selection Method. A common denominator 
has been established with which all. offered 
extras may now be related. Although the cost
values assigned to the various extras will still 
be a matter of each individual selection and will 
continue to reflect the opinions of the cost-value 
assigners, a value when assigned can be under
stood, examined, discussed, and changed in-

dependently of all other individually assigned 
values. Another very important benefit de
rived by the use of cost assignment of value in 
the Cost-Value Technique is that management, 
for perhaps the first time in the twenty-year 
history of computers, can understand what is 
going on in an evaluation and is able to make 
informed decisions on the value of any disputed 
extras. 

The cost-values established for the various 
extras found within a proposal are assigned 
as 'credits' to that proposal (weight added to 
the value side). This allows each proposal sub
mitted to be evaluated by taking its total 'out
of-pocket' cost and subtracting the cost-value 
'credits' awarded that proposal to find the dif
ference. The proposal having the smallest dif
ference (since the 'value' of having the appli
cation completed remains constant for all ven
dors) automatically becomes the proposal se
lected by the evaluation technique as being 
most advantageous in terms of the amount of 
systems equipment and support that is being 
obtained for the money spent. 

An example of how the Cost-Value Technique 
might be applied is shown in Figure 3. 

Sih' Prqx~n.ti,)n 
Electrical ,).000 
Conlitructlon 10,000 

E'lui.pment Installation 0 
Equ.ipment T unaportation S, 000 
V('ndor Support 

Penonnel 140,000 
Training 0 
Existing Program. 0 
Backup Facili.ties 0 
Doc: umentiltion 0 
Program L Da.u. Conver. 3.000 
Program TeatillK 0 

ContlnuiDg Coats 
Computer System Eq\lipment 

Central Proce •• or ~n5. 000 
Peripheral Equipmem 

Magnetic Tape Unite 2.Z0.OOO 
Card Reader 50.000 
Printer 1.2.0.000 
Card Punch 43.000 
Optical SC&nDer 150.000 
Controller. 332..000 

Auxillary Equipment 100.000 
Operation and Maintenance 130.000 
Per.onnel 

Ma ..... ger 515.000 
Analyst. 100,000 
Progra.nuners 400.000 
Operator 35.000 
Other. ZO.OOO 

Program DevelopmeDt 0 
Supplies 

Magnetic Tape 12..000 
Printer Paper 10,000 
Card. 7,000 

-

~ 
E:-..pansitlu POlo 11\1 •• 1 

Flrt.t Tim .. 1'.1", ~ 

Sl,,'ond Tim., 1110'" 
Third Tlml' lHud, 

!)YiIltcm SUIJport.' 
Pf:'rtllonnt!'l 
TralnlnK 
Exi6tlng Pro~ranll. 
Backup Fa.cilitieli 
Documll·ntabon 
Progra.m Testi.ng 

Other Extra .. 
Timeline .. 

Inqwry 
Reports 

eeairOlble Compatibility 
Purcha.e Option 

,,~, 

10. ill:( 
!;"'O,, 
,,":',(1('1(' 

:;0.0('11 
10,OO( 
l~. 00(1 
il1. {lOP 

-
Total COtit 2. 862. 00 Total Credit. $400,000 

DIFFERENCE 

Total Cost. $2.. I6Z. 000 
Total Credit. 400.000 

$ Z, 46Z, 000 

Figure 3. 



COST-VALUE TECHNIQUE FOR EVALUATION OF COMPUTER SYSTEM PROPOSALS 371 

Having now considered the three major 
premises, the purpose of an objective evalua
tion technique, and the distinguishing feature 
(value assigned in cost terms as credits and 
fewer factor categories used) of the Cost-Value 
Technique, let us proceed to a detailed examina
tion of the previously mentioned cost-value 
study of all extras offered. 

COST-VALUE STUDY-WITH EXAMPLES 

The Cost-Value Technique's approach to the 
'extras' offered by the vendors is to appraise 
the offered extras to determine whether they 
are worthy of inclusion in the. evaluation, and 
if so, to determine the cost-value of these 
extras. To avoid any bias, or appearance of 
bias, on the part of the evaluators, this study 
should preferably be initiated before the pro
posals are received. It thus becomes necessary 
to deal. with hypothetical or realistically antici
pated extras. A sample listing of items some
times considered as 'extras' will be helpful to 
our study and for that purpose a sample listing, 
similar to one that might be found in the 
Weighted Factors Selection Method of evalua
tion as shown in Appendix I will be used. The 
sample will be used as a beginning for our 
study of the essentials and extras offered in 
computer system proposals. 

The list shown in Appendix I is arranged 
into four categories: Costs, Equipment Charac
teristics, Expandability Potential, and System 
Support. Other groupings of items could also 
be used. Some of the items, like those under 
costs, are not extras, but are included because 
they must be evaluated in selecting a computer 
system. In the following sections, each of the 
listed categories will be studied; one of the re
sults of our study will be the identification of 
these items and categories that are considered 
important in the Cost-Value Technique of com
puter selection. 

Before examining each of the four categories, 
shown in Appendix I, these words of caution 
and care are furnished. 

1. Methods described herein for cost-value 
determinations are by no means the only 
methods that could be used. 

2. There is nothing sacred in any of the cost
values established in this report since the 

value of any item depends upon the likeli
hood of the user's need for that item. For 
example: 

a. If the described system is to be used 
only for one or two applications, 
and the size and volume of these 
applications are fixed, then the 
cost-value of Expansion Potential is 
likely to be nil. _ On the other hand, 
if the described system is the first 
system to be installed in a growing 
company, the cost-value of Expan
sion Potential will be very high be
cause every hour of available ex
pansion might be regarded just as 
valuable as each hour in actual use. 

b. If the described system is to replace 
an existing, compatible system, the 
cost-value of some of the Sys
tem Support items like 'personnel 
loaned' or 'program assistance' may 
have no cost-value. If, however, the 
computer is for a relatively inex
perienced group, 'personnel loaned' 
or 'program assistance' might each 
have a cost-value as high as, or 
higher than $20,000 a :man year. 

Another general word of explanation before 
getting into the details of cost-value assign
ment. It will be of help to discuss the idea of 
cost-valuing the extra. Thus, if four vendors, 
A, B, C and D, respectively, offer 100 hours, 
125 hours, 50 hours and 70 hours of program 
checkout time, then the amount of 'extra' to 
which a cost-value should be affixed is 50 hours 
for A, 75 hours for B, and 20 hours for D. The 
extra for each item considered for each vendor 
is the amount offered by that vendor for that 
item, minus the minimum amount of that item 
offered by any vendor. If the extras offered 
are in different terms : Vendor A offers 100 
hours of prime shift time, prior to delivery for 
checkout ; Vendor B offers 125 hours, any shift, 
after delivery, for checkout; Vendor Coffers 
50 hours of third shift time, prior to or after 
delivery, for checkout-then all the items have 
to be converted to their cost-value first, and 
then their difference taken, to determine their 
'extra' cost-value. 

The four categories found in Appendix I 
and to be ·considered now are Costs, Equipment 



372 PlROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

Characteristics, Expandability Potential, and 
System Support. 

Cost Items 
All cost items should be considered in the 

evaluation. Items such as the cost of supplies 
or personnel costs may prove to be non
differentiating (no significant difference found 
between vendors) in a given selection, but they 
should not be deleted from the evaluation list 
until their costs have been found to be truly 
non-differentiating. 

Treating cost items as one-time costs or con
tinuing costs is a matter of cataloging. Two 
rules must govern any proper treatment of cost 
items: The costs must be spread proportionately 
over the expected life of the system, and the 
system costs must change to reflect the costs 
of any planned system expansion. If, for ex
ample, the life of a system is set at six years 
and if a uniform expansion rate of 10% a year 
is expected over the life of the system, then 
each of the cost items on the list should be 
charged (if applicable) to the yearly system 
cost for six years; and it would be expected 
that the equipment cost for the sixth year would 
be larger than the equipment cost of the second 
year. 

Another important consideration relating to 
cost items is that they should show the cost for 
individual pieces of equipment to be used. This 
should be done in all cases except when the 
system is to be used for less than one shift or 
when the entire system is to be purchased. The 
break-out shows which equipments are actually 
to be used for more than one shift (higher 
rental). The breakout also indicates which 
items might be more favorably leased than pur
chased under a split acquisition. 

No cost items should be duplicative"; that is, 
the system should not be charged twice for the 
same equipment or service. For example, if a 
card reader is used both on-line and off-line, 
the full cost of the card reader should not be 
shown twice. Similarly, program development, 
if performed by users-not contractor person
nel-and personnel cost should not both be 
costed. 

Basically, the thought behind the cost items 
can be summed up by saying, "Any differen-

tiating costs that exist between systems, should 
be recorded for evaluation." 

The second major category of items given 
points in the Weighted Factors Selection 
Method was Equipment Characteristi~s. 

Equipment Characteristics 
The Cost-Value Technique does not consider 

any equipment characteristics, in themselves, 
to be important extras. Instead, their signifi
cance is measured in terms of the running time 
of the system which in turn determines the 
system's cost and expansion potential. 

Typical of the kind of equipment character
istics now being discussed are: the relative 
speeds and capacities of the systems; hardware 
compatibility; switchability; reliability; and 
some other special features. These obviously 
are features (extras) that determine the time 
required to complete the applications specified 
and in turn determine how much slack time is 
available for expansion, and as such, will be 
evaluated in the next section on Expansion 
Potential. 

Sample problem timing items (time required 
to perform some specific set of sample prob
lems) should not be evaluated. They should 
be used exclusively for the validation of the 
application timings quoted in the proposals. 

Other characteristics (size, weight, etc.) 
either" are included in the space requirements, 
which are costed; or will appear as special 
items under a new category, 'Other Extras.' 
This new category is necessary when using the 
Cost-Value Technique because many extras to 
be evaluated do not fit under any of the exist
ing categories. 

The third major category given points in the 
Weighted Factors Selection Method was Expan
sion Potential. 

Expansion Potential 
The Cost-Value Technique looks at Expan

sion Potential in a new way, which is thought 
to be more meaningful, and evaluates the cate
gory by considering the value of the extra 
offered. 

To estimate the Expansion Potential of a 
system, it is necessary first to calculate the run-



COST-VALUE TECHNIQUE FOR EVALUATION OF COMPUTER SYSTEM PROPOSALS 373 

ning time required by the system to complete 
all required applications. And, at this point, 
we are compelled to list the elements and 
aspects of a computer and its use that con
stitutes its running time. The items that must 
.be considered in any calculation of the running 
time of a system are listed below: 

1. Speed 
a. Central Processor 
b. Peripheral Equipment 
c. Auxiliary Equipment 

2. Capacity 
a. Central Processor 
b. Peripheral Equipment 

3. Special Features 
a. Parallel Processing 
b. Simultaneous Operations 
c. Other 

4. Reliability 
a. Switchability 
b. Error Detection and Correction Fea-

tures 

5. Preparation Time 
a. Set-up/Take-down 
b. Program Insertion 
c. Media Handling 

I! Non-productive Time u. 

a. Reruns 
b. Program Checkout 

7. Software Efficiency 
a. Compiled Languages 
b. Assembled Languages 

Centra! processor or peripheral equipment 
speeds are not new approaches to establishing 
the comparative merits of competitive equip
ment systems. What mayor may not be new, 
but which nevertheless must be considered, is 
the interaction between the central processor 
and the peripheral equipment. If the time re
quired to do the processing called for in the 
run is great enough, it might cause delay in 
the input and output of the data. Thus, what 
must be determined is the effective speed of 
the peripheral equipment when operated in 
conjunction with the central processor. Also, 
the effect of auxiliary equipment on the system 
must be ascertained to assure its adequacy to 
meet the requirements of the input device. 

The capacity of the central processor is im
portant because it determines the number of 
program steps, plus data that can be accom
modated at one time. Normally, the larger 
the capacity the faster the system because 
fewer load steps are necessary and because 
sorting and merging functions can process 
larger volumes of data per pass. The capacity 
of the peripheral equipment is also important. 
The printer is a good example of what is meant 
here. A printer having 160-print positions 
may permit 'two-up' printing whereas a 120-
print position printer may permit only 'one-up' 
printing, thus doubling its printing time. 
Again, a printer capable of printing eight 
copies may be able to do in one printing run 
what it would take some 'six copy' printers two 
runs to do. In both of these cases, the capacitY 
of the specific peripheral equipment would ma
terially affect the total running time of the 
applications. 

The special features offered will usually 
affect the total running time of the system. 
Obvious examples of this are parallel process
ing, buffering, and simultaneous operations. 
The use of these features usually requires some 
investigation, but their applicability to calcu
lating run time is immediately apparent. Other 
special features shouid be examined to deter
mine if their value is to decrease total rup. 
time. When such is th~ case, their influence on 
run time should be calculated and used. 

The use of the above three items, speed, 
capacity, and special features, are all rela
tively straightforward in determining total run 
time. Now, however, we must determine the 
influence that the systems' reliability exerts 
on its total run time. How is this influence to 
be determined? This area of determination is 
admittedly an area of 'guestimation' rather 
than definable fact. However, it is felt that a 
better 'guestimation' can be made here about 
its influence on total running time than can 
be made in the absolute on its proper weighted 
scoring influence on the total selection. The 
area of concern here is system reliability. This 
is made up of a number of sub-it€ms: reliability 
of individual units, number of units available, 
switchability of these individual units, the 
availability of error detection and correction 



374 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

techniques, etc. The intent of considering the 
above items is to determine the number of 
hours of downtime per month that could be 
expected for each of the systems proposed and 
the frequency of the errors resulting from the 
systems unreliability. Historical information, 
if available, should be used for 'ball park' fig
ures. From these figures, educated guesses can 
be made of the time required to correct the 
processing effect of these errors and the num
ber of hours of system downtime during which 
the system is not available. The withdrawal 
of these two figures from the total time avail
able of the system gives a new systems time 
available figure. 

The preparation time factors must be deter
mined and added to the processing times of each 
run for each of the systems proposed. The 
set-up and take-down times are concerned with 
the time required to prepare the peripheral 
device for a run and to take-down completed 
work after a run. Program insertion time is 
the estimated time required to insert the pro
gram into the system's memory. Media han
dling time is the time required to change any 
media (magnetic tape reels, new printer paper, 
etc.) that must be changed while the run is in 
process. 

The non-productive time for an application 
must be estimated and its time added to the 
total system time. Non-productive time in
cludes rerun time due to operator or pro
grammer error-.. and program checkout time. 
The magnitude of this factor (usually assigned 
as a percentage of the productive time) is 
dependent upon the experience of users! per
sonnel and an estimation of the :number of new 
programs to be checked out each month. This 
factor could change (should decrease as the 
system gets older) from year to year. 

Another big timing factor, upon which little 
time has been spent to date, is software effi
ciency. The efficiency of the software is a very 
important factor since low efficiency may in
crease the running time by 25 % or more. This 
factor is still in the 'questimation' stage, but 
with work reliable efficiency factors could prob
ably be determined for all the systems proposed. 

Now that all the items necessary for the de
termination of total running time, except the 

application, have been discussed, we will see 
how this running time is used in determination 
of the expansion potential. 

The determination of expansion potential 
cost-value is made by determining the value of 
an extra 'time-block' (increment of time) and 
deducting from this value the cost of obtaining 
the extra 'time-block.' The cost-value of suc
ceeding time-blocks should be determined until 
a zero value is obtained. 

The use of time-blocks should probably be 
explained. Time-blocks are used because addi
tional time on a computer system is recognized 
to have a decreasing value as more of it be
comes available. Thus, the first time-block is 
of more value than the second or any succeed
ing time-block. This is because the first time
block is obviously much more likely to be used 
than any succeeding time-block; indeed, this 
probability of use is one of the ways of assign
ing a cost-value to a specific time-block. But, 
why use time-blocks rather than hourly incre
ments or percentage expansion figures? Any 
of the three could be used. Time-blocks were 
used because of their convenience. With hourly 
increments, a great deal of computation is in
volved. Percentage expansion figures, while 
likely to be more accurate, involve consider
ably more work. The extra work required by 
hourly or percentage approach is not war
ranted, since the total result cannot be more 
accurate than value assignments given and the 
value assignments regardless of the time 
method used, are still just estimates. Which
ever method is used, the important thing is the 
decreasing value assigned to later time units. 

The determination of this cost-value of ex
pansion potential should only be done once. 
The expansion considered is the expansion po
tential in the system after· its last expansion 
phase (last year of stated expansion) has been 
met. At this point, the future expansion poten
tial of the systems become the 'extra' being 
measured between systems. 

Let us take an example with two variations 
to illustrate the concept explained above. As
sume that two systems in the $20,000 a month 
class are proposed to handle the applications 
specified. The running times for the two sys
tems, when extended to include all the items 



COST-VALUE TECHNIQUE FOR EVALUATION OF COMPUTER SYSTEM PROPOSALS 375 

necessary, are found to be 150 hours a month 
for system A, and 200 hours for system B. 
Further, system A requires 60 hours a month 
of maintenance and system B requires only 40 
hours a month. 

1. If the application is one in which there 
is little likelihood of having additional 
expansion, then time-blocks may be made 
rather long and their per hour value 
rather small-say 100 hours per time
block and $50 per hour for the first block, 
$25 per hour for the next time-block, and 
$10 per hour for each time-block there
after. Thus, system A would have a value 
of (assuming 530 hours a month maxi
mum for both systems) $8700 and sys
tem B would have a value of $8200. From 
these value figures would have to be sub
tracted the cost of the extra shift machine 
rental, the cost of the personnel required 
to operate the system, the cost of any 
extra equipment necessary, and the costs 
of the extra system maintenance required. 
If there was any value remaining, it 
would be called the cost-value and cred
ited once to the system. 

2. Ii the appiication is iikeiy to grow (or 
if there is the possibility of sub-leasing 
extra time to a second party), then time
blocks may be made relatively small and 
their per hour value rather high-say 
20 hour blocks and $150 or more per hour 
for the first time-block, with each suc
ceeding block decreased by $5.00 per 
hour. Again, the cost-value for the two 
systems would be computed by adding up 
the value and subtracting the cost to ob
tain these hours. With a large valuation 
placed on a time-block, the costs of going 
to higher speed or to larger numbers of 
peripheral equipment might be justified, 
if so, the cost of the higher speed units 
or extra units would also have to be sub
tracted. The cost-value remaining would 
be applied one time as a credit. 

The last major category given points in the 
Weighted Factors Selection Method was System 
Support. 

System Support 
The Cost-Value Technique considers the 

value of the extra offered. There are several 
methods of assigning cost-values to the System 
Support items listed in Appendix I. 

The simplest and perhaps the best method 
of cost-value assignment is to simply request 
the other vendors to quote costs to supply a 
service equal to what is con3idered 'best' in 
each case. Thus, if one vendor offers 24 hours 
on-site maintenance, and the other vendors 
don't, it might prove very meaningful to ask 
the other vendors what the extra charge would 
be (and then credit the largest cost to the ven
dor already supplying the item, and the largest 
cost minus each specific vendor's cost for the 
item would be credited to each of the remain
ing vendors). The same type thing could be 
done for program assistance, personnel loaned, 
training, program testing, documentation, and 
special software. However, sometimes the 
costs quoted would be so excessive that it would 
not make a fair base against which to award 
value. For instance,· if a user was impressed 
by some special programming routine, he might 
well ask the various vendors for the cost of 
supplying such a routine. But, he might re
ceive answers of tens and hundreds of thou
sands of dollars, where if he himself were to 
go out and procure such a routine he would not 
be willing to pay over five thousand dollars. In 
such a case, the five thousand dollars should 
become the base. Thus, in cases where the user 
places a value on a service, lower than a ven
dor's cost, this value figure becomes the base 
for determining the item's value. In some cases, 
however, Le,> maintenance offered, or documen
tation, the vendor may not be able to give cost 
figures for supplying service equal to vendors 
because he just doesn't have the facilities nec
essary to give equal service. In such a case, 
the cost-value of such a service must be indi
vidually determined and might be considerably 
higher than the costs charged by any other 
vendor. In such a case, this higher cost-value 
figure should become the base. 

These system support items might also be 
handled by making it a mandatory requirement 
that specific amounts of these items be supplied. 
(This method is not recommended since a small 
vendor may not be in a position to meet some 
of these requirements, and thus he would be 



376 PlROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

eliminated for items that should properly be 
treated as 'extras' or at most specific cost 
items.) 

The cost-value of these items might also be 
ascertained by the user, by taking each item 
in turn and truly determining its value to him. 
If the vendor agrees to loan three programmers 
for three months, what is this really worth? 
He will get nine man months of work by an 
experienced programmer which might be the 
equivalent of fifteen months of programming 
by his own people (or a new person added), 
but it may also represent a very important 
time saving (ready to receive the system 
sooner). Here are a couple of cost-value items, 
the cost-value most closely representing the 
users needs should be chosen. However, the 
cost-value should never exceed the cost of hav
ing the service contracted by someone else, thus, 
just because a helping hand (personnel loaned) 
by the vendor will result in the user being 
ready for the system installation three months 
earlier and thus result in a $100,000 a month 
savings for those three months, this doesn't 
make the value of the personnel loaned $300,-
000, because, people of the same caliber might 
have been hired from a software consulting 
service for $40,000. This $40,000 would then 
be the c~st-value assigned. 

Some items like back-up available and debug
ging facilities are support items on which the 
vendors cannot be asked to change or improve, 
therefore, their cost-value has to be evaluated 
as the items are proposed. An approach to de
termining the cost-value of back-up would be 
to determine the probability of experiencing 
a catastrophic failure, and then determin
ing the cost associated with carrying on the 
computer activities on the back-up facili
ties available. The costs times the probability 
of its happening should give the probable cost 
for the various systems. Again, cost-value 
credits can be made out of these costs figures, 
by simply taking the highest cost minus a spe
cific vendor's costs to determine h~s cr€dits. 
Cost-value determination for debugging facili
ties could be handled in much the same way. 

Some items previously covered in other 
categories in the Weighted Factors Selection 
Method have not yet been discussed in the Cost-

Value Technique. These items are covered 
under the next category. 

Other Extras 
There are many other extras that might be 

offered by a vendor. Items like desirable com
patibility or memory lockout can be handled by 
determining the costs that will be eliminated 
by the inclusion of such abilities. Thus, the 
costs that would have to be paid to convert 
tapes of one sort to another would be saved if 
the two systems were compatible; this cost 
therefore becomes the cost-value of such com
patibility, or the costs of the time and trouble 
that could be saved by the inclusion of a mem
ory lockout device becomes its cost-value. 

An imp<?rtant extra that will frequently be 
found in proposals deals with timeliness. A 
system proposed may claim to be able to allow 
management to have access to any information 
within the file in less than one minute, or to 
have management reports ready by 1 :00 p.m. 
every day, or etc. In these cases, a study must 
be initiated to determine the cost-value to man
agement of being able to have one minute ac
cess, rather than 10 minute access as proposed 
for other systems; or o~ having the reports 
ready by 1 :00 p.m. rather than 3 :00 p.m. as 
proposed for the other systems, etc. Timeliness 
cost-values will usually have to be established 
by management (the group to ·whom the 'time 
is money' statement has the most meaning), 
but management should also be required to sub
stantiate their cost-value assignment by show
ing the saving or advantages that will result. 

Another type of extra, and an extra that is 
perhaps worth all the trouble necessary in 
making the system study, is the possibility of 
a new innovation or systems approach. The 
cost-value to be assigned would be equal to a 
realistic determination of the saving that would 
be accrued by using the suggested approach. 

Summary of Proposed Cost-Value Technique 
We have been briefly exposed to some tech

niques for determining the cost-value of a num
ber of items that should be included in any 
selection. The cost-values derived for the vari
ous vendors are applied as credits to offset 
the costs of the system and services he proposed. 
The vendor having the smallest difference (out-



COST-VALUE TECHNIQUE FOR EVALUATION OF COMPUTER SYSTEM PROPOSALS 377 

of-pocket cost minus credits), is the vendor to 
whom the contract should be awarded. 

The Cost-Value Technique of computer selec
tion does not do away with all the problems 
found in any other type of objective evaluation 
and selection technique. All it tries to do is 
make the difficulties a little easier to overcome, 
the values assigned a little more realistic, and 
the resulting selection a little more meaningful 
and understandable. I t does this through two 
important principles: 

1. First, in an effort to keep the selection 
simple and straightforward, the Cost
Value Technique recognizes only two 
categories of factors: 

a. Costs; which are a function of the 
equipment costs multiplied by the 
time required to complete the appli
cation, and many other cost items, 
and 

b. Extras;which are any items of value 
that are inherent in the costs of one 
system proposed, but not to all sys
tems proposed, and do not directly 
influence the system's running 
time. Thus, extra maintenance 
service or extra expansion capabili
ties which are procured as part of 
the basic system are extras, but 
equipment characteristics like speed 
of central processor and peripheral 
equipment, or memory size, are not 
extras since they directly influence 
the running time which in turn di
rectly influences the cost of the 
system. 

Thus, an item is only evaluated once, 
either by its influence on cost-directly 
or via the running time of system-which 
in turn is a cost factor, or by its value 
as an extra. 

2. Second, by using dollar cost or value as 
the basis for scoring all the 'extras' 
offered, a common denominator is ob
tained by which values can be und..erstood, 
discussed, and changed independently of 
each other. Also, the 'extras' scores can 
be directly related to the 'costs' scores. 

I feel the Cost-Value Technique is a big im
provement over existing objective evaluation 

techniques, but it too can evolve. The next 
section briefly mentions some of the further 
improvements that might be made in Cost
Value Techniques. 

POSSIBLE ADDITIONAL IMPROVEMENTS 

A number of improvements might be made 
to the Cost-Value Technique. The use of debits, 
as well as of credits, could be used immediately 
and might make the technique a little more 
natural. But, two other improvements, time 
dependent cost-value assignments and quality 
determination, require more work with and a 
more thorough understanding of the Cost-Value 
Technique before their importance can be fully 
measured. 

Use of Debits 
The Cost-Value Technique could be improved 

by the use of debits in addition to credits. With 
'debits,' some items such as penalties for fail
ure to meet certain requirements (e.g., late 
submission of proposals, late delivery of equip
ment, etc.), could be more easily handled. Also, 
in the present technique certain desirable items, 
if present, are awarded credits; however, it 
might be more meaningful if their absence 
from a proposal and/or system was at the risk 
of debits. Thus, credits would be used to re
ward systems really proposing some valuable 
'extras,' while proposals lacking certain fea
tures considered valuable in the original sys
tem specifications would be negatively recog
nized by the assignment of debits. 

Time Dependent Cost-Value Assignment 
A matter of concern in the present Cost

Value Technique is the fact that the costs to be 
incurred in the future (rental of equipment 
four years hence) have as much weight and 
value as the same categories of costs which are 
to be incurred in the present or the immediate 
future. Thus, I may be relatively certain that 
I will be paying $12,000 a month in rental this 
year, but I am not too certain that I will be 
paying $12,000 a month five years from now 
because the system requirements may have 
changed or I may have a much larger or a much 
smaller system at that time. Perhaps what is 
needed to equate such consideration is a time 
dependent, cost-value assignment. This assign
ment might be produced by multiplying the 



378 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

cost of the item by the probability that the same 
cost will ever be paid. This approach would 
tend to make one-time costs more significant 
in the selection and minimize the amount of 
influence which 'expansion potential' tends to 
exert on the selection. 

Quality Determination 
The Cost-Value Technique, as discussed, does 

not provide a value assignment for the quality 
of supplied documentation or of the instruction 
to be given, etc. These quality items are of im
portance and eventually must be incorporated 
into the technique. However, much data will 
have to be collected on such items as these to 
build a body of experience, to create the limits 
of their importance, and to relate their im
portance wtth other elements of ~he system. 

There are undoubtedly other mo~ifications 
that could be made to the Cost-Value Technique. 
But, changes are expected and needed if a tech
nique is to grow. However, whatever changes 
might be made, they should not affect the basis 
for the Cost-Value Technique, which is the use 
of costs as the common denominator when re
lating the various items that must be consid
ered when evaluating computer proposals. This 
principle of using costs as the common denomi
nator when valuating items to be included in 
an evalu~tion technique is the heart of the 
Cost-Value Technique, and it is likely to be a 
basic principle that will be incorporated into 
most of the new objective evaluation techniques 
that will evolve over the next 20 or so years. 

SUMMARY 

The Cost-Value Technique proposes two 
major changes to existing evaluation tech
niques. 

The first change is in methodology. The Cost
Value Technique attempts to consider all items 
of value to a computer system, but to consider 
them only once and in the environment in which 
they belong. The categories scored are total 
system cost and 'extras' which are defined as 
features like expansion potential, vendor sup
port, or similar characteristics which are part 
of total system cost, but differentiating between 
vendors .. 

The second change IS In scoring technique. 
The Cost-Value Technique uses dollars rather 
than weighted points as the basis of compari
son. This provides a more natural basis for 
comparison. It eliminates the need for 'trade
offs' and gives management deeper understand
ing of the total selection process. 

These two changes are intended to bring 
about a more understandable and realistic 
selection. 

The Cost-Value Technique is intended to be a 
dynamic technique to which additional modifi
cations might be made. Some possible future 
improvements that might be incorporated into 
the ,Cost-Value Technique have also been shown. 

APPENDIX I 

Items Considered in Sample 
Weighted Factors Evaluation Method 

COSTS 

One-Time Costs 

Site Preparation 
Electrical 

Air Conditioning (Cooling, Heating, 
and Humidity Control) 
Power Supply (including all wiring) 

Construction 
Facilities (Space, walls, ceiling, paint
in,g, draperies) 
False Flooring (including bracings) 

Equipment Installation 
Equipment Transportation (including insur
ance cost) 
Vendor Support 

Personnel 
Analysts 
Programmers 
Operators 
Instructors 

Training (including cost of transportation 
and living costs, if training not provided 
on-site) 
Existing Programs 
Back-up Facilities 
Machine Time (checkout) 
Documentation 
Program and Data Conversion 



COST-VALUE TECHNIQUE FOR EVALUATION OF COMPUTER SYSTEM PROPOSALS 379 

One-Time or Continuing Costs (Dependent 
upon procurement method used) 

Central Processor and Associated Equipment 
Central Processor 
Console 
Floating Point Option 
Multiply Option 
Real Time Option 
Memory Units 
Etc. 

Peripheral Computer Equipment-On-Line 
or Off-Line 

Remote Inquiry Device 
Card Reader 
Card Punch 
Printer 
Magnetic Tape Units 
Immediate Access Storage (lAS) Units 
Paper Tape Reader 
Paper Tape Punch 
Controllers and Buffers 
Micr, Optical Scanner, etc. 

Auxiliary Equipment 
Key Punch Machines and other data 
Creation Devices (flexiwriter, teletype ma
chine, etc.) 

Continuing Costs 
Operation and Maintenance of all Electrical 
Equipment (Above Computer System Equip
ment, plus Air Conditioning, etc.) 
Personnel 

Managers 
Analysts 
Programmers 
Operators 
Others (key punch operators, etc.) 

Program Development 
Supplies 

Magnetic Tape 
Cartridges for lAS 
Printer Paper 
Cards 
Programming Forms 
Etc. 

Indirect Cost-Space Used 

EQUIPMENT CHARACTERISTICS 

Speed 
Time Required to Complete Applications 
Specified 

Instructions 
Add time (fixed and floating) 
Multiply time (fixed and floating) 
Divide time (fixed and floating) 
Move 
Etc. (through all other instructions though 
significant) 

Peripheral Equipment 
Printer (lines per minute) 
Card Reader (card per minute) 
Card Punch (card per minute) 
Magnetic Tape Units (characters per sec
ond) 
lAS (characters per second average) 
Etc. (through all other peripheral equip
ment listed) 

Capacity 
Characters of Storage in Main Memory 
(core) 
Characters of Storage in lAS 
Characters of Storage on Magnetic Tape 

Length of printed line, in characters 
Card size 
Length of Paper Tape 
Etc. 

Compatibility 
Program 
Tapes 
Cards 

Switchability 
Magnetic Tape U1)its 
Printers 
Other 

Reliability 
Error Detection 

Parity Checks 
Validation Checks 
Accuracy Checks 

Error Correction Techniques 
Near-Time-to-Failure (etc.) 

Special Features 
Memory Lock-out 
Parallel Processing 

Problem Timings-Sample Problems 
Central Processor Limited 
Input/Output Limited 
Balanced 



380 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

Other Characteristics 
Size of Equipment (each piece considered) 
Weight of Equipment (each piece consid
ered) 

EXPANSION POTENTIAL 

Slack Time (Amount of available free time on 
each piece of system equipment) 

Central Processor 
Magnetic Tapes 
lAS 
Card Punch 
Printer 
Etc. (Through all other system equipment 
offered) 

Maximum Expansion (Number of units that 
can be added to system) 

Magnetic Tapes 
lAS 
Card Punch 
Printer 
Etc. (Through all other system equipment 
offered) 

SYSTEM SUPPORT 

Program Assistance 
Development 
Writing 
Converting 

Training 
Analysts 
Programmers 
Operators 

Maintenance Offered 

Backup Availability 

Program Testing 
Hours 
Location 

Existing Software 
Sort 
Merge 
COBOL 
FORTRAN 
Report Generator 
Etc. 

Documentation 

Personnel Loaned 
Analysts 
Programmers 
Operators 

BIBLIOGRAPHY 

Thesis 

BIBLIOGRAPHY 

1. JOSLIN, EDWARD 0., Computer Acquisition, 
Prepared as MBA Requirement for Boston 
College. 

2. GREGORY, R. H. and VAN HORN, R. L., Auto
matic Data Processing Systems, Editions 1 
and 2, Wadsworth. 

3. GREGORY, R. H. and VAN HORN, R. L., Bus
iness Data Processing and Programming, 
Wadsworth. 

4. CONWAY, GIBBONS and WATTS, Business 
Experience with Electronic Computers, 
Price Waterhouse & Co. 

5. D.P .M.A., Data Processing-Volumes IV, 
V and VI. 

6. WILLIAMS, PERROTT, WEITZMAN, MURRAY 
and SHOBER, "A Methodology for Computer 
Selection Studies," Computers and Auto
mation, May 1963. 

7. GOSDEN, J. A., "The Computer Chooser's 
Quandary; Which Machine and Why?," 
Datamation, December 1962. 

8. CASTILLO-FERNANDEZ, JOSE A., ENRIQUE 
RIVERA-SANTANA, "Technique for Evaluat
ing Electronic Computers", Data Process
ing, September 1962. 

9. SISSON, R. L., "How to be a Comparison 
Shopper for Computers", Business Man·· 
agement Magazine, October 1962. 

10. "Better Computer Comparisons for You", 
EDP Analyzer, June 1963. 

11. "New Ways for EDP System Studies", 
EDf Analyzer, September 1963. 

12. CANNING, RICHARD G., Selection Procedure, 
EDP Systems Analysis Technique, 1962, 
from Volume I, Standard EDP Reports by 
Auerbach/BN A. 



COST-VALUE TECHNIQUE FOR EVALUATION OF COMPUTER SYSTEM PROPOSALS 381 

13. FRIEDLAND, E. 1., H01V to Select the Best 
Computer: A Conceptual Outline, July 
1963, MITRE Working Paper, W6231. 

14. BAGLEY, P. R., Data Collection lor Evalua
tion olE D P Proposals, July 1963, MITRE 
Working Paper, W6283. 

15. Rosenthal Committee, Analytical Tech
nique lor Automatic Data Processing 
Equipment AcqU1".sition, 1963. 

16. Managem,ent 01 Data Processing Equip
ment, "Selection of Data Processing Equip
ment," Air Force Manual 171-9, March 
1962. 

17. Directorate 01 Data Automation, "Selec
tion of Electronic Data Processing Equip
ment," AF ADA, October 1, 1962. 





THE USE OF A COMPUTER TO EVALUATE COMPUTERS 
Donald J. Herman, P1'esident, and Fred C. Ihr'er, Vice President and Technical Director 

COMRESS, Incorporated 
Washington, D. C. 

THE PROBLEM OF COMPUTER 
EVALUATION 

The cDmplex prDblem 'Of evaluating and 
selecting the 'Optimum systems apprDach fDr the 
'Optimum cDmputer tD sDlve a particular data 
pr'Ocessing prDblem, has plagued management 
since the time that cDmputers came intD use fDr 
business and scientific data prDcessing. 

The review, evaluatiDn, analysis and selectiDn 
'Of data prDcessing hardware/sDftware cDnfig
uratiDns establishes the necessity fDr relating 
the functiDns 'Of hardware perfDrmance char
acteristics and sDftware prDgram efficiency 
fact Drs tD the specificatiDns 'Of the prDposed 
cDmputer applicatiDn. Each 'Of these functiDns 
cDmprises interacting and interdependent activ
ities thrDughDut the cDmplete evaluatiDn cycle, 
beginning with the delineatiDn 'Of a data prDC
essing prDblem and ending with a successfully 
installed and efficiently 'Operating cDmputer. TD 
acc'Omplish this eff'Ort thrDugh a manual methDd 
'Of making c'OmparisDns and estimates 'Of the 
relative prDficiency 'Of the variDus cDmputers is 
a time-cDnsuming and cDstly effDrt which dDes 
nDt always prDduce the ultimate solutiDn. The 
requirement tD establish prDper relatiDnships 
fDr evaluatiDn purpDses between each 'Of these 
functiDns identifies the need fDr a management 
vehicle which will assist management in mak
ing a prDper and CDrrect cDmputer evaluatiDn 
decisiDn. 

VariDus attempts have been made at the 
pr'Oper sDlutiDn 'Of this prDblem but nDne 'Of 

383 

these apprDaches has incDrpDrated the maxi
mum utilizatiDn 'Of the capabilities 'Of a CDm
puter. A detailed analysis 'Of the evaluatiDn 
prDblem revealed that a series 'Of techniques, 
incDrpDrating a wide range 'Of scientific disci
plines, c'Ould be utilized tD apprDach an 'Optimum 
sDlutiDn. HDwever, these techniques demanded 
a prDdigiDus amDunt 'Of calculatiDn. TD attempt 
tD apply them tD the prDblem withDut the aid 
'Of a cDmputer wDuld have been similar tD sDlv
ing cDmplex mathematical problems with the 
use 'Of RDman numerals. 

A COMPUTERIZED SOLUTION TO THE 
PROBLEM 

COMRESS has prepared a sDftware package 
called SCERT meaning Systems and CDm
pu"ters Evalu~tiDn and Review Technique. 
SCERT is a simulation program which has been 
designed tD accept the definitiDns 'Of a data 
prDcessing pr'Oblem, and tD build a mathe
ma tical mDdel 'Of each prDgram run in the de
fined prDblem. AlsD, SCERT maintains a 
library 'Of hardware and sDftware perf'Ormance 
factDrs fDr a wide range 'Of digital c'Omputers. 
Using the algDrithms which have been incDrpD
rated intD the prDgram, it can extract the 
apprDpriate hardware and sDftware factDrs fDr 
all the c'OmpDnents in any 'One cDnfiguratiDn. 
With this infDrmatiDn, it will build a mathe
matical m'Odel representing the hardware/soft
ware perfDrmance capabilities 'Of each selected 
cDmputer cDnfiguratiDn. During the simulati'On 
phase then, SCERT simulates the respDnse 'Of 



384 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

each of the "program models" against the "per
formance model" of each of the selected con
figurations. 

The results of this simulation are represented 
in the form of several different management 
reports which furnish the user with projections 
of cost, time, memory and manpower require
ments which would be necessary to put his data 
processing system "on the air" for anyone of 
the computers evaluated. 

SOME OF THE USES OF THE SCERT 
PROGRAM 

SCERT has been used during the past fifteen 
months by a large number of users representing 
a wide and diversified range of data processing 
problems and systems. These have varied from 
the typical business type sequential processing 
problem to the scientific problem and the real
time random access and communication prob
lems. 

Hardware Selection 
For the data processing installation making 

its initial computer selection, SCER T provides 
management with an extremely valuable tool 
for assuring the selection of the proper com
puter hardware. SCERT can be used to evalu
ate the performance of an infinite number of 
computer configurations, thus assuring man
agement that they have selected the computer 
which most economically m~ets their processing 
requirements. 

Additionally, the SCERT projections will 
provide the new installation with many valu
able guidelines for the implementation of the 
system on the selected computer. SCERT will 
realistically project the programming man 
months involved and data media requirements 
and will establish accurate running time goals 
for the completed programs. Additionally, 
SCERT will aid in systems design by reflecting 
optimized tape block'·size, channel assignments, 
internal running times and memory require
ments by function of the computer. 

Hardware Enhancement or Replacement 
The use of SCERT by an installation which 

is facing the problem of enhancing or replacing 
its present computer hardware can provide 
management with the optimum approach to 

this recurring problem. SCERT can be used to 
simulate a variety of potential hardware en
hancements such as faster tape stations, addi
tional memory, etc., and will accurately project 
the differences in program running time for 
each of the enhancements considered. Addi
tionally, SCER T can be used for considering 
the impact of replacing present hardware with 
larger or more modern hardware and will make 
realistic projections of utilization and cost of 
reprogramming for the various options con
sidered. I t can also be used to determine the 
effect of running existing programs on com
patible machines in compatibility mode situ
ations. 

Application Analysis 

SCERT has been used by computer installa
tions to evaluate the impact on both their 
utilization and programming resources when 
considering the addition of new applications. 
In this environment it can be used to project 
the running time of the new application, the 
utilization of off-line and auxiliary equipment 
and the programming effort required. It is very 
frequently used to evaluate several different 
systems design approaches for the same prob
lem in terms of computer running time and 
programming effort. 

Installation Review 

SCERT ha~ also been used by computer 
installation 'managers who are interested in 
evaluating the performance of their installation 
in terms of the standard projections made by 
SCERT. Since the SCERT projections are 
always based on an optimum use of computer 
hardware available, then these projections pro
vide highly realistic goals and standards by 
which actual program performance can be 
measured. This allows management to isolate 
those programs which are most subject to en
hancement or reprogramming. 

Hardware Design 
When used in the performance of this func

tion, SCERT provides the user with a valuable 
tool for assuring the capabilities of determining 
the correct design specifications of computer 
components, far in advance of committing re
search and development funds and valuable 
engineering time. By utilizing this program 



THE USE OF A COMPUTER TO EVALUATE COMPUTERS 385 

during the early planning stages for new hard
ware, it is possible to evaluate the performance 
of a wide range of product specification vari
ations to determine the optimum computer char
acteristics required to meet the demands of a 
competitive market. 

Generally, the procedure used for accom
plishing this function is one of defining a series 
of pre-selected and well defined systems appli
cations to the SCERT program. By then vary
ing the planned performance specifications of 
a "paper machine," the user is able to determine 
the performance of various computer configura
tions, and select the one which best meets the 
desired market performance requirements. 

OPERATIONS OF THE SCERT PROGRAM 

SCERT is an extremely complex and fairly 
lar-ge program. The size of the program ap
proaches the magnitude of 31,000 instructions. 
It contains approximately 5,000 algorithmS and 
maintains a library of approximately 100,000 
hardware and software factors. 

The program was originally written in a 
CO:LviRESS specially designed language for an 
RCA 301 computer. As an operating software 
package on the RCA 301, it consists of 26 
phases and as such, the program would require 
from two to four hours of running time to 
simulate a problem consisting of 100 computer 
runs for the evaluation of six different com
puter configurations. The running time is a 
function of the size of the configurations being 
simulated, and the complexity of the defined 
programs. 

Our experience in defining runs to SCER T 
can best be measured as a range of magnitude, 
rather than an average or typical time. This 
range has varied from a minimum of ten to a 
high of fifty runs and their associated files 
defined in one man day of effort. A typical 
average elapsed time-frame for the complete 
production of a SCERT analysis is approxi
mately four weeks. The time required for 
definition is usually a function of the condition 
of documentation and/or the availability of the 
time of the systems analysts who designed the 
system to be simulated. 

COMPUTERS MAINTAINED IN SCERT 
LIBRARY 

At the beginning of 1964, the SCERT pro
gram included hardware and software factors 
on each of the following computer central 
processors and related peripheral devices. New 
computers are added to the library within one 
month of manufacturer's announcements. 

Manufacturer 

Burroughs 

Computer 

205 
200 series 

5000 

Control Data Corporation 160A 
1604 
3200 
3600 
6600 

General Electric 

Honeywell 

IBM 

NCR 

Philco 

RCA 

UNIVAC 

215 
225 
235 
425 
435 

200 
400 

1400 
800 

1800 

1440 
1401 
1460 
1410 
7010 
7040 and 7044 
7070,7072 and 7074 
7080 
7090 and 7094 
705 II and III 

304 
315 

2000 

301 
501 

3301 

SS 80 I and II 
1050 
U III 
1107 

490 



386 RROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

DESCRIPTION OF SCERT PROGRAM 

The SCERT program can best be described 
as the four phase program which is depicted on 
Figure 1. Phase I builds a mathematical model 
of the system and assures that it is a systems
oriented model. Phase II adjusts this model to 
the type of machine which is to be evaluated. 
Phase III simulates the performance of these 
models on each of the configurations being 
evaluated. Phase IV produces the necessary 
decision-making data on the several output 
reports of SCERT. 

PHASE I 

In this phase, SCERT creates a mathematical 
model of each computer run in the entire system 
application. The bases on which the model is 
built is the Systems Definitions, Environment 
Definitions and the File Definitions. 

The Systems Definitions (Figures 2 and 3) 
are basically a verbal portrayal of the systems 
chart reft.ecting the frequency and occurrence, 
the number and identity of I/O files, and the 
type of internal computer activity. 

PllASEI: Build __ ticall1Odel or 
eacb run in ..... _. 
AdJ ... t. _18 _ COl parti
cular envlI'01J111eDt. 
Validate S)'e_-Oriented _d. 

AdJ ... t tbe run _18 tor bard
vare orientation. 

l'IIABBm 
S:IIIIl.ate tile pert'oraDCe or 
eacb run _1 in t.be total. 
..... _ ap1n8t t.be pert'ana-

aoce ..al ot eacb cClllplter 
to be .val ... ted. 

Pro4uee detail and .~ 
reporta. 

Figure 1. Schematic of S-CERT Program. 

Several classes of mnemonic codes are used 
to define internal computer activity; some of 
these are: 

General Job Codes 

Sort 
Merge 
Sequence Memory 

Data Processing Job Codes 

Update 
Extract 
Validate 

Mathematical Job Codes 

Square Root 
Sine 
Cosine 
Arc Tangent 
Etc. 

Matrix Job Codes 
Matrix Multiply 
Ma trix Transpose 

! 

[ ! 

i 

I! 
! 

. ! 

ij 7 I 9 10 II 1213 14 IS 16 17 Illl1iaJ 21 

I 
! I , I I i i 

i 
I I I 
I I 

i 

i 

! 

Ii 

t CCNRESS. INC. 1962 

Figure 2. Systems Definitions-Part 1. 



THE USE OF A COMPUTER TO EVALUATE COMPUTERS 387 

ACTMTY DEFlIlTIONS USER MWlSI' r- IOF 
_3 _. -, REPORT JOB DESCAIPr . IMTH. JOI axlES ...,..,. .... OODES .-c ~ .ocrMTY axlES 

:1= ~ OC_ - 00_ - ~ = ~~ on =:. ADIOS ~ OF 
~ 

OF 

:1Ctl~. 1'"-, '" .. I'InDS !noNs PSI IUD. ~ 
MATRIX - -51 Q 71 

I 

1 I 

i I· I 

51 Q , .. ,~, 

o COMRESS. INC. 1962 

Figure 3. Systems Definitions-Part 2. 

Matrix Invert 
Matrix Subtract 
Matrix Divide 
Matrix Add 

Basic Computer Activity Codes 
Data Move 
Data Compare 
Data Edit 
Data Translate 
Data Add 
Data Divide 

. Data Multiply 
Data Subtract 

The File Definitions (Figure 4) reflect the 
basic parameters of each file. These specifica
tions include such data as the number of rec
ords, number of characters per record, the 
number of alpha and numeric fields, and the 
category and data media of the file. 

The Environmental Definitions (Figure 5) 
provide SCERT with the necessary factors or 

ALE 

NUMBER 

FILE 0iARACTERIs!1CS CATEGORY 

MJMBER OF OWIJICTERS MJMBER OF FIELDS .~ if ~ <1 !II 
NlNBER PER REtORo PER REOJAO ~ ~ ~ (5 is 

OF RECOROS AVERAGE ~ ~ tUlERIC ::0< ~~ ~ u 

6 7 8 9 10'11 '2'3 14 15 '6 '7 18 '9~11;!zjz3~4 

~L i! : i
t

i '11 rl ;,:- -1
1 

\ . I Hj!· 
"1 ; u! I ~tt-I ., I ,- -I 1- - i I -: '"i -I- - 1--t :- i 

- ----:----- r--- -t-+ '--j-

I f-----t-- 1---+--.+ 1- :--t-

:-it~tji~ti~t ~ - J I, +,) 1 _______ fr----
i~'_---L+J I ! ,_ I _ __ -f.-H--+- _ -1 

I-----+-----l--!--l-.-;... .-d i ' J-~Ll- - --r---I----I--+-.-+-+-l-. 
: : : Iii: I II j , 'I·, I 

-T----'-- -:--"'i 'I: -1 r .L~,'f' + ~,--~t _~t f-_; ___ _ 

1---1---'1-+-If--+-i-----l-t--+-t--+-t-+--r++++-t-1 

+_ ' I; I ! 
: I I I, 1 
iii -t'l I I "t-

i I: ! i 

i I 

\ ! I, l! I I 

, 1 : , ! 

Figure 4. File Definitions. 

factor adjustments for all functions based on 
pure judgment. This input phase of SCERT is 
an open-ended design to allow for the individual 
requirements of each user. 

The types of data which are introduced by 
these definitions are: 

Software Environment 
Personnel Environment 
General Environment 

The Software Environment division provides 
the user with a method of specifying to SCERT 
the programming language, the Input/Output 
Control System, and the Program Monitor Sys
tem he will use. 

The Personnel Environment division defines 
for SCERT the experience level of the user's 
programming staff. SCERT mathematically 
relates this to the complexity of the systems 
application and the programming difficulty of 
the language to be used for the configuration 
to be evaluated. 



388 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

45 

AB 

• 7 • 'ItaI" 1213 141511ej17j11 I 

.JJS1II'IWI~1'D 
_or ___ I'IIICBAIIPYII._~ 

PI:ICIIft'AGP or 1O'!IL APPLICA~ __ 

CO EF GH I J KL MN OP RS TU V \II - _'-<-1) - JalA OF _ m.IIi <mB 2} 

fIDoJIICmI _ UIIII.a <mB 3) 

JWI.lIC!DrjOCIII'IWILS1II'IWI <mB~) 
__ ..nw_<mB5) 

REAL TIME APPLICATIONS ~ OlD ~ ::.--

~
_orKDII'!ZBnPlllCl8SIIGIlft'lll'fAL 3·-•• aJIft'SI 

_PIIIIlAT_llEALnJlEPIIOCIIIISIIG mB2 COIlEl ... 
- 2·_ 

IlAtsPIIIV!n:_l!!ALnJlEPIIOCIIIBDIQ 3.I'mICIICAIIIlI 
•• _BlI 

COEIIRII!IT M!CII PllX:lllSIIG 5 • ~C BlI 

r-r-r-r-rT""'IrI HISTORICAL ENVIRONMENT ~ • = ~ 
1

11111111CID!L_OFPIIISD'l'aJIft'SI !!!!..l COIlE 2:_ 
• 3 • BCIDTIrIC COIIPlI.D •• __ cnnLIII 

AB 

PERSONNEL ENVIRONMENT!!!'!!.! COIlE ~ : ~ IMIIJlIC"lWD lOCII 

tm---~--AVlIWI! AJIIIJAL SAI.\JIT or 0Pr:IIA~ II"lUF 

AYIUG!" AJIIIJAL SAI.\JIT or morA P\II!P STAFF 

PIIO.JIC'l'ID IUIIlIt or OPIIIATIOIII STArr (P!II SlUT) 

CO EF GH I J K LiM NO PQ RS TU V'll 

2. JIICQIII) COI.m 
•. _-.s 
7·1,2 _. 
3 ·1_2 5 ·1_. 
6 ··2_. 0." 

_ Dl'EIIDCE (n 6 _ PSIlllIII) 
Ii. 

~ EDI!II"D3 (mB 3) 

SlB"l'UIII!:IIPERlD:E(mB7) 

aJIft'SI Elnm:ICE (mB 5) 

!21U COIlE~:=~ __ LQAD !!1U CDIlB~:=::::== 
2 • IIAIIIOII AIXI38 rILE LOllI 3 • I!AIIOI Aa::IIIS _ PIIlCDIIJG 
5.1.~ •• CAllD5ClEIft'IFIC 
6 - 2 _ ~ 5 • _ SCDIIITIPIC 

_eCOllEl-lICD_ 
-- 2 - MIWIl' CUMC'!EIl 

3 - IICD lII:IID 
• - MIWIl' lII:IID • o:MESS. INC. I9Ei2 

Figure 5. Environmental Definitions. 

The General Environment division allows the 
user to specify the length of time he plans to 
keep the computer, and such other factors as 
the percentage of the total application that the 
evaluated system definitions represent. 

PHASE II 

Phase II of the SCER T program accepts the 
Computer Complement Definitions (Figure 6) 
which define each of the various computer con
figurations to be evaluated. Based on these 
definitions, it extracts from its library of hard
ware and software factors, those required for 
each computer configuration. SCERT arrays 
these factors in the form of a three-dimensional 
matrix and then modifies the mathematical 
models of the runs in the system to conform to 
the hardware requirements of the particular 
computer. For example, the record sizes in
volved are, if necessary, made multiples of-the 
word structure of the computer; and assign
ment of the input and output files is made to the 
appropriate peripheral devices available. 

IXH'IG. eMIl 
UNIT I ~IT2 UNIT 3 

NO. NO. i MOIlEL NO. QUjItj ~j MOIlEL NO. ~ gi MOIlEL NO. aMi 
s 

23 4 5 Ii 7 I 910 " 12 1314 I5Ifi 1711 1921*1 

2 
l 2 

2 
I 2 

I 2 

2 
I 2 

2 

L 2 

I 2 
l 2 I 

2 
[ 2 

2 

! 2· 

~ 2 
I 2 

2 
2 

2 
2 
2 

2 
2 
2 

2 
2 

2 z. Z 
zz zz ZZ 
2 :5 45 Ii 7 19 lOll 1213 II~ 15 lfilT 18 lit i21'f!i 

• <XlMRESS. INC.. 1962 

Figure 6. Computer Complement Definitions. 

The Computer Complement Definitions which 
are input to this phase are simply an identifi
cation of the manufacturers' model numbers, 
the quantity of each in the configuration, and 
the function code which specifies how the 
particular model will be used. The function 
code can specify that a unit will be operated 
on-line, as a satellite or in parallel. The defini
tions must also include the model number of the 
satellite computer, if any, as well as the model 
numbers of all peripheral and control devices 
associated with the satellite. 

During both Phases I and II, SCER T per
forms a complete validation of all input defini
tions. It checks for proper coding and for 
consistency of coding. The systems application 
is continually checked to insure its validity, 
especially in terms of the computer configura
tion being evaluated. For example, SCERT will 
determine if sufficient peripheral devices are 
available and are of the right kind to handle all 



THE USE OF A COMPUTER TO EVALUATE COMPUTERS 389 

input and output functions. Errors discovered 
by SCERT in performing these validations are 
printed and the user has the option of continu
ing or restarting the program. 

PHASE III 

The basis for most of the decision theory 
techniques incorporated into SCERT is the 
simulation of the performance of each computer 
configuration for each computer run model to 
be evaluated. This simulation technique can 
best be described as the explosion of the com
puter run into its maximum number of thru-put 
iterations. SCERT contains over 5,000 algo
rithms which it uses to perform this simulation. 
Initially, all input, output and internal compu
tation times are calculated. As these timing 
forecasts are developed, a preliminary assign
ment of these times is made, based on the pow
ers and features of the central processing unit. 
Then, based on the simulation bf the thru-put 
iterations, the simultaneous and net times are 
derived for each run. As a by-product of this 
simulation, SCERT computes the number of 
program steps, amount of memory used, number 
of tapes required for input and output files, etc. 
In addition, a pre and post run history is 
developed to forecast the utilization of periph
eral equipment such as key punch, off-line card 
reading, satellite computer time, and other re
quirements. 

The various terms in the algorithms are 
products of several sources. The system input 
definitions furnish a primary source of terms. 
Another set is provided by the environmental 
definitions. A third set of terms is derived by 
SCERT from historical and statistical tables, 
and another important source is furnished by 
the program's library of hardware and soft
ware factors. Currently, this library contains 
fifty computer systems which are reflected by 
over 100,000 different hardware and software 
factors. 

PHASE" IV 

This phase of SCERT provides the user with 
various levels of data developed by SCERT 
during the course of simulation and evaluation 
computations. The several output reports which 
are generated by SCERT during this phase have 

been designed to provide the user with a com
prehensive range of detailed and summary 
management information. These reports repre
sent a digest of several million computations 
and decisions made in a typical evaluation. The 
data represented on some of these reports is, 
to our knowledge, the first attempt ever to have 
been made to provide the managers of a data 
processing installation with data which can be 
used for management purposes. One of the 
examples of this type of data is shown on the 
SCERT Detail Systems Analysis report which 
provides the programmer with much of the in
formation which he would, under ordinary 
circumstances, have to develop through trial 
and error methods prior to the writing of his 
program. For instance, SCERT will optimize 
for each file in every program the record size, 
the block size, the input/output media assign
ment, and the I/O channel assignment. 

Computer Complement Report (Figure 7) 
This report is provided for each computer 

complement evaluated and serves mainly as an 
identification of the computer configuration. It 
reflects, by type of hardware device, the quan
tity of each model number in the configuration, 
the purchase price, minimum monthly rental, 
and the environmental requirements of floor
ing, cooling, and the power requirements. 

Central Processor Utilization Report (Figure 
8) 

This report summarizes, by program run, the 
SCERT forecast for program running, set-up/ 

",ollnn" T""~W.llF" 
Zl$P , ... ,. u. una 311 '01 

cY""265 1"111 
~7i'iP11 T,:.,. 

~"E Fou.O"',,' S,,!full! CO .... ..,TIiA SlSit .. IS ALSO C""SIDE:AEt. FOR UTlLIl.aTlOll .. ND C.,. .. "' .... IT? 
14UCJ I:lf!. 
1402 ,,, .. 

332 25 •• )i.l 

Figure 7. Computer Complement Report. 



390 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

:i:~~ 30.liS 
30.311 

DO.liO 00.00 
66.:l.e hl.'IIl 

DD.eo to.OD 
to12 6!>8.29 

('0.00 

Figure 8. Central Processor Utilization Report. 

take-down time, and 'memory utilization. It 
further provides information for those appli
cable computer systems on the parallel data 
conversion that could be scheduled during each 
program run. After listing these forecasts, 
SCERT then summarizes the projections for 
daily, weekly and monthly average utilization 
time, and finally, prints the projections for peak 
period utilization. 

Satellite Computer and Auxiliary Equipment 
Utilization Report (Figure 9) 

Based on the pre and post run history devel
oped during the SCERT-simulation, this,report 
forecasts for each computer run in the system, 
the satellite computer and auxiliary equipment 
utilization. Auxiliary equipment utilization is 
subdivided by function such as card to tape, 
tape to print, and other off-line data conversion 
operations. Also provided is the number of 
hours of data preparation work, such as key 
punch time, required to support each run. 

----60.?2-"2."-17.3S ---------

Figure 9. Satellite Computer and Auxiliary Equipment 
Utilization Report. 

f"OASV5TEMDINO.COI'lPUTERCOMPl!MENTNUI'tIlE=RMt4 

:~!: ;;: ~:,~: ----~:':n!-------!:!..lt~~; --=;: ]'~: 2~'-: ___ .,.. __ '---__ ------'J::~.:!L: __ 
:;; 9:: ~~: ::: ::'D~ 
;:z ::!: =:g----:~:---~:~.~~;--
5;: 21:: :t::---..... ·i'"--! ----'!~:.:!"-:--

~;i8 1;: ::: ::.:: 
5519 U __ --",,"'--, ___ -"-po"---___ --"'LD-.D .1IL' __ 

Figure 10. Programming Requirements Report. 

Programming Requirements Report (Figure 
10) 

This report, which is also a recap by individ
ual program run, projects the number of pro
gram steps required to put the program "on 
the air," and then makes an estimate of the 
user's programming effort in man months. It 
further reflects the number of program steps 
saved by using applicable sub-routines and 
utility programs furnished by the manufac
turers. The programming effort in man months 
projection is a function of the number of steps 
in the program related to the programming 
language specified by the user in the Environ
ment Definitions. This computation is made in 
relation to the experience of the user's pro
gramming staff correlated to the programming 
difficulty of the computer involved, and the 
nature of the individual program run. 

Application Summary Report (Figure 11) 

This report is a summation of all program 
runs within each application area and is pro
vided to assist the user in determining the 
priority to be assigned to the various applica
tions for implementation purposes. It shows 
the monthly system utilization by application 
together with a projection of programming 
effort and associated cost. 

Cost Summary Report (Figure 12) 

This report is provided for each computer 
configuration evaluated. It is a management 
digest of the costs associated with installing a 



THE USE OF A COMPUTER TO EVALUATE COMPUTERS 391 

_APPLII:.lrl0!il_!::El!IT~'L PIlOCESSQ~ UTILlZATlO"---SATELLITE CQ"PUTU--PROUI. ... 1fIIl EF..!'QIU PAtbIiClllIL-
COOI= "OUA'9 ~rR ""IE~"'E MOJIITtol uTILIZATION I_ •• 

__ S ___ U.9 .. __ 0J.9J __ --"?Q.ao ___ J ... 1C1 __ 1~ 

Figure 11. Application Summary Report. 

SCI;RllNAl,.'I'SIS PlRTt! COST SU!"I .... R'f A£il'oRT. 

FORSYSTEMor"o. CO"'lPUTeACOMPLEIlfENT NUI'IBERH14 1 2 

_____________ ~42~7 __ ll~~Q~0~0~0'-~~~=-~~ 

_____ ~~- • ...... 0-0 ________ ~"'__ 

tnttl COST DFp aYfR.i..&6;.tUllIIH ____ --'> 

Figure 12. Cost Summary Report. 

computer and operating it once all applications 
are programmed. Recurring costs show the 
monthly rental computed by SCERT, based on 
the projections of utilization. If manufacturers 
have several rental options, SCERT will have 
selected the optimum. Shown for comparison 
purposes are the purchase' costs which include 
the cost of maintenance. In addition to the 
equipment costs, the recurrent cost analysis 
also reflects personnel salaries for equipment 
operation and data preparation and program 
maintenance. 

The One-Time Cost Analysis shows the costs 
of acquiring data media such as magnetic tapes. 

Detailed Systems Analysis (Figure 13) 

This is an optional three-part report which 
provides a comprehensive analysis of each com
puter run as simulated by SCERT. Part I 
reflects for each input and output file the total 
buffered and unbuffered time, the input/output 
device and channel assignment selected by 
SCERT, the number of reels, if magnetic tape 
file, and the optimum records per block devel
oped by SCERT. Part II of the report is an 

F'ng WI,.o'" "'J"IIC:~ 1'l1l:4 • srsfEI'I BIIiO • C01'lOuTeR CnMPLI=MENT NUMliliR 1414. FIltEOUENCY JII 01. 

-~P"T 1 1'."T'.":,;~~~~;~!SOF~=CO.D __ !!ECo.n'_'U1'I.E'--1/n---":~F:~;=---0-." ..... ~" '.'lLOC. OF~ •• eLS ~n" T1~ 
---r:.t=~::l~::. OS' .~ 32 cif..4~r().~~ ---___ q 2 _"'''~TEw HIl' MSf:o~1'1Ic!_.8_3J __ U_"T __ D.l..~ ... ~ 

!!l'S:' ~uf!:.~S "e;' i§ii.27 

Figure 13. Detailed Systems Analysis. 

analysis of internal computation, including 
time, memory, and program steps by function; 
i.e., arithmetic computations, decision and con
trol, data handling and input/output control. 
Part III, a Special Time Analysis, forecasts the 
time required for program insertion time, pro
gram delay time due to errors, end of job 
rewind time, and other special functions. 
FinaHy, all timing forecasts are totaled to a 
net program running time. This report, in ad
dition to providing detailed documentation and 
back-up for all other SCERT reports, can be 
invaluable to an analyst or programmer when 
designing the running program. It will solve 
such programming problems as input/output 
channel assignments, and the determination of 
optimum record size, blocking factor and pro
gram segment size. 

COMPUTER COMPLEMENT REPORT 

R eport Explanation 

This report reflects descriptive information 
for each computer configuration to be evaluated. 

Column Explanation: 
1 MODEL NUMBER-Identifies each 

component in the configuration. 
2 MANUFACTURER-Identifies man

ufacturer of each component. 
3 QUANTITY IN SYSTEM-The com

ponent quantity in each configuration. 
4 PURCHASE PRICE-For each com

ponent and associated special features. 



392 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE. 1964 

5 

6 

7 

MINIMUM MONTHLY RENTAL
The minimum rental option for each 
component. 
FLOORING SQ. FT.-Represents the 
minimum number of square feet of 
physical and work areas requiring 
false flooring for each component. 
COOLING BTU/HR.-Shows BTU's 
required for cooling each component. 

8 POWER SUPPL Y -Reflects power 
requirements for each component. 

9 CENTRAL PROCESSING UNIT-A 
subdivision of this report which shows 
all equipment connected on-line to the 
main frame. 

10 PERIPHERAL DEVICES-The naille 
of each component shown for the con
figuration. 

11 SPECIAL FEATURES-Reflects all 
special features and control devices. 
All costs and other factors are shown 
with the appropriate device. 

12 SATELLITE COMPUTER-Reflects 
the satellite computer (if required) to 
support the central processor. 

13 TOTAL EDP SYSTEl\1:-Reflects 
totals for all components for purchase 
price, monthly rental, floor require
ments, BTU's and power in KW and 
KVA. 

CENTRAL PROCESSOR UTILIZATION 
REPORT 

Report Explanat'ion 

This report reflects analytical information 
computed by SCERT on each program run in 
the entire system for each computer configura
tion evaluated. 

Column Explanation: 

1 PERIOD-Identifies the periodic oc
currence of the computer run. 

2 FREQUENCY-Identifies the fre
quency of occurrence within the pe
riod. 

3 RUN NUMBER-An identification 
number assigned by the analyst. 

4 RUNNING TIME-This is the pri
mary projection developed by SCERT 

5 

6 

simulation and represents elapsed 
running tIme of the program. It is 
based on optimum utilization of mem
ory, instruction power and simultane
ity. 
SET-UP-Reflects net amount of set
up and take-down time required. 
TOTAL TIME-A summation of run-
ning time and set-up time. 

7 MEMORY CHARACTERS UTI
LIZED-Represents total require
ments for each program, including in
struction, work areas, I/O data, and 
software routines. An asterisk indi
cates memory has been exceeded, and 
SCERT has segmented. 

8 PARALLEL PROCESSING-When 
equipment has the capability of per
forming parallel processing; SCER T 
calculates the effective parallel con
version time available. This figure is 
computed within the parameters of 
memory, operational time and I/O 
channels available during each run. 

9 RUNS TOTAL-A summation of the 
SCERT projections of running time 
for a.II runs occurring in the period 
indicated. 

10 AVERAGE TIME-The time required 
for all runs plus a proration of the 
running time for runs occurring more 
or less frequently than the period indi
cated. 

11 NORMAL MONTH TOTAL-A sum
mation of the total time required for 
all computer runs occurring monthly 
or more frequently. 

12 PEAK MONTH TOTAL-The normal 
month time plus the time required if 
all quarterly, semiannual and annual 
runs were to Occur during one month. 

SATELLITE COMPUTER AND AUXILIARY 
EQUIPl\1:ENT UTILIZATION REPORT 

Report Explanation 

This report reflects analytical information 
computed by SCERT on each program run in 
the entire system for each computer configura
tion evaluated. 



THE USE OF A COMPUTER TO EVALUATE COMPUTERS 393 

Column Explanation: 

1 PROGRAM RUN NUMBER-An 
identification number assigned by the 
analyst. 

2 SATELL1TE COMPUTER-A pro
jection of the hours of utilization of 
the satellite computer to support each 
program run. In this example, off-line 
equipment was used for normal data 
conversion operations, consequently, 
no utilization is reflected for a satellite 
computer. 

3 OFF-LINE EQUIPMENT UTILIZA
TION-During the SCERT simula
tion, a pre and post history is devel
oped for each computer run. SCERT 
anaiyzes this history to determine the 
off-line requirements for converting 
source document data to a media ac
ceptable by the configuration being 
evaluated. It also determines the post 
run requirements for such off-line 
functions as printing, punching, etc. 
This off-line utilization is reflected in 
terms of hours per average month by 
type of function for each run, such as 
tape to print and card to tape. 

4 DATA PREPARATION-Machine 
time requirements for all necessary 
data preparation such as key punching 
and paper tape punching for each pro
gram run are computed and reflected 
in terms' of the hourly requirements 
per average month. In this exa'mple, 
source documents were not defined, 
therefore, data preparation time was 
not computed. 

PROGRAMMING REQUIREMENTS 
REPORT 

Report ExplarULtion 

This report reflects analytical information 
computed by SCERT on each program run in 
the entire system for each computer configura
tion evaluated. 

Column Explanation: 
1 RUN NUMBER-An identification 

number assigned by the analyst. 

2 PROGRAMMED BY USER-A pro
jection of the number of program steps 
which must be programmed by the 
user's staff to prepare each program. 

3 SUB-ROUTINES-A quantitative re
flection of the number of program 
steps which will be incorporated into 
each program run as a result of the 
utilization of manufacturer furnished 
su b-routines. 

4 UTILITY ROUTINES-A quantita
tive reflection of the number of pro
gram steps in the manufacturer fur
nished utility routines used in each 
run. 

5 PROGRAMMING EFFORT IN MAN 
MONTHS-A quantitative projection 
of the numb~r of man months required 
to write each program run. This pro
jection, although it may be no closer 
than plus or minus 15 % of actual pro
gram effort required, because of the 
technique and the factors used in ar
riving at it, represents the best pos
sible projection that can be achieved. 
The factors used for arriving at this 
projection are the number of program
mers and their experience levels, the 
complexity of the computer run, and 
the language to be used. 

APPLICATION SUMMARY REPORT 

Report ExplarULtion 

This report reft.ects the summarization of 
information computed by SCERT at the pro
gram run level for each computer configuration 
evaluated. 

Column Explanation: 
1 APPLICATION CODE-The first 

character of program run number will 
be assigned by the analyst to identify 
each application in the system. 

2 PROGRAM TIME~A projection of 
the CPU utilization hours for each 
application for an average month. 

3 SET-UP TIME-Reflects net set-up 
and take-down time required. 

4 SATELLITE COMPUTER UTILIZA
TION-A projection of the utilization 



394 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

hours in support of the central proces
sor for each application for an aver
age month. 

5 PROGRAMMING EFFORT IN MAN 
MONTHS-A summarization of pro
gramming manpower effort required 
for implementing all of the computer 
runs in each application. 

6 PROGRAMMING EFFORT DOL
LARS COST-An estimation of pro
gramming costs, based on an extension 
of the number of man months of effort 
multiplied by the average monthly 
salary of a programmer, as furnished 
by the user through the Environment 
Definitions. 

COST SUMMARY REPORT 

Repo'rt Explanation 

This report reflects the SCERT projections 
for all costs associated with the operation of 
the entire system for each computer configura
tion evaluated for an average month. 

Column 
1 

2 

3 

4 

Explanation,' 
BASIC HOURS-Represents the 
number of hours in the rental option 
selected by SCERT. SCERT analyzes, 
in terms of the number of hours of 
component utilization, all options of
fered and then selects the optimum 
one. 
EXTRA USE-The number of hours 
of extra use required beyond the basic 
hours provided in the option selected 
by SCERT. 

MONTHLY RENTAL-Represents 
the total basic hours pI us extra use 
hours monthly rental for each compo
nent during an average month. 

PURCHASE PRICE/XX-The pur
chase price of each component amor
tized over an XX month period. The 
period of amortization is selected by 
the user and defined to SCER T 
through the Environment Definitions. 
lV[ONTHLY MAINTENANCE-Rep
resents the maintenance charges for 
each purchased component during an 
average month. 

6 

7 

8 

MONTHLY COST-A total of' the 
amortized purchase price plus the 
monthly maintenance cost. This is a 
figure which can be compared to the 
monthly rental to assist in determin
ing purchase versus rental. 
DATA PREPARATION-A dollar 
figure representing the personnel costs 
required to prepare input data on a 
recurring basis to achieve the opera
tion of the total system. This ·projec
tion is based on factors furnished 
through the Environment Definitions, 
such as number of data preparation 
personnel and their mean salary, the 
user's estimate of their data prepara
tion production, i.e., key strokes per 
hour; and the computations made by 
SCERT which reflect the total data 
preparation requirement for an aver
age month. 

EQUIPMENT OPERATION-A dol
lar figure representing the projection 
of equipment operation costs for an 
average month. This estimate is com
puted on data defined to SCERT, such 
as numbers and mean salaries of 
operation personnel; and the computa
tions made by SCERT to determine 
the hours required for processing the 
entire system on the simulated config
uration. 

9 PROSRAM MAINTENANCE - An 
estimate of the user's personnel costs 
to maintain all computer runs in this 
system. 

10 DATA MEDIA COSTS-Represents 
the costs computed by SCERT for un
expendable data media necessary for 
the implementation of this system. 
Examples are magnetic tapes or any 
other type of interchangeable data 
storage media. 

DETAILED SYSTEMS ANALYSIS REPORT 

Report Explanation 

This report reflects detailed analytical infor
mation computed by SCERT on each program 
run in the entire system for each computer 
configuration evaluated. 



THE USE OF A COMPUTER TO EVALUATE COMPUTERS 395 

Column Explanation: 

1 PART I, INPUT/OUTPUT ANAL
YSIS-This part of the report is a 
complete analysis of all I/O functions 
in the system. 

2 INPUT/OUTPUT FILES-A column 
showing file name. 

3 FILE NUMBER - An identification 
number assigned by the analyst. 

4 NUMBER OF RECORDS-The num
ber of records for each of the files. 

5 RECORD SIZE-The optimized rec
ord size computed by SCERT for each 
file. 

6 RECORDS PER BLOCK-The opti
mum file block size computed by 
SCERT. 

7 NUMBER OF REELS-The number 
of reels required for each tape file. 

8 INPUT/OUTPUT MEDIA-A code 
specifying the type of media assigned 
to each I/O file. If the computer is a 
multi-channel machine, SCER T deter
mines the channel assignment for each 
device and indicates it. 

9 BUFFERED TIME-An estimate of 
that I/O time which can be buffered 
(or overlapped) by other operations 
during each program run. 

10 UNBUFFERED TIME-A projection 
of that I/O time which cannot be over
lapped and is therefore net time dur
ing each program run. 

11 PART II, INTERNAL COIVIPUTA
TION ANALYSIS-During the sim
ulation of each program run, SCERT 
compiles by functional category the 
number of program steps, associated 
memory utilized by work .areas, and 
required time for all internal \.:ompu
tation. 

12 FUNCTION-Based on the internal 
computer activity codes specified by 
the analyst, SCERT determines a 
distributional breakout for the four 
functions of Arithmetic Computation, 
I/O Control, Data Handling, and De
cision and Control. 

13 

14 

15 

16 

17 

18 

19 

20 

PROGRAM STEPS-The number of 
instructions to be programmed by the 
user and to be furnished by manufac
turer's software. 

MEMORY USED-A total of the 
memory utilized for a function, includ
ing requirements for program steps, 
work areas, tables and I/O areas. 

INTERNAL TIME-Time required 
for the computer to perform a func
tion. 

PART III, SPECIAL TIME ANAL
YSIS-An open ended analytical tech
nique incorporated into SCERT to 
highlight for the program analyst the 
time consumed by those functions 
which are meaningful to the design of 
the Isystem. 

PROGRAM INSERTION TIME-A 
projection of the optimum time re
quired to insert the program into 
memory based on available peripheral 
hardware. If SCERT determines that 
segmentation is required, the added 
time for inserting the various pro
gram segments is also computed and 
shown in this column. 

PROGRAM DELAY TIME, MULTI
MEDIA CHANGES-SCERT deter
mines the number of reels required for 
tape files, and if during a program run 
an insufficient number of tape stations 
are available for each multi-reel file, 
it computes the time delay for rewind, 
take-down and set-up time for each 
reel. 

END OF JOB REWIND TIME-The 
time required to rewind the longest 
reel. 

SET-UP AND TAKE-DOWN TIME 
-The optimized time required to set 
up peripheral devices before each run 
and to take down completud work after 
the run. It is based on the number of 
operators and an analysis of the runs 
previous to and subsequent to each 
run. 





A GENERAL-PURPOSE TIME-SHARING SYSTEM 
Jules I. Schwartz, Edward G. Coffman, and Clark Weissman 

System Development Corporation 
Santa Monica, California 

INTRODUCTION 

Since June 1963, a Time-Sharing System has 
been operational at the System Development 
Corporation in Santa Monica. This system was 
produced under the sponsorship of ARP A and 
has utilized ideas developed at both Massachu
setts Institute of Technologya·4 and Bolt, 
Beranek, and Newman,l.l1 as well as some origi
nal techniques. Time-sharing, in this case, 
means the simultaneous access to a computer 
by a large number of independent (and/or re
lated) users and programs. The system is also 
"general purpose," since there is essentially no 
restriction on the kind of program that it can 
accommodate. The system has been used for 
compiling and debugging programs, conducting 
research, performing calculations, conducting 
games, and executing on-line programs using 
both algebraic and list-processing languages. 

This paper is divided into four major dis
cussions. These are: (1) an outline of the capa
bilities provided for the user by the equipment 
and program system; (2) a description of the 
system's operation, with an analysis of the sys
tem scheduling techniques and properties; (3) 
a somewhat detailed description of two of the 
currently operating system service programs; 
and (4) a conclusion and summary. 

CAP ABILITIES FOR THE USER 

Equipment Configuration 

The major computer used by the Time
Sharing System (TSS) Executive is the AN/ 
FSQ-32 (manufactured by IBM). Also used 

397 

by the system is the PDP-l (manufactured by 
Digital Equipment Corp.), which is the major 
input/ output vehicle for the various remote 
devices. 

The remote input/output devices available to 
users include Teletypes, displays, and other 
computers. These devices can be run from 
within SDC, and from the outside, with the 
exception of displays, which can be operated 
only a short distance from the computer. It is 
expected that computers to be used at remote 
stations win eventuany inciude the CDC 160A, 
the DEC PDP-I, and the IBM 1410. (Currently 
only the 160A is being used, from an installa
tion 400 miles distant from the Q-32.) Figure 1 
is a description of the system's remote equip
ment configuration. 

Figure 1. Remote Equipment Configuration. 



398 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

The AN/FSQ-32 computer is a 1's-comple
ment, 48-bit-word computer, with 65,536 words 
of high-speed (2.5 usec. cycle time minus over
lap) memory available for programs, and an 
additional 16,384 words of high-speed memory 
available for data and input/output buffering; 
the latter memory is called input memory. The 
PDP-1 also has access to the input memory; 
thus, this memory serves as the interface be
tween the two computers. In addition, the Q-32 
has an extremely powerful instruction reper
toire, including access to parts of words for 
loading, storing, and arithmetic; it also has an 
extensive interrupt system. 

Figure 2 shows the principal components of 
the system and the important information-flow 
paths throughout the system. As implied in 
the figure, each main memory bank (16K 
words) is individually and independently ac
cessible by three control units: the central proc
essor unit, the high-speed control unit, and the 
low-speed control unit. High-speed I/O, low
speed I/O, and central processing can take 
place simultaneously out of different memory 
banks, or, with certain restrictions, out of the 
same memory bank. The high-speed and low
speed I/O operations originate, of course, from 

Ilo 

High
speed 
control 
unit 

AUXiliary memory 

Central 
process::.ng 
unit 

Figure 2. TSS Hardware System. 

! PDP-l 

requests by the central processor unit. The 
low-speed control unit can service two or more· 
low-speed I/O devices simultaneously, while the 
high-speed devices can only be operated indi
vidually, mainly because their cycle time ap-· 
proaches that of core memory. 

A memory-protection mechanism and an in
terrupt, interval (quantum) clock (not shown 
in the figure) are also integral parts of the 
TSS computer system. On a bank-by-bank basis 
only, the memory protection mechanism pro
vides the capability for inhibiting, under pro
gram control, the writing of information into 
one or more memory banks. The quantum clock 
has the following characteristics: 

1. It can be set under program control to a 
time interval (quantum) anywhere in the 
range from a few msec. to 400 msec. 

2. It can be made to interrupt computer op
erations after the set interval has elapsed, 
or after any power-of-two multiple of the 
set interval (up to a multiple of eight) 
has elapsed. 

3. Under program control, it can be acti
vated and reset. 

A summary of the pertinent device charac
teristics is given in Table I below. The disk 
file shown in Figure 2 is currently being in
corporated into the system. 

The Time-Sharing System as it Looks to the 
User 

The time-sharing user today communicates 
with the Time-Sharing System primarily by 
means of Teletype. He has at his disposal six 
basic commands to the system. Briefly, these 
commands are: 

• LOGIN: The user is beginning a run. With 
this command he gives his identification 
and a "job number." 

• LOAD: The user requests a program to be 
loaded (currently from tape, eventually, 
from disk). Once this command is exe
cuted, the program is an "object program" 
in the system. 

• GO: The user starts the operation of an 
object program or restarts the operation 
of an object program that has been 
stopped. Once the user gives this com-



A GENERAL-PURPOSE TIME-SHARING SYSTEM 399 

Table I. Characteristics of the AN /FSQ-32 Storage Devices 

DEVICE SIZE WORD RATE 

Core Memory 65K 2.5,.,.sec./wd. 

Inut/Output 16K 2.5 p.sec./wd. 
Core Memory 

Magnetic Drums 400K 2.75 p.sec. fwd. 

Disk File 4000K 11.75 p.sec./wd. 

Magnetic Tapes 16 128 ,.,.sec./wd. 
Drives (High density) 

mand, he can send Teletype messages to 
either his object program or the Time
Sharing System. 

• STOP: The user stops the operation of an 
object program. 

• QUIT: The user has finished a particular 
job. Upon receipt of the QUIT, the Time
Sharing System punches a card with cer
tain accounting information on it and re
moves the object program from the sys
tem. 

• DIAL: The user may communicate with 
other users or the computer operators with 
this command. 

In addition to these basic commands, the user 
has available to him a variety of on-line pro
gram debugging, or checkout, functions which 
give immediate access to any .part(s) of an 
object program. 

Briefly, these debugging functions include: 

• Open: Displays the contents of the given 
memory or machine register and uses this 
as a base address for other debugging 
commands. 

• Modify open register address: Changes the 
address of the opened register by the given 
increment or decrement. 

• Insert: Inserts the given value into the 
opened register. 

• Mask: Inserts values by the given mask. 
• Mode: Displays values according to speci

fied mode (floating, decimal, octal, Hol
lerith) . 

A VERAGE ACCESS TIME 

10 msec. 

225 m·sec. 

5 to 30 msec. (no positioning), depending on 
whether the tape is at load point, and whether 
it is being read or written. 

• Break point: When a specified point in the 
program is reached, notifies the user, and 
(on options) displays registers, and stops 
or continues the program. As many as 
five break points are allowed simultane
ously. 

• Dump: Dumps a given set of registers, 
either on Teletype or tape. 

The actual commands to perform these func
tions usually include a symbol or address with 
one or two unique Teletype characters. 

Additional Facilities Available to System Users 

The commands and devices mentioned so far 
are facilities available to users· or users' object 
programs directly through the Time-Sharing 
System's Executive. With these facilities one 
could run and debug programs that exist in a 
binary form. To make the system more useful, 
however, a number of additional devices (called 
service routines) are available to users. These 
are themselves run as object programs, so it 
is clear that there is no limit to the number of 
service routines that can eventually be made 
available. 

These service routines include programs to 
file and update symbolic information; com
pilers; a fancy desk calculator; tape-handling 
routines; and a number of others including 
some advanced routines utilizing interpretive 
techniques. A more detailed description of these 
interpretive routines appears in the time-shar
ing applications section, below. 



400 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

SYSTEM OPERATION AND TIME AND 
SPACE ALLOCATION 

System Operation 

The discussion so far has been primarily on 
the operation of the system from the user's 
point of view. The following is an over-all de
scription of the system and how it operates. 

Basically, the system operates as follows: 
All object programs are stored on drum, put 
there as a result of the LOAD command. When 
a program's time to operate arrives, or, pref
erably, ahead of this time, it is brought into 
high-speed memory. If bringing a program into 
its area in memory causes a stolage conflict 
with another program, the latter must be re
stored to its place on drums (a process called 
s.wapping) . A prograni"s turn will end when 
it initiates an input or output request, when 
a machine or program error is detected, or 
when its time is up, the time allotted being de
termined prior to its turn. At the completion of 
its turn, its machine environment (e.g., accu-

. mulator, index-registers, etc.) is saved, and it 
either resides in memory until its next turn 
or is written on drums. This mechanism is con
trolled by the time-sharing Executive. 

As stated before, there is no restriction on 
the type of object program that can run in the 
system. Therefore, as much input/output 
equipment as possible is made available to ob
ject programs; thus, object programs may use 
tapes, displays, and Teletypes for input and 
output. Other computers can also be treated 
as input/output devices; further, disk storave 
is available to object programs. Since it is im
practical, in such a system, to have specific 
Teletypes or tapes referred to by object pro
grams, input/output is done in a general fash
ion, with all input/output devices given arbi
trary names by the object programs and 
declared to be files used by the object program 
during its run. Thus, only the Time-Sharing 
System knows what physical tape drivers, Tele
types, or areas of drums are being used. 

The Time-Sharing System's Q-32 Executive 
occupies 16,384 words of memory, leaving the 
remainder of memory for object programs. The 
Executive that exists in the PDP-1 is primarily 
concerned with maintaining the flow of infor-

mati on to and from the remote devices. It 
does relatively little decision-making. However, 
it does determine the kind of input/output 
device concerned, the type of conversion neces
sary (if any), and the particular channel of the 
device with which it is communicating. 

The time-sharing Executive in the Q-32 has 
eight major components. These include routines 
that perform input/ output, perform on-line 
debugging, interpret commands, assign stor
age, and schedule object programs. By far the 
most distinctive feature of the time-sharing 
Executive, compared to other monitors or ex
ecutive systems, is the scheduler. Accordingly, 
a more detailed description of time and space 
scheduling follows. 

Time Allocation and User Capacity 

The first problem considered in the Time
Sharing System (TSS) scheduling design was 
the determination of the minimum amount of 
time to be given each program during a re
sponse cycle of the system. A response cycle is 
that period of time during which all active pro
grams (i.e., programs requiring central process
ing time) are serviced. Clearly, to satisfy 
TSS objectives, this quantum of time (q) must 
be at least as great as the average amount of 
time required by an object program to produce 
a response. Here, of course, we refer only to 
those programs designed to communicate with 
a user station (display or keyboard device), 
and to those programs for which a fast response 
is desired and can reasonably be expected. In 
other words, a user requesting a matrix in
version will (and must) expect to wait con
siderably longer than a user wishing only to 
see the contents of some register in his pro
gram. 

Initially, it was obviously not possible to 
determine a priori the distribution of object
program operating times, nor was it even pos
sible to define or classify the group of users re
quiring these data. The currently available in
formation regarding user programs, and, to 
some extent, the experience of others, indicated 
that a q of 50 msec. was sufficient. The extensive 
recording now being performed during TSS 
operation is accumulating data that will much 
more accurately indicate the necessary q size. 



A GENERAL-PURPOSE TIME-SHARING SYSTEM 401 

In the following section, "worst-case" situa
tions are being treated. "Worst-case" situa
tions are being treated because they, by defini
tion, give the overload threshold or capacity of 
the system; because they simplify the problem 
of having to cope with the distributions of 
object-program sizes and operating times; and 
because TSS will be operating at, or near, 
capacity for a high percentage of· the time, if 
the present rate of usage continues. In some 
cases the "worst-case" values that are used had 
to be estimated. There is considerable evidence, 
however, to support the estimates given in the 
following approximation of the maximum num
ber (nma:J of active users that can be serviced 
in one response cycle, when given the size of the 
response interval (tr), the quantum size, and 
the hardware constraints. 

In the current version of TSS the "worst
case" response cycle consists of the following 
recurrent, non-overlapping sequence of opera
tions: dumping of the last program operated; 
loading of the next program to operate; alloca
tion of the time interval for operation. For the 
values of q and tr that are of interest, the num
ber of active programs in the system can be 
much larger than the number of menlory-pro
tected programs that can be held in core 
memory at one time; therefore, the above se
quence will virtually always be necessary for 
the operation of each program. 

Assuming (as is presently the case) that 
object programs are not relocatable, we have 
(in view of the regular, cyclic operation of 
TSS) the following simple relation, 

tr ( 1 - 7]) 
(1) 

2t,. + q 

where til represents an average value for the 
time it takes to transfer a program from drum 
storage to core memory or vice versa, and 1] is 
the fraction of time ( overhead) used by the 
Executive during each response cycle. 

The fraction of overhead (1]) is a difficult 
quantity to evaluate, and it depends to some 
extent on nlll :IX ' Because of the complexity of 
TSS operation, it is also diffi"cult to estimate 
1] through recording during TSS operation. 
From experience to date with the system, it is 
estimated that 7r ranges from two per cent to 

fifteen or twenty per cent depending on existing 
circumstances. 

Equation (1) shows that, without major re
visions in hardware, a significant inprovement 
in nmn can be achieved only through a decrease 
in the quantity (2ts + q). In particular, if 
object programs can be made dynamically re
locatable, this quantity can be reduced to the 
value of 2ts alone. Clearly, this is the best one 
can do, simply because the speed of the high
speed I/O sectio~ in swapping programs in an 
uninterrupted sequence represents a funda
mental iIpper bound on TSS capacity. Further 
improvement necessitates an extensive increase 
in core-memory size, so that at least some active 
programs can remain in memory during con
secutive response cycles. An increase in nmn 
brought about by an increase in the speed of 
the high-speed I/O section is not economically 
feasible as can be seen from the equipment de
scription given earlier. 

Assuming dynamic relocatability of pro
grams, equation (1) changes to : 

n llUlX L (1 - 7]) tr/2t.. (2) 

In practice, the extent to which the optimum 
is attained depends on the distributions of 
object-program sizes and operating times. If 
2t,. is substantially larger than q, Equation (2) 
can, for all practical purposes, be considered an 
equality. Relocatability at load time would, of 
course, also significantly increase nmax, but the 
improvement that could be expected would be 
substantially less than that given in Equation 
(2). For a more specific evaluation of the im
provement, a knowledge of the distributions 
just mentioned is necessary. 

The linear relationships between nmn and tr 
given by Equations (1) and (2) are shown 
graphically in Figure 3 with the following 
parameter values: q = 50 msec., 1] = 0.20, and 

20 

15 

10 

Figure 3. Response Time vs. Number of Users. 



402 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

2ts = 100 msec. (corresponding to a program 
size of 16K words). At present, a value of 2.0 
sec. is being used for tr, with a resulting nmax 
of about 11. 

Up to now, the efficiency of central processor 
utilization (relative to un overlapped I/O time) 
has been considered of secondary importance, 
providing that user requirements have been 
met. Admittedly, this computational efficiency3 
is rather low in the "worst-case" situations. 
As will be seen in the next section, however, the 
way in which object programs are sequenced 
tends to maximize this efficiency for any given 
load situation. Clearly, the installation of 
dynamic relocatability in the system would 
allow an efficiency up to 50 % since q can be 
made equal to 2t, without affecting Equation 
(2). 

It should be emphasized that nmn does not 
represent the maximum number (Nmax) of user 
stations that can be active at one time; it rep
resents only the maximum number of user 
programs that can be serviced in a fixed re
sponse interval under the assumptions given 
earlier. It has been conservatively estimated 
that the associated object program is in need of 
central processor time only ten to twenty per 
cent of the time during which a user station is 
in use. Accordingly, it may be possible to 
make N max considerably larger than nmax with
out significantly jeopardizing user-response 
requirements. Three important factors figure 
in the estimate of p = nmax/Nmax: 

1. Relative to computer processing speeds, 
many applications (e.g., debugging, gam
ing) consume considerable user time in 
thinking and output analysis. 

2. The average user is less than professional 
in his use of input devices. A slow 
manual-input rate, coupled with occa
sional typing or format errors, will cer
tainly tend to make p small. 

3. Generally, computer output to user sta
tions takes as much as one to ten seconds. 

The estimate of p given above was based on 
the observation of these three factors during 
system operation and has been justified by the 
results of the limited amount of recording 
currently available. In obtaining the precise 

distribution of the quantity p it will be possible 
to determine the probability of overload for a 
given N max, or to determine the N max necessary 
for a given probability of overload. It should 
also be pointed out that, ultimately in TSS, as 
in a telephone exchange, several more user sta
tions may be allowed than can actually be in 
use at one time. The extent to which Nmax can 
be exceeded must again be determined by a 
distribution obtained in the same manner as 
for p. 

Sequencing and Priorities 
The sequence in which object programs are 

allocated time is determined by a priority 
scheme that favors the smaller programs that 
do not use low-speed I/O time. The amount of 
time allocated is given by the total time avail
able (tr ), divided by the current number (n) 
of object programs requesting central process
ing time. When n= nmax, the time allocated is 
given by the minimum quantum discussed in 
the previous paragraphs. 

The priority scheme was adopted to prevent 
low-speed I/O that was initiated by object pro
grams from degrading the response of those 
users not using low-speed I/O. Users whose 
programs require low-speed I/O must expect 
poorer response, not only because of the low
speed operations, but also because of possible 
conflicts in object-program I/O requests. Each 
object program in the system receives a prior
ity according to the criteria in Table II. 

Table II. Priority Criteria 

PROGRAM 
PRIORITY CHARACTERISTICS 

1 Program is less than 16K and does 
not use low-speed I/O. 

2 Program is less than 32K and uses 
~ow-speed I/O or, program is be 
~ween 16K and 32K and no low-
speed I/O. 

S ;Program in excess of 32K. 

During any given interval of time, Priority 
1 programs will receive service first; Priority 
2, second; and Priority 3, last. To prevent deg
radation of response by low-speed I/O, main 

i 

I 



A GENERAL-PURPOSE TIME-SHARING SYSTEM 403 

Memory Bank: 

1 2 4 

Lr~1 o B 

Priority 2 5. 32K }!!'iori ty 1 f 16K 

Priori ty 3 ~ 32K 

Figure 4. Main Memory Allocation. 

memory is partitioned and allocated as shown 
in Figure 4. Because of the relatively small 
number of current TSS users, this storage al
location procedure has not yet been imposed on 
object programs. In the future when the num
ber of Priority 2 and 3 users begins to cause a 
significant degradation in Priority 1 response, 
this scheme will be fully implemented as de
scribed. 

Figure 4 shows that Priority 1 and 2 pro
grams can be multiplexed, but Priority 3 pro
grams preempt practically the entire machine. 
The priority scheme cannot solve the problem 
arising when a Priority 3 program undertakes 
a lengthy, low-speed I/O transfer. The majority 
of programs using low-speed I/O, however, 
concern tape transfers, which involve no 
searching, that take from 50 to 75 msec. 

When a program completes operation prior 
to the expiration of its time allocation for any 
of the reasons given in the second paragraph 
of this section, the remaining time will be re
distributed among the remaining users re
questing service. As a result, the large Priority 
2 and 3 users will generally receive more time 
than the Priority 1 users, thus increasing the 
potential utilization of central-processor time. 

Space AUocation 
Although the timing and speed limitations on 

TSS capability have been of concern, storage 
limitations are presently far more severe. Stor
age limitations can be largely removed, how
ever, by acquisition of additional drum space 
up to the maximum of about 600K. Figure 5 
gives a rough idea of how much drum storage 
must be provided for object programs, to 
achieve a balance between the speed and capac
ity of the system. The curves are obtained by 
letting nllWX == pNIlI:lx in Eq. (1), tr == 2.0 sec., 
'YJ == 0.2, and p == 0.2. 

50 

45 

46 

35 
(N ) . 

III&X 30 

15 

"....---161< progr8III8 

._--32K programs 

10 _~Curre~n~t~drum~c~apac~ity~ __ -=::::===:..-__ 
for 32K programs 

51~~_'--r~_r-'-~~ __ r-~ ______ ~. 
5'0 1bo 1~0 ~ ~o 3bo 3~0 Jx, 4~0 5bo 

(q msec) 

F · 5 N .1::!L tr 19ure. max = . 2t 
p • + q 

In the initial TSS model (with only eight 
TTY users), auxiliary memory drum storage 
was partitioned and allocated in a fixed man
ner to provide an early working model of the 
system. This technique proved quite satisfac
tory at the time, but the number of input sta
tions has now increased to about 48. To ac
commodate the additional users, a more effi
cient use of drum storage was necessary. The 
present method meets this requirement by al
locating storage in a contiguous, "head-to-tail" 
fashion. The adapatability of this storage-al
location method requires searching an inven
tory of available drum space each time a new 
program enters the system, and periodically 
redistributing drum space to maximize the 
available amount of contiguous drum space. A 
possible disadvantage of this method is the 
additional overhead produced, especially when 
programs must be reshuffled to allocate a 
sufficient amount of contiguous drum space 
for a new program. Here again, the perform
ance of this storage allocation technique must 
be evaluated by statistical recording, since the 
performance depends strongly on the distribu
tion of program sizes, and on the rates at 
which programs enter and leave the system. 
However, at present (and in the foreseeable 
future) the above rates are so low that the ad
ditional overhead produced is negligible. 

Future Improvements in TSS Scheduling 

There are many ways, including both hard
ware and software additions to the system, in 
which the capacity and scheduling efficiency of 



404 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

TSS can be enhanced. The more or less obvious 
hardware improvements include: 

• Additional core memory 
• Additional drum memory 
• Relocation mechanism 

• Disk storage 

The effects of a relocation mechanism and ad
ditional drum storage have been described in 
the previous sections. Additional main memory 
can be expected to allow for a larger Executive 
system, larger object programs, and greater 
scheduling efficiency. However, a substantial 
improvement in scheduling efficiency must be 
predicated on the existence of a relocation 
mechanism, when one makes the obvious as
sumption that the memory size is small com
pared to the total size of all active object pro
grams. 

The disk file, which is just now being in
stalled and checked out, will supplant tapes for 
all those applications in which disks are faster 
and use less machine time. It is expected that 
disks will be used to store a program library 
for TSS usage and to store large data bases for 
object program usage. It is conceivable that 
disks will also be used for program swapping. 
The first use of the disk file promises to elimi
nate a high percentage of manual operations 
associated with program loading from tapes, 
and thus to reduce greatly the corresponding 
delay experienced by users. The second use 
should save considerable time for the user 
whose application involves searching through 
large data bases. 

Although the estimates given in this paper 
are based realistically on current experience, it 
is not unlikely that user characteristics will 
evolve quite differently than predicted. Pro
gram sizes and/or operating times may grow 
to a point that invalidates the "worst-case" 
figures given in this section. It is possible, 
howeve'r, to counteract a certain amount of this 
degradation by certain improvements in sched
uling logic. One improvement would be ob
tained by taking advantage of the fact that a 
fairly large class of users exists for whom re
sponses substantially greater than one or hvo 
seconds are quite acceptable. In short, it is 
possihle to assign response levels to each user 

and to service each user j~st frequently enough 
to ensure his level of response. Furthermore, 
the disk file can be used for swapping those pro':' 
grams for which short responses are not neces
sary. Provided that disk access is in parallel 
with other high-speed I/O activities, the effec
tive swapping speed can retain the same order 
of magnitude as for drums. 

There are many programs that do not alter 
themselves during their execution. Thus, as 
another software improvement, these pro
grams could be treated by the system in two 
sections: an instruction section and an en
vironment (data) section. During a program's 
execution it -would never be necessary to write 
the instruction section back on drums; only 
the environment se~tion and the machine con
ditions at interrupt would be written back on 
drums. These and other improvements to TSS 
are under present investigation. Of principal 
concern in the investigation of these system 
changes is the amount of overhead they pro
duce. In some cases the increase in overhead 
exceeds the expected "improvement" in operat
ing speed and efficiency. 

TIME-SHARING APPLICATIONS 

To illustrate the "general purpose" nature 
of the Time-Sharing System, we focus on two 
interesting programming systems currently 
operating on TSS as service systems for the 
user. The first, IPL-TS, is a complete list
processing system for the Information Process
ing Language V developed by Newell, Simon, 
and Shaw.I2 The second, TINT, is an on-line 
Teletype INTerpreter for theJOVIALalgebraic 
language developed by SDC.I6.17 When the 
Time-Sharing System is equipped with these 
two programming-language systems, the user 
is immediately provided with a familiar pro
gramming system to ease his transition to 
programming for time-sharing, and allowed to 
use, with little or no modification, any code he 
may have previously written in IPL-V or 
JOVIAL for other machine systems. 

IPL-TS Description 

IPL-TS executes interpretively IPL-V code 
written in accordance with the latest published 
IPL-V conventions.I3 Some exceptions are 
noted, particularly in the IPL-TS I/O conven-



A GENERAL-PURPOSE TIME-SHARING SYSTEM 405 

tions dictated by machine limitations and time
sharing procedures. More significant, how
ever, are the extensions provided by IPL-TS in 
the areas of mode of code execution, and im
proved on-line communication. 

IPL-TS can operate in one of two modes at 
the programmer's option: the "production" 
mode or the "debugging" mode. The production 
mode is designed for maximum code execution, 
and is used essentially for checked out code. 

Though code is still executed interpretively, 
J1 suppression of all debugging functions in the 
production mode has produced a four-fold in
crease in execution rate over debugging-mode 
operation. Execution rates of over 400,000 
cycles per minute, which compare favorably 
with other non-time-sharing IPL systems, are 
common. To the IPL-TS user, production-mode 
operation is analogous, as we shall see later, to 
the TINT user compiling his checked-out code 
with the Time-Sharing JOVIAL Compiler 
(JTS). Debugging-mode operation, on the 
other hand, is designed for maximum user 
efficiency and greater on-line programmer con
trol over the execution of his program. The 
debugging mode a!!o\vs all the standard IPL 
options; it also permits a number of on-line 
functions not common to IPL systems. These 
include: 

1. Optional breakpoint action at any moni
tor point, whereby the currently execut
ing program is suspended until comple
tion of the execution of anyon-line, pro
grammer-specified routine; 

2. On-line, symbolic program composition 
and/or debugging; 

3. Optional automatic or on-line program
mer-controlled execution of a full "back 
trace" routine that prints up to the last 
100 interpretation cycles. This routine 
is executed by IPL-TS automatically at 
each system-detected error occurrence as 
a debugging diagnostic; and 

4. A flexible, "thin skinned" system er~or 
trap mechanism permitting programmer 
specification of trapping actions for all 
system-detected errors. 

TINT Description 

TINT is a two-pass interpretive program 

system for time-sharing use, and operates upon 
a subset of the JOVIAL problem-oriented 
language. 

TINT includes a generator, a set of operator 
subroutines, and the interpreter. The genera
tor was acquired from a current IBM 7090 
JOVIAL compiler and was modified to handle 
the particular JOVIAL dialect used by TINT. 
The operator subroutines and the interpreter 
are original code developed specifically for 
TINT. 

The generator (first pass) scans the input 
JOVIAL statements and translates them into 
an intermediate Polish prefix language. Gram
mer checking is performed during the transla
tion. The language subset allowed may include 
the arithmetic, relational, and Boolean opera
tors; procedure calls; data table, array, and 
item (integer, floating point, and Hollerith) 
declarations; and the GOTO, IF, STOP, READ, 
and PRINT statements. The READ and 
PRINT statements were added to the language 
specifically for time-sharing operation. 

Operator subroutines comprise the primitive 
functions used by the interpreter to perform 
the actions specified In the intermediate 
language. The interpreter (second pass) scans 
the intermediate language for the current op
erator prefix and its arguments, and executes 
the corresponding operator subroutine that 
computes on these arguments. 

.. 
The TINT user is permitted a number of 

options in composing and executing his code: 
He may reference code stored in a binary 
library tape of his own composition; he may file 
away any current code on tape for subsequent 
use, Or for compilation with JTS after the 
code has been exercised and debugged; and, he 
may optionally execute code from a prestored 
tape or from the Teletype. 

On-Line Program Composition 

Both IPL-TS and TINT allow the user to 
write symbolic programs on-line and to execute 
them immediately, by themselves or in conjunc
tion with previously coded routines. With IPL
TS, the programmer uses the special system 
routine, Linear IPL (LIPL),* which accepts 

* LIPL was designed and coded by R. Dupchak while 
consJlltant to the RAND Corporation, Santa Monica. 



406 PROCE.E'DING8-SPRING JOINT COMPUTER -CONFERENCE, 1964 

L1PL tlF-AOY! 

~T ACKTICST=(A"! AI A2 A3.ACKTf.ST) 
A"!=(JIS4 I"!$CYC.O$ JI~7 10$H3z$ JIS7 HI+I"! JI61 

I"$SICC.O,," JIS7 1"$lIM~::$ JIS1 I"!+IM JI61 
" ... ACK($ JIS7 1111411 JIST III~." JIS7 I!ONlo! JIS7 III"')=~ J157) 

• A"! sns UP PHINT LINE' 

AI=(\IIH3 JI~" JSM .,,1) 
• AI SAVES H3 COpy IN W0. AND CLOr.K IN $311" • 

A2=( 1"14" JilT IIINI! 7M9-1 .JJ~5.JH) 9-1:(JII i 7119-2 I"!NII JI2S.9-3) 
9-~=(\"+1 IIIN" Jill A2.9-3 5I!IKI 1111411 11'11411 Jill 142 JI25.J'j) 

• A2 COMPUTES AC(MW.N") • 

A3=(III+9 JI6W IWH3 IIWOI l\WII Jill JI57 10+29 J1611 .$3 H!+49 
JI6M I"NII JI51 JI5S IIWII J9.J3IIJ 

• A3 COMPUTF:S DF:LTA H3 AND oaTA Tim:. ALSO SETS VAtllABLES IN 
Pf<INT LIN .. AND PHINTS LINE' 

1411=+2 N0=+1 KI=.I • INITIAL VALUES' NL 6T ACKTEST 
GVC.OH3=17K SEC.DTlME=II.24117 ACK(2.1 )-5 
CYC.OH3=111IJ2 SEC.DTIME=IIJ.7929 ACK(2.S)-13 
GVC.OH3=S254 SF.C.OTlME=3.4091 ACK(2.13)-29 
CYC.OH3=25294 SEC.DTIME=16.3442 ACK(2.29)-61 
CYC.DH3=1906!S7 SEC.DTlME=121.~179 ACK(2.61 )-125 

!STOP 

Figure 6. Typescript of Ackermann's Function. 

IPL code on-line in a symbolic, linear, paren
thesis format convenient for keyboard input. 
Figure 6 presents an example of LIPL being 
used to compose and execute Ackermann's func
tionS on-line. TINT, which was developed 
specifically for on-line program composition, 
accepts JOVIAL statements on-line in the same 
linear format used for compiler input. 

The ability to program on-line frees the pro
grammer from having to concern himself with 
all the formalities of punched card accounting. 
With experience and facility, he programs on
line directly from his thoughts or, for more 
difficult problems, directly from a flow diagram, 
circumventing such time-consuming tasks as 
program-eoding-sheet preparation, key punch
ing, card sorting, editing, and prestoring. The 
time saved by the programmer can be applied 
to other coding tasks or to quality review of his 
current code. 

No programmer, of course, could compose a 
large program at one sitting with either of 
these systems, but this is a human, not a sys
tem, limitation; LIPL has no upper bound-, and 
TINT's 600-statement limit effectively exceeds 
a human's short-term comprehension. Opti
mally, these systems should be used for pro
grams that can be written and debugged in one 
or two sittings (usually under 100 IPL inst{uc
tions or 50 JOVIAL statements). 

There are three immediate consequences of 
this practical size limitation. First, many non
trivial, one-shot programs, such as for statisti-

LOGIN 0173 JDX.25 
$OK LOG ON I_ 
LOAD TINT 1196 
SWAIT 

"LOAD OK 
GO 

SMSG IN 

!QUIT 
$MSG IN 

STA~T "BEGINS NEW PROGIMM" 
ITEM N f' $ "NUMBER Of' CASF.S" 
ITEM SUHX f' $ "SUH Of' VALUES" 
ITEM XRA~ j; $ "AK(TH. MEAN" 
ITEM SDEV f' S "STD. DEVIATION" 
~EAD N. SUMX S 
XBAR " SUMX/N $ 
PRINT 6H(MEAN a). J(BAR $ 
SDEV • «SUHX •• 2.0-N.XBAR •• 2.1lI)/CN-I » •• 0.5 S 
PRINT 8H(S. D. ,. ). SDEV $ 
TERM $ "CAUSES EXECUTION Of' P~OGKAM" 

N z ? 12.0 

SUMX '" ? 1_71S.0 

MEAN. 123.2 

S. D. z 10.3 

I L T EX ECUTI ON COMPL T 

Figure 7. Example of the Use of TINT as a 
"Desk Calculator." 

cal computations, can be coded, debugged, and 
executed at one sitting. Often a programmer 
himself will refrain from writing such pro
grams, knowing the time and effort involved. 
Figure 7 shows the Teletype communication re
sulting from an exercise using TINT as a "desk 
calculator" for computing the standard devia
tion of a set of research data. Second, large 
programs take on a modular structure; that is, 
large programs become a concatenation of 
numerous smaller programs and subroutines. 
Third, programmers begin to amass personal 
libraries of short utility subroutines, which 
they use to build larger programs. Clearly, 
consequences two and three would not exist, 
except in trivial cases, if it were not possible 
to work one day with code developed en prior 
days. Both IPL-TS and TINT provide this ca
pability. 

TINT may accept symbolic input from 
magnetic tape, and can integrate this input with 
on-line Teletype input when so directed by the 
user. Thus the results of one day's coding can 
be filed on tape for later use. An alternative, 
if the symbolic JOVIAL statements have been 
executed and debugged, is to compile the code 
and save the binary output on a binary library 
tape, thus, again, integrating previous work 
with current code; however, the binary library 
approach has greatest value when used for 
utility routines. 



A GENERAL-PURPOSE TIME-SHARING SYSTEM 407 

Figure 8. Accessing the Computer with Model 33 
. Teletypes and Displays. 

IPL-V is essentially a language of sub
routines (composed from an inventory of some 
200 system subroutines called J routines or 
primitives). Programs written in IPL-V are 
usually modular hierarchies of subroutines. 
Therefore, on-line composition of IPL-V pro
grams is a natural extension of the language, 
and many alternatives for continuity of pro
gramming across many days of operation 
already exist within the language. For ex
ample, the programmer may "fire" a J166 (Save 
For Restart) at any time and continue from 
that point at a later date, or he may load a pro
gram from symbolic tape using the loader or 
J165 (Load Routines and Data) and continue 
using LIPL on-line. 

Therefore, the attributes of IPL-TS and 
TINT, when combined with a programmer's 
imagination and skill du'ring on-line program 
composition, reduce significantly the tedious, 
uncreative tasks of code preparation and in
crease productivity. This point is particularly 
apparent to all programmers who have been 
required to debug code that they wrote several 
days earlier, and that has grown "stale" while 
it was being keypunched, compiled, and ex
ecuted. Instead of expending additional time 
and energy becoming reacquainted with his 
code before he can correct his errors, the pro
grammer can, by composing the code on-line 
and executing it immediately, debug while the 
code is still fresh in his mind. 

On-Line Program Debugging 
The particular ability of IPL-TS and TINT 

to detect, locate, and correct program errors on
line is perhaps their greatest asset, since it 
leads to substantial decrease in program turn
around time. In effect, IPL-TS and TINT in
crease the programmer's debugging efficiency 
by allowing him to check out more code per day 
than would be possible with non-time-sharing 
operation. 

Error Detection is the first step in debugging 
any program. Errors may be classed as either 
grammatical errors in language or format, or 
logical errors in code execution. The genera
tor screens out most grammatical errors for 
TINT, and either the loader or LIPL performs 
the same task for IPL-TS. Logical-error detec
tion, however, is a more difficult task, even with 
IPL-TS and TINT. The advantage of these 
systems for error detection is their responsive
ness to the programmer. He may choose to 
develop on-line, special-purpose debugging tools 
to suit his individual preference, or he may use 
those debugging tools provided by the system. 
For example, IPL-TS currently provides an 
error trap for some twenty illegal IPL opera
tions resulting from faulty program logic; 
when such errors occur, IPL-TS attempts to 
provide the programmer with as much informa
tion as possible to help him correct his error. 
First, an error message is sent to the program
mer to inform him of the error's occurrence 
and of its nature. Second, a special system 
routine, Trace Dump (discussed below), pro
vides him with a "back trace" of the code lead
ing up to the error to help him locate the cause 
of the error. Finally, the system pauses at a 
breakpoint, to allow him time to correct the 
error. However, all three steps may be altered, 
since the IPL-TS error trap mechanism is de
signed with a "thin skin" to allow the program
mer to substitute his own trapping action in 
lieu of that provided by the system. 

With TINT, logical-error detection is left 
more to the imagination of the programmer. 
TINT allows the programmer to insert a 
PRINT statement, with numerous item names 
as arguments, at any point in his program. 
When it encounters this statement during pro
gram execution, TINT responds by printing on 
the user's Teletype the current values of all 
specified items. In this fashion, the program-



408 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

mer may take item snapshots at critical points 
in his program. The power of the PRINT 
statement for logical-error detection is ampli
fied when combined with the TINT READ 
statement. The READ statement is the con
verse of the PRINT statement. When TINT 
encounters this statement during program ex
ecution, the programmer must insert the cur
rent values of prespecified items. By judicious 
use of the READ and PRINT statements, the 
programmer can repeatedly exercise a program 
with different initial conditions and review his 
results with input/output transfer-function 
analysis. 

Thus, on-line user-program communication 
increases a programmer's debugging efficiency 
by increasing his ability to detect program 
errors. It is typical for a programmer, check
ing out new code with IPL-TS or TINT, to 
detect and correct half a dozen program errors 
in the first hour of operation; such error cor
rection might easily have required a week with 
conventional programming systems. 

Error location, the pinpointing of the errone
ous code, is often considered no different from 
error detection. This may be true for gram
matical errors, but is far from true for logical 
errors. The knowledge that an error exists does 
not, in and of itself, narrow the search for the 
error's location. The user of IPL-TS, there
fore, is provided with a description of the 
system-detected error and the aforementioned 
back trace of the code leading up to the error. 
Back tracing by the system is performed in the 
debugging mode by the special system routine 
Trace Dump, which prints a full trace of up to 
the last 100 interpretation cycles, in reverse 
order (last cycle first). The, number of previ
ous cycles printed is controllable on-line. Ex
perience shows that the location of an error can 
usually be found within the first five cycles 
printed, and that it is rarely necessary to go 
deeper than ten cycles back. For logical errors 
not detected by the system, the programmer has 
available all the standard IPL-V Monitor Point 
functions; in addition, IPL-TS extends these 
functions to include breakpoint operation as a 
programmer-initiated option. The option may 
be invoked at load time or during program ex
ecution. In addition, the IPL primitive J7 
(Halt) has been implemented as an alternative 

breakpoint mechanism. When a breakpoint is 
encountered by IPL-TS, the programmer is 
notified and requested to enter the name of any 
regionally defined routine, which is then ex
ecuted immediately. Upon completion of the 
routine, the programmer is again queried. He 
may continue to fire routines at the breakpoint, 
or he may exit back to the prior program, the 
context of which has remained undisturbed. 

Breakpoints are not a panacea for locating 
erroneous code; however, they do provide ad
ditional control flexibility at critical points in a 
program. In fact, the user of TINT must rely 
almost exclusively on breakpoint logic for 
locating erroneous code: the aforementioned 
READ and PRINT statements are in effect 
breakpoint statements. For elusive errors 
these statements may be used to bracket groups 
of JOVIAL statements, "and in extreme cases, 
individual JOVIAL statements. TINT also 
provides a STOP statement, which is also a 
breakpoint statement. \Vhen the interpreter 
encounters the STOP statement, the program 
is suspended until directed by the user to con
tinue. The user may also reexecute his program 
from a STOP breakpoint, or he may enter new 
code or edit prior code before continuing. 
TINT's STOP statement is analogous to the 
IPL-TS J7 (Halt) primitive. 

Error correction in symbolic code with either 
IPL-TS or TINT is essentially on-line program 
composition. LIPL allows the IPL program
mer to erase, extend, or modify selectively any 
user routine existing in the system. TINT, 
similarly, allows the programmer to edit any 
JOVIAL code written, on a statement-by-state
ment basis. 

Here, again, the programmer's control over 
his program is effectively increased. He can 
correct code in several minutes instead of the 
several days typical with most computer in
stallations. 

SUMMARY AND CONCLUSION 

There are some obvious advantages to this 
kind of system that have been borne out in 
practice. There is a large class of problems 
whose compute time is extremely small in 
relation to the total time the problem is on the 
computer. This is because a large percentage 



A GENERAL-PURPOSE TIME-SHARING SYSTEM 409 

of time is taken up by human thought and com
puter input/output. In fact, the use of a com
puter for this kind of application in a non
time-sharing mode is so inefficient that it 
would not be worthwhile to run. There are 
many examples of this kind of problem. The 
one that most programmers are familiar with 
is console debugging, that is, the checkout of 
programs with the programmer at the com
puter-anathema to most computer managers, 
but desired by a large number of programmers. 
These kinds of applications have been run with 
a high degree of success in this Time-Sharing 
System, with each person involved actually 
feeling he has the whole computer to himself. 

At the other end of the spectrum are those 
programs that compute for essentially one 
hundred per cent of the time they are on the 
computer. If these programs compute for long 
periods, say a matter of minutes, they will 
completely usurp their allotted time and thus 
tend to make the on-line user wait for the maxi
mum response period possible. Time-sharing 
does not benefit this kind of user, except that 
this kind of program can be run "in the back
ground" while other on-line interaction pro
grams are idle. In the SDC installation, the 
percentage of these long-period compute pro
grams has been small, so that no serious system 
response time delays have been notieed from 
them. 

Questions frequently asked are, "Do people 
like the system?" '~Does it produce better re
sults than other, more standard techniques?" 
Both the questions are difficult to answer in an 
absolute sense. However, some reasonable ob
servations can be made that apply to this sys
tem and probably to others of this kind. 

First, those on-line interaction programs that 
used to run in a non-time-sharing mode but 
were converted to time-sharing produce results 
that are as valid as before but with greater 
efficiency in computer operation, since a num
ber of different ones are run simultaneously. 

Next, the on-line debugging capability has 
proved very valuable. This syst~m of debug
ging gives a feeling of closeness to the computer 
and control over the program, so that debug
ging time is reduced considerably while the 
efficiency of computer utilization stays high. 

Also, although the tools available so far have 
been relatively few and unsophisticated, one 
can see the advantages to be gained by giving 
everyone immediate access and response from 
a computer. "Directed" computer runs are the 
mode of operation. Every step taken is taken 
only as a result or verification of the previous 
step. -. If things do not go as planned, alternative 
paths can be followed immediately. Before 
time-sharing, one had two choices: "submit
ting" of a run, followed by an anxious waiting 
period climaxed by a sigh (or worse) and a re
submitting of the same run; or one-man on-line 
interaction with the computer, which benefitted 
that person, but caused consternation on the 
part of others waiting for computer runs. 

This kind of system must be made foolproof. 
Due to the nature of this system, one must have 
a reasonably long time of uninterrupted opera
tion to get satisfactory results. This implies 
several things: 

1. The system Executive must be reliable 
and able to account for any condition that 
may arise, including object program and 
machine errors. 

2. The machine must be reliable. Although 
the system must provide the ability to 
analyze each computer error and isolate 
and stop only the particular object pro
gram or programs affected, frequent or 
solid computer errors can cause the en
tire system and all object programs to 
-terminate. 

3. Certain hardware features are essential. 
These include: M emory protection-the 
ability to prevent object programs from 
destroying each other or the Executive 
system; and high-speed large-storage 
random-access devices-the major bottle
neck in a system of this kind is the slow 
rate at which object programs can be 
moved in and out of memory. Also, the 
use of magnetic tapes for such functions 
as the permanent storage of programs 
and data files creates operational and 
timing problems that can be overcome 
wi th the use of large drums or disks; also 
e~sential is clock interrupt capability
the system requires that no single pro
gram run for an excessively long time. 



410 PROCE'EDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

Therefore a clock that can be set to in
terrupt operation at various intervals is 
necessary for complete control and the 
assurance of adequate response time. 

When this Time-Sharing System first became 
operational, it had no memory protection, its 
Executive was unreliable, and its computer was 
beset by a much heavier load than it was used 
to and reacted accordingly. With these ob
stacles, the early users were subject to frus
trations unlike many found in the twentieth 
century. The system's life expectancy was no 
more than ten minutes. The only remarkable 
thing about the early months was that anything 
useful was accomplished. Interestingly enough, 
however, some work was accomplished, pri
marily through patience on the part of the 
users. With the passage of time, many of the 
problems have been alleviated through both 
equipment and programming improvements, so 
that now the system runs with considerably 
more continuity and reliability. 

Since the system became operational, it has 
been used in a wide variety of applications. 
These applications have, for the most part, 
been checked out using the Time-Sharing Sys
tem and have been run productively during 
time-sharing. Some of the specific applications 
for which time-sharing has been used are: 

• Natural Language Processors-used for 
parsing English sentences, answering 
questions, and interpreting sentence
structured commands. 

• Group Interaction Studies--in which 
teams or players are matched against each 
other and the computer is used to measure 
individual and team performance. 

• General Display Programming-in which 
the programs are used as vehicles for gen
erating and modifying visual displays ac
cording to the users' keyboard inputs. 

• A FORTRAN-to-JOVIAL Translator
symbolic JOVIAL program tapes are pro
duced for I\ORTRAN tape inputs. 

• Simulated Alternate Mobile Command 
Post-a realistic simulation of the A.M.C.P. 
has been produced, and the display require
ments for this organization are studied 
within this framework. 

Of course, a number of other routines, games, 
and services have been and are being developed 
under the system. 

One of the "disadvantages" in using a time
sharing system such as this is the fact that most 
computer runs require the presence of one or 
more people. Users of many large-scale com
puters are accustomed to remaining detached 
from the actual computer runs and are some
times reluctant to follow the runs closely. How
ever, the elapsed time for completing jobs 
using these "on-line" techniques is normally 
dramatically reduced compared to a more re
mote operation, and this reduced time has been 
noted in the use of the time-sharing system. 

It is interesting to watch a group of people 
using a computer simultaneously but solving 
different problems using different tools. At the 
computer console itself, one can usually see all 
the available tape drives busy, typewriters 
busy, drum indicators indicating the drums are 
busy, the punch punching, on occasion, and the 
card-reader going at anywhere from quarter 
to full speed. For those who judge the worth 
of a computer by the amount of equipment used 
per second, time-sharing is well worth its in
vestment. 

Since the system has been under development 
(it was begun in January 1963), the number 
of existing services has been expanding rapidly. 
One can envision the development of an in
creasing number of on-line programming aids 
and techniques of utilizing keyboards, displays, 
and groups of computers to make a time
sharing network a truly powerful device. 

It is certainly conceivable that, in the not too 
distant future, many people will have at their 
fingertips a device that, at a reasonable cost, 
enables them to enter an operating network 
such as this one. While in this network, they 
will have access to routines, techniques, and 
computing power unavailable to them by other 
means. The computing power will include not 
only the Executive computer but the other com
puters that are in the network as well. Thus, 
the possibility of large-scale time-sharing net
works seems to be one of the more promising 
developments in computer technology today. 



A GENERAL-PURPOSE TIME-SHARING SYSTEM 411 

BIBLIOGRAPHY 

The following represents a collection of gen
eral as well as source material. 

1. BOlLEN, S. "How the Time-Sharing Sys
tem Looks Now," Cambridge, Massachu
setts Bolt Beranek and Newman, Inc. , , 
(Unpublished Memo. TS-3), April 2, 1962. 

2. COFFMAN, E. G. A General Flow Chart 
Description of the Time-Sharing System. 
SDC TM-1639/000/00, December 12, 1963. 

3. CORBATO, F. J., and others. The Campatible 
Time-Sharing System. A Programmer's 
Guide. Cambridge, Massachusetts, M.l. T. 
Press, 1963. 

4. CORBATO, F. J., M. MERWIN-DAGGETT, and 
R. C. DALEY. "An Experimental Time
Sharing System," Proceedings of the 
Spring Joint Computer Conference. 1962, 
pp. 335-344. 

5. FREDKIN, E. "The Time-Sharing of Com
puters," Computers and Automation. v. 12, 
November 1963, pp. 12-20. 

6. GALLENSON, L. On-Dine I/O Processor for 
the Command Research Laboratory. The 
PDP-l-C-30. SDC TM-1653, December 23, 
1963. 

7. KEMPER, D. A. Operation of CRL Teletype 
Syste'm. SDC TM 1488/000/00, September 
18, 1963. 

8. KLEENE, S. C. Introduction to Metamathe
matics. Van Nostrand, 1952. 

9. LICKLIDER, J. C. R. "Man-Computer Sym
biosis," IRE Transactions on Human Fac
tors in Electronics, V.HFE-l, March 1960, 
pp.4-10. 

10. LICKLIDER, J. C. R., and W. E. CLARK. "On-

Line Man-Computer Communication," Pro
ceedings of the Spring Joint Computer 
Conference, 1962, pp. 113-128. 

11. MCCARTHY, J., S. BOlLEN, E. FREDKlN, and 
J. C. R. LICKLIDER. "A Time-Sharing De
bugging System for a Small Computer," 
Proceedings of the Spring Joint Computer 
Conference~ May 1963, pp. 51-57. 

12. NEWELL, A. (Ed.) Information p.rocessing 
Language V Manual. Englewood Cliffs, 
N.J., Prentice-Hall, Inc., 196!. 

13. NEWELL, A. (Ed.) IPL-V Programmer's 
Reference Manu(Jl. RAND Corporation, 
RM-3739-RC, June 1963. 

14. ROSENBERG, A. M. Externally-Generated 
Priority Assignment for Program Opera
tion in the ARPA-SDC Time-Sharing Sys
tem. SDC TM-1159/000/00, April 8, 1963. 

15. ROSENBERG, A. M. (Ed.) Command Re
search Laboratory User's Guide. SDC TM-
1354, November 19, 1963. 

16. SHAW, C. J. "JOVIAL," Datamation 7, 6 
(June 1961), pp. 28-32. 

17. SHAW, C. J. "Programmer's Look at JO
VIAL in an ALGOL Perspective," Datama
t-io'n 7, 10 (Oct. 1961), pp. 46-50. 

18. SLAYBAUGH, J. A. The AN/FSQ-32. A De
scription and Coding Manual for Experi
enced Programmers. SDC TM-1489/000/ 
01, December 1963. 

19. STRACHEY, C. "Time-Sharing in Large 
Fast Computers," Proceedings of the Inter
national Conference on Information Proc
essing, Paris, UNESCO, 1960, pp. 336-341. 

20. WEISSMAN, C., and M. KAHN. IPL-TS Pro,
grammer's Reference Manual. SDC TM-
1581/000/00, December 16, 1963. 





REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 
Part 1: External Specifications 

T. M. Dunn andJ. H. Morrissey 
Develop'ment Laboratory, Data Systems Division 

IBM Corporation 
New York,N. Y. 

INTRODUCTION 

Background 

Remote computing has been around as long 
as computers themselves. 1 More recently, in
terest has revived in providing remote users 
with convenient, economical access to a large 
central computer. Considerable attention has 
been addressed to its economics2 and practical
ity.3 Several batch-oriented systems have been 
implemented.4,5 The techniques of time-shar
ing6, 7 a large8, 9, 10 or small ll system have been 
described, as have the attendant advantages of 
man-machine interaction 12, 13 for symbolic 
mathematics14 and program testing. I5 Several 
input-output devices have been considered, in
cluding typewriters,16 displays,17 and dial-voice 
equipment.18 

The management,I9, 20, 21 systems analysis,22 
program testing,23 and documentation24 of spe
cialized real-time systems have also been em,.. 
phasized, but much less attention has been 
given to the design of general-purpose o~-line 
systems. 

This paper reviews some general system re
quirements and applications criteria leading to 
basic design objectives and constraints for 
remote-computing systems. An experimental 
system using a number of remote terminals 
time-sharing a standard computer is then de
scribed. 

System Requirements 

There are several requirements that must be 
considered when designing a practical remote
computing system. 

413 

1. The remote user does not have access to 
experts for programming assistance and 
advice. If he uses a problenl-oriented 
language to express his problem, he re
quires that the request for and display 
of debugging data be consistent with this 
programming language. 

2. Because his jobs are processed completely 
without human intervention, the remote 
user obviously cannot communicate his 
desires to a machine operator. This leads 
to several considerations: 
a. The command statements used to regu

late the system should have a form 
and content consistent with the pro
gramming languages employed. 

b. The remote user requires a powerful 
command structure; he should ha ve 
the ability to state such things as run 
time, job status, error procedures, and 
disposition of output. 

c. The conversational remote user re
quires access to many of the facilities 
available to the machine operator in 
the form of console buttons, lights, 
and switches. He should receive steady 
reassurance that "all is well" by some 



414 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

form of periodic "blinking" at his 
terminal. He also needs the ability to 
stop his "machine" at any time and 
without loss of data-so that he can 
perform such simple functions as 
changing some printer paper, placing 
more input cards in a reader, or dis
continuing a job. 

3. The remote user is very conscious of 
input/output volumes. He must have the 
capability to modify decks without com
plete retransmission, and he should have 
the option to selectively inspect and list 
output data, as opposed to massively 
transmitting entire output files. Also in 
this spirit, he desires to keep His various 
decks i~ random storage--quickly and 
conveniently available for modmcation, 
processing, or review. 

4. Finally, the remote user should be given 
the impression that he is the only user 
and that he is in complete control of the 
situation. More specifically, in a time
sharing environment, he should be totally 
secure from unwanted, possibly destruc
tive, interaction by' others. Ideally, the 
computing and response rate of his ter
minal should not radically fluctuate ac
cording to the demands of the rest of the 
user population; in other words, his 
"share" of the central system should per
form at a relatively uniform processing 
rate. 

Application Criteria 

The following criteria were among those used 
in deciding whether commercial or scientific 
applications were more amenable to remote 
operation: 

1. Time devoted to program development vs. 
production runs; 

2. Importance of job turnaround vs. com-
puter throughput; 

3. Available programming languages; 

4. Conversion problems; 

5. Reliability objectives; 

6. Input/output volumes; 

7. Random-storage requirements. 

It was concluded that there was more imme
diate technological significance and lower hard
ware-software risk in placing initial emphasis 
primarily on the scientific applications area. 

Design Objectives 

The following functional design objectives 
were then established: 

1. Output data should be as user-oriented 
as the source language; 

2. Diagnostic messages and logical analysis 
should be definitive enough to allow pro
gram debugging to take place at the same 
level as program construction; 

3. The user should have immediate and 
sustained access to the computer; 

4. The user should have the ability to exe
cute, alter, and change values, variables, 
and formulas, and to request information 
selectively; 

5. The system should be at least as easy to 
learn as the FORTRAN25 language ; 

6. The print volume should be minimized 
without loss of quality, on demand of the 
user; 

7. The system should provide the shortest 
possible solution time, ideally no longer 
than the time required to construct and 
run the solution itself. 

Design Const1'aints 

Finally, the following restrictions were im
posed: 

1. Use only an existing standard equipment 
configuration; 

2. Use, and stay consistent with, an existing 
language. 

The first constraint serves to keep attention 
primarily on fundamental programming prob
lems and discourages the favorite desire of 
many engineers to solve systems problems by 
the design of a new feature or the development 
of new devices. 

The second constraint serves to keep atten
tion primarily on the processor design and dis
courages the favorite desire of most program
mers to solve systems problems by the design 
of new languages or the development of new 
compilers. 



REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 415 

The ApP';'oach 

Our approach to accomplishing the objectives 
fuses the old technique of interpretive execu
tion with the relatively new one of time-sharing 
a CPU. Thus the cost of sustained access to a 
computer by an individual is spread over a wide 
base. The internal form suitable for interpre
tive execution retains all the information con
tained in the user's original statement of the 
problem, thereby making symbolic debugging 
possible. Together, these two techniques make 
the conversational mode of operation on cur
rent equipment a practical reality. 

Nevertheless, the service this system per
forms is not a matter of cleverly getting some
thing for nothing, but a justifiable trade-off. 
Execution time is greater, but elapsed solution
time is significantly smaller. The cost of the 
total equipment configuration is comparable to 
that of typical large computer systems, but the 
cost per terminal is in the small computer range. 
In short, this system converts some of the raw 
power of the computer into condensed solution
time and greater creative power for the user. 

OPERATIONAL DESCRIPTION 

Equipment Configuration 

The hardware (see Figure 1.1) consists of: 

1. An IBM 704026 with 32K memory; 

2. An IBM 130127 disk-file storage, for 
permanent retention of user programs; 

3. An IBM 732028 drum storage, for the con
tinual swapping of user programs; 

TERMINALS EXCHANGE 

7740 
(16K) 

CPU STORAGE 
DEVICES 

Figure 1.1. Remote-Computing System: Equipment 
Configuration 

4. A few magnetic tape units, for logging 
system transactions and to maintain nor
ma.! computer capability; 

5. An IBM 7740 communications control 
system,29 for the real-time acceptance and 
transmission of messages; 

6. A number of IBM 105030 terminals with 
keyboard-printer and, optionally, a card 
reader and card punch. 

The User's Terminal Console 

In use, the terminal console (see Figure 1.2) 
appears to be a self-sufficient FORTRAN ma
chine. The user is completely unaware of any 
assembly system or the internal organization 
of the central computer. The language is con
sistent with FORTRAN, augmented by a set 
of operating, testing, and debugging state
ments. The mode of communication is called 
"conversational," as opposed to "batch," be
cause the basic unit of input is the individual 
statement rather than an entire program, and 
every communication by one of the participants 
is acknowledged.by the other. 

The form in the terminal printer (see Figure 
1.3) consists of 126 columns (10 characters/ 
inch). The first 12 (unnumbered) columns are 
reserved for control fields, and the remaining 
114 (numbered) columns are identical to a 
FORTRAN coding form, except for length. 

The first five columns of the control-field por
tion are used to display a line number (101.0 

Figure 1.2. IBM 1050 Data Communications System 
(with card reader). 



416 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

LINE STATUS 
,aTJn:._T STATEMENT I NUIIH• 

I 2 561 10 15 20 25 

I 
I I I I 

I 
I I I I 

I I I L I 

I I I I I 
I I I I I 
I 

I I I 
I I I I I 

I I I I I 
I I I I I 

Figure 1.3. Remote-Computing-Terminal 
Programming Form. 

'0 

I 

I 

I 

I 

I 

I 

I 

I 

I 

-........ 

to 999.9), i.e., an identifier automatically gen
erated by the system to uniquely label each 
program statement. The first of the remaining 
seven control columns contains a code character 
-minus, plus, or equal-denoting the source 
of the line-input in Command or Program 
mode (see below) , or output. The second 
through sixth columns of this field contain a 
status word which cues or informs the user: 
for example, the cue word READY invites the 
user to enter his next statement; and ERROR 
readily identifies a diagnostic message. (The 
seventh column is always blank.) 

In the first two (numbered) columns of the 
FORTRAN-like portion of the form, "C blank" 
is treated as an ordinary comment, while "CV" 
causes the statement to be ignored by the sys
tem and serves as a hard-copy comment not 
germane to the program itself. Any character 
other than "c" in column 1 is considered a 
monitor-control character and the statement is 
treated as a normal comment; "CF" is treated 
as a comment in FORTRAN, but considered 
a normal statement in this system, and thereby 
serves to keep a source-program card deck 
compatible with other FORTRAN compilers. 

General Operating Statements 

The general operating statements (see Fig
ure 1.4) may be used at any time. COMMAND 
establishes the Command mode (see below). 
EXIT signs the terminal off. Each terminal is 
set to standard real and integer formats (EI5.8, 
I 11) for output of all values not under explicit 
FORMAT control. EDIT ( - - -) permits the 
user to change either or both. 

GENERAL 
OPERATING 

COMMAND 
EXIT 
EDIT 

PROGRAM 
DEFINITIONS 

LOAD 
PROGRAM 
SUBROUTINE 
FUNCTION 

PROGRAM 
REFERENCE 

NUMBER 
LIST 
DUMP 
INDEX 
CHECK 
AUDIT 
TRACE 
TRAP 

PROGRAM STATEMENTS 

SUBROUTINE 
FUNCTION 
EXTERNAL 
REAL 
INTEGER 
DIMENSION 
COMMON 
EQUIVALENCE 
FORMAT 
END 
GOTO 
GOTO ( ),1 

PROGRAM 
OPERATING 

ALTER 
ASSIGN 
RESET 
UNLOAD 
START 

IF 
DO 
CONTINUE 
PAUSE 
STOP 
RETURN 
CALL 
ARITHMETIC 
READ 
PRINT 
PUNCH 
WRITE 

CC DOMAIN 

Arithmetic 
READ 
PRINT 
PUNCH 
WRITE 

Figure 1.4. System Language. 

Command Mode 

When no program is active for a given termi
nal, that terminal is said to be in the Command 
mode; and, conversely, the entering of a COM
MAND statement will destroy the active image 
of the user program. Since no program is ac
tive, statements cannot be retained, but must 
be processed immediately. Consequently, the 
user may employ only the general operating 
statements, the program-definition statements 
(see below), or a limited form of the arithmetic
assignment statement. This latter provision 
allows the terminal to be used as a fast, versa
tile symbolic desk calculator. In this mode, 
the user enters a statement of the form, X==any 
expression consisting of constants and built-in 
functions, and the system immediately evalu
ates the expression and prints the result on the 
user's terminal. 

Program Mode 

1. Program-Definition Statements 
The program-definition statements (see 
Figure 1.4) initiate the Program .mode. 
LOAD fetches an existing program from 
the user's library, while PROGRAM initi-



REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 417 

ates the creation of a new main program, 
and SUBROUTINE or FUNCTION intro
duce subprograms. 

2. Program Statements 
In the Program mode, certain statements, 
called program statements (see Figure 
1.4), are translated and retained. Conse
quently, unlike the arithmetic assignment 
statement in the Command mode, their 
execution is initiated by the user. All FOR
TRAN statements used by this system 
(see Figure 1.4) are program statements. 
It is with these that the user may construct 
a stored-program solution to his problem; 
all other statements are processed imme
diately and are not retained. As with FOR
TRAN, there can be only one main pro
gram-but there can be numerous sub
programs, with the restriction that no 
single subprogram exceed 4000 words of 
storage. In this way, although individual 
program size is restricted, total program 
size may be much larger. 

3. Program-Operating Statements 
The program-operating statements (see 
Figure 1.4) allow the user to execute, alter, 
select I/O components, reset certain initial 
conditions, and unload his programs to 
library storage, at any time. 
ST ART with various operands allows the 
user to begin execution from the first or 
any other executable statement, or to exe
cute a segment from one line or statement 
number to another, or to resume execution 
after manual intervention. 
ALTER allows the deletion and insertion 
of statements. 
SELECT permits specifying the console's 
I/O devices other than the keyboard
printer. 
RESET with various operands initializes 
the program for fresh testing runs. 
UNLOAD places the user program in li
brary storage, but does not remove it from 
the active status. 

SOURCE LANGUAGE DEBUGGING 

Debugging information is requested and dis
played in a form consistent with the source 
programming language. 31, :~2 

Diagnostic Structure 

Errors committed by the user may be classi
fied in two broad categories: syntactic and 
semantic.:~3 

1. Syntactic Er1'ors34 

All syntatic errors are considered the re
sponsibility of the system and are further 
categorized as follows: 

Composition. Typographical errors, viola
tions of specified forms, and misuse of 
variable names ( e.g., incorrect punctua
tion, mixed-mode expressions, undeclared 
arrays, etc.) 

Consistency. Statements which are in 
themselves correct, but conflict with other 
statements (e.g., conflicting declaratives, 
illegal statement ending a DO range, fail
ure to follow each transfer statement with 
a numbered statement, etc.) 

Completeness. Programs which have not 
been completely specified by the user (e.g., 
transfers to nonexistent statement num
bers, improper DO nesting, illegal transfer 
into the range of a DO loop, etc.) . 

Errors of composition and consistency are 
detected immediately upon entry of the 
offending statement. The user may imme
diately substitute a correct statement. 

Errors of completeness are discovered 
when the user signifies that his program 
is complete (by entering the END state
ment). 

Some errors (e.g., invalid subscript value, 
reference to an undefined variable, arith
metic spills, etc.) may, of course be de
tected only during execution. In this case, 
after a display of the error condition and 
its location, execution is interrupted and 
the terminal reverts to· READY status. 
The user then has the option of either im
mediately correcting his error or proceed
ing with the rest of his program. 

For all syntactic errors, the diagnostic 
message is concise-in that the variable in 
error is named, or the column where the 
error occurred is specified-and often 
tutorial in suggesting the procedure for 
obtaining correct results. 



418 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

2. Semantic Errors 
Semantic errors are concerned with the 
meaning or intent of the programmer and 
are necessarily his responsibility. However, 
an extensive set of debugging aids are pro
vided for manipulating and referencing a 
program in ferreting out errors in logic 
and analysis. 

V alue Manipulation 

Not too surprisingly, some types of program 
statements are also useful for manipulating the 
values of a user program (see Figure 1.4). 
Consequently, special characters--called proc
ess codes-may be inserted into the first two 
columns to allow. the use of these statements 
as commands, thus causing values to be read 
into or out of selected variables. (This is 
analogous to the panel-entry/display functions 
performed at a conventional computer console.) 

For example, "CC" in columns 1 and 2 of the 
FORTRAN-like form (Figure 1.3) has the fol
lowjng effect on its accompanying statement: 
the statement is immediately executed with all 
the effects of normal execution, but no new 
variable names are created; the statement is 
then discarded and does not become a part of 
the program. Thus, values may be inserted 
into factors or parameters at any time, thereby 
creating completely new testing situations with
out having to build their presence into the logic 
of the program or attempting to anticipate the 
debugging operations required. 

Program Reference Statements 

Program reference statements (see Figure 
1.4) allow the user to display various vital con
ditions of his program. These statements are 
not retained. They are acted upon immedi
ately, then discarded. Through their use, a 
complete, dynamic record of both control flow 
and data usage may be obtained. 

DUMP (Figure 1.6b, line 143) produces an 
alphabetically ordered listing of program iden
tifiers with their current values. Array sub
scripts are stepped automatically, contiguous 
zero-valued array elements are omitted, and 
empty elements (Le., those never receiving a 
wl!ue) are flagged. 

TRACE with various operands (Figure 1.6c, 
line 144 et seq.) allows the user during later 
execution to print out every change of value 
for all variables, for all variables within a 
specified region, or for specific variables when
ever they are changed. 

TRAP (Figure 1.6c, line 145 et seq.) is a 
logical trace of all control transfers, or of all 
transfers within a specified region. 

NUMBER (Figure 1.6e) with various oper
ands resequences and lists the program. 

LIST generates a listing of the entire pro
gram or any specified portion of it. 

INDEX (Figure 1.6f, line 231) produces a 
complete cross-reference table, ordered on 
statement numbers and variable names, show
ing the line number of every statement in which 
each statement number or variable name ap
pears and whether it was declared, defined, or 
referred there; or, INDEX produces a single 
such line for a specified variable or statement 
number. Any line of the table which is, or 
may be, in error is marked with an asterisk. 
These features are very useful when making 
program modifications. 

C8I1I1AND 
101 -READY C THIS IS A SAIIPLE PIHIGRAII 
101 -READY PRilGRAII SAIIPLE 

:g~ !:~:g~ gi~iN~I~: ZPU!T (51), TABLE(500) 
104 +READY X : 0 
105 +READY Y = I. 
106 +READY 2 = I 
106 +ERReR 04200. STATEJIIENT NI!JT IN LANGUAGE. 
:g~ !:~~~ g~ TYPaGRAPHICAL ERRI!JRS IIAY BE CI!JRRECTED IIIIIEDIATELY 
109 +RE:ny ~Y: S~STITUTING A C8RRECT STATEIIENT VIA KEYBIJARD. 

::~ !:~:g~ 101 R~:~lIm;2~~~R, ZPUIT 
112 +READY PRINT 102 m !:~:g~ 102 ~;:":T<5XIHX5lUHY> 
115 +READY I PRINT 103, X • Y 
116 +READY 103 F8RIIAT(2XF5.2.F8.5) 
117 +READY CV ANY STATEIIENT 8R SEQUENCE .F STATEIIENTS IIAY BE 
::: !:~:g~ cv ri:iF5ED BY IIIIIEDIATE EXECUTIIIIN AFTER ENTRY. 

110 =ItOI • 
112 :8102 X Y 
114 :ERIHIR TRANSFER paINT N DBES N.T EXIST 
120 +READY START I 
115 =8103 O. 1.00000 m :~~;~~ END I!J~ ;"f~!~ ENCI!JUNTERED DURING EXECUTII!JN 

122 +READY X : X + DELX 
123 +READY DEL Y = X. Y*DELX 
124 +READY Y : Y + DEll 
125 +READY 2 TABLE( 1> : X 
126 +READY TABLE( 1+1 > : Y 
127 +READY IFex - 1.>1,1,3 
128 +READY 3 DB " J : I, I, 2 
129 +READY X : TABLE (J) 

:~ !~~~~ ARIT~ri+«TABLE(J+I>-TA8U;(2)}/( TABLE( 1+1>- rABLE(2».50 ) 
130 +ERRIlR IIIXED III!J~~ DEC8MPl!JSITII!JN ERRI!JReS) • m !:~:g~ g~ STATEMENTS IN ERRI!JR AT TIllE I!JF ENTRY ARE NeT ACCEPTED. 

SUBSTITUTII!JN PlAY BE IIADE VITHI!JUT RE-ENTERING PRBGRAII m !:~:g~ ~~t0~~gA~L~~~;1 >-TABLE(2) )/( TABLE( 1+1 )-T~8LE(2) ).50.; 

135 +READY PRINT 104, X , ZPLST 
136 +READY 104 FilRIIATCF5.2,51 AI> m !:~:g~ " ~~~~T~~) = ZPLI!JT( K+I ) 
139 +READY END 

Figure 1.6a. Sample Program: Creation and TEsting. 



REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 419 

140 +R£ADY 
110 = IlOI • 
112 =111102 
115 =0103 
115 =111103 
115 =111103 
115 =111103 
115 =111103 
115 =0103 
135 =1104 
155 =1104 
135 =1104 
135 ·=111104 
155 =11104 
135 =11104 
135 =1,.04 
137 =ERR8R 
141 +READY 

START 0 

X Y 
O. 1.00000 
0.20 1.04000 
0.40 1.12520 
0.60 1.25798 
0.80 1.45926 
1.00 1.75111 

O •• 
0.20 • 
0.40 
0.60 
0.80 
1.00 
1.20 • 
VALUE 8; SUBSCRIPT IS Z£R0, NEGATIV£, 0R EXCEEDS DIII£NSI0N 

DUIIP 
CHAR=-O. 14191581 £-08 
Dnx= 0.20000000£-00 
DELY= 0.42026726£-00 

142 +READY £DIT(rs.5) 
145 +READY DUIIP 

ERR8R ILLEGAL CHARACTER IN TEXT 
DUIIP 
CHAR=-O.OOOOO 
DELX= 0.20000 
on Y= 0.42027 
1= 15 
J= 15 
K= 51 
x= 1.20000 
Y= 2.17158 
TABLECI)= O. 
TABL£(2)= 1.00000 
TABLE(5)= 0.20000 
TABLE(4)= 1.04000 
TABLE(5)= 0.40000 
TABLE(6)= 1.12520 
TABLE(?)= 0.60000 
TABLE(8)= 1.25798 
TABLE(9)= 0.80000 
TABLEClO)= 1.45926 
TABL£C1 1>= 1.00000 
TABLECl2)= 1.75111 
TABLE(15)= 1.20000 
TABLE(14)= 2.17158 
TABLE(500)= O. 
ZPL0TC I )=-6.09524 
ZPL0T(2)- 6.69524 
ZPL0T(5)=-6.09524 

i~:i~;;~:~:g;;~! 
DUIIP ALWAYS IIAY BE INTERRUPTED. 

Figure 1.6b. Sample Program: Creation and Te.sting 
(continued) . 

CHECK (Figure 1.6f, line 232) is an abbre
viated INDEX in that only erroneous and 
suspicious items are displayed (i.e., only those 
INDEX lines marked with an asterisk). 

A UDIT generates cross-reference informa
tion based on the execution of the program, 
showing which sections were never executed 
and which variables were never set, or set but 
never used. This concise, post-mortem sum
mary of incomplete control flow and data usage 
is a powerful aid in ensuring the thoroughness 
of program debugging. 

144 +READT 
145 +READT 
146 +READY 
110 = IlOI • 

TRAC£ K 
TRAP 101./158. 
START 0 

112 =1102 X Y 
114 =TRAP TRANSFER till 2 (125 ) 
127 =TRAP TRANSFER TI I (115 ) 
115 =1103 O. 1.00000 
127 =TRAP TRANSFER Til 1 (115 ) 
115 =0103 0.20 1.04000 
127 =TRAP TRANSFER T8 1 (115 ) 
115 =1103 0.40 1.12320 
127 =TRAP TRANSFER TI I (115 ) 
115 =1103 0.60 1.25798 
127 =TRAP TRANSFER Til I (115 ) 
115 =1103 0.80 1.45926 
127 =TRAP TRANSFER till 1 (115 ) 
115 =1iII03 1.00 1.75111 
127 =TRAP TRANSFER Till 3 (128 ) 
133 =TRACE K= 1 
135 =0104 O. • 
133 =TRACE K= 
135 =0104 0.20. 
133 =TRACE K= 
135 =11104 0.40 
133 =TRACE K= 12 
135 =0104 0.60 • 133 =TRAC£ K= 20 
135 =0104 0.80 
133 =TRACE K= 53 
135 =0104 1.00 
133 =TRAC£ . K= 51 
135 =0104 1.20 • 
137 =ERRflR VALUE 0; SUBSCRIPT IS ZER0, NEGATIVE, IR EXCEEDS DIIIENSIIilN 

Figure 1.6c. Sample Program: Creation and Testing 
(continued) . 

147 +READY 
157 +ALTER 
1371+ALT£R 
IIOI+ALTER 
1I02+ALTER 
1102+ERR0R 
148 +READY 
157 +ALTER 
1571+ALTER 
149 +READY 
150 +READY 
151 +R£ADY 
110 =I101 • 
112 =0102 
115 =0103 
115 =0105 
115 =0103 

i~; ~:i~ 
115 =0105 

ALTER 157./137. 
ZPUT( K) = BLANK 
ALTER 110. 
BLANK = ZPL0T( I ) 
ALTER. 

D0 128.0 REFERENCES UNDEFINED LABEL 
ALTER 137./157. 

4 ZPL"TC K) = BLANK 
ALTER. 

TRACE* K 
TRAP* 101.1158. 

START 0 

x Y 
O. , 1.00000 
0.20 1.04000 
0.401.12320 
Q.60 i. 25'198 
0.80 1.45926 
1.001.75111 

155 =0104 
135 =0104 
135 =0104 
155 =0104 
155 =0104 
135 =0104 
155 ="104 

O. * 
0.20 * 
0.40 
0.60 

"b.80 

158 =577 
152 +READY 

1.00 
1.20 

Figure 1.6d. Sample Program: Creation and Testing 
(continued). 

201 = 
20~ = 
203 : 
204 : 
205 : 
20~ : 
207 = 
208 = 
209 : 
210 : 
211 = 
212 : 
215 = 
214 = 
215 : 
216 : 
217 = 
218 = 
219 = 
220 : 
221 = 
222 = 
223 = 
224 : 
225 : 
226 = 
227 : 
228 = 
229 = 
250 = 

NUIIBER 201. 
CF PR2IGRAfil SAfilPLE 

DIMENSI"N ZPUT(51), TABLE(500) 
DELX:.2 
X:O 
Y:I. 
1=1 
READ 101, CHAR, ZPL0T 
BLANK: ZPL"Te I ) 

101 F0RIIATC52AJ> 
PRINT 102 

102 F0RfIIATC5XI HX5XI HY> 
G0 T" 2 

I PRINT 103,X, Y 
103 F"RfIIATe2XF5.2,F8.5) 

1= 1+2 
X:X+DELX 
DELY:X*Y*DELX 
Y:Y+DELY 

2 TABLEe 1>=X 
TABLECI+I>:Y 
IFeX-I. )1, 1,3 

5 00 4 J:I,I,2 
X:TABLECJ) 

~~0;~~f~~~~~+1 )-TABL£<2»/( TABlE( 1+1 )-TABLEe2)>*50. 

PRINT 104,X,ZPL0T 
104 F0RfIIATc F5. 2, 51 At> 

4 ZPL"TC K>=BLANK 
SnlP 17 
END 

Figure 1.6e. Sample Program: Creation and Testing 
(continued) . 



420 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

231 +READY INDEX 
1 +213. -221. 
2 +219. -212. 
3 +222. -221. 
4 +228. -222. 
5 +207. 

101 +209. -207. 
102 +211. -210. 
103 +214. -213. 
104 +227. -226. 

BLANK +208. -228. 
CHAR +207. -225. 
DEll +203. -216. -217. 
DELY +217. -218. 
I +206. +215. -215. -219. -220. 

-222. -224. 
J +222. -223. -224. 
K +224. -225. -228. 

>!oSAI'IPLE 201. 
TABLE 202. +219. +220. -223. -224. 
X +204. -213. +216. -216. -217. 

-219. -221. +223. -226. 
+205. -213. -217. +218. -218. 
-220. 

ZPl0T 202. +207. -208. +225. -226. 

232 +READY 
+228. 

CHECK 

* 5 +207. 
= *SAI'IPLE 201. 

~33 +READY 

Figure 1.6f. Sample Program: Creation and Testing 
(continued) . 

Built-in Subroutines 

Since only program statements are retained, 
many excellent testing and debugging com
mands would not be available under program 
control, but would require the presence of the 
user at the moment of execution. To overcome 
this limitation, most of these statements have 
been designated as "built-in subroutines," a 
concept completely analogous to FORTRAN 
built-in functions. These statements, without 
change in their form, may be made the operand 
of a subroutine CALL statement. In this way, 
all the console testing and debugging features 
which may be of value are also available under 
program control. 

COMP ATIBILITY 

Studious regard has been paid to maintaining 
consistency with other FORTRAN compilers. 
Programs written in the system language are 
acceptable without change to conventional 
FORTRAN IV processors. FORTRAN IV pro
grams are acceptable to the experimental sys
tem with the following limitations: 

1. The program must be written with state
ments from the system subset. 

2. A restriction of all one-pass translators 
is that the source-deck ordering must have 
the declarative statements precede the 
imperative statements. Of course COM
MENT and FORMAT statements may ap
pear anywhere. 

3. As in most compilers, the sequence of 
translated code for arithmetic expressions 
may differ from that produced by other 
compilers and slight discrepancies due to 
variations in truncations JIlay occur. 

4. Some minor differences in the internal 
representation of program constants, 
caused by different conversion routines, 
may also create slight differences in nu
merical results. 

5. Individual source programs are limited 
to approximately 400 statements. This 
limit may often be circumvented by seg
menting oversized programs into smaller 
subprograms. 

6. Other Factors: 
a. No arithmetic function statements; 
b. No logical, complex, or double-preci

sion variables; 
c. Number of elements (i.e., constants, 

variables, arrays, and functions) must 
be less than 190; 

d. Only one continuation card; 
e. No magnetic tape I/O; 
f. Some minor restrictions on equated 

variables; 
g. Constants-

Reals: 8 digits, with magnitude within 
range 10-32 to 1032 or with zero mag
nitude, 
Integers: 10 digits; 

h. Array names must appear in a DI
MENSION statement prior to any 
other appearance; 

i. Maximum I/O record size is 133 char
acters; 

j. Array names used as arguments must 
be declared in COMMON. 

EXAMPLES 

A program exhibiting many of the features 
available in this system is depicted in Figures 
1.5 and 1.6. Figure 1.5a shows the final, cor
rect version of the program. Figure 1.5b shows 
the correct output produced as a result of execu
tion (see START statement, Figure 1.5a, line 
128). 



REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 421 

CIlIIIIAND 
101 -READY C 
101 -READY C . 
101 -READY 

THIS IS A SAIIPLE PRIlGRAII. 

PReGRAII SAIIPLE 
102 -IREADY 
103 -!READY 
104 -IREADY 
105 -IREADY 
106 -IREADY 

DIIIENSIIlN ZPLIIT (~2), TABLE (~OO) 
X = 0 
Y : I. 
I : I 

1"7 -IREADY 101 
READ 101, DELX ,cHAR ,lPLilT 

FIlRIIAT (f'7.4,~3A I) 
108 -IREADY 
109 -IREADY 
110 -IREADY 
111 -IREADY 
112 -tRUDY 
113 -tRUDY 
114 -tREADY 
II~ -tREADY 
116 -tRUDY 
117 -IRUDY 
118 -tRUDY 
119 -tRUDY 
120 -IREADY 
121 -IREADY 
122 -IREADY 
123 -tRUDY 
124 -tREADY 
I~ -IREADY 
126 -tRUDY 
127 -tRUDY 
128 -tRUDY 

PRINT 102 
102 FIlRIIATC5I(IHX7XIHY) 

2 TABlE CJ) = X 
TABLE (J +1) : Y 

I PRINT 103, X, Y 
103 FIlRIIAT<2KF 7 .4". 8.~) 

IFCX·I.)~,3,3 
51 =1 +2 

X=X+DELX 
DELY =X.Y .DELX 
Y = Y + DELY 
GeTe 2 

3DI!4J=!.!.2 
X = TABLE(J) 
K =I.+(CTABLE (J+1)-TABLE (2»)/CTABLE <I +D-TABLE (2) ).~O.) 
ZPt8T O() = CHAR 
PRINT 101, X, ZPt8T 

4 ZPt8T O() =ZPL8T 0(+1) 
ST8P 77 
END 
START 0 

Figure lo5a. Sample Program: Final Form. 

106 =1101 
108 :e 102 
112 :e 103 
112 :e103 
112 :e 103 
112 :e 103 
112 :e 103 
112 :e 103 
112 :e103 
112 :e 103 
112 :e 103 
112 :e 103 
112 :e 103 
112 :e 103 
112 :e 103 
112 :e 103 
112 :e 103 
112 :e103 
112 :el03 
124 :e 101 
124 :e 101 
124 :e 101 
124 :8 101 
124 :8101 
i24 :iliOi 
124 :8 101 
124 :8 101 
124 :e 101 
124 :8 101 
124 :8 101 
124 =IiIIOI 
124 =IiIIOI 
124 =IiII01 
124 :e 101 
124 =IiIIOI 
124 :e101 
126 =S77 
129 -tRUDY 

00.0625. 
X Y 

O. 1.00000 
0.0625 1.00391 
0.1250 I.0I17~ 
0.1875 1.02361 
0.2~00 1.03960 
0.3125 1.05990 
0.3750 1.0847~ 
0.4375 1.11441 
0.~000 1.14923 
0.5625 1.18963 
0.62~0 1.23610 
0.687~ 1.28922 
O. 1~00 1.3496~ 
0.812~ 1.41819 
0.8750 1.4~74 
0.937~ 1.58339 
1.0000 1.68235 

O. • 
0.0625. 
0.1~0* 
0.1875 • 
0.2500 • 
O.3i25 
0.3750 
0.4375 
o.~ooo 
0.~625 
0.6250 
0.687~ 
0.1~00 
0.8125 
0.8750 
0.9375 
1.0000 

UNLilAD 

Figure lo5b. Sample Program: Final Execution. 

Figure 1.6 depicts a preliminary attempt to 
create and test this program. (All references 
that follow are to Figure 1.6.) 

Input to the system may be from the key
board or card reader at the remote terminals, 
or through input equipment located at the cen
tral computer. At line 106 a mispunched card 
causes printing of an error message. The user 
now suspends automatic input, substitutes a 
correct statement via keyboard, and then re
sumes automatic input. Of course, the substitu
tion could have been made later by means of an 
ALTER (see below). 

At lines 119 and 120, the user initiates inter
mediate execution and verifies his FORMAT 
statements before going further. In this man
ner, any statement, sequence of statements, DO 
loop, etc., may be debugged as the program is 
entered; or sections may be tested independ
ently of the remainder of the program. 

Execution of the entire program, line 140, 
discloses a number of bugs. Inspection of line 
137 discloses the use of K as subscript. K could 
be printed selectively, but the user decides to 
dump all variables (see line 141). After DUMP 
starts, he interrupts it in order to change the 
format of the display and then dumps again 
(see line 143). In the event that the dump 
showing K == 51 is not a sufficient clue to the 
error, the user establishes a TRACE on K and a 
TRAP on the entire program, and starts again 
(see lines 144-146). This produces, together 
with his programmed output lines, a dynamic 
listing of control and data flow, before termi
nating with the same error message. 

At line 147, the statements in error are cor
rected, but a statement number is inadvertently 
omitted. On terminating the ALTER status, 
a message is printed pointing out that the DO 
at line 128 references a nonexistent label. This 
error is corrected and a subsequent running of 
the program, line 151, shows that the subscript 
is now behaving properly. 

There are other changes to be made, however. 
The NUMBER at line 152 yields a clean, re
numbered listing of the current state of the 
program. Line 231 shows a complete INDEX, 
and line 232, the results of a CHECK statement. 
All of these will be helpful in reorganizing and 
documenting the final, correct version of the 
program. 

Figure 1.7 shows the immediate evaluation 
of arithmetic expressions, consisting solely of 
constants and FORTRAN functions, in the 
Command mode. 

EXPERIENCE 

The system, from its most primitive form to 
the present, has been running for more than a 
year. A formal tryout of the system was run 
in November 1963 with. 10 students attending 
IBM's Systems Research Institute. 



422 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, Ul64 

CfIIIIIARD 
101 -READY Y=2.5065.10."(10.+I.)~XP'(-10.) 
101 = Y = 0.11379485E 08 
JOI -READY HENRY=2.E -~50 •• a..eer (2 •• 50.110. >-1.0+10./50. 
101 -ERRIIR 04117. PARENTHESES NeT IN BALANCE. 
101 -READY HENRY =2.E -~50 •• a..1IG' (2 •• 50.110. )-1.+10./50. > 
101 = HENRY= 0.1502585{£-06 
101 -READY ReeTI=(-25.~ORTr(2' ••• 2-4 •• I •• 2.))/(2 •• t> 
101 -ERReR ARITIIiIETIC DECIJIIPeSITleN ERRIIR (s) 
101 -ERRIR IIIXED IlIlDE 
101 -READY ReeTI=(-2'.~ORTr(25 ••• 2-4." •• 2.»/(2 •• I.) 
101 = Rlln 1=-0.8025765.1£-01 
101 -READY HENRY=2.E-~50 •• a..IG' (2 •• 50./10. )-1.0+10.150.) 
101 = HENRY= 0.15025851E-06 
101 -READY VAL= I.ICesr (50. HI.IIGr CABSr CSINf (50./2. )ICf'Sr (50./2.») 
101 = VAI.=-0.9711499EE 00 
101 -READY AREA=2 •• 10 •• 5.*5INr(J.1416/10.) 
101 = AREA= 0.30901768£ 02 
101 -READY ARC=2.*5QRTI" (4 ••• 2+1.3333*2 ••• 2) 
101 = ARC= 0.92375753E 01 
101 -READY ARC =2 •• (4 •• 4.+4 •• 2 •• 2./3. ) •• 0.5 
101 = ARC= 0.92376041£ 01 
101 -READY S=<IISr(40.) •• (20.+I.)/20.1I.) 
101 -ERRIIR 04117. PARENTHESES NeT IN BALANCE. 
101 -READY G=0.5>11..fGr«I.~INr(45.»/(I.-SINr(45.»> 
101 = B= 0.12594177£ 01 
101 -READY S =SIN' (45. > 
101 = S= 0.8509035:2E 00 
101 -READY G=0.5>11..I'IGr«I.+.7071>/0.-.7071» 
101 = G= 0.88135995E 00 
101 -READY E =20.*IITANr (20./4. )-4./2.*lIG' (4 ••• 2+20."2) 
101 = E = 0.1540664.1£ 02 
101 -READY 0=(2./(3.1416*10. » •• 0.5*5IN' (10.) 
101 = 0=-0.13726357£-00 
101 -READY 0=0.7978ISQRTrOO.)*5INr(10.) 
101 = 0=-0.137249111[-00 
101 -READY C 
101 -READY 

Figure 1.7. Examples of Command Mode Operation. 

BACKGROUND SRI EXPERIMENT 

USER 
SKILLS 7090 FORTRAN REMOTE COMPUTING 

FORTRAN TYPING NO. RUIIS NO. PROGRAMS NO. HOURS NO. PROGRAMS 
DEBUGGED TRNG D8UG DEBUGGED 

A HIGH LOW NONE NONE 2 2 3 
B HIGH LOW 5 J 21'3 illS 2 
C HIGH NONE NONE NOllIE 2 3 3 
D MEDIUM HIGH 12 5 I 6 4 
E MEDIUM HIGH 6 '2 3 3 2 
F LOW MEDIUM NOllIE NONE 2 6 5 
G LOW NONE 10 3 2 4 2 
H LOW NONE 4 2 2 I 2 
I LOW NONE 3 I 11/2 fill! 3 

TOTALS 40 16 16 28 26 

Figure 1.8. Results of SRI Tryout. 

The students were divided into two groups, 
I and II, and given the same set of problems 
to be solved in FORTRAN. Group I was told 
to do the odd-numbered problems on the IBM 
7090 and the even-numbered ones on the 
remote-computing terminals. Group II re
versed this polarity. 

The chart in Figure 1.8 shows the answers 
given by nine of the participants (the tenth 
failed to return his questionnaire) to the fol
lowing questions: 

1. "How much FORTRAN experience have 
you had?" (Answer was evaluated HI, 
LO, MED, NONE.) 

2. "Have you had any typing experience?" 
(Answer was evaluated HI, LO, MED, 
NONE.) 

3. "How many times did each problem go to 

the 7090 before you obtained correct re
suIts?" (Number of runs were summed.) 

4. "How many problems did you debug on 
the 7090?" 

5a. "Approximately how many hours of 
training did you have on the terminal 
console ?" 

5b. "How many debugging hours ?" 

6. "How many problems did you debug on 
the terminal console?" 

Because this experiment was of limited scope, 
the experience reported must be taken cau
tiously. There are many variables which affect 
the usefulness and economy of this approach, 
and continuing field trials will yield more pre
cise information. 

SUMMARY 

The time-shared use of a computer provides 
a convenient, economical service to numerous 
remote users. This access is enhanced by use of 
conversational, source-language debugging tech
niques. Although the experimental system is 
oriented to the IBM 1050 terminal, the FOR
TRAN language, and scientific applications, the 
techniques described are useful with other ter
minal devices, programming languages, and 
application areas. Preliminary opt:rating ex
perience indicates that systems such as the one 
described have considerable potential in en
abling personnel less skilled in the program
ming art to rapidly obtain solutions to their 
problems. 

ACKNOWLEDGEMENTS 

Among the several people making significant 
contributions to the system, the authors wish to 
specifically acknowledge the work of Miss 
Geneva Butts, who implemented a major part 
of the source-language debugging features, and 
Mr. Murray Kizner, who implemented the 
translator routines for many Command fea
tures. 

REFERENCES 

1. E. G. ANDREWS, "Telephone Switching and 
the Early Bell Lab. Computers," Bell Sys
tem Technical Journal, March 1963. 



REMOTE COMPUTING-AN EXPERIM ENTAL SYSTEM 423 

2. A RAND Symposium, "Economics of Re
mote Computing," Datamation, September 
1961, October 1961, November 1961. 

3. R. L. PATRICK, "So You Want To Go On 
Line," Datamation, October 1963. 

4. D. B. BREEDON and P. A. ZAPHYR, "Pros 
and Cons of Remote Computing," Control 
Engineering, January 1963. 

5. G. L. BALDWIN and N. E. SNOW, "Remote 
Operation of a Computer by a High Speed 
Data Link," Proc. F JGG, December 1962. 

6. C. STRACHEY, "Time Sharing in Large, 
Fast Computers," Proceedings of the Intel'
national Conference on Information Proc
essing-UNESCO, June 1959. 

7. J. MCCARTHY, "Time Sharing Computer 
Systems," Management and the Computer 
of the Future, Chapter 6, John Wiley & 
Sons, Inc., 1962. 

8. F. J. CORBATO, "An Experimental Time 
Sharing System," Pl'oc. SJCC, May 1962. 

9. F. J. CORBATO, et a!., "The Compatible Time 
Sharing System-A Programmer's Guide," 
The M.LT. Press, May 1963. 

10. W. V. CROWLEY, "Why Stretch?" Proc. 
ACM National Conjel'ence, September 
1962. 

11. S. BOlLEN, E. FREDKIN, J. C. R. LICKLIDER, 
and J. MCCARTHY, "A Time Sharing De
bugging System for a Small Computer," 
Pl'oc. SJCC, May 1963. 

12. W. CLARK and J. C. R. LICKLIDER, "On
Line Man-Computer Communication," 
Proc. SJCC, l\1:ay 1962. 

13. J. C. R. LICKLIDER, "Man-Computer Sym
biosis," IRE Transactions on Human Fac
tOl'S in Electl'onics, March 1960. 

14. L. C. CLAPP and R. Y. KAIN, "A Com·puter 
Aid for Symbolic Mathematics," Proc. 
F JCC, November 1963. 

15. H. TEAGER and J. MCCARTHY, "Time
Shared Program Testing," Proc. ACM Na
tional Meeting, September 1959. 

16. C. N. MOOERS, "The Reactive Typewriter," 
ACM Communications, January 1963. 

17. G. J. CULLEN and R. W. HUFF, "S~lution of 
Non-Linear Integral Equations Using On
Line Computer Control," Proc. WJCC, 
April 1962. 

18. T. MARILL, D. EDWARDS, and W. FEURZEIG, 
"DATA-DIAL: Two-Way Communication 
with Computers from Ordinary Dial Tele
phones," ACM Communications, October 
1963. 

19. R. HEAD, "The Programming Gap in Real 
Time Systems," Datamation, February 
1963. 

20. W. A. HOSIER, "Pitfalls and Safeguards in 
Real Time Systems," Datamation, April 
1962 and May 1962. 

21. T. A. HALDIMAN, "Management Techniques 
for Real Time Computer Programming," 
ACM Journal, July 1962. 

22. W. FRANK, W. GARDNER, and G. STOCK, 
Programming On-Line Systems," Datama
tion, May 1963 and June 1963. 

23. D. ISRAEL, "Simulation Techniques for the 
Test and Evalution of Real Time Compiler 
Programs," ACM Journal, 1963. 

24. R. HEAD, "Real Time Programming Speci
fications," ACM Communications, July 
1963. 

25. FORTRAN General Information Manual, 
TRM 1?£\1'"n'"O l\Tll1'Y1ha ... ~,)Q Q()'7A 
.... ....., ........... ..&. V".&. .L ......... , \,;I..I. ...... JJ"""'.1. .L" ~v-uv.-x. 

26. IBM 7040/7044 General Information Man
ual, IBM Form Number D22-6645. 

27. IBM 1301 Disk Storage, IBM Form Num
ber D22-6576. 

28. IBM 7320 Drum Storage, IBM Form N um
ber G22-6717. 

29. IBM 7740 Communications Control Sys
tem, IBM Form Number A22-6753. 

30. IBM 1050 Data Communications System, 
IBM Form Number A24-3020. 

31. H. FERGUSON and E. BERNER, "Debugging 
Systems at the Source Language Level," 
ACM Communications, August 1963. 

32. M. WILKERSON, "The JOVIAL Checker," 
Proc. W JCC, April 1961. 

33. H. SCHWARZ, "An Introduction to AL
GOL," ACM Communications, February 
1963. 

34. G. M. WEINBERG and G. L. GRESSETT, "An 
Experiment in Automatic Verification of 
Programs," AC,M' Communications, Octo
ber 1963. 





REMOTE COMPUTING -AN EXPERIMENTAL SYSTEM 

Part 2: Internal Design 

J. M. Keller, E. C. Strum, and G. H. Yang 
Development Laboratory, Data System.s Division 

IBM Corporation 
New York, N. Y. 

INTRODUCTION 

This is the second of two papers dealing with 
the experimental remote-computing system. 
Part 1 described the system as viewed by a user 
who is unaware that he is jointly sharing the 
central computer with numerous other users. 
This paper (Part 2) describes the internal de
sign of the system, with attention focused on 
those features which are of general interest 
and applicable to the design of other program
ming systems. 

This paper is introduced by a description of 
the over-all control structure and data organi
zation .. Each of the principal sUbsystems is 
then described. The paper concludes with some 
remarks regarding possible extended applica
tions. An appendix describes in some detail the 
algorithms used in the decomposition/recom
position of arithmetic expressions. 

OBJECTIVES 

An operating system servicing numerous on
line users must meet certain design objectives 
that might be regarded as secondary or even 
unnecessary in conventional operating systems 
or compilers. But these objectives become para
mount when the psychological and practical 
effects of sustained, immediate access to a com
puter are considered. Thus primary attention 
must be given to attaining: 

1. Immediate error diagnostics; 

2. Program alteration without recompiling; 

3. Extensive symbolic debugging aids; 

4. Ready availability of the source version 
of the user program; 

5. A user program that is : 
a. dynamically relocatable, 
h. easiiy interruptibie, and 
c. storage protected. 

SYSTEM ORGANIZATION 

Program.s 
The experimental remote-computing pro

gram is divided into three major system areas 
(Figure 2.1) : 

1. The Scheduler, which is responsible for 
maintaining awareness of the total sys
tem status and for ordering and assigning 
tasks to the other system parts; 

425 

2. The Process Control system, consisting 
of the Translator, which reduces the 
user's input statements to an equivalent 
internal form (see below); the Inter
preter, which executes this internal form; 
and the Process Control program, which 
regulates these two subsystems on the 
local level; 

3. The I/O Control system, which is respon
sible for monitoring and operating all 



426 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

SUPERVISOR 
.- -- - ---- -- -- - ---- - -- --, 
I I 
I I 
I I 
I I 
I I 
L 

-----c=J 
--0 
-.0 

EXCHANGE ~ 

--~FLOW @ 
--- DATA FLOW 

A 

PROGRAM 
AREA 

PROGRAM 
AREA 

r-----
I I'"'""T""...JL..JI_-, 

I 
I 
I 
I 
I 

I 

SCAN 

+----
I 
I 
I 
I 
I L ____ ~ 

Figure 2.1. General Block Diagram of System. 

I/O attachments, including the communi
cations exchange. 

Data Organization 

At the system level, there are three principal 
data constructs: 

CURRENT STATUS INFORMATION 

DA TA OUTPUT FORMATS 

~---------------------

RECORD OF SYSTEM USE 

CURRENT USER I.D. 

r---------------------
CURRENT ACTIVE PROGRAM 

r---------------------
ACTIVE PROGRAM ADDRESS 

r---------------------
CALLED SUBPROGRAM 

Figure 2.2. Terminal Header. 

T he Terminal Header 

For each terminal in the system, there is a 
Terminal Header record (Figure 2.2) contain
ing the following information: 

1. Current status: 

a. operating mode, i.e., Command or 
Program (Rf. Part 1), 

b. terminal status, i.e., I/O wait, busy, 
or dormant, 

c. control information, i.e., should the 
system interrupt automatic status 
(execution) and return to manual 
status (statement entry) or continue 
automatic status, 

d. type of terminal component active, 
e. terminal ID, 
f. storage allocation block; 

2. Header information for Command mode 
execution: 
a. formats for data output, 
b. system use records; 

3. Temporary locations for random storage 
access: 
a. current user identification, 
b. name of current active program, 
c. location of active program for this 

terminal, 
d. name or location of subprogram called 

by current program. 

The M aste'I" Block 

For each statement in the language (Rf. Part 
1), there is a Master Block record (Figure 2.3) 
containing the following information: 

1. A statement type identifier; 

2. A statement class identifier; 

3. The symbolic, external statement identi
fier with associated control characters for 
recognizing the statement name on input 
and for recreating it on output; 

4. Various indicators which denote intrinsic 
statement characteristics for checking 
purposes; 

5. Addresses for transfers of control to the 
various major system routines, e.g., 
Translator, Interpreter; etc. 



REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 427 

INDICATORS I C~S CODE STATEMENT CODE 

CONTROL 

CHARACTERS 
----------- -----------AND 

SYMBOLIC 
r---------- STATEMENT -----------

IDENTIFIER 

SCAN LIST 
I ADDRESS ADDRESS 

LINK INTERPRETER 
I ADDRESS I ADDRESS 

PROCESS CONTROL PROCESS CONTROL 
I ADDRESS I ADDRESS 

PROCESS CONTROL 
ADDRESS 

Figure 2.3. Master Block Record. 

The Master Block is used either as a diction
ary, when information concerning the state
ment is needed, or as a switching center, when 
control flow within the system is dependent 
upon the statement type. A single record for 
both of these activities provides considerable 
flexibility in adding new statements, in modify
ing control conditions, and in making basic 
system modifications. 

The User Program Layout 

For the entire system there are two large, 
fixed areas (Figure 2.4) reserved for occupa
tion of the various active user programs, Pro
grams brought into these areas are relocated 
under program control; all I/O to and from 
these areas is overlapped. The duration of oc
cupancy is determined either by overstepping 
a time limit or by the occurrence of one of 
several specific conditions (see following sec
tion on user-program organization). 

The layout of the user program is divided 
into two parts: 

1. The statement and element records (see 
following section) which comprise the 
user program; and 

2. The header. 

PROCESS CONTROL INFORMATION 

ELEMENT CONTROL TABLE 

STA TEMENT CONTROL TABLE 

R-INDEX TABLE 

N-INDEX TABLE 

PARAMETER STACK 

TEMP STACK 

PROGRAM LIST 

(STA TEMENT AND ELEMENT LISTS) 

-

Figure 2.4. User-Program Layout. 

The header is further subdivided into two 
parts: 

1. List control and other controls for the 
program records (see following section) ; 
and 

2. Control words used by the Process Con
trol program to keep track of program 
status. 

USER-PROGRAM ORGANIZATION 

The User Program 

The user's source-pTogram statements are 
mapped into equivalent internal records, which 
are classified and controlled by list structures. 
These records and their controlling elements 
constitute the user's program (see Figure 2.4). 
Every statement of the user's program is re
duced to an individual statement record; and 
every element (name or label) is reduced to an 
individual element record. These records are 
inserted and chained on lists in the program 
area in the order of their appearance and crea
tion. Control is maintained through tables of 
list-control words in the header portion of the 
user program. All addresses in the user pro
gram are relative to its base in order to facili
tate relocation. 



428 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

Records 
Element Records 

An element in the source program is defined 
as a label, constant, variable, array, or func
tion name. Every source element maps into a 
fixed-length, internal element record (see Fig
ure 2.5) containing the following information: 

REFERENCE 
mE I MODE I SIZE 

NEXT ADDRESS 
NUMBER 

INDICATORS 
ARRAY/COMMON/EQUIVALENCE 

ADDRESS 

.. -

NAME 

VALUE 

Figure 2.5. Element Record. 

1. Reference number-a unique internal nu
meric identifier, assigned by the system. It 
is used for all internal referencing by the 
system. 

2. Type-denotes the type of element, i.e., 
label, constant, variable, array, function. 

3. Mode-denotes the mode, real or integer, 
of elements referring to numeric quanti
ties. 

4. Indicators-contains properties attributed 
to the element by declarative statements 
and/ or execution. These include storage
allocation, and indications of element usage 
at object time. 

5. Name-the external alphanumeric identi
fier. 

6. Value-either the numeric value of the 
element or supplemental information for 
an array or function. 

7. Next address-address of the next element 
record. 

8. Array COMMON EQUIV ALENCE
address of the value, if the element is in 
COMMON or is an array; or an offset ad
dress, if the element is equated to an array. 

Statement Records 

Every source statement maps into a variable
length, internal statement record (see Figure 
2.6), which contains in coded form all informa-

AL TER NUMBER SIZE NEXT ADDRESS 

STATEMENT 
CODE INDICATORS LABEL NEXT CLASS ADDRESS 

R(C) I 

* 
R(A) R(B) 

PARAMETER 
R(D) 

OPERATOR 

FUNCTION 
R(SQRD OPERATOR 

I R(C) temp 

+ temp temp 

- R(C) temp 

C = A*B + C/SQRT(D) 

Figure 2.6. Statement Record. 

tion present in the source statement. Each 
record begins with two standard words con
taining the foHowing information: 

1. Alter number-a unique internal numeric 
identifier assigned by the system. I t de
notes the position of the statement relative 
to all others in the program; it is refer
enced by the user when modifying the pro
gram, manually requesting information, or 
starting execution. 

2. Statement code-identifier of the partic
ular statement type. 

3. Indicators-reflects usage of the state
ment during execution. 

4. Label-refers to the associated external 
statement number, if any. 

5. Next address-address of the next state
ment record. 

6. N ext class address-address of the next 
statement record of the same type. 

The remainder of each statement record con
tains one or more words. Their number and 
content depend on the particular statement 
type. For example, an arithmetic-statement 
record contains the macro representation of 



REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 429 

the translated expression, while a DO state
ment contains references to the indexing param
eters. 

Lists 

The objective of providing for alteration of 
individual statements was the deciding factor 
in determining the internal record organiza
tion. The conventional table-oriented approach 
appeared much less attractive than the classi
fication of records by lists. I, 2, 3, 4, 5, 6 

Most compilers use tables to record infor
mation necessary for referencing and validating 
data usage and control flow. In this system, the 
same information is kept in the statement and 
element records. However, organizing these 
records on lists allows for increased flexibility 
in the compiling system.7• 8, 9, 10 For example, 
deletion and insertion of statements for pro
gram modification is easily provided. Time-con
suming recompilations become completely un
necessary as a result of this altering provision. 
In addition, errors resulting from improper 
control flow and from invalid variable refer
ences can be diagnosed earlier in the compila
tion pl"OCeSS than is common with conventional 
compilers. 

Element Lists 

Each element record is chained onto one of 
26 element lists, each list consisting of all 
those element records whose symbolic names 
have the same initial letter. Element records 
within each list are ordered alphabetically by 
symbolic name. There are two additional list3 
which link numeric elements as either integer 
or real constants. This set of element lists pro
vides two significant features: 

1. The symbol look-up is more efficient since 
only the set of symbols with the same 
initial letter are considered; 

2. Fully alphabetized symbolic cross-refer
ence listings and memory dumps are easily 
provided. 

Statement Lists 

Each statement record is chained onto two 
lists: 

1. The entry list consisting of all statement 

records in source sequence (i.e., ordered 
by "alter number") ; 

2. One of the class lists, consisting of all 
statements of a particular class (e.g., 
arithmetic, control, DO, I/O, allocation 
declarations, etc.). 

The entry list is used both to control execu
tion sequence and to provide the proper order
ing when the source program is reconstructed 
from the internal form. 

The class lists are extremely useful in per
forming checking operations (e.g., checking DO 
loops for proper nesting and control transfers). 

List Control 

Every list is controlled by a single control 
word pointing to the first and last records. For 
the statement lists there is a small table of 
control words for statement control (see Figure 
2.4). Another similar table controls the element 
lists. In addition there is also a master table 
controlling the symbolic names of reserved 
system symbols: library functions (e.g., SIN, 
SORT, etc.) ; built-in functions (ABS, FLOAT, 
etc.) ; and system subroutines (DUMP, EXIT, 
etc.). 

Addressing 

Two tables exist for control of the element 
and label identifiers (see Figure 2.4). These are 
the R-index, or internal-identifier reference 
table, and the N -index, or numeric-label table. 
For every element that appears in a program, 
an entry for its internal identifier, R, is made 
in the R-index table; similarly, for every state
ment label, N, an entry is made in the N -index 
table. 

Every element or statement in the program 
can be accessed in an "asociative" manner by 
sequentially searching the lists until a match 
is found for the requested symbolic name or 
alter number. Each element or labeled state
ment can also be located in a "direct-look-at" 
mannerll by using the internal identifier for the 
element or label as an entry to the R- or N
index table. Thus the flexibility of associative 
list searching and the efficiency of direct ele
ment fetching are both incorporated in the 
system. 



430 PROOEE'DINGS--SPRING JOINT COMPUTER CONFERENCE, 1964 

FUNCTIONAL DESCRIPTION 

The Scheduler 

The purpose of any real-time, multiprogram
ming supervisory program is to synchronize, 
control, and monitor system operation.12, 13, 14 
The program is responsible for determining 
what things are to be done, and by whom, to 
what, where, and when each is to be done. It 
has the duty of maximizing system through
put 'and ensuring reliable operation, and, in this 
case, of maintaining rapid and level response 
times at the terminal consoles. 

At the nucleus of this supervisory structure 
(see Fig.ure 2.1) is the Scheduler,15,16 which con
trols the: 

1. Process Control program, which in turn 
directs the processor routines that trans
late and execute user programs; and 

2. I/O Control program, which coordinates 
the communications exchange, random 
storage devices, tape units, reader, and on
line printer. 

The Scheduler performs continual sequential 
sampling of the subsidiary subsystems and 
maintains pertinent status data in the termi
nal headers. When data has been received from 
the terminal, the Scheduler examines the 
terminal header and decides whether to trans
mit a request to the random-storage I/O queue 
to fetch the user program (Program mode), or, 
if no program is required, save the data in a 
to-be-processed queue (Command mode). 

In either event, the Scheduler passes to the 
Process Control program all information neces
sary for processing the input message--such as 
locations of the terminal and program headers, 
the location of the input message, and the op
erating mode of the terminal. 

Even if no message has been received for a 
given terminal, its active program will be 
fetched from random storage and the Process 
Control program entered, if the terminal header 
shows that the program is in the automatic 
state (i.e., in the process of execution). After 
each return from the Process Control program 
under this condition, the Scheduler must deter
mine whether the automatic state should be 
terminated. 

There are two kinds of termination: tempo
rary, and return-to-manual. Temporary inter
ruption frees the system for use by another 
terminal and may occur for the following 
reasons: 

1. The allotted time interval has expired; 
2. Input data is requested: 
3. Output buffer is filled; 
4. An external subprogram is invoked. 

The return to manual status occurs when: 

1. .An error condition occurs; 
2. A STOP or PAUSE statement is executed; 
3. The end of the program is encountered; 
4. The user requests an interrupt from the 

terminal. 

The Process Control Program 

The Process Control program (see Figure 
2.7a) accepts information from the Scheduler 
and coordinates the activities of the processor 
programs. All of the appropriate Process Con
trol routines and service routines must be ini
tialized (1) to process the terminal header if 
the termnial is in the Command mode, or (2) to 
process various parts of the program header 
and list if in the Program mode. The Process 
Control program maintains an action code in 

Figure 2.7a. Genera! Diagram of Process Control Flow 



REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 431 

each header to determine the next task to be 
performed upon the user program. The 
Process Control program may require the 
input statement just received to be scanned by 
the translator; it may require continuation of 
execution, of a DUMP, or of a LIST. The user 
program may be in the ALTER mode; it may 
be in the process of being tested for certain 
conditions which may prohibit further execu
tion. Data for an input statement may be 
awaited or output of multiple-error messages 
may be in effect. 

When the user program is in the manual 
mode, the Process Control program has the 
responsibility of examining the process codes 
returned from the translator and of taking the 
necessary action. When the user program is 
in the automatic mode, execution may be 
temporarily halted and, in some cases, the pro
gram may be returned to manual-mode status 
(see above). When a subprogram "call" is 
made, execution halts until the next cycle for 
this terminal. At that time, the called subpro
gram becomes the user's active program and is 
brought into memory in place of the calling pro
gram. When a RETURN is effected or if an 
error occurs, the calling program is reactivated. 

Figure 2.7b. General Diagram of Process Control Flow 
~Translator. 

In order that the user may always be aware 
of the status of his program, condition codes are 
printed at the terminal whenever a change of 
status occurs. He is notified when input (a 
statement or data) is requested; when an error 
occurs; when and why execution was termi
nated; when a system statement (see Figure 
2.7d) occurs (e.g., DUMP, INDEX, TRACE); 
and, optionally, when a subprogram call is 
made. When execution runs off the end of a 
program, and when a STOP or PAUSE is en
countered, he is informed that his request for 
interruption of execution has been recognized. 
In short, the Process Control system always 
knows what is happening in the user pro
gram, and continually keeps the user informed 
of the status of his job. The objective is to 
provide the remote user with a more complete 
awareness of his program's status than is 
obtainable at a conventional computer console. 

The Translator 

Scan Routines 

The Translator (see Figure 2.7b) is responsi
ble for transforming the source-language pro
gram to the internal form. 17• 18, 19 (See Figures 
2.5 and 2.6.) A preliminary scan is first used 
to identify arithmetic statements. For all 
other statements, the statement operator is col
lected and used to reference (via a Master Block 
routine) the corresponding master record. Con
trol then passes to the translation routine for 
the particular statement type, e.g., GOTO, RE
TURN, PRINT, DIMENSION, etc., 

Every statement's decomposition goes 
through the same basic phases to form element 
and statement records. These involve the use 
of several service routines to collect the element 
name, find its record in a list or create a new 
record, and validate the statement and element 
usage. 

As each element in a statement is collected, 
a search is made to determine if it has pre
viously appeared in the program. If the ele
ment has been previously used in the same 
statement, the record appears on a current ele
ment working list; otherwise, it may be found 
on the element list in the user's program or, 
alternately, on the master list of reserved and 



432 PROCE,EDINGS----SPRING JOINT COMPUTER CONFERENCE, 1964 

system names. If no record is found, then the 
element is new to the program, and a record is 
created for it and placed on the current work
ing list. The information put into the record 
depends on the variable itself and the kind of 
statement it appears in. The mode indicators 
for an element depend either on its initial 
letter or on its appearance in an INTEGER 
or REAL declarative statement. The type and 
variable indicators depend on the statement 
type. A variable appearing in a storage-alloca
tion statement is nagged according to its dec
laration as an array, common, or equated vari
able. 

If all source elements have previously ap
peared, no new element records result from 
the translation of a statement. However, a 
statement record must always be created. The 
Master Block record for the statement type 
provides the statement code. Statements that in
volve a list of variable, such as DIMENSION, 
EQUIV ALENCE, or COMMON, contain a 
count of the variables used followed by the R
number of the variables. 

Statements which involve a list of labels, such 
as: 

GO TO (5,6,7,8), I or IF (J-5) 12,3,12 

contain an item count followed by the numeric 
labels. If the execution of a statement will 
change the value of a variable, the identifier of 
that variable is placed in a special field in the 
statement (see Figure 2.6). 

Statements containing arithmetic expres
sions or input/output lists involve specialized 
decomposition routines. The master Trans
lator passes to both these routines essentially 
the same input: a string of words, each word 
containing either an operator or an R-number. 
The decomposition routine transforms these 
elements into an ordered set of arithmetic 
macros consisting of an operator and two op
erands in every word. These macros are then 
returned to the master Translator and added 
to the statement record (see Figure 2.6). The 
input/output list-decomposition routine also 
returns a macro set of executable operations, 
(A detailed description of the arithmetic de
composition is contained in Appendix I.) 

Scan Diagnostics 

Throughout the translation-scan phase, 
checking occurs for syntax and composition
type errors. Illegal statement operators and 
invalid statement forms are detected early in 
the translation. Lack of a label on a FORMAT 
statement or the presence of a label on a de
clarative (where control may not flow) violate 
the definition of the statement type. Illegal 
uses of variables, such, as a simple variable 
name followed by a parenthesis, are detected 
by testing indicator bits in the element records. 
The same checking of element records is used 
to detect mixed-mode errors in the arithmetic 
expressions. The number of subscripts fol
lowing an array name is checked for agree
ment with the number declared in the DIMEN
SION statement for that variable. In general, 
the Translator detects all syntactic errors 
which are within the context of a single state
ment and those semantic errors which occur in 
the use of the elements in the statement. 

Link Routines 

If the statement has no errors, the Process 
Control program decides whether to save the 
statement record and its related element records 
as part of the user'g program. A statement 
record is either added to the end of the entry 
and class lists or, if the .ALTER mode is active, 
is inserted somewhere into these lists. To ac
complish this linking, space for the new record 
is found, and the address of this area, relative 
to the program area base, is inserted as the 
"next" address in the preceding record on the 
list. 

If the statement record is successfully put 
into the program area, the element records are 
linked to their respective lists. Every new ele
ment record also causes its address (relative to 
the user program base) to be entered into the 
R-index table. 

Link Diagnostics 

Before a new record is actually chained to a 
list, certain checks for consistency of referenc
ing are made. These are partially accomplished 
through use of the N -index table, in which all 
references to labels are recorded. For every 
label in the program there is a corresponding 



REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 433 

entry in this table. In each entry there are 
two fields: the first specifies the relative address 
of the labeled statement record; the second 
specifies how the label is referenced, Le., from 
an I/O statement, a DO statement, or a branch 
type statement. These entries are set up and 
checked before the statement is linked to the 
lists. 

Examples of, the errors detected at this 
phase are: 

1. Duplication of statement numbers; 

2. Referring to a FORMAT statement from 
a branch statement; 

3. Referring to an executable statement from 
an I/O statement; 

4. Using an illegal statement as the end of a 
DO (e.g., a branch type) ; 

5. Referring, as the end of a DO, to a state
ment which precedes the DO. 

Another type of consistency error detected 
at this time is based on ordering of statements. 
To link a statement into a list, the preceding 
statement must be available. In the case of an 
ALTER insertion, the succeeding statement 
is also available. It is possible, then, to check 
for violation of such precedence rules as: 

1. Declarative statements must precede ex
ecutable ones; 

2. The first executable statement following a 
branch-type statement must be numbered 
(i.e.. every section of the program should 
be potentially executable). 

I t is important to note that all these consist
ency and precedence errors are reported to 
the user immediately after the statement is 
accepted by the system. Most conventional com
pilers report all composition-type errors 
throughout the entire program before going 
on to check for consistency errors. In this sys
tem, diagnostics are provided as early as pos
sible. 

When the END statement is first linked to 
the program list, or thereafter at the end of an 
AL TER sequence, several specialized routines 
check completeness of control flow and data 
referencing. 

Storage Assignment 

The value of a simple variable or a constant 
is stored in the element record. However, stor
age for all arrays and any variable appearing in 
common must be specially assigned. Because 
of their interaction, all allocation declarations 
must be entered before storage can be assigned; 
on the other hand, storage must be assigned as 
soon as possible since partial execution of the 
program may be requested at any time. The 
Link routine, on recognizing the first executable 
statement, assigns storage on the basis of all 
declarative statements, which are linked on the 
same class list. After an ALTER sequence in
volving a storage allocation the same operation 
is .again performed. 

Storage Control 

When a statement or element record is to be 
linked to a list, it is moved from a temporary 
working area to the program area. Space for 
successive records or data storage is at first 
assigned sequentially throughout the program 
area. 

When the user deletes ( via ALTER) any 
statement or variable from the program, the 
associated records are unlinked from the pro-
gram and chained to a "null" list ordered by 
size of record. When space is needed for a new 
record, the null record that best fits (i.e., large 
enough but with minimal "trim") is selected; 
this technique prevents wasteful fragmentation 
of the null-storage areas. 

If no record on the null list satisfies the space 
requirement, but the total size of the scattered 
null records would provide enough space, then 
a "squeeze" is performed by moving every 
record in the program to a contiguous storage 
area. All references to relative addresses in the 
program area are then changed to reflect this 
relocation. 

The Interpreter 

Execution of the user's program is done in 
an interpretive fashion20,21,22,23,24 on a state-
ment-by-statement basis under control of the 
Process Control program. This control pro
gram sends to the Interpreter the address of 
the statement to be executed. Upon successful 



434 PROCEE'DINGS--SPRING JOINT COMPUTER CONFERENCE, 1964 

INTERPRETER 

GET: 

ADDRESS 

VALUE 

RECORD 

R NO, 

STATEM. 

CHECK: 

N 

DO 

Figure 2.7c. General Diagram of Process Control Flow 
-Interpreter. 

execution of this statement, the relative address 
of the next statement is saved in the program 
header. At this time, an indicator is turned on 
in the statement record, showing that the 
statement has been executed. 

The Interpreter can be broken into several 
parts (see Figure 2.7 c) : 

1. The master interpreter, which decodes the 
statement type; 

2. The service subroutines used by all state
ment routines; 

3. The macro interpreter used for arithmetic 
expressions; 

4. The various statement routines. 

Decoder 

To interpret a statement, a code is fetched 
from the statement record and, using the Mas
ter Block, control is transferred to the appro
priate Interpreter routine. 

Service Routines 

These subroutines are used to fetch element 
and statement records and to address value 
words for variables and constants. In the In-

SYSTEM STATEMENTS 

GET: 

ADDRESS 

VALUE 

RECORD 

INDEX 
CHECK 
AUDIT R NO, 

DUMP 

STA 

NUMBER 
LIST CHECK: 

RESET 

N 

DO 

Figure 2.7d. General Diagram of Process Control Flow 
-System Statements. 

terpreter, all fetching is done by a direct "look
at" of a table entry for an address. This is in 
contrast to the associative referencing used in 
the Translator. Execution speed is consider
ably increased by this elimination of list search
ing. 

All references to a variable in a statement 
record are by its internal identifier. This num
ber is used as a key to the R-index table to 
access the relative address of the element rec
ord. Whenever a value word is fetched for 
use, an indicator for "variable used" is turned 
on in the element record. Similarly, if a value 
is stored into a value word, an indicator for 
"variable set" is turned on. 

Macro Interpreter 

The evaluation of an arithmetic expression 
can be expressed in hardware terms; Le., the 
system has an instruction repertoire of six 
two-address instructions, and is equipped 
with a group of pushdown registers.25, 26, 27, 28, 2<1 

Execution of the statement in the interpretive 



REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 435 

mode is analogous to machine execution and 
involves several steps: 

1. Fetch the next macro (Le., instruction) to 
be executed; 

2. Fetch operand values; 
3. Decode the instruction operation; 
4. Perform the specified operation; 
5. Store the result in a push-down stack. 

Subscripts of arrays and arguments of func
tions are indicated by a special operator. When 
this operation is encountered, an entry is made 
in a push-down parameter stack. Values are 
fetched from this stack for computing an array 
address or for passing arguments to a function. 

Functions are also indicated by a special op
erator. When this operator is encountered, the 
function-element record is fetched. All records 
for librar'y routines point to their actual ma
chine coding within the system. All other func
tions are called from random storage. 

Statement Routines 

Every statement has a particular Interpreter 
routine associated with it. There are several 
categories which should be discussed: 

1. Arithmetic---the macro interpreter is used 
to evaluate the expression to the right of 
the ":=" and store its value in the left ... 
hand variable. 

2. Branch-the macro interpreter is used to 
evaluate the arithmetic expression for an 
IF; a service routine is used to fetch the 
value for I in GO TO (. •.. ), 1. The proper 
transfer point is chosen from the list of 
numeric labels in the statement. This 
numeric label is used to access the N -index 
table for the relative address of the state
ment to which control should flow. 

3. DO loops-the initial execution of a DO 
statement creates an entry in a push-down 
stack controlling DO nesting; it also initial. 
izes the value of the DO index variable 
and flags its element record as an active 
DO index. The execution of the last state .. 
ment in the range of a DO is detected 
through checking of an indicator turned 
on in the translation process. After execu
tion of this last statement, the DO state-

ment is fetched again and its index is 
tested and incremented. Execution con
tinues with the statement following the 
DO until the indexing condition is satisfied. 

4. Input/Output-an I/O macro interpreter 
is used to compute addresses of values to 
be passed to the appropriate input/output 
service routine. A table is generated in 
the execution process to handle variables 
in the list controlled by implied DO's. 

Execution Diagnostics 

Choosing the interpretive approach to ex
ecution necessarily means sacrificing speed. 
For debugging purposes, this is not often a 
serious impediment-especially since diagnos
tics are possible for many errors never detected 
in conventional execution. These include de
tecting: 

1. A value word not being set before used: 
2. A subscript value not being valid; 
3. A DO index being reset in the range of 

the DO; 
4. A computed GO TO parameter not being in 

range; 

5. The size of an integer exceeding its limits; 

6. The existence of an illegal value in an I/O 
list with implied DO's. 

Input-Output Control System (IOCS) 

The prime responsibility of the Input-Output 
Control system is to select, from the respective 
queues built up by the Scheduler, the next task 
or combination of tasks to be performed by the 
individual I/O units. Upon completion of a 
given task, the Scheduler is notified either di
rectly through program switch indications or 
indirectly through the terminal header. Before 
relinquishing control to the Scheduler, the 
IOCS initiates the next task for that channel 
device based on the queue information. It also 
maintains control surveillance over all I/O 
buffer areas to prevent overflow. 

The I/O attachments consist of disk, drum, 
magnetic tape, card reader, on.line printer and 
communications exchange. 

The disk is used as a permanent storage for 
user programs. The drum serves as a rapid 



436 PROCEEDINGS-..;SPRING JOINT COMPUTER CONFERENCE, 1964 

access storage device for the repeated shuffling 
of user programs in and out of memory. The 
magnetic tapes, card reader, and printer are 
used in a conventional manner. 

The communications exchange has some in
teresting capabilities not found in more con
ventional I/O equipment. 

The Exchange 

The IBM 7740 communications control sys
tem30•31 is used to buffer and control the traffic 
flow between the communications network and 
the IBM 7040 computer. 

It is a stored-program computer with a 
rather specialized instruction repertoire de
signed for real-time applications. The instruc
tions possess powerful logic and data manip
ulating facilities, through somewhat limited 
arithmetic capability. Instructions are fixed in 
size, one instruction per 32-bit word, while data 
is composed of strings of 8-bit characters. Ad
dressing is at the character level, up to a maxi
mum of 64K characters (i.e., 16K words). 

The 7740 program performs several com
munications-oriented functions. First, it ac
complishes line and terminal control by gen
eration, recognition, and manipulation of con
trol characters, in order to establish a connec
tion to the remote terminals, and to determine 
the operation to be performed. Second, it pro
vides message control, so that'the messages 
may reach their intended destinations: they are 
logged in, monitored for correctness, and con
verted from the various transmission codes to 
the codes acceptable to the other devices in use. 
Third, it provides protection to ensure the 
proper disposition of messages, and to ensure 
the correction of transmission errors wherever 
possible. 

To simplify these functions, the 7740 has 
several hardware and programming capabilities 
not often found in conventional computers. 

1. The most striking of these is the ability 
to operate in an independently controlled 
hierarchy of modes. In increasing order 
of priority (that is, decreasing order of in
terruptability), these are: 
a. The normal mode. The normal activ

ities involved in polling, addressing, 

and monitoring of all communications 
devices are conducted in this mode. 
Because of the large number of lines, 
processing is on a continuous service 
basis, whereas a conventional computer 
attains I/O overlap by yielding inde
pendent control to the devices and 
servicing them on an interrupt basis. 

b. The I/O mode. This mode is used to 
control input/output between the 7740 
and the 7040. A special uninterruptable 
state, called copy mode, is used for the 
actual transmission of information. 

c. The attention mode. This mode is en
tered when service (not connected with 
any hardware malfunction) is needed 
(e.g., servicing the interval timer). 

d. The service mode. This mode is en
tered if malfunctions are detected. 

Entry to the service, attention, or I/O 
copy modes may be initiated by the ma
chine; entry to any mode may also be initi
ated by the program. In addition, it is 
possible to inhibit mode change so that 
tables or programs used in several modes 
may be protected (this is analogous to dis
abling a channel on a conventional com
puter). 

Associated with each mode is a pair 
of machine registers which contain the 
complete status information. Mode change 
is automatically accomplished by storing 
this information into the cells associated 
with the old mode and picking up the cor
responding information from the cells as
sociated with the new mode. 

2. Time-stamping, essential to control in any 
communications or real-time environment, 
is provided for by the interval timer, which 
is automatically updated by the machine 
every few milliseconds. This timer is used 
in conjunction with attention-mode pro
grams to provide a programmed real-time 
clock, and a programmer-accessible in
terval timer. 

3. Information about each of the communica
tion channels (or lines) is maintained in 
fixed positions of core storage using two 
channel-control words, one pair for each 
line involved. The current status informa-



REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 437 

tion of these words is manipulated by both 
the hardware and the programs in order 
to control the flow of information within 
the system. 

4. In order to facilitate the acquisition and 
transmission of data, the memory of the 
7740 is considered by the hardware to be 
divided into blocks of 32 characters, each 
of which begins on an 8-word boundary. 
The first 30 characters of each block are 
used to store data, while the last two pro
vide a I6-bit chaining address used to in
dicate where the next block of information 
is located. These chain addresses, supplied 
by programming, are uS€d by the hard
wa-re to advance automatically to the next 
character location. 

Because storage is not infinite, it is pos
sible to place a special indicator in the 
chain-address location of any block. When 
this buffer-block signal is detected by the 
machine in the process of acquiring a new 
block, automatic entry into the attention 
mode occurs, thus enabling the program 
to accurately control the available storage 
pool. 

CONCLUDING REMARKS 

The Translator described performs a map
ping of a source program to an equivalent, list-

- structured, internal form. This method may 
be called "selective" or "differential" compil
ing, because statements may be inserted, re
placed, and deleted without retranslating the 
entire source program. In addition, this ap
proach provides rapid, comprehensive refer
ence and diagnostic data. And finally, the 
process is reversible; the source program may 
be regenerated in its original form, or in a 
related form.32 

Interpretive execution provides the means 
for complete source-language debugging. In
formation on the dynamic behavior of data use 
and control flow can be applied to improve opti
mization of the generated object code.-

The implementation and description of the 
rem9te-computing system has naturally been 
done in a time-sharing context. Nevertheless, 
the techniques used are equally applicable to a 

conventional compiler operating under a moni
tor system. 

Standard hardware devices in a conventional 
configuration were adapted to this purpose 
through programming. However, system per
formance could be substantially improved by 
use of a special machine organization designed 
to perform the same functions. 

ACKNOWLEDGEMENTS 

The authors wish to acknowledge the con
tribution of two associates: Miss Harriett 
Cohen for the stQrage allocation routines, and 
Mr. Dan Davis for the I/O list decomposition 
and interpreter routines. 

APPENDIX I-EXPRESSION DECOMPOSI
TION /RECOMPOSITION 

Introduction 

The primary purpose of any formula trans
lator is to reduce expressions to a form that 
provides the fundamental order in which op
erations should be performed to produce cor
rect results. Implicit in this form should be 
a record of the order in which partial results 
are developed, accumulated, and reused. 

The techniques and traditional program
ming tools generally applied to accomplish this 
are :33, 34, 35, 36 

1. Forward scan; 
2. Push-down list; 
3. Forcing tables; 
4. Ordered macro list; 
5. Implied push-down temporary indica

tions; 
6. Chaining and string concatenation. 

Forcing tables are used to produce an order of 
operation based on the real or assumed 
hierarchy of arithmetical or mathematical op
erators. Push-down lists in this respect often 
work on a LIFO (last in-first out) principle. 
Macros are used as a form which approaches 
as nearly to a machine-executable form as can 
be used while retaining its machine-independ
ent structure. In addition to the operator and 
the operand elements, the macro form often 



438 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1964 

contains a reference to the temporary result 
that the operation will produce, such as Tl or 
T2, implying a push-down order to partial re
sults. String-manipulation techniques of chain
ing and concatenation are often employed to 
facilitate translating operations. 

Requirements 

The Arithmetic Translator includes not only 
the traditional decomposition but also a re
composition37 phase to restore the statement or 
expression to its original form from the com
pressed macro string generated during decom
position. The macro string generated, there
fore, must satisfy several requirements: 

1. It must be easily interpreted, saving time; 
2. It must be compact, saving space; 
3. It must be recomposable. 

The decomposition translator must detect 
all errors in logic and syntax. It must supply 
the number, order, and mode of all operations 
to be performed by the Interpreter. 

The recomposition translator should develop 
a string in the original sequence; all necessary 
punctuation must be restored. In short, it 
must produce a string identical in all respects 
to the original, except for the removal of re
dundant parentheses. The resulting string, 
when decomposed again, should produce a 
macro string identical to that originally de
composed. 

OPERATOR DECOMPOSITION RECOMPOS ITION 

Symbol Nome Left Op Right Op Old Op New Op 

+ plus 1 

minus 

multiply 

/ divide 4 

exponentiation 

so subscript 0 

fo function 7 

replacement 7 0 7 

• .mary minus 

comma 0 

left poranthesis 0 

right poranthesis 0 0 

0 end of messoge 

(EOM) 

Note: The zero code signifies that the operator is illegal when appearing in the 
specified role. 

Figure 2.8. Forcing Tables for Translator. 

Techniques 

Forcing Tables 

The forcing tables in Figure 2.8 are used as 
follows. The decomposition table is used to 
cause the- generation of macros based on the 
relative hierarchy of related or successive op
erators. If the value for the right operator is 
equal to or greater than the value for the left 
operator, then a macro based on the left opera
tor is generated. 

The recomposition table is used to decide 
when parentheses are necessary to maintain the 
hierarchy implicit in the order of macros pre
viously generated. If the value for the new op
erRtor is greater than or equal to the value for 
the old operator, then the string developed 
around the old operator during a previous con
catenation must be enclosed within parentheses 
before further concatenation can take place. 

Push-Down Lists 

The lists used in the decomposition trans
lator are the operator and variable lists which 
hold those elements awaiting further action 
from a forcing situation. The recomposition 
translator has an operator list used essentially 
for the same purpose. In addition, it uses two 
lists which contain control words of partial 
strings awaiting further action. The "work 
list" contains the control words of strings which 
are to be concatenated into a single string with 
a single control word. This control word is 
then placed on the "string list" until a later 
call for further concatenation is encountered. 

Macro Strings 

Each macro contains an operator byte and 
one or two variable bytes. The operator is a 
basic operation plus an indication of the modes 
of the variable bytes. Either or both variable 
bytes may contain a temporary indication. 
These do not have to be specific temporary in
dications, since owing to the ordered structure 
of the macros, both the Interpreter and the re
composition translator use a push-downac
cumulator for storing and fetching partial re": 
suIts of execution and partial strings developed 
through concatenation. For the same reason, 
no indication need be kept in the macro of the 



REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 439 

temporary to be generated by the operator 
(such as Tl or T2). To save space, macros with 
temporary indications may be compressed dur
ing packing procedures by indicating left and/ 
or right temporaries iiI the operator byte, thus 
eliminating all bytes for temporary indications. 
For example, when the macro string generated 
in the example is compressed in this manner, it 
re3ults in 22 bytes, or, at four eight-bit bytes 
per word, less than six words of storage. The 
interpreter accesses macros-in order-for ex
eCution of the statement, building up temporary 
re3ults and using them in turn when later 
lnacros call for them. An EOM (End of Mes
sa.ge) operator signals the end of the macro 
list. The recomposition translator accesses the 
macros and builds up temporary strings in 
much the same manner as the Interpreter. Also 
from this simplified, compact macro form it is 
but a simple step to generate machine-language 
code; either temporary locations can be im
plicitly addressed by the machine itself or else 
explicit storage addresses can be used. 

Chaining and Concatenation 

In the recomposition translator, when an 
operand is not an intermediate temporary, it is 
developed as an element in the output string 
and placed in an empty word in a pool. I t is 
treated as a one-element string and assigned a 

i. 

ii. 

iii. 

iv. 

vi. 

vii. 

viii. 

Mixed I'kde 

Mixed fvIode in a Function Argument 

Illegal Use of Function or Array Name Without Arguments 

Simple Variable, Constant, or Expression follawed by left Parentheses 

Illegal Mode of Function Argument 

Illegal Number of Arguments in Function 

Fixed ta Float Exponent 

Level of Nesting of Functions Exceeds Maximum Number of Eight (8) 

ix. Illegal Successive Operators 

Illegal Parenthetical Order 

xi. Uneven Number of Parentheses 

xii. General Syntax Error 

xiii. Expression Begins with Illegal Operatar 

xiv. Mode of Variable Not Set 

xvi. 

xvii. 

xviii. 

xix. 

I'kde Not Set For Arry Arguments in Function 

Number of Parameters in Function Exceeds Declared Maximum 

Number of Arguments in (Defined) Function Specified to be Zera 

I'kde of Actual Argument is Not Set 

Illegal Operator in Parameter or Illegal Position for Comma 

AuS .... C condition - (illegal in FORTRAN) 

.. Only these errors cause an immediate error return. 

All others return for further error checki':!S.. •• 
Figure 2.9. Arithmetic Translator DIagnostIcs. 

~ 
x = «-B) + SQRTF(B**2-4. *A*C))/(2. "A) 0 

MACRO OUTPUT STRING PUSH DOWN LISTS 

.ill. .Yl V2 QE. Var 

x 
% 

--.f:' temp 

yrr( SQRTF 

+ 

fo 

Figure 2.10a. Example of Decomposition-Part I. 

control word. When strings are to be joined 
together, the last word of the first string refers 
to the linking operator (which is developed in 
the empty pool), and in turn, the operator 
refers to the first word of the next or preceding 
string. The two or more control words are 
combined into one which references the first 
and last words of the concatenated chain or 
string of elements. When the recomposition 
translator eventually encounters the EOM op
erator, there is only one chain represented by a 
control word on the string list. This chain 
or scrambled string is then unraveled into a 
sequential list of all the elements in the re
composed statement or expression. 

Diagnostics 

The decomposition performs complete diag
nostic checking. Wherever possible, error 
checking continues even though some errors 

1 
x = «-B) + SQRTF(B·*2-4. *A*C))/(2. 'A) 0 

MACRO OUTPUT STRING PUSH DOWN LISTS 

OP Vl V2 .2!. Var • 

X 

temp 

4. A + SQRTF 

...¥ 
fo 7 

/ 
temp 

/-
/ 

/' temp 

C 

Figure 2.10b. Example of Decomposition-Part II. 



440 PROCEEDINGS-SPRING JOINT- COMPUTER CONFERENCE, 1964 

1 
x = ({-B) + SQRTF{B**2-4. *A*C))/{2.*A) 0 

MACRO OUTPUT STRING PUSH DOWN LISTS 

~ Vl Yl:... ~ ~ 
um X 

/ ymP' 
4. A /" ~ 
temp C y ~ 
temp temp ~ rr 
temp 

~ 
/ 

fo SQRTF ~ 
+ temp temp /' Ym( 

~ 
temp 

Figure 2.10c. Example of Decomposition-Part III. 

have already been encountered. (See Figure 
2.9 for a list of decomposition diagnostics.) 

Decomposition Rules (Figure 2.10) 

1. When all action has been taken with a new 
operator or variable encountered in the 
forward scan~ it is placed on the appropri
ate push-down list. 

2. An array name or function name followed 
by a left parenthesis generates two addi
tional operators for the operator list: a 
subscript operator or function operator, 
and a comma operator for the· initial pa
rameter. 

3. When the forcing value of a new operator 
equals or exceeds the forcing value of the 

1 
x = «-8) + SQRTF(8·"2-... "A"C»!2. ·A) 0 

MACRO OUTPUT STRING PUSH DOWN LISTS 

OP Vl ::!2. OP Yare 

um ./ /' 
/ ~ ... A X ~ 

temp C / / 
temp temp ~ 
temp ~ 

fo SQRTF )4 
+ temp temp 

2. A 

I temp temp 

X tem,. 

0 temp 

Figure 2.10d. Example of Decomposition-Part IV. 

last operator on the operator list, action is 
taken to output a two- or three-byte macro: 
a. The last operator on the operator list 

and the last one or two variables on the 
variable list, depending on the opera
tor, are removed and incorporated into 
an output macro. 

b. For each macro generated for the out
put string, except for comma-operator 
macros, a temporary indication is gen
erated on the variable list. 

X = «-8) + SQRTF(8 .... 2-... ·A·C»/(2. ·A) 0 

MACRO INPUT STRING 

OP .Y!.. 

... 
-" temp 

temp 

temp 

fo SQRTF 

temp 

2. 

I temp 

X 

0 temp 

Current 
N_Op 

V2 

A 

C 

temp 

temp 

A 

temp 

temp 

PUSH DOWN LISTS 

OP Wori< String 

um..,¥ -8 

·"7 8··2 

"/ yA' 
/ 
/-

C 

... ·A 

Figure 2.11a. Example of Recomposition-Part I. 

Recomposition Rules (Figure 2.11) 

1. On each new macro encountered in the for
ward scan, the right operand (V2), if it 
exists, is always considered for action be
fore the left operand (VI). 

a. If Vi of a macro is not a temporary 
indication, it is developed in a word 
from the empty pool, and assigned to a 
control word which is placed on the 
intermediate work list. 

b. If Vi of a macro is a temporary indica
tion, the last control word on the string 
list is removed and placed on the work 
list. 

2. For any operator in a macro except the 
comma operator1 the last action taken is to 



REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 441 

x = «-8) + SQRTF(**2-4. "A"C»/(2. "A) 0 

MACRO INPUT STRING PUSH DOWN LISTS 

OP Vl V2 OP Work ~ 
um um .--e-- -8 

----~ ~ 4. A --- ~ ~ 
temp C --- ~ ~ temp temp ---temp 8*"2-4. *A*C 

-£0 SQRTF SQRTF 

+ temp temp 

2. A 

/ temp temp 

X temp 

temp 

Figure 2.11h. Example of Recomposition-Part II. 

place the operator temporarily on the op
erator push-down list, and to combine the 
control words on the work list, linking 
t}"'~;-r C!t-r;nrrC! tnrrat'ha-r ;n+n Ana ron,..,+ ... Al 
"" ...... ""....... tr.JI"".L ......... 6a.:J '"'vo ...... "'.I..I.¥..L ... .I..I.\lV V.I..&.'\:;: '-'V.l..!. .... .L V~ 

word, which is placed on the string list. 

a. For subscript and function operators, 
the name and parameter strings refer
enced on the push-down work list are 
linked in order, separated by appropri
ate parentheses and commas. 

X = «-B) + SQRTF(B**2-4. *A*C)/(2. *A) 0 

MACRO INPUT STRING 

OP ~ 

4. 

temp 

temp 

temp 

fa SQRTF 

temp 

2. 

-/ temp 

X 

0 temp 

Current 
New OP 

/ 

Y!.... 

2 

A 

C 

temp 

temp 

A 

temp 

temp 

PUSH DOWN LISTS 

OP Work 

-----~ ~~ 

--- ~*A*C) 
----- -a--
~ 

---r.
(2.*A) 

.....-s--
~'C) 
-B+~*A*C) 
~ 

(-8 + SQRTF(B**2-4*A*C)) 

Figure 2.11c. Example of Recomposition-Part III. 

X 2 «-8) + SQRTF(B**2-4. *A*C))/(2. *A) <:> 

MACRO INPUT STRING PUSH DOWN LISTS 

OP VI ~ 
B 

4. A 

OP Work String 

:;:.. ~- (-B~*A) 

--~ ~ 
(-~.*A) 

temp C ~ 

temp temp 

temp 

fa SQRTF 

temp temp 

2. A 

/ temp temp 

X temp 

-0 temp· 

X = (-B + SQRTF(B**2-4. *A*C))/(2. *A) 

Current 
NewOp 

<:> 

Figure 2.11d. Example of Recomposition-Part IV. 

b. For arithmetic unary or binary opera
tors, the one or two strings refe-renced 
on the work list are linked with the 
operator. 

3. Whenever a control word is removed from 
the string list, an operator is removed 
from the operator list and tested against 
the new operator from the current macro. 
a. When the right forcing-value of the 

new operator equals or exceeds the left 
forcing-:value of this last operator from 
the operator list, parentheses are placed 
at the ends of the string referenced 
by the control word just placed on the 
work list. 

b. If the string represents V2, and the left 
forcing-values of the new and last op
erators are equivalent, parentheses are 
placed at the ends of the string. 

Extensions 

There is no limit to the length of the state
ment string that can be used as input to this 
type of decomposition translator. 

Any mathematical language based on hier
archical rules of operation-for purposes of 
computation similar to that in arithmetic 
formulas-can be decomposed and recomposed 
just as easily using forcing tables and the other 
traditional techniques. The macro form pro-



442 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

duced could be of quite a different form de
pending upon the nature of the interpretive 
scan. It would, of course, have the same implied 
order of operation. The operators involved 
need not be only unary or binary operators; 
they need not be only arithemtical or functional. 
Boolean operators, logical operators, ternary 
operators, or any others could be easily handled 
in this manner. 

REFERENCES 

1. A. NEWELL (Ed.), "Information Process
ing Language-V Manual," Prentice-Hall, 
1961. 

2. H. GERLERNTER, J. HANSEN, and C. GER
BERICH, "A FORTRAN-Compiled List
Processing Language," ACM Journal, 
April 1960. 

3. A. J. PERLIS and C. THORNTON, "Symbol 
Manipulation by Threaded Lists," ACM 
Communications, April 1960. 

4. A. EVANS, A. PERLIS, and H. VAN ZOEREN, 
"The Use of Threaded Lists in Construct
ing a Combined ALGOL and Machine-Like 
Assembly Processor," ACM Communica
tions, January 1961. 

5. J. WEIZENBAUM, "Knotted List Struc
tures," ACM Communications, March 1962. 

6. J. WEIZENBAUM, "Symmetric List Proces
sor," ACM Communicat~ons, September 
1963. 

7. R. BROOKER and D. MORRIS, "A General 
Translation Program for Phrase Structure 
Languages (Lists) ," ACM Journal, Janu
ary 1962. 

8. H. W. LAWSON, "The Use of Chain List 
Matrices for the Analysis of COBOL Data 
Structures," Pl'oc. ACM National Confer
ence, September 1962. 

9. H. D. BAECKER, "Mapped List Structures," 
ACM Communications, August 1963. 

10. P. R. KOSINSKI, H. KANNER, and C. L. 
ROBINSON, "A Tree-Structured Symbol 
Table for an ALGOL Compiler," Pl'OC. of 
ACM National Confef'ence, August 1963. 

11. P. M. SHERMAN, "Table Look-at Tech
niques," ACM Communications, April 1961. 

12. L. R. TURNER, A. MANOS, and N. LANDIS, 
Initial Experience on Multiprogramming 

on the Lewis Research Center 1103 Com
puter," Proc. of ACM National Conference, 
August 1960. 

13. N. LANDIS, A. MANOS, and L. R. TURNER, 
"Initial Experience with an Operating 
Multiprogramming System," ACM C;om
munications, May 1962. 

14. A. B. SHAFRITZ, A. E. MILLER, and K. ROSE, 
"Multi-level Programming for a Real-Time 
System," Proc. EJCC, December 1961. 

15. E. F. CODD, "Multiprogram Scheduling," 
ACM Communications, June 1960, July 
1960. 

16. E. F. CODD, "Experience with a Multipro
gram Scheduling Algorithm," Proc. of 
ACM National Conference, August 1960. 

17. J. WEGSTEIN, "From Formulas to Com
puter Oriented Language," ACM Com
munications, March 1959. 

18. B. ARDEN and R. GRAHAM, "On GAT and 
the Construction of Translators," ACM 
Communications, July 1959. 

19. M. E. CONWAY, "Design of a Separable 
Transition Diagram Compiler," ACM Com
munications, July 1963. 

20. The 701 Sp,.eedcoding System, IBM Form 
Number 24-6059. 

21. The 705 Print. System, IBM Form Number 
32-7855, 1957. 

22. Bendix Intercom 1000 Programming Sys
tem, Bendix Computer Division, 1958. 

23. W. R. BRITTENHAM, et aI., "SALE (Simple 
Algebraic Language for Engineers) ," 
ACM Cornmunications, October 1959. 

24. R. E. MACHOL, W. J. ECCLES, and J. C. 
BAYS, "There's Still a Place for Interpret
ers," Pl'oc. ACM National Conference, Sep
tember 1962. 

25. W. LONGERAN and P. KING, "Design of the 
Burroughs B5000 System," Datamation, 
April 1961. 

26. R. W. BARTON, "A New Approach to the 
Function Design of a Digital Computer," 
Proc. W JeC, April 1961. 

27. J. ANDERSON, "A Computer for Direct Exe
cution of Algorithmic Languages," Proc. 
EJCC, December 1961. 



REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 443 

28. A. C. D. HALEY, "The KDF. 9 Computer 
System," Proc. F JCC, December 1962. 

29. C. B. CARLSON, "The Mechanization of a 
Push-Down Stack," Proc. FJCC, November 
1963. 

30. 7740 Communications Control System 
Principles of Operation, IBM Form Num
ber A22-6753. 

31. 7740 Communications Control System 
Communications Control Package, IBM 
Form Number C28-8160. 

32. J. J. ALLEN, D. P. MOORE, and H. P. ROGO
WAY, "SHARE Internal FORTRAN Trans
lator (SIFT) ," Datamation, March 1963. 

33. K. SAMUELSON and F. L. BAUER, "Sequen
tial Formula Translation," ACM Commu
nications, February 1960. 

34. H. D. BA~CKER, "Implementing a Stack," 
ACM Communications, October 1962. 

35. C. L. HAMBLIN, "Translation to and from 
Polish Notation," The Computer Journal, 
October 1962. 

36. R. J. EVEY, "Application of Pushdown
Store Machines," Proc. F JCC, November 
1963. 

37. K. IVERSON, "A Programming Language" 
(Chapter 5), John Wiley & Sons, Inc., 
1962. 





MULTICOMPUTER PROGRAMMING FOR A· LARGE SCALE 
REAL-TIME DATA PROCESSING SYSTEM 

G. E. Pickering, E. G. Mutschler, and G. A. Erickson 
UNIVAC Division of Sperry Rand Corporation 

San Diego, California 

INTRODUCTION 

The multicomputer programming techniques 
discussed in this paper were conceived and im
plemented in a large scale tactical data system 
developed for the U.S. Navy. Many of the de
tails of this system are classified and cannot be 
discussed here. * However, it can be stated that 
the subject system is a man/machine complex, 
primarily intended for fleet air defense and 
surface operations and maneuvering. The ob
jectives of the system are: to provide com
manders of forces afloat with a broad picture 
of the current tactical situation; to assist in 
directing operations in time to intercept and 
destroy potential threats; and to present the 
means to coordinate various weapon systems 
in a combat environment. These are achieved 
by automating, to a high degree, the collecting, 
processing, exchanging, and evaluating of large 
quantities of data through use of computers 
and digital data processing techniques. 

The system objectives are accomplished in 
real-time. Data are received by the system 
from various sensing devices such as shipboard 
and AEW radars, sonar, IFF equipment and 
ECM equipment which are in continuous con
tact with the outside environment. Data enter
ing the system are processed, analyzed and used 
by the system to influence 01' alte·,. an event dur
ing the pl'og'ress of that event, i.e., real-time. 

':'This paper was originally prepared for presentation 
at the 19()1 Eastern Joint Computer Conference. 
Security regulations prevented its release until now. 

445 

Fundamental in the design philosophy of this 
system is the Unit Computer concept. In es
sence, the concept is a recognition of the need 
for computers of varying capability among 
ships of various types and operating modes. It 
solves this requirement by the use of standard 
computers operating in multiples to obtain in
creased ca:pacity and functional capability, 
rather than use of several different computers 
each possibly of a different shape and size. 
However, in solving this varying computer 
capacity requirement, the Unit Computer con
cept established the need for multicomputer 
programs. 

This paper concerns the programming prob
lems encountered in designing and implement
ing operational programs requiring more than 
one Unit Computer and describes the techniques 
developed to solve two intrinsic problem areas: 

• EXECUTIVE CONTROL IN A MULTI
COMPUTER COMPLEX 

• DATA TRANSFER BETWEEN COM
PUTERS 

A third problem is assignment and distribu
tion of tasks between computers. To deal with 
this subject in the detail required would neces
sitate discussing classified material. That this 
is a problem of complexity should be obvious. 
However, it is evident that distribution of tasks 
between computers is a system design problem 
which must be uniquely solved for each multi
computer system. 



446 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

It should be emphasized that the multicom
puter programming techniques discussed in this 
paper have been tried and tested for the last 
five years. Several multicomputer programs, 
employing two and three computers, have been 
delivered to the Navy. Thus, multicomputer 
programming, as discussed in this paper, is not 
theory, but actuality. 

In preparation for the subject of multicom
puter programming, it is first necessary to dis
cuss pertinent characteristics of the Unit Com
puter developed by UNIVAC to satisfy the Unit 
Computer design philosophy. 

I. THE UNIT COMPUTER 

The Unit Computer is a general-purpose, 
stored program, solid-state machine. * Only 
those characteristics most pertinent to the sub
ject of multicomputer programming are dis
cussed in this paper. 

Real-time Clock 
Among the features that make possible the 

use of the computer in real-time applications is 
the real-time clock. The clock is contained in a 
special register within Magnetic Core Memory 
and can be referenced or set by the computer 
program. Time is maintained accurate to the 
nearest 2-10 second. The clock is incremented 
automatically by the computer upon signal of a 
1/1024 cps crystal controlled oscillator. 

When the system is started, the clock is set to 
zero and time is automatically maintained rela
tive to the start of the system problem. Al
though the modulus of the clock is approxi-

EXTERNAL FUNCTION 

~ 

0 1&1 
Z 
Z 

PERIPHERAL \ ~ EQUIPMENT 
I u 

II 30 DATA UNES S 
~ 

--'t------J-- ;:) 

0 

--~---J---

mately 7 days, the real~time modulus of the 
system may be somewhat less. The real-time 
modulus of the system is so defined that in 
scheduling tasks for execution (see discussion 
under Section II-Program Control in a Multi
computer Complex), the modulus of the clock 
will not be exceeded. 

In a multicomputer program, the real-time 
clocks within all computers are synchronized. 
Upon initiation one computer transmits the 
content of its real-time clock to the other com
puters, which then set their clocks accordingly. 
DATA TRANSFER LOGIC 

A total of 14 input and 14 output channels is 
provided in the Unit Computer. Of these, two 
input and two output channels are especially 
designed for intercomputer communications. 
Each input channel and output channel consists 
of 30 data lines and 3 control lines. The special 
input/output channels differ from a normal 
input/output channel primarily in use of the 
control lines and in the associated channel logic. 

The input/output logic of the Unit Computer 
requires that peripheral equipment request each 
input or output data word transfer. The com
puter then acknowledges receipt of the input or 
availability of an output. All input channels, 
including the special input channels for inter
computer transfer, and all normal output chan
nels use Request and Acknowledge logic. 

The control lines associated with request and 
acknowledge logic are shown in Figure 1. These 
are Input Data Request Line and Input Ac
knowledge Line for normal input channels and 

EXTERNAL INTERRUPT 
I 
I 
lid INPUT ACKNOWLEDGE 

UNIT IZ 
I

Z 

I \ 
PERIPHERAL 

COMPUTER I~ EQUIPMENT 

IS \ 30 DATA UNES I 
I~ -\-----/----
I ----""""'----1--I 
I 

Figure 1. Normal Channel Configuration. 

* A more thorough description can be found in "Data
mation," December 1961, p. 45. 



MULTICOMPUTER PROGRAMMING FOR A LARGE SCALE PROCESSING SYSTEM 447 

Output Data Request Line and Output Ac
knowledge Line for normal output channels. In 
addition to these two lines normal input chan
nels have an External Interrupt control line and 
normal output channels have an External Func
tion control line. .The External Interrupt con
trol line allows the external equipment con
nected to that channel to signal the computer 
of its immediate data transfer requirement 
which is honored by an interruption of the com
puter program. The External Function control 
line is used to specify a function desired of the 
external equipment connected to that output 
channel. An External" Function Word to a tape 
control unit, for example, may. specify Rewind 
Tape Unit 2. 

The two special output channels use Ready 
and Resume logic for intercomputer data trans
fer control. The transmitting computer signals 
that it is Ready with an output data word which 
is interpreted by the receiving computer as an 
Input Data Request signal. The receiving com
puter upon accepting the transfer will send 
back an Input Acknowledge signal which is in
terpreted by the transmitting computer as a 
ROQllTYlO ThiS reverse logic is necessary so that 
th~"'t;~"~s~i~tting computer will exhibit to the 
receiving computer the same control and tin1ing 
characteristics as do the peripheral equipment. 

The control lines associated with Ready and 
Resume logic of the intercomputer channels are 
illustrated in Figure 2.' These are Input Data 
Request (or Ready) and Input Acknowledge 
(or Resume). In addition, intercomputer chan
nels utilize an Input Buffer Status signal. The 
Input Buffer Status signal originates in the 
receiving computer and is defined by the state 
of the Input Buffer Active/Inactive Designa
tor. The transmitting computer can sense the 
Input Buffer Status signal, thus determining 
status of the receiving computer's input buffer 
on that intercomputer channel. 

A special output register (Cl), incorporated 
in the computer, alternately services the two 
output channels reserved for intercomputer 
communication. All output intercomputer com
munications are time-shared through this spe
cial ,output register which holds data until a. 
Resume sign~l is received from the receiving 

computer. However, if a ~esume signal is not 
received within 32 to 64 seconds, the register 
is automatically cleared and the computer is 
notified of this condition by an Internal Inter
rupt called the Intercomputer Failure Monitor. 
This 32- to 64-second time interval is necessary 
to insure that intercomputer output with other 
computers is not suspended indefinitely. The 
Interrupt utilizes special entrance registers in 
Magnetic Core Memory for notification of 
faulty intercomputer output channels and to 
distinguish which of the channels is faulty. 

Data transfer in or out of the Unit Computer, 
whether between computers or between com
puter and external equipment, is handled by 
buffered transmission of data with timing un
der control of the receiving computer or the 
external equipment respectively. The buffering 
process transfers consecutive words, starting 
at a given initial address through a given ter
minal address, on a specified input or output 
channel. A single computer instruction will 
initiate a buffer mode of data transfer. Once 
established, buffer transmission employes inde
pendent access to memory; the entire buffering 
operation proceeds to completion with no addi
tional program references. Thus, the buffer 
mode of data exchange provides for input/ out
put operating asynchronously with the main 
computer program; the computer continues 
execution of program instructions in the nor
mal sequence. 

The sequence of data and control signals for 
a normal transfer of data from one computer 
to another would proceed as follows: 

a) Receiving computer sets Input Buffer Ac
ti ve Signal; 

b) Transmitting computer 'detects Input 
Buffer Active Signal; 

c) Transmitting computer places data on 30 
data lines; 

d) Transmitting computer sets Ready which 
becomes Input Data Request in Receiving com
puter; 

e) Receiving computer detects Input Data 
Request; 

f) Receiving computer samples 30 data lines; 
g) Receiving computer sets Input Acknowl

edge line (returned to Transmitting computer 
as Resume); 



448 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

h) Transmitting computer senses Resume 
line; 

i) Transmitting computer drops data lines 
and Ready line. 

Steps c) through i) of this sequence are re
peated for every data word. Input Buffer Ac
tive remains energized during the entire trans
fer of a block of words. 

In most cases it is desirable for the program 
to be informed of the completion of a particular 
buffer transmission. This is made possible by 
internal interrupts generated within the com
puter. If an input buffer mode via a specified 
channel was established with a buffer monitor, 
an Input Buffer Monitor InJ;errupt is generated 
wheh the buffer mode terminates (Le., trans
mission has been completed ~s indicated by the 
current buffer address equal to the terminal 
address) . Likewise, an output buffer estab
lished with monitor would generate an Output 
Buffer Monitor Interrupt when the buffer mode 
terminates. A Buffer Monitor Interrupt is as
sociated with each input channel and each out
put channel; a separate entrance register in 
computer memory is reserved for each Inter
rupt. The unique entrance address thus defines 
the source of the Internal Interrupt request for 
action by the appropriate Interrupt routine. 

COMPUTER INSTRUCTIONS 

In addition to instructions normal to arith
metic, logic, and index operations there are 
several instructions which add tremendously to 
the power of the computer in a real-time appli
cation. Those instructions which are mentioned 
or inferred later in the paper are now described. 

Repeat-The Repeat instruction sets up a 
repeat mode whereby the instruction immedi
ately following the Repeat instruction is exe
cuted n times, as specified in the Repeat instruc
tion. In initiating the repeat mode, n is trans
ferred to a special register which retains the 
number of executions remaining throughout the 
repeat mode. If n is zero, the instruction to be 
repeated is skipped. This instruction also en
ables automatic address modification (incre
ment, decrement, or .increased by a pre-set con
stant) of the repeated instruction after each 
individual execution. 

Ordinarily the repeated instruction searches 
a table for coincidence. If coincidence does not 
occur, the repeat mode terminates and the in
struction following the repeated instruction is 
executed. If coincidence occurs, the repeat mode 
terminates and the instruction following the 
repeated instruction is skipped. This method of 
searching a table for coincidence is used by the 
Executive Routine in controlling the execution 
of various tasks of the main program, as dis
cussed later. A principal advantage of a re
peated search is the reduction in instruction ex
ecution time since a memory reference is not 
required to read in a next instruction. As used 
in the Executive Routine, a repeat search takes 
8 + 11.2 (N) microseconds where N is the table 
item number on which coincidence occurs. A 
non-repeated search to accomplish the same end 
would require 8 + 40 (N) microseconds. Thus, 
the time required for program control is re
duced by an approximate factor of 3 through 
use of the Repeat instruction. 

Compare-This instruction compares the 
signed value of the operand with the signed 
value contained in either or both the arithmetic 
registers, A and Q. Skipping the program's 
next sequential instruction is also allowed by 
this instruction if the Skip condition is met. 

The Compare instruction is used with the 
Repeat instruction to perform the search de
scribed previously. The execution time given 
in that description is for a repeated Compare. 
As will be described later in Section II of this 
paper, the time at which a task is scheduled to 
be executed is compared with the contents of 
the real-time clock. 

Return Jump-The Return Jump instruction 
provides for transferring control to a specific 
set of instructions (subroutine), executing that 
subroutine, and returning control to the next 
instruction following the Return Jump. The 
Return Jump makes possible the modular pro
gram construction used whereby each sepa
rately defined task is implemented by a subpro
gram, which is referenced by the ExecutIve 
Routine, and the identical subprogram is used 
in each program performing that task. A sub
program js a high-level subroutine; a subpro
gram usually references lower-level subrou
tines. 



MULTICOMPUTER PROGRAMMING FOR A LARGE SCALE PROCESSING SYSTEM 449 

External Function-The External Function 
instruction has two meanings, one for inter
computer channels and another for normal 
input/ output channels. If the instruction spec
ifies an intercomputer channel, the connected 
computer is interrogated as to the status of its 
input buffer on the connected channel. If the 
interconnected computer's input buffer is ac
tive (Le., an input buffer has been initiated and 
the connected computer is ready to receive 
data), the next instruction following the Ex
ternal Function is skipped. If the connected 
computer's input buffer is not active, the next 
instruction (which is normally a Jump) is exe
cuted. 

For normal input/output channels, the oper
and of the External Function instruction (nor
mally a control code) is transmitted to the ex
ternal equipment connected to that channel. 

Store Input Channel-This instruction stores 
the contents of the specified input channel at 
the address specified by the operand. An Input 
Acknowledge signal is then sent over the speci
fied channel thereby informing the external 
equipment of the computer's availability to re
ceive additional data and to indicate that the 
previous input was received. Since buffer mode 
of data transfer is normally used, the Store In
put Channel instruction is used primarily to 
generate Input Acknowledge signals to Ex
ternal Interrupts. 

Initiate Input Buffer (With Monitor) and 
Initiate Output Buffer (With Monitor)-These 
instructions establish an input or output buffer, 
respectively, via the specified input (or output) 
channel. Subsequent transfers of data, executed 
at a rate determined by the external device, are 
made directly into (or occur directly from) 
Magnetic Core Storage starting at the address 
specified by the operand. The storage address 
initially established is advanced by one for each 
individual transfer. The next current address 
is maintained throughout the buffer process in 
the lower half word of the Buffer Control Regis
ter for the specified channel; the last address of 
the transfer is maintained in the upper half 
word of the same Buffer Control Register. Each 
input channel and each output channel has a 
unique Buffer Control Register associated with 
it. The buffer mode will continue until it is 
superseded by subsequent initiation of a new 

buffer via the same channel or until the upper 
and lower half words of the Buffer Control 
Register are equal. Should the latter occur, a 
Buffer Monitor Interrupt is generated, causing 
the computer program to be interrupted and 
the Buffer Monitor Interrupt routine for that 
channel to be executed. 

Multicomputer programs use the Initiate In
put Buffer (With Monitor) and Initiate Out
put Buffer (With Monitor) instructions exclu
sively in transmitting data between computers. 

II. EXECUTIVE CONTROL PHILOSOPHY 

The system which made necessary multicom
puter programming techniques has a number 
of functions that must be performed. In ac
complishing these functions, the design objec
tive is to use both men and machines to best 
advantage. Repetitive and routine operations 
are performed automatically by machines, 
whereas decisions of tactical importance are 
made by men. Although the focal point of the 
equipment complex is one or more computers, 
the system also employs high-speed digital data 
communication facilities, radar video 'proces
sors, analog-to-digital data converters, digital
to-analog converters, and typical computer pe
ripheral equipment such as magnetic tape and 
Teletype, * all of which provide for automatic 
inputs to the computer and/or automatic out
puts from the computer. A complete display of 
complex and data entry devices allow men to 
monitor an ever-changing, yet accurate picture 
of the current tactical situation and to enter 
their intelligence and tactical decisions into the 
computer. 

All equipment is connected directly or in
directly to the computers. For each function 
the computers must: 

• receive data from the appropriate system 
equipment, consistent with data transfer 
rates of each equipment; 

• correlate, process and (as necessary) eval
uate data in performing the specified sys
tem function; 

• present the results of processing and eval
uation to men for their interpretation and 
decisions; 

*Teletype isa trade mark of the Teletype Corpora
tion. 



450 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

transmit pertinent data and human deci
sions, as appropriate, regarding that data 
to the ultimate users, again consistent 
with data transfer rates of the equipment 
involved. 

The system operates in real-time, therefore, 
operational requirements dictate the response 
times for individual system functions. 

To relate a real-time system to real-time data 
processing then, one might say that real-time 
data processing is processing done immediately 
as a result of an input for the purpose of pro
viding an essentially instantaneous response or 
output. >I: Processing must, as a result, be com
pleted at a rate greater than the input data rate 
or else the processing will fall behind so that 
eventually the system will be operating out of 
real-time. The system saturation point is 
reached when processing rate equals the input 
rate. 

From the foregoing discussion, it is clear that 
any real-time system must have, at least, a data 
processing capability sufficient to handle the 
average input rate from all input functions. 
Moreover, since system inputs occur randomly, 
it must be assumed that all inputs could occur 
simultaneously. This would represent the peak 
load. The problem then, is how to schedule, or 
queue, the functions to be performed in such a 
way that under peak load conditions all func
tions would be performed within their real-time 
requirements. 

An Executive Control Philosophy has been 
developed and implemented to solve the schedul
ing (or multiprogramming) problem. Execu
tive Control Philosophy is a general term-ex
plained specifically it means a recognition of the 
system's tasks in order of system priority; dis
tributing them among the system's computers; 
and then controlling them in the individual 
computers of the system by an Executive Rou
tine within each computer. 

The Executive Control Philosophy is based 
on the fact that each function and concomitant 
handling of peripheral equipment defines a 

::<D~scuss.lons of the concept of real-time can be found 
in "Computers and Automation "-September, 1963, p. 
26, and "Datamation"May and June, 1963, pp. 29 and 
28 respectively. 

separate task (or set of tasks) that must be 
performed by the computers. 

Each system task is performed by a computer 
subroutine (or group of routines) called a "sub
program." By definition, a subprogram is any 
subroutine referenced directly by the Executive 
Routine. 

An Executive Routine is contained in each 
computer of a multicomputer program and 
maintains complete control of tasks assigned to 
that computer. Over-all control of a multicom
puter program by a Master Executive Routine 
is not employed. Rather a method of reciprocal 
control is used. One of the system tasks (i.e., 
subprograms) within each computer in a multi
computer system is concerned with intercom
puter data transfer. The function of each inter
computer subprogram is to process the data re
ceived from an interconnected computer and 
upon completion of this processing to initiate 
the return data transfer. To effect reciprocal 
control, program logic must be such that the 
residual state of intercomputer transfer with
in each computer is input. Thus, the computer 
which has control of the intercomputer data 
transfer (i.e., next to initiate an output buffer 
transfer) actually has temporary control of the 
two-computer operation. Reciprocal control, 
therefore, means that control is assumed by one, 
then the other, of two interconnected comput
ers. In systems utilizing three or more com
puters, reciprocal control would be used for 
each pair of interconnected computers. Details 
of intercomputer data transfer are discussed in 
Section III. 

Subprograms within a computer are con
sidered for execution on the basis of their pri
orities as system components. System priority 
for subprograms is relative, and is determined 
in the following manner: If tasks correspond
ing to subprograms A and B have response re
quirements of lOO-milliseconds and one second, 
respectively, then subprogram A would have a 
higher system priority than subprogram B. 
System priorities for all other subprograms (or 
groups of subprograms associated with one sys
tem function) are chosen similarly. 

Normally, tasks associated with processing 
inputs to the computer from system equipment 
(and outputs where stringent timing require-



MULTICOMPUTER PROGRAMMING FOR A LARGE SCALE PROCESSING SYSTEM 451 

ments are imposed by external equipment) have 
highest priority. This is particularly true if 
failure to accept inputs when available means 
loss of important, non-repeated- data and pos
sible system malfunction. However, in some 
cases where inputs are under I)1ore positive con
trol of the computer or of a repetitive nature it 
is possible to lower the priority of equipment 
handling subprograms to insure processing of 
previously received data before new inputs are 
accepted. This has the advantage of effectively 
shutting off or delaying inputs during brief 
periods of saturation. Consider for example 
two subprograms associated with the display 
function: one subprogram periodically inter
rogates displays for manual action requests and 
the other processes these requests and gener
ates the proper response. By assigning the 
processing subprogram a higher system pri
ority than the interrogation subprogram, the 
rate of processing will automatically control 
the interrogation rate. Only under extreme 
saturation for a prolonged period would the 
operator even notice the delay; thus under nor
mal operation the system response time for the 
display function would be honored. 

For the reasons given above-to protect 
against loss of important non-repeated data and 
to insure processing of previously received data 
wit4in the real-time response requirements
intercomputer subprograms are assigned a 
relatively high priority. Conversely, each com
puter might contain a subprogram of lowest 
priority to perform such operations as pro
gram checking when no other system task 
required execution. 

Consider a list of all subprograms ordered 
by priority. The Executive Control Philosophy, 
applied in an elementary form, would dictate 
that this list be scanned sequentially, executing 
subprograms when they are needed. After each 
subprogram execution, the scanning process 
would be resumed starting with the highest 
priority entry. Thus, under a peak load condi
tion where all subprograms may require execu
tion, the top priority subprogram would be 
executed instantaneously, the next highest im
mediately following, and so on. The resultant 
response time of each subprogram would be the 
sum of previous execution times for all higher 
priority subprograms, recognizing that some 

of the higher priority subprograms may be 
executed more than once. The assumption must 
be made that sufficient computational capa
bility exists to perfor~ all assigned tasks. If 
this is not true then complete penetration of 
the list will not be realized and the only solu
tion is additional computers. If computational 
capability is sufficient to handle the average 
input rate for all functions, then under peak 
load conditions higher priority tasks are per
formed first and lower priority tasks are de
layed until time is available. Thus, a lower 
priority task may be defined as not having a 
critical response time so that late execution 
will not seriously degrade the system. An ex
ample of such a task is output to displays which 
might need to occur at a rate of 15 times a 
second. to maintain a flicker-free presentation. 
However, during peak load, which probably 
would last for less than a second, reducing the 
output rate to 14, 13, or less would normally go 
unnoticed. 

As stated earlier, the real-time requirements 
of any system task are such that processing is 
done within the required response time. The 
Executive Control Philosophy takes advantage 
of this characteristic by providing the option 
of assigning a variable priority to a subpro
gram corresponding to a particular task. Con
sider again the subprogram corresponding to 
task A. Subprogram A cou,Id be executed upon 
demand as a top priority item, thereby com
pletely satisfying the response requirements. 
But recall that the maximum response time 
tolerable was 100 milliseconds. A response 
from subprogram A would therefore be accept
able as late as 100 milliseconds after the origi
nal demand. Since the present computer load 
may be quite high, it might be desirable to de
fer execution of subprogram A for, say, 50 to 
75 milliseconds. This is done in the same pri
ority list described earlier, except that a time 
element is included in the ordering of the sub
programs. Multiple entries for subprogram A 
can be made in the priority list as follows: An 
entry is made as low priority item for execu
tion immediately, as an intermediate priority 
item to be executed in 50 milliseconds, and as 
a top priority entry to be executed in 75 milli
seconds. Thus, after a processing demand has 
been received, subprogram A will be executed: 



452 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

a) immediately out of the low priority entry, 
if the computer load is low; 

b) out of the intermediate priority entry in 
50 milliseconds, if the computer load is moder
ate; and 

c) out of the top priority entry in 75 milli
seconds, under peak load conditions. 

This assures that under all load conditions 
subprogram A will be performed within the 
required response interval. It should be noted 
that the above procedure will result in auto
matic "smoothing" of the processing load, and 
will still allow execution of each subprogram 
in the absolute minimum time, consistent with 
system priority and existing computational 
load. A subprogram is executed only when its 
"flag" is set. By definition, a flag is set when 
the time at which the task is scheduled to be 
executed is equal to real-time. 

- I . 
READY I 

I 

TRANSMITTING RESUME I 
COMPUTER 

..... 
I 

SPECIAL I 
OUTPUT I 

2) When the Executive Routine detects that 
a flag is ~et, it reschedules the time when the 
next flag for this subprogram will be auto-

. matically set. This mechanism allows for tasks 
that must be executed at an approximate peri
odic rate, as mentioned earlier for output rate 
to displays. 

3) One subprogram may set or partially set 
the flag of another subprogram. This mecha
nism is used when it is either necessary or 
desirable to execute certain associated subpro
grams in a definite sequence. For example, a 
subprogram which processes data placed in 

. computer stores would be flagged by ·another 
subprogram which acquires that data through 
interrogation of an external equipment. Ex
tending this same example by adding an addi
tional processing subprogram, it may be neces
sary to complete both processing subprograms 
before reinitiating the interrogation subpro-

INPUT BUFFER ACTIVE 

INPUT DATA REQUEST · 
INPUT ACKNOWLEDGE RECEMNG 

COMPUTER 
30 DATA UNES SPECIAL · · INPUT 

CHANNEL ~ -- -- -r---- -- -. CHANNEL 

------ -- -----+ 
I 
I 

Figure 2. Special Channel Configuration. 

Four mechanisms are provided to set these gram. Since interrogation is periodic it would 
flags. Each subprogram normally uses but one automatically be rescheduled by mechanism 2, 
of these mechanisms. above. However, a lockout (significant time 

1) External Interrupts or Internal Buffer 
Monitor Interrupts set the flags of subpro
grams associated with servicing external equip
ment and most data transfers. Consider the 
task of transmitting data over a communica
tion link. Communication terminal equipment 
would send an External Interrupt to the com
puter thereby signaling the start of a trans
mission period. The computer must have data 
to be transmitted available to the communica
tion equipment within a certain time period. 
If the communication link is not operating, 
there is no need to execute the communication 
transmit subprogram. 

period exceeding the real-time modulus of the 
system) could be added to the periodic interval; 
each processing subprogram when completed 
would partially set the flag by subtracting part 
of the lockout time. Thus, when both subpro
grams have been executed, the lockout is re
moved and interrogation will be repeated as 
per the periodic interval. 

4) A particular subprogram may reset its 
own flag if, after receiving control, it deter
mines that more than an allowable amount of 
processing time is required to complete the 
task. This mechanism is utilized only by lower 
priority subprograms and is designed to guar-



MULTICOMPUTER PROGRAMMING FOR A LARGE SCALE PROCESSING SYSTEM 453 

EXECUTIVE EXECUTIVE EXECUTIVE 
FLAG TIME JUMP 

TABLE TABLE TABLE 
(EFT) (ETT) (EJT) 

(sub-
program) 

n 

1 24 seconds A 

2 24 hours B 

3 24 hours C 

4 10 seconds D 

5 24 hours A 

6 1 second E 

7 24 hours B 

8 50 millisec. F 
+ lockout 

9 24 hours G 

10 24 hours H 

11 24 hours I 

12 24 hours A 

13 1 minute J 

M = 14 30 seconds K 

NOTE: 1. Subprograms D, E, F, J, and K are of a periodic nature. 

2. Entries in the ETT are based on a 24 hour real-time modulus of the system. 

3. The 24 hour entry in ETT represents a very large delay. This makes sure the flag is cleared 

automatically after the first reference. 

Figure 3. Example of Executive Table Structure. 



454. PlROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

antee meeting the more stringent response time 
requirements of higher priority subprograms. 
When the Executive Routine again considers 
this task for execution on the basis of priority, 
control will be returned to enable further proc
essing. The cycle will continue until all proc
essing of this task is completed. 

The Executive Control Philosophy is imple
mented through a unique method of table con
trol. Three tables-Executive Flag Table 
(EFT), Executive Time Table (ETT), and 
Executive Jump Table (EJT)-contain entries 
for each assigned subprogram which are or
dered by system priority. Each computer in a 
multicomputer program would have its own 
set of three tables with the subprogram entries 
unique to that computer. Figure 3 illustrates 
the one-to-one correspondence between the 
tables and also illustrate~se of a variable 
priority and lockout techniqI,le discussed earlier. 

For a given subprogram, (n),\EFTn contains 
the time (per real-time clock) at which the 
subprogram is to be executed, ETTn the auto
matic delay before the subprogram is to be 
repeated, and EJTn the address of the subpro
gram. If the subprogram is to be executed 
at other than a periodic rate, the content of 
ETTn is a sufficiently large number (usually 
the real-time modulus of the system) so that 
the task will not be repeated until one of the 
other flagging mechanisms resets the flag. In 
operation, the Executive Routine. sequentially 
compares the computer's real-time- clock against 
the entries in the Executive Flag Table, start
ing with the task of highest priority. In the 
case of a "hit" (the clock is greater than or 
equal to EFTII ), the corresponding Executive 
Time Table entry is added to current time, the 
sum is stored in EFT, and control is trans
ferred to the corresponding subprogram as 
specified in EJT. 

If the "hit" corresponded to a multiple entry 
subprogram, all EFT entries corresponding to 
that subprogram would be reset. When control 
is returned to the Executive Routine, or if no 
hit occurs, the search of EFT .is repeated, 
starting again with the task of highest priority. 
Figure 4 is a flow diagram of Executive Rou
tine logic. 

The description of Executive Routine opera
tion, as discussed in this paper, is short-but 
complete. Main control loop of the Executive 
Routine consists of eight instructions, one of 
which is the powerful Repeat instruction used 
in the search operation. The efficiency of a 
repeated Compare and the extremely small 
number of additional instructions necessary in
sure that only a minimum amount of computa
tional time is usurped for the important area 
of program control. 

III. DATA TRANSFER BETWEEN COM
PUTERS 

To accomplish intercomputer communica
tions, stringent control must be exercised in 
establishing and terminating intercomputer 
buffers in each computer, thus insuring that 
data transfer between interconnected com-

Figure 4. Executive Control Program. 



MULTICOMPUTER PROGRAMMING FOR A LARGE SCALE PROCESSING SYSTEM 455 

puters will stay synchronized. Interlocks and 
check points for intercomputer communication 
are required in the hardware and in the pro
grams. Special characteristics of the computer 
are combined with the program to foment this 
multicomputer concept. 

As can be seen from the delineation of hard
ware cllaracteristics in Section I, significant 
and powerful means are available. to produce 
an efficient program for intercomputer com
munication. Internal Interrupts provide ex
cellent program efficiency, in that they obviate 
periodic sampling requirements for detecting 
"end of buffer." Usually, within microseconds 
of buffer termination, the main program is in
terrupted to permit execution of program con
trol tasks required by buffer termination. 

In the following paragraphs, program charac
teristics and logic will be discussed to show the 
program's use of the computer's capability for 
data transfer. 

PROGRAM CHARACTERISTICS 

Elements of the logic governing the design 
of intercomputer programs are variable length 
b?l.fJ·e1~s and 'recip1~ocal control. Fundamental to 
obtaining variable length buffers are the 
formats-message and buffer-and the method 
of controlling buffers. Reciprocal control means 
that control of the buffer operation is assumed 
by one, then the other, of two interconnected 
computers. In accomplishing this "ping-pong" 
operation, program logic is such that the re
sidual state of the intercomputer channel is in 
the input mode. 

INTERCOMPUTER FORMATS 

Message Format 
There are two types of information contained 

in the message formats: control bits that indi
cate the type of format and the validity of the 
information, and data bits which are the actual 
parameters and operands being transferred 
(see Figure 5). Basic message formats used 
are: 

a) Two-word-This format provides an effi
cient control-bit/ data-bit compromise and is 
used for most types of transfer; and 

b) M;ulti-word-This format allows for any 

data configuration that will not adapt to the 
two-word format. 

Both formats have a common control hit 
area in the lower 15 bits of the first word. 
These bits are used to: 1) specify exactly what 
action is required on the data contained in the 
format, and 2) detect bit errors in the inter
computer transfer. Note that if the format is 
specified as a two-word format, the next con
trol word can be located easily without any 
further decoding. If, however, the format is a 
multi-word format, the next control word must 
be located by knowing the number of data 
words (found in the upper 15 bits of the first 
word) contained in the format. Use of the 
entire control word reduces data transfer effi
ciency. Up to 45 bits of data can be contained 

I 
\ 

, 

l-
1 
1 , 

-< I 
I 
I 
I 

CONlROI. 

~ ________ ~A~ __________ ~\ 

I 
'-- SP£CIFIES FORMAT (USB) TO REfERENCE 

PROCESSING SlROUTNI 

'-- lIT EIROR DETECTION 

L-- FORMAT DESIGNATOR 
O=MUlTl-WORD FORMAT 
l=TWO-WORD FORMAT 

TWO-WORD FORMAT 

DATA 

DATA 

Y 
30 IllS 

MUlTI-WORD FORMAT 

n I 
DATA WORD 1 

DATA WORD 2 

----.. -

CONTROl. 

I 
/ 

CONltOI. 

I 
1 
1 
1 
1 
I 
1 
1 

'r- - - - _, 
DATA WORD n-2 

DATA WORD n-1 

DATA WORDn 

Figure 5. Intercomputer Data Formats. 



456 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

in the two-word format, whereas only 30 bits 
of data can be contained in the first two words 
of a multi-word format. 

Buffer Format 
The message formats are superimposed on 

the intercomputer buffer format in chronologi
cal order. The output buffer format's first word 
contains the first and last addl'ess in which the 
data al'e to be put in the l'eceiving computer 
(see Figure 6); next follow all the message 
formats. The last word is a unique end code 
to help determine whether errors have been en
countered in control of the data transfer. This 
buffer format is thus variable in length, pro
viding an efficiency in transmission time. Two 
buffer areas are provided in each computer 
for each transmission and one buffer area is 
provided for each reception. Thus, when an out-,---

TWO-WORD 
FORMAr 

MULTI-WORD 
FORMAT 

TWO-WORD 
FORMAT 

TRANSMlmNG COMPUTER 

OUTPUT AREA 

TRANSMISSION VIA. AN 
INTERCOMPUTER CHANNS. 

I 
I 
I 
I 
I 

put buffer is active out of one area, the program 
may be packing the next buffer. In the case 
of "receive," only one buffer area is required 
since (as will be discussed later) all processing 
of a previous "receive" buffer is completed be
fore another receive buffer will be initiated. 

BUFFER CONTROL 

A major control problem encountered by the 
program is synchronization of the buffers in 
the communicating computers. This control 
problem arises: 1) when the intercomputer 
data buffers are initiated, and 2) when the buf
fers terminate. Between initiation and termina
tion, the buffers are maintained in synchroniza
tion by the data control signals. The method 
of initiating the data transfer is the main key 
to establishing synchronization between com-

RECEIVING COMPUTER 

BUFFER CONTROL REGISTER IR) 

fJ fJ+1 

RNAL CONTENTS IINITIA.L VALUE = RI 

L ____ _ ____ L JJ END CODE ____ - _-_ -_ -_-~ __ J 
Figure 6. Intercomputer Buffer Format. 



MULTICOMPUTER PROGRAMMING FOR A LARGE SCALE PROCESSING SYSTEM 457 

puters, because the buffer termination charac

teristics are defined within this initiation 
process. 

The use of the Input Buffer Internal Inter
rupt by the receiving computer is predicated 
upon the receiving computer's knowledge of 
the length of the input buffer. The input buffer 
length must agree with the length of the out
put buffer from the transmitting computer. 
Therefore, with variable length buffers, the 
transmitting computer must define the input 
buffer length for the receiving computer. 

The input buffer of the receiving computer 
is programmed to enter the first buffer word 
received into its Input Buffer Control Register. 
This is accomplished by executing an Initiate 
Input Buffer (With Monitor) instruction for 
the proper channel into the Input Buffer Con
trol Register for the same channel. This in
struction sets the initial address (the lower or
der 15 bits of the Inpt.." .duffer Control Regis
ter) the same as the address of the Input Buffer 
Control .. :!.egister. The terminal address ( the 
UPp€: order 15 bits of the Input Buffer Control 
Register) must be different than the initial 
address for this method to work Before the 
transmitting computer can initiate the output 
buffer, the receiving computer must have estab~ 
lished an input buffer mode. The transmitting 
computer must determine this by testing the 
state of the Input Buffer Status Line with the 
External Function instruction. 

When the receiving computer is ready to 
receive data (Le., when all the specified condi
tions are met), the transmitting computer 
establishes the Input Buffer Control Word for 
the receiving computer. The first word of the 
output buffer data is the Input Buffer Control 
Word for the receiving computer. The lower 
order 15 bits define the initial address for data 
storage and the upper order 15 bits define the 
terminating address for data storage. Thus, 
the buffer area is defined for the receiving 
computer. 

The output buffer mode is initiated by execu
tion of the Initiate Output Buffer (With Moni
tor) instruction. As soon as this instruction is 
executed the first word of the output buffer 
data (the Input Buffer Control Word) is trans
mitted to the receiving computer. Data trans-

fer proceeds under control of the Ready and 
Resume signals for the transmittIng computer, 
and the Request and Acknowledge signals for 
the receiving computer. As soon as the trans
fer is completed each computer will be inter
rupted (as the result of the buffer monitor), 
allowing each computer to assume the opposite 
role-transmit or receive. 

PROGRAM LOGIC 

The intercomputer program logic is suffi
ciently flexible to allow operating any combina
tion of multicomputer configurations. Three 
multicomputer configurations that have already 
been successfully operated are: 

1) A three-computer system, 

2) A two-computer system connected by one 
pair of cables, and 

3) A two-computer system connected by two 
pairs of cables. 

Refer to Figure 7 for illustration of these 
various configurations. 

Other possible configurations for a three
computer system (connecting computers Band 
C) and systems utilizing four or more com-

11 .. COMPUIEI SYS1fM 

o!+--: --~:8 
Figure 7. Multicomputer Complex. 



458 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

puters could use the same program logic. A 
current restriction in the multicomputer sys
tem discussed here is that only two computers 
can be connected to anyone computer.* 

The discussion of program logic which fol
lows will consider the simplest case-that of a 
two-computer system interconnected by one 
channel. Variations required for other configu
rations will be mentioned in the course of dis
cussions. 

Two subprograms are required for control 
in the two-computer configuration. These are 
A-B Intercomputer Control Subprogram 
(ABCON)t, locate in the A Computer and the 
B-A Intercomputer Control Subprogram, 
(BACON), located in the B Computer. 

In addition to the subprogram in each com
puter, there are three Internal Interrupt rou
.tines in each computer. They are the Input 
Buffer Monitor, Output Buffer Monitor, and 
Intercomputer Failure Interrupt routines. The 
routines are named by suffixing the subpro
gram name with MIN, MOUT, and FAIL, re
spectively. For example, the set of interrupt 
routines in the A Computer for the ABCON 
subprogram is ABCONMIN, ABCONMOUT, 
and ABCONFAIL (see Figure 8). In general, 
one subprogram and the three associated In
ternal Interrupt routines are required by each 
computer for each channel of intercomputer 
operation. In the three-computer configuration 
shown in Figure 7, Computer A would contain 
two subprograms (ABCON and ACCON) 
whereas Computers Band C would each con
tain one (BACON and CACON, respectively). 
In the two-computer system utilizing two-chan
nel operation, each computer would contain 
two subprograms. 

The program logic for the subprogram and 
three interrupt routines is now discussed for 
the A-to-B data transfer. Other subprograms 

. and Interrupt routines are identical except as 
noted. 

':'Since this paper was written, three-computer pro
grams have been delivered connecting all computers to 
each other. 

... The first letter in the code name indicates the 
computer in which the subprogram is located and the 
second letter indicates with which other computer the 

. subprogram communicates. 

AIICONFAIL 

AlCONMIN 

NT\ATE NUT IUI'FEI WITH 
MONITOIINTO CONTIOL IIEGISTEI 

FOR THIS CHANNEl. 

Figure 8. Interrupt Flow Diagram. 

The ABCONMIN program is initiated by 
termination of the intercomputer input buffer. 
In order to terminate the buffer the first word 
received must contain the proper input buffer 
limits as computed by the BACON subprogram. 
The ABCONMIN program checks the last word 
received (designated by the input buffer con
trol register) to make sure it is a valid end 
code, thereby preventing an error in the con
trol signals from causing erroneous data to be 
passed between computers. If the end code is 
correct, this program sets the ABCON flag in 
the Executive Flag Table. 

The Output Buffer Monitor Interrupt in the 
A Computer indicates that data exchange from 
A Computer to B Computer is complete. The 
A-B Output Monitor routines (ABCONMOUT) 
thus entered initiates an input buffer (with 
monitor), into the buffer control register as
suring that the residual state of the intercom
puter channel is in the input mode, so that an 
output of the B Computer is accepted imme
diately when initiated . 



MULTICOMPUTER PROGRAMMING FOR A LARGE SCALE PROCESSING SYSTEM 459 

The Intercomputer Failure Interrupt routine 
(ABCONFAIL) is initiated when the data 
transfer to the B Computer has stopped for at 
least 32 seconds, but not more than 64 seconds 
(48-second average). This could occur if an 
input request to the B Computer were missed. 
The ABCONF AIL program alerts the A Com
puter program that a malfunction has occurred, 
allowing either automatic or manual remedial 
action to be performed, depending on the multi
computer configuration involved. For example, 
if both intercomputer channels are connected 
between the same two computers, entire data 
transfer is switched to the alternate channel. 
In any case, however, the proper information 
is given to allow rapid emergency maintenance 
whenever the faulty component is isolated with
in the system. 

The A-B Intercomputer Control subprogram 
(ABCON) establishes control for the exchange 
of data between the A and B Computers in a 
multicomputer installation. This subprogram 
(ABCON) is flagged initially by the Input 
Buffer Monitor program (ABCONMIN) as de
scribed above. It is also reflagged by the EXEC 
on a I-millisecond basis until the buffer is com
pletely processed. The ABCON subprogram is 
referenced directly by the Executive routine 
in the A Computer. Operation of this subpro
gram is independent of other intercomputer 
subprograms. For example, ACCON would be 
contained in the A Computer in a three
computer complex. 

The content of the input buffer contains both 
control and data information. Only the control 
data are processed by the ABCON subprogram. 
The first word of each intercomputer message 
format contains the control information. 

The ABCON subprogram performs two basic 
functions: 1) processing of the data in the input 
buffer, and 2) control of the output buffer to 
the B Computer. The ABCON subprogram 
initiates output buffer control if all data have 
been processed from the input buffer. 

If all data have not been processed, the 
ABCON program (see Figure 9) checks to de
termine whether the control word is valid. If 
the control word is not valid an error has oc
curred in the data bits on that intercomputer 
channel. 

Figure !). A-B Intereomputer Control Subprogram 
(ABCON). 

The recovery action, as described in the 
ABCONF AIL routine, can b,e used with the 
difference that the discovery of error has been 
made in the receiving rather than in the trans
mitting computer. 

The next operation determines the data 
format type so that the data can be extracted 
from the control word (only for two-word 
format) . Then the index to the next control 
word is computed. This index is stored to make 
the next control word available when processing 
the next format. The ABCON subprogram 
then turns control over to the processing sub
routine which is specified by the format desig
nator in the control word. This is one applica
tion of the indirect addressing feature of the 
Unit Computer. The processing subroutine 
executes its designated task and returns control 
to ABCON. ABCON returns control tempo
rarily to the Executive routine to determine 
whether any higher priority subprograms are 
scheduled. 

This is similar to flag setting mechanism 
number 4) described in Section II of this paper. 



460 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

If stringent timing requirements for higher 
priority tasks do not exist, all intercomputer 
messages could be processed before returning 
control to the Executive routine. 

This cycle continues until all data formats 
have been processed. At this point the B Com
puter Input Buffer status is tested to determine 
whether the B Computer has established an 
input buffer. If not, control is again returned 
temporarily to the Executive routine. N or
mally this test is passed without delay and re
quirements for initiating an output buffer to 
the B Computer are begun. The unpacking in
dex is reset for the next input buffer and the 
ABCON flag is cleared in the Executive Flag 
Table. The input-buffer control word is packed 
in the first word of the current output buffer 
and the end code is packed as the last word. 
The output buffer control word is formed, the 
output buffer packing index is switched to the 
alternate buffer area, and an output buffer with 
monitor is initiated. Control is now returned 
to the EXEC until the next input buffer is 
received. 

ILLUSTRATION OF OPERATION 

In the discussion that follows, the method of 
control of the data exchange between the A 
and B Computers is described. The same proc
ess is used for controlling the A-C intercom
puter data exchange in a three-computer 
system. 

The computers are programmed to have equal 
control capabilities, but at anyone time the 
computer that has initiated the Intercomputer 
Control subprogram is in control. The Inter
computer Control subprogram will retain con
trol until all previously received inputs have 
been processed. When all inputs are processed, 
the computer in control initiates an output to 
the other computer. Control is relinquished to 
the other computer as soon as all the. output 
data have been transferred. rhis type of re
ciprocating control is described as a "ping
pong" control system. 

At the outset of system operation, the A Com
puter is selected to have initial control. The 
A Computer is forced into the output mode by 
an initialization subroutine. Conversely, the B 
Computer is started in the input mode by its 

initialization subroutine. Data, transmitted 
from the A Computer to the B Computer in the 
first buffer exchange, would include the A Com
puter's real-time clock reading (in order to 
provide a common time base for the entire 
system) in addition to other initializing data. 

The ABCON subprogram in Computer A 
tests the special "input buffer status control line 
that indicates when the input mode has been 
selected in Computer B. Computer B, via the 
BACONMOUT program or the initialization 
subroutine, must have its Input Buffer With 
Monitor in such a manner that the first word 
received from Computer A automatic::!lly de
fines the area of Computer B's memory in 
which the succeeding data words are to be 
placed. When the input mode is detected, the 
ABCON subprogram in Computer A initiates 
an Output Buffer With Monitor. The first word 
always contains the first and last address of 
the input area in Computer B. Data transfer 
proceeds under control of the regulating signals 
which, in the buffer mode, operate independ
ently of the program operation. The monitor 
logic in both computers compare, the cu[rent 
data word's transfer address with the last 
address that should be transferred. When 
equal, each computer's monitor logic interrupts 
normal program operation to allow immediate 
action by the respective computers. 

Computer A, which was transmitting data, 
initiates the Output Buffer Monitor program 
(ABCONMOUT), which initiates an Input 
Buffer With Monitor into its buffer control 
register, and will remain inactive in the inter
computer transfer until Computer B initiates 
a transfer back to Computer A. In Ccmputer 
B the monitor initiates the Input Buffer Moni
tor program (BACONMIN), which in turn 
initiates the BACON subprogram, thereby ac
cepting the intercomputer control function 
from Computer A. The BACON subprogram 
will initiate the processing of all data, using 
the Control bits found in the first word of each 
format, to select the proper processing subrou
tine that is required. When all data are proc
essed, an Output Buffer With Monitor is initi
ated to Computer A. This buffer consists of all 
output data accumulated while Computer B was 
in the input mode. 



MULTICOMPUTER PROGRAMMING FOR A LARGE SCALE PROCESSING SYSTEM 461 

When this buffer from Computer B to Com
puter A is completed, the BACONMOUT pro
gram in Computer B initiates an input buffer 
to accept the next output buffer from Computer 
A. At the same time, the ABCONMIN pro
gram in Computer A flags the ABCON sub
program so that the inputs can be processed. 
When the inputs have been processed by 
ABCON, a complete round-trip intercomputer 
cycle is completed. The process repeats con
tinuously, lending to the "ping-pong" effect in 
data transfer. 

IV. CONCLUSIONS 

Other systems, both commercial and military, 
have been and are being conceived which re
quire more than one computer to solve the 
user's problem. Some of these systems will 
connect two or more identical computers 
whereas other systems will connect a large 
scale central processor with smaller satellite 
computers. Consideration of multicomputer 
concepts in an original system design would 
allow for expansion of a single computer in
stallation into a multicomputer installation as 
the problems to be solved increase or become 
more complex. Similar considerations would 
allow for greater flexibility in a multicomputer 
installation such that, depending on the problem 
or operational requirements, computers could 
operate separately on different problems or to
gether to solve a common problem. The multi
computer programming techniques presented 
in this paper are usable as described or are 
adaptable to fit a particular system require
ments. 

The Unit Computer was designed specifically 
to facilitate extremely efficient intercomputer 
data transfer. However, such features as in
ternal interrupts upon completion of a buffer 
transmission, although desirable, are not ab
solute requirements. The basic requirement is 
the ability to communicate directly with an
other computer. Since control signals associ
ated with input and output to another computer 
differ from those associated with input/'output 
to a peripheral device, these differences must 
be compensated for in the computer hardware. 

The computer characteristic necessary to 
implement the real-time executive control 
philosophy is a real-time clock. This woulr. be 

an internally stored, automatically maintainea 
clock as in the Unit COIllPuter, or an external 
clock capable of being referenced by the com
puter. The internal clock, repeat and compare 
instructions and external and internal inter
rupts included in the Unit Computer enable 
extremely efficient executive control; however, 
of these, only a real-time clock is an absolute 
requirement in the application of the Execu
tive Control Philosophy to the control of a real
time system. If real-time is not a system re
quirement the real-time clock could be replaced 
by some other indexing mechanism under con
trol of the program, thereby enabling use of 
the same priority logic to optimize executive 
control. 

The Executive Control Philosophy presented 
in this paper is not restricted to multicomputer 
applications. The concepts are equally valid for 
a real-time system employing only one com
puter. 

Several extensions of the techniques dis
cussed will, no doubt, be obvious to the reader. 
Among these are dynamic changes in system 
task priorities as the operational requirements 

change during program operation. This merely 
means altering the order of the task list in the 
Executive stores. Included in this extension 
would be the ability to delete some tasks and 
add new tasks (subprograms) from a supple
mentary storage. This could be useful not only 
in a real-time command and control system 
when the nature of the battle may have 
changed but also in the scheduling of multi
programming type problems in a commercial 
computing center. The fact that subprograms 
are designed to be independent of one another 
with any communication or control handled by 
means of the Executive routine and associated 
tables, makes the concept entirely feasible. 

From a hardware standpoint, one modifica
tion considered is the ability of one computer 
to interrupt another computer. This charac
teristic has been incorporated in the later 
models of the Unit Computer. It has the ad
vantage of allowing a computer to signal an
other computer that a buffer transmission is 
about to be initiated. This essentially elimi
nates the need for the Input Buffer Status sig
nal and allows for more positive control of 
intercomputer data transfer. 





ON THE ANALYSIS AND SYNTHESIS OF THREE-VALUED 
DIGITAL SYSTEMS 
Jorge Santos and Hector Arango 
Departamento de Electrotecnia 
Universidad Nacional del Sur 

Bahia Blanca, Republica Argentina 

1. DEFINITIONS, SYMBOLS AND 
NOMENCLATURE 

1.1 Post Algebras 

Many papers about Post algebras may be 
found in the literature. In particular, Refer
ences [1] to [4] cover the theory here required. 

We shall designate the Postian variables with 
lower case letters a, b, etc. While most of the 
results next given are valid for N -valued Post 
algebras, we shall consider in regard to prac
tical applications a three-valued Post algebra, 
that is to say, Postian variables are permitted 
to take values on a three elements linear lattice 
(Ref. [5]) (Fig. 1). Postian functions of m 
variables are conceived as the elements of the 
m-dimensional hypercube generated by m of 
such lattices (Ref. [6]). 

2 

1 

o 

Figure 1. The Three-Elements Linear Lattice. 

463 

1.2 Operations 

The entire algebra may be generated by 
using the following two Primitive operations: 

Cycling a' 
Logical Product ab 

n 
n ak == aOal ... an 

k==o 

Their truth-tables are: 

[fIE 
1±liJ 

TABLE 1 

Other operations to be used are: 

Complementation a == «aa')"(la)')' 

where a" means (a')' 
Logical Sum a+ b == (a b ) 

n 
U ak == an + al + ... + an 

k==o 
"J" Operations Jo(a) == (aa")"a" 

J 1 (a) == (a'a") "a' 
J 2 (a) == (aa') "a 

"J" Operations J k (a) == (Jk (a» k E {O,1,2} 
"K" Operations K (a) == 1 J 2 (a) 



464 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

Their truth-tables are easily obtained from 
their definitions in terms of the primitive opera
tions. 

f(x}, X2, ... , xn) = 

1.3 Canonical Forms 
From the lattice concept of Postian functions 

described in 1.1 the following canonical forms 
are obvious: 

= U f (kh k2' ... ,kn) Jk (Xl) Jk (X2) ... Jk (Xn) 

= n f (kh k2' ... ,kn) + ~ (Xl) + J k (X2) + ... + J k (Xn) 

where kh k2' ... , kn £ {0,1,2}, and therefore the 
symbols U and n stand for 3n terms. 

For the sake of conciseness we shall use the 
notation 

(kl k2 ... kn) == Jk (Xl) Jk (X2) ... Jk (Xn) 

The symbol 0 instead of a k in the parentheses 
will imply that the corresponding J -operation in 
the second member must be omitted. 

1.4 Basic Logical Units Symbols 
In the following, logical diagrams will be 

often used. They are formed by interconnecting 
basic units, each one performing some definite 
logical operation. The symbols adopted for such 
units are listed in Fig. 2. 

2. ELECTRICAL MODELS FOR POST 
ALGEBRAS 

The logical values 0,1,2 will be associated to 
voltage levels according to Table 2. 

:=B-nb :=&-n+b 
"And" Gate ·Or" Gate 

"K"Gate 

~ 
Joq J1q J2.q 

"3-lnput" Tristable Multivibrator 

Figure 2. Symbols Used for the Basic Logical Units. 

TABLE 2 

Associated voltage 
Logical value level (in volts) 

0 +6 
1 0 

2 -6 

Given a certain Postian function f (Xh X2, ... , 
xn), a circuit with n inputs (VI, V;!, ... , VII) 
and one output V is said to be a Model of the 
function, if for any given combination of 
voltage levels at the input, the output assumes a 
voltage such that its relation to the set of in
puts is isomorphic with the relation between 
the function and its independent variables. 

As usual in the Synchronous type of Com
puters, those voltage levels are analyzed at cer
tain regular intervals of time (clock pulses). 

Postian variables may be related to other 
physical magnitudes of a system, such as cur
rents, magnetization states, etc., provided that 
they appear in three discriminable values. 
Those systems are also models of Postian func
tions in the general sense stated above. The 
problem of finding the Postian functions as
sociated with a given system is usually called 
"Logical analysis." 

In Table 3, adopted correspondences between 
Postian variables and physical magnitUdes are 
given: 

TABLE 3 

Logical 
value Current Magnetization 

0 Positive sign Positive sign 

1 No current Film demagnetized 

2 Negative sign Negative sign 



ON THE ANALYSIS AND SYNTHESIS OF THREE-VALUED DIGITAL SYSTEMS 465 

3. LOGICAL ANALYSIS 

3.1 Introduction 

In the consideration of such ternary systems, 
we must distinguish between combirw,tional and 
sequential systems. The meaning of such terms 
will be the usual one.3, 7 The analysis of both 
kinds of ternary systems is a~ready known 
and may be easily performed. The correspond
ence between physical and logical values is first 
established. Next, the dependence of the output 
electrical values on the input electrical values 
is obtained (to carry out this step a definite 
knowledge about the physical behavior of the 
system is needed). The truth-table follows 
easily, and from it the canonical form of the 
Postian functions can be obtained. 

3.2 Application to the Analysis of a Ternary 
Store 

To illustrate the point, we shall consider the 
logical analysis of a magnetic thin-film ternary 
store. The design is based on the technique for 
magnetic thin-film binary storage described 
in Ref. [8]. 

A Ni-Fe alloy is deposited on a cylindrical 
glass tube by evaporation in the presence of a 
magnetic field. The resulting film exhibits a 
considerable anisotropy: an "easy" (rectan
gular loop) direction of magnetization is estab
lished in the film parallel to the applied mag
netic field, and a "hard" (linear characteristic) 
direction perpendicular to the previous one. 

In the following, we shan consider as relevant 

8 *" X direction 

CD f" Y direction 

Figure 3. An Isolated Specimen of Magnetic Thin 
Film, showing its magnetic characteristic on the 

X and Y Directions. 

magnitudes: 1) Input currents, 2) Remanent 
magnetization states, 3) Voltage outputs. 

In Fig. 3 an isolated specimen of a thin
magnetic film is represented. 

There are two exciting wires, X, Y. Current 
flowing in each wire produces a field in the 
corresponding coordinate. The "easy" direction 
is circumferential, so remanent magnetic states 
can only occur in the X-direction. 

For suitable values of X and Y pulses, the 
following results were obtained: 

1) An X-pulse does not change significantly 
any previous saturation state of the film. 

2) A "nondestructive" intensity Y -pulse 
does not change significantly any previous 
saturation or demagnetized state. But if 
the pulse is increased to "destructive" 
intensity, the film always becomes damag
netized. 

3) An X-pulse in coincidence with a nonde
structive Y-pulse produces in every case 
a remanent magnetization state in a cir
cumferential direction, its sign depending 
on the X-pulse polarity. 

Word selection and nondestructive reading 

x --__.,. 

Trit' 
5 Y2 

Trit 2 Trlt 3 

Word t 

Word 2 

Word 3 

Figure 4. Word Selection Array. Three Words of 
Three Bits Each. 



466 PROCEEDINGS-S'PRING JOINT COMPUTER CONFERENCE, 1964 

would be therefore achieved with the array il
lustrated in Fig. 4. Every ring can store a 
"trit" (Log:! 3 bits) of information. Noncoinci
dent Y -pulses are made nondestructive, whereas 
coincident Y -pulses generate a resulting MMF 
leading to ring demagnetization. 

The process of writing should be performed 
as follows: By the X, Y 1 wires of the selected 
word, current pulses are sent as indicated in 
Fig. 5. The writing of a 0, 1 or 2 depends on 
the temporal position of the aiding pulse Y 2, as 
can be easily understood from inspection of the 
same figure. Note that the information is re
placed only in the films of the selected word. 

~ x .... , .. ",.ct .. ""d 

~ VI pulse in th£sel~ctw word 

Y2 p~ to write Q 0 

Yz pulse to writll 0. 2 

~ Y2 pulse to wrlh! Q 1 

Figure 5. Writing Pulses in the Ternary Store. 

Reading is performed by sending a pulse 
along the Y1-wire of the selected word. If a 0 
or a 2 are stored, responses would be obtained 
as illustrated in Fig. 6. If the specimen was 
demagnetized-a 1 stored-the readout wire 
would not detect any change of flux and no re
sponse would appear. 

We shall use the following Postian variables: 

TABLE 4 

Postian Associated physical 
variables magnitudes 

x, Yh Y2 Currents in the corresponding in-
put wires. 

m Remanent magnetization state of 
the thin-film. 

s N ormaIized voltage output from 
readout wire S. 

Then we may construct the truth-table of the 
store (Table 5). -

~ y, readinq pulse in the Slllactad 
word 

~ (I,output VOltQq¢.Ao~torod 

~ <I, output vol tage. A 1 stored 

Figure 6. Reading Pulse and Outputs in the 
Ternary Store. 

TABLE 5 

Operation x Yl Y2 mn mn+1 

0 1 0 0 0 
Write 0 0 1 0 1 0 

0 1 0 2 0 

0 1 1 0 0 
0 1 1 1 0 
0 1 1 2 2 

1 0 0 0 1 
Write 1 1 0 0 1 1 

1 0 0 '2 1 

1 0 1 0 0 
Read 1 0 1 1 1 

1 0 1 2 2 

1 1 0 0 0 
1 1 0 1 1 
1 1 0 2 2 

1 1 1 0 0 
1 1 1 1 1 
1 1 1 2 2 

2 1 0 0 2 
Write 2 2 1 0 1 2 

2 1 0 2 2 

2 1 1 0 0 
2 1 1 1 2 
2 1 1 2 2 

s 

0 
0 
0 

1 
2 
2 

0 
1 
2 

0 
1 
2 

0 
1 
2 

1 
1 
1 

2 
2 
2 

0 
0 
1 

Other combinations of X, Y 1 and Y 2 pulses do 
not occur in the rings, and therefore they may 
be considered as forbidden or don't care terms. 
From the truth-table, the canonical forms of 
mn+1 and s follows immediately. 



ON THE ANALYSIS AND SYNTHESIS OF THREE-VALUED DIGITAL SYSTEMS 467 

In 6.3, a method for transferring the stored 
information to a MVs register shall be de
veloped. 

4. MINIMIZATION OF POSTIAN 
FUNCTIONS 

Minimization can be performed by an exten
sion of the Quine method currently used for 
Boolean functions. The Absorption law may be 
here expressed as 

U Jk (x) f == f 
k£ {0,1,2} 

where f stands for any Postian function. 

In this way it is possible to obtain a set of 
prime implicants. Tabulating them against the 
function minterms, we may determine the 
essential terms, and then choose between the 
nonessential terms a set of prime implicants 
covering the function min terms not included in 
the set of essential terms. 

Redundancies (forbidden or don't care 
terms) are treated as in the Boolean case, and 
a minimal form of the Postian function is ob
tained. From this simplest form it is an easy 
matter to draw the, corresponding logical 
diagram. 

As an example, we shall proceed to minimize 
the canonical form of mn+1 derived from truth
table 5. 

First of all, the 34 four-variable minterms are 
grouped as in Table 6 a,b. 

TABLE 6 (a) 

m n +1 == 0 mn +1 == 1 m n+1 == 2 

0100 1000 0112 
I 0101 1001 1012 

0102 1002 1102 
0110 1011 1112 
0111 1101 2100 
1010 1111 2101 
1100 2102 
1110 2111 
2110 2112 

TABLE 6 (b) 

FB 

0000 1020 2000 
0001 1021 2001 
0002 1022 2002 
0010 1120 2010 
0011 1121 2011 
0012 1122 2012 
0020 1200 2020 
0021 1201 2021 
0022 1202 2022 
0120 1210 2120 
0121 1211 2121 
0122 1212 2122 
0200 1220 2200 
0201 1221 2201 
0202 1222 2202 
0210 2210 
0211 2211 
0212 2212 
0220 2220 
0221 2221 
0222 2222 

Note that for the combinations of x, Yh Y2, mn 
values indicated by the minterms of group 
m ll+1 == 0 the functions take the value O.In the 
same way, for groups mn+1 == 1 and 2, the func
tions take the values 1 and 2 respectively. 
Finally, the group F B is composed by all for
bidden combinations. 

N ext, the following steps are performed: 

1) Each minterm of group mn+1 == 1 is 
checked with every other in the same 
group or in group F B in order to apply 
the Absorption law. 

2) Each minterm of group mn+1 == 2 is 
checked with every other in the same 
group or in group F B in order to apply 
the Absorption law. 

3) With a similar purpose, each minterm of 
group F B is checked with every other of 
the same group. 

In Table 7 are listed all the functions gener
ated by one application of the Absorption law to 
all the four variable minterms. 



468 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

Those functions arising from steps 1), 2) 
or 3) are distinguished by adding a 1, 2 or f 
respecti vely. 

TABLE 7 

0000 f 1000 1 2000 f 
0000 f 1000 2000 f 
0000 1000 2000 2 
0000 1 0100 0200 f 
0010 f 1010 2010 f 
0001 f 1001 1 2001 f 
0001 1001 1 2001 2 
0001 1 0101 0201 f 
0020 f 1020 f 2020 f 
0002 f 1002 2002 f 
0002 1002 2002 2 
0002 1 0102 0202 f 
0100 1100 2100 2 
0100 1100 2100 
0010 1010 2010 
0010 0110 0210 f 
0110 1110 2110 
0101 1101 1 2101 2 
0011 1011 1 2011 2 
0011 1 0111 0211 f 
0120 f 1120 f 2120 f 
0102 1102 2 2102 2 
0012 2 1012 2 2012 2 
0012 2 0112 2 0212 f 
0200 f 1200 f 2200 f 
0200 f 1200 f 2200 f 
0020 f 1020 f 2020 f 
0020 f 0120 f 0220 f 
0210 f 1210 f 2210 f 
0201 f 1201 f 2201 f 
0021 f 1021 f 2021 f 
0021 f 0121 f 0221 f 
0220 f 1220 f 2220 f 
0202 f 1202 f 2202 f 
0022 f 1022 f 2022 f 
0022 f 0122 f 0222 f 

These marked functions are checked as in 1), 
2) and 3) for a new application of the Absorp
tion law. In Table 8 are listed all the functions 
resulting from two applications of such law, 
with a similar indication for those arising from 
marked functions. 

Of course, those functions not discarded in 
the first absorption process must be considered 
as prime implicants. Here the only prime im
plicant generated at this stage is (1102). 

TABLE 8 

0000 f 1000 2000 
0000 1000 2000 2 
0000 1 0100 0200 f 
0000 1000 2000 
0000 0100 0200 f 
0000 0010 0020 f 
0100 1100 2100 
0010 1010 2010 
0010 0100 0210 f 
0001 1001 1 2001 2 
0001 1 0101 0201 f 
0001 0011 0021 f 
0200 f 1200 f 2200 
0020 f 1020 f 2020 
0020 f 0120 f 0220 f 
0002 1002 2002 2 
0002 0102 0202 f 
0002 0012 2 0022 f 

An exploration of the new marked functions 
for a third application of the Absorption law 
does not give us any result. Therefore, all the 
functions of Table 8 marked 1 or 2 are prime 
implicants of the original function. 

Finally, in Table 9 a, b the prime implicants 
are tabulated against the corresponding func
tion minterms in order to get subgroups of 
prime impIicants covering all the minterms in 
each case. 

(a) TABLE 9 (b) 

1 1 1 1 1 1 0 1 1 1 2 2 2 2 2 
o 0 0 011 1 0 1 1 1 1 1 1 1 
o 0 0 101 1 1 o 1 o 0 o 1 1 
o 1 2 111 2 2 2 2 o 1 2 1 2 

0000 xx x 0012 x x x x 

0001 x x 2000 xx x 

1001 x x 2001 x x 

2002 x x 

1102 xx 



ON THE ANALYSIS AND SYNTHESIS OF THREE-VALUED DIGITAL SYSTEMS 469 

This last step produces the following minimal 
form: mn+1 == (1102) + (0012) + (2000) + 
(2001) + 1 «0000)+(0001)+(1001». 

5. THE SYNTHESIS PROBLEM. COMBI
NATIONAL CIRCUITS 

5.1 Introduction 
The matter of obtaining an electrical model 

of a given function is currently described as 
synthesis. We shall consider combinational cir
cui ts first. 

Of course, synthesis is not a problem with a 
single answer. As in binary synthesis, the first 
task is to design a few basic circuits, each one 
performing some particular operation. The set 
of operations implemented must be complete, in 
the sense that the entire algebra could be gen
erated from them (see Ref. [9]). In order to 
get reliability, we shall impose an "on-off" per
formance of the transistors used in the cir
cuitry. Reshaping of the signal in every active 
stage will be secured by using common emitter 
connections. 

5.2 Possible Operations 
Let us briefly discuss our possibilities. For 

PNP transistors we have the fundamental cir-
cuit indicated in Fig. 7. The points c, e admit 
the following voltage cOlllbinations (Table 10). 

TABLE 10 

c e 

-6 0 
-6 +6 

o +6 

b 

Figure 7. Fundamental Connection for the 
Active Stages. 

The value of the bias resistance defines the 
behavior of the circuit as Type I or II, accord
ing to the following table (Table 11). 

TABLE 11 

Transistor 
b Type I Type II 

+6 off off 

0 off on 

-6 on on 

Therefore, the following truth-tables can be 
written: 

c e Type 

2 1 
2 1 I 
2 1 

I ~ I ! I TT - --
2 1 

2 0 
2 0 I 
2 0 

2 0 
2 0 II 
2 0 

1 0 
1 0 I 
1 0 

1 0 
1 0 II 
1 0 

TABLE 12 

Input 

0 
1 
2 

o 
1 -

2 

0 
1 
2 

0 
1 
2 

0 
1 
2 

0 
1 
2 

Output 

2 
2 
1 

2 
1 -

1 

2 
2 
0 

2 
0 
0 

1 
1 
0 

1 
0 
0 

Postian 
Function 

1 + J2(b) 

11~J,,(b) I 
- I - v '\. -- , 

-
J 2(b) 

Jo(b) 

1 J 2 (b) 

1 Jo(b) 

We shall implement "And" and "Or" gates 
by means of conventional diode circuits. The 
so called "Constant Functions" 0, 1, 2 are of 
course generated as their corresponding voltage 
levels. Two properly selected functions of Table 



470 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

12, together with the previous ones, allow the 
generation of the entire algebra. 

A convenient pair appears to be J u and J t, 
leading to simple expressions for J I and J 2, 

such as 

J 2 (x) == J o (1; (x) ) 

J1(x) ==Jo(Jo(x) +J2 (x» 

As we see, the system of operations (J U, :ft , 

, + ) is certainly complete. However, because 
of electronic reasons that will become evident 
later, the operation 

K(x) == 1 J 2 (x) 

will be also considered. 

Any Postian function can then be systemati
cally generated. In order to get reshaping of 
the signal after every degenerative stage, the 
complements of the minterms (k1k2 ••• ko ) are 
sometimes generated, either using deMorgan's 
Laws or the relation 

Jo(Minterm) == Minterm 

Also we shall take advantage of the relation 
K (Minterm) == 1 Minterm 

Note that Jo and J I can be generated as 
Jo (x) == J2 (Jo (x) ) 
Jdx) == Jo(Jo(x) J 2 (x» 

5.3 Example 

The function 
Jo(x) J1(y) + 1J2 (x) J 2 (y) 

is realized as in Fig. 8. 

5.4 Implementation 

Fig. 9 illustrates the electronic circuits per
forming the set of selected operations. 

6. THE SYNTHESIS PROBLEM. SEQUEN
TIAL CIRCUITS 

6.1 Introduction 

The Tabular and Matrix techniques 10, 11 used 
in sequential Boolean synthesis can be easily 
extended to Postian systems. 

As a basic sequential unit, the electronic cir
cuit of Fig. 10 was developed. The analysis of 
the circuit leads to the following truth-table, 
where n indicates the order number of clock 
pulse: 

.Tc;x 
Jiy 

Jix 
J2y 

+ JoxJtY+ 1.l2x,JzY 
,.......-,;-::-r-:-;-i 

Figure 8. An Example of Realization of a 
Two Variables Postian Function. 

-18 -18 

-& 

+18 (0) +18 (b) 

-18 

+18 (c) 

0A70 

OA 70 

04 70 0470 

100 K.o. f8Kll 

+18 (d) -18 

Figure 9. Electronic Diagram of the Basic 
Combinational Circuits Selected. 

TABLE 14 

rO SO to qo+l 

0 2 2 0 

2 0 2 1 
2 2 0 2 
2 2 2 qo 



ON THE ANALYSIS AND SYNTHESIS OF THREE-VALUED DIGITAL SYSTEMS 471 

Figure 10. Electronic Diagram of a "3-input" Tristable 
Multi-vibrator, Selected as the Basic Sequential Unit. 

All other input combinations are supposed 
forbidden. So we shall have, after a convenient 
minimization process, the following character
istic equation: 

qn+l == 1 (000) + (000) + (222) qn 

in the independent variables r n, sn, tn. 

For obvious reasons, this circuit will be called 
a "3-input" Tristable Multivibrator. It repre
sents some sort of generalization of the well 
known RS flip-flop. 

By combining "3-input" MVs. with the com
binational units already described, any sequen
tial Postian function can be synthetized. In the 

Figure 11. Logical Diagram of a Shift Register. 

following paragraphs some examples are given 
on the matter. 

6.2 Other Sequential Circuits 

By a proper connection of its inputs and out
puts, a 3-input Tristable Multivibrator can be 
made to behave either like a "Cycling" MV or 
like a "Delay" MV, whose truth-tables are indi
cated in Table 15. 

i 

0 

0 
0 

1 
1 
1 

2 
2 

(a) 
Cycling 

~ 

qn 

0 
1 
2 

0 

1 
2 

0 

1 
I 

TABLE 15 

qn+l i 

1 0 

2 0 

0 0 

0 1 
1 1 
2 1 

2 2 
0 2 

(b) 
Delay 

qn qn+l 

0 0 

1 0 

2 0 

0 1 
1 1 
2 1 

0 2 
1 2 

~----~----~--~[ ~I ____ ~ __ ~ ____ ~ 
2 2 1 2 2 2 

By applying the tabular method of synthesis, 
it is an easy matter to obtain the input equa
tions for the 3-input MV: 

Simulation of 
Cycling MV 

r == (02) (21) 

s == (00) (22) 

t == (01) (20) 

Simulation of 
Delay MV 

r == (00) == Joq 

s == (10) == J1q 

t == (20) == J2q 

where the variables of the minterms are i, q. 

Another point of interest is the design of 
shift registers. From a logical point of view, a 
shift register is merely a chain of delay MV. 
To take advantage of the fact that in our 
3-input MV we have the three J-functions on 
the output, we may use the connection illus
trated in Fig. 11. 

The fact that any MV may be changing while 
influencing the next, is taken car~ of by the 



472 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

delay introduced by the time constants of the 
shifter circuits. (See Fig. 10.) 

6.3 Other Examples 
Let us design a decade counter by the Tabular 

method. The left part of Table 16 represents the 

Application Equations in the form of a truth
table giving the desired evolution of the out
puts of the counter multivibrators. On the. right 
we have written suitable combinations of the 
inputs, taken from Table 14. 

TABLE 16 

q~ q~ q; qn+l 
0 

q~+l qZ+l rn 
0 

0 0 0 0 0 1 0 

0 0 1 0 0 2 0 

0 0 2 0 1 0 0 

0 1 0 0 1 1 0 

0 1 1 0 1 2 0 

0 1 2 0 2 0 0 

0 2 0 0 2 1 0 

0 2 1 0 2 2 0 

0 2 2 1 0 0 2 

1 0 0 0 0 0 0 

Then the Input Equations can be easily ob
tained. Once minimized, they adopt the form 

ro == (022) rl == (022) r2 == (002) 

SI == (002) 

tl == (012) 

S2 == (000) 

~ == (001) 

The resulting logical diagram is illustrated in 
Fig. 12. 

As a final application of this method, we shall 
develop a circuit to transfer a word of the thin 
film store described in 3.2 to a Register of 3-
input MV s. The required truth-table may be 
simplified, by proper use of redundancies, to 
(Table 17) 

TARLE 17 

Operation x Yl Y2 qn+l 

Reading 1 0 1 mn 

0 0 0 qn 
Writing 

2 0 2 qn 

sn 
0 

2 

2 

2 

2 

2 

2 

2 

2 

0 

2 

t3 rn 
1 

sn 
1 

tn 
1 r~ sn 

2 
tn 

2 

2 2 2 2 2 0 2 

2 2 2 2 2 2 0 

2 2 0 2 0 2 2 

2 2 2 2 2 0 2 

2 2 2 2 2 2 0 

2 2 2 0 0 2 2 

2 2 2 2 2 0 2 

2 2 2 2 2 2 0 

2 0 2 2 0 2 2 

2 2 2 2 2 0 2 

MVO 

MVf 

MV2 

Figure 12. Logical Diagram Showing a Base Three 
Decade Counter. 



ON THE ANALYSIS AND SYNTHESIS OF THREE-VALUED DIGITAL SYSTEMS 473 

X, Yt 

words 

Trlh 
.) 

'" 

ifgister 

Figure 13. Concerning to the Transfer of Information 
from the Thin-Film Store to a MVs. Register. 

That is to say, each MV copies the state of 
its associated ring only while reading. 

After obtaining and simplifying the input 
equations, we shall have the logical diagram 
indicated in Fig. 13. 

7. DESIGN OF A TERNARY FULL ADDER 

Kilburn et al. have developed a fast carry
propagation binary adder,12 now incorporated 

c.o 
fTroMistor 
I 
I 
I 
I 

It: 
L __________ ...J 

carry propa.qation loqiG 
ltClqc 1 to Z 

Figure 14. Block Diagram of the Kilburn Adder. 

in the Arithmetic Unit of ATLAS Ferranti 
Computer,13 Let us synthesize the ternary ver
sion of such system. 

The truth-table of the ternary sum is indi
cated in Table 18. 

c 

0 
0 
0 

0 
0 
0 

0 
0 
0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

x 

0 
0 
0 

1 

1 

1 

2 

2 

2 

0 
0 
0 

1 

1 

1 

2 
2 
2 

y 

0 
1 

2 

0 
1 

2 

0 
1 

2 

0 
1 

2 

o 
1 

2 

0 
1 

2 

TABLE 18 

s 

0 
1 

2 

1 

2 

0 

2 
0 
1 

1 

2 

0 

2 
o 
1 

t) 

1 

2 

c' 

0 
0 
0 

0 
0 
1 

0 
1 

1 

0 
0 
1 

o 
1 

1 

1 

1 

1 

x y 

I 
Full c 
Adder 

c' s 

The case c = 2 is not included because the 
propagation of any carry value other than 0 
or 1 is not possible in a full adder, whichever 
the numerical base used. 

From the table, the canonical forms of c', s 
ar obtained, and after a minimization process, 
we have 

c' = fa (X,y) c + fb(x,y) 
s == 1 (fc(x,y) Jo(c) + fd(x,y) Jdc) 

+ fa(x,y) Jo(c) + fc(x,y) Jdc) 
where 

fa (X,y) == (02) + (11) + (20) 

fb(x,y) == (12) + (21) + (22) 

fc (X,y) == (01) + (10) + (22) 

fd (X,y) == (00) + (12) + (21) 



474 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

-2 

0670 

Co.rry-pa.th voItG<jt 
todifico.t ion 

~. 

+6 

-'8 

L--~-e 
Normal VOltQC)t 
C.OCIifico.tion 

OCt10 

Figure 15. Carry Propagation: Electronic Diagram 
of a Typical Stage, Including Normalization of 

Voltage Levels. 

f~ JOK+JtHJoG 

J:tl( Jt x+ Joy+Joc 
~OY 

oC: 

~lC Ju+ J2Y+Joc 
~Y oC 

~~ ==tV Jox-!-Joy+J, e 

Jh: 
;r2Y 
J1C 

JolC 
Jt)' 
Ju; 

Jox 
~Y 
Joe 
Jf lC 
JtY 
JOe 

Jox+ Jay..JJoG 

Ju+ J. y.+ Jo c 

3!~ ~ J2X+ Jo y+Jo e 
Joe ---{) 

With the logic illustrated in Fig. 14 the carry 
propagation time is reduced to the sum of the 
switching time of the slowest carry-path tran
sistor and the time needed for the carry pulse 
to travel along the carry-path. 

Because of electronic reasons, another corre
spondence between Postian and electrical values 
is adopted on the carry-path circuit, namely, 0 
volt for the "I" and -2 volts for the "2". 
Therefore, those circuits analyzing carry-path 
information must be designed to match such 
correspondence. 

The electronic diagram of a typical carry 
propagation stage is illustrated in Fig. 15. 

The sum s is easily synthesized by the method 
described in 5.3, leading to the gate circuit of 
Fig. 16. The storage of s in a MVs. register is 
also indicated. 

If the Arithmetic Unit is of the serial-parallel 

J2 

Stored /) 

X Qtgister Y Regist(tr 

ffiffi 
Jox JU( J2.X JoV JtY J2V 

Figure 16. Generation and Storage of the Sum. 



ON THE ANALYSIS AND SYNTHESIS OF THREE-VALUED DIGITAL SYSTEMS 475 

-b 

E..8kA 

From la.st ~t(lqe 

-I' -1' 

5kn 5kA 

250pF 250pl= 
~ (.loctt pulS4S~ 

0A70 

+6 

To fir5t staq ~ 

Fig.ure 17. Carry Feedback on a Serial-Parallel Adder. 

type, the carry generated at the final stag·e at 
time n must be stored in a Delay MV in order 
to incorporate it as input carry at the least 
significant digit stage at time n + 1. Because 
of the binary character of the carry propaga
tion, the carry storage may be performed by 
means of a conventional binary Delay MV, as 
illustrated in Fig. 17. 

ACKNOWLEDGEMENT 

The author~ wish to express their apprecia
tion to Mr. F. Lorenzo who contributed to the 
actual construction of the Kilburn adder. 

REFERENCES 

1. POST, E. L. "Introduction to a general 
theory of elementary propositions," Ameri
can Journal of Mathematics, Vol. 43, pp. 
163-85, 1921. 

2. ROSSER, J. B., and TURQUETTE, A. R. 
"Axiom schemes for M-valued proposi
tional calculi," Journal of Symbolic Logic, 
Vol. 10, pp. 61-82, 1945. 

3. LEE, C. Y., and CHEN, W. H. "Several
Valued Combinational switching circuits" 
AlEE Transactions, Vol. 75, Part I (Com
munication and Electronics), pp. 278-83, 
July, 1956. 

4. VACCA, R. "A three-valued system of logic 
and its application to base three digital 
circuits," Information Processing - Pro
ceedings of the International Conference 
on Information Processing, UNESCO. 
Paris, 15-20, June, 1959, pp. 407-14. 

5. BIRKHOFF, G. "Lattice Theory," Amer. 
Math. Soc., New York, 1940. 

6. LEE,. C. Y. "Switching functions for an 
N-dimensional cube," AlEE Transactions, 
Vol. 73, Part 1, pp. 289-91, September 
1954. 

7. PHISTER, M. "Logical design of digital 
computers," John Wiley & Sons, New 
York, 1956. 

8. HOFFMAN, J. R., TURNER, J. R., and KIL
BURN, T. "High-speed Digital Storage using 
Cylindrical Magnetic Films," Journal of 
the British I.R.E., Vol. 20, No.1, pp. 31-6, 
January, 1960. 

9. BERLIN, R. D. "Synthesis of N-valued 
switching circuits," IRE Transactions on 
Electronic Computers, Vol. EC-7, No.1, 
pp. 52-7, lVIarch 1958. 

10. ARANT, G. W. "A Time-sequential tabular 
analysis of flip-flop logical operation," 
IRE Transactions on Electronic Com
puters, Vol. EC-6, No.2, pp. 72-4, June 
1957. 

11. LEDLEY, R. S. "Boolean Matrix Equations 
in digital circuit design," IRE Transac
tions on Electronic Computers, Vol. EC-8 
No.2, pp. 131-9, June 1959. 

12. KILBURN, T., EDWARDS, D. B. H., and 
ASPINALL, D. "A parallel arithmetic unit 
using a saturated transistor fast-carry cir
cuit," Proceedings of the I.E.E. (Brit.), 
Vol. 107, Part B, pp. 573-84, November 
1960. 

13. KILBURN, T., HOWARTH, D. J., PAYNE, 
R. D., and SUMNER, P. H. "The Manchester 
University ATLAS Operating System
Part I: Internal Organization," The Com
puter Journal, Vol. 4, No.3, pp. 222-5, 
October 1961. 





AN ALGORITHM FOR PLACEMENT OF INTERCONNECTED 
ELEMENTS BASED ON MINIMUM WIRE LENGTH 

R.A.Rutman 
A C Spark Plug Division 

General Mot01'S Corporation 
El Segundo, California 

INTRODUCTION 

The efficient placement of components has 
taken on increased importance because of micro
miniaturization techniques. Packaging tech
niques are permitting higher density of compo
nents. As the components are mounted closer 
and closer, less and less room becomes available 
between components for interconnections. Un
der these circumstances, the layout of circuitry 
becomes a difficult and time consuming task for 
the designer. One approach often used by de
signers is to group together elements which are 
functionally related so as to reduce the length 
of interconnections. If the designer could place 
the elements in such a way that every element 
connects only to its nearest neighbors, the prob
lem of routing the interconnections would be 
somewhat simplified. 

In general, the shorter the wires the easier 
they are to layout. Furthermore, in the special 
case of a printed circuit board, there is a limit 
to the total length of etched wires that can be 
printed on one layer. 

Those considerations led to the concept that 
a placement of components which will minimize 
the total length of the wires would simplify the 
layout. With that goal in mind, this paper de
scribes a technique for the automatic placement 
of components. 

1. Description of Problem 

The motivation for attacking the problem of 

477 

placement arose from the author's association 
with a computer development project at AC 
Spark Plug. In that project, the logic mecha
nization of a computer used micrologic elements 
mounted on multi-layered boards. Several lay
ers of etched circuitry provided the necessary 
interconnections. 

Although the work done on this problem was 
for a specific application, it is felt that some of 
its features are usable in broader applications. 
Consequently, definition of some fundamental 
terminology is hereby given and generalized as 
much as possible. 

A board is defined as a finite array of posi
tions. A position is defined as a point in an x-y 
coordinate system. Elements are movable en
tities which may be placed in the given posi
tions. 

In these terms the problem is to place a given 
set of elements into positions on a board so as 
to minimize the total length of the interconnect
ing wires. 

A major portion of this paper deals with the 
application where only one element per position 
is allowed. 'rhe technique for allowing more 
than one element per position is given in Sec
tion 7. 

2. The Technique of Solution 

a. Steinberg's Algorithm 1 

A set of elements which have interconnec-



478 PROCEEDINGS-SPRING JOINT- COMPUTER CONFERENCE, 1964 

tions determined by the electrical design is 
given. Assume these elements are placed on the 
board in some initial positions with an initial 
wire length. Furthermore, assume that some of 
these elements are not directly connected to
gether. In fact, unconnected sets of elements 
form an important part of the solution. The 
technique of solution consists of selecting un
connected sets and moving the elements within 
each set to reduce the wire length. 

An unconnected set can be formed in the 
following manner. First select any element on 
the board. Then choose any element which is 
not directly connected to this first element and 
add it to the set. Then choose a third element 
which is not connected to the first two elements, 
etc. The set is called maximal when the selec
tion is carried to the point where no more ele
ments can be added. Clearly there are many 
ways in which maximal unconnected sets can 
be formed. In particular, a family of uncon
nected sets can be formed such that every 
element is in at least one-set. Section 5 contains 
more details on the formation of unconnected 
sets. 

Starting with an initial placement of elements. 
in board positions, take some unconnected set 
of the elements (possibly a maximal uncon
nected set) and remove it from the board. A 
set of positions on the board are now vacant. 
If there were V vacant positions before removal 
of the unconnected set, now there would be 
V + N vacant positions, where N is the number 
of elements in the unconnected set. 

Next, take one element from the unconnected 
set and place it in one of the vacant positions. 
The total length of the wires which are attached 
to the element in this position can be determined. 
This length is independent of the placement of 
any of the other elements in the unconnected 
set, since the given element is not connected to 
any of them. N ow place this element in each of 
the vacant positions and determine the wire 
length for each position. Then do the same for 
each element in the unconnected set. This gives 
an array of N (N+ V) values. 

The next step is to determine a placement .. of 
the unconnected set in the vacant positions so 
that the total wire length for all the elements in 
the unconnected set is as small as possible. To 

do that there exists an algorithm which guaran
tees a minimum placement of the unconnected 
set. See Section 6 for details. 

Notice that the total wire length between 
elements which are not in the unconnected set 
remains constant during this manipulation since 
they remain fixed on the board. 

After manipulation of this unconnected set, 
the worst that can happen is that there is no 
change in the total wire length (perhaps, all 
elements in the unconnected set end up where 
they were originally). However, if there exists 
a better placement of the unconnected set, the 
algorithm will find it, and the total wire length 
will decrease. 

The process which has just been described 
will be referred to as an iteration. The next 
step in the algorithm is to choose another un
connected set and repeat the process. The 
algorithm continues through many such itera
tions until the total wire length no longer de
creases or decreases an insignificant amount. 

b. Improvements on Steinberg's Algorithm 
(1) Improvement in the method of measur

ing wire length. The original Steinberg al
gorithm uses a connection matrix (Cij ). For 
example, if element ei is connected to element ej 
by three wires, term Cij of the connection matrix 
is equal to three. This method of expressing 
connection with integers is perfectly adequate 
in some cases. But in other cases, a fractional 
description of the connection is desirable. The 
author's interpretation of Steinberg's algorithm 
based upon examples} is that Cij assumes only 
integral values. Consider the example in Fig
ure 1. If only integers are permitted, these two 
different connections would be represented by 
the same values in the connection matrix and 
hence would be treated identically in the place
ment process. 

For the measurement of wire length, the 
placement program described in this paper 

Figure 1. 



AN ALGORITHM FOR PLACEMENT OF INTERCONNECTED ELEMENTS 479 

makes a distinction between these two cases 
and is therefore able to converge on a more sat
isfactory solution for certain types of connec
tions. The measurement of wire length is 
treated in more detail in Section 4. 

(2) Interchange. The original algorithm 
provides a powerful method for manipulating 
elements which are not connected together. 
Sometimes elements in connected sets can be 
manipulated to advantage. Consider the exam
ple in Figure 2. 

If only the transposition A ~ B could occur, 
a more desirable placement would be obtained. 
The basic algori thm allows interchange only of 
elements which are in the same unconnected 
set. Because A and B may never be in the same 
unconnected set (since they are connected), 
the basic algorithm would not resolve this diffi
culty. In order to improve the basic algorithm, 
the placement program also evaluates the inter
change of all elements which are directly con
nected together. 

(3) Reducing the length of the longest wires. 
In the basic algorithm, groups of elements 
which are tightly connected to one another are 
reluctant to move. 

This is best seen by example. Suppose the 
placement problem consists of three elements, 
A and B movable, and X fixed (X might be a 

Figure 2. 

0 CV @ 

Figure 3 (a). 

0=@ Q 

Figure 3 (b). 

I I 
Figure 4. 

~~--------------~G) 

Figure 5 (a). Initial State. 

connector pin, for example), connected and 
placed as shown in Figure 3 (a). Assume lots 
of vacant positions. Suppose B is in the first 
unconnected set. Then, at the end of the first 
iteration, the result would be as shown in Fig
ure 3 (b). 

If A is in the second unconnected set, A can 
wander into anyone of four positions about B 
where the total wire length is equivalent. The 
difficulty is that the group (A, B) will not tend 
to migrate toward the fixed element X. So 
minimum total wire length is not reached! The 
element X need not be fixed. For example, the 
group A, B, C, and D shown in Figure 4 are all 
movable, yet will not come together unJess by 
chance. 

A partial solution to this problem is obtained 
in the following way. The algorithm is first 
applied to the task of minimizing the lengths 
of the longest wires, and later it is applied to 
minimizing total. wire length. The former task 
is referred to as Phase I of the placement pro
gram, and the latter is referred to as Phase II. 
The diagrams in Figure 5 illustrate what hap
pens to the example given in Figure 3 as at
tempts to minimize the lengths of the longest 
wires are made in a Phase I placement. 

Note that in this process the total wire length 
sometimes increases. In the example, Phase I 
alone converged to the minimum wire length 
and Phase II would produce no further improve
ment. In general, however, Phase II is needed 



480 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

Figure 5 (b). B belongs to first unconnected set 
and moves. 

Figure 5 (c). A belongs to second unconnected 
set and moves. 

0F======:::j®}---® 

Figure 5 (d). B moves. 

Figure 5 (e). A moves. The result is one of the four 
possible permutations of A. 

Figure 5 (f). B moves. 

to make the fine adjustments; Phase I makes 
the coarse adjustments. The exact function used 
to measure the length of the longest wire in 
Phase I is described in detail in Section 4. 

3. Computer Results and Running Times 

To test these techniques the placement pro
gram was run using two computer boards. The 
first, referred to as the small board, contained 
70 elements and 77 positions. The second, re
ferred to as the large board, contained 516 
elements and 550 positions. To evaluate the 
results of each placement, the minimum point 
to point wire length was computed using the 
algorithm of Loberman and Weinberger.4 

In the following discussion, an initial place
ment is described as either a random initial 
placement or a manual initial placement. The 
former was determined by use of a random 
number table. The latter was prepared by a 
skilled designer. 

Because of the larger amount of computer 
time required to place the large board, the small 
board was used for most of the comparisons. 

a. The Results of the Original Steinberg Al
gorithm 

The original Steinberg algorithm l when ap
plied to the small hoard with a manual initial 

placement resulted in a 4.7~) reduction in total 
wire length. 

b. The Effect of Different Wire Length Meas
urement 

If every pin were connected to only one other 
pin, the method of measuring wire leng'lth de
scribed in this paper would be identical to that 
of Steinberg's. If a large percentage of the pins 
are connected to more than one other pin, the 
method in this paper would have a pronounced 
effect. In the particular case of the small board, 
a majority of the pins are connected to only one 
other pin. Thus the percentage of improvement 
over the manual initial placement is only 5.3%. 
That is, if the original Steinberg algorithm is 
used with no change other than in the measure
ment of wire length, the improvement is 5.3 % . 

c. The Effect of Interchange 
Investigation is still underway to determine 

how often an interchange should be performed. 
Possibly an interchang,e should be done every 
iteration. 

As mentioned above, there is a 5.3 %' improve
ment over the manual placement with no inter
change. With an interchange once every 20 
iterations, there is a 6.7% improvement. With 
an interchange every 10 iterations, there is an 
8.2 % improvement. The improvements were 
measured using the Loberman and Weinberger 
technique.4 Figure 6 illustrates the effect of 
interchange upon reducing pseudo wire length. 
Two runs were made on the small board. One 
run was without interchange and one was with 
interchange every 20 iterations. 

d. The Effect of First Reducing Longest Wire 
Length 

Starting with a manual placement of the 
small board and going through Phase I and 
Phase II with an interchange every 10 itera
tions, the result is a 19.4% improvement over 
the manual placement. 

Starting with a random initial placement and 
going through Phase I and Phase II with an 
interchange every 20 iterations, the result is a 
17.8o/t:, improvement over the manual placement. 

e. Improvement on the Large Board 
Starting with a manual initial placement of 

the large board and going through Phase I and 



AN ALGORITHM FOR PLACEMENT OF INTERCONNECTED ELEMENTS 481 

1081 

Notes: 
(1) Ll denotes interchange. 
(2) Initial placement is manual. 
(3) Program run time for IDM 7090 given in minutes. 

I 
I 
I 
I 

4.~ I 
Without interchange 

;3 t/3 minutes 

960 

I 
I 
I 

l~ 
tJ. 

With interc}.aange 

r- 4 1/ 3 minutes I . 
'-____ ..r-----... 1 

~0---'----2TIO--~~--~i----r---~I----~--~i~--~---ri--~~--Ti--~~--'----r--~ 
40 60 80 100 120 140 1.60 

940 

Placement Iteration Number 

Figure 6. Small Board (Phase II). 

Phase II with interchange approximately every 
10 iterations, there was a 39%, improvement 
over the manual placement. 

f. Computer Running Times 
For the placement" of the small board, the 

computer was permitted to run to completion 
and required a total of approximately 4 minutes 
of IBM 7090 computer time. Notice that mosrt 
of the improvement occurs in the first few 
iterations. In the placement of the large board, 
there was some question as of when to cut off 
execution of the program. The program was 
run for 2 hours 10 minutes in Phase I and for 
2 hours in Phase II. However, both phases could 
have been stopped sooner with little loss in im-

provement. This is clearly illustrated in Fig
ures 7 and 8. 

4. The Technique for Measuring Wire Length 
The length of wire needed to interconnect a 

set of points depends upon the manner in which 
the routing is done. For a simple connection, 
say between point A and point B, it is assumed 
that the length of a connection is the dog leg 
distance between A and B. This is adequate for 
simple connections between two points, but as 
the number of points gets greater rthe deter
mination of wire length becomes more and more 
complex and depends largely on the specific 
point to point wiring scheme. For example, con
sider the case of five points A, B, C, D, and E 



482 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

connected by one conductor as shown in Fig
ure 9. 

Each of the routings in Figure 9 has a differ
ent wire length. Steinberg,l in placing element 
E, would treat the wire length as in routing 2. 
In treating element A, he would treat the wire 
length as in routing 4. 

The problem is still more complicated for 
printed circuits since connections can be made 
from point to wire in addition to point to point 
as shown in Figure 10. 

There does not seem to be a simple technique 
for computing the minimum wire length for all 
connections of this type. 

6000 Notes: 
(1) A denotes interchange. 
(2) Initial placement is manual 

Loberman and Weinberger 4 have an al
gorithm for computing the minimum point to 
point wire length, but it is too slow to use in 
the placement program. 

The placement program for the most part 
does not have to evaluate the actual wire length. 
But it must provide the answer to such questions 
as the following. 

If elements A, B, C, D, and E are connected 
together by one conductor and if A, B, C, Dare 
fixed, with E able to occupy either position x or 
position y, what is the difference in the total 
wire length of the conductor if E is in position x 
compared to that of position y? Hence, of prin
cipal concern is the change in wire length from 

(3) Program run time for IBM 7090 given in hours. 

5600 

-= 5200 .... 
~ 
Q) 

....:l 
Q) ,.. 
~ 
0 4800 '0 
::I 
Q) 

~ 
:; 
0 

E-t 
4400 

4000 

2 hours 

3600 

o 20 40 60 80 100 
Placement Iteration Number 

120 

Figure 7. Large Board (Pha:5e I). 



AN ALGORITHM FOR PLACEMENT OF INTERCONNECTED ELEMENTS 483 

1180 

Notes: 
(1) ~ denotes interchange 
(2) Initial placement from Phase I 
(3) Program run time for IDM 7090 given in hours. 

1100 

• 
1060 6 • 

\. 
A\ 1020 

980 

~ 
~ 

940 '-~-a-o..... . / 

1~~~i __ ~~i~~~~_~~~ __ 6~~'~~--~~~-.~-. 
2 hours 

900 

100 

Routing 1 

A 

120 140 160 180 200 
Placement Iteration Number 

Figure 8. Large Board (Phase II). 

Routing 2 Routing 3 

Figure 9. 

c 

Figure 10. 

Routing 4 

E 

one position to another rather than in its abso
lute value. 

The remainder of this section deals with the 
exact function used to evaluate wire length. 

Two pins are defined to be connected if they 
are electricaily connected. The fact that pin A 
is connected to pin B forms a relation between 
pin A and pin B. It is easy to verify that this is 
an equivalence relation. Elements ej and ej are 
said to be connected if there exists a pin f ej and 
a pin q f ej such that pin p is connected to pin q. 
Consider the set of all pins in a given problem. 
Let connection be the equivalence relation on 
this set. This equivalence relation will divide 
the set of all pins into disjoint equivalence 



484 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

classes. Each of the equivalence classes so 
formed is called a conductor. 

Let S = ( e he;!, . , ej, . er} be the given set of f 
elements. 

Let L = ( I:. I:!, /';1, . , III, . , I,J be the given 
set of g positions (locations) where g :::::,.. f. 

Let P = ( Pb p;!, ... , Pill' P,J be the set of all 
pins on all elements. 

Let C = f Ct, c;!, . , Cj, • , c,,} be the set of con
ductors. 

Each conductor is a subset of the set P. Also, 
each element ej is a subset of the set P. Pin 
Pili t: ej if pin Pili is a pin on element ei .. 

Now define the notion of a transductor T j 

which is a set of elements connected together 
by the conductor Cj. 

Notice that there are exactly as many trans
ductors as conductors and that there is a natu
ral mapping from conductor to transductor. 
Given a conductor Cj, merely consider each 
Pili t: Cj in order. Given a PII., there exists an ej 
such that Pili t: e j. Therefore, the corresponding 
ej belongs in the set T j • Let a (Tj) be defined as 
a function which maps T j into its cardinal num
ber, the number of elements in the set. 

Also define a one to one function y whose 
domain is the set S of elements and whose range 
is the set L of positions. y (ej) is the present 
location of element ej. Each position in the set 
L has two components: the x coordinate and 
the y coordinate. Thus, yx (eJ is the x coordi
nate of element ej, and y-" (ej) is the y coordi
nate of element e j • 

The first step in the placement process is to 
assign all elements to random initial positions. 
After removing an unconnected set from the 
board there is a set M of available positions. 
M is a subset of L. Suppose ej is in the uncon
nected set. At this stage of the placement proc
ess, ej may be placed in any position of the set 
M. The placement process uses a number called 
the pseudo wire length Fi,u for each position 
/11 f M which indicates how well element ej likes 
to be in position /11 (assuming every element 
that ej is connected to is not movable). A com
paratively low number means that the wire 
length is low when ej is in position In. A com-

paratively high number means that the wire 
length is high when ej is in position /.1' Phase I 
and Phase II (as defined in Section 2) use dif
ferent functions for the pseudo wire length. 
The functions are referred to as Fj~ll and Fn, 
respecti vely. 

At each step in the placement process the 
total pseudo wire length can be evaluated as 
follows. Suppose the current placement puts 
element ej in position tp(j)' Then the total 
pseudo wire length is defined as ~ Fi,lI(j). The 
object of the program is to find I a placement 
which will minimize ~ Fl}lIj, . 

I 

Abstractly, Fi.u is a function of y (ek) and 
y (ej) for all k such that ek t: T j and k =F i and all 
j such that ej t: T j and a (T) > 1. Element ej is 
assumed to be in position /117 having x, y coordi
na tes lux and lup 

Fn the Phase II pseudo wire length number 
for element ej when in position 1m is given by: 

Fl.ln == ::i -----}---.-- ~ (Iyx (ek) - /11" I 
llll j a (Tj ) -1 nil k 

+ ' Y.r (ek) - tn)' : ) where ej, t: T j , ek t: T j k =F i, 
and a (T) > 1. 

To get an expression for FllI the phase I 
pseudo wire length number, it is necessary first 
to define an auxiliary function F j,lI*j for three 
separate cases. 

Case 1: a (T) = 2 
Fi.n*j = I yx (ed - tux 1 + I yy (ek) - IllY I 

where Tj = { ek, ed. 

Case2: a (Tj) = 3 
F i,ll*j = max { ( ! Yx (ek) - tnx I + : yY (ek) -
!II~' : ), ( , yx (enJ - IlIx I + I yY (euJ - Iny I ) } 
where T j = { elll, ek, ej }. 

Case 3: a (T j ) > 3 

For this case a pseudo location t'l~ is first de
fined, its x and y components given by: 

1 
tj/ j == a (T

j
) ~ Yx (ek) where ek t: T j and k =F i. 

1 
lj/j == a (T

j
) ~ Y.'· (ek) where ek t: Tj and k =F i. 

Furthermore, let a function Gt j be given by: 

G.*j = 1 ~ 
I - a (Tj ) - 1 all k 

r Yx (ek) - !ix*j : + i y~. (ek) - A/j I) 
where ek t: T j and k =1= i. 



AN ALGORITHM FOR PLACEMENT OF INTERCONNECTED ELEMENTS 485 

Then Fi.n*j can be expressed as: 

F *' - [ 1 ~ i,n J = a (T
j

) _ 1 ;111 k 

( I Yx (ek) - lnx I + I yy (ek) - lny I )] - Gtj 

where ek £ T j and k =1= i. 

Now the phase I measure Fi~n for wire length 
is defined as : 

Ffn == max {F t . l1·j} 

where ei £ T j and ex (T j ) > 1. 

One of the advantages of choosing the func
tions in this manner is the ease of computation. 
Another is that they tend to closely approximate 
the real situation. As an example, consider the 
element ei which has only one transductor Tj • 

Suppose ex (T j ) == 2. Then F:.~ is merely the 
dog leg distance between the two elements con
tained in T j • 

Suppose ei is contained in two transductors 
Tl and T2 such that a (T1 ) == ex (T2) == 2, Tl == 
{ ek, ei }, and T2 == { enu ei }. That is, ei is con
nected to two different elements as shown in 
Figure 11. 

Then Ff,In would be equal to seven which is the 
length of the longest wire. Suppose we also had 
Ta == { em, ei } with ex (T3) == 2 as shown in 
Figure 12. 

@ 
C

2 6) 
C

1 
cy 

Length = 4 Length = 7 

Figure 11. 

c
3 J em) ~ei) 

C
1 

C
2 

Length = 4 Length = 7 

Figure 12. 

~ g] 6) 
6) 

6) 0) 

Figure 13~ 

Here again Fi.n == 7 since F 1.11.3 == F i •n·2 == 4 
and Fi.n*l == 7. FPII for the case in Figure 11 
would be equal to 11, the length of both wires. 

F[~ for the case in Figure 12 would be equal 
to 15. 

For another example, suppose el belongs only 
to transductor T j where a (TJ == 5 and T j == 
{ eh e2, e3, e4, e5 }. Then Fi~~ can be interpreted 
as the average distance from element el to the 
other elements in Tjo Suppose M == { th 12 } 
where 11 and t2 are one unit apart, and both 
positions are at some distance from the other 
elements in T j as shown in Figure 13. 

Then F l\ - F l.I2 == 1 which is desirable be
cause the wiring would be done in a manner 
similar to Figure 14 below, and the difference in 
actual wire length between el in /1 and el in 12 
is only 1 unit. 

Suppose positions 11 and 12 and elements e2, 
e3, e4, and e5 are located as shown in Figure 15 
below, that is, interior to the set. 

Then Ff\ - FP2 == O. That is, the two posi
tions are equivalent and el ll1:ay ,be placed in 
either position with no difference in wire length. 
Once again the function approaches the real 
situation. 

For the case shown in Figure 5, Ff.l == 
Fi.2 == O. Fi.} would be greater than zero only 
if f 1 were a position located outside the rec
tangle formed by e2, ea, e4, and e!) as in Figure 
11. For Figure 11, Fi.l - Ff,2 == 1 as would 
be expected. 

Figure 14. 

6) 6) 

g]g] 

C0 6) 

Figure 15. 



486 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

In many problems, the majority of the trans
ductors are such that a (Tj ) = 2. But the case 
where a (Tj ) > 2 must be handled consistently. 
Furthermore, it is observed that given any ele
ment ei there is a large probability that ei t: T j 

such that a (Tj ) > 2. Table 1 shows the result 
of a survey made on a large computer printed 
circuit board. The board had 729 transductors 
with the distribution as shown. N is the num
ber of transductors with the given a (Tj ). In 
other words, the sets T j were sorted into groups 
according to their cardinal number. 

5. The Procedure for Forming Maximal 
Unconnected Sets 

Given a set S of elements ei and a set of trans
ductors (a typical transductor be1ng T j ) an un
connected set U is defined as follows: 

U = { eh ek t: S I there is no T j such that 
ei £ T j and ek £ T j }. 

There are many ways in which the set U can 
be formed. It is desirable to form a family U' = 
{ U h U2, Us, ... , U r , ••• Uq }. Each member of 
S is contained in at least one of the sets in U/. 

Also, it appears desirable that the uncon
nected sets should overlap one another. I In 
dealing with a large number of elements it is 
not feasible to form all unconnected sets. In
stead a technique is used which causes some 
overlap. About 1) .. of the elements in each set 
will be contained in other sets. Figure 16 is a 
flow chart which shows the technique for ob
taining the unconnected set Uj given the sets 
Uo, U h U2, ••• , U j - I • The following nomencla
ture is used in Figure 16. 

Eo = The original set of elements which 
are eligible for inclusion in an un
connected set. 

E 

W 

A working set containing elements 
eligible for inclusion in the current 
unconnected set. 
A working set containing some of 
the elements not eligible for inclu
sion in the current unconnected set. 
Elements in Ware connected to ele
ments which are in the current 
unconnected set U j • 

<fl, the void set. 
Cardinal number of set Uj • 

The largest number of elements 

z 

NOTES: 

which may .be contained in any un
connected set. This number is a 
function of the number of empty 
positions on the board and the 
amount of avialable space in the 
computer. In short, a given place
ment program is restricted as to the 
size of the solution matrix which it 
can solve. By restricting the num
ber of elements in an unconnected 
set, the size of the matrix is re
stricted. This means that the sets 
may not be maximal in some cases. 

j-l 

U Um (the union of sets U l. U 2, 

EXIT 

(11 Subroutine A consists of Random selection of an el from E. placing It In UJ• 
and placing all ck connected to e l In W. 

(2) Given sets A and B then A-T; Is defined as the set of elements In A but not In B. 

Figure 16. Flowchart for Formation of 
Unconnected Sets. 

NOTES: 
(1) Subroutine A consists of Random selection of an 

e j from E, placing it in Vi' and placing all ek 
connected to e j in W. 

(2) Given sets A and B then A-B is defined as the 
set of elements in A but not in B. 



AN ALGORITHM FOR PLACEMENT OF INTERCONNECTED ELEMENTS 487 

6. The Solution Matrix 
Each iteration of the placement program in

volves the determination of the optimal place
ment for an unconnected set of elements. The 
procedure for determining an optimal place
ment involves operations on a solution matrix 
described in this section. The method for 
manipulating the matrix is an adaptation of an 
algorithm by Munkres.:! 

The first step in placing an unconnected set is 
to form a matrix in the following manner. Sup
pose the: unconnected set has N elements and 
there is a set of N + V positions available for 
placement. Let the set of available positions be 
indexed by n, with n running from 1 to N + V. 
Let the unconnected set of elements be indexed 
by i with i running from 1 to N. N ow form a 
matrix [AJ of N rows and N + V columns. 
Each row i' of the matrix corresponds to the 
element ej in the unconnected set and each col
umn n of the matrix corresponds to the position 
In in the set of available positions. The elements 
aj.n of the matrix are set equal to the functions 
FI,~ (or Ft~n if in phase I of the placement) de
fined in Section 4 on measuring wire length. 

The Munkres algorithm2 results in N stars 
(asterisks) being associated with elements of 
the matrix [AJ. These stars are positioned so 
that every row has exactly one star and no 
column has more than one star. The placement 
of the stars in the matrix describes the place
ment of the elements ej. Thus if element a;{,2 of 
the matrix has a star upon completion of the 
algorithm, then element ea should be placed in 
position 1'1. in the set of available positions. 

The 'following algorithm is derived from 
Munkres' algorithm. It can handle rectangular 
matrices and includes features to speed up the 
computer solution. 

During the course of the algorithm, some 
zero-elements are distinguished by asterisks 
and some by primes. These are referred to as 
starred zeros and primed zeros respectively. 

In addition to the matrix [AJ, the row vector 
R!o\ is required. Each element of Rs corresponds 
to a column of the matrix [AJ. If the column 
contains a zero star, the corresponding element 
of Rs will contain the row number of the zero 
star. If the column contains no zero star, the 
corresponding element of Rs will be zero. 

Similarly, there are two column vectors Cs 

and CI " whose elements correspond to the rows 
of the matrix [AJ. If the row has a zero star, 
the corresponding element of G, contains the 
column number of the zero star. If the row has 
a zero prime, the corresponding element of Cil 
contains the column number of the zero prime. 

A "line" is defined as a row or a column of the 
matrix [AJ. In the course of the algorithm, 
certain lines are distinguished and referred to 
as "covered" lines. An element of the matrix is 
said to be uncovered, once-covered, or twice
covered, accordingly as it lies in precisely none, 
one, or two covered lines. 

There is the column vector C,., each element of 
which corresponds to a row of the matrix. If 
the row is covered, the corresponding element 
of C,. = 1, otherwise it equals O. Each element 
of the row vector R,. corresponds to a column of 
the matrix. If the column is covered, the cor
responding element of R,. = 1, otherwise it 
equals O. 

The coordinates of uncovered zeros in the 
matrix are contained in so-called zero lists so 
that they may be quickly located without testing 
each element of the matrix. Zero list A contains 
the coordinates of all uncovered zeros and the 
coordinates of some zeros which mayor may 
not be covered. Zero list B contains the coordi
nates of some zeros which are currently covered 
but which may at some future time become un
covered. Zero list A and zero list B are push 
down lists6 with a bottom pointer. That is, 
there is a cell pointing to the bottom cell of the 
list. In step 2, zero list B is emptied and added 
to the bottom of zero list A. This operation is 
facilitated by the bottom pointer in zero list A. 

PreliminaTies. In the matrix [AJ, no lines 
are covered and no zeros are starred or primed. 
Consider row 1 of the matrix. Find the smallest 
element in row 1, and call it h. Subtract h from 
each element of row 1. In the process of sub
tracting h, some element (or elements) of row 
1 b2com2 zero. Whenev-er an element becomes 
zero and if there is no starred zero in the row 
and none in its column, star the zero and cover 
the column containing the zero. If there is no 
zero star in its column but there is one in its 
row, add the matrix coordinates of the zero to 



488 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

the zero A list (unless the zero A list is already 
full). Do the same for each row of the matrix. * 
If N columns are covered, the starred zeros 
form the desired result, and the problem is fin
ished. If less than N columns are covered, go 
to step 1. 

Step 1 

Take the coordinates of a zero from the zero 
A list, popping up the zero A list. If the zero is 
covered, push the coordinates of the zero into 
the zero B list and take another zero from the 
zero A list. Continue until a non-covered zero 
is found or until the zero A list is depleted. If 
the zero A list is depleted and flag F is set, 
search the matrix for an uncovered zero. If the 
zero A list is depleted and flag F is reset, go 
to step 3. 

Assume an uncovered zero is found. Prime 
the zero, then consider the row containing it. 
If there is no starred zero in this row, go at once 
to step 2. If there is a starred zero in the row, 
cover the row and uncover the column of the 
starred zero. Look for any uncovered zeros i.n 
this new uncovered column. If any exist, add 
their coordinates to the top of the zero A list 
(if the zero A list overflows, set flag F). Then 
go to beginning of step 1. 

Step 2 

There is a sequence of alternating starred and 
primed zeros, constructed as follows: Let Zo 
denote the uncovered 0' (there is only one). 
Let Z) denote the 0* in Zo's column (if any). 
Let Z:! denote the 0' in Z)'s row (if Zl exists, its 
column is not covered since Zo is in its column 
and Z" is not covered, so its row must be covered. 
Hence there is a 0' in this row (see step 1). Let 
Za denote the 0* in Z/s column (if any). Simi
larly, continue until the sequence stops at a 0' 
which has no 0* in its column (Munkres proves 
such a 0' exists and the sequence is unique) ). 

Now unstar each starred zero of the sequence, 
and star each primed zero of the sequence. 
Erase all primes (that is, remove the zero prime 
coordinates from vector C.J. Uncover every row 
and cover every column containing a 0*. If N 

* Note that at this time the zero A list (if sufficiently 
large) will contain the coordinates of every uncovered 
zero if any exist. If there are too many zeros for th"e 
zero list to hold, flag F will be set. Otherwise, flag F 
is reset. 

columns are covered, the starred zeros form the 
desired result and the algorithm is finished. 
Otherwise, empty the zero B list into the bottom 
of the zero A list and go to step 1. 

Step 3 

Let h denote the smallest uncovered element 
of the matrix; it will be positive. Add h to each 
twice-covered element. Subtract h from each 
uncovered element. In the process of subtract
ing h, add the coordinates of any new zeros to 
the zero A list. Return to step 1 without alter
ing any stars, primes, or covered lines. 

For an example consider the board indicated 
in Figure 17. 

Also assume a set of six elements is given and 
connected as shown in Figure 18. 

x 
~ I 

2 

3 

y-f' 
I 

PI 

P4 

~ 

2 

P2 

P5 

Ps 

Figure 17. 

Figure 18. 

P2 P3 P4 P5 P6 Ps P
9 

11 i2 13 14 15 16 17 

2 4 2 4 

10 14 • S 

3 6 3 6 

5 S 3 6 

6 

12 

9 

9 

6 S 

6 10 

9 12 

7 10 

Figure 19. 

x 
! 1 

y.-
1 

~ 
p. 

~ 

P2 

P5 

Ps 

3 

P3 
P6 
P 9 

P3 

P6 

P9 



AN ALGORITHM FOR PLACEMENT OF INTERCONNECTED ELEMENTS 489 

Suppose element er; is fixed in position PI and 
element en is fixed in position Pi. Then the set 
of available positions is { P:!, P:l, Pol, Pr;, Pn, p~, 
PH}. Choose the unconnected set consisting of 
elements el, e:!, e:l, and eol. For this choice form 
the matrix A whose elements are FtIn . The re
sults are given in Figure 19. 

For example, the computation of F~\ in
volves element e:! and position Pn (x = 2, y = 3). 
Element e:! belongs to four transductors and is 
connected to element er; (at x = 1, y = 1) and 

element ej; (at x = 3, y = 1). Hence FYi is 

computed as follows: 

FJ\ 3 1 1 [ ( 11-2 1 + , 1 - 3 1 ) + ( I 3 - 2 i + [ 1 - 3 : ) ] 

+ 3
1
1[(11-2 1+11-3\)+(\3-2:+i l - 3 i)] 

+ 211[13-21+11-31] 

+-1-[13-21+!1-31] 2-1 ". 
6 6 3 3 

=2+2"+-1-+-1- =12 

To solve the matrix, first do the preliminaries. 
The result is shown in Figure 20. 
Since N = 4 but only two columns are covered, 
proceed to Step 1. 

Step 1 examines zero 1, 3 in the zero A list, 
but finds that it is covered. Step 1 finding no 
uncovered zeros transfers to step 3. Step 3 
finds that 2 is the smallest uncovered element 
and proceeds to subtract 2 from each uncovered 
element and add 2 to each twice-covered ele
ment (there are none). The resu},t is shown in 
Figure 21. 

Since N = 4 and only three columns are now 
covered, step 2 returns to step 1. The next un
covered zero that step 1 finds is 1, 4. The zero 
is primed. Its row has a 0* in column 1. There
fore, the row is covered and column 1 is uncov-

Step 3 transfers back to step 1. Step 1 finds 
an uncovered zero in 2~ 6 and primes it. The 
row contains a 0* in column 3. Therefore, the 
row is covered, and column 3 is uncovered. The 
newly uncovered zeros in column 3 are added 
to zero list A. The result is given in Figure 22. 

The next uncovered zero that step 1 finds is 
4, 3. The zero is primed, and since the row 
contains no 0*, step 1 goes to step 2. 

Step 2 constructs the following sequence: 

0' = 4,3; 0* = 2, 3; 0' = 2, 6. 

Primes of the sequence are changed to stars 
and stars of the sequence are removed. At the 
end of step 2, the results are as shown in Fig
ure 23. 

R 

10 * 4 8 2 6 0 

3 3 6 6 9 0 

~ 5 3 6 4 7 0 

s~~~~~~~~ 

Figure 200 

c 
c 

0 

0 

0 

0 

Figure 21. 

3 

0 

0 

c • 
1 

3 

0 

0 

0 

0 

0 

c 
p 

0 

0 

0 

o· 

Zero Table. 

A B 

1 n 1 n 
2 6 1 3 
1 4 
1 12 

-- ----

I 



490 PRCCEEDINGS-SPRING JOI~T COMPUTER CONFERENCE, 1964 

c 
c 

~m3 6 
o 0 0 

o 0 0 

:::/ : I n:j-:J: 1 H] 
Figure 22. 

c c c 
c s p 

* 0 0 2 4 0 

8 2 6 * 4 0 

,0 1 1 .. 7 0 

3 * 1 4 5 
0 

R 
cr-+-~-r~ __ ~~~ 

I 

6 8 2 6 

0 1 1 4 

2 3 * 1 4 

0 
., 

2 

8 6 

.. 1 4 

3 ~ .. .. 

O· 

t 
F 
I 

.. 

Figure 23. 

4 

7 

5 

c 
c 

1 

0 

0 

0 

Figure 24. 

4 

4 

7 

5 

c c 

0 

0 

0 

0 

R 
cr-+-1--r~--~+-~ 

Figure 25. 

1 

6 

0 

3 

c 
s 

1 

6 

0 

3 

c 
s 

4 

6 

1 

3 

0 

0 

0 

0 

c 
p 

4 

0 

0 

0 

c 
p 

0 

0 

0 

0 

Zero Tables 

~ 
I~ .. 3 1 3 

3 3 

r--!- } - -
1 
1 2 

f-f-- --

-I-- f-- -

-I-- J--i-

Zero Tables 

A B 

1 n 1 n 
3 3 
1 3 
1 4 
1 2 
1 3 

Zero Tables 

A B 

1 n 1 n 
3 1 1 3 

1 2 3 3 
1 3 

i 

I 
I 
I 

Zero Tables 

A B 

1 n 1 n 
1 2 1 3 
1 3 3 3 

x 
1 
1 

Figure 26. 

ered. Then the zero in column 1 is added to the 
zero A list. The result is shown in Figure 24. 

Step 1 then finds the uncovered zero 3, 1 and 
primes it. Since its row has no 0*, step 1 goes 
to step 2. Step 2 constructs the following se
quence: 

0' == 3, 1; 0* == 1, 1; 0' == 1,4. 

At !the end of step 2, the results are as shown 
in Figure 25. 

Now four rows are covered and the algorithm 
is done. The placement can be read directly 
from the column vector C~ or the asterisks in the 
matrix. Element el is placed into position Pa, 
e;! in PH, ea in p;!, and e .. in Pol. Graphically, the 
result is as shown in Figure 26. 

The result was obtained through the applica
tion of only one unconnected set. In practice, 
several unconnected sets would be used until the 
placement finally converged. 

In summary, the purpose of the various ,ta
bles and vectors is to increase the speed of com
putation. The purpose of the zero tables is to 
enabl€ the computer to find quickly an uncov~ 
ered zero, without searching the matrix for one. 
Once the coordinates of a zero (i, n) is obtained 
from the zero A table, it can quickly be tested 
to see if it is covered (i.e., check element i of 
vector Ce and element n of vector R(,). Primes 
and stars are recorded only in the vectors men
tioned, not in the matrix. They are shown in 
the matrix in the example only to make the 
example easier to follow. Thus, to erase all 
primes involves merely setting vector C" to 
zero. To uncover a column and to cover a row 
involves the change of only 1 cell in vector Rc 



AN ALGORITHM FOR PLACEMENT OF INTERCONNECTED ELE'MENTS 491 

and 1 cell in vector Ct .. Similarly, recording and 
changing of O*'s is also a simple operation. 
Thus, the set up and solution of a matrix con
taining roughly 140 rows and 170 columns takes 
an average of less than 1 minute of time on the 
IBM 7090 computer. 

7. More Than One Element in the Same Posi
tion 

Suppose there is a unit called a can which 
contains more than one logic element. For ex
ample, a can might hold 4 flip-flops or 6 gates, 
etc. The technique for handling a placement for 
this siutation is considered below. 

First, place the elements randomly in the 
cans according to the rules (e.g., 6 gates to a 
can). Some cans may be only partly full. Then 
place the cans on the board in some random 
initial position. Then make a family of uncon
nected sets for each type of element when there 
is more than one element of that type in a can. 
For example, there may be a family of uncon
nected sets consisting of only gates of a certain 
type. 

Then, manipulate the families of unconnected 
set.s, not using any available positions other 
than the positions originally occupied by those 
elements. The result will be that elements are 
assigned to the cans more optimally than they 
were in their original assignment. N ow make 
unconnected sets out of the cans and move the 
cans (using the empty board positions). Thus 
there are two types of movem'ent. One is move
ment of the elements within the cans (keeping 
the cans fixed). The second is movement of the 
cans. The placement program would alternate 
between these two types of movement. 

BIBLIOGRAPHY 

1. STEINBERG, LEON, "The Backboard Wir-

ing Problem: A Placement Algorithm," 
SIAM Re1,iew, Vol. 3, No. 1 (January 
1961), pp. 37-50. 

2. MUNKRES, JAMES, "Algorithms for the As
signment and Transportation Problems," 
Journal for the Society for Industrial and 
Applied Mathematics, Vol. V (March 
1957), pp. 32-38. 

3. KUHN, H. W., "The Hungarian Method for 
the Assignment Problem," Naval Research 
Logistics Quarterly, Vol. II (March-June 
1955), pp. 83-97. 

4. LOBERMAN, H., and WEINBERGER, A. "For
mal Procedures for Connecting Terminals 
with a Minimum Total Wire Length," 
Journal of the Association for Computing 
Ma.chinery, Vol. 4, No.4 (1957), pp. 428-
433. 

5. JACOBSON, NATHAN, "Lectures in Abstract 
Algebra," Vol. I-Basic Concepts, D. Van 
Nostrand Co., Inc., 1962, pp. 4-5. 

6. NEWELL, ALLEN, ed., HInformation Proc
essing Language-V Manual" Prentice
Hall, Inc., 1961. 

7. GILMORE, P. C., "Optimal and Suboptimal 
Algorithms for the Quadratic Assignment 
Problem," Journal of the Society for In
dWst'rial and Applied j~lathematics, Vol. 10, 
No.2 (June 1962), pp. 305-313. 

8. GLASER, ROBERT H., "A Quasi-Simplex 
Method for Designing Suboptimum Pack
ages of . Electronic Building Blocks," Pro
ceedings of the 1959 Computer Applica
tions Symposium at the Armour Research 
Foundation at illinois institute of Tech
nology, pp. 100-111. 

9. ALTMAN, G. W., DECAMPO, L. A., and WAR
BURTON, C. R., "Automation of Computer 
Panel Wiring," Transactions of the AlEE, 
Vol. 79, Pt. 1 (May 1960), pp. 118-125. 





APPLICATION OF AN ASSOCIATIVELY ADDRESSED, 
DISTRIBUTED MEMORY 

G. J. Simmons 
Sandia Corporation 

Albuquerque, New Mexico 

INTRODUCTION 

Memory techniques which have so far been 
developed with computer technology all share 
limitations imposed by the requirement that a 
memory address be specified uniquely for stor
age or retrieval of data. In many problems 
these addresses are merely "dummy variables" 
with the only meaningful order being one de
rived from the content of the data points them
selves; examples of such operations are sorting, 
interpolating and catalog look-up. Largely be
cause of the astronomical proportions of the 
computing task assumed by some real (and rea
sonable) problems in these and other closely 
allied areas, there has been an increasing inter
est in the type of memory in which information 
is stored (and retrieved) on the basis of con· 
tent. Storage systems with this modus oper
andi are generically classified as "associative 
memories."1-6 

There are two fundamentally different con
ceptions of an associative memory. The first 
can be regarded as exact (in the same manner 
that a conventional computer memory is exact) 
since a normal storage address is generated 
from an examination of the data to be stored.u :.lI 

In this version, an item for entry is character
ized by as many descriptors as possible (or as 
may be limited by the dimension of the mem
ory) and the entry is stored "at the intersec
tion" of these descriptors. The list of descrip
tors, if regarded as separate from the data 
word itself, has been given the name associati've 

493 

criterion by Kiseda et al.10 ObyiQusly, a single 
storage word may in general have a multiplicity 
of associative criteria, or alternativel~, several 
words may have a common one. This interpre
tation of an associative memory is concerned 
with exact data storage and retrieval (albeit 
the retrieval request may· be inexact and in
complete) and not with "interpolation" between 
stored data points. 

The second conception of an associative mem
ory is concerned almost exclusively with an 
ability to interpolate between stored data points. 
This does not imply that exact recall of stored 
data points is no longer desired, although this 
capability is generally compromised, but rather 
that the memory should have the ability to in
terpolate (or extrapolate) in a field of statis
tically related memory entries. Biological sys
tems evince both types of memory processes 
(hence their common classification under the 
heading of associative memories). Apparently 
the most important design feature of the bio
logical system is what is termed "distributed 
memory." Unlike a computer memory where a 
particular item is stored in a sharply defined 
location the entries into a biological system are 
distributed through relatively extended vol
umes of the neural material, so that even partial 
extirpation cannot erase a strongly recorded 
memory trace.] 1 The concept of distributed 
memory has received a great deal of attention in 
the past few years, primarily because of the 
pioneer work of F. Rosenblatt on percep-



494 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

trons,12,13,H and the more recent researches of 
B. Widrow and J. Angell on Madeline com
puters.Hi ,16,17 

ASSOCIATIVE ADDRESSING 

If all of the data words which are to be 
stored in an associative memory could be made 
available in parallel, then by an examination of 
the individual associative criteria (descriptor 
lists or independent variables) a decision could 
be reached as to which words were to be stored 
near each other. This decision procedure, based 
on some measure of nearness between the vari
ous associative criteria, is precisely the opera
tion which is carried out in computer sorting, 
for an example. The reason that such programs 
are so costly in time and machine operations is 
that the device must, by a scanning, or moving 
shuffle, effectively simulate the parallel occur
rence of the data words. If an associative ad
dressing scheme is to be effective, it must be 
able to assign each individual memory entry, as 
it appears serially, to precisely the memory lo
cation to which it would have been assigned had 
the entire memory fill been available in parallel. 
It is obvious that if the associative criteria are 
inadequate for the parallel classification, no 
serial procedure can do better. 

The associative, addressing scheme which 
forms the basis of this paper is extremely sim
ple. In lieu of having all of the data words 
available in parallel so that their associative 
criteria can be compared simultaneously, the 
associative criterion of each new word is com
pared, as it appears for entry into the memory, 
with a large number of bogus associative cri
teria which form a fixed part of the memory. 
One of the most important questions which 
must be asked concerning any particular mem-

_ ory is whether that specific selection of bogus 
associative criteria is complete in the sense that 
they will cause a data word to be addressed to 
the same storage location as would have been 
done by the simultaneous comparison of all data 
words. This question is treated in detail in Ap
pendix 1; however, the following argument 
shows that there will always be some selection 
for which this is true. 

The input space over which the data words 
are defined will always be a finite point set as a 

consequence of a restriction on each of the de
scriptors or independent variables that they lie 
in a finite discrete range. Therefore, the com
plete memory fill, which is a subset of functions 
on this point set, is itself finite. It was assumed 
earlier that the associative criteria were ade
quate for the unambiguous parallel associative 
addressing of the data words. If now the selec
tion of fixed associative criteria included every 
word of the memory fill, then obviously by this 
assumption each data word would be properly 
addressed. Equally obviously, if the memory 
required this number of bogus criteria to oper
ate it would be of no practical interest. The 
foregoing argument was introduced only to 
demonstrate that for some finite selection of 
fixed criteria the data word could be assigned 
the proper associative address. 

Consider a function f (XhX2, ... , XII) defined 
over n variables, where each of the variables is 
restricted to some finite discrete set of values, 
as specifying the environment or source of en
tries for an associative memory. Then the set 
of values 

consisting of the complete specification of a 
point in the input space and the value assumed 
by the function at that point is a data word. 
The second half of the bracketed expression 

in which the Xi elements are treated as the inde
pendent variables of the input space is the asso
ciative criterion. 

Each of the XI above is restricted to a discrete 
set of values. Let k i be the number of incre
ments in the range of Xi. It is an extremely 
useful convention for the purposes of associa
tive addressing if we think of the points in the 
input space as represented by a linear array of 
symbols 

(Xll' Xl2 ... Xlk1 ) (X:!h X22 ... X2k:!) ... 
(XIII, xu:! ... Xukn ) (1) 

where each of the parentheses represents all of 
the values in the discrete range of the corre
sponding variable. Every point in the input 
space will be represented as a vector of this 
form in which a single 1 appears in each pa
renthesis, with all other entries in that paren
thesis being O. Each of these vectors has N 



APPLICA TION OF AN ASSOCIATIVELY ADDRESSED, DISTRIBUTED MEMORY 495 

binary elements, and hence is a vertex of the 
N-dimensional unit side hypercube situated in 
the vertex of the first octant in E~ space, where 

n 

N=L k j (2) 

i=l 

In the balance of this paper we shall refer to 
this as the input or S space. 

Consider two points in S space represented by 
their liijear vectors (in the same form as (1» ; 
X, X'. Ignoring for the moment the value as
sumed by the function at these points, the first 
question, and certainly the most natural one, is 
"How close are X and X' to each other?" In 
order to discuss nearness it is necessary to in
troduce a metric. The most natural metric for 
the points in S space as defined by (1) is 

d2 = n-X' . Xl' (3) 

which has the simple interpretation of testing 
whether the variables are identical in each par
tition, and of giving as the metric the number 
of partitions in which X and X' differ. The 
parallel associative classification of a memory 
fill is based on the computation of all such dis
tances between entries. 

The points in the original input space, n
dimensional, were mapped onto a select set of 
the vertices of the unit hypercube in E~ with the 
restriction that the Hamming weight of these 
points be precisely n. Similarly the bogus asso
ciative criteria, or reference points in S space, 
will also be chosen to be vertices of this same 
hypercube, without, however, the restriction to 
Hamming weights of n. It is most convenient 
to consider these vertices to have been chosen 
randomly so that the reference points are uni
formly distributed on the hypercube. This defi
nition gives rise to a difficulty which did not 
exist in the computation of the distance between 
a pair of associative criteria. There, since the 
vectors, X, were restricted to have a single 1 
in ~ach partition, the distance was either 1, 
within a single partition, or 0 depending on 
whether the value of that variable was the same 
in the two associative criteria, or dissimilar, 
respectively. Now there is the possibility that a 
single partition could contain all l's, for an 
example, in which case the distance d would 

be 0 in that partition irrespective of which asso
ciative criterion it was compared to. This weak
ness of the metric d in the enlarged space, i.e., 
the union of the permissible input S-space and 
the space made up of the reference points, does 
not prevent the model from working, as the 
analysis of Appendix 1 proves, but it does indi
cate that only a very small portion of the total 
information available is utilized in forming the 
associative address. We will still define dis
tance in this enlarged space by the metric d 
and ignore the degeneracies which can occur. 

The vertices of the hypercube chosen as ref
erence points are most conveniently treated as 
vectors since d:! is formed by an inner product, 
and hence we will refer to any individual refer
ence point in the extended S space as an asso
ciation vector A j • If there are R association 
vectors, then they may be best dealt with as an 
N x R binary association matrix A. The prod
uct of an associative criterion, considered as an 
N element row vector, and A, is a row vector 
with the R elements being the metric d2 less n 
in each case. This vector is designated as the S 
vector with elements Sj. 

S= X . A (4) 

In Appendix 1 it is shown that for R sufficiently 
large it is possible to recover d2 from Sand S', 
and that therefore the metric is complete over 
the point set of R-tuples S. 

We will now introduce a nonlinear threshold 
operation on the elements of the vector S. A 
new (1 x R) row vector a, with elements a,., will 
be derived from the S vector by the following 
procedure: 

_ {I if Si ~ 0 
a~ - 0 if Sj, < 0 

Thus we have generated from the product X . A 
a binary (1 x R) row vector which has a 1 in 
the i-th position if the input X is not more than 
n--8 distant from the reference point A, .. Again 
it is worthwhile emphasizing that for R suffi
ciently large the vectors a and a specifying the 
distance of X and X' from the R association 
vectors Ah A:!., ... An, are at the same time ade
quate to define the distance d:!. between X and 
X'. This is true in spite of the weak definition 
of the metric in the extended space as is shown 
in Appendix 1. This a vector is the desired asso
ciative address. 



496 PROCEEDINGS-SPRING JQINT COMPUTER CONFERENCE, 1964 

It is possible to give a simple geometrical in
terpretation of the associative address. As was 
noted above the extended S space is the set of 
vertices of the unit hypercube in Ex. A hyper
sphere of radius ~ can be circumscribed about 
every such hypercube and a central projection 
of the hypercube onto the sphere can be made 
which leaves the vertices unchanged. The most 
important point for our geometric discussion 
though is that the circle drawn through all ver
tices of the same Hamming weight of the 
hypercube on the surface of the hypersphere 
will be equidistant from the poles of the sphere 
at (00 ... 0) and (11 ... 1). Obviously every 
point which can exist in the extended S-space 
lies on this hypersphere. We can now map 
these hyperspheres on an ordinary sphere in 
3-space in which case there will be N-l circles 
around the sphere corresponding to Hamming 
weights of N-l, N-2, ... 2, 1. Thus the simple 
projection of the 3-variable hypercube on the 
sphere yields a representation as shown in 
Figure 1. Similarly for higher dimensional pro-

jections we get N-l circles, each with (~) 
points on it of Hamming weight, w. 

The points in S space which can be X vectors 
as given by (1) all have a Hamming weight of 
n; however, not every point with a weight of n 
is a permissible X-vector. There are NH points 
with a Hamming weight n and only T permis
sible X vectors. 

Nil == 

n 

T == IT k j 

i == 1 

In general disregarding the points of S space 
which have a Hamming weight different from 
n, we have Figure 2 as the projection of the 
hypercube on the sphere, where the symbol 0 

represents permissible X vectors and the sym
bol . represents other points which have a 
Hamming weight ofn. 

Obviously the distance, d, from any such 
point, X, to a set of vertices of the hypercube, 
Ai, could be computed. This is precisely the 

(III) 

(000) 

Figure 1. 

(II··· I) 

H=n 

(00' .. 0) 

Figure 2. 

S-vector discussed above, i.e., Figure 3. The 
nonlinear thresholding operation consisted of 
testing each such distance against a reference 
o to see if it was greater than or equal to the 
reference. 

{
I if Sj, ::::::.. 8 

a, == 0 if SL < 8 

Recalling the way in which s was formed, i.e., 
Sj == X . Ah we see that s is largest for the 
closest reference points. Thus the threshold 
operation can be geometrically represented by 
constructing about X as a center a hypersphere 
of radius 0 and determining which of the refer
ence points lie inside or on this sphere. The aj 

corresponding to these points will be assigned 
a value of 1 by the threshold test. The intersec
tion of the hypersphere about X with the hyper
sphere on which X occurs is a hypersphere of 
dimension (n-l) as is shown in the following 
projection (Figure 4) on a sphere in 3-space. 



APPLICATION OF AN ASSOCIATIVELY ADDRESSED, DISTRIBUTED MEMORY 497 

(II·· ·1) 

(00·· ·0) 

Figure 3. 

(II··· Il 

Figure 4. 

This completes the geometrical description of 
the mapping from the N dimensional extended 
S space to the R dimensional memory space. 
The resulting set of binary valued a metrics is 
the associative address. 

DISTRIBUTED STORAGE 

In the foregoing analysis of a possible asso
ciative addressing technique we specifically re
tricted attention to that fraction of the data 
word which specified the location of the data 
point in S-space. This base vector, X, was 
shown to preserve its metric relationship to 
other base vectors under a linear transforma
tion followed by a threshold operation which 
transformed X into a new vector, a. It is this a 
which we propose to use as an associative ad
dress in storing or retrieving data from an 
associative memory_ The most important quali-

tative point in this procedure is that the trans
formation maps points from the N-dimensional 
S-space into points in an R-dimensional space. 
This tremendous increase in the number of 
points in space is the basis for the storage of 
the balance of the data word. 

In general, if we consider an R-dimensional 
space we can position an (R-l) dimensional 
hyperplane through this space so that the per
pendicular distances to R arbitrary points 
(which are assumed to constitute a basis for 
the space) from the plane may be arbitrarily 
specified. The restriction that the points must 
constitute a basis is equivalent to requiring 
linear independence of the base vectors from 
the origin of the system to the points. It is this 
latter statement which is the essential restric
tion for the weaker case in which fewer than R 
points are being fitted to a hyperplane in R
dimensional space. 

Let the equation of the hyperplane be given 
in the form 

XQ = d 

where the X and Q are nonzero, R-tuples. Then 
the equivalent normal form isI8 

XL = p 
where 

Qj 
Ij = TIQ1T 

are the cosines of the direction angles of the 
hyperplane and p is the length of the normal 
from the origin of the R-space to the hyper
plane. This normal, which is of course unique, 
may be most easily expressed as an R-tuple, 
with one free parameter, p. 

N=pL 

The Ii. are now the direction cosines of the nor
mal. With the notions just developed it is now 
an easy matter to express the distance d j of an 
arbitrary point al iI to the hyperplane. 

dj=p-ali,' L 

But this is a linear system, in general non
homogeneous, of the form 

a . L = G 

where G is the R-tuple of elements (p - d i ). 

Since a solution of such a system for arbitrary 
G is possible if and only if the elements of the 



498 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

linear system a . L are linearly independent, 
we arrive at the earlier restriction that the 
vectors to the points, aU,), must be linearly in
dependent and therefore, in the case in which 
there are R-points, must constitute a basis for 
the space. 

As was shown earlier in the description of 
the formation of S-space and of the procedure 
by which points in it are mapped into points in 
M-space, these image points are restricted to 
be vertices of the R-dimensional binary-valued 
hypercube positioned in the vertex of the first 
octant of the space. Actually the restrictions 
were much tighter than this; however, it 
suffices to consider any of the vertices of the 
hypercube in the following development. First 
we have just shown that a hyperplane can be 
found such that it lies at a specified, but arbi
trary, distance from each of R linearly inde
pendent points in R-space, as shown in the fol
lowing example in 3-space (Figure 5). 

Instead of considering a hyperplane at an 
arbitrary distance p from the origin, which lies 
at arbitrary but specified distances from the 
anI, let us consider a hyperplane through the 
origin which lies at arbitrary relative distances 
from the ali,). In other words find Q such that 

alU • Q di 

a'j) • Q - dj 

Recalling that the a l il are vertices of the R
dimensional hypercube, we see that this is satis
fied by letting 

d alii' Q 
i== IIQII 

which is the quantity we propose to use in stor
ing f (X) ; i.e., let 

f(X(i» == dj IIQI/ == ali.) • Q (5) 

We shall hereafter refer to the R-tuple Q as the 
hyperplane with the understanding that what 
is actually meant is that Q is the coefficient 
array of 

XQ== 0 

which is a linear equation in R unknowns and 
hence is the equation of the hyperplane. 

It is now possible to construct, in the instance 
where R linearly independent points are being 
fitted, a single plane through the origin with 
the required relative distances, say gi. Figure 6 

Figure 5. 

Figure 6. 

shows this for the example used earlier from 
3-space. 

If fewer than R-points are to be "stored" 
using this technique, then there are correspond
ingly infinitely many solutions for each free 
parameter so introduced. The essential point 
though is expressed by equation (5), namely 
that the functio~1 to be stored at a point all,) is 
given by the nC' ''lal distance to the hyperplane 
Q times the norm of Q, i.e., alU • Q. 

The distributed memory is achieved in the 
R-tuple representation of the solution hyper
plane since each element qj will in general be 
involved in the computation of the distance to 
many image points, and any individual distance 
is dependent on many qi. 



APPLICA TION OF AN ASSOCIATIVELY ADDRESSED, DISTRIBUTED MEMORY 499 

THE ALGORITHM FOR THE SOLUTION OF 
THE ASSOCIATED LINEAR SYSTEMS 

Each data word as it is entered into the 
memory generates an element of a linear sys
tem. This system of T equations in R unknowns 
could, if it were available at one time, be treated 
by several conventional methods. Unfortunately 
the data points are presented serially so that 
only a single equation is available to the asso
ciative memory at any particular time, and we 
have presupposed no detailed memory for the 
elements of the linear system. Thus, any solu
tion will have to be generated by a sequential 
operation on each equation. There is only one 
technique in use for solving linear systems 
which has this esse1!tial property, i.e., sequential 
manipulation of one equation at a time. This is 
the "relaxation method" devised by Gauss and 
revived and popularized by R. V. Southwell and 
his colleagues.19,2o Basically, this procedure de
pends on the successive minimization of a set of 
"residuals" associated with the family of linear 
equations being solved. Let the linear system 
be of the form 

n 

L aLj Qi =-=- f (X(i) 

i == 1 

then the residuals, R t, are defined to be 
n 

(6) 

f (X(i» - L atj Q{ == Ri (7) 

i == 1 

where the primed values of Qi indicate some 
estimate of the actual vector Q. The most com
monly employed algorithm used in relaxation 
of the family given by (6) depends on comput
ing all of the residuals, Rh R2 ... RT , for some 
assumed value of Q. The largest of these resid
uals is then chosen and a change of the ele
ments in the assumed Q is made so that this 
residual is caused to become zero (or near zero) 
and a new family of residuals is computed for 
this new value of Q'. This procedure is re
peated until all residuals are within a tolerable 
bound of zero, at which time the value of Q' is 
considered to be the approximate solution for Q. 
The above description of the relaxation method 
is based on the most commonly used algorithm, 
but not the only one used! Other techniques de
pend on choosing the residual which requires 

the greatest change in Q' for its liquidation, 
over-relaxing so that the algebraic sign of the 
residual being liquidated is changed, and under
relaxing, in which only a part of the residual is 
liquidated. We do not intend to discuss relax-
ation methods, as such, and the foregoing was 
intended only to show the relationship of the 
algorithm used in the present model to an exist
ing procedure for the solution of a system of 
linear equations. 

In each of the algorithms mentioned above 
for use with relaxation techniques, the entire 
system of linear equations was assumed to be 
available at one time so that all of the residuals 
could be computed and a decision made, based 
on the values of these residuals, as to the next 
step in the process. In the model of the asso
ciative memory under discussion only one 
equation is available at a time, so that its resid
ual can be either partially or totally liquidated, 
without, however, knowing the effect of this 
operation on the other residuals. 

From equation (7) we may write the linear 
system, in residual form, as 

f (X(j) -aU) . Q' == Rj (8-a) 

(not a component of X) and a(j) is the image of 
X{j) under A in l\-I-space (again not a compo
nent of a). If R j is to be liquidated, and if no 
information is available concerning the relative 
value of a variable (i.e., the effect of a particu
lar variable on all other residuals) which is 
certainly true in the restricted system under 
consideration here, and if further all of the co
efficients are identical (1 in this case), then 
the readjustment of Q' to a new value may be 
best accomplished by dividing the correction 
equally among all components. What we have 
said is that we have no information on which 
to base a selective adjustment of the variables 
in Q', and hence we will impartially adjust all 
of them by the same amount. The computa
tional algorithm takes the form: 

R- } 6==k~ 

Q" == Q' + 6a'L' 

(8-b, c) 

where the primes indicate successive approxi
mations of Q and 0 < k < 1. k is most often 
chosen to be 1 so that the residual at each stage 
is totally liquidated. 



500 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

With the new estimate for the vector Q ob
tained from the iterative cycle (8-a,b,c), a new 
residual will be computed using the next set of 
coefficients, aj, when they are generated. Ob
viously the second serious question concerning 
this particular model of an associative memory 
is, "Under what conditions does the iterative 
procedure converge?" The convergence is 
analyzed in detail in Appendix 2; however, it 
suffices for the present purposes to summarize 
the results obtained there as saying that if the 
system has a solution, then the procedure will 
converge to it, and that if the system has no 
solution it converges to a "best" approximation 
in a sense which is discussed in Appendix 2. 

This completes the description of the asso
ciative memory model. We will now discuss the 
behavior of such a memory simulated on a 
CDC-1604 computer. 

EXPERIMENT AL INVESTIGATIONS 

The model for an associative memory devel
oped in the foregoing analysis leaves two prin
cipal questions to be answered by experimenta
tion. The first concerns the behavior of the 
iterative procedure when used to solve linear 
systems; the second concerns the behavior of 
the memory, i.e., its convergence during the fill 
operation and the accuracy of its estimation of 
previously unfilled points in S-space. 

In the first experiments no associative 
memory will be used; rather a linear system 
such as might be produced by an associative 
memory will be contrived to simulate the a vec
tors and demonstrate the solution behavior of 
the algorithm. 

Experiment No.1 

In this experiment a set of forty linear equa
tions (with binary coefficients) in forty un
knowns, and a half set of these equations were 
solved. It was desirable that these equations 
all have precisely the same Hamming weight 
to make them more nearly like the a vectors 
generated by the associative memory. To ac
complish this the following scheme was em
ployed. Each of the possible distinct combina
tions of two l's and three O's were assigned a 
code number: 0, 1, ... ,9. A random number 
generator was used to generate 320 random 

digits, each block of eight digits corresponding 
to a single linear element, and the appropriate 
combination was substituted for the decimal 
code digits to yield the system of forty random 
binary coefficients and forty linear elements. 
The first five elements are given in octal form 
below to indicate the general character of the 
linear system. 

1 5 1 2 144 1 6 1 132 0 
o 645 4 142 4 3 1 3 0 4 
1 2 443 5 123 0 072 0 
o 5 1 0 5 4 5 4 2 145 1 0 
1 105 1 505 1 130 1 4 

The statistically predicted overlap for such 
a system is 16%. This compares very well with 
the actual overlap of 15.8%. We thus have a 
system with a precisely known Hamming 
weight, 16 or a density of 400/0, and a nearly 
statistically perfect overlap. One point still has 
to be insured-the compatibility of the entire 

" linear system. To insure this we assumed a Q 
and computed the functional values to be 

" alii' Q, thus guaranteeing the linear system to 
be a compatible one, even if the a's failed to be 

" linearly independent (as they did). The Q was 
chosen to be 

" ,,/\ /\ 
Q == (qh q:!, ... , q .. w) 

where 
/\ 
qj == i; i == 1, 2, ... 40 

The function f computed in this manner has a 
mean of 

-f - n (n + 1) - 328 - 2 p_. 

and a standard deviation of 

n+l 
(T == -2- vi np(l- p) == 63.5 

This system of forty compatible equations in 
forty unknowns is the basis for the first portion 
of this experiment. 

The following indicator of convergence was 
defined: 

n 

E == 1:. " T L A 
i == 1 la/i.)' QI 

defined over a cycle. E is in some sense a mean 



APPLICATION OF AN ASSOCIATIVELY ADDRESSED, DISTRIBUTED MEMORY 501 

E 0 
~ r-------~~------~--------_, 

-I 
10 ~------_4---------4---------~ 

~2r-------~--------_J--------~ 

-5 
~ ~------_4-----~---4--------~ 

I04r_------_4-I-------~--------~ 

~5~~~--~~~~--~~J-~---~ 
1000 100 10 

Figure 7. Convergence of a 40 x 40 Linear System. 

absolute percentage of error in estimating 
A 

f(i.) == O::(i). Q, and consequently is a useful in-
dicator of convergence. It is important that f 
be well removed from 0, and that the (F be small 
enough to not produce large fluctuations in the 
percentages. The generating scheme described 
above was chosen to satisfy all of these require-
men~. . 

The convergence for the 40 x 40 system is 
shown in Figure 7. This plot also shows one of 
the empirically discovered features of this 
algorithm; namely, that a plot of the logarithm 
of the mean absolute percentage error versus 
the logarithm of the cycle number is approxi
matelya straight line. This is qualitatively true 
of all the systems, which have been solved to 
date. 

The second portion of this experiment con
sisted of solving the first twenty elements of the 
preceding linear system, i.e., a linear system of 
twenty equations in forty unknowns. E is 
plotted in Figure 8. 

E 0 
10 .-------~r_------~--------~ 

-I 
10 r---------r----------~r_------J'~ 

-2 
10 r---------r-----------f--1r_---------l 

-5 
10 r-------~r_----~!--~--------~ 

-4 
10 r---------~---I-----~-------~ 

-5 
10 ~~~----~~~ __ ~~-L-L_~ 

1000 100 10 I ." 

Figure 8. Convergence of a 20 x 40 Linear System. 

Experiment No.2 

The objectives of this experiment are basically 
the same as those which prompted experiment 
No.1; however, there are two differences: 

1. The linear system has been increased from 
40 x 40 to 100 x 100. 

2. The coefficients have been directly as
signed by the random number generator 
so that the Hamming weight is only 
statistically defined .. 

The a elements are generated by a random 
number generator, with the probability of hav
ing a 1 in any single position being 0.2. The 
mean Hamming weight of the a vectors there
fore is 

Ha == pn == 20 

with a standard deviation of 

(Fa == V Ha (1 - p) = 4. 

After the a elements were generated by the 
above scheme, the functional values were as-



502 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964, 

-I 

10 

-2 
10 

-3 
10 

-4 
10 

-0 
10 I 

1000 

/ 

/ 
/ 

./ 

/ 

I 

100 10 

Figure 9. Convergence of a 100 x 100 Linear System. 

signed using the same procedure described in 
Experiment No. 1. The mean functional value 
then is given by 

f=n(n+1) p=1010 
2 

with a standard deviation of 

n+1 o=-2-vnp(1-p) =202 

In this experiment only the cyclical sequence 
for relaxation was used. Figure 9 shows a plot 
of the convergence of the system of one hundred 
equations in one hundred unknowns as a func
tion of the number of cycles through which the 
system has been relaxed. 

The linear system investigated in this experi
ment corresponds more closely to the systems 
which will be generated by the probabilistic 
associative memory, whereas the system of 
Experiment No. 1 corresponds more closely to 
those generated by a complete binary matrix. 
In the latter case, the Hamming weight of all ll' 

elements is exactly the same, while in the proba
bilistic case the Hamming weight is only statis
tically specified. One would expect the behavior 
exhibited in this case to extrapolate directly to 
larger linear systems and thence to the linear 
systems generated by the associative memory. 
The next experiment shows this indeed to be the 
case. 

Experiment No.3 

This last experiment (to be described in this 
paper) on linear systems differs from the pre
ceding experiment only in the size of the linear 
system considered-250 equations in 1000 un
knowns. The generating procedure for the ll' 

elements and the method of assigning the func
tional val11es to insure compatibility are the 
same as those already discussed. The essential 
par'ameters descriptive of this problem then are: 

size 250 x 1000 
p 0.2 

Hn 200 

(1:1 12.65 

f 100,100 
(1 6,331 

The convergence behavior of this linear sys
tem, when solved using cyclical relaxation, is 
shown in Figure 10. 

The test problems investigated in this series 
of three experiments were selected to show the 
essential properties of solutions generated by 
nonselective relaxation, i.e., relaxation which is 
nonselective in the sense that the set of resid
uals is not examined to determine which linear 
element is to be relaxed, and also in the sense 
that the coefficients are not considered in select
ing an element (or elements) to be relaxed. In 
addition to illustrating these general behavioral 
characteristics, the size of the systems being 
solved was gradually increased until they were 
comparable in magnitude to those generated by 
interesting associative memories. With these 
comments we leave the subject of the nonselec
tive relaxation technique and consider instead 
actual associative memory studies. 

Experim.ent No.4 

This experiment is concerned with an appli
cation of the associative memory model to a 



APPLICATION OF AN ASSOCIATIVELY ADDRESSED, DISTRIBUTED MEMORY 503 

-I 
10 r---------------4--------------/-~ 

-I 
10 r------------/---~--------------~ 

Figure 10. Convergence of a 250 x 1000 Linear System. 

problem in pattern recognition, which while 
simple, is certainly not trivial. The experiment 
will be described in two stages: first the pro
cedure by which the patterns are generated will 
be described and analyzed, and then the asso
ciative memory which was used and its func
tioning will be discussed. 

It is desirable in order to simplify the anal
ysis of the results that the pattern generation 
scheme assign approximately half of the possi
ble inputs to the class of patterns and half to 
the class of non patterns. It is also desirable that 
the procedure have an intuitive appeal as a pat
tern generator, that is that the patterns should 
be recognizable by some relatively simple logical 
test. The following satisfies both of these cri
teria. Consider a four-element mosaic X11, Xl:!, 
X21, X:!2, where each element can assume anyone 
of a discrete range of val ues, x. 

The pattern which is tested for in this experi
ment consists of a bar, either vertical or hori-

zontal, where both the bar and the background 
are subject to noise. This is"accomplished by the 
following logical test: 

where 

f(X) == bh E9 b v 

if min (Xl h XI:!) > max (X:!h X:!:!) 

or min (X:!h x:!:!) > max (XI h XI:!) 

otherwise 

if min (X11, Xl:!) > max (Xl:!, X:!:!) 

or min (Xl:!, X:!:!) > max (X11' X:! I ) 

otherwise 

This scheme has the intuitive appeal, if one 
interprets the range of possible values of X as a 
grey scale, of detecting a noisy pattern on a 
noisy background. The general rule for the 
recognition of a figure is that 

min (F) > max (B) 

where F designates the figure elements and B 
designates the background elements, i.e., the 
lightest element in the figure is to be darker 
than the darkest element in the background. 
Thus a contrast enhancing procedure which con
verted all elements of a field to black or white 
depending on whether they were greater than 
or equal to the minimum value in a potential 
figure or less respectively would reconstruct a 
black figure on a white background with no deg
radation, had the input mosaic pattern actually 
been in the class of figures. The probability that 
an arbitrary four-element pattern, with a grey 
scale of 48 steps, is recognizable as a bar is 
0.3197, which provides an adequate density of 
patterns for the purposes of the present ex
periment. 

The associative addressing matrix used in this 
experiment had an effective size of 9600 col
umns, each of which was 192 bits in length. The 
actual matrix was 1/48-th this size, 192 X 200, 
but a technique devised by Dr. H. Everett of 
WSEG makes it possible to use this smaller 
matrix in such a way as to be equivalent to the 
larger memory. The matrix is filled with ones 
and zeroes using a random number generator, 
with the probability of a one being entered in 
any bit position being a prechosen value p: in 
this example p == 0.2. 



504 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1~64 

The threshold was selected to be ~ == 3. Using 
these parameters it is possible to define the sta
tistical behavior of the memory in generating 
the associative addresses. The probability that 
any particular a ~lement is a one, P ,is given by 

4 

P == L ( ~ ) (0.2)i(0.8)4-i = 0.0256 

i == 3 

Consequently the mean Hamming weight of 
the a vectors is 

He' == 245.76 

with a standard deviation of 

(Ta. = 15.48. 

This says that the number of a elements which 

will be operated on in any single relaxation 
cycle is between 215 and 277 with a 95 % likeli
hood, which is a satisfactory description of the 
extent of the alteration in Q introduced by re
laxation. 

The associative memory was shown a se
quence of 400 patterns constructed. by using a 
random number generator to assign values to 
the Xij' Whether a particular mosaic input was 
a pattern or not was determined by applying 
the logical test. I t is worth noting that these 
400 points were drawn from an environment 
of 5, 308, 416, (484 ), possible mosaic configura
tions. The scores of the device are given. in 
Table I, as accumulated over cycles of fifty 
exposures. 

TABLE I 

Number of "patterns" 
Cycle in the cycle 

1 30 

2 34 

3 25 

4 31 
5 33 
6 29 
7 26 
8 26 

Totals 234 

The results tabulated in the preceding para
graph summarize quite well the operation of the 
associative memory as a pattern recognizer. 
The fact that roughly the same number of pat
terns and nonpatterns have been misclassified, 
out of a population of 234 patterns and 166 
non patterns, is an indication of unbiased per
formance in the classification of mosaic figures. 
These results are shown graphically in Figure 
11 where the raw scores, accumulated over 
cycles of fifty exposures, and a smoothed curve 
are plotted versus cycle number. 

Experiment No.5 

This experiment is devoted to an investiga
tion of the behavior of the associative memory 
when used to store a simple algebraic function 

Pattern Nonpattern 
Errors Errors 

27 2 
10 12 

4 16 

8 6 

2 11 

3 10 
4 8 
7 4 

65 69 

originally used by Smith 21 in his studies of a 
perceptron-like computer model, ADAP II. 
This particular function was chosen because it 
embodied several special features whbh allow 
a testing of the associative memory functions 
and because it permits a qualitative comparison 
of Smith's results and those achieved using the 
associative memory. The "Smith function" is 
given by 

F II = Xl X2 + 2xa + 0 . x .. 

which has a mean of 

F - k1k:! k 
K- 4 + a 

where k i is the number of nonzero steps in the 
discrete range of the i-th variable. For test pur
poses this function has several advantages. It 
involves a cross product term which has proven 



APPLICATION OF AN ASSOCIATIVELY ADDRESSED, DISTRIBUTED MEMORY 505 

Figure 11. Scores of the Pattern Recognition Program 
on Cycles of 50 Points Each. 

to be a very difficult function for perceptron
like (single layer perceptrons) devices to learn. 
It has a term which has a zero coefficient and 
hence; although this variable enters into the 
associative addressing, cannot affect the func
tional value. Finally the basic form is a iinear 
summation of terms, a functional form most 
easily stored in the quasi-linear associative 
memory. In all of the tests which make up this 
experiment n == 9, i.e., Xi == (0, 1, ... , 9). The 
matrix is 192 x 9,600 with the Everett scheme 
for permuting a base matrix being applied to a 
basic 192 x 200 array. 

The essential parameters of the experiment 
are 

p == 0.2 
8==3 

which gives a mean Hamming weight of 
Ha == 261.12 

A random number generator was used to as
sign random values (0 - 9) to Xt, X2, Xa, and X.t 

and the corresponding F s was calculated using 
these random variables. The convergence plot 
for this test is shown in Figure 12. E is defined 
in a slightly different manner here than before. 
In the case of the contrived compatible linear 
systems where E was' first introduced, the func
tional values were tightly clustered about the 
mean and bounded away from zero so that no 

-I 
10 

-I 
10 

-
~ 

l-

. 
. . 

I 

~r 
. , 

'. .. .. 
"" 

I I I I ~ 
10 

Figure 12. Convergence for F!< with p = 0.2; (j = 3. 

difficulty could be encountered in defining E to 
be the average absolute percentage error. Here 
the function is very broadly spread, and further
more not bounded away from zero; therefore 
the following related definition for E is used in 
discussing this experiment. 

D 
-r;, 1 ~ IR til ! 

~==D L F\ 
i == 1 

where D == 60 in this experiment. 

The following test is actually the crux of this 
whole series of experiments since it demon
strates the actual operation of the associative 
memory. This test is concerned with the mem
ory's performance on the F s function using the 
parameters given in the preceding paragraph. 
The convergence plot for this particular test 
has already been given in Figure 12; however, 
the detailed behavior of the memory is lost in a 
smoothed measure of convergence such as E. 
Since the primary function of the associative 
memory is the recall (or estimation) of func
tional values it is highly desirable to present the 
memory output in a form where its perform
ance can be conveniently judged. 

Two questions which occur naturally when 
one considers an associative memory are: 

1. How will it perform in a new field of data 



506 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

~ 100 

~ 
/'\ 
I 

I b 

I I 

Fs c!l i 1 

50_

l
,\ ' I~· j 
( V 0 :i 

0-

1\ 

Ii 

/1 0 

I r 1

0 
\ 

o !~ \ I 0 

o V \ \ I 

o \ \ 0 \ \ I 

Figure 13. Test of a Filled Memory on Random Points 
in X Space (0 = predicted, • = actual values). 

points, if forced to estimate without new 
data being entered? 

2. What is the span of its memory; that is 
how well will it do if shown the same set 
of data points with which the memory was 
originally filled, compared to a new field 
of data points? 

Both of these questions have been investigated. 
The memory was "filled" by drawing 3000 data 
points at random as described before, and then 
by setting the relaxation coefficient to zero, 
k = 0, further changes in the Q vector were pre
vented. First a sequence of random points, pre
sumably new ones, were used to query the 
memory. The results of this test are shown in 
Figure 13. E = 0.10444 which indicates that 
the terminal performance of the associative 
memory while in the learn cycle, E = 0.10248, is 
probably a measure of its storage accuracy over 
the entire functional space. The second question 
actually answers this by showing that the de
tailed memory of the actual data points entered 
in the memory has been sacrificed for a type of 
distributed functional memory for the entire 
functional space. Figure 14 shows this phe
nomenon in a very striking fashion. The points 

~~, :~ ! I 
I I-

I 11 

\ I I ~ 
0-

Figure 14. Test of the Survival of Detailed Memory 
Entries (0 = predicted, • = actual values). 

immediately preceding the end of the storage 
period are all queried, with the unexpected re
sult that the memory has a detailed retentivity 
period of perhaps 500 points, or half a cycle, 
and that beyond this the individual data points 
have been lost individually and have been 
assimilated instead in a collective form as a 
"smoothed" function. 

In conclusion then, the series of tests which 
made up Experiment No.5 has demonstrated 
the behavior of the associative memory on an 
actual notrivial problem. The data could just 
as well have been drawn from any number of 
real-life problem situations; however, it seemed 
appropriate to discuss a well-behaved analytic 
function in this paper to permit the reader to 
readily judge the performance of the memory. 

CONCLUSION 

In view of the length of some of the argu
ments which have been presented, it seems 
especially desirable to give a succinct descrip
tion of the mathematical model for an associa
tive memory developed in this paper. 

A function (commonly a decision function) 
f (X) is defined over an n-dimensional input 



APPLICATION OF AN ASSOCIATIVELY ADDRESSED, DISTRIBUTED MEMORY 507 

space, in which each of the variables is re
stricted to assume one of a discrete set, ki in 
number, of values. Each of these input points 
is mapped linearly onto a vertex of an N
dimensional unit hypercube, 

n 

N == L kL, 

i == 1 
all of whose vertices make up the so-called S
space. The function f (X) is the desired mem
ory fill. 

A metric Si is defined by 

S==X·A 

where A is an (N x R) matrix whose columns 
are points in S-space. These points, Ah consti
tute a set of R fixed reference points in S-space. 
The metric Si defines the distance of X from Ab 
and was shown to be complete. A much weaker 
metric, ab is defined on S by the logical opera
tion 

{
I if Si. :::::". 0 

ai == 0 if St :::::::,. 0 

where 0 is a threshold value; 0 L. 0 L. n. 

It was shown that for some A (i.e., for a suffi
ciently large number of fixed reference points) 
there exists at least one hyperplane, Q, in the M 
space in which a is defined, such that the dis
tance at which the point a, whose pre-image as 
defined above is X, lies from Q is the function 
f (X) multiplied by a suitable normalizing 
constant. Such a hyperplane may be found by 
the iterative procedure : ~I~;: -a . Q' 'I 

Q" == Q' + 6. a'I' 

(8) 

which was proven in Appendix 2 to converge. 

Thus we may finally conclude that the out
put of this particular mo('el of an associative 
memory (at a time where <}' is the estimate of 
Q) upon being interrogated with the address 
(associative criterion) X is 

F (X) == a (X) .- Q' 

APPENDIX 1. COMPLET.ENESS' OF THE. 
d2 METRIC 

In the,' parallel' associative addressing of data, 

the distance d between words is computed and 
the entries are organized accordingly. d2 was 
defined as a function of the N-tuples represent
ing the points in S-space and one must show 
that the same distance can be calculated for 
any of the proposed image spaces. In this ap
pendix we shall prove that d2 is the same for X 
and X', Sand S' and a and a'. 

Following our earlier usage the vectors in 
S-space will be assumed to have N elements 
grouped in n' partitions or variable ranges in 
each of which a single one occurs. Now let A 
be the complete N x 2:\" binary matrix in which 
every possible N bit binary word appears as a 
column of the matrix. The S matrix is then a 
(1 x 2:\") row matrix formed by multiplying A 
by X. If we consider two vectors, say X and X', 
in S-space the distance between them is found 
from (3) to be 

d2 == n - X'XT (3) 

The first step in demonstrating that the weak 
metric on S is a complete one is to show that 
d2 as given by (3) may be computed from S 
and S' and non-specific knowledge about 
S-space: 

XA == Sand X'A == S' 
form 

X' A (XA) T == S'S'1' 
or 

X' AA TX'l' == S'S'1' (9) 

The unusual properties of the complete binary 
matrix make it possible to greatly simplify the 
left hand side of (9) through a manipulation 
of AAT 

( - 2:\"-2 'f' . 
• . T ~ ( • , au - , 1 I =1= J 

AA -'- ai.j) ~ _ 2:\"-1 'f . _ . l ajj - 1 1 - J 

irrespective of any ordering of the At in A. Thus 
AA'r can: be decomposed to the sum of two par
ticularly simple matrices, i.e., 

1 1 

+ 2:\"-2 I 

1 1 

This formula may now be re-introduced into 
(9) to give the following very simple form 

1 

XT + 2:\"-2 x,x'r == S'ST 

1 (10) 



508 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

If one notes that the effect of the matrix opera
tion in the left hand member is merely to tally 
twice the nonzero elements of X' and XT and 
that this number is n, then (10) can be reduced 
and the resulting equation solved for X'X'l' 

X'XT == 2:-2 { 8'8T - n22x-2 } (11) 

Finally the distance between X and X' is found 
to be 

d2 == n - 2:-2 { 8'8'1' - n22x-2 } (12) 

where the right hand term is expressed only in 
terms of 8, 8' and parameters descriptive of 
the general characteristics (n and N) of 
8-space as was desired. This proves that for 
some R, in this case R == 2x , the metric de
fined on 8 is a complete one, that is to say, that 
the location of a point in 8-space is unambigu
ously specified by the 8 vector. 

First consider the form of the 8 matrix, 
8 == X . A. I~ will have integer elements with 
all integer values 0 thru n being represented. 
This can be decomposed into the following use
ful form 

n 

8 == L 8(i) (13) 

i == 1 

where each of the 8(i) is the matrix whose 
elements are either i or O. This representa
tion of 8 allows one to represent a analytically 
in the following form. 

n 

~ 8(i) 
1 

(14) 

i == 8 

where 8 is the threshold value chosen for the 
logical operation in (6). 

The basic problem is: given a and a', is it 
possible to compute the distance between X 
and X', or in other words is the weak metric a 
complete in the extended space? Note that the 
value of the threshold 8 against which a is com
puted is left unspecified, and hence can be con
sidered as one of the parameters of the prob
lem. Assume 8 to be n; in other words the asso
ciation vector must have a 1 in precisely every 
code position in which the X vector has a 1 if 
the corresponding a element is to be nonzero. 
As we have noted before, this result is not 

affected by the presence of extra I's in the 
association vector. a is now a single term and 
may be written as 

a == ~ 8 (n) (I4-a) 
n 

It is now possible to compute the number of 
nonzero elements in a rather simply. If there 
are n partitions with k j, discrete values possible 
in the i-th partition, and if the association 
matrix is the same complete binary matrix dis
cussed before, the number of elements whose 
value is n in 8 is 

n 
cpo (n) == rr 2 k I - 1 (15) 

i == 1 

If we consider another vector with (n - 1) of 
the partitions identical, with a single element 
different in a partition possessing k j elements, 
then the number of ai == n in the same relative 
positions of the two a vectors is 

n 
CP1 (n) == IT 2 ~I -1 X 2 kJ - 2 (16) 

i == 1 
i # j 

This argument is simply extended to the case 
where the two X vectors differ in an arbitrary 
number, p L. n, of partitions 

n j(p) 

CPI' (n) == IT 2 k, - 1 IT 2 kJ-2 

i == 1 j == j (1) 
i#j (17) 

It is possible to express X as a function of a 
as defined by (I4-a), cpo(n) as given by (15) 
and A, or more precisely AT. We shall now 
prove the following theorem. 

X =[</>.~n) ]-1 {aAT _ </>.~n) (1 ... 1) } 

(18) 

First consider the term aA T. aL is a one, if and 
only if, Sl is equal to n, which is to say that the 
binary cycles of the rows of. A, assumed to be 
ordered as shown in the previous example for 
this argument (which correspond to a 1 in the 
elements of the X matrix) must all be positive, 
or equal to one in this case. Thus, the operation 
of matrix multiplication followed by the logical 
decision (6) is exactly analogous to a double 
logical extract operation. If we now reverse 



APPLICATION OF AN ASSOCIATIVEI:.Y ADDRESSED, DISTRIBUTED MEMORY 509 

this operation and extra a against AT, i.e., the 
logical operation 

n 

L ajAij == f3j (19) 

i == 1 

The rows of A which contributed to making Sj, 

pass the threshold test will now be "in phase" 
with the variations of at; that is they will be 
positive in all cases when aio is positive. All 
other rows will assume all possible binary ar
rangements while these are fixed and conse
quently will be positive and zero equally often. 
Thus the "in phase" rows will contribute a 1 
for each 1 in a, or what is the same thing, if 
R is understood to represent a general "in 
phase" row of A and RT is the corresponding 
column of A'£ 

n 

a . RT == L aj, == <Po (n) (20) 

i == 1 

and similarly if r is a general "out of phase" 
row of A, and rT is the corresponding column 
of A'£ 

n 

arT == 1/2 L a~ == <Po ~n) (21) 

i == 1 

But if one recalls the definition by which the 
terms "in phase" and "out of phase" were intro
duced, namely, that an in phase row of A is one 
which corresponds in position to nonzero ele
ment of X and conversely for the out of phase 
rows, we see that the vector X is derivable 
from aAT. aAT is therefore a (1 x N) row 

vector which has <Po ~n) in every position in 

which X has a zero, and <Po (n) in every posi
tion in which X has a one. Equation (18). is 
thus obtained by a trivial algebraic manipula
tion upon aAT. 

The original question which prompted this 
discussion can now be answered in the affirma
tive--for an appropriate choice of the thresh
old, 8, and for R sufficiently large (at least for 
the case R == 2X as we have demonstrated) X 
can be expressed as a function of its distance 
from each of the association vectors in terms 
of the weak metric a. Certainly if X and X' 
can be expressed in this manner, the distance 

between them, d2, can also be expressed in term" 
of the same variable since d2 is defined on X 
and X'. This is incidentally a much stronger 
result than the one which we set out to prove 
which only req,uired that we be able to find d2 , 

not that we be able to solve uniquely for X and 
X'. The weaker case is interestingly enough 
much harder to prove; however, it is also much 
more valuable in the application of the con
struction to modeling real associative memories. 

Having completed all of the preliminary for
mulations required to compute d2 for any vector 
pair, X and X', in S-space it is an interesting 
exercise to compute the formula for d2 itself. 

d2 == n -{!~;!; - (1 ... I)} 

{ 
2aA'1' }'l' 
<po(n) - (1 ... 1) 

This may be expanded into the following form 
which is more amenable to simplification and 
computation. 

d2- N+ 4 'A1'A'1' 2 -n- --a a ---
<po(n) <po(n) 

" ') AT 2 • A J ~ 1 
\~ •• d "c - .pil(n) a "l ~ J (22) 

The two matrix expressions 

(1. .. l)AaT and a'AT r 1 1 
l ~ J 

may be reduced to their equivalent scalars. 
First by the argument of the previous section 
a' AT is a (1 x N) row matrix which has the 

element <PII ~n) in every position in which X 

had a zero and the element <po (n) in every 
position in which X had a one. A similar state
ment applies to the column matrix Aa1'. The 
final matrix operations 

(1 ... I)X and X 

1

1 1 



510 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964. 

simply sum these elements so that one may sum
marize these results by 

2 
- <po(n) (1 ... I)AaT

_ 

1 

2 AT ---a 
<po (n) 

1 =- (N + n) 

1 J (23) 
which makes it possible to express (22) in the 
following simple form 

d2 - (N + 3n) __ 4_ a'ATAaT (24) 
- <p~ (n) 

which may itself be simplified even further by 
expanding A'1'A into a summation of simple 
matrices. 

The results expressed by formulas (12) and 
(24) show that d2 is computable from the 
images of X and X' into Sand S' or a and a' 
respectively and that therefore the metric d2 

is complete in all three spaces as was to be 
shown. 

APPENDIX 2. CONVERGENCE PROOF 
FOR THE ALGORITHM 

The iterative procedure, which we have 
called nonselective relaxation, upon which the 
memory fill is dependent, must be proven to con
verge. It is much easier to approach such a 
proof by reducing the procedure to its geo
metrical equivalent. 

Let the estimate of Q stored in the memory 
at the time a data word {f(x); X} appears be 
Q', then the iterative sequence is: 

R == f (X) - a . Q' 

kR 
A == 110l1!2 

Q" == Q' + Aa'r 

(8) 

It is convenient to use the duals of Ol and Q, i.e., 
instead of the Ol being points in M space and Q 
a hyperplane through the origin, we consider 
the a to be hyperplanes whose normal from the 
origin was the point Ol befOl~e,. and Q becomes 
a point in S space. Using tJris ~onvention the 
sequence (8) has a very simple geometrical 
interpretation. R is the normal distance of the 
point Q from the hyperplane defined by a. Q" 
then becomes the normal orthogonal projection 
of Q' into the hyperplane, as Figure 15 iIIus-

Figure 15. 

trates, 7fj is the hyperplane defined by a~il' In 
the above example it is obvious that Q will con
verge to the solution point Q; however, a gen
eral proof is required for higher dimensional 
spaces, and for over determined systems. 

Let 7f\ (i == 1, 2, ... , R) be a family of 
(n - 1) dimensional hyperplanes defined by 
the o:~ i.) in Em and let the indices designate some 
arbitrary ordering. We will represent by the 
symbol TI, 1+ 1 the projection of 11"\ into 7f1 + h per
pendicular to 7fl+h from the point at infinity, i.e., 
a parallel orthogonal projection of 11"1 onto 11'\+]. 

We shall define the projective transformation 
P to be the product of the R projections T, 

P == T12 T 2:i ••• TItt 

which is permissible since the product of arbi
trarily many proj~ctions is itself a projec:!tivity. 
From the definition of P it follows that the 
image of any point in 11"1 under P is also in 11'1' 

Theorem: Let Q be an arbitrary point of 11'], 

then the limit of pnQo exists, and furthermore 
is a fixed point of P, i.e., 

Lim pnQ4) == Q Qo, Q€1I"1 
n~oo 

and 
PQ == Q 

Preliminary Remarks: 
1. There is at least a single fixed point for 

every projectivity,22.2:~ and hence for P in 
particular. 

2. The transformations T i , j + ] as defined 
above have the following property, where 

where 

I 'TQi TQi'l k IIQi Qi" Ii 1- Hi! == ill 1- u~: (25) 

and T has been written for T,. 1+1 since no con-



APPLICATION OF AN ASSOCIATIVELY ADDRESSED, DISTRIBUTED MEMORY 511 

fusion can result. ki. is a non-negative scalar 
bounded by the following inequality 

cos ®j L. ki ..:::::::: 1 
and 

cos ~>t == llad IllaH111 

lli!ill is the unit vector along the normal from 
ai 

the origin to the hyperplane '7fi. 

kt cannot be specified more tightly without 
knowing the orthogonal projection of the line 
segment [Qi, Q~] on the intersection of '7fi and 
'71"1+1. 

Proof: Since T i , i + 1 is a linear transformation 
we may write 
IITJ• J+lQi -.- Tj, j+lQJII-

IITj , j+1T j-l, jQ~-1 - T j , j+lTj - 1, jQt-1
·11 (26) 

etc. for j steps in all ; where 
Qt. Q~ E'7rj etc. 

However; stopping with the step shown in (26) 
and using (25) we may write 

IITQi -TQ~II == kjllQI - Q~II =::: 

kj i ITQ~-l - T~-lll 

where the T in the left hand norm is T j , j + 1 and 
in the right hand norm is Tj-l. j. Now by re
peatedly applying this reduction, j times in 
all, we obtain 

j 
IITj , j+l Qi - T j , j+l QAII = "IT kiilQl - QolI 

i == 1 (27) 

where 

The R hyperplanes are considered in a cycli
cal order; therefore on the R + I-st projection 
the images will be in '7fh and from (26) and 
(27) we have: 

IIPQl - PQolI == KIIQl - QolI (28) 

where 
R 

K == IT kl 
i == 1 

P is a projectivity of "'1 onto itself, and as such 
(as noted in Remark 1) has at least one fixed 
point, or in general some fixed subspace S such 
that for every 

uES 

Pu==u 

Now choose an arbitrary Qo E17"}, and let Ql be 
the image of Q() under P 

PQo == Ql 

Case 1. If Qo E S then 

PQo == Qu 

and Q() is a fixed point of the transformation 
and the theorem is trivially true. 

Case 2. Let Qo E 17"1 ; Qu E S 
then 

Qo =F Ql 

and at least one kj, =F 1. kj == 1 is equivalent to 
saying that the norm of the segment [Qi, Ql)] 
is the same as the norm of the orthogonal pro
jection of [Ql, Q~] on the intersection of 17"j 
and '7fj + h say Pj' But then for all pj to be 1 
would require that the pj be pairwise parallel, 
i.e., pj parallel to pj +h etc., and Qo == Ql neces
sarily, in contradiction .to the assumption that 
Qo =I=- Ql. Therefore at least one kl =F 1 and 

R 
K = IT kl < 1 

i =·1 

Equation (28) may be expressed as 

jjPQj - PQj-lll== KllQj - Qj-lll (29) 

where we need not show superscripts on the Qj 
since all points and their images under Pare 
in 17"1 alike. Equation (29) may be recursively 
solved to yield 

'IPQj - PQj-lll == IIQj+l-QjllL. 
Kjll Ql - QolI (30) 

where 

Now we wish to determine the Cauchy differ
ence for the sequence {Qj}; IQj+m - Qjll. Using 
(30) repeatedly we obtain 

I jQj+m - QjllL (Kj+m-l + Kj+m-2 
+ ... + kjllQl - QolI 

after the usual introduction of the missing 
terms and appropriate regrouping. 

llQj+m - QjllL. Kj (II-=-~m) IIQl - Qoll (31) 

but for a suitable choice of j the right hand side 
of (31) can be made less than any E > 0; there
fore the sequence {Qd converges to a point Q; 
QE17"l' 



512 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

We must still prove that Q is indeed a fixed 
point of P, i.e., Q E S. 

IIPQ-QII L IIPQ-PQjll + IIPQj-QII 
L KIIQ - Qjll + IIQj+l- QII 

but both of the right hand terms have been 
shown to go to zero as j increases; therefore 
II PQ - Q II < E for every E > 0 and Q is shown 
to be a fixed point of P, or 

PQ == Q => Q E S 

Corollary: If the system of hyperplanes de
fines a determinate system of linear equations 
with a unique solution point, then this point is 
the only fixed point under any of the possible 
projective cycles P, i.e., any reordering of the 
indices, and the above proof shows that 

Lim pn Q' == Q 
n ~ 00 

where Q' is any point in any plane and Q is the 
unique solution point of the system. 

The foregoing argument completes the con
vergence proof for the algorithm proposed for 
filling the associative memory. 

REFERENCES 

1. W. L. McDERMID and H. E. PETERSON, "A 
Magnetic Associative Memory System," 
IBjlf Jou1'flal 4, pp. 59-62, 1959. 

2. J. R. KISEDA, H. E. PETERSON, W. C. SEEL
BACH, and M. TEIG, "A Magnetic Associa
tive Memory," IBM Journal 5, pp. 106-121, 
1961. 

3. R. R.: SEEBER and A. B. LINDQUIST, "Asso
ciative Memory with Ordered Retrieval," 
IB"f,l Journal 6, pp. 126-136, 1962. 

4. R. R. SEEBER, "Cryogenic Associative 
Memory," National Conference of the 
Association for Computing Machinery, 
August 23, 1960. 

5. R. L. BOYEL, "A Semantically Associated 
Memory," pp. 161-169 in Biological Proto
types and Synthetic Systems 1, edited by 
E. E. BERNARD and M. R. KARE, Plenum 
Press, New York, 1962. 

6. B. WIDROW, "Generalization and Informa
tion Storage in Networks of Adaline 'Neu-

rons'," pp. 435-461, in Self-Organizing 
Systems, 1962, edited by M. C. YOVlTS, 
et al., Spartan Books, Washington, D. C., 
1962. 

7. McDERMID and PETERSON, OPe cit. 

8. KISEDA, et al., OPe cit. 

9. SEEBER and LINDQUIST, OPe cit. 

10. KISEDA, et al., OPe cit. 

11. K. S. LASHLEY, Brain Mechanisms and In
telligence: a quantitative study of injuries 
to the brain, University of Chicago, Chi
cago, 1929. 

12. F. ROSENBLA TT, "The Perception-a the
ory of statistical separability in cognitive 
systems," Cornell Aeror.autical Laboratory 
Report No. VG-1196-G1, January 1958. 

13. F. ROSENBLATT, Principles of Neurody
namics - perceptrons and the theory of 
brain mechanisms, Spartan Books, Wash
ington, D. C., 1962. 

14. F. ROSENBLATT, "Perceptual Generaliza
tion over Transformation Groups," pp. 
63-100 in Self-Organizing Systems, 1960, 
edited by M. C. YOVITS and S. CAMERON, 
Pergamon Press, New York, 1960. 

15. B. WIDROW, "Adaptive Sampled-Data Sys
tems-A Statistical Theory of Adaption," 
1959 WESCON Convention Record, Part 4. 

16. B. WIDROW and M. E. HOFF, "Adaptive 
Switching Circuits," Tech. Report No. 
1553-1, Stanford Electronics Lab., Stan
ford, California, June 30, 1960. 

17. B. WIDROW, "Generalization and Informa
tion Storage in Networks of Adaline 'Neu
rons'," Self-Organizing Systems, pp. 435-
461, Spartan Books, Washington, D. C., 
1962. 

18. D. M. Y. SOMMERVILLE, An Introduction to 
the Geometry of N Dimensions, Dover Pub
lications, Inc., New York, N.Y., 1958. 

19. R. V. SOUTHWELL, Relaxation Methods in 
Engineering Science-a treatise on ap
p't'oximate computation, Oxford University 
Press, Oxford, 1940. 



APPLICATION OF AN ASSOCIATIVELY ADDRESSED, DISTRIBUTED MEMORY 513 

22. HERBERT BUSEMANN and PAUL J. KELLY, 
Projective Geometry and Projective Met
rics, Academic Press, Inc., New York, New 
York, 1953. 

23. W. V. D. HODGE and D. PEooE, Methods of 
Algebraic Geometry, Cambridge University 
Press, Cambridge, 1947. 

20. F. S. SHAW, An Introduction to Relaxation 
Methods, Dover Publications, Inc., New 
York, 1953. 

21. J. W. SMITH, "ADAP II-an adaptive rou
tine for the LARC computer," unpublished 
report (Navy Management Office) com
municated by the author, September 1962. 





DESIGN OF AN EXPERIMENTAL MULTIPLE 
INSTANTANEOUS RESPONSE FILE* 

E. L. Younker, C. H. Heckler, Jr., D. P. Masher, and J. M. Yarborough 
Stanford Research Institute 

Menlo Park, California 

SUMMARY 

An experimental model of an electronic ref
erence retrieval file in which all file entries are 
interrogated simultaneously has been designed 
and constructed. The experimental model is 
designed to store and search on a file of indexes 
to 5,000 documents. A document index consists 
of a decimal accession number and up to eight 
English word descriptors that are closely re
lated to the contents of the document. The 
vocabulary required to describe the documents 
is held in a machine dictionary that has a 
design capacity of 3,000 words. In the model 
delivered to the sponsor, Rome Air Develop
ment Center, the storage capacity is only par
tially used. The specification for the delivered 
model calls for the storage of approximately 
1,100 documents that were selected from the 
ASTIA (now DDC) Technical Abstract Bul
letin and of the vocabulary needed to describe 
them (about 1,000 words). The document in
dexes and the dictionary words are stored in 
wiring patterns associated with arrays of 
linear ferrite magnetic cores. 

A search question, consisting of one to eight 
descriptors in their natural English form, is 
entered by means of an electric typewriter. 
During entry of the search question, the dic
tionary magnetic store is interrogated by the 

alphabetic code of ~ach search word. If a word 
is not contained in the dictionary, it is auto
matically rejected. After all words of the 
search question have been entered, the docu
ment magnetic store is interrogated by the 
search question in superimposed code form. 
The comparison between the search word and 
the document indexes is made for all documents 
simultaneously and the machine instantaneously 
determines if any documents in the file in
clude the search question. If there are none, 
the machine indicates visually that there is no 
response. If there is at least one, the machine 
counts the number of responding documents 
and displays this number. Then it types out 
the indexes of all responding documents on the 
same typewriter that was used to ask the 
question. 

INTRODUCTION 

Memories that can be searched in parallel 
and from which stored information is retrieved 
on the basis of content have received consider
able attention for application to retrieval file 
problems.1, 2, 3,4 This paper describes the de-
sign of an experimental retrieval file based on 
the work reported by Goldberg and Green.3 

Since the contents of the semipermanent mag
netic memory used in the experimental file can 
be searched in parallel and multiple responses 

* The work described in this paper was supported by Rome Air Development Center under Contract AF 30(602)-
2772. 

515 



516 PRCCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

to the search question are permitted, the system 
is called MIRF -M ultiple Instantaneous Re
sponse File.5 

LOGICAL ORGANIZATION OF THE MIRF 
SYSTEM 

The logical organization of the experimental 
MIRF system is illustrated by Fig. 1. Infor
mation pertaining to the document indexes and 
to the descriptors used in the document indexes 
is contained in two major units called MIRF 
units. A MIRF unit is basically a magnetic 
memory in which information is permanently 
stored in the wiring associated with the mag
netic cores. The Document MIRF is the 
principal element of the system. It contains 
fdr each stored document index the document 
accession number and the descriptors (in 
coded form) that describe that document, as 
well as a superimposed search code that is used 
in the searching process. The Dictionary MIRF 
has two functions. During the input phase of 
operation it translates the alphabetic code of 
the English word descriptor that is entered 
from the typewriter into the binary serial 
number assigned to that English word for use 
inside .the machine. During the output phase, 
the Dictionary MIRF translates the binary 
serial number of a word that is obtained dur
ing a search into the alphabetically coded form 
of that word. 

After the binary serial number of an input 
English word has been generated, this binary 

VISUAL DISPLAY 

YES/NO 

YES RESPONSE ~ 
COUNT 

DICTIONARY MIRF DOCUMENT MIRF 

DESCRIPTOR DESCRIPTOR ACCESSION SUPERIMPOSED DESCRIPTOR 
ALPHABETIC SERIAL NUMBER CODE SERIAL 

CODE NUMBER SECTION SECTION NUMBER 
SECTION SECTION SECTION 

i + 
SEARCH I DESCRIPTOR CODE 

GENERATOR SELECTOR 

~ I 
+ ~ INPUT-OUTPUT ~ CONTROL I TYPEWRITER 

Figure 1. Simplified Block Diagram of MIRF 
Experimental Model. 

number is translated by a logical process in the 
Search Code Generator i~to a search code that 
is assigned to the particular English word. 
The search codes of successive words of a search 
question are superimposed by adding them to
gether, bit by hit by an inclusive-OR operation. 
When the search question is complete, the 
superimposed search code of the question is 
compared with the superimposed code section 
of the Document MIRF. Each document index 
whose search field includes the superimposed 
code of the search question is said to respond 
to the question. Frequently more than one docu
ment will respond. By a logical process for 
resolving multiple responses,6 the accession 
number of a particular responding document is 
generated. Then the binary serial numbers of 
the English words contained in this document 
index are generated one at a time. By means 
of the Descriptor Selector, each serial number 
is transmitted to the Dictionary MIRF, whe're 
it is translated to the alphabetic code of the 
English word. This process is repeated for 
each responding document. 

SYSTEM DESIGN 

1. Jltlagnetic Implementation of the MIRF 
Unit 

The MIRF units of the experimental model 
use an interesting modification of the Dimond 
Ring7 translator in which the drive and sensing 
functions are interchanged. Information is 
stored in unique wiring patterns associated 
with an array of linear ferrite cores as il-

ONE COUPLING 
ONE MAGNETIC ELEMENT LOOP AND ONE DIOOE 
PER TEST BIT PER FILE ITEM 

~ ___ -HrR4-++--_~T_E_M_n_t>I---'1 
, " " " " " " "" ITEM 3 : : :: :: :: :: :: :: :::: 

ITEM 2 

ITEM I 

TO 
DETECTOR 

-v 

TEST PATTERN 
SELECTOR SWITCHES 

-~-\--- + DRIVE 
PULSE 

----4~'--- - INPUT 

Figure 2. Core-Wiring Arrangement for 
MIRF Memory. 



DESIGN OF AN EXPERIMENTAL MULTIPLE INSTANTANEOUS RESPONSE FILE 517 

lustrated by Fig. 2. Each item of stored in
formation (a document index in the Docu
ment MIRF or a descriptor in the Dictionary 
MIRF) is represented by a conductor that 
passes through or around each associated core 
in a unique pattern determined by the informa
tion it contains. In series with each conductor 
is a diode. The cathodes of many diodes are 
connected together to form the input to a de
tector amplifier. Notice that one core is re
quired for each bit of information, but that 
each core can be associated with a particular 
bit of many item conductors. 

Each core has an input winding that can be 
selected by means of a switch. All cores whose 
selector switch is closed will be energized when 
a drive pulse is applied. A voltage will be in
duced in each item conductor that threads an 
energized core, but no voltage will be induced 
in conductors that do not thread the core. A 
test can be made on the information stored in 
many cores by selecting a particular set of 
cares and energizing them. In order for an 
item to match the test information, its conduc
tor must pass outside of every energized core. 
Then no voltage will be generated in the item 
wire and the input to the detector amplifier 
will be held near ground through the item 
diode. Voltages will be induced in the conduc
tors of items that do not match the test; the 
polarity of these voltages is chosen to back-bias 
the associated diodes. If no item matches the 
test information, a voltage will be induced in 
every item conductor and every diode will be 
back-biased. The input to the detector will 
then assume a significantly negative voltage. 
Thus, the presence or absence of desired stored 
information can be determined by applying the 
drive currents to a particular set of cores. 
This is a function of an associative or content
addressed memory: to indicate the presence or 
absence of certain information based on the 
detailed contents of a search question without 
regard to the actual location (or address) of 
that information. 

Now consider in more detail how a bit of in
formation of a search question is compared 
with information in a MIRF unit. Figure 3 
illustrates how a test is made to determine 
whether or not the test bit is logically "in
cluded" in the stored information. This cir-

TIMING 
PULSE 

CONDUCTOR # I 
(ITEM WHOSE K th BIT = ONE) 

CONDUCTOR #2 
( ITEM WHOSE K th BIT = ZERO) 

FLlP- FLOP 
'----'-----' HOLDING K th BIT 

Figure 3. Circuit for Testing Inclusion. 

cuit is typical of those used in the superimposed 
section of the Document MIRF. One core is 
used to store the kth bit of many items. The 
kth bit of the search question is stored in a 
flip-flop whose one side is connected by way 
of an AND gate to a drive amplifier, which in 
turn is connected to the primary winding of 
the kth core. The conductor of an item whose 
kth bit is equal to one (Conductor 1) passes 
outside the kth core. On the other hand, the 
conductor of an item whose kth bit is equal to 
zero (Conductor 2) threads the core. If the 
flip-flop stores a one, the primary winding of 
the core will be energized w hen the timing 
pulse is applied to the AND gate. A voltage 
will be induced in Conductor 2 (indicating a 
mismatch) but none will be induced in Conduc
tor 1 (indicating a match). If the flip-flop 
stores a zero, the primary winding will not be 
energized because the timing pulse will be 
blocked at the AND gate. No voltage will be 
induced in either conductor, and a match will 
be indicated on both lines. Therefore, it can 
be seen that a stored one bit includes both a test 
one and a test zero, while a stored zero bit in
cludes only a test zero. 

The circuit for testing for identity between 
the test bit and the information stored in the 
MIRF is shown in Fig. 4. This circuit is typical 
of those used in the alphabetic descriptor por
tion of the Dictionary MIRF. The jth bit of 
many items is stored in a pair of cores jA and 
j B. The jth bit of the test question is stored in 
a flip-flop. In this case, both the one and zero 
sides of the flip-flop are connected to AND gates 



518 PRCCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

CONDUCTOR #1 
(ITEM WHOSE j th BIT = ONE I 

CONDUCTOR #2 
( ITEM WHOSE j th BIT = ZERO) 

FLIP-FLOP 
L--~-' HOLDING j th BIT 

Figure 4. Circuit for Testing ldentity. 

whose outputs control drive ampliffers that are 
connected to the primary windings of the cores 
jA and ju. The conductor of an item whose jth 
bit is one (Conductor 1) bypasses core jA while 
the conductor of an item whose jth bit is a 
zero threads core jA' The threading of core ju 
by the two conductors is the reverse of the wir
ing of core jA' If the flip-flop stores a one, the 
primary winding of core jA will be energized 
when the timing pulse occurs. No voltage will 
be induced in Conductor 1 (a match indication) 
but a voltage will be induced in Conductor 2 (a 
mismatch indication). If the flip-flop stores 
a zero, the primary winding of core J B will be 
energized. In this case, a voltage will be in
duced in Conductor 1 but not in Conductor 2. 
Thus it can be seen that the bit stored in the 
MIRF must match the test bit identically for a 
match indication to be obtained. 

2. Basic Operations Using the MIRF Units 

Two types of operations involving the MIRF 
units are basic to the operation of this experi
mental model. One operation tests to see if 
certain information is contained in the MIRF. 
The other uses information that is contained 
in the MIRF to generate a number in a flip
flop register external to the MIRF unit. Ex
amples of these basic operations are given in 
the following paragraphs. 

a. Testing of Information Contained in the 
MIRF· Unit 

Dictionary MIRF-During the input of the 
English words to form a search question, the 

Dictionary MIRF is tested to see if the input 
word is contained in the vocabulary (that is, if 
it is a valid descriptor). This is done by gating 
the alphabetic descriptor register to the drive 
amplifiers associated with the alphabetic por
tion of the MIRF (50 bits long, two cores per 
bit). As a result, 50 drive amplifiers are ener
gized and 50 primary windings in the MIRF 
carry current. If one of the stored words has 
a bit pattern in the alphabetic portion that 
matches identically the energized set of pri
maries, the match detector will indicate a match 
condition. If not, the match detector will in
dicate a mismatch condition. The output of the 
match detector is used to determine the next 
step in the logical sequence. It is important to 
note that the test is applied to the entire Dic
tionary MIRF simultaneously and that a match 
or mismatch signal for the entire MIRF is 
obtained in about 5 microseconds. 

Document M I RF -After all words of the 
search question have been typed, the superposi
tion of their search codes is held in the search 
code accumulator. At the beginning of the 
actual search operation, the flip-flops of the 
search code accumulator are gated to their as
sociated drive amplifiers. A particular set of 
drive amplifiers is energized and current flows 
in a corresponding set of primary windings in 
the 80 bit superimposed code field of the Docu
ment MIRF. If the detailed bit pattern rep
resented by the energized primaries is in
cluded in any of the superimposed fields of 
the stored document indexes, a match condition 
is indicated by the match detector. If not, a 
mismatch indication is given. The test is made 
on the entire contents of the document MIRF 
simultaneously and a YES/NO response is 
obtained in about 5 microseconds. 

It should be pointed out that the criterion for 
a match is inclusion, not identity. A document 
index includes the search question if the fol
lowing conditions of the superimposed' search 
code portion of the index are satisfied. First, 
for every bit of the index search field that is a 
one, the corresponding bit of the search ques
tion is either a zero or one. Second, for every 
bit of the index search field that is a zero the 
corresponding bit of the search question is a 
zero (in other words a binary one includes both 



DESIGN OF AN EXPERIMENTAL MULTIPLE INSTANTANEOUS RESPONSE FILE 519 

a one and a zero, but a binary zero does not in
clude a binary one). 

b. Generating Nurabers by the MIRF Proc
ess-The generation of the serial number of an 
input descriptor illustrates this operation. As
sume that an English word has been typed in 
and that the test for valid descriptor is true. 
Because a match is obtained when the alphabetic 
descriptor register is gated to the Dictionary 
MIRF, one item wire in the MIRF is effectively 
isolated: namely, the wire that is uniquely re
lated to the input descriptor. The detailed wir
ing pattern of this wire in a group of cores out
side the alphabetic code field contains the binary 
serial number of the input descriptor. By gat
ing the alphabetic descriptor register to the 
MIRF and at the same time causing cuttent 
to flow in the primary winding of a core that 
is in the serial number portion of the MIRF, 
the binary value associated with that core for 
the selected line can be determined. The pres
ence of current in the additional winding tests 
for a binary one in that position. If the match 
detector indicates a match, the value is indeed 
one. However, if a mismatch is obtained, the 
value must be zero. 

The sequence for generating the serial num
ber is as ioHows: First the flip-flop register 
that will eventually hold the serial number is 
cleared to all ones. Then the alphabetic descrip
tor register is gated to its drive amplifiers and a 
drive amplifier associated with the parity bit of 
the serial number is energized. The output of 
the match deteator is observed. If a match 
condition is observed, it is known that the 
parity bit is actually a one and the parity bit 
flip-flop in the serial number register is not 
changed. If a mismatch is observed, it is known 
that the parity bit is zero and the parity bit 
flip-flop in the serial number register is not 
to zero. The next step is to energize the drivers 
associated with the alphabetic descript<1r reg
ister and a driver associated with the least 
significant bit of the serial number. Again the 
output of the match detector is observed and 
the flip-flop assigned to the least significant bit 
is either allowed to stay at one or is changed to 
a zero. This procedure continues for thirteen 
steps. At the end of this time, the 12-bit serial 
number and its parity bit will have been gen
erated and stored in the serial number register. 

CIRCUIT DESIGN 

Three principal types of transistor circuits 
are used in the experimental model: transistors 
are used as switches to drive the primary wind
ings of the MIRF cores; discriminator-amplifier 
circuits are used to accept the voltage generated 
on the secondary windings of the MIRF cores 
(this is the match detector circuit) ; and transis
tor logic circuits are used for the over-all con
trol of the MIRF operations. All three types 
were designed at SRI. 

1. MIRF Driver 

The drive currents that are required by the 
ferrite cores iIi the Document and Dictionary 
MIRFs are furnished by circuits such as the 
one shown schematically in Fig. 5. Four MIRF 
driver circuits are mounted on one printed cir
cuit plug-in board, as shown in Fig. 6. Each 
circuit is capable of supplying the required 2 
amperes at low impedance. The power transis
tor that delivers the drive current (Type 
2N1905) is driven by a push-pull emitter fol
lower that provides 60 milliamperes of base 
drive current into 2N1905. The output power 
transistor has rise-and-fal! time capabilities of 
less than 0.3 microsecond. The actual current 
in the load is nearly linear because of the in-
ductive nature of the load and builds up to the 
2 ampere amplitude at the end of approximately 
10 microseconds. The overshoot voltage in
duced when the transistor is turned off is 
clamped by a silicon diode to -36 volts. The 
clamp prevents excessive voltage spikes from 
appearing across the output transistor while 
still allowing the load inductance to recover 
within 10 microseconds. 

Two protective features of the MIRF driver 
circuit should be noted. One is a fuse, which is 
inserted in series with the load to protect 
against excessive load currents. Before the 
winding of the magnetic circuits internal to 
the MIRF assembly can be damaged by too 
much current from, say, an accidental short 
circuit, the fuse wire will open up. The second 
protective circuit includes a square-loop 
memory core that is threaded by the lead going 
to the transistor load. This core is normally 
biased off, but if the drive current exceeds a 
safe value the square-loop core will switch and 
induce a voltage in a sense lead. The voltage in 



520 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

INPUT 

+12. 

Il'jgure 5. Schematic of MIRF Driver. 

"7,1'1,. "5 

... ~ __ &ii.-.Q.,Q7. QI,. QS 

__________ -Q.Z, QII,GIO,. g' 
1It15,1It1" •• 1II13 

kl. !;lOll ..... , ItU •• I'" 
fIl' ........ l..1"TQJI'.MT 

Figure 6. Component Assembly of MIRF Driver Board. 

the sense lead is amplified and used to turn off 
the system clock. The purpose of this circuit is 
to protect the 2N1905 transistor against exces
sive heat dissipation from currents that are ex
cessive but not large enough to burn out the fuse 
wire. 

2. MIRF Discriminating Amplifier 

The electrical output of the MIRF magnetic 
modules is generated by a very large diode gate 
including almost 300 diodes. Under the worst 
conditions a match signal from this array can 
reach a level as high as 0.4 volt. On the other 
hand, a mismatch signal from the same array 
may only generate a potential of 0.6 volt. It is 

necessary for the MIRF discriminating ampli
fier to differentiate between these two signals 
and generate a standard logic level output of 
-6 volts for a mismatch and 0 volts for a 
match. The circuit for the amplifier is shown 
in Fig. 7. In order to distinguish between very 
closely spaced match and mismatch signals, two 
thresholds are employed in the amplifier. The 
first threshold is provided by a ,lN3605 silicon 
diode at the input to the amplifier. This diode 
does not pass signals unless they exceed ap
proximately 0.5 volt. After passing the first 
threshold, the signal is amplified in a feedback 
amplifier with a gain of about 50. If the ampli
fied signal then exceeds the second threshold 
of 3 volts, a mismatch signal is delivered at 
the output of the amplifier. 

3. Logic Circuits 

In the flip-flop register and over-all control 
circuits, resistor-transistor logic is used. Highly 
reliable circuits that operate in the 100-kc 
frequ'ency range have been developed. The 
basic gate circuit is shown in Fig. 8. This cir
cuit in typical use performs a simple majority 
operation. If one or more of its three inputs 
are at a negative potential, the output is held 
at ground potential. Since ground is defined as 
the one state in this system, and a -6 volt 
potential is defined as a zero state, the basic 
gate performs the "not and" or NAND opera
tion. 

All the passive components shown in Fig. 8, 
plus one resistor and two capacitors, are con
tained in one physical element supplied by 
Centralab, Inc. These components are screened 
on a passive substrate to a tolerance of 3 % 
for the resistors (5 % design tolerance) and 

..... 

Figure 7. Schematic of Discriminating Amplifier. 



DESIGN OF AN EXPERIMENTAL MULTIPLE INSTANTANEOUS RESPONSE FILE 521 

-12v -6.4v 

6.aK 

6.aK 

6.aK 

51 K 

+12v 

- Figure 8. RTL Circuit Designed for the MIRF System. 

It •• '" 

ALL COIIJI'OII[.T "U •• [.S 
_aD ,ItO_ LI!.TTO.!4IMT 

TEST PTS.7,'.5,4,',2,8'" 

CR'S 7, I. !Io, 4, 3, 2,.1 

0'7, Q6. 05, 04, Q3 , Q2 •• a I 

CENTlU.LA. UNITS 

Figure 9. Component Assembly of Gate-Logic Board. 

10 % for the capacitors. The substrates are 
encapsulated with a Durez coating, and are 
ready for mounting to a printed circuit card 
via their projecting leads. 

The gate circuit is a basic part of every logic 
circuit employed in the machine. By itself it 
performs the combinatorial function of logical 
conditions. Two gate circuits properly inter
connected form a bistable, or flip-flop, circuit. 
Two gate circuits interconnected in a slightly 
different way form a monostable, or one-shot, 

circuit. The gate circuit is also used as a pre
amplifier for an emitter-follower circuit. The 
basic logic circuits, e.g., gates, one shots, flip
flops, etc., are mounted on plug-in logic boards. 
A typical logic board, with seven gate circuits 
mounted on a printed circuit board, is shown 
in Fig. 9. 

MAGNETIC DESIGN 

1. General Ccmsiderations 
The magnetic design oi a MIRF unit is 

centered in the individual magnetic core, which 
acts as a transformer with a multiturn primary 
winding and many single-turn secondary wind
ings. When current flows in the primary wind
ing, the magnetic core must be capable of 
producing a flux change of sufficient time dura
tion and amplitude to generate the desired sig
nal in secondary windings. The amplitude of 
the induced voltage is determined primarily by 
the characteristics of the diode associated with 
the secondary winding. The duration of the 
induced voltage is determined primarily by 
noise on the secondary winding and the con
sequent delay required before sampling of the 
output can be accomplished. 

The cross-sectional area of the magnetic core 
is proportional .. to the product of the amplitude 
and duration of the voltage induced in the 
secondary windiqgs (this is usually referred to 
as the volt-second area of the induced voltage 
pulse). This was kept reasonably small by us
ing a high-quality germanium diode (the 
1N500) which requires a back-biasing voltage 
of only 0.6 volt in order to perform. properly in 
the diode circuit associated with the input to 
the discriminating amplifier. The circumfer
ential length of the magnetic core is determined 
primarily by the number of secondary windings 
associated with the core and the mechanical de
sign of the supports for these windings. In 
the MIRF units of the experimental equipment, 
the core has the capacity for 2,000 secondary 
windings. The core's mean circumferential 
length is 7 inches; its cross section is a square, 
1,4 inch on a side. 

Two other considerations influenced the selec
tion of the magnetic cores used in the MIRF 
units. One is the requirement that the core be 
made in two pieces so that the array of cores 



522 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

can be separated into two portions to facilitate 
initial wiring and changes in wiring. The other 
is the necessity of using commercially avail
able parts. The number of cores needed in 
this experimental equipment is too small to 
justify the design and production of a core 

. of special size or shape. 

2. Details of the DictionaTY and Document 
MIRF Units 

The individual cores used are the same for 
both the Dictionary and Document MIRF. Each 
core is composed of two V-shaped ferrite struc
tures (Allen Bradley part no. VC 892-141C), 
which have been specially modified at the fac
tory to permit a maximum of 0.0005 inch air 
gap in each leg when two such structures are 
joined together to produce a MIRF core. To 
drive each core, a twenty-turn primary winding 
is provided. This consists of two ten-turn 
windings distributed in such a manner as to 
minimize the leakage flux and the resulting 
noise signal (see Fig. 10). The primary wind
ing drives the core from an 18-volt voltage 
source through a transistor switch driver. The 
output voltage induced upon each secondary 
winding is an essentially rectangular voltage 
pulse having a droop of 0.1 volt in 10 micro
seconds, from 0.8 volt at the leading edge to 
0.7 volt just prior to the trailing edge. The 
maximum primary current, 0.7 ampere, occurs 
at 10 microseconds after the beginning of the 
pulse. To accommodate the expanded capacity 
of the MIRF document file (5,000 documents) 
three primary windings will be driven in 

Figure 10. Details of Primary Windings. 

parallel, so that a maximum driver current of 
2.1 amperes is required. 

The performance requirement of the mag
netic circuits is that consistent and easily 
separable match and mismatch signals be gen
erated at the diode end of the item wires (see 
Fig. 2) when a set of primary windings is 
driven. The design objective was that a maxi
mum match signal of 0.1 volt and a minimum 
mismatch signal of 0.6 volt should be realized 
within 1.5 microseconds after the application 
of the primary drive pulses, and that pulsing 
of the MIRF cores be repeated for many cycleR 
at a 50-kc clock rate. To achieve these goah, 
noise due to ringing and leakage flux had to 
be minimized. 

A MIRF unit contains many cores (the Docu
ment MIRF has 234 and the Dictionary MIRF 
has 140), each with a separate primary wind
ing; further, each core is associated with more 
than a thousand single-turn secondary wind
ings. The secondary windings pass through or 
around all cores in the unit and so form a long 
rope. The capacitance between wires in the 
rope, the inductance of these wires, and the 
inductance of the primary windings are inter
coupled in a very complex manner. In the de
velopment of the MIRF units, substantial noise 
on the secondary (item) windings was experi
enced due to ringing currents in the primary 
windings. This noise was reduced to a negligi
ble level by inserting a Type DI52 diode in 
series with each primary winding and shunting 
each primary by a 1000 ohm resistor. A low
amplitude noise signal of about 5 Mc, due to 
inductance and inter-item capacitance of the 
secondary windings, was also observed. Such 
noise could be reduced to a very low level by 
filtering at the input to the discriminating am
plifier, but in the experimental system this was 
not necessary. 

Noise due to leakage flux must be kept small 
in order to hold the maximum match signal at 
0.1 volt. A secondary wire that represents a 
match item must pass outside all energized 
cores. Since in the worst case, 57 cores may be 
energized, the maximum permitted noise due 
to leakage flux at each core is less than 2 milli
volts (this corresponds to a leakage fl ux of 14-
of one per cent at each core). In the experi-



DESIGN OF AN EXPERIMENTAL MULTIPLE INSTANTANEOUS RESPONSE FILE 523 

mental model two methods are used to. reduce 
leakage flux. One is distributing the primary 
winding on the cores to compensate for the mag
netic potential drop by a corresponding rise 
in magnetic potential at the points where the 
drop occurs. As Fig. 10 shows, the winding 
has a linear spacing except at the points where 
the air gaps occur; there two turns are closely 
spaced. The second method uses cancellation 
of induced voltages to reduce the effect of leak
age flux. The common end of many item wires, 
instead o.f being connected to ground, as shown 
in the simplified diagram of Fig. 2, is actually 
connected to a wire that lies in the item wire 
ro.pe and passes outside of all cores. The volt
age induced in the "cancellation lead" at any 
core by leakage flux is approximately equal to 
that induced in item wires and is opposite in 
polarity (relative to the input terminals of the 
discriminating amplifier). 

MECHANICAL DESIGN 

1. The MIRF Module 

Implementing the wiring-patterns-on-cores 
method of storage illustrated by Fig. 2 pre
sented a challenging mechanical design prob
lem. It was necessary that the physical struc
ture containing the magnetic cores and the as
sociated wiring be made in two parts that could 
be easily separated. It was desirable to. fabri
cate submodules of wiring patterns, so that the 
permanently stored information could be 
changed mechanically in relatively small blocks. 

Separate MIRF modules are used to store the 
information concerning document indexes and 
dictionary words. In each, the co.res are ar
ranged in a rectangular pattern and are sup
ported by long bobbins. These bobbins are 
firmly attached to a base structure and carry 
the primary windings for the cores. A MIRF 
module is a complete assembly of magnetic 
cores, primary windings for the cores, and sub
modules of secondary windings with their asso
ciated diodes. The construction of a module is 
illustrated by the exploded view of Fig. 11. The 
principal parts of the assembly are the base, 
or coil bobbin, assembly and the item wiring 
trays. 

The. coil bobbin assembly consists of. a field 
o.f paper bobbins (two per magnetic core) that 

are cemented to a l/s-inch-thick phenolic board. 
Each bobbin carries a ten-turn winding. The 
windings on pairs of bobbins are connected in 
series to form the primary winding for one 
of the magnetic cores. An item tray is a l!J.6-
inch thick phenolic bo.ard with a field of shallow 
bobbins that matches the field of coil bobbins. 
The bo.bbins on the item tray are slightly larger 
than the coil bobbins, permitting item trays to 
be stacked up on the coil bobbin assembly. One 
item tray can accommodate 286 item wires. The 
diodes that are connected in series with the 
secondary windings and form the input circuit 
to the discriminating amplifier are mounted on 
the edge of the item tray. A MIRF module is 
assembled by sliding up to seven item trays 
into position on the coil bobbin assembly. One 
set of U cores is then inserted into the set of 
coil bobbins and held in place by a plate with 
a silicone-rubber pad. The other set of U cores 
is then dropped into position on the opposite 
side of the bo.bbin coils. Finally, the top plate 
(also with a spongy pad) is dropped into posi
tion to hold the entire assembly intact. The 
two sets of U cores are held together under 
slight pressure from the silicone pads. 

I I 

Figure 11. Exploded View of MIRF Module. 



524 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

A complete item tray is shown in Fig. 12. The 
item wires' start in the upper left corner of the 
trays, where they are connected to a common 
bus bar. They pass from left to right in the 
first row of cores, then back and forth until 
they emerge in the lower left center part of 
the tray. The wires then run to assemblies of 
diodes, where each wire is connected to its own 
individual diode. The output side of the diodes 
(the cathodes) are connected together and 
wired to a small connector, which is seen in 
the lower left hand portion of the tray. Even 
though each tray contains detailed wiring for 
286 items, only two wires run from the tray 
to the external discriminating amplifier. Fig
ure 12 also shows a pair of primary coil bobbins 

Figure 12. MIRF Item Tray. 

Figure 13. Close-up of Document MIRF Module 
(Top Plate Removed). 

with the two U cores inserted. A closeup of a 
MIRF module with the top plate removed is 
shown in Fig. 13. The tops of one set of U 
cores can be seen as well as four item trays. 
The connectors for the output of the item tray3 
can be seen in the lower center part of the 
photograph. The discriminating amplifier cir
cuits (one for each of the seven item trays that 
can be included in a module) are located on 
the circuit board that is mounted in front of 
t!le magnetic module. 

2. Wiring of the Item Trays 
The item trays in the Document and Diction

ary MIRF units store more than one-third of 
a million bits of information. To ensure the 
greatest possible accuracy of the wired-in in
formation, two steps were taken. First, the 
raw data for the documents were computer
processed to give a set of punched cards that 
contain the detailed wiring information. Sec
ond, a wiring scheme was devised, which pre
sented the detailed wiring information to a 
wireman in a very simple form, and which in
cluded a means of checking the accuracy of the 
wiring as the wiring was actually done. In this 
scheme, the path that a wire was to take was 
delineated by a set of lights in an array of 
incandescent lamps. 

An over-all view of the item-tray wiring 
equipment (wiring aid) is shown in Fig. 14. 
The empty wiring tray is placed on the wiring 
jig in front of the operator. A card is then 

Figure 14. Over-all View of Item Tray 
Wiring Equipment. 



DESIGN OF AN EXPERIMENTAL MULTIPLE INSTANTANEOUS RESPONSE FILE 525 

placed in the punched-card reader and a pattern 
of lights is set up in the wiring jig. Number 
36 Nyleze wire is taken from a spool through 
a tensioning device to the top of a special wir
ing tool (shown in the hand of the operator). 
The wire from the bottom of the wiring tool 
is first soldered to the common bus shown in 
the upper left part of the wiring tray. The 
tool is then moved along the path specified by 
the pattern of lights, leaving the wire wound 
in the desired pattern around the item tray 
bobbins. Correct wiring at a bobbin is indicated 
by a light turned on to yellow brilliance. If a 
light is off, or is on at white brilliance after 
the wiring tool passes a bobbin position, a wir
ing error is indicated. 

3. Alternative Method of Fabricating Item 
Trays 

Alternative methods of preparing wired-in 
information that may be more easily automated 
than stringing of small wire have been investi
gated. One alternative is illustrated by Fig. 
15, which shows an item conductor in the form 
of a metallic path etched on a thin, copper
coated Mylar sheet (half-ounce copper on 2-mil 
Mylar). It will be noted that the item conductor 
is connected to a bus at the top of the sheet 
and to another bus at the botton1. These copper 
areas are used for connecting the item con
ductor to the common bus at one and to a diode 
at the other. This sheet contains one item, but 
two item conductors could easily be placed on 

Figure 15. MIRF Item Conductor Formed by 
Metallic Path on Mylar Sheet. 

one sheet, one being associated with one leg 
of the magnetic core and the other with the 
other leg. The experimental model contains 
a submodule of 75 items on Mylar sheets. 

DELIVERED EXPERIMENTAL EQUIP
MENT 

The experimental Multiple Instantaneous Re
sponse File System is an all-soljd state equip
ment. Transistor drive circuits capable of 
supplying two amperes of current to magnetic 
circuits, special discriminating amplifiers capa
ble of operating reliably with a poor signal-to
noise ratio input signal, and transistor logic 
circuits were designed for high reliability, low 
cost, and moderate speed. About 300 current 
drive transistors, 2500 logic transistors, 2500 
printed gate circuits (a group of 6 resistors, 2 
capacitors and their interconnecting wiring on 
a passive substrate) and 5,000 diodes are used 
in the system. Except for sequences involving 
the input-output typewriter, the system oper- ' 
ates synchronously under the control of clock 
pulses derived from a 50-kc transistor multivi
brator. 

Figure 16. Front View of Experimental 
MIRF Equipment. 



526 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE 1964 , , 

Figure 17. Rear View of Experimental MIRF 
Equipment (Doors Removed). 

The experimental equipment shown in Figs. 
16 through 18 was delivered to Rome Air De
velopment Center in July, 1963. A front view 
of the equipment is shown in Fig. 16. The main 
equipment cabinet, the input-output typewriter, 
and the display and control unit can be seen. 
Figure 17 shows a rear view of the equipment 
cabinet with the doors removed. The right hand 
portion of the cabinet contains logic circuits 
for control of the system, arranged in modules 
of plug-in transistor logic boards. The Diction
ary MIRF unit is contained in the center por
tion of the cabinet. Directly beneath the MIRF 
unit are two modules of drive circuits which 
provide current to the MIRF. In the left hand 
portion of the cabinet are the Document ]\IIRF 
and the transistor circuits for providing drive 
currents to it. It will be observed that space 
has been allowed for one additional MIRF unit 
in the center section and for two additional 
MIRF units in the left hand section. This is to 
provide for the expansion of the Dictionary 
MIRF to 3,000 words and expansion of the 
Document MIRF to 5,000 document indexes. A 

Figure 18. Front View of Equipment with Document 
MIRF Module in Extended Position. 

front view of the cabinets that house the MIRF 
units and their drivers is shown in Fig. 18. 
Here the Document MIRF unit has been pulled 
out to show it in its extended position. Below 
the MIRF units the wiring side of the tran
sistor drive modules can be seen. 

The format of the typewritten record of a 
search in the experimental model is shown in 
Fig. 19. The first two lines, "Stanford Research 
Institute Project 4110," etc., are a manually 
typed heading for the subsequent search. The . 
heading was typed while the typewriter was 
effectively disconnected from the rest of the 
equipment. The search question consists of 
three words: "coding," "computers," "digital." 
This line was also typed manually. The rest 
of the printout is the machine's response to the 
search question. Seven documents responded. 
For each one, a four-digit accession number 
and the English words that describe the docu
ment are printed on a single line. The asterisk 
prefix on some words have been copied from 
the ASTIA abstract. It will be observed that 
the three search words appear in every respond-

STANFORD RESEARCH INSTITUTE PROJECT 41Hl' 

MUL TIPLE INSTANTANEOUS RESPONSE FILE 

CODING, COMPUTERS, DIGITAL. 
0'156 *CODING, DIGITAL COMPUTERS, DATA PROCESSING SYSTEMS, LANGUAGE, 
0'2.0'1 RADAR PULSES, RADAR SIGNALS, 'CODING, DIGITAL COMPUTERS, 
0'420' DESIGN, DIGITAL COMPUTERS, *LANGUAGE, CODING, ANAL YSIS, 
0'540' ~IGITAL COMPUTERS, ERRORS, LANGUAGE, CODING, MATRIX ALGEBRA, 
fJ727 LANGUAGE, *CODING, *HANDBOOKS, DATA PROCESSING SYSTEMS, DIGITAL COMPUTERS, 
0732 DIGITAL COMPUTERS, CODING, TELETYPE SYSTEMS, DISPLAY SYSTEMS, MAPS, 
0'824 DATA PROCESSING SYSTEMS, DIGITAL COMPUTERS, OPERATIONS RESEARCH, CODING, 

Figure 19. Format of Typewritten Record of a Search. 



DESIGN OF AN EXPERIMENTAL MULTIPLE INSTANTANEOUS RESPONSE FILE 527 

ing set of indexes. It should be especially noted 
that the search words appear in different posi
tions and different order in the different re
sponding documents. This independence of 
order of the search words and the position of 
the corresponding descriptors in the document 
indexes is an important result of the superim
posed coding of the search field. 

CONCLUSIONS 

From experience with the Experimental 
MIRF it is concluded that interrogation of the 
magnetic storage units and the over-all control 
of the system can be accomplished with reliable 
circuits of modest complexity. Storage of the 
document index information in wiring associ
ated with arrays of cores that are physically 
separable appears feasible; arrays of cores can 
be separated, submodules of wired information 
can be changed, and the core arrays reassembled 
in a reasonably short time. More work on the 
mechanical design of the magnetic modules is 
needed, however, to permit easier and faster 
changing of the stored information. Based on 
the performance of the experimental model, 
which contained a file of more than 1,000 docu
ment indexes, it is concluded that with the pres
ent design a system building block should con-
tain about 5,000 document indexes. It appears 
that as many as ten such building blocks could 
be combined in a system whose over-all control 
is little more complex than that for a single 
building block. Therefore it is concluded that 
files of the order of 50,000 indexes could be 
built with no major changes in the basic con
cepts or circuits used in the experimental 
model. 

Easy communication between a human oper
ator and the Experimental MIRF System has 
been demonstrated. The machine's response to 
a search question is essentially instantaneous 
in terms of human reaction time and the in
formation content of the response is sufficient 
to allow the operator to start the document 
search with a general question and to use the 
information received to define a more specific 
question. In this way it is possible to home-in 
quickly on the documents of special interest. 
Several automatic features of the equipment 

have proved to be useful. One of these is the 
capability of accepting a synonym in the search 
question and automatically translating it into 
the synonymous descriptor contained in the 
machine's vocabulary. Another feature is the 
capability of automatically modifying the 
search question inserted by the human operator 
and initiating a new search. For example, if 
any of the input words have attached to them 
a "see-also" reference, that see-also reference 
will be substituted for the original word to 
form a new search question. 

ACKNOWLEDGEMENTS 

The development of the Experimental Mul
tiple Instantaneous Response File was s:pon
sored by the U. S. Air Force, Rome Air Develop
ment Center, under Contract No. AF 30 (602)-
2772. The authors wish to acknowledge the 
contributions of their colleagues at Stanford 
Research Institute, especially C. B. Clark, D. C. 
Condon ,and V. Sanford. 

REFERENCES 

1. A. E. SLADE and C. R. SMALLMAN, "Thin 
Film Cryotron Catalog l\lemory," p.roc. of 
the Symposium on Superconductive Tech
niques for Computing Systems, Washing
ton, D. C., May 1960, published in Solid 
State Electronics, vol. 1, pp. 357-362 (Sep
tember 1960). 

2. J. R. KISEDA, H. E. PETEP..8EN, W. C. SEEL

BACH, and M. TEIG, "A Magnetic Associa
tive Memory," IBM J. of Res. and Dev., vol. 
5, pp. 106-121 (April 1961). 

3. J. GOLDBERG and M. W. GREEN, "Large 
Files for Information Retrieval Based on 
Simultaneous Interrogation of All Items," 
Large Capacity M emory Techniques for 
Computing Systems, M. C. Yovits, Ed., pp. 
63-77, MacMillan Co., New York, 1962. 

4. M. H. LEWIN, H. R. BEELITZ, and J. A. 
RAJCHMAN, "Fixed Associative Memory 
Using Evaporated Organic Diode Arrays," 
AFIPS Conference Proceedings, vol. 24, pp. 
101-106 (November 1963). 



528 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

5. E. L. YOUNKER, D. C. CONDON, C. H. 
HECKLER, JR., D. P. MASHER, and J. M. 
YARBOROUGH, "Development of a Multiple 
Instantaneous Response File-the AN / 
GSQ-81 Document Data Indexing Set," to 
be published as a Rome Air Development 
Center Technical Documentary Report. 

6. E. H. FREI and J. GOLDBERG, "A Method of 
Resolving Multiple Respo!lses in a Parallel 
Search File," IRE Trans., EC-10, pp. 718-
722 (December 1961). 

7. T. L. DIMOND, "No. 5 Crossbar AMA 
Translator," Bell Labs Record, vol. 29, pp. 
62-68 (February 1951). 



RESEARCH IN AUTOMATIC GENERATION 
OF CLASSIFICATION SYSTEMS 

Harold Borko, Ph.D. 
System Development Corpo'ration 

Santa Monica, Califm'nia 

INTRODUCTION 

This paper is concerned with the organiza
tion of information, in the form of documents, 
for efficient storage and retrieval. By docu
ments we mean books, technical reports, arti
cles, memoranda, letters, photographs, data 
facts, etc.-all forms of memory file organiza
tion ranging from documents in a library to 
data in a real-time command-and-control sys
tem. Therefore, the implications of this work 
are applicable to a field broader than the con
cerns of the ordinary library. 

In actual practice, most of the information 
retrieval research has been concerned with docu
ment files because the most highly organized 
collection of documents in existence today is the 
library, and in doing research on methods of 
organizing information, one must compare the 
adequacy of proposed new techniques with ex
isting library methods. Procedures which will 
improve information storage and retrieval in a 
library will probably be sufficiently powerful 
to help improve other methods of file organiza
tion. 

PURPOSES OF DOCUMENT 
CLASSIFICATION 

I 

The reason for maintaining a collection of 
documents is to have an available store of in
formation and to be able to retrieve desired 
information rapidly and with confidence. The 
value of classification is that it il}creases effi
ciency in locating this desired information. If 
we tried to locate a book on a particular subject 
in a library that did not use any system of 
classification, we would have to spend a long 

529 

time reading the titles and authors of several 
thousand books before we could find the one for 
which we were looking. If we knew the author, 
and the books were arranged alphabetically by 
author, we could locate the book quickly. On 
the other hand, if we didn't know the author, but 
knew the subject content of the book, we would 
want the books arranged by subject category in 
order to search the file efficiently. Finally, if 
all we knew was that the book we sought was a 
big black one which we could recognize, we 
"'(1<71"'\111,.1 l;trr. t"ha +;lao "' ...... "' .... o"arl hu /">A11"'\'" rr"ha nAi .... t 
VVVII.A..I.\A. .L.1.~~C "'.L~"'" .1..1..1.'-'0 U..L..I..'-4t.l..I.,f)'-'\..I. VJ \""'-J.I.'\JL • ...I.. .1.1.,", .t'V.L.L.L'-I 

being made is that there are various ways of 
organizing a file, and whether or not a particu
lar method of file organization is efficient de
pends upon the search strategy. Furthermore, 
no one method of file organization would be 
equally efficient for all search questions. This 
is an important, if obvious, point and one which 
is often overlooked. 

The central theoretical problem of classifica
tion as a method of organizing documents is 
that only one principle at a time can be utilized 
for gathering items together. ~his principle 
can be alphabetic arrangement by author, color 
coding based on the binding of the book, sub
ject classification, or and other scheme-as 
long as only one principle is used at a time. 

Since a document collection is a store of in
formation, it is usually desirable to organize 
this store according to subject matter. By es
tablishing clearly demarcated groups, or classes, 
of documents on related topics, the number of 
documents to be scanned can be reduced to rea
sonable proportions. This, in essence, is the 
purpose of classification. A classification system 



530 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1964 

is a scheme for organizing a mass of material 
into groups so that related objects are brought 
together in a systematic fashion. Objects in one 
group are selected so as to be more like each 
other than objects in any other group. How
ever, before this aim can be realized, two ques
tions must be answered: 

1) How many classes shall be established? 

2) What shall be the measure of similarity 
and, hence, what is the principle to be 
used in determining class membership? 

If one is interested in automatic procedures, one 
has to answer a third question, namely: 

3) What principles of classification are most 
amenable for use in an automated docu
ment classification system? 

All three of these problem areas are being 
studied, and some results are already available. 

DEVISING A CLASSIFICATION 
SCHEDULE 

The classification of knowledge is not a new 
problem. Even in ancient times, man sought to 
organize information of the world around him 
into categories for efficient retrieval. What is 
new, perhaps, is the application of mathemati
cal techniques to the classification problem. The 
older forms of classification, from ancient times 
through the Dewey Decimal System, were at
tempts to impose logical subdivisions on the 
whole field of knowledge. The surprising thing 
is not that these systems were imperfect, but 
rather that they succeeded as well as they did. 
Melvil Dewey first proposed his Dewey Decimal 
System in 1876, and it is still in extensive use. 
Now, as a result of new inventions and acceler
ated research, the traditional boundaries be
tween the sciences are breaking down. It is 
time to reexamine the concept of classification, 
to go back to basic principles and to study the 
various methods of deriving a classification 
system. 

Factor An.alysis-Borko 
In 1958, Tanimoto12 published a theoretical 

paper on the applications of mathematics to the 
problems of classification and prediction. Spe
cifically, he pointed out how the problems of 
classification can be formulated in terms of sets 
of attributes and manipulated as matrix func-

tions. An actual application of matrix mathe
matics to the analysis of a collection of docu
ments was made by Bork02 in 1961. The aim of 
this study was to determine whether it was 
possible to derive a reasonable classification 
schedule for a collection of documents by factor 
analysis,6 a mathematical technique which en
ables one to isolate the underlying variables in 
a domain of events. This method has been used 
by psychologists to determine the underlying 
variables of intelligence, personality, creativity, 
ability, etc. 

In Borko's classification study, factor anal
ysis was used to discover the relationship of 
key content words as they are used in psy
chological literatUre. Approximately 600 psy
chological abstracts were selected for study. 
These were key punched in their entirety, and 
by means of a computer program called FEA T9 
(Frequency of Every Allowable Term), a fre
quency count was made of all words, and 90 tag 
terms were selected for further analysis. These 
data were arranged in the form of a matrix 
consisting of 90 terms and 618 documents. A 
portion of this matrix is reproduced in Table 1. 
The number in each cell represents the number 
of times a given word occurred in a particular 
document. Table 1 shows that the term "child 
(children)" did not occur in document number 
74, occurred twice in document number 307, 
and three times in document number 374. The 
term "level (s)" occurred once in document
numbers 74, 626, and 674 and did not occur in 
the other documents in the example. 

--¢a 
.~ --- ~ 

s::: - btl --I;l) til -- 0 til - r... -- r:fJ '0 --r:fJ r:fJ -- r... -- '0 ~ -- ;:g .s Q3 ~ r... Q) 0 
0 r:fJ :E ~ > ~ ~ 

~ 
~ c$ I;l) r:fJ ~ 

U U ~ ~ p... r:n. 

Abstract # 74 0 0 1 1 1 0 
307 1 2 0 0 0 1 
32~ 0 2 1 0 1 0 
575 1 2 0 0 1 0 
626 0 1 0 1 0 2 
647 1 2 0 0 1 0 
653 4 1 0 0 'I 0 
674 1 3 0 1 0 0 

I 

Table 1. A PortiQn of the Document Term Matrix 



RESEARCH IN AUTOMATIC GENERATION OF CLASSIFICATION SYSTEMS &31 

Based upon the data in the document-term 
matrix, one can compute the degree of associa
tion among the terms as a function of their oc
currence in the same set of documents. A meas
ure of this association is the correlation coeffi
cient. This is a decimal number which varies 
from +1.000 to -1.000. A +1.000 would mean 
a perfect correlation, namely, that every time 
word X occurred, word Y appeared in the same 
document; a zero correlation would indicate no 
relationship; and a negative correlation would 
mean that if the' word X occurs in a document, 
then word Y is not likely to occur. 

The formula for computing' the correlation 
coefficient is as follows: 

NlXY - (lX) (lY) 
r x

)" == v' [NlX:! - (lX):!] [N~Y:! - (lY):!] 

By applying this formula and computing the 

correlation between each of the 90 words with 
every other word (a total of approximately 
4000 correlations), one ~reates the term-term 
correlation matrix (Table 2). This matrix ex
presses the actual associations which occurred 
among selected words in a sample of documents. 

These statistical procedures, preparatory to 
the factor analysis, are important in demon
strating a method for translating a conglomer
ation of words and documents into a set of vec
tors which can be processed mathematically. 
Factor analysis, when applied to. the correla
tion matrix, enables one to determine the basic 
underlying variables which account for the rela
tionsamong the words as expressed in the 
vectors. It enables us to mathematically deter
mine which words are related and form a set; 
these sets, in turn, are interpreted as classifica
tion categories for grouping the original sam
ple of documents. 

Achieve-
Ability ment Activity Analysis Anxiety 

Ability .272 -.028 .048 .080 

1-.026 -.041 ~chievement 
[Activity 

IAnalysis 

IAnxiety 

~272 

-.028 

.048 

.080· 

-.026 -.002 

.119 

-.025 

.. 030 -.041 -.002 

.119 -.025 .030 

Table 2. A Portion of the Correlation Matrix 

In the experiment just described, the original 
90-column matrix was reduced to 10 vectors 
which accounted for 62·% of the total, and it is 
assumed most all of the common, variance. 
These vectors were then rotated mathematically 
to achieve a simpler and more meaningful struc
ture of the hyperspace. They were then inter
preted by the investigator as ten classification 
categories into which the original· sample of 
618 psychological reports could be grouped
and by implication, all psychological literature. 

To illustrate how the factors were inter
preted, let us examine the words which had 
significant loadings on the first factor. 

Factor 
Term # Word Loading 

33 girls .74 
10 boys .73 
70 school .30 

2 achievement .20 
63 reading .18 

There were only five words with significant 
loading. It is fairly obvious that the concept 
underlying these terms deals with the achieve
ment of boys and girls in school; consequently, 
this factor was interpreted as academic achieve
ment of boys and girls in school; consequently, 
in a like manner. These included factors named 



532 PlROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1964 

experimental psychology, social psychology and 
community organization, school guidance and'" 
counseling, clinical psychology and psycho
therapy, etc. 

Thus, we have arrived at answers to the two 
questions posed ~arlier in this paper: How 
many classes should be established, and what 
shall be a measure of similarity? The applica
tion of factor analysis enables one to determine 
the number of categories which should be es
tablished in order to adequately describe a 
given sample of documents. Furthermore, it 
provides a statistical technique, or principle, 
for measuring the similarity of content based 
upon the co-occurrence of key content terms. 

There are many questions still to be answered 
before one can decide on the usefulness of this 
technique for classification. These questions 
include: 

1) Are the categories stable; do they hold 
from one sample of psychological litera
ture to another? 

2) Are the categories valid; can all docu
ments be reasonably classified into these 
categories? 

3) Are the categories useful; do they lend 
themselves to automated document clas
sification? 

4) Is the technique a general one; can it be 
applied to documents other than psycho
logical reports? 

Before reviewing the studies designed to an
swer these questions, it would be well to first 
examine some other mathematical techniques 
for deriving classification schedules. 

Clump T heory-Parker-Rhodes and Needham 

At the Cambridge Language Research Unit in 
England, Parker-Rhodes was also inter~sted in 
classification theory ,and a mathematical basis 
for forming classes of documents. Interest
ingly, he considered the use of factor analysis 
but rejected it on two grounds, one theoretical 
and the other practical. From a theoretical 
point of view, Parker-Rhodes claimed that "the 
statistical type of technique has its place only 
after we have discovered whatever classification 
there may be. For then it is up to the statis-

tician to say how nearly the properties of par
ticular elements of the universe are inferable 
from a statement of the classes to which eacp. 
belongs .... This is quite a different enterprise 
from that of finding the classes themselves"lo 
(page 4). On the practical side, factor analysis 
is rejected as being incapable of handling 
"really large universes." 

Having decided to avoid the statistical con
cept of determining the probability of class 
membership, Parker-Rhodes restructured the 
problem in terms of locating clumps "in a 
Boolean lattice representing all possible subsets 
of the universe." Within a Boolean lattice there 
are many ways of defining clumps, and in 
fact, many different clumps are defined. With
out getting involved in details, it can be broadly 
stated that "members of a clump must be more 
like each other, and less like non-members, than 
elements of the universe picked at random" 
(page 9). Thus we see the relationship between 
the theory of clumps and the theory of clas-
sification. The method used for locating clumps 
within the lattice remains to be worked out. 
Initial procedures for clumping are described 
by Needham.s Research aimed at improving 
and testing these procedures is still going on. 
However, even now these techniques have been 
applied to a 346 x 346 matrix which is beyond 
the capabilities of presently available factor 
analysis programs. 

Latent Cla,88 Analysis-Baker 
The similarity between document classifica

tion and the problems inherent in the analysis 
of sociological questionnaire data was recog
nized by Baker. He then proposed an informa
tion retrieval system based upon Lazarsfeld's 
latent class analysis.! As Baker points out, 
"The raw data of documents, the presence or 
absence of key words, is amenable to latent 
class analysis without modification of either the 
analysis or the data. The latent classes and the 
ordering ratios yielded by the analysis provide 
the basis for a straightforward means of classi
fication and retrieval of documents" (page 
520). 

The latent class model assumes that the popu
lation-that is, the number of documents in the 
sample--can be divided into a number of mutu
ally exclusive classes. Usually the number of 



RESEARCH IN AUTOMATIC GENERATION OF CLASSIFICATION SYSTEMS 533 

classes is determined by the investigator, al
though it is conceivable that this parameter can 
be determined mathematically. One starts by 
selecting the key words which characterize each 
class of documents. Then latent class analysis 
is used to compute the probability that a docu
ment having a certain pattern of key words 
belongs to a given class. 

Baker gives the following example: Let us 
assume that we have 1000 documents in our file. 
We are interested in classifying these docu
ments into two classes-those dealing with com
puter automated instruction and those not 
directly related to this topic. We select as the 
key words in our search request the following: 

1. computer. 
2. automated. 
3. teaching. 
4. devices. 

Response 
Pattern 

++++ 
+++0 ... --
++0+ 
+0++ 
0+++ 
++00 
+0+0 
0++0 
+00+ 
0+0+ 
00++ 
+000 
0+00 
00+0 
000+ 
0000 

Class 1 

158.76 
1 Of) RA. ___ t-~ __ 

68.04 
68.04 
17.64 
45.36 
45.36 
11.76 
29.16 

7.56 
7.56 

19.44 
5.04 
5.04 
3.32 
2.16 

Expected 
Frequency 

I 
I 

Class 2 

.24 
216 -=--

.96 
2.16 

.56 
8.78 

19.44 
5.04 
8.60 
2.39 
5.04 

77.76 
20.16 
45.36 
20.16 

181.20 

Each of the 1000 documents are then analyzed 
to determine whether they contain one or more 
of the four terIl)s. Sixteen (24) response pat
terns are possible, ranging from ++++ to 
0000. A x2 test enables one to estimate the latent 
structure from the observed data. Having ob
tained a latent structure which fits, one can 
compute an ordering ratio, which is the prob
ability that a document having a given word 
pattern belongs to a particular latent class. For 
example, a document with all four key words 
present has a probability of .998 of belonging 
to class 1, i.e., it is concerned with computer 
automated instruction. 

Table 3 shows the relationships between the 
response pattern, expected frequencies, and 
ordering ratios of the 1000 documents analyzed, 
in terms of their latent class structure. 

Total 
Fitted 

159.00 
lOR 00 ---=--

69.00 
70.20 
18.20 
54.14 
64.80 
16.80 
37.76 

9.95 
12.60 
97.20 
25.20 
50.40 
23.48 

183.36 

Ordering Ratios 

Class 1 

.998 
9RO =~ - -

.986 

.969 

.969 

.838 

.700 
-.700 
.772 
.768 
.600 
.200 
.200 
.100 
.142 
.012 

r 
! 

Class 2 

.002 
020 e- ___ 

.014 

.031 

.031 

.162 

.300 

.300 

.218 

.232 

.400 

.800 

.800 

.900 

.858 

.988 

Table 3. Expected Frequency of Response and the Ordering Ratios Based Upon the Estimated Latent Structure l 

The table readily reveals the applicability of 
latent class analysis for information retrieval. 
This application is still in the theoretical and 
experimental stages. It has yet to be tested 
with empirical data from actual files. 

AUTOMATED DOCUMENT 
CLASSIFICATION 

The preceding discussions of factor analysi~ 
clump theory, and latent class analysis all dealt 
with methods for devising empirically based 



534 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

classification categories. These and other re
searchers have been investigating mathematical 
methods for deriving classification categories 
because of their belief that empirical classifica
tion systems will provide a more efficient means 
for the classification and the retrieval of in
formation than the traditional methods of docu
ment classification. This belief has been sub
jected to scientific tests and evaluations. 

In a study by Borko and Bernick,3 an attempt 
was made to test the hypothesis that a classifica
tion system derived by factor analysis provides 
the best possible basis for automatic document 
classification and would result in more ac
curate automatic classification of documents 
than would be possible using more traditional 
classification categories. -Maron,7 in pursuing 
his interests in automatic indexing and clas
sification, worked with 405 abstracts of com
puter literature which had been published in the 
IRE Tramactions on Electronic Computers, 
Volume EC-8. In essence, Maron proposed a set 
of 32 subject categories which he felt were 
logically descriptive of the computer abstracts. 
Then he selected 90 clue words in such a manner 
that they would be good predictors of his 32 
categories. The 405 documents were divided 
into two groups-260 abstracts made up the 
experimental group and the remaining 145 com
prised the validation group. Maron classified 
all 405 documents into the 32 categories. Work
ing with the documents of the experimental 
group only, he computed the value of the terms 
in the Bayesian prediction equations. He then 
used this formula to automatically classify the 
documents into their categories. Automatic 
document classification was correct in 84.5 % 
of the cases in the experimental group and in 
51.8 % of the cases in the validation group. 

Borko and Bernick decided to test the hypoth
esis that a higher percentage of correct clas
sifications could be made using the same set 
of documents if a factor-analytically derived 
classification system were used instead of 
Maron's logically derived categories. However, 
their results were approximately the same as 
those obtained by Maron. Because of the nature 
of the experimental design used, it was im
possible to determine whether the difficulty lay 
in the mathematically derived classification sys-

tem or whether the factor score method used to 
predict correct document classification was not 
as effective as the Bayesian prediction equation. 

Another series of experiments were designed 
and executed.4 It was concluded from this series 
that, while there was no significant difference 
between the predictive efficiency of Bayesian 
and factor score methods, automatic document 
classification is enhanced by the use of a factor
analytically derived classification schedule. Ap
proximately 55 % of the documents were auto
matically and correctly classified. While this 
551'0 current automatic classification of the 
documents is statistically very significant, it 
will have little practical significance until 
greater accuracy can be demonstrated. 

Up to this point the criterion for correct clas
sification has been the human classifier, but this 
is not necessarily the best criterion. We know 
that humans are not perfectly reliable, and 
therefore, it is not possible to predict human 
classification with perfect accuracy. The ul
timate criterion of the usefulness of any in
dexing and classification system is whether it 
retrieves relevant information in response to a 
search request. Automatic document classifica
tion procedures should be evaluated on how 
efficiently they retrieve information and not on 
how well they can match the imperfect human 
classifier. This is a much more difficult problem, 
but research is already under way to evaluate 
the retrieval effectiveness of automatic docu
ment classification. As work progresses on the 
evaluation and improvement of techniques for 
automatic document indexing and classification, 
it can be anticipated that the bottleneck which 
now exists between the collection and the 
processing of documents will be eliminated and 
automated storage and retrieval systems will 
become possible. 

BIBLIOGRAPHY 

1. BAKER, F. B. Information Retrieval Based 
Upon Latent Class Analysis. Journal of 
the Association of Computing Machinery, 
Vol. 9, No.4, Oct. 1962,512-521. 

2. BoRKO, H. The Construction of an Em
pirically Based Mathematically Derived 
Classification System. Proceedings of the 



RESEARCH IN AUTOMATIC GENERATION OF CLASSIFICATION SYSTEMS 535 

Spring Joint Computer Conference, San 
Francisco, May 1-3,1962, Vol. 21, 279-289. 
(Also available as SDC document SP-585.) 

3. BORKO, H., and BERNICK, M. Automatic 
Document Classification. Journal of the 
Association of Computing Machinery, Vol. 
10, No.2, April 1963, 151-162. (Also 
available as SDC document TM-771.) 

4. BORKO, H., and BERNICK, M. Automatic 
Document Classification: Part II-Addi
tional Experiments. Journal of the As
sociation of Computing Machinery, Vol II, 
No.2, April 1964. (Also available as TM-
771/001/00.) 

5. BRITISH STANDARDS INSTITUTE. Guide to 
the Universal Decimal Classification 
(UDC). British Standards House, London, 
1963. 

6. HARMAN, H. H. Modern Factor Analysis. 
University of Chicago Press, Chicago, 
1960. 

7. MARON, M. E. Automatic Indexing: An 
Experimental Inquiry. Journal of the As
sociation of Computing Machinery, Vol. 8, 
No.3, July 1961, 407-417. 

8. NEEDHAM, R. M. The Theory of Clumps, 
II. M. L. 139, Cambridge Language Re
search Unit, Cambridge, England, March 
1961. 

9. OLNEY, J. C. FEAT, An Inventory Pro
gram for Information Retrieval. SDC 
document FN-4018, July 1960. 

10: PARKER-RHODES, A. F. Contributions to 
the Theory of Clumps, M. L. 138, Cam
bridge Language Research Unit, Cam
bridge, England, March 1961. 

11. SHERA, J. H. and ·EGAN, M. E. The Clas
sified Catalog: Basic Princivles and Prac
tices, American Library Association, 
Chicago, 1960. 

12. TANIMOTO, T. T. An Elementary Mathe
matical Theory of Classification and Pre
diction, IBM, New York, 1958. 





INFORMATION STORAGE AND RETRIEVAL
ANALYSIS OF THE STATE OF THE ART 

G. N. Arnovick, J. A. Liles, and J. S. Wood 

Information Storage and Retrieval Systems 
Systems Engineering 

Space and Information Systems Division 
North American Aviation, Inc. 

INTRODUCTION 

Information retrieval, like the weather, 
stimulates a good deal of verbal clamor and 
speculation, yet remains vexingly elusive and 
unmanageable. Hopefully, both the weather 
and recorded information will eventually prove 
amenable to some form of human control. In the 
mea:ntime, there must be a continuing effort to 
achieve balance in the evolution of the concept 
and equipment aspects of information storage 
and retrieval (IS&R). It is reasonable to expect 
overemphasis on equipment capabilities. The 
emergence of IS&R as a distinct discipline is 
largely attributable to the significant advances 
of modern computer technology. 

Nevertheless, steps must be taken to correct 
the deficit in systems and concepts, or the situa
tion will be analogous to a surveyor pacing off 
chains with a precision micrometer. 

The purpose of this review is to assess 
present capabilities in the field and the extent 
to which these capabilities are effectively uti
lized. However, in view of the clamor that has 
already been made about IS&R, the inclination 
here is to avoid a massive item-by-item listing 
of available systems and techniques. Instead, 
general classes of the operations and equip
ment involved in IS&R are summarized and 
evaluated. Specific examples are cited for illus
tration. 

537 

In anticipation of the rather broad category 
of readers to whom this paper is directed, an 
attempt is made to reasonably satisfy those with 
considerable background in IS&R as well as 
those with less familiarity. Consequently, an 
attempt is made to avoid laborious and detailed 
descriptions of coordinate indexing, storage 
media, etc. At the same time, it is recognized 
that some readers may, for example, be tech
nically expert in hardwar~ but require some 
familiarization with the specific software 
notions of IS&R. It is emphasized, therefore, 
that the central aim is to present a critique 
rather than to educate or merely inform. 

These considerations necessitate inclusion of 
the somewhat fundamental (though cursory) 
earlier sections on hierarchic and coordinate 
indexing. They should be ignored or quickly 
scanned by the informed reader. Those who 
have been moderately exposed to the subject 
should be interested in the sections on Prob
lems of Coordinate Indexing and, to a lesser 
extent, on Relationships in Coordinate Index
ing. The descriptions and evaluations of prob
abilistic and automatic indexing should be use
ful even to those with extensive documentation 
background. 

The greater portion of the review is devoted 
to a discussion of indexing for this is considered 
to be the most important single factor in IS&R. 



538 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

For example, it is impossible to embark upon an 
exposition of coordinate indexing without 
touching on the coordination problems that de
velop at the retrieval end ("false drops" as one 
instance). Considerable space in the section on 
indexing is in fact dedicated to the problem of 
coordination failures. 

The last part of the section on indexing 
touches lightly on the subject of storage media 
to convey a feeling for the ways in which in
dexes are made readily available to the brows
ing inquirer. 

The remaining aspects of information han
dling-storage and retrieval, abstracting, dis
semination, reproduction and display, and com
munication links-are treated more summarily. 
Conclusions are presented at the close of the 
review. 

INDEXING 

The schemes for indexing documents are mul
tifarious and growing. There are any number 
of ways in which all the existing and presently 
conceivable schemes may be organized, but the 
plan in Figure 1 seems convenient for obviating 
some of the ambiguities and redundancies usu
ally encountered. 

Kent19 gives the following definitions of 
document and aspect systems: 

Document systems may be defined as those 
information systems that involve the record
ing of all characteristics concerning a single 
document on one record or, less commonly, 
on a single discrete set of records. 

Aspect systems may be defined as those in
formation systems that involve the recording, 

I INDEXING 1 
HUMAN DECISION 

I 
BASED ON INSPEC-

r 1 STATISTICAL 

TlON OF DOCUMENT I MANUAL 1 [ MECHANIZED --.. 
PROBABILISTIC 
AUTD-ENCODING, etc 

OR ABSTRACT I J SEMANTIC, SYNTACTIC 

I 
ANALYSIS 

I 1 
BIBLIOGRAPHIC, CONCEPT, 

INDICATIVE I NFORMA TlVE 
(DOCUMENT RETRIEVAL) (DATA RETRIEVAL) 

I I I BROAD TOPIC INDEX ------"-
I 1 1 

AUTHOR INDEX HIERARCHIC 
SPONSORI NG ORGANI ZA TI ON (CLASSIFICATION) 

NONHIERARCHIC 

INDEX 
(COORDINATION) 

REPORT NUMBER INDEX 
CONTRACT NUMBER INDEX I 
CHRONOLOGICAL INDEX I etc .•.• 

1 
KEYWORD 

SUBJECT (A POSTERIORI 

(A PRIORI SUBJECT HEADS) 

SUBJECT HEADS) USES WORDS THAT OCCUR 

USES PREASSIGNED IN TEXT; MAY RELY ON 

STANDARDIZED SET SYNONYMS, "SEE" 

OF KEY TERMS REFERENCES, RELATION-
SHIPS (LINKS, ROLES, 

1 etc) 

I I 
LIBRARY OF CONGRESS THESAURUS, UNITERM etc 

DEWEY DECIMAL SEMANTIC CODE, (IN GENERAL THE 
UNIVERSAL DECIMAL AUTHORITY LIST SUBJECTS ARE 

BLISS DESCRIPTORS CREATED BY WORDS 
CUrrER 

FACETED CLASSIFICATION 
ASTIA IN TEXT; ALMOST 

etc 
PAL EVERY SYSTEM HAS 

etc SOME AUTHORITY 
LIST) 

Figure 1. Breakdown of Indexing Schemes. 



INFORMATION STORAGE AND RETRIEVAL-ANALYSIS OF THE STATE OF THE ART 539 

on one record or a discrete set of records, of 
the numbers (or other unique identification) 
of all documents that have a characteristic 
( or aspect) in common. 

In general, indexing systems that locate 
specific information are characterized by 
greater depth of indexing than systems that 
merely locate documents. But increasing the 
depth amplifies the concomitant problems by 
orders of magnitude. Indicative indexing is a 
working reality; information indexing, at least 
where a large general store of information is 
concerned, is a monster whose powerful poten
ti~n needs to be harnessed. 

Almost all present working systems still rely 
on human indexers, even if all other aspects are 
automated. 

CONVENTIONAL SUBJECT 
CLASSIFICATION 

In conventional subject classification, all 
documents and books are filed in a given slot 
according to an established, predetermined 
hierarchy of subjects. This system is poorly 
suited to a modern technical library for the fol
lowing reasons: 

Lookup is a two-step operation involving a 
search for documents under a subject head 
followed by a search of subjects under each 
document to choose those which are per
tinent. 

Overlapping of disciplines is increasing. 

The process of interpolating new terms (up
dating) in a rapidly developing subject is 
cumbersome. 

A conventional universal classification 
scheme may include the entire store of an 
aerospace-oriented library in one small corner 
of its structure, whereas aerospace may span 
a colossal and varied coHection of highly over
lapping topics. 

Most hierarchies are ai'tificial. The natural 
structure of biology and chemistry does not 
extend to all knowledge. Extensive cross 
referencing alleviates the confinement of one 
heading to a reference, but it burdens the 
user and, carried to extremes, renders chaotic 
the already synthetic hierarchies. 

FACETED SUBJECT CLASSIFICATION 

Faceted classifications attempt to introduce 
greater flexibility by permitting the free com
bination of various categories or facets. Sub
j ectsare not arranged in a fixed descending 
order but are combined in an order prescribed 
according to classes. The chief advantage in 
addition to flexibility is that the classification 
may be adapted to the information that is being 
classified. 

Nevertheless, a document is permanently 
pigeonholed, and most of the inherent disad
vantages of subject classification are still 
present. 

In fact, faceted classification fails in general 
because it does not solve the problems of the 
searcher. If the hierarchy is not a natural one 
(and most are not), it represents a point of 
view. This system is suitable for well-estab
lished subjects and, hence, for the filing of cer
tain (e.g., reference) books. Enough time has 
elapsed for" the user to have become familiar 
with the indexing point of view. However, the 
outlook of the searcher and the order of the 
index may be completely disparate in consider
ing a current, complex subject. 

HIERARCHIES AND RETRIEVAL 
EFFICIENCY 

To better understand the problem of classify
ing knowledge in rapidly evolving fields, the 
following example is cited. Even if retrieval is 
lOO-percent effective, problems still remain. 
Herner and Herner16 found in a recent study 
involving atomic energy materials that the co
incidence between the content of research 
reports and reference questions in atomic 
energy is very small. Further investigation 
revealed that once reports have been used as 
sources of current information, their signifi
cance falls away rapidly. These results power
fully emphasize the fact that the time available 
for matching viewpoints is essentially zero. 

COORDINATE INDEXING 

A natural consequence of the development of 
high-speed computers was the attempt to find 
new ways of processing data including docu
mented information in machine-tractable form. 
One reasonable approach was to question the 



540 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

continuing necessity for creating artificial rela
tionships between subjects as in hierarchic 
classifications. Every document defined its own 
subject. How then could the relationships be
tween concepts and data be determined by the 
actual environment in which they were em
bedded? 

The discussion that follows treats the concept 
of coordination as originally conceived. It pre
supposes few or no a priori associations be
tween concepts. Certain significant words or 
data are taken from the text of a document, and 
the searcher is then free to combine any number 
of such key terms,as he chooses in the attempt to 
match, not viewpoints, but what he actually has 
in mind with what the author is actually talking 
about. This approach is the ideal. The ways in 
which it can be implemented and the extent to 
which the ideal is approached in practice need 
to be examined. The methods of implementa
tion and storage techniques and will be dis
cussed under that subject. 

The ideal is compromised when associations 
are made between index terms. In a recent issue 
of American Documentation, it is argued that 
the introduction of 'relationships is tantamount 
to denial of Uniterm indexing and return to 
subject heading classification (attributed to 
Cutter in 1876).2 Certainly lexical and gram
matical ties play an important part in informa
tion content. But considering the expense and 
state of the art of linguistic analysis,4 the at
titude is that coordinate indexing (no relation
ships) and subject heading classification (in
flexible with respect to association) are at 
opposite poles; something flexible and capable 
of expressing relationship lies between. 

The general concept of coordinate indexing 
is well understood and will be sketched only 
briefly; it involves three basic steps: 

1. Accession numbers are assigned to the 
documents in the store. Consider 10 docu
ments lettered A to J comprising a closed 
store. 

2. From each document, the indexer picks 
out a representative number of word
tokens (single occurrences of a word in a 
document) and assigns a code number to 
each word (a given word distinct from 
any other; it may occur in several docu-

ments). Assuming emergence of a total 
vocabulary of 30 numbered words, the 
result may be depicted as shown in Tables 
1 and 2. 

Table 1. Documents Ordered by Term Number 
(Serial List) 

Document 
IA Number 

Words CD 
2 
3 
4 
5 

BCD E F G H I J 

3 5 3 16 8 21 7 11 28 

6 7 12 17 11 22 CD 8 4 

4 CD 13' 2 19 23 8 2 29 

8 14 18 20 13 24 CD 30 

9 9 15 
10 15 18 

11 

25 CD 
26 
19 
27 

In this listing, the 30 words are repre
sented by 52 word tokens. 

3. The list is inverted by grouping all docu
ment accession numbers under a given 
word. For example, word number 1 (cir
cled) occurs under document letters A, C, 
H, I, and J. The inverted list looks like 
this (for the first 10 words) : 

Table 2. Documents Ordered by Term Number 
(Inverted List) 

Word 
Number 1 2 3 4 5 6 7 8 9 10 

Document 
Number A A A A A B ©© C c 

@E B B C ®® D 

® I D J F 

I I 

J 

A search defined in terms of words 1, 7, 
and would be found in documents C and H, 
which have these numbers in common. 

Problems of Coordinate Indexing 

Indexer Variability 

The practical difficulties incurred by straight 
coordinate indexing arise primarily because the 
effect of viewpoint can never be eliminated. It 
will occur wherever decisions are made, and 



INFORMATION STORAGE AND RETRIEVAL-ANALYSIS OF THE STATE OF THE ART 541 

indexing at the present stage is largely a deci
sion-making process. 

In a superficial experiment conducted at 
Space and Information Systems Division of 
North American A vaition, the IS&R group 
selected a series of documents and compared 
the indexes produced by different people (none 
of whom, however, was a trained indexer). The 
variations were enormous. Without attempting 
to generalize the few results of this test, the fol
lowing trends were noted: 

Thos'e who indexed documents within their 
own specialization tended to read (rather 
than scan) the document and pick many more 
than the average number of terms. 

Those with technical background who had not 
specialized in the field tended to be more selec
tive and pick terms that seemed to be em
phasized either by frequency of occurrence, 
placement in quotes, or other attention-draw
ing devices of the author. 

Nontechnical people tended to pick a fair 
number of terms, chiefly selecting those 
which looked "technical" and often ignoring 
"common" terms with a meaning specialized 
in the particular documents. 

Certain individuals consistently pick few 
terms, others pick many. Citing the most 
extreme example, a document on mathe
matics was indexed by one person (a mathe
matician) with 52 terms and by another (an 
aeronautical engineer) with 5 terms. 

There was no effort to evaluate document 
relevancy as a function of the resultant in
dexes. 

Extensive formal studies of this kind are 
being made at Documentation Incorporated 
(indexing reliability tests and study of teach
ing/learning aids) 6 and IBM (study of effect 
of educational background on encoding per
formance) .31 Savage reports no significant 
effect of educational level on ability to index.1s 

Clearly, the human factors in manual index
ing need to be explored more fully before effec
tive automation of the process can be achieved. 
Specifically, indexing techniques and term selec
tion need to be assessed in terms of retrieval 
effectiveness. 

Search Variability-Coordination Failures 

A second problem is the variability with 
which the searcher (or requester) can express 
his inquiry. Often it happens that he is unable 
to express it. A document on germanium rec
tifiers might be overlooked in a search for ger
manium diodes (near-synonym) or for ger
manium transistors (inclusive class). Con
ceivably, a requester might even verbalize his 
inquiry as "a germanium thing that permits 
current to flow in one direction but not in the 
other." 

This problem is one of a group that is cate
gorized as coordination failures. These are best 
portrayed by example. Returning to the set of 
documents, A to J, and their filial terms, 1 to 30 
(Table 1), the following specific topics and 
words are assigned: 

DocumentE 

on: sodium chloride, 
potassium chloride, 
and potassium iodide 

Document G 

on: air-to-ground missiles 

Word no.: 2-potassium 
I6-sodium 
17 -chloride 
IS-iodide 
2 I-air 
22-ground 
23-missiles 

Table 3 lists the types of coordination failure 
with examples of searches in which they might 
occur. The examples are purposely trivial for 
the sake of illustration. 

Relationships in Coordinate Indexing 

There are some purists who feel that any 
presumption of relationship between index 
terms is flatly a reg-ression to the construction 
of hierarchies with all of their concomitant 



542 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

vexations, subjectivity, and artificiality. Others 
insist that there must be an ideal marriage of 
coordination and classification to produce op
timum communication between the information 
store and its user. Sensibility lies with the 

middle group that comprises not only the 
greatest number of documentation practitioners 
(those actually engaged in meeting the informa
tion needs of scientists and engineers) but also 
some of the most advanced thinkers in the field. 

Table 3. Examples of Coordination Failures Using Pure Coordinate Indexing 
(Selection and Juxtaposition Only of Terms Occurring in Text) 

Type of 
Coordination 

Failure 

Example 
Request 

Search 
Terms 

1. False coordi- a) Ground handling Ground (22) 
nation of missiles Missiles (23) 

2. Incomplete 
coordination 

b) Sodium iodide 

Air-to-air 
missiles 

3. Synonym failure Table salt 

4. Generic search 
failure 

5. False relation
ship 

All documents 
on alkali 
halides 

Ground-to
air missiles 

Sodium (16) 
Iodide (18) 

Air (21) 
Missiles (23) 

Table 
salt 

Alkali 
halides 

Ground (22) 
Air (21) 

Documents 
Retrieved 

G (air-to
ground 
missiles) 

E (sodium and 
potassium 
-chloride, 
potassium 
iodide, but 
NOT sodium 
chloride) 

G (air-to
ground 
missiles) 

Reason for Failure 

Insufficient depth of request
easily rectifiable by narrow
ing specificity of request. 

Need to show stronger rela
tionship than mere co-occur
rence or juxtaposition. Possi
ble solutions (links, roles, etc.) 
are discussed under relation
ships. 

The search terms are sufficient 
to describe the request but in
sufficient to describe docu
ment G, which is nevertheless 
retrieved. A meager solution 
is the use of logical negation 
(air AND NOT ground), but 
the requester or searcher must 
be aware of possible exclu
sions. 

NONE, but Index does not provide for 
document E synonym "table salt-sodium 
is relevant chloride." A thesaurus or sub

ject authority list is needed. 

NONE, but 
document E 
is relevant 

G (air-to
ground 
missiles) 

Index does not provide for 
generic name of chemical com
pounds, i.e., "alkali halides 
NaCI, KCI, KI." A thesaurus 
or authority list is required. 

Exact matching of terms (i.e., 
no absent terms, no super
fluous terms), but a stronger 
relationship than mere co
occurrence or juxtaposition 
must be shown. 



INFORMATION STORAGE AND RETRIEVAL-ANALYSIS OF THE STATE OF THE ART 543 

Table 3. Examples of Coordination Failures Using Pure Coordinate Indexing 
(Selection and Juxtaposition Only of Terms Occurring in Text) (Cont.) 

Type of 
Example Search 

Coordination 
Failure 

Request Terms 

6. Failure to a) (Refer to 3,6,4,31,32 
retrieve Table 1) 
"next best" 
documents 

b) (Refer to 3,31,32 
Table 1) 

, , 

P hysical Proximity 

A primitive kind of association between 
words in a text is the distance in terms of words 
that separates them. This association is 
thought by some to be useful in machine trans
lation as a word and its dependents tend to be 
grouped together, but it seems to have little ap
plication to indexing. It could serve a useful 
analytical function if index terms were tagged 
according to the part of a document in which 
they occurred, such as title, abstract, and main 
body. The relative importance of these parts 
could then be analyzed. A related study has 
been made by workers at IBM. Resnick30 and 
Savage report that the results of indexing from 
an abstract and from the title of a document 

Documents 
Reason for Failure 

Retrieved 

NONE. The No facility for pulling docu-
requester, ments with at least some of 
however, the search terms (optimally, 
might find the most terms) ; lack of 
it advanta- browsing capability. 
geous to 
examine 
document B, 
which has 
three of the 
search terms 
(3,4, 6) 

still NONE Same problem as above; 
merely shrinking the request 
does not necessarily improve 
the retrieval. If a searcher 
began a process of successive 
elimination of terms, in the 

, ,given example he could make, 

a~ m~ny ~~ ( ~ ) ~ ( ~ ) - 1 h _ ... -- --- -- \ 1 I \ 2 --LU 

attempts before getting a 
"hit." This. would only be 
practical on computers and 
even then is not the most effi-
cient approach. 

are not significantly different. It should be 
realized, however, that the IBM indexing 
studies are based on a comparison of indexing 
terms with keywords supplied by users of a 
Selective Dissemination of Information (SDI) 
System. A certain bias is thus already inherent 
in the tests. 

Synonyms 

Words with similar meanings can be handled 
in the input by using "see" references. In a 
descriptor system, all words considered near 
enough in meaning are mapped into a single 
term (descriptor) via a subject authority list or 
they are referred to a thesaurus. The process 
can be done by the human searchers or, prefer-



544 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

ably, can be handled entirely within the system 
dictionary. If the system is to serve its users 
with a minimum of inconvenience, the con
straints imposed on the uS'ers and indexers must 
be reduced to a minimum. Humans should be 
free to make decisions (formulate requests, 
select keywords). The system should unburden 
them of the processing and matching opera
tions. 

Partial Implication or Near-Synonyms 

This problem is much like the preceding one 
except that now provision is made for generic 
groupings of specific terms and specific filials of 
generic terms. These are usually handled by 
"see also" references. In other words, some 
documents are filed under the given term but 
other potentially relevant documents may be 
found under related terzns. This technique in
Gorporates into the system the main advantages 
of hierarchic arrangements. 

Semantic Relationships 

As a rule, the association of index terms 
should not be stressed too heavily. It is some
times helpful to show directional relationships 
in answer to the question "Does A affect B, or 
does B affect A?" For example, the terms "dif
fraction" and "ultrasonic" could pertain either 
to ultrasound used to diffract light or to the dif
fraction of ultrasound. Even the expression 
"utrasonic diffraction grating" can be ambigu
ous in this respect. 

The occurrence now and then of such false or 
ambiguous correlations led to the creation of 
associative links that connect various terms 
from a document in one group, other terms from 
the document in another group, and so on. To 
further clarify the meanings involved, semantic 
roles were devised to delineate the function of 
a given term within a given document.12 The 
foregoing ultrasonic diffraction grating prob
lem could be handled nicely by assigning "ultra
sonic" a role indicator telling whether it is 
"acted upon" (by an acoustic grating) or "act
ing upon something" (light). 

A present working system that uses roles and 
links extensively is the one serving the Ameri
can Institute of Chemical Engineers.26 How
ever, such devices are best suited to such highly 
structured disciplines as chemistry since it is 

important for the chemist if he is interested in 
a given chemical as a catalyst not to be bothered 
with documents on this chemical as a reagent, 
dye indicator, or insecticide. 

Another device is to join words inseparably 
as bounds terms (precoordination). A noun 
and its descriptive adjective might be treated 
as a single concept. This has both good and bad 
consequences. It requires a well-tutored in
dexer and means that a search for one of the 
terms will not, in general, pull a document in
dexed with the bound term. In particular, how
ever, it is useful for concepts such as chemical 
compounds (especially in a chemical library) 
or the occasional ambiguous term like air-to
ground missiles. It is beneficial for pairs of 
terms that always coordinate. 

Relationships between words are invoked in 
the hope of decreasing false coordinations. But 
an exaggeration of their importance is not de
sirable, for they can simultaneously exclude 
relevant documents. A good system will com
bine the various types of coordinate indexing, 
avoiding extremes but using relationships spar
ingly. 

ProbabiZ'istic Indexing 

Indexing, like searching, may be thought of 
as a binary operation. Every word in the text 
of a document is either chosen as an index term 
or it is not. In a search, a document is either 
picked (assumed relevant) or it is not. This 
means that when a request is made, the user has 
reason to be wary of the output. He may get a 
handful of documents, most of which will hope
fully be relevant to his request. Or he may be 
handed a list of several hundred accession num
bers. He may then undertake the project of 
scanning the documents or narrow his request. 
Then he may exclude documents of interest. All 
this because the system called every document 
either good or no good. 

Probabilistic indexing, proposed by Maron 
and Kuhns,24 provides for the assignment of 
weights to index terms and the ranking of re
trieved documents according to some criterion 
of relevance. Instead of being chosen on a zero
one, go or no-go, basis, the words of a document 
are weighted by the indexer according to their 
significance to the documents. Maron and 
Kuhns, in their own experimental work, use an 



INFORMATION STORAGE AND RETRIEVAL-ANALYSIS OF THE STATE OF THE ART 545 

eight-level rating, i.e., 0, :Is, %, .... %, 1. 
Relationships are also introduced, but on a 
purely statistical basis relying on the frequency 
of occurrence of word pairs in all the documents 
of the collection. The most promising one of 
several mathematical devices used to relate the 
word pairs is a coefficient of association. 

The coefficient of association is, as described 
by the authors, essentially a measure of the 
excess of joint occurrences of a given pair over 
expecta tion based on random co-occurrence. 

An alternative to Maron's "excess" was pre
sented by Stiles at the recent symposium on 
materials information retrieval attended by one 
of the authors.35 The chi-square test used to 
correlate physical experimental data is applied 
to word co-occurrences. 

Probabilistic Indexing Experiment 

A controlled experiment was conducted with 
110 articles, selecting and categorizing key
word~ then working backward to coordinate 
documents and categories. In this way, eventu
ally, for every request there was an answer 
document which, when retrieved, satisfied that 
request. Conventional (binary) and probabilis
tic techniques were compared, and the results 
were expressed in terms of the number of re
trieved documents that had to be read before 
hitting the answer documents. 

It turned out that the conventional system 
would require the user to read approximately 
thirty percent more retrieved documents to 
obtain the same number of answer documents 
as oppOSed to the basic Selection process of 
probabilistic indexing. Considerable improve
ment was achieved with elaboration of the basic 
selection process. 

Proba bilistic Indexing-Critique 

Indexer subjecti~ity is greatly increased. The 
decision-making process would seem more diffi
cult, but it may subsequently prove to be worth 
it. According to the authors, the work of the 
indexer is facilitated; as it now stands, he is 
too constrained by having to say yes or no to a 
possible index term. 

The ability to make too fine a breakdown of 
the weighting scale from 0 to 1 is questioned. 
An analogous problem arises in education when 

a teacher has to grade pupils in a highly sup
jective field. In probabilistic indexing a scale 
of 0 to 3 (or 0, Va, 2h, 1) would seem to be 
the maximum. However, the psychometric 
problem of scaling is not an easy one to resolve. 

The premise that one can go from index 
terms that are highly significant of a document 
to documents that are highly relevant to a 
request is accepted with much reservation. It 
is probably a correct premise in most instances, 
but it overlooks the situation in which a request 
will b.e quite well and perhaps best satisfied by a 
document in whose over-all text the search 
terms playa relatively minor role. 

The old subject-classification problem-to 
describe the subject of a document-does not 
wholly describe its information content. 

There are many formulations of the informa
tion retrieval problem in terms of statistical and 
information theory, but most of them skirt the 
problem. In fact, the circumstances are often 
tantamount to a search for the exact solution 
to a problem when most people are not sure just 
what the problem is. 

The probabilistic indexing approach, on the 
other hand, has inherent potentialities for the 
eventual over-all mechanization of IS&R. This, 
JYlaron's later work on automatic indexing and 
Edmundson and Wyllys' insight into the true 
implication of information theory for IS&R, 
seem to be paths to the library of the future. 

Probabilistic indexing is still a manual index
ing' procedure. It appears to be the natural 
transition from manual to automatic indexing 
because as mechanized statistical methods of 
selecting terms from a document come more and 
more into use, probabilistic indexing will pro
vide a richer foundation on which to build. 

MECHANICAL INDEXING 

Any discussion of mechanized indexing should 
be prefaced by citing the single major limita
tion that prevents any of the elegantly devised 
theoretical schemes from being put into prac
tice. This is the requirement for total text 
input. The machine processing of total text is 
not efficient for anything but experimental 
analysis as long as printed text must be trans
lated into machine-readable text (via key
punching, for example). Working automatic 



546 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

indexing systems, like machine translation sys
tems, must await the perfection of print-read
ing and character-recognition devices. 

Mechanized indexing is attacked from two 
different angles, statistically and linguistically. 

Statistical 

The common basic assumption of statistical 
selection processes is that the linguistic prop
erties and laws of literature are describable in 
terms of populations and frequencies of word 
occurrences and their associations. The differ
ence between statistical description of language 
and statistical thermodynamics is basically 
quantitative, but this quantitative difference is 
sufficient to manifest itself in a qualitative form. 
In general, the numbers treated by thermody
namics are larger and the variables fewer than 
in linguistics. The result is that given a norm 
of behavior in linguistics, the deviations from 
the norm are more pronounced than in thermo
dynamics. There is little evidence in the physi
cal world of less than maximally probable 
events. In language, on the other hand, excep
tional occurrences are witnessed regularly. 

The problem confronting mathematical lin
guistics, then, is to define the variables and to 

INT£IVAL 

cJ 

I'~~~' 

rItE 
IN 

OIf~Qtl 

I~ .... # tll.1R.o\so,.",C 

ACCEIER.o\TION 

lO 

SUCH 
,..~ri' '>J.c.,w.c. 

"''''0 'i>"~ ,,(!.d' 

GaAPH 

lANK 

Figure 2. Idealized Frequency Count of Words Oc
curring in a Document Entitled "The Ultrasonic Ac

celeration of Diffusion." 

refine the statistical behavior laws narrowing 
their specification and reducing the undefinable 
to a minimum. 

The fundamental concept of statistical key 
word selection is illustrated in Figure 2, which 
is designed to convey a graphic impression of 
the concept and is not necessarily the only pro
cedure for implementing the concept. The dia
gram represents a smoothed frequency count of 
the word occurrences in a document as a func
tion of the rank order of the words. This is 
statistical selection in its crudest, most unre
fined form. It flatly presupposes that common 
words will occur most frequently, the esoteric 
but un pertinent words most infrequently. The 
middle-frequency words-those remaining after 
the extremes of the curve have been removed
are considered to be the most significant. The 
same process can then be applied to pairs of the 
significant words. 

In general, this first-approximation procedure 
screens out the many clearly irrelevant words 
leaving a working body that can be treated by 
more precise techniques. 

Examples of Statistical Selection 

Three proposals for automatic, statistically 
based indexing merit attention. One has many 
ramifications in use today; the other two are 
still in the ivory tower having been subjected 
only to carefully controlled experiments. 

Auto-encoding 

The pioneer study of mechanized index
ing,22.23 which led to the key word in context 
(KWIC) index, relies on the computer recogni
tion of individual words and counts their fre
quency in a text. Eliminating the common 
words, the most commonly occurring topical 
words are used (without further discrimina
tion) as index terms. The product is a mechani
cally prepared concordance. 

Recognizing the limitations of word indexing, 
Luhn has standardized the vocabulary by com
bining words with the same root and then 
combining the counts of synonymous words. A 
normalized form is selected after being looked 
up in a thesaurus. Relationships are handled 
by computer analysis of word pairs in cases 
where significant words occur together. 



INFORMATION STORAGE AND RETRIEVAL-ANALYSIS OF THE STATE OF THE ART 547 

The search terms are develo.Ped analo.go.usly 
fro.m an essay-fo.rm request by matching search 
terms and index entries. 

Automatic Document Classification 

Academic-level arguments to. the co.ntrary 
no.twithstanding, there is much to. be gained by 
a scheme fo.r rapidly and auto.matically fitting 
do.cuments into. sensible catego.ries. The pro.b
lem facing library practitio.ners is particularly 
acute in this respect, because while tho.se slightly 
remo.ved fro.m the bo.o.kshelves debate the co.m
parative merits o.f classificatio.n versus do.cu
ment-independent o.rganizatio.n o.f info.rmatio.n, 
these peo.ple are pressed to. shelve their docu
ments in a ratio.nal fashio.n. Besides, as -Bo.rko. 
argued so. co.nvincingly at a recent linguistic 
seminar,6 peo.ple (scientists included) tend to. 
think naturally and with facility in such an 
o.rdered way, i.e., catego.rically. The co.nflicts 
arise when the flexible adaptive human psycho.
Io.gical system co.nfro.nts rigid, Io.ng-standing 
systems so.lidified o.n paper. 

A happy so.lutio.n appears fo.rthco.ming in au
to.matic classificatio.n. Wo.rk has been do.ne in 
this area by Maro.n25 and Bo.rko. et a1.5•6 In 
bo.th instances the researchers rely o.n statistical 
co.rrelatio.n between wo.rds and do.cuments, and 
between wo.rds. The two. experiments are simi
lar in several respects. Fo.r example, do.cuments 
are searched by co.mputer fo.r the o.ccurrence o.f 
specific clue wo.rds relating to. specific a prio.ri 
subject heads, o.r catego.ries. The essential dif
ference lies in the derivatio.n o.f the catego.ries 
and assignatio.n o.f the do.cuments. Maro.n de
vises his o.wn catego.ries and assigns the do.cu
ments by means o.f a Bayesian predictio.n 
fo.rmula. Borko., o.n the o.ther hand, derives his 
catego.ries by matrix co.rrelatio.n o.f the clue 
wo.rds, extractio.n o.f eigenvecto.rs by facto.r 
analysis, and ro.tatio.n o.f these eigenvecto.rs to. 
find the best catego.ries. Do.cuments are then 
assigned by facto.r sco.re predictio.n techniques. 

Bo.rko has do.ne co.nsiderable wo.rk in the last 
co.uple o.f years in co.mparing his o.wn and 
Maro.n's wo.rk. A related effo.rt in do.cument 
asso.ciatio.n by linguistic analysis has been un
dertaken by Salto.n at Harvard.33 

Auto-matic Indexing (Mat'on) 

Maro.n's scheme25 fo.r auto.matic indexing 
o.perates by generating a prio.ri -subject heads 

and searching do.cuments by co.mputer fo.r the 
o.ccurrence o.f these subject heads (called clue 
words). The intentio.n is a go.o.d o.ne, to. ulti
mately merge pro.babilistic and auto.matic in
dexing. 

Automatic Indexing (Edrnundson and Wyllys) 
-Rela,tive Frequency Approach 

This technique10 represents a p.ew co.ncept 
in the statistical analysis o.f text and co.mes 
elo.sest to. bridging the gap between IS&R and 
info.rmatio.n theo.ry. Instead o.f treating a do.cu
ment as the universe o.f words as in the primi
tive diagram in Figure 2, the frequency o.f a 
wo.rd in ~ do.cument is co.mpared with the 
frequency o.f the same wo.rd in general use. 
Vario.us statistical criteria are suggested and 
evaluated. The upsho.t is that a wo.rd that is 
rare -in general use but frequent in a do.cument 
is a significant measure o.f that do.cument's co.n
tent. This co.rresPo.nds to. the surprise element 
o.f info.rmatio.n theory. 

Citation Indexing 

Several studies have been made in recent 
years using the biblio.graphic materials and 
".,,;+.n. .... .: __ .... ___ ........... ! __ ...l !_ ....l-. ........... _ ....... _L_ -.!J..L. .... ___ "'1! __ .... _Ll __ 

~l"a.UVUo:s CVULa.H1t:U HI UVCU1l1~IH~ ~lLH~r ulr~cLly 

fo.r cro.ss-referencing purpo.ses o.r as a statisti
cal vehicle.l2.13.20.33 These techniques explo.it the 
dynamical histo.rical evo.lutio.n o.f science and 
the language used to. express it. One o.f the 
autho.rs (Wo.od) is wo.rking o.n interlingual 
citatio.n statistics in Russian and English aco.us
tics jo.urnals in an attempt to. derive systemati
cally fro.m current termino.Io.gy an accurate 
technical termino.Io.gy fo.r machine translatio.n 
and info.rma tio.n retrieval fro.m fo.reign lan
guage references. 

Linguistic 

The creation o.f indexes by auto.matic linguis
tic analysis penetrates deeply into. the realm o.f 
machine translatio.n (MT). In this case, it calls 
fo.r the auto.matic translatio.n o.f the so.urce 
language into. a target IS&R language fro.m 
which indexes can be created. Present MT ef
fo.rts are aimed at syntactic analysis, o.f which 
there are two. types: 

1. Immediate-co.nstituent o.r phrase-struc
ture analysis-the segmentatio.n o.f sen
tences into. successively smaller machine
tractable parts. 



548 }lIROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

2. Dependency analysis-the assignment of 
a governing word to every word in a sen
tence (or other lexical unit), i.e., the cre
ation of a complete dependency structure. 

Further elaboration of linguistic analysis is 
beyond the scope of the present survey. A clear 
description and reconciliation of the two ap
proaches are given by Hays.15 Klein and Sim
mons actually implement both procedures simul
taneously.21 Finally, a thorough state-of-the
art treatment of syntactical analysis was pre
sented by Bobrow at the last Joint Computer 
Conference.4 

Extension of Concepts 

A desirable future system would unify auto
matic statistical indexing applying the relative
frequency approach of Edmundson and Wyllys 
as a criterion for assigning weights to index 
terms as required in probabilistic indexing. 

A certain amount of skepticism is evoked by 
the assumption that statistical selection will 
create the best indexes because some of the 
problems are semantic. However, it will prob
ably create the best automatic indexes for some 
time to come. 

Linguistic analysis has a serious drawback 
if used to find a common language for IS&R and 
MT in that there is a major difference of goals 
between IS&R and MT. In MT, the user sup
posedly has a document, wants to know what it 
says, and is therefore interested in fidelity of 
translation. In IS&R, the user is interested in 
finding a peculiar (sic) type of information and 
wants the documents that contain it regardless 
of how it is presented. On the other hand, 
linguistic analysis will serve IS&R advantage
ously if used to learn how people think and 
communicate ideas~ 

An intermediate step to probabilis~ic index
ing would be indexing on two levels, viz., terms 
which are indicative of what a document is 
about and other terms pertaining to items of 
information not immediately contained in the 
topic. In other words, the following assigna
tion of values would be made to every word in 
the document: 

o - Nonsignificant word 
1 - Significant nonindicative word 
2 - Significant indicative word 

Indicative is interpreted to mean that the word 
is directly related to the theme of the document. 
Such distinctions are psychologically facile for 
human indexers. 

STORAGE AND RETRIEVAL 

PRESENTATION OF INDEXES 

If an automatic literature search is conducted, 
the user will, in general, never see the index. 
He will make a request, and the system (via 
librarian or computer) will do the search for 
him. 

There still remains a strong need for the user, 
on occasion, to see the index. The forms of 
index presentation, all of which can be readily 
produced by machine, are card form, book form, 
and pictorial display. 

Card Form 

Every library user is familiar with the stand
ard card catalog. The cards may represent units 
of a document file, in which case one card con
tains all the printed information pertinent to 
a document. They may be units of an aspect 
system, each card representing an index term 
and containing a list of document numbers. 
They can also be punched or otherwise marked 
for manual or machine searching, and they may 
have a window with a microfilm of the docu
ment or abstract (aperture card). 

Book FO'rm 

Conventional and Rotated 

Book-form indexes stem from the familiar 
list of topics at the back of almost every non
fiction book. The frustration often engendered 
by most book indexes led to improvements, such 
as the extremely detailed and cross-referenced 
index of Chemical Abstracts. An advanced de
velopment is the rotated, or permuted, index. 
Strings of key words, such as the significant 
words of titles or auto-abstracted sentences 
(KWIC), are listed several times, alphabeti
cally according to each word in every such 
string. Many experimental machine-generated 
index printouts of this type are now in use and 
are proving to be very effective. For example, 
the RotaForm Index, now a regular part of 
Index Chemicus, is a computer-generated mo
lecular formula index that repeats and rotates 



INFORMATION STORAGE AND RETRIEVAL-ANALYSIS OF THE STATE OF THE ART 549 

a chemical formula for every chemical element 
that it contains. 

Columnar 

An attempt to present coordinate indexes of 
the uniterm type in book form is the columnar 
index, such as the Scan-Column Index and 
Tabledex. These indexes print adjacent col
umns of document numbers under word num
bers and are rapidly scanned to locate docu
ments with a large number of desired key 
words. The limitations for an untrained user 
are pretty obvious. Clearly, the fatigue factor 
would be high. 

The book-form index is, of course, a closed 
index; once it is printed, terms cannot be en
tered or deleted. 

Pictorial Display 

The ability to visualize a coordinate index in 
Gestalt form is much to be desired. It has the 
added advantage that it can, in principle, be 
viewed on the same screen as the document or 
abstract itself. 

Termatrex and Minimatrex 

Conceivably, one might project any. book
form index on a screen. But the displayed in
dex used to great advantage by a number of 
firms today is the Termatrex system. Document 
accession numbers are located on the nodes of a 
coordinate grid that is set against an illumi
nated background. When a number of Terma
trex cards, each one representing a key word, 
are superimposed, the light will show through 
the nodes that are common to all of the key 
words. In this way, the user can g~t a rapid 
over-all glimpse of how many documents he 
would have to inspect as well as their accession 
numbers. 

Also under development by Jonker Business 
Machines, the creators of Termatrex, is Mini
matrex, an improved, miniaturized, mechaniza
ble version of Termatrex. The coordinate grids 
are photographed on film strips by grouping 
broad categories of terms onto corresponding 
frames of the strip. In its present form, the 
Minimatrex strips have 8 fra'mes, each one a 
100-by-100 matrix representing 10,000 docu
ments. As many as 12 strips can be superim
posed, and the resultant retrieval pattern is 

projected on a viewing screen. The number of 
frames and superimposable strips is expandable. 

Hypothetical Systems
The Semantic Road Map 

There is one hypothesized system which, al
though far too advanced conceptually to be op
erational even in the near future, deserves 
special attention because it foresees the possi
bilities of a truly automated era. Loren Doyle 
of SDC9 gives an intriguing picture of a 
space-age library system. Giving credit to the 
relative-frequency notion of Edmundson and 
Wyllys,lO Doyle seeks to "increase the mental 
contact between the reader and the information 
stored so the reader can proceed unerringly 
and swiftly to identify and receive the message 
for which he is looking." 

The semantic road map idea recognizes the 
human proclivity to organize concepts in spatial 
relationship to each other to allow the free 
evolution of concepts, one as the outgrowth of 
another, linking the retrieval process more in
timately with the process of natural creative 
thought. 

Doyle provides a scheme analogous to the one 
by which we would find an apartment number, 
given an address number, street, zone number, 
town, county, state, and country, none of which 
were familiar to us. vVe would begin with a 
reasonably compact map of the world and pro
ceed until we had a houseplan of the apartment 
building. 

The projected library user sits before a con
sole with a panel of control buttons and a view
ing screen. He begins with a map of the con
tents of the library whereon he views concepts 
whose mutual associations are indicated by 
proximity,' heavy lines, thin lines, dotted lines, 
large letters, small letters, and arrows that 
point toward distant cousins. Through a rapid 
succession of such maps, he homes in on the 
message for which he seeks. 

The documents themselves are in the form 
of "document proxies," or abstracts in map rep
resentation similar to the search maps. This 
permits rapid scanning of a large number of 
document abstracts to find those worth reading. 

The maps are, of course, automatically gen
erated. One set of techniques for realizing such 



550 PROCEEDING~PRING JOINT COMPUTER CONFERENCE, 1964 

a system is given along with the description of 
a preliminary experiment. 

Don Swanson,38 Dean of the Graduate Li
brary School, University of Chicago, gave a 
somewhat similar man-machine concept for a 
library request console tied into a storage and 
control system. However, his discussion, unlike 
Doyle's, was centered on console-library request 
techniques as a feedback link which is part of an 
on-line search process system for future auto
mated library systems. 

Savage emphasizes that to describe the effec
tiveness of a system in terms of magnitudes and 
system parameters (number of books in a li
brary or number of descriptors in a computer 
memory) does not tell how well the system 
works. What is needed is a standard criterion 
of relevancy, one that is as useful as miles 'per 
gallon for measuring automobile economy. 

Savage characterizes human evaluations in a 
somewhat more, precise way than is usual, 
points to some of the difficulties of ever generat
ing a metric mea,sure of system performance, 
and suggests the direction of study to obtain 
more accurate measures. 

It is important to realize that any metric cri
terion of adequacy will have to be tested by way 
of obtaining feedback from the ~users of a real 
system. . .. ' 

MECHANICAL SEARCHES 

The original mechanized searches were made 
by serially operating machines, which operate 
most efficiently by reading the whole store to 
find what is needed. Serial searching is still 
advantageous when the store 'can be broken up 
and grouped (as in multiple-pun~hed card 
decks) ; input, updating, and purging are also 
simpler then. 

B'y its very nature, however, serial searching 
is less efficient than applying the lookup prin
ciple, which is feasible with random access 
machines having large memories. This princi
ple also allows for indefinite expansion of a 
large file. 

SERIAL AND RANDOM ACCESS 

The factors which must be considered in a 
comparative evaluation of serial and random 

access techniques (search and lookup) are file 
size, length of search, economy of money and 
time, effort expended, and the inherent effi
ciencies of -retrieving a given type of informa
tion. 

In the face of the growing number of avail
able computer systems, the thorough-going and 
detailed evaluation of any systems or combina
tions of equipment presents an enormous task. 
An interesting and eriginal approach to the 
problem by automation of the selection of sys
tems suitable to a particular need is given by 
Arnovick.1 Essentially, a complete list of sys
tem component characteristics and ancillary in
formation is generated and stored in a com
puter. A complete set of application require
ments is compiled and matched against the 
system information stored in the computer; the 
computer analyzes the application information 
and synthesizes tin optimum general system. 

LOGICAL OPERATIONS 

It is convenient to think of searches as com
prising two kinds of logical operation, conjunc
tive and disjunctive. Searches are narrowed by 
the former because taking the logical products 
and differences of terms (AND, AND NOT) 
makes the request more specific. Disjunctive 
operations are useful for broadening the search; 
the logical sum (OR) makes for greater varia
bility. Disjunctive operations and combinations 
of disjunction with conjunction (logical prod
ucts of logical sums, etc.) are especially helpful 
for processing request terms in a machine
stored thesaurus or otherwise pinpointing a 
request. 

It has been pointed out that although Boolean 
functions do, in fact, accomplish the stated 
effects, from the systems optimization stand
point, they do not do so efficiently. It is demon
strated that Boolean combinations will yield 
either too much irrelevant material or too little 
relevant materia1.38 

In the attempt to find a more flexible and 
optional treatment of the retrieval problem us
ing keywords, Del Ballard (formerly of RCA) 
has developed a new approach to search logic. 
The technique is one that is easily implemented 
on a general-purpose computer and provides 
the following: 



INFORMATION STORAGE AND RETRIEVAL-ANALYSIS OF THE STATE OF THE ART 551 

1. Retrieval of "best available" documents 

2. Ranking of documents by the degree to 
which they match a request in terms of 
number of keywords 

3. Upper and lower bounds on either the 
number of keywords or number of docu
ments 

4. Sensitivity to various attributes of key
words, e.g., rank, order, :numerical mag
nitude, ranges of values 

5. Arrangements of search terms into groups 
that fit the requester's thought process, in
cluding nesting of groups 

It is stressed that the grammatical problem is 
circumvented by grouping concepts without 
specification of the relationships between them. 
It has proven to be a pliable, rough, and ready 
tool suitable for the general practitioner in in
formation retrieval. 

MANUAL-DEDICATION OF SPACE 

A systematically arranged index can be 
searched by proceeding according to the rule of 
systematization as in the standard card or book 
catalog. The rule may be simple, as in alpha
betic filing, or it may rely on a certain amount 
of prior knowledge on the part of the searcher 
as in chemical and biological hierarchies. In 
more recent developments, such as the permuted 
index and manual coordinate indexing cards, 
the searcher is guided more rapidly to a specific 
location of information. 

A technique that is both efficient and adapta
ble for eventual machine searching makes use 
of the Dedication of Space principle. In essence, 
a particular geometric point or region is used 
to represent an accession number. The match
ing of like points for several terms yields docu
ments containing those terms. This is a form 
of the coordination principle. The best known 
example is the peek-a-boo card, one version of 
which is a standard punched card of the IBM 
type coded so that each space represents a docu
ment number. Matching is achieved by aligning 
several term cards and noting the document 
numbers. (holes) through which light can be 
seen. If no documents are found in a search, 
terms can be eliminated by trial and error until 
a "see-through" occurs. In computer searches, 

it is: possible to generate a "minimum search 
criterion" which, for ,a given set of terms, will 
yield those documents containing the largest 
number of terms in the set. 

STORAGE MEDIA 

Paper Media 

Paper holds a certain record for longevity as 
the prime medium for recording information. 
That it can be fairly permanent has been dem
onstrated by the Dead Sea scrolls. It will con
tinue to be prominent for some time, although 
in recent decades it has taken unprecedented 
forms, such as punched cards and paper tape. 

An interesting speculation presents itself. 
Although digital information can be stored on 
paper, the technique of sensitization does not 
make use of the intrinsic properties of the me
dium, i.e., holes are punched or magnetic ma
terials are deposited. Researchers in the Soviet 
Union have uncovered a slight piezoelectric 
sensitivity in wood which may indicate possi
bilities for the uS.e of paper. 

In general, cards and paper tape are used 
either as 'storage media for small manual or 
semiautomated systems or as the input medium 
for large automated systems. Punched cards 
and punched paper tape executed by automatic 
writing equipment are used for the latter. Small 
systems use peek-a-boo cards, keysort cards, 
edge-notched cards, uniterm cards, or modifica
tions of these. 

Magnetic Media 

Tapes 

Magnetic tape is extremely well suited to the 
long-time storage of large quantities of data in 
machine-language form. I t is also one of the 
most rapid search media. For this reason, it is 
used most extensively as the peripheral mem
ory of computers and, therefore, for the storage 
of older, less frequently needed information. Its 
nature is generally more permanent and less 
flexible than other magnetic media. 

Because it is most adaptable to digital data, 
magnetic tape usually works best for the stor
age of index terms and document numbers. 
There are times when it is advantageous, ac-



552 :PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

cording to some people, to record entire text in 
machine language on tape; but this is not con
ceivably practical except for data. However, 
there is a system called VIDEOFILE (an RCA 
development) which stores documentary and 
pertinent bibliographic information using video 
techniques. The document image is converted 
to a video signal and is stored with an index 
number. It has the advantage of furnishing 
rapid and direct hard-copy printout and is 
amenable to communication media. 

Drums 

Magnetic drums are better suited than tapes 
for the internal memory of a computer because 
of their more rapid (many orders of magni
tude) random access. Being a lookup device, 
the drum is well adapted to storage of the in
ternal functions of a computer, such as dic
tionaries, thesauri, and program instructions. 
Moreover, it is the cheapest type of internal, or 
main, memory. 

Discs 

Another dimension is added by the use of disc 
memory units, which have characteristics simi
lar to drums but with a considerable gain in 
access time and storage space. Given an ad
dress, the information is located on a certain 
disc in the stack, a certain sector of the disc, and 
a certain band wi thin the sector. 

Magnetic Cores 

Magnetic core arrays provide still faster re
trieval, but the expense per unit storage space 
is the highest of all internal memories. Cores 
work well in conjunction with magnetic tape 
as the peripheral storage media. 

Cards 

Magnetic cards need to be searched serially, 
but they have the advantage of flexibility over 
tape with respect to additions or deletions. 
However, the search rates are slower. The cards 
are usually stored in cartridges and may be 
used in conjunction with film chips, in which 
case the identifying codes are in magnetic digi
tal form whereas the information is in the form 
of a photographic image. Magnetic coding is 
sometimes used in c<?njunction with cards con
taining the printed information. 

Optical Media 

Microfilm Reels 

Most of the forms of magnetic media have 
their photographic analogs and the same com
parative advantages. Photographic media have 
the main virtue of storing information in a 
form ready for immediate availability (docu
ment images). This is particularly suitable for 
drawings, abstracts, and texts which need not 
be read by machines but are accompanied by 
machine-readable codes. 

Like magnetic tape, continuous microfilm 
must be scanned serially and is not easily up
dated or otherwise altered except by the cum
bersome, process of editing and splicing. 

In one way, film is less flexible even than 
magnetic tape because it lacks the erasing fea
ture. However, for storage of nondigital mate
rials to be displayed and read by people (as 
opposed to processable data), this slight differ
ence is more than offset by the possible elimina
tion of the middle step of the sequence: (re
quest) ~ (index storage) ~ (document storage). 
The last two steps can be combined when film 
is used. 

Microfilm Strips 

A natural way to introduce flexibility into 
microfilm storage is to cut the film into short 
strips. This approach is used in the nonconven
tional application of Minimatrex, a system for 
the projection of a peek-a-boo type coordinate 
index onto a screen. The system is discussed 
under Indexing, Presentation of Indexes. 

Microfilm Chips 

The usual technique for breaking up micro
film is to store separate frames containing, as a 
rule, from one to four reduced document-image 
pages. The chips are generally stored in car
tridges. The fully automatic handling of such 
devices is expensive, but a compromise is often 
effected by providing efficient manual retrieval 
of the cartridges and automatic retrieval of 
the chips. 

Aperture Cards 

More than satisfactory results have been ob
tained in some cases by combining film with 
other types of media. For example, film chips 



INFORMATION STORAGE AND RETRIEVAL-ANALYSIS OF THE STATE OF THE ART 553 

containing document images can be inserted in 
magnetically coded cards (Magnacard system), 
providing a compact and flexible file-storage 
complex. 

Another highly efficient combination is film 
and paper, i.e., punched cards of the IBM type 
with microfilm inserts. The cards are compara
tively inexpensive; search is relatively swift; 
the file is flexible (easily updated and purged) ; 
and it affords all the convenience of having the 
index, document store, and retrieval system in 
one location. 

Specialty Devices 

IBM is developing a photoscopic disc capable 
of storing up to a billion bits. The speed of 
access is about the same as that of magnetic 
drums, but the large capacity makes it applica
ble for the kind of large storage lookup required 
in the processing of natural languages and ma
chine translation. There is an erasure problem, 
which is minimized by coupling with a smaller 
auxiliary magnetic drum. 

MIT is developing the Photomemory, a com
plex of 4- by 5-inch photographic plates, each 
of which can store 5 million bits of information. 
Reports on access time are inconsistent; gen
erally, it appears to be a medium access time 
device. Access is sequential, density is high, 
and readout is rapid. The photographic plate is 
scanned by a rotating mirror which projects the 
image past a bank of photosensitive cells. 

An electron optical device based on an effect 
called thermoplastic recording is under devel
opment Still· in the laboratory stage, it makes 
use of the properties of electron beams which 
have low deflection inertia, high energy, and
most important-high resolution. Information 
is stored as a pattern of electric charges, the 
field of which deforms the thermoplastic sur
face of a film upon subsequent heating. This 
means that signals can be stored with a resolu
tion much less than the wavelength of visible 
light. To cope with the amplitude-variation 
rather than density-variation form of the re
corded information (surface ripples), an opti
cal schlieren system is used to read the image. 
The potential impact of this very advanced de
vice on ISR is not yet evident. 

Other devices, intended for use primarily in 
associative, or content-addressed, memories are 

neuristors, cryotons, and fiber-optical devices. 
Associative memories tend to be slower in arith
metic operation than in conventional storage 
units. However, because of the capability of 
direct access to content rather than via a loca
tion code, the potential for nonnumerical infor
mation processing is promising. 

DISSEMIN ATION 

One avenue of communication between peo
ple and information is retrieval, i.e., letting 
scientists come to the information and helping 
them locate what they want. Another way of 
augmenting this communication is to seek ways 
in which important information can be chan
neled to people who might need it. The em
phasis here is on "might" for there is no way of 
knowing with assurance who will benefit by 
what. 

-Most of the details of automatic Selective Dis
semination of Information (SDI) have been 
supplied by IBM.17 While it is agreed with IBM 
that selective dissemination must be an essen
tial part of any technological organization, 
there is no assurance that it will promote nearly 
perfect matching between need and answer to 
the need. 

DIGRESSION ON SCIENTIFIC DISCOVERY 

Richmond, writing on the relation between 
information retrieval and scientific method and 
issuing a plea for more recognition of the 
latter,32 stresses the role of fortuity in scien
tific discovery. She sites several historical ex
amples of scientific events and, generalizing, 
describes two such events in which the cards do 
not fall to the researcher's advantage: near 
discovery, where a scientist hovers for years 
on the threshold of a breakthrough, working all 
around it but failing to unlock the solution; 
premature discovery, where a scientist dis
closes a major phenomenon either without 
realizing it or in the face of an over-all state of 
the art that is not ready to accept his discovery. 
One reason for the latter is that what may later 
prove to be an immensely important application 
is not at all apparent at the time. Some eminent 
discoveries have at the time of conception been 
dismissed as interesting novelty or at best "vital 
to our understanding of the universe about us 
but of no conceivable utility." 



554 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

Sometimes rediscovery in a sympathetic en
vironment carries more weight than the origi
nal discovery, which is afterwards forgotten 
except by the probing researcher who might 
have unearthed it from the musty archives of 
"interesting novelties." 

What is involved, of course, are those most 
complex and very human patterns of thought, 
deduction and induction. Richmond expresses 
doubt that it will ever be possible to " ... con
vey deductive and inductive reasoning in suffi
ciently abbreviated form ... ," or to " ... per
form retrieval of the kind" the historian per
forms ... " (Le., identify a premature discovery 
as a discovery in light of subsequent advances) . 
One is confronted again with the lead that capa
bilities, in terms of equipment, have over hu
man understanding. 

Present information retrieval and dissemina
tion do not do the scientist's thinking for him 
(and this is Richmond's prime thesis); they 
give him written accounts of work somewhat 
similar to his own. Retrieval and dissemination 
will yield the expected far more often than the 
unusual, the reason being that the systems can
not draw meaningful relationships between any 
two heretofore dissociated things. 

Therefore, assuming a retrieval or dissemi
nation system operates on key words, if the 
words "aardwolf" and "zymosis" have never 
been related, the system will not coordinate 
them (except to supply Webster's Dictionary or 
the Encyclopaedia Britannica). 

The system may provide separate treatises on 
each, bu t these will serve only to enhance the 
requester's separate expertness on both items. 
As an instructive exercise, the system might be 
programmed for random coordination, in which 
case, assuming a typical 5000-keyword system, 
there is one chance in 12,497,500 that the words 
will be associated. Now a slight connection is 
seen between what machines can do and the 
human trial and error process and how infinitely 
more educated the latter. 

There is a need for further study into the 
ways in which scientists benefit by the work 
that has gone before. To accelerate and stimu
late the scientist's learning process, this should 
be the task of a dissemination system. A con
crete approach would be the re-creation by 

simulation of some of the significant historical 
breakthroughs and discoveries as well as those 
that did not happen because the information 
was not available at the right time. The objec
tive would be to utilize the imposing edge held 
in retrospect today ov~r the researcher in his 
day. The task would involve computer simula
tion of the historical event, drawing on both 
antecedent and postcedent (via feedback) liter
ature and events. It is hoped that the outcome 
would include (1) a better understanding. of 
the creative thought process and what could be 
done to aid it, (2) a manifold improvement in 
efficiency of the simulated over the real process 
of discovery, e.g., re-creation of an order of 
magnitude sooner than the original oceurrence. 
If successful, the profit would be a more efficient 
homing-in on future discovery via the literature 
route. 

The question of meeting user need is taken up 
again briefly under Storage and Retrieval. 

DESCRIPTION OF SELECTIVE DISSEMI
NATION OF INFORMATION (SDI) 

There are times when a scientist's best dis
semination system is a good friend. Casual con
versation ha's often produced the vital key in a 
field so remotely diverse as to be otherwise 
overlooked. Such might have been the case 
when the problem of moving film with high pre
cision at high acceleration was solved by digital 
positioning techniques developed for an auto
matic drilling machine.29 

The problem of a formal dissemination sys
tem is to be as good a friend in a continuous
operation and systematic mode. A formal dis
semination system should always be aware of 
the scientist or engineer's activity, keeping 
pace with it and alerting him to anything by 
which he may profit yet without wasting his 
time with documents of no interest. This is a 
formidable assignment. 

The usual approach of a formal dissemina
tion system is to screen potentially relevant ma
terials through the standard gradations of 
presentation, i.e., key word, abstract, and docu
ment. The key word operation is handled be
fore the relevant material reaches the scientist 
by means of a so-called interest profile. The 
interest profile concept is a useful one for match-



INFOR,MATION STORAGE AND RETRIEVAL-ANALYSIS OF THE STATE OF THE ART 555 

Figure 3. Flowchart of Selective Dissemination. 

ing operations in general. The profile is essen
tially a list of key words or data used to de
scribe objects to be compared, e.g., a person, his 
attributes, his information needs, his abilities, 
a document, or needs of an organization. 

Figure 3 illustrates the workings of a selec
tive dissemination system used to match infor-
mati on of illcoming documents vvith uSer needs. 

FEEDBACK 

Document profiles remain fairly stable, while 
recipient profiles are subject to continual modi
fication through feedback. In the SDI system, 
response cards are provided along with ab
stracts of documents whose profiles suitably 
overlap the recipient profile. The recipient re
turns the response card with an indication that 
he (1) had no interest in the document, (2) 
found the abstract useful and sufficient, (3) 
found the abstract interesting and requests the 
total document. His profile is then updated on 
the basis of his responses. 

The depth of matching, i.e., the extent to 
which the recipient profile and document profile 
overlap, is a controllable parameter. 

EXPANSION OF SDI 

The skill profile now employed by Space and 
Information Systems Division is one example 
of the profile matching concept. The skill file 
can be searched when management wants to 
know who is knowledgeable in a given area. 

The system furnishes the name and location of 
the person whose particular talents most nearly 
correlate with those sought by the organization. 
The same principle can be applied to new proj
ects, matching the contemplated project profile 
with the profiles of projects already underway. 

ABSTRACTING 

Webster's definition, modified to fit docu
ments, in a certain sense exemplified the avowed 
purpose of the abstract: a text (as concise as 
possible) that comprises or concentrates in 
itself the essential qualities of a document or 
of several documents (generalizing the latter 
to a book of several chapters, state-of-the-art 
survey, blanket review, etc.). 

A little investigation reveals that within the 
field of documentation there is not a clear oper
ational definition of abstracting to complement 
the conceptual definition above, and indeed sev
eral researchers are occupied with finding one. 
Some other things that need to be considered 
are the purpose and advisability of abstracting, 
standardization, and the desirability of stand
ardizing abstracts. These factors must be un-
N01"Qtl"\l"\rI hofl"\ .... o rlolu ..... ,..,. t-n.n. rL-'r> ...... l"T ; ..... t-", t-hn ., H-; 
~""'''''''' •. H,''''VV\.A. IIr. •• n ..... .Lv.J.""" \...I.'-'~V.1..I..I.5 .... vv U'C'C.I:-'J..y .l..1J.l,.V lIJ.l'C Ull,l-

mate aspect of abstracting mechanization. 

PURPOSE OF ABSTRACTING -
ABSTRACTING VERSUS INDEXING 

For the purpose of definition, it is impor
tant to differentiate functionally between an 
abstract and an index, a detailed descriptor 
index in particular. One can almost visualize 
a document being screened through several gra
dations of processing. At one end would be the 
single subject heading or "catchword" (Schlag
wort). At the other end r of the range is the 
total document itself. In order of increasing 
depth of representation, the intermediate steps 
would be a bibliographic index, a complete doc
ument profile as used in selective di~,semination, 
a more detailed informative index using de
scriptors or Uniterms, scope notes, a detailed 
index with roles and links, a so-called supplied 
title (a title written by the document proc
essor), a one- or two-sentence synopsis, a tele
graphic abstract, and a detailed summary or 
abstract. However, the user will not want to be 
bothered with more than three of these includ-



556 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

ing the total document. Under the proper cir
cumstances, the continuum seems to fall spon
taneously into the parts necessary for that set 
of circumstances. For example, a trade journal, 
well attuned to the needs of its readers, may 
give a list of one-sentence descriptions of worth
while reading matter (supplied titles) provid
ing the reader with sufficient stimulus to pro
cure the document. However, if a library is to 
get information to a large and diverse clientele, 
it cannot hope to cater to the individual user as 
the 'editors of a trade journal can to their read
ers. It cannot expect to handle an influx of up 
to a thousand documents per day, evaluate their 
content, and dramatize their highlights in the 
way that a trade journal can. Not knowing the 
specific needs of the user, the alternative ex
treme would be to give him every potentially 
pertinent document. Such a system would en
tail a disproportionate waste of time. 

The index and search techniques will help the 
user to find things which might be what he 
thinks he wants. The dissemination operation 
will help him receive things which might be 
what he had not thought of or did not know 
about. To conserve the user's time, abstracts 
of those documents with possible or latent in
terest are supplied to him. Therefore, an ab
stract is not an index, for an index indicates 
what a document is about, or it tells where the 
information is located. An abstract is not a 
document in the strict sense of the word for it 
does not tabulate data nor does it give detailed 
hookup and assembly instructions for an instru
mentation complex. An abstract is not identical 
with either an index or a document, but it in
corporates features of both. 

STANDARDIZATION OF ABSTRACTING 

Several studies are being conducted to find 
operational definitions of abstracting. The two 
mainstreams of effort are directed toward ex
amining the effect of various abstracting phi
losophies on requesters and their satisfaction 
and toward evaluation of different abstracts of 
the same or similar documents. Several param
eters are involved, and in most studies one or 
more of these are controlled. In one investiga
tion,S the size of the natural language abstracts 
is held to a fixed percentage (10 per cent) and 
the work of different abstracters is compared. 

A unique part of the same investigation is 
devoted to the study of "term diagrams," which 
incorporate the "road map" idea of Loren Doyle 
(see Indexing) to show quantitative and con
ceptual associations between key words. These 
studies are aimed at eventual automation of 
document condensation. 

The American Institute for Research is con
ducting an extensive inquiry into the opera
tional definition of abstracting, the development 
of rules guided by task performance on the part 
of both abstracter and user, and the evaluation 
of efficiency. 8 A survey is being made among 
abstracting services, publishers, and users to 
gather ideas from those experienced in the field. 
Simulated job conditions are set up to measure 
user comprehension and proficiency under these 
conditions, given both full and abstracted texts. 

AUTOMATIC ABSTRACTING 

The principal efforts in automatic abstracting 
are being carried out at Thompson-Ramo W 001-

dridge, Inc. System Development Corp., Plan
ning Research Corp., and at International 
Business Machines. Without going into the de
taIled procedures for abstracting, the primitive 
approach is to first find statistically significant 
keywords (content words with a high frequency 
of occurrence) and then find those sentences 
which contain the greatest number of such key
words. "The results so far are conspicuous by 
their lack of coherence; partly because of habit 
patterns in read~ng, -they seem to present dis
connected ideas with a los8 of flow between the 
ideas. Of course, the abstracts suggest rather 
than condense or represent the document con
tents. Nevertheless, they are surprisingly good 
on occasion. The problems just mentioned have 
been instrumental in the inception of more prob
ing studies into the nature of human abstract
ing. 

CRITICAL COMMENT ON 
AUTOMATIC ABSTRACTING 

As an incidental preface, the importance of 
the abstract in general should be considered. 
It would be difficult to overemphasize the place 
of the abstract or document summary in the 
mechanized system of the future. Apart from 
its utility to the user in some form, it will be the 



INFORMATION STORAGE AND RETRIEVAL-ANALYSIS OF THE STATE OF THE ART 557 

prime medium of the system, even the main unit 
of communication. An abstract is a useful and 
logical unit because it can be printed on a frame 
of microfilm or on a coded (punched or mag
netic) card or on a single sheet of paper. 

Even advanced mechanized systems will 
probably use manually produced abstracts. 
Automation of the abstracting process will be 
one of the last stages in the evolution of fully 
automated systems. The reason is evident after 
a moment's reflection. Difficult as the problem 
of automatic language translation is, it is one 
order of complexity lower than the job of ab
stracting. In many ways the difference between 
the two is analogous to the disparity between 
a dictionary translation and a translation 
turned out by a truly bilingual specialist in 
the field. The latter, if a good translator-, will 
not simply convert words or even phrases. He 
will restate the author's thoughts in the new 
medium. The abstract must do this same thing. 

Automatic abstracting comprises the ulti
mate refinement of automatic translation and 
automatic indexing. It must translate ideas 
from expanded to compressed language, and it 
must be selective, It must also be endowed with 
a product all its own, the attribute of para
phrase. 

REPRODUCTION AND DISPLAY 

There are a number of hard copy reproduc
tion methods available, including: 
Copy Camera Ozalid 
Ditto Process Photoengraving 
Electrography Photogravure 
Letter Press Photolithography 
Li thogra phy Rotogra vure 
Mimeograph Thermofax 
Offset Printing 

There is a method to suit almost every con
ceivable need. In general, the obtaining of 
higher-quality, cleaner copy calls for a greater 
investment. 

The situation is not so well resolved in the 
case of display systems. The technology of dis
play has generally lagged behind the advance
ment of data processing and transmission. 
However, government and industry have begun 
to exhibit a resurging interest in computer-gen
erated large-scale displays. The development of 

high-capacity comman9 and control systems 
within the Air Force has emphasized the need 
for sophisthicated data-presentation subsys
tems.14 

There are three main areas of technological 
effort: 

Projection, using a stable light modulator, 
such as film or selenium plate. 
Light valve, also a projection device, with 
direct electronic control of the image. This 
has advantal!es of speed and elimination of 
expensive film and the disadvantages of 
resolution and brightness (two urgently req
uisite factors in IS&R display). 
Electroluminescence, no projection, experi
mental prototypes only. Display surface acts 
both as light source and modulator. 

. In general, for the specific applications of 
IS&R, there are no suitably inexpensive sys
tems for reproduction and display. Essentially 
what is needed is a low-cost, low-volume device 
to meet the demands of a circulating library 
replaced by a noncirculating, automatic 
transmission-displaY-reproduction system. Ad
mittedly, for many applications, microfilm dis
play can be made inexpensive, particularly 
where it is sufficient to exhibit an entire se
quence of frames or film. But for IS&R, which 
is a selective application, research and produc
tion have not come up with adequate equipment. 

COMMUNICATION LINKS 

Hardware development in IS&R will ulti
mately make it unnecessary that a requester be 
physically present at the information center. 
Links for communication between remote re
quest stations and the center, which are now 
available or in advanced stages of development, 
range from conventional telephone lines to sys
tems employing microwave devices. A closed
circuit television system (CCTV) will lend it
self very readily to application in IS&R. There
fore, the communication system might be as 
simple as one permitting a requester to initiate 
a search by telephone and whose results, in the 
form of abstracts, are returned to him by tele
phone or mail. With abstracts and documents 
stored on microfilm and a CCTV /telephone sys
tem, the requester could, in a more advanced 
system, view abstracts or the document itself. 



558 P,ROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

The ultimate in a communication link be
tween the user and the information center 
would permit the user to deal directly with an 
automatic IS&R unit (computer) to initiate a 
search, call up on a viewing screen the docu
ments resulting from the search, and reproduce 
these in the form of hard copy. While all the 
functions involved are conceptually simple, con
siderable development and system integration 
effort must be accomplished before the ultimate 
system becomes a reality, especially in the de
velopment of CRT line scanning (800 to 1200 
lines) . 

In the area of volume hard-copy reproduc
tion, to take one example, the state-of-the-art 
survey for this report revealed no systems that 
could be called ideally suited to IS&R if one 
considered high-cost trade-offs for systems such 
as electrostatic-video printing. Among the 
lesser problems, considerable work in human 
factors for such a system might be done. De
tailed answers to questions of viewing-screen 
brightness and contrast and ambient illumina-

SPECIAL 
AND 

GENERAL 
PURPOSE 

COMI'UTERS 

Figure 4. Equipment State of the Art. 

tion should be made available. While all the 
individual functions involved are conceptually 
simple, considerable development and system
integration effort must be accomplished before 
this becomes a reality. Much groundwork has 
been done,32 but the extent to which experience 
in viewing conventional TV visual presenta
tions can be applied to the prolonged reading of 
text for an ideal IS&R visual· link is ques
tionable. 

SUMMARY 

The status of information storage and re
trieval is summarized in Figures 4 (Equip
ment) and 5 (Techniques). The sizes of the 
boxes are drawn to indicate their relative 
"strength" of development of the given area. 
Note that the "Equipment" circle is drawn 
larger than the "Document Processing" circle 
to show the greater strength of development in 
this area. A notable exception is the equip
ment for graphics and display, microfilm reao
ing, and reproduction in particular. 

Figure 5. Technique State of the Art. 



INFORMATION STORAGE AND RETRIEVAL-ANALYSIS OF THE STATE OF THE ART 559 

In two respects, IS&R is not yet an in
tegrated science in the sense of chemistry or 
even such an interdiscipline as bionics. First 
of all, the contributing disciplines are diverse 
and overlapping, but hardly unified. Secondly, 
although many nonconventional systems are in 
operation throughout the world, they have little 
in common by way of a unifying description. 

The most glaring deficits are the software 
lag and lack of a truly empirical basis. Today 
is part of an era of machines that can analyze 
data, read and recognize printed symbols, recog
nize audible and verbal signals, be conditioned 
and learn, teach humans or other machines, and 
even make decisions. Thin film memories are 
reducing access times to the nanosecond realm. 
A billion items of distinct information can be 
stored in a space the size of a paperback novel. 
But trailing far behind these amazing creations 
in the equipment field are the concepts of how 
people communicate with each other, partic
ularly when the scientist or engineer presenting 
his results or theory on paper does not know 
who in what remote corner will want to read 
it, or when the person seeking information has 
some vague unfulfilled desire and-does not 
knov: -who in what remote COl~ner has the happy 
cure for his troubles. Each one hopefully relies 
on those who are entrusted with getting the 
answer to the need and finding the market for 
the goods. 

In the meantime, advanced thinkers are 
passing over the concepts-equipment gap and 
are developing theories for conceptual machines 
not yet in existence. And-emphatically-they 
are needed. But concurrent with these efforts 
is a greater need for less speculation and con
jecture, less projection of pet ideas and sys
tems, and more experimental investigation and 
scientific method. 

The ultimate criterion of how well a retrieval 
system works is the extent to which retrieved 
information meets the need of the user. From 
the outset one is confronted with problems be
cause user need is already an idealization. The 
corresponding measure of how well this need is 
met might be called user satisfaction, which is 
ab;o an idealization. Because user need and 
user satisfaction are highly unquantitative and 
highly indeterminate, they must be approxi
mated. The expression of user need is a request 

and the vague notion of user satisfaction is 
simulated by the notion of relevancy_ The situa
tion might be visualized as in Figure 6. 

REQl£ST 
IGOALS AND 

OBJECTIVES BY 
PROXY) 

¢ SATISFACTION 0 

¢ RELEVANCY 0 

I 
I 
I 
I 
I .. 

DOCUKNT 
OR 

ABSTRACT 
IAN ANSWER BY 

APPROXIMATION) 

Figure 6. Contrast Between Ideal and Real Informa
tion Retrieval. 

lUlU l{){"! P A PUV 
.LJ..&..L-I.L..I..I.. '-''-'' .L"~..&. .l..L .L 

1. ARNOVICK, G. N., "Automatic Analysis and 
Synthesis of Specifications for Machine 
Systems in. Information Storage and Re
trieval," presented at the Annual Meeting 
of the American Documentation Institute, 
Miami, Florida, December 10-15, 1962. 

2. ARTANDI, S., ·and T. C. HINES, "Roles and 
Links-Or For~ard to Cutter," American 
Documentation 14 (1): 74-77, January 
1963. 

3. BAGG, T. C., and MARY E. STEVENS, Infor
mation Selection Systems Retrieving Rep
lica Copies: A State-of-the-Art Report, 
National Bureau of Standards Technical 
Note 157, December 31, 1961. 

4. BOBROW, D. G., "Syntactic Analysis of Eng
lish by Computer-A Survey," Proceedings 
of the Fall Joint Computer Conference, 
November, 1963, pp. 365-388. 

5. BORKO, H., and MYRNA BERNICK, "Auto
matic Document Classification," Journal of 
the Association for Computing Machinery 
10 (2): 151-162, April 1963. 



560 ~ROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1964 

6. BORKO, H., "Some Recent Experiments in 
Automatic Document Classification," Lin
guistic Research Seminar, The RAND Cor
poration, Santa Monica, California, Janu
ary 9, 1964; "Research in Automatic .Gen
eration of Classification Systems" (1964 
SJCC). 

7. CORNERETTO, A., "Associative Memories; 
A Many-Pronged Design Effort," Elec
tronic Design ( ): 40-55, February 1963. 
(An excellent introduction and survey.) 

8. Current Research and Development in Sci
entific Documentation, No. 11, National 
Science Foundation, Office of Science In
formation Service, Washington, D. C., No
vember 1962. 

9. DOYLE, L. B., "Semantic Road Maps for 
Literature Searchers," Journal of the As
sociation for Computing Machinery 8 (4) : 
553-578, October 1961. 

10. EDMUNDSON, H. P., and R. E. WYLLYS, 
"Automatic Abstracting and Indexing
Survey and Recommendations," Communi
cations of the Association for Computing 
Machinery 4 (5) : 226-234, May 1961. 

11. FORD, J. D., JR., and E. H. HOLMES, A Com
parison of Human Performance Under 
Natural Language and Term Diagram Pro
cedures for the Production of Report Sum
maries, TM-622, System Development 
Corporation, February 6,1962. 

12. GARFIELD, E., "Citation Indexes for Sci
ence," Science 122: 108, 1955. 

13. GARFIELD, E., "Citation Indexes in Soci
ological and Historical Research," Amer
ican Documentation 14 (4): 289-291, Oc
tober 1963. 

14. Guide for Group Display Chains for the 
1962-1965 Time Period (advance copy), 
Directorate of Engineering, Rome Air De
velopment Center, New York, March 27, 
1962. 

15. HAYS, D. G., Grouping and Dependency 
Theories, RM-2646, The RAND Corpora
tion, Santa Monica, California, September 
8, 1960. 

16. HERNER, S., ·and M. HERNER, "An Experi
ment in the Use of Reference Questions in 
the Design of a Classification System," 
report to the National Science Foundation, 

Washington, D. C., Herner & Co., January 
1962. 

17. IBM General Information Manual: Selec
tive Dissemination of Information, Inter
national Business Machines Corporation, 
White Plains, New York, 1962. 

18. IBM Workshop on Information Storage 
and Retrieval, San Jose, California, June 
26-29, 1962. 

19. KENT, A., "Machine Literature Searching 
and Translation. An Analytical Review," 
Advances in Documentation and Library 
Science, Vol. III: Information Retrieval 
and Machine Translation, Inerscience, 
New York, 1960, pp. 13-236. 

20. KESSLER, M. M., "Bibliographic Coupling 
Between Scientific Papers," American 
Documentation 14 (1): 1~25, January 
1963. 

21. KLEIN, S., and R. F. SIMMONS, "Syntactic 
Dependence and the Computer Generation 
of Coherent Discourse," Mechanical Trans
lation 7 (2): 50-61, August 1963. 

22.' LUHN, H. P., Auto-Encoding of Docu
ments for Information Retrieval Systems, 
International Business Machines Corpora
tion, Yorktown Heights, New York, 1958. 

23. LUHN, H. P., The Automatic Derivation of 
Information Retrieval Encodements from 
Machine-Readable Texts, International 
Business Machines Corporation, Yorktown 
Heights, New York, 1959. 

24. MARON, M. E., and J. L. KUHNS, "On Rele
vance, Probabilistic Indexing and Infor
mation Retrieval," Journal of the Associa
tion for Computing Machinery 7 (3): 216-
244, March 1960. 

25. MARON, M. E., "Automatic Indexing
An Experimental Inquiry," Journal of the 
Association for Computing Machinery 
8(7): 404-417, July 1961. 

26. MORSE, R. D., "Information Retrieval," 
Chemical Engineering Progress 57 (5) : 
55-58, 1961. (This is the best account of 
links and role indicators.) 

27. Pacific Southwest Navy Research and De
velopment Clinic, Panel on Information 
Systems and Computer Technology, Berke
ley, California, October 16-18, 1963. 



INFORMATION STORAGE AND RETRIEVAL-ANALYSIS OF THE STATE OF THE ART 561 

28. RCA-NBC, Before the Federal Communi
cations Commission, Petition of Radio 
Corporation of America and National 
Broadcasting Company, Inc., for Approval 
of Color Standards for the RCS Color Tele
vision System, June 25, 1963. 

29. RENOLD, W., Journal of the Society of 
Photographic Instrumentation Engineers 
1 (2): 44-48, December 1962/January 
1963. 

30. RESNICK, A., "Relative Effectiveness of 
Document Titles and Abstracts for Deter
mining Relevance of Documents," Science 
134 (3484): 1004-1005, October 6, 1961. 

31. RESNICK, A., "Comparative Effect of Dif
ferent Educational Levels on Indexing in a 
Selective Dissemination System," Interna
tional Business Machines Corporation (in 
press) . 

32. RICHMOND, PHYLLIS A., "What Are We 
Looking For?" Science 139: 737-739, Feb
ruary 22, 1963. 

33. SALTON, G., "Some Experiments in the 
Generation of Word and Document As
sociations," Proceedings of the Fall Joint 
Computer Conference, December 1962. 

34. STERN, J., "An Application of the Peek-A
Boo Principle to Information Retrieval:; 
Proceedings of the Symposium on Mate-

rials Information Retrieval, Dayton, Ohio, 
November 28-29, 1962. 

35. STILES, H. E., "Progress in the Use of the 
Association Factor in Information Re
trieval," Proceedings of the Symposium on 
Materials Information Retrieval, Dayton, 
Ohio, November 28-29, 1962. 

36. SWANSON, D. R., "Information Retrieval: 
State-of-the-Art," Proceedings of the 
Western Joint Computer Conference, Los 
Angeles, California, September 9-11, 1961. 

37. SWANSON, D. R., "State-of-the-Art Paper," 
Conference on Libraries and Automation, 
sponsored by the National Science Founda
tion, The Library of Congress, The Council 
on Library Resources, Inc., Airlie Foun
dation, Warren, Virginia, May 26-29, 
1963. 

38. VERHOEFF, J., W. GOFFMAN, and J. BELZER, 
"Inefficiency of the Use of Boolean Func
tions for Information Retrieval Systems," 
Communications of the Association for 
Computing Machinery 4 (12): 557-558 ; 
594, December 1961. 

39. WILLIAMS, J. H., JR., "A Discriminant 
:Method for Automatically Classifying 
Documents," Proceedings of the Spring 
Joint Computer Conference, November 
1963, pp. 161-166. 





TRAINING A COMPUTER TO ASSIGN DESCRIPTORS 

TO DOCUMENTS: 
EXPERIMENTS IN AUTOMATIC INDEXING 

M. E. Stevens and G. H. Urban 
National Bureau of Standards 

Washington, D. C. 

INTRODUCTION 

During the past five to ten years, increasing 
interest has developed in the use of machines 
as a substitution for human intellectual effort 
in the indexing or classification of the subject 
content of documents. In terms of practical 
applications, the greatest interest to date has 
been in keyword indexing from the significant 
words actually occurring in titles, abstracts, 
or full texts. Pioneering use of computers for 
this purpose, by Luhns and Baxendale,2 has 
been followed by the development of a number 
of KWIC (keyword-in-context) and similar 
programs. 

This is "derived" or "derivative" indexing as 
opposed to "assignment" indexing.6•s In de
rivative indexing, the indexing terms used are 
identical with words chosen by the author him
self. In assignment indexing, the terms used 
are typically drawn from a classification sched
ule, a subject heading list, or a thesaurus of 
descriptors, and they are assigned on the basis 
of decision-judg!llents about the appropriate
ness of these terms as indicative of the subject 
matter of the document in question. Approaches 
to indexing by computer based upon assignment 
of indexing terms or upon automatic classifica
tion techniques have been reported by Baker,! 
Borko,3.4 Maron,9.10 Needham,ll and Swan
son,16 among others. 

Small-scale experiments in automatic assign
ment indexing have also been conducted at the 

563 

National Bureau of Standards in recent months. 
The SADSACT (Self-Assigned Descriptors 
from Self And Cited Titles) method is based on 
the two working hypotheses: 

1. That, given only a "teaching sample" of 
previous human indexing of representa
tive items, the machine can derive statis
tics of association between substantive 
words used in the titles or abstracts and 
the descriptors assigned to these items 
such that patterns of substantive words 
in the titles and cited titles of new items 
can be used for automatic assignment of 
descriptors to these new items, and 

2. That, as in the case of citation indexes, 
the bibliographic references cited by an 
author can provide useful clues to the 
subject of his own paper. 

In addition, we hope to demonstrate an auto
matic indexing technique that will minimize 
time and cost of preparation by limiting the 
amount of input material required and by 
capitalizing on byproduct data generation from 
one-time keystroking of descriptive cataloging 
information plus the text of the titles of biblio-
'graphic references cited in new items. 

THE TRAINING SEQUENCE AND INDEX
ING PROCEDURE 

In training the computer to assign descrip
tors to our documents, we first select a sample, 
presumably representative, of items already 



564 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1964 

in our collection. These have all previously been 
indexed to some pre-established indexing-term 
vocabulary, as the result of human subject 
content analysis. In our experiments to date, 
the "teaching sample" has consisted of ap
proximately 100 items drawn from a collec
tion of about 10,000 technical reports in the 
fields of information retrieval and potentially 
related research including computer design, 
programming languages, mathematical logic, 
linguistics, pattern recognition, psychology, 
operations research, and the like. These teach
ing sample items are ones that had all pre
viously been indexed by analysts at ASTIA 
(now the Defense Documentation Center) in 
the year 1960. Descriptive cataloging informa
tion, abstracts, and lists of descriptors assigned 
were available. This information was key
stroked on Flexowriters and the texts of the 
titles, descriptors, and abstracts were con
verted to punched cards for input to the com
puter. 

In programming the SADSACT method for 
trial on the IBM 7090-7094 computers, the 
cards for each of the documents in the teaching 
sample are read into the computer, one item at 
a time. A list of descriptors assigned to these 
items is formed, and the frequency of use of 
each descriptor for the sample as a whole is 
tallied. The text of the title and abstract of 
each document is then processed against a 
"stop" list to eliminate the common and non
significant words. Each remaining word from 
document title and abstract is associated with 
each of the descriptors previously assigned -to 
that document. Sorted lists of English words 
and their descriptor co-occurrence relations are 
formed and read out, using three output tapes. 

When all the documents in a teaching sample 
have been processed, the next step is to identify 
the "validated descriptors"-that is, those that 
have occurred three or more times in a 100-item 
sample. * (The "names" of other descriptors 
assigned to not more than one or two items are 

* In our first teaching sample, 219 different descrip
tors had been used by the DDC indexers, and 72 
occurred for three or more items in the sample. Our 
second teaching sample, formed by substituting differ
ent items for 30 items withdrawn from the first to be 
used as test material, gave 221 descriptors, of which 70 
were validated. 

retained as "candidate descriptors" but word 
co-occurrence data is not retained for these.t) 
For these validated descriptors, the word-de
scriptor association lists are then merged into 
a master vocabulary list which gives for each 
word the identity of the descriptors with which 
it co-occurred and the relative frequency of its 
co-occurrence with each descriptor. 

The SADSACT automatic indexing method r 

therefore, uses an ad hoc statistical association 
technique in which each word may be associated 
either appropriately or inappropriately with a 
number of different descriptors. In the sub
sequent indexing procedure, reliance is placed 
on patterns of word co-occurrences and on re
dundancy in new items to depress the effects 
of non-significant or inappropriate· word-to
descriptor associations and to enhance the 
significant ones. 

The SADSACT indexing procedure is carried 
out as follows. The text of the title of a new 
item and of titles cited as bibliographic refer
ences by the author is keystroked, and the by
product punched paper tape is converted to 
cards for input to the computer. This input 
material is p·rocessed against the master vocab
ulary list to yield, for each word matching a 
word in the vocabulary, a "descriptor-selection
score" value for each of the descriptors pre
viously associated with that word. When all 
words from titles and cited titles have been 
processed, the descriptor scores are summed 
and for some appropriate cutting level,t those 
descriptors having the highest scores are as
signed to the new item. 

The actual score value derived reflects both a 
normalizing factor (based, for example, on the 
ratio of the number of previous co-occurrences 
of this word with a particular descriptor to the 

tOne of the distinctions to be emphasized in assign
ment as opposed to derivative indexing is that alth::mgh 
a word or phrase occurring in a title or in text may 
coincide orthographically with the "name" of a de
scriptor or subject heading, its occurrence mayor may 
not result in the assignment of that descriptor to the 
item in which it occurred. 

tIn machine tests to date, the cutting level has been 
arbitrarily set so that exactly twelve descriptors are 
assigned to each item. However, since these are print~d 
out in decreasing order of selection-score values, results 
of other cutting levels can readily be computed. 



TRAINING A COMPUTER TO ASSIGN DESCRIPTORS to DOCUMENTS: 565 

number of different words co-occurring with 
that descriptor) and a weighting formula that . 
gives greater emphasis to words occurring in 
"self" -title (the author's own choice of termi
nology) than to those occurring in cited titles. 
Similarly, greater emphasis is given to words 
that coincide with the names of descriptors. 
The latter weighting enables the assignment of 
"candidate" as well as "validated" descriptors, 
if words so coinciding occUI several times in 
the input material. An extension of this feature 
would allow similar treatment to be given to 
n-tuples of substantive words" (such as "auto
matic character recognition") that had occurred 
with some frequency in the teaching sample 
material, so that "potential descriptors" could 
be used to provide change and growth in the 
indexing vocabulary. 

RESULTS TO DATE 

In a previous informal report, we have noted 
the results of applying the SADSACT method 

to eight new (1963) items to our first 100-item 
teaching sample, consisting of selected docu
ments indexed by DDC in the spring of 1960. 
These results were disappointing in terms of 
comparison against discriptors assigned by 
DDC indexers, largely because of changes in 
indexing philosophy and vocabulary such that 
many descriptors used by human indexers in 
1963 were not available to the machine. How
ever, 49% of the descriptors judged by a sub
ject matter specialist to be relevant to these 
items were correctly assigned by the computer 
program. 

Our first report also covered tests on 30 
"new" items drawn from the teaching sample 
itself in order to provide, quickly, a basis for 
evaluation in which the indexing vocabulary 
could be held constant. Where titles and ab
stracts had been used for the teaching sample 
procedure, for this test the titles and cited 
titles only were used, so that a reasonable 
proportion of the input was new rather than 

TABLE 1. Machine "hits" against DDC assignments, 
tests run against T .S. # 1 only 

% Hits 
% Hits Descriptors % Hits 

AllDDC Available Validated 
Short Title of Item Descriptors to Machine Descriptors 

Perceptrons and the theory of brain mechanism 37.5 42.9 60.0 
• (Pattern recognition with an adaptive network 33.3 33.3 50.0) 
Pattern recognition with an adaptive network 50.0 50.0 50.0 
Invariant input fora pattern recognition machine 25.0 33.3 33.3 
An adaptive character reader 37.5 60.0 

,.,,... £\ 

IO.V 

Theory of files 25.0 50.0 50.0 
Learning in pattern recognition 33.3 50.0 50.0 
Reorganization by adaptive automation 50.0 66.7 66.7 
Finite state languages formal representations 20.0 20.0 20.0 
Some computer experiments with predictive 45.5 55.6 71.4 

coding 
On categorical and phrase structure grammars 50.0 66.7 66.7 
Error correcting codes from linear sequential 33.3 42.9 75.0 
Method of improving organization in large files 57.1 66.7 100.0 
Machine program for theorem 'proving 60.0 75.0 100.0 
Pattern target analysis 0.0 0.0 0.0 
Tables of Q functiQns for two Perceptron models 25.0 33.3 40.0 
Lineal inclination in encoding information 22.2 25.0 40.0 

TOTAL 549.2 713.1 858.1 
AVERAGE 34.3 44.6 53.6 



566 PROGEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964 

TABLE 2. Machine "hits" against DDC assignments, 
tests run against both T.S. #1 and T.S. #2 

T.S. #1 T.S. #2 

% % % % % 
All A vailable Validated 

% 
All Available Validated 

Flowgraphs for nonlinear sys
tems 

Activity in nets of neuron-like 
elements 

Survey of cueing methods in 
education 

Facet design and analysis of 
data 

Automatic recognition of speech 
Problems in nonlinear control 

systems 
Guiding principleR for time and 

cost 
A'pproach to pattern recognition 

using linear threshold devices 
Simultaneous multiprogram

ming of electronic computers 
Design and study of correlation 

instrumentation 
The learning model approach 
Soviet computer technology 
Computer applications of Boo-

lean functions 
Sequential encoding and decod

ing 
Design of a language for Sim

plex system users 
Automated teaching a review 

TOTAL 
AVERAGE 

14.3 

9.1 

42.9 

37.5 

25.0 
33.3 

40.0 

44.4 

28.6 

22.2 

27.3 
50.0 
37.5 

36.4 

75.0 

55.6 

579.1 
36.2 

"source" material. For these 30 items, the 
average "hit" accuracy was 64.8 %. This in
cluded the occasional assignment of candidate 
descriptors in cases where words in title or cited 
titles coincided with the names of candidate 
descriptors frequently enough to build up a 
score above the cutting level. (For example, 
the candidate descriptor "Sleep" was assigned 
to an item entitled "Human performance as a 
function of the work-rest cycle.") Considering 
validated descriptors alone, the machine as
signment accuracy was 77.4 % . 

20.0 

16.7 

50.0 

42.9 

28.6 
50.0 

100.0 

50.0 

40.0 

44.4 

30.0 
50.0 
75.0 

36.4 

75.0 

55.6 

764.6 
47.8 

33.3 

33.3 

60.0 

50.0 

66.7 
50.0 

100.0 

57.1 

66.7 

80.0 

33.3 
60.0 
75.0 

50.0 

75.0 

71.4 

981.8 
61.4 

14.3 

18.2 

42.9 

12.5 

25.0 
16.7 

40.0 

33.3 

21.4 

22.2 

27.3 
50.0 
25.0 

27.4 

75.0 

55.6 

506.8 
31.7 

20.0 

33.3 

50.0 

14.3 

28.6 
25.0 

100.0 

37.5 

30.0 

44.4 

30.0 
50.0 
50.0 

27.4 

75.0 

55.6 

671.1 
41.9 

33.3 

66.7 

60.0 

16.7 

66.7 
25.0 

100.0 

42.9 

50.0 

80.0 

33.3 
60.0 
50.0 

37.5 

75.0 

71.4 

888.5 
55.6 

These results were suspect, however, because 
of the probable source material bias. Accord
ingly, substitutes were prepared for each of 
these first "test" items to form a second teach
ing sample consisting of 70 items from teach
ing sample # 1 and 33 additional items. Items 
from teaching sample #1, now genuinely 
"new," and some additional items were then 
run against teaching Eample #2. Items new to 
both samples were also run against sample # 1. 
Results for 101 machine tests on 59 different 
items are shown in Tables 1, 2, and 3 in terms 



TRAINING A COMPUTER TO ASSIGN DESCRIPTORS TO DOCUMENTS: 567 

TABLE 3. Machine "hits" against DDC assignments, tests run against 
T.S. #2, both with cited titles and with abstracts 

Cited Titles Abstracts 

% % % % % % 
All Available Validated All Available Validated 

Construction of convolution 66.7 66.7 66.7 66.7 66.7 66.7 
codes by sub-optimization 

Iterative circuit computers 40.0 40.0 40.0 40.0 40.0 40.0 
Use of context cues in teaching 20.0 25.0 28.6 20.0 25.0 28.6 

machines 
Model for communication with 42.9 42.9 50.0 28.6 28.6 33.3 

learning 
Word length and intelligibility 28.6 33.3 40.0 14.3 16.7 25.0 
Machine correction of garbled 71.4 71.4 71.4 85.7 8"5.7 85.7 

English text 
Multiple task study on automatic 50.0 50.0 50.0 75.0 75.0 75.0 

data processing 
Independence of attributes in memory 50.0 66.7 66.7 25.0 33.3 33.3 
Use of models in experimental 42.9 50.0 60.0 28.6 33.3 40.0 

psychology 
Linear recurrent binary error 42.9 42.9 50.0 57.1 57.1 66.7 

correcting codes 
Adaptive sample data systems 42.9 50.0 75.0 28.6 33.3 50.0 
Common programming language task 80.0 80.0 80.0 80.0 80.0 80.0 
Some requirements for produc- "1 A '1 .............. 100.0 14.3 50.0 100.0 ~":I:.':> t>v.V 

tion control data 
Remembering the present state 25.0 25.0 33.3 25.0 25.0 33.3 

of a number of variables 
Papers on the APT language 57.1 80.0 80.0 57.1 80.0 80.0 
Topics in the theory of discrete 100.0 100.0 100.0 100.0 100.0 100.0 

information channels 
Some aspects of problem solving 28.6 28.6 33.3 28.6 28.6 33.3 
Predictive model for self-organ- 25.0 25.0 33.3 50.0 50.0 66.7 

izing systems 
Adaptive switching circuits 29.9 38.5 55.6 29.9 38.5 55.6 
Techniques of pictorial data reduction 71.4 83.3 83.3 57.1 66.7 66.7 
Combining of classes condition 37.5 50.0 60.0 50.0 66.7 80.0 

in learning 
On some relations between 57.1 57.1 66.7 42.9 42.9 50.0 

human engineering 
Human performance as a func- 9.1 14.3 25.0 18.2 28.6 50.0 

tion of the work-rest cycle 
The simulation of human thought 85.7 85.7 85.7 71.4 71.4 71.4 
Studies of communication channels 14.3 16.7 50.0 14.3 16.7 50.0 
Concept of the ideal observer in 44.4 44.4 50.0 33.3 33.3 37.5 

psychophysics 
Learning in random nets 100.0 100.0 100.0 

TOTAL 1177.7 1312.5 1544.6 1241.6 1368.1 1609.2 
AVERAGE 45.3 50.5 59.4 45.9 50.7 59.6 



568 PROGEEDINGS----SPRING JOINT COMPUTER CONFERENCE, 1!164 

of the percentages of descriptors originally as
signed by nnc indexers which were also as
signed by machine. These results show, even 
more than had been expected, a significant drop 
below the "hit" accuracy obtained when the 
same items were run under partially "source 
material" conditions.§ 

The overall average "hit" accuracy for these 
tests is only 40.1 Cfr, considering all descriptors 
assigned to these items by nne. However, in 
spite of the use of test items drawn from the 
same time period as the teaching samples in 
order to maximize consistency of indexing 
vocabulary, 19.17c of the descriptors assigned 
'by nDC were not available to the machine. 
When corrected for this not-available factor, 
the average "hit" accuracy was 48.2 %-. Other 
descriptors used by nnc for these items were 
available to the machine only as candidate de
scriptors and could only be assigned if input 
words for the test items coincided with the 
names of these descriptors. Considering only 
the descriptors that were freely available to 
machine, the validated descriptors, the com
puter assignment accuracy was 58.1 Cfr. In only 
one test ca s.e , for these 59 items, were no hits 
achieved by the machine method ("Pattern 
target analysis") . 

Figures 1 and 2 represent, respectively, ma
chine assignments for title-and-cited-titles and 
for title-and-abstract of an item subsequently 
evaluated by several members of our staff, as 
shown by initials. Checks to the left of the de
scriptors indicate agreements with nnc as
signments. The machine missed three nnc as
signed descriptors for this item: "Electronic 
Circuits," "Machine Tools," and "Servomech
anisms," the latter two not being available to 
the machine system. 

Figures 1-2 illustrate the present format for 
computer printout, with assignments in order 
of decreasing selection scores (numeric data 
to the right of descriptor names) for three dif
ferent weighting formulas. These figures also 
illustrate differences in order of machine selec
tion and of actual descriptors chosen by the 

§ This is apparently due to the fact that although 
only each item's own title was source material, the 
weighting formulas to emphasize significance of words 
in the self-titles changed the effective proportion of the 
new material in the cited titles. 

000191294550 PAPERS O~ THE APT LANGUAGE 

pEseRI PTOR NAME liN 

rUTliEMATieAL COMPUTER PATA 5')6 
AUTOMA TI C 510 

~~~GE 48~1 ______________ _ 

SCIENrlFJC RESEARCH 330
IIUMA:. E;>JGI:-IEEP.ING 326
COMMUNICATION SYSTEMS 310
ClJMMU"IICATlONS THl:ORY 300L-____________ _
MACHINE TRANSLAT ION 251
PATA rRMISMISSION SYSTEMS 241
(fIFORMATlON THEORY 246
MATHEMATICAL LOGIC 244
SCIENI JFlC REPORTS 240

DESCP.IPTOR NAME 1/T~.O

LANGUAGE 2356
AIJTOMATIC 1')89
KACHlI-lE TRANSLATJON 1460
PKOGRAMMING 1212
IIATHEHATICAL COMPUTER DATA 1111
DIGII.I\L COMPUTERS 1001
M;lfHt:MAT I CAL lOGIC 9),8
COMPUTERS 918
UATA STORhGE SYSTEMS 915
DISPLAY SYSTEMS 765
~DI~ M3
COMMUNICATIONS THEORY. 610

DESCRIPTOR NAME I/N.O

PATA STORAGE SYSTEMS 1952
I~OHPUTERS !1Y (". w,""y.erefjl'C6 19_Q_6~ _______ _

,-IATHlMATlCAL LOGIC . i 1769
." DI\U PROCESSING SYS TENS· WI Y', '+FP.ft61_5~4~2 _________ ----

"--M'4:fHll'lATiCAL COMPUTER DAJA' 1529
. CODING O'f C. ,tr?P- . _ 1239

OiSPlAY SYSTEMS I 1139

Figure 1.

~0-"~t29~~0.-fAPERS()N--IHE_ APT LAN~~~G!; __

DfSCR(PTC_R_.~_~_E _________ ~l~_

AUTOl'ATIC 3365
MATHEMATICAL CC~PUTER DATA-' ····-·-····-3050-·-------

.l'lAI'\GUAGE 2473
,/ PRCGRAf'lMING ----------------2375"-----------

g~~~~~ETICS ----.-.--------~~~~.----------
HUI'AN ENG If\EER I NG 1519
CO~~UNICATI(j~S THECRY·--- --. -----'--1500---·----

TRACKI"G 1265
CO~PUTER -LOGIC .--- ------- -----.-- 1212----------

SCIENTIFIC R(PCRTS 1205 __ _
--J--foIACHINE TRANSL..-TIOi---·------1020

DESCRIPTCR ·NAME - . -- -_. ---- --l/TN-.O

"/LANGUAGE ---_ ... -" ... ----------9819--------

--7::~~~~~"'~~~NSnYlciN------~!!~'--------
AUTOMATIC 6372

. ,..ATHEHATICAl CC"PUlER"'OAlA'" 6262 -------
DESIGN 5472
DIGITAL COlo:PUTERS . --·-------3366

~~;~~~~~~-T~qt\S }HECRY ig~~'--------
DATA STORAGE SYSTEI'S 27<;0
MATHEMATICAL LCGfC---------2730--
SCIENrIFIC __ ~E?_O~~ _____ . 245J ______ _

DESCRIPJ'JR NAIIE 1/N·JL

__ vLANGUAGE 21251
I""'PROGRAf'MING -------- - --14n9-

__ ·¥"·=~~~!~~I~.RA.N~_L~_U~" _____ ~~~!!. _______ _
__ PESIGN __________________ 11Jl28 _______ _

MATHEMATICAL C(MPUTER DATA 8618
DICITAl COI/PUTERS 7524

. COMPUTERS - -._. 6018--------

--vg:~ :~~g~~~h~-~-S.~~~~-E-MS ~:~~~----
--2~~~·~={I}~~-~-ti;~~A~c-RY !-~-~.~"------

Figure 2.

TRAINING A COMPUTER TO ASSIGN DESCRIPTORS TO DOCUMENTS: 569

SADSACT technique using cited titles as
against abstracts as input.

In our earlier tests, the same items had been
run both with cited titles and with abstracts
against the teaching sample in which they had
been included (that is, as both partially and
entirely source material items). For these
items, the 64.87r hit accuracy for the cited
title case improved to 75.07c average accuracy
in the abstracts case. However, when the new
test items were run both ways against teaching
sample #2, there was no significant difference
in the average accuracies obtained as between
using titles-and-cited-titles only and using
titles-and-abstracts from the same items.

Problem of Evaluation

The problems of evaluation of any indexing
method whatsoever, whether carried out by
man or by machine (or by men aided by ma
chines) are crucial. O'Connor 12 has aptly
pointed out that: " ... the question, 'Is mech
anized indexing possible?' by itself is not
answerable, because it is not intelligible. More
positively expressed, if you want to ask clearly
about the possibility of mechanized indexing;
you should have both some notion of 'good re-
trieval,' and some notion of hO\:tl good YOLI \vant
the retrieval to be which is permitted by mech
anized indexing."

In advance of evaluations based on retrieval
tests, we have relied, first, on comparisons with
the prior human indexing. We have been faced
with the mechanics of assuring consistency-of
indexing criteria as necessary for any realistic
assessment of machine as compared to manual
indexing of the same items. As we have noted,
this is not possible even for "training" and
"test" items which are all documents of in
terest in our collection and which were all in
dexed in approximately the same time period
by the same DDC (ASTIA) indexer-staff. As
between "teaching sample # 1," "teaching
sample #2" (of 100 and 103 items, respec
tively, with 70 % overlap), and of test items
"new" to both these samples there are obvious
differences as to the descriptor-vocabulary and
indexing philosophy. This type of discrepancy
was even more marked in the first run of eight
(1963) items against the (1960) basis of teach
ing sample # 1.

More serious, however, are the questions of
the O'ConnQr remarks previously cited: those
of evaluation of any indexing method whatso
ever. We have, in our test data, a provocative
case in point. In Table 4 we show the machine
assigned descriptors for the paper by L. G.
Roberts of l\1.I.T. entitled "Pattern recognition
with an adaptive network." Although exactly
12 descriptors were required, by our present

TABLE 4. Descriptors assigned by computer to
"Pattern Recognition with an Adaptive Network"

Data

Sampling

Learning

Simulation

Computers

Data Processing Systems

Design

Digital Computers

Mathematical Prediction

Mathematical Logic

Digital Systems

Mathematical Computer Data

570 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

program, to be assigned, none of the 12 so
assigned by machine is entirely irrelevant or in
appropriate. As it happens, this same document
was indexed twice by nnc personnel, first as
an unpublished report, later as a reprint of the
version appearing in the open literature. In
dexer A assigned to this item the four descrip
tors: "Coding," "Digital Computers," "Mathe
matical Computer Data," and "Programming."
Indexer B assigned: "Digital Computers,"
"Electrical Networks," "Identification Sys
tems," "Programming," "Simulation," and
"Test Methods."

It is of interest, first, that although our ma
chine method "hit" score was 50 % with respect
to Indexer A, and only 33.37c with respect to
Indexer B, at the same time A's agreement with
B was exactly 33.3 % and B's with A was 507c.
More significantly, however, the machine
method was the only one of the three which
assigned the crucial descriptor "Learning" (re
flecting the self-organizing and adaptive fea
tures of the mechanism described) to the item.
Indexer B assigned two inappropriate descrip
tors-"Test Methods" and "Electrical N et
works," but the SADSACT technique did not
make either mistake, even though the word
"network" did appear in the item's own title.

A second problem of evaluation we are faced
with involves the consequences of an assump
tion that the previously-given hurpan indexing
decisions, for a sampling of our collection, are
in fact "good enough." This is a misleading as
sumption. As a case in point, of the approxi
mately 200 items handled either in the teaching
samples or as "new" items, only one could be
appropriately indexed under the descriptor
"Computers" that also involved analog com-

these items, if "Computers" was a relevant
puters or systems. Thus, for all but one of
descriptor, so also was the descriptor "Digital
Computers." There is considerable debate about
claims for "consistency" of machine, as opposed
to manual, methods of indexing. In some of
our tests, for example, we assigned both the
descriptor "Computer" and the descriptor
"Digital Computers" in 41.2 % of the cases in
which either was assigned, but the human in
dexers assigned both if either was used only
33.3 % of the time.

In general, very little data are available on
interindexer consistency or on the likelihood
that the same indexer would index the same
item the same way on different occasions.
Painter 13 reports figures for interindexer con
sistency as ranging from 5470 similarity of
indexing to 82 %. Her data for the case of
DDC show that: "One hundred and eleven
starred descriptors were used the first time
which did not appear the second (41 %) and 98
starred descriptors were used the second time
and not the first (36%)." Jacoby and Slamecka7

report even less favorable figures, with inter
indexer consistency as low as 18 % in some
cases. In the light of such indications, the auto
matic assignment indexing techniques appear
promising. In addition, however, we have initi
ated the investigation of relevance jUdgments
on the part of subject matter specialists review
ing the full texts of our test items.

Evaluation by Relevance Judgments

The data shown in Tables 1-3 compare ma
chine assignments with those previously made
by human indexers. An alternative method of
evaluating the test results is to determine the

TABLE 5. Average per-cent agreement, one or more
people with machine assignments

No. of Indexers No. of Items No. of Descriptors Assigned

12 9 6 3 1

2 1 50.0 66.7 66.7 100.0 100.0
3 4 47.9 52.7 5.8.3 66.7 75.0
4 10 40.0 45.7 55.6 53.3 60.0
5 10 54.2 58.9 68.3 80.0 90.0

OVERALL 47.4 52.9 61.6 67.9 76.0

TRAINING A COMPUTER TO ASSIGN DESCRIPTORS TO DOCUMENTS: 571

probable relevancy of those descriptors that are
assigned by the machine. Twenty-five of the
items in the test runs have therefore been sub
mitted to one or more members of our staff, all
of whom are users of the collection. They were
asked to choose 12 descriptors for each item ex
clusively from the list of descriptors actually
available to the machine. The results of these
evaluations are shown in Table 5, which gives
the summary data for judgments of relevance
by one or more persons (including the initial
DDC indexer) of descriptors assigned by the
SADSACT technique. It should be noted that
these judgments are based upon the independ
ent assignment by the human analysts of these
same descriptors to the same item, rather than
by review of the machine assignments. Thus
the reslJ-lts are probably conservative.

The results in Table 5 also show the percent
ages of machine-assigned descriptors judged
by human analysts to be relevant for cases
where the machine assigns fewer than 12 de
scriptors. It is evident that the fewer descrip
tors assigned by machine, the better the chance
that human evaluators will judge those assi-gned
to be relevant. It is also evident that the more
the people who index, the better is the chance
that one or more will assign a descriptor that
the SADSACT model also assigns.

Tables 6 and 7 provide more detailed data
for the cases where independent evaluations
were made by several people. Table 6 shows
machine-ind'exer and interindexer agreement
for the 10 cases where four of our own "cus
tomers~~ had analyzed the items. It provides,
for each of th(different descriptors assigned by
machine at th~ 6-descriptor cutting level, indi
cation of the iem for which these assignments
occurred, and the agreement with assignments
of that descriptor. Table 7 gives, for 20 cases
in which four or more people made independent
evaluations, the chances that the machine will
choose descriptors also chosen by people for
the first descriptor assigned, first two, ... up to
the total of 12.

Taking both the "hit" accuracy an.d the
human agreement data into account, the' SAD
SACT results compare favorably with those re
ported by Maron!l (51.870) and by Bork03 in
an experiment using the same computer litera
ture abstracts as had been used by Maron

(46.5 %). Our results to date also appear to
fall within the range of agreement-data for
human interindexer consistency.

Future Considerations
Our present plans call, first, for continued

testing and evaluation of a number of new
items, varying such parameters as the size of
the teaching sample, the number of descriptors
to be assigned, and weights for both prior
association occurrences and descriptor selec
tion. This additional experimentation can be
carried out using the present preliminary pro
gram. Depending on the results of continued
testing, we except to explore applicability of
the method to other subject matter areas (both
for more homogeneous and more heterogeneous
collections) if they are favorable, and to study
means for improvement by various means of re
introducing human judgment into the process,
if the results are discouraging.

If the promise of the early results is sub
stantiated on further runs, we shall also wish to
re-investigate and refine the programming tech
niques. For our preliminary evaluation, many
ad hoc choices and arbitrary assumptions were
made. These will require modification. Addi
tional programming refinements should provide
for consolidated vocabulary-descriptor associa
tions for larger teaching samples, incorporation
of occurrences of n-tuples of significant words
as "potential descriptors," experimentation
with various weighting formulas, and the like.

The SADSAGT indexing procedure differs
from most other efforts at realization of as
signment-type indexing by machine in two
principal respects. First is the emphasis on
a posteriori, completely mechanizable, tech
niques that nevertheless are based, in a sam
pling sense, upon prior judgments of people
with respect to specific requirements of real job
situations. The second differentiating aspect is
the insistence not only upon obtaining the
consensus of the collection as the basis of
vocabulary compilation and word-descriptor
associations, but also of going beyond the in
dividualistic usage of language and terminology
by a particular author. This latter emphasis
tends to reduce the effect of linguistic idosyn
cracies and consequent scatter of like items
under a number of different indexing terms.

TABLE 6. Agreements, by descriptor and item, of one or more persons
I~ with first six descriptors assigned by machine to each of

10 test items "'C

% ~
0

Agreement 0
tz:j

Number of persons agreeing with machine assignment Assignments t;:j
t:I

of this -Z
Descriptor 5 4 3 2 1 0 Descriptor GJ

CCCS*, LRBE, i
Coding CPLT TTDI 100.0

rn.
"'C
~

Theory SHT CCCS,CPLT TTDI WLI, SCC 66.7 -z
GJ

Errors CCCS, LRBE 100.0 c.....
0

Data Transmis- cecs LRBE SCC 100,0 -z
sion Systems 1-3

(")

Electronic CCCS, LRBE 0.0 0
a::

Circuits "'C
c::::

Information 1-3

TTDI CCCS 100.0 tz:j

Theory ~

(")

Language WLI, CPLT, 100.0 0 z
PAL "'%j

tz:j

Machine ~

CPLT PAL WLI 66.7 tz:j

Translation Z
(")

Data Processing
J:r:j

MTSA ASDS 66.7
Systems ~

0)
H:>o

Intelligibility WLI 100.0

Bibliography WLI, TTDI 0.0

Design MTSA ASDS SHT 66.7

Human
1\1TSA SHT 100.0

Engineering

Automatic PAL MTSA 100.0

Synthesis LRBE 0.0
-
Classifica tion LRBE 0.0

Data Storage
Systems

Data

Mathematical
Logic

Communications
Theory

Programming

Digital
Computers

Probability

Reasoning

Computers

Circuits
Tracking

Documentation

ASDS

SCC

CPLT, PAL

CPLT PAL, SHT

TTDI SCC

SHT

SHT

SCC

*N ote: Items are identified by initials of first 4 significant words in titles, see Tables 1-3.

ASDS, PAL
MTSA

TTDI

SCC

MTSA

0.0

100.0

0.0

50.0

100.0

100.0

100.0

50.0

100.0

100.0
0.0

0.0

1-:3

I~
t-I

Z
Iz

Cl
:>
(i
0
~
~
c:::
1-:3
t,%j
~

1-:3
0
:>
rn.
rn.
t-I

Cl
Z
t:I
t,%j
rn.
(i

~
t-I

~
1-:3
0
~
llJ
1-:3
0
t:I
0
(i

c:::
~
t,%j
Z
1-:3
rn.

at
-:t
~

574 PROCEEDINGS---:SPRING JOINT COMPUTER CONFERENCE, 1964

TABLE 7. Number of descriptors assigned by machine, also chosen
by one or more human indexers

Item

CCCS

ICC

UCCT

MCL

WLI

MCGE

MTSA

lAM

LRBE

ASDS

CPLT

SRPC

RPSN

PAL

TTDI

PM SO

HPFW

SHT

SCC

CIO,}>

Average Per-cent

1

1

1

1

1

1

o
1

1

o
1

1

o
o
1

1

1

1

1

1

o

2

2

2

2

2

1

1

2

2

o
1

2

1

o
2

2

1

1

2

2

1

3

3

2

2

3

1

1

3

2

1

2

3

2

o
3

3

1

1

3

3

2

4

4

3

3

4

1

4

2

2

2

4

2

1

4

3

1

1

4

4

3

5 6

4 5

4 5

4 5

5 5

2 2

3 4

4 4

3 3

3 3

2 3

5 6

2 3

1 2

5 5

3 4

1 1

1 1

4 4

4 4

4 5

7

6

6

5

5

3

5

5

3

4

4

6

3

2

6

4

1

2

4

4

6

8

6

7

5

5

3

5

5

3

4

5

6

3

3

6

4

1

2

5

5

6

9

7

8

5

5

4

6

5

3

4

5

6

3

3

7

4

1

2

5

5

6

10

7

8

5

6

4

7

5

3

5

5

6

3

4

7

5

1

2

6

6

6

11

7

8

5

6

5

7

5

4

5

5

6

4

4

8

6

1

2

7

7

6

12

7

8

5

6

5

7

5

5

6

6

6

4

4

8

7

1

2

7

7

6

Chance that people 75.0 70.0 66.7 66.3 64.0 62.5 60.7 56.2 52.8 51.0 49.1 47.1
will agree

It also tends to produce a normalizing effect so
that the various items in the collection are in
dexed more consistently than is possible if each
item is processed as an entirely independent and
self-sufficient entity.

The word "training" as applied to our pro
posed method for automatic indexing is some
what of a misnomer in terms of our actual ex
periments to date. It is justified in the sense
that a training sequence, using a "teaching
sample," gives the machine a representative set
of "acceptable" input-to-desired-output ex
amples. It is not justified, as yet) in the sense
that, the system as presently programmed could
significantly modify or adapt its procedures,
without human intervention, to new vocabulary

or subject emphases in the input items. There
is reason to suppose, however, that the method
can be adapted to new and changing vocabu
laries (both of "descriptors" and of author
terminology) by throwing out for human in
spection: occurrences of words not on the gen
eral stop-list, yet not in the vocabulary; and
occurrences of non-purged words in title-and
citations coinciding with the name of a descrip
tor, when that descriptor has not been assigned
(e.g., an early occurrence of the word' "plasma"
in a physics paper, but not involving enough
other words previously associated with blood
chemistry, hematology, and the like, to assign
physiological or medical field descriptors) .

If this proves feasible, potentialities of

TRAINING A COMPUTER TO ASSIGN DESCRIPTORS TO DOCUMENTS: 575

training the machine system to recognize new
descriptor-assignment possibilities, to sharpen
its own recognition-selection-assignment proc
esses in terms of current real-life input, and to
recognize and display anomalies, changes, and
trends, may supply significantly improved prob
lem-solving capabilities in the changing world
of literature search as aided by machine.
Although the SADSACT results to date are
quite limited, the procedure indicates some
promise of being quick, relatively inexpensive
and consistent, and it capitalizes on one-time
key stroking of descriptive cataloging informa
tion available for multiple purposes.

REFERENCES

1. BAKER, F. B. "Information Retrieval Based
upon Latent Class Analysis." Journal of
the Association for Computing Machinery,
9:4 (October 1962) 512-521.

2. BAXENDALE, P. B. "Machine-Made Index
for Technical Literature - An Experi
ment." IBM JOURNAL OF RESEARCH
AND DEVELOPMENT, 2:4 (October
1958) 354-361.

3. BORKO, H. "The Construction of an Em
pirically Based Mathematically Derived
Classification System." In PROCEED
INGS 1962 SPRING JOINT COMPUTER
CONFERENCE, American Federation of
Information Processing Societies, 1962, pp.
279-289.

4. BORKO, H., and M. D. BERNICK. "Automatic
Document Classification." JOURNAL OF
THE ASSOCIATION FOR COMPUTING
MACHINERY, 10:2 (April 1963) 151-162.

5. EDMUNDSON, H. P., and WYLLYS, R. E.
"Automatic Abstracting and Indexing
Survey and Recommendations." COMMU
NICATIONS OF THE ACM, 4:5 (May
1961) 226-234.

6. HERNER, S. "Methods of Organizing Infor
mation for Storage and Searching."
AMERICAN DOCUMENTATION, 13:1
(January 1962) 3-14.

7. JACOBY! J., and V. SLAMECKA. "Indexer
Consistency under Minimal Conditions."

Bethesda, Md., Documentation Inc., Nov.
1962 Iv. Contract AF 30 (602) 2616, Proj
ect 4594: RADC TR 62-426: AD-288 087.

8. LUHN, H. P. "A Statistical Approach to
Mechanized Encoding and Searching of
Literary Information." IBM JOURNAL
OF RESEARCH AND DEVELOPMENT,
1:4 (October 1957) 309-317.

9. MARON, M. E. "Automatic Indexing: An
Experimental Inquiry." In MACHINE
INDEXING, PROGRESS AND PROB
LEMS, Washington, D. C., American U.,
1961, pp. 236-265.

10. MARON, M. E., and J. L. KUHNS. "On Rele
vance, Probabilistic Indexing and Informa
tion Retrieval." JOURNAL OF THE AS
SOCIATION FOR COMPUTING MA
CHINERY, 7:3 (July 1960) 216-244.

11. NEEDHAM, R. M. "A Method for Using
Computers in Information Classification."
In INFORMATION PROCESSING 1962
(Proceedings of IFIP Congress, Munich),
Cicely M. Popplewell, Editor (Amsterdam,
North-Holland Publishing Co.), pp. 284-
287.

12. O'CONNOR, J. "SmIle Remarks on Iviecha
nized Indexing and Some Small-Scale Em
pirical Results." In MACHINE INDEX
ING, PROGRESS AND PROBLEMS,
Washington, D. C., American U., 1961, pp.
266-.:279.

13. PAINTER, A. F. "An Analysis of Duplica
tion and Consistency of Subject Indexing
Involved in Report Handling at the Office
of Technical Services, U.S. Department of
Commerce." Rutgers State U., Ph.D. Dis
sertation, 1963, p. 135. Washington, D. C.,
Office of Technical Services, PB 181501.

14. STEVENS, IVr. E. "Preliminary Results of a
Small-Scale Experiment in Automatic In
dexing." To be published in PROCEED
INGS, NATO Advanced Study Institute on
Automatic Document Analysis, Venice,
1963.

15. SWANSON, D. R. "Automatic Indexing and
Classification." Paper presented at the
NATO Advanced Study Institute on Auto
matic Document Analysis, Venice, 1963.

EXPERIMENTS IN INFORMATION CORRELATION*
J. L. Kuhns and C. A. Montgomery

The Bunker-Ramo Corporation
Canoga Park, California

1. INTRODUCTORY REMARKS

It is reasonable to suppose that information
systems of the futp.re will have control over
portions of a document as well as over full text.
In addition, we suppose that many users will
want output in order to verify hypotheses or to
form new hypotheses. This paper is concerned
with the facilitation of the second procedure.
Thus the emphasis is not on the two classical
problems of information systems, namely, not
retrieving relevant material, or retrieving ir
relevant material; but rather on the problenl
of assimilability of the output by the user.

The particular aspect of the assimilability
problem which will concern us is the effect of
information loads of varying sizes upon the
user's ability to assimilate and correlate data.
It seems plausible to assume that the user's
ability to correlate information is a function
of the volume of information to be assimilated;
and moreover, that this ability will improve
with increasing volume until a certain critical
volume is reached, beyond which the load of
information causes the user's correlation ability
to deteriorate rapidly. This assumption gives
rise to two fundamental questions:

1. What is this critical volume in a given
situation?

2. Is it possible to structure information in
some way so as to improve the user's

ability to assimilate and correlate, thus
extending the critical limit?

Experiments performed in connection with
an earlier project on information retrieval and
correlation provided some interesting prelimi
nary answers to these questions.

The library for this series of experiments
consisted of a simulated intelligence file of sen
tence fragments developed from a book
'~Kogun-The History of the Japanese Army in
the Pacific." A machine-produced concordance
of all words contained in the fragments served
as an index to the file.

The experiment 'of particular significance
here.is one which dealt specifically with the
time dimen,sion. All fragments containing any
reference to time of day (for example, "noon,"
"0645," "dawn," "8 :00 a.m.") were retrieved.
About 25 fragment cards were retrieved in all.
The fragments of this set had at least two at
tributes in common: they concerned the Pacific
War in some way, and contained some reference
to time of day.

The randomly ordered cards were presented
to several persons, who noticed only that all
cards referred to battles in the Pacific War.
When the cards were reordered into two groups
of night versus day, however, a striking cor
relation emerged-namely, that all daylight at
tacks had been initiated by U.S. forces and all

* The work reported in this article was supported by the National Aeronautics and Space Administration under
Contract NASw-538.

577

578 PIROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

night attacks by the Japanese. (This correct
inference, incidentally, was nowhere explicitly
stated in the book.)

The results of this experiment suggest that
the critical volume of information may in fact
be extremely small. Only 25 cards were in
volved, and each card contained a single frag
ment, which in this case was a minimal piece
of information. Moreover, these fragments had
certain attributes in common-"Pacific War"
and "time of day." The correlation described
above, however, was not discovered until the
set of fragments was structured in terms of
conceptual subgroups-"night," "day"-in
cluded in the semantic range represented by
"time of day."

These findings suggest that structuring of
data can extend the critical limit on volume,
and further, that the elements of this structure
should be subsets consisting of closely related
members of the main set. The results of the
earlier experiment thus established a point of
departure for the present investigation.

2. EXPERIMENTAL DESIGN

A considerably more complex series of experi
ments was designed to test whether the
"Kogun" discoveries provided essentially cor
rect answers to the two questions raised above.
We decided to create a set of data structured
along the lines described above-that is, a set
whose structure is based on subsets consisting
of closely related members of the main set. A
second set of data more loosely structured than
the first would be provided by the main set
itself. A third set would consist of unstruc
tured data compiled randomly. The ability to
assimilate and correlate the information pre
sented in these variously structured sets of
data would then be tested by requiring experi
mental participants to list inferences suggested
by each set. Based on the "Kogun" experiment,
it was assumed that the first set of data, being
the most highly structured, and therefore, most
easily assimilated, would be most productive
of inferences; and the random data, least pro
ductive. The scope of the initial experiments
was limited to generating and testing the first
set of data.

The type of structure represented by the first
set of data is most conveniently generated by
"clustering" techniques. The object is to cluster
the data in natural groupings whose members
are associated through co-occurrence of con
cepts. The procedure is as follows: if two items
of the data set have a concept in common they
are said to be associated. A cluster is then de
fined as a collection of items which are mutually
associated as well as being maximal with re
spect to this property. This last condition means
that an item cannot be added to the collection
without violating the property of mutual asso
ciation. The definition of association can be
strengthened by stipulating that several con
cepts must occur in common. The technique
used is a mathematical procedure for exhaus
tively listing these clusters.

3. EXPERIMENTAL PROCEDURE

Materials to be used for the creation of the
three data sets were a fragment file of sentences
generated from a collection of documents on
advanced propellants and a machine-produced
concordance which served as an index to the file.

The first step in the experimental procedure
consisted of selecting a single fragment called
the F 1 fragment, which would serve as the

Figure 1. Illustration of F 1 star.

EXPERIMENTS IN INFORMATION CORRELATION 579

nucleus for a set consisting of all fragments
related to the F 1 fragment through co-occur
rence of concepts. This is diagrammed in Fig
ure 1. The lines between fragments indicate the
co-occurrence of concepts; for example, if F 1

contains the words "small motors" and F:! con
tains the word "micro-burner," then the same
concept can be said to occur. The set so formed
is called the Fl "star." Clusters of fragments
associated by co-occurrence of concepts in addi
tion to the F 1 defining concepts can then be
derived from the Fl star.

As an illustration, in Figure 1 the set {F 1, F:!,
F;{} is a cluster, so are {FJ, F .. }, {F), F:;}, {F),
F H}. These clusters can serve as the maximally
structured set of data for the experiments,
while the members of the F 1 star would consti
tute the loosely structured set.

Since the magnitude of the task of develop
ing these structures manually is directly pro
portional to the number of fragments involved,
it is essential that the membership of the star
should not be too large. On the other hand, if
its membership is too restricted, the star will
not contain enough information for valid gen
eralizfttions to be made. As the membership of
the Fl star depends on the number of concepts
contained in the F 1 fragment and their distri
bution throughout the fragment file, it can be
seen that selection of the F 1 fragment is the
crucial step in the experimental procedure.

Attempts to limit the size of such stars by
arbitrarily restricting the number of fragments
taken from each document proved unsuccessful,
as did several other artificial means of coping
with an oversupply of related fragments. Many
potential F 1 fragments were selected, found in
appropriate, and rejected before the following
F 1 fragment was chosen:

"Space mission studies have indicated the
need for small rocket motors of low thrust
(of the order of 100 lb.) for attitude con
trol, midcourse trajectory corrections, ren-
dezvous, and so forth."

Concepts used to define the F 1 star were as
follows:

small and motors or micro and motors
burners
engines

burners
engines

space
trajectory
control and attitude
rendezvous

All cards containing these concepts were then
retrieved from the file. There were 24 in all,
yielding an F 1 star of 24 members, which
proved to be a workable amount.

A list of concepts was then developed for
each of these fragments and the list for each
fragment was compared with that of all other
fragments in the Fl star to determine which
fragmen~s had the greatest number of concepts
in common. A correlation matrix was created
in which fragments having two or more con
cepts in common were labeled as strongly cor
related, those having only one common concept
as weakly correlated. "Strong" and "weak"
clusters were then derived from the matrix by
the mathematical technique mentioned above.

Since a greater degree of relatedness or
structure is required by the defining criteria for
strong versus weak clusters, these clusters
represent legitimate materials for testing the
user's ability to assimilate and correlate infor
mation having various degrees of structure. It
was expected that inferences derived from
strong clusters would exhibit some distinctive
property as compared to weak clusters.

A further test of assimilation and correlation
ability could be achieved by imbedding the
clusters in successively larger segments of text,
on the theory that correlations obvious in the
clusters as represented by the fragment cards
would be obscured if the clusters were instead
represented by the documents from which they
were culled. We therefore selected 12 clusters
-6 strong and 6 weak-which were repre
sented by four levels of material:

Level Description

D Cluster is represented by the fragment
cards.

C Cluster is represented by the sentence on
the fragment card plus the six sentences
(3 preceding, 3 following) which form

its immediate context within the docu
ment.

580 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

B Cluster is represented by a machine-pro
duced extract of the document.

A Cluster is represented by the document
itself.

The clusters were then divided into four
groups of three clusters each. The material for
level A of the first group of clusters was placed
in a folder marked for the first participant
along with the level B material for the second
group of clusters, the level C material for the
third, and the level D material for the fourth,
so that none of the four participants (specialists
in the field of advanced propellants) would have
the opportunity to draw inferences from the
same cluster on two levels. These elaborate pre
cautions were to prevent the participants from
becoming familiar with the same cluster
through its representations on various levels,
causing a tendency to make the same inference
for the different levels rather than looking for
new correlations which might be exposed in
proceeding to a level where the cluster is less
deeply imbedded in peripheral material. The
participants were instructed to begin with level
A and proceed to level D, observing the time
limits (given below) imposed- for reading the
material and making inferences:

Table of Maximum Times

Time for Deriving
Level Reading Time Inferences

A One-half hour
B 20 minutes
C 15 minutes
D 5 minutes

4. RESULTS

20 minutes
20 minutes
20 minutes
20 minutes

A total of 152 inferences were listed by the
participants. Of these, exactly half were de
rived from strong clusters and half from weak.
The level from which the largest number of
inferences was derived was the A level, which
also contained the most material. 51 inferences
were listed for the A level, 42 for the B level,
34 for the C level and 25 for the D level, indi
cating a strong correlation between quantity of
material and number of inferences produced,
which we had intended to offset to some extent
by imposing time limits for reading and infer-

cel1ce listing. The S-16 cluster (representing
level D) and the inferences derived from it are
listed below.

S-16 Cluster (Level D)
This motor uses small quantities of propel
lants which can be made on a laboratory
scale yet is large "enough that the heat
transfer losses are small.
The combustion gases are cooled to a much
greater extent relative to that in a larger
motor, thus lowering c (characteristic
velocity) .
Space mission studies have indicated the
need for small rocket motors of low thrust
(of the order of 100 lb.) for attitude con
trol, midcourse trajectory corrections, ren-
dezvous, and so forth.

Inferences for Cluster S-16

1. Inferences- at .A-level
1. Propellant evaluations do not apear to be

standardized.

2. Inferences at B-level

1. Hypergolic rocket propellants permit
optimum utility of small thrust engines.

2. Injector configuration is a critical pa
rameter in achieving maximum perform
ance of small, low thrust rocket engines.

3. High energy, toxic rocket propellants
can be handled without hazard.

3. Inferences'at C-level

1. Propellants can deteriorate upon stand
ing over long periods of time.

2. Impurities may be the cause of uncon
trolled burning and/or detonations and
decrease performance of propellants.

3. In small motors heat transfer through
components lowers performance signifi
cantly.

4. Better mixing of propellants increases
performance.

5. N20 2 and N2H4 are the best state-of-the
art combinations which satisfy require
ments.

6. Testing on small sub-scale is sufficient
for accepting or rejecting a propellant
combination for use on larger motor
tests.

EXPERIMENTS IN INFORMATION CORRELATION 581

4. Inferences at D-level
1. Low thrust, efficient, simple rocket

motors have a variety of potential re
search and development applications.

2. In a small motor, combustion gases are
cooled to a greater extent than in a
large motor probably because of the
greater ratio of heat transfer surface to
combustion chamber volume in the small
motor.

The inferences were then uniquely classified
into the following categories:

Propulsion Systems
Propellant Combina

tions
Propellant Evalua-

tions
Reliability
Performance
Design
Chambers
Storage and Handling

Combustion Efficiency
Combustion Stability
Ignition
Rea t Transfer
Problem Areas
Extrapolation of Test

Results
Applications for Small

l\10tors

The inferences derived on the various levels
were compared to determine whether the classes
of inferences had members from all levels; or
whether, as we had postulated, the relations
between members of a cluster. would be ob
scured when the cluster was represented by
large segments of data, so that the same type
of inference could not be derived from all repre
sentations of the same cluster. This assumption
proved false in the present investigation, which
might be attributed to the fact that the critical
volume was not reached due to the overgenerous
time limits. The same types of inference were
frequently listed for levels A through D.

The original fragment cards making up the
clusters were then assigned to as many of the
above categories as were applicable in order to
compare the extension of the clusters with that
of the inferences derived from them. Intersec
tions of categories were plotted for the clusters
and for inferences made at the D level-i.e.,
those derived directly from the clusters them
selves. A correlation coefficient was used to
determine the degree of "overlap" between
clusters and inferences, thus measuring their
conceptual closeness. Although the correlation

coefficients for both strong and weak clusters
were good,. inferences derived from strong
clusters proved significantly more highly cor
related with their parent clusters than did
inferences derived from weak clusters. The
strong clusters scored .61, the weak ones .43,
where the coefficient is on a scale from -1 to
+1 with 0 being the point of random correla
tion.

Although these data support to some extent
the trends indicated by the "Kogun" experi
ments, they also raise some interesting ques
tions which can only be answered by compara
tive data of the type outlined above in describ
ing our design for these experiments. One of .
these questions arises from the fact that the
participants were able to recognize relations
between members of a cluster and make infer
ences based on these relations even when: the
cluster was represented by large segments of
text. Would the same apply for more loosely
structured sets of data-if the 24 members of
the F 1 star, for example, were imbedded in suc
cessively larger segments of text, would the
basic relation still be discernible, or would
inferences derived be diffuse and general rather
than highly correlated with the star from which
they were derived? vVhat sort of inferences
would be derived by applying the layering tech
nique to a random selection of fragments re
lated only by coming from literature in the same
field?

A second type of question is. more thought
provoking, and less readily answerable. It de
parts from the notion of an inference as a
measure of the ability to assimilate and corre
late information and considers instead the na
ture of an inference. We have discussed the
correlation betwen basic data and inferences
derived from these data, but is it reasonable to
expect such correlation to exist? Perhaps the
mark of a good inference is that it exhibits
little conceptual relatedness to the data from
which it was derived. Again, what is a "good"
inference? Should "good" be interpreted as
"non-trivial"? How much information should
be carried in an inference? A systematic ap
proach to these problems is explored in the
following section.

582 PlROCEEDINGlS-SPRING JOINT COMPUTER CONFERENCE, 1964

5. QUANTITATIVE EVALUATION OF IN
FERENCES

In developing a systematic procedure for
evaluating inferences, it is convenient to think
of the presented information set S as having
three components: information content, volume,
and structure. Let "s" denote the proposition
expressed by the content of the set, and suppose
that the analyst, after examining the set, pro
duces the inferences (hypotheses, conjectures)
h], ... , hu. By varying the structure, or volume,
or content of S, different collections of infer
ences will be generated. The problem is then to
develop a comparative evaluation of the "good
ness" of the two collections. In order to do this
we consider a quantitative evaluation based on
the notion of a subjective probability function
or credibility function or betting function. Such
functions are discussed in References 1, 2, 3.
We denote this function by "B" (for "betting
function" or "belief"). Thus B (h, s) is the
analyst's evaluation of the degree of belief in
the hypothesis h after considering the evidence
s. B (h) is his degree of belief in the hypoth
esis h prior to considerings. We suppose that
B obeys the laws of probability so that B gives
the value of the betting quotient (ratio of
amount bet to total stake) that should be offered
for a bet on the hypothesis in question. * In
addition, the quotient should be psychologically
fair in the sense that the bettor must alternately
be willing to bet on the negation of the hypoth
esis with the complementary quotient.

Let us suppose for the present that we actu
ally can obtain three fundamental values B (h),
B (h, s), and B (s). Since the "goodness" of a
collection of inferences should in some way
depend on their validity, novelty, dependency
on s, and non-triviality, let us see how the'se
things can be defined in terms of the B-func
tion.

It seems appropriate to define the novelty of
h to be B (11), where Ii is the negation of h.
Thus the novelty of h is taken to be

B(h) == 1- B(h)

i.e., the complement of the degree of belief in
the inference before examining the supporting

::'Thus betting schemes based on B will not lead to a
net loss in every possible case. (See Reference 1, 3.)

data. We define the validity of the inference to
be B (h, s) ; i.e., the degree of belief after exam
ining the supporting data. It appears that the
"score" of an inference should increase with
increasing validity and novelty and that the
product of validity and novelty would therefore
be a good choice for the score. On the other
hand, an inference quite independent of s
should score zero. Independence is character
ized by the condition

B(h, s) =- B(h)

so that the product of validity and novelty for
an independent inference is B (h). B (h). Thus,
we propose to score inferences as the product of
validity and novelty less the independence value
of this product. That is to say, we take the final
score to be

G(h, s) == [B(h, s) -B(h)] . B(h)

The goodness of the inference is therefore
measured as the product of the change in degree
of belief and the novelty.

Let us now test this scoring schema for vari
ous extreme conditions: (1) h is tautologous
(e.g., h is "A is A"); (2) h is contradictory
(e.g., h is "A is not A") ; (3) h is trivial (e.g.,
h == s); (4) s logically implies h (deductive
inference) ; (5) h is independent of s (the sup
porting data does not relate to h). These five
cases are shown in the table below. As well as
showing the notions of validity and novelty, we
also include the notions of "strength of sup
porting data" and "relative validity."

We now examine how the procedure would
apply to some actual data. We use the "Kogun"
experiment discussed above. The hypotheses to
be considered are: (hd Japanese attack at
night in a particular case; (h:!) Americans at
tack in day in a particular case; (ha) Japanese
almost always attack at night; (h.d Americans
almost always attack in day: (hz;) h3 and h4
(i.e., the assertion of the conjunction of ha and
h4). The supporting data s is that given by the
25 fragment cards.

Since the source of the data is from the book
"Kogun" and consists of supposedly factual
reports, let us assign a rather high value to
B (s), say 0.9. Disregarding s, we consider each
of the hypotheses hI and h2 as quite plausible

Notion

Strength of
Supporting Data

Relative Validity

Novelty

Validity

(Novelty) x (Validity)

Score

TABLE OF EXTHEME CONDITIONS

his his h is trivial
Definition tautologous contradictory (h == s)

B (s) B (s) B (s) B (s)

B (s and h) B (s) 0 B(s)

B (h) 0 1 B(s)

B(h, s 1 0 1

B(h,s)B(li) 0 0 B(s)

[B (h, s) - B (h)] B (h) 0 0 B2 (s)

s logically
implies h

B (s)

B (s)

B (11)

1

B(li)

B2(h)

h is independent
of s

B (s)

B(s) B(h)

B(h)

B (h)

B(h) B(1i)

0

t.%j

><
'"d
t.%j
~
~

~
t.%j

Z
~ rn

Z
~

z
~
o
~
~
>
~
~ o
Z
(")
o
~
~
t.%j
toot
>
~
~

o
Z

<:it
00
~

584 PlROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

and, therefore, assign a high a priori degree of
belief to both, say 0.9. Thus, the novelty of each
is 0.1. The analysis of the hypotheses ha and h4
is more subtle. Presuming we know nothing
about the Pacific War, we imagine that perhaps
the specific military situation would mean that
sometimes night is better fo~ attack, sometimes
day. On the other hand, perhaps the general
properties of the military situations of the kind
discussed are such that night is always better
or day is always better for an attack. This
second consideration makes us think that B (h3)
is near 0.5 (because we cannot choose between
night and day). The first consideration makes
us think that B (ha) is less than 0.5. Therefore,
we take B (ha) == 0.4. Similarly B (h ..) == 0.4.

The hypothesis hr;, however, is completely sur
prising, so we take B (hr;) == 0.1.

To estimate the validity, we note that h t and
h2 are contained in s. Thus, B (hI, s) == B (h2' s)
== 1. For h3 and h .. , we note that s expresses
frequency of occurrence of certain situations
and that the relative frequency of occurrence of
these situations as described in ha and h4 is
unity. Thus, we take B (ha, s) == B (h4 , s) ==
0.9 (slightly less than unity). Similarly, we
take B (hl), s) close to 0.9 but somewhat less, say
9.8. * The relative validity and scores can then
be computed. The results are shown in the
table below and are seen to be intuitively satis
factory.

TABLE OF KOGAN INFERENCES

Notion Definition hI h2 h3 h4 h5

Strength of supporting
data B (s) .9 .9 .9 .9 .9

Relative Validity B (s and h) .9 .9 .81 .81 .72

Novelty B(h) .1 .1 .6 .6 .9

Validity B (h, s) 1.0 1.0 .9 .9 .8

(Novelty) x
B (h, s) . B (h) (Validity) .1 .1 .54 .54 .72

Score [B(h, s) -B(h)] B(h) .01 .01 .30 .30 .63

The problem of obtaining the B values is still
open and it should be approached keeping the
following considerations in mind.

1. The inferences obtained often contain
words indicating qualitatively the degree of
belief (e.g., "it appears that," "possibly," "prob
ably," etc.) ; there is evidence that there is a
comparative notion of belief susceptible of
quantization.

2. There may be difficulty in obtaining an
honest appraisal of B (h) after the analyst has
examined the data s. Possibly this can be
avoided by using a referee to make the ap
praisals.

*The normative condition, B(ha & h4, s) = B(h3 ,

h4 & s). B(h4, s), is considered in this appraisal.

3. Comparative evaluations are desired and
the quantitative evaluations are for this pur
pose. Thus consistency in the evaluations is
required only to the extent of the comparative
results.

6. CONCLUDING REMARKS

In this study, it was assumed:
a. that a user requirement in certain infor

mation systems is the obtaining of data to
form hypotheses

b. that this ability to form hypotheses is
dependent upon the assimilation and correla
tion of the data presented

c. that the ability to assimilate and corre
late information is in turn dependent upon

EXPEnIMENTS IN INFORMATION CORRELATION 585

the volume and structure of the information
presented.

A measure of assimilability called the critical
volume was postulated based on the results of
earlier information correlation experiments.
An experimental design was developed to deter
mine the relation between this measure and the
degree of structure in the data presented. A
mathematical technique was used to produce
two sets of structured data. Assimilation of
information represented by these data was then
tested by requiring experimental participants
to derive inferences from the data presented.
Inferences derived from more highly structured
materials proved more highly correlated with
the basic data set.

Thus in the course of these experiments,
methods for systematically structuring data
and measuring assimilability were designed and
tested on a small scale. In addition, a procedure

for quantitatively evaluating hypotheses (I.e.,
the procedure for measuring assimilability) is
proposed as a tool for a feedback improvement
to the structuring procedure. Results of these
experiments, although preliminary, are gen
erally positive, and suggest realistic approaches
to further studies of information correlation.

REFERENCES

1. CARNAP, R., "The Aim of Inductive Logic,"
in Logic, Methodology and Philosophy of
Science: Proceedings of the 1960 Interna
tional Congress, Stanford University Press,
1962.

2. POLYA, G., Patterns of Plausible Inference,
Vol. II, Princeton University Press, 1954.

3. SAVAGE, L. J., "Bayesian Statistics," in Re
cent Developments in Information and De
cision Processes (ed., Machol, R. E., and
Gray, P.), The Macmillan Company, New
York, 1962.

SOME FLEXIBLE INFORMATION RETRIEVAL SYSTEMS
USING STRUCTURE MATCHING PROCEDURES*

Gerald Salton and Edward H. Sussenguth, Jr.
Computation Laboratory, Harvard University

Cambridge, Massachusetts

INTRODUCTION

The comparison between stored informa
tion identifications and requests for informa
tion is one of the principal tasks to be per
formed in automatic information retrieval. In
so-called descriptor systems, where information
is represented by sets of independent key words,
this operation is relatively simple, sInce it con
sists of a comparison between the respective
"vertors" of key words. In many retrieval SyS

tems it has been found necessary or expedi~nt
to use more complicated constructs for the iden
tification of information. Notably "role" indi
cators are often added to identify various types
of key words, and "links" specify a variety of
relations between key words. A complete identi
fication for a document or an item of informa
tion is often represented by a graph, consisting
of nodes and branches between nodes, to iden
tify respectively the key words and relations be
tween key words.1,2,3 The matching of such
information graphs with graphs ,representing
requests for information is a relatively compli
cated and time consuming operation, partlcu
larly since the request structure can be made
to match the information structure only par
tially and incompletely.

The graph matching problem arises also in
document retrieval systems where certain sig
nificant portions of text are extracted and com
pared with the search requests. I~ such cases,

it is possible to represent the syntactic struc
ture of the text excerpts by abstract trees, and
a tree matching procedure becomes necessary
to compare the extracted information with the
requests.4,5 As before, an exact matching proce
dure would not be very helpful, since many dif
ferent ways can be found to express the same
ideas or requests. What is needed instead is a ,
procedure which permits inclusion of partly un
specified information, and w4ich provides for
the possible relaxation of the various conditions
that render a complete match impossible at any
given time. Graph matching techniques are, of
course, also applicable to the comparison of
items of information which exhibit inherently
a multi-dimensional structure, such as electrical
or pipeline networks, street or geographical
maps, chemical molecular structures, and so on.

Extensive experience has been gained in the
past with structure matching programs which
operate on a "node-by-node" or a "piece-by
piece" basis.6,7,8 In the node-by-node approach,
the nodes of the two structures are compared
one at a time, until either the complete struc
tures match, or else an incompatibility arises;
in the latter case it becomes necessary to back
track to a point where there is agreement and
try again with different elements. In the piece
by-piece approach, a dictionary of basic sub
structures is used to break a given structure
into pieces which are then matched as a whole.

* This study was supported in part by the National Science Foundation under Grant GN-82.

587

588 PROCE'EDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Neither of the two techniques works well for
any but the simplest structures. The node-by
node method usually requires extensive back
tracking, involving the comparison of many
hundreds of nodes for even very simple struc
tures. The piece-by-piece approach, on the
other hand, suffers from the fact that no stand
ard, well-defined method exists for breaking a
given structure into substructures.

A topological structure-matching procedure
has been programmed for the 7090 computer
which does not depend on a specific ordering of
the nodes, nor on the presence or absence of
certain specified substructures. Little or no
backtracking is required, and the method can
be used to detect complete as well as partial
matches. The basic idea is to determine certain
simple properties of the nodes of the two struc
tures to be matched, and to equate. those subsets
of the nodes in the two structures which exhibit
equivalent properties. A standard procedure is
then used to form new matching subsets, and
to break down already existing subsets into
sets with fewer members. The procedure is
completely determinate except in cases where
it is necessary to resolve certain symmetries in
the connection pattern of the nodes; in that
case a guess. (assignment) is made as to the
correct solution; such a guess may later prove
to have been right or wrong, and if wrong, may
require some backtracking. In most practical
problems, however, little backtracking seems
to be needed. t Computer experiments indicate
that the topological procedure is much more
efficient than either the "node-by-node" or the
"piece-by-piece" approach. Operating auto
matic retrieval systems based on the use of
relatively complex structures (as oppo~ed to
sets of unconnected key words) seem therefore
to become a practical possibility instead of
merely a theoretically desirable goal.

An example is given first to illustrate the
partial matching procedure, as well as the
methods which may be used to alter one or both
of the structures to be compared in order to
make a match between them more likely. The
procedure is then applied to the matching of

t A related strategy has been used by Unger to detect
complete, rather than partial, isomorphisms between
directed graphs.9

document graphs with request graphs, and to
a retrieval system based on the comparison of
syntactically analyzed document excerpts with
a stored phrase dictionary.

THE STRUCTURE MATCHING
PROCEDUREt

Consider first the problem of determining
whether the graph of Fig. 1 (b) is contained in
the graph of Fig. 1 (a), that is whether Fig.
1 (b) is a subgraph § of Fig. 1 (a). The nodes
in the two structures are labelled arbitrarily
from CD to ® and from ® to @ respectively,
and the connection pattern of the nodes is rep
resented by the binary connection matrices §
shown in Figs. 2 (a) and 2 (b). Since no addi
tional information is furnished about either
the nodes or the branches of the two graphs
under consideration, all relevant properties of
these graphs are in fact derivable from the con-

0) DICT!OOARY STRUCTURE b) QUERY STRUCTURE

Figure 1. Directed Graphs.

t Theoretical foundations and proofs of convergence
of the method are given in detail in Reference 10. The
theory as well as applications to chemistry are also
more fully treated in References 11 and 12.

* A graph G consists of a set X (the nodes) and a
set of relations between certain pairs of nodes (the
branches). A matrix C such that CJ

i = 1 whenever
there is a branch from node Xi to node xj' and is 0
otherwise, is called the connection matrix of graph G.
A 8ubgraph H of G is obtained by removing from G
certain nodes as well as all branches adjacent to the
removed nodes. A partial g'raph J of G is obtained by
removing from G some of its branches. A partial 8ub
g1'aph K of G is a subgraph of a partial graph of G.
A completed pa.rtial 8ubgraph L of G is a partial sub
graph to which branches are added so as to preserve
all original paths between the nodes included in L i
specifically, if node z is removed from G in forming L
and if there exist paths from x to z and from z to y in
G, then a path exists from x to y in L for all x, y
included in L.

SOME FLEXIBLE INFORMATION RETRIEVAL SYSTEMS 589

I 2 3 4 5 6 789
I I

2 I I I

3 I I a b c
4 I I a 1 1
5 b 1
6 I c
7
8 I

9 I t t

a) DICTIONARY STRUCTURE b) QUERY STRUCTlRE

Figure 2. Connection Matrices for Graphs of Figure 1.

nection matrices. The computer program is
therefore based on the manipulation of binary
matrices of the type shown in Fig. 2.

The heart of the algorithm consists in using
various properties of the nodes and/or branches
of the graphs in order to generate pairs of sets
which must match if the two graphs are even
tually to match. The following properties are
particularly useful for this purpose:

a. the kth order outward (or inward) degree
of the nodes, that is the number of nodes

Set
Number Criterion for Set Formation

I Outward degree 1
II Outward degree 2

III Inward degree 1
IV Inward degree 2

V Partition
VI

VII

Corresponding Sets

(b) s: (l,2,3,4,6,8,9)
(a) S:{2,3,4,9)
(b) S:{2,4,5,6,7,8)
(c) s: (2,5,7,8)

(a) S (2,3,4,9)
{b)S (2,4,6,8)
(c) S (2,5,7,8)

VIII Outward connection, sets V (b,c) S (2,4,5,6,7,8)

r

IX sets VI (c)S(2,6,7,8)
X Inward connection, sets VI {a)s (1,2,3,4,9)

XI sets VII {a,b}s (l,2,3,4,6,8,9)

XII Partition {a}S (2,3,4,9)
XIII I (b}S {2,4,6,8}
XIV (c}S (2,7,8)

.-------- -.--------._-----------.------------ ------------------.-----.-------
XV Inward connection, sets XIV (a,b}s (1,2,3,4,6,8,9)

XVI Partition (a) S {2,3,4,9}
XVII {b)s: (2,4,6,8)

XVIII {c} S (2,7,8)
--.---------------------_.------------

XIX Assignment (a)=(2)

XX Outward connection, sets XIX {b,c)s: (6,7,8)

XXI Partition
XXII

XXIII

(a)={2)
{b)S (6,8)
{c)S (7,8)

Figure 3a. Correspondences Formed for the Graphs
of Figure 1.

Set
Numbe Criterion for Set Formation Corresponding Sets

XIX' Assignment {a)={3)

XX' Outward connections, sets XIX' (b,c)={2,5)

XXI' Partition
XXII'

XXIII'

(a)={3)
(b)={2)
(c)= -

Figure 3h. Set Correspondences Resulting from
Improper Assignment.

reachable from a given node by outgoing
(or incoming) paths of length k;

b. labels or identifiers which may be associ
ated with nodes or branches;

c. the connectivity patterns of sets of nodes,
that is, the nodes reachable from a given
set of nodes by paths of length k.

The procedure for the graphs of Fig. 1 is out
lined in Fig. 3. Only connections of length 1
have been used to simplify the exposition.

The initial set correspondences are shown in
Fig. 3 (a), lines I to IV. Set II, for example, is
constructed by noting that the set of all nodes
I"\f 1"\11t·txT~ A .Aano C) ;..... 4-h~ ~_n ~+_ •• ~+.,_~
" "" "LU "'5L'I::;'I::; " ~.l.l "H'C \.{U'CJ..y i:jl..l U~"U.l'C,

must correspond to the set of all nodes having
at least outward degree 2 in the dictionary
structure. The only node of outward degree 2
in Fig. 1 (b) is ® ; there are four nodes in
Fig. 1 (a) that have outward degree 2 or
greater; ® must therefore correspond to either
nodes ®, 0, @) or @.

At this point it is necessary to generate
smaller sets from the ones shown on lines I to
IV of Fig. 3 (a). This is done by noting, for
example, that the set of query nodes contained
in both sets I and III of Fig. 3 (a) can corre
spond only to dictionary nodes which are also
contained in sets I and III (plus possibly in
other sets). The on:Iy query node contained in
both sets I and III is @ ; in the dictionary
structure, nodes ®, @), ®, and ® are both in
sets I and III, so that set {b} must be contained
in sets {2, 4, 6, 8}. The set of possible corre
spondents of node @ has then been reduced
from the seven nodes of set I to the four nodes
of set VI. This "set partitioning" procedure is
performed by the computer by comparing the
columns of the binary matrices exhibited in

590 PROCEEDlNGS-SPRING JOINT COMPUTER CONFERENCE, 1964
--------.--

I

NODES
SETS

1 2 3 4 5 6 7 8 9 a b c

I I
0 1 0 1 1 i i 0 i 0 1 1

II 1 0 0 0 1 1 1 0 0 0 0 1
III 0 1 0 0 1 0 1 1 1 1 J 0

0 0 0 0 0 I IV 0 0 1 1 1 1 1

Figure 4. Matrix Representation of Sets
I-IV of Figure 3a.

Fig. 4. Node@, for example, has column vector
1010; the only nodes of the dictionary structure
including the pattern 1010 are nodes ®, 0, ®
and ® with vectors 1111, 1110, 1010, 1011 re
s pecti vely .

The partitioning process yields three new sets
labelled V, VI and VII. New sets (VIn to XI)
are added using outward and inward connec
tions of length 1 from the set;; V, VI, and VII.
(The outward connection of the set {c} is
empty, and therefore it is not included in the
table.) The ,artitioning process is repeated,
yielding sets XII, XIII, and XIV. Since the
possible - correspondents of node ® have
changed, it is not redundant to test the con
nectivity again. When this is done and another
partition performed, sets XVI, XVII, and
XVIII result. These pairs of sets are identical
to those produced by the previous partitioning,
and no simple properties of the nodes can be
used at this point to generate new sets which
would in turn result in a reduced partition. II
An "assignment" is therefore made by postu
lating the correspondent for node ® (set XIX).
This assignment represents a guess which must
later be verified for correctness. Partitioning
of the sets XVI to XX yields the sets XXI to
XXIII. New assignments (not shown in Fig.
3 (a» of @ first to ® and then to ® then pro
duce two one-to-one correspondences between
the graphs of Fig. 1:

®~®I {®~®
@ ~ ® ~ and (~~ ®
0~ G)J ~ ~G)

If it is desired to obtain other possible cor-

II The problem of choosing a "good" property set to
be used for the generation of set correspondences is, in
general, unsolved. For the example at hand, additional
properties mi)?,'ht, however, have been used. For in
stance, second order inward degrees yield the corre
spondence c - 2, 6, 7 after the first partition.

respondences, it is now necessary to go back
to the sets XVI to XVIII and attempt other as
signments for node @. Sets XIX' to XXIII' of
Fig. 3 (b) illustrate the assignment ® ~ 0.
This assignment yields a partition which is seen
to be improper since node © cannot be included
if! the empty set. The assignment a .~ ® is
therefore not useful since it leads to an in
compatibility. The other two possible assign
ments for node@ , do, however, furnish accept
able one-to-one correspondences as follows:

@~0} f®~®
®~ ® andl@~0
0~® 0~®.

The four mappings obtained are easily verified
by comparing Figs. 1 (a) and 1 (b).

A flowchart of the complete procedure is
shown in Fig. 5. The procedure is seen to be

--------------,
I
I
I
I
I

'---__ --.. ____J -------------:

Yes

NO MATCH EXISTS BETWEEN THE
STRUCTURES

---- CARDINALITY VIOLATION

Figure 5. Simplified Diagram of Graph
Matching Procedure.

I
I
I
I
I
I
I
I
I
I
I
I
I

..J

iterative since the generation of corresponding
sets is followed by a partitioning process, fol
lowed again by the generation of new sets, and
so on. Alternate applications of partitioning
followed by formation of new sets will result
in one of three situations:

1. the membership of each set is reduced to
one, thus exhibiting the complete match
between the given structures;

2. an incompatibility arises between pairs of
corresponding sets, that is, a cardinality

SOME FLEXIBLE INFORMATION RETRIEVAL SYSTEMS 591

violation is found to exist between pairs
of corresponding sets; in that case no
match exists in general;

3. no incompatibility arises but repeated ap
plication of the partitioning procedure
will not result in the formation of new
sets; in that case, more than one match
is generally possible, and it is necessary
to perform an arbitrary assignment of
correspondents for one of the nodes.

If a cardinality violation is detected, that is,
if, for example, a set A is found to be included
in a set B which has fewer members, as hap
pened in the example for sets XXIII', then the
two structures being compared obviously can
not match. The comparison process can there
fore be stopped immediately, unless the incom
patibility resulted from a previous assignment;
in the latter case, only that particular assign
ment can be discarded, and other possible as
signments must be tried before deciding that
the two structures do or do not match. The
procedure to be followed in case of cardinality
violation is shown by broken lines in Fig. 5.
In practice, cardinality violations normally
arise early for graphs which do not match, so
that the procedure is very rapid in such cases.#

THE ADAPTIVE MATCHING PROCESS

In the example described in the preceding
section, four isomorphisms were detected be
tween the graph of Fig. 1 (b) and that of Fig.
1 (a). Clearly, it is possible to increase or de
crease the number of matches (or, alterna
tively, to increase or decrease the probability
of a match between any two given structures)
by suitably relaxing or tightening the condi
tions which affect the matching process. If, for
example, the unilateral connections (directed
branches) in Fig. 1 are replaced by bilateral
connections, and therefore the non-sym,metric
connection matrices of Fig. 2 are changed into
the symmetric ones of Fig. 6, then eight addi
tional isomorphisms will be found between the
two graphs. In fact, three different isomor
phisms will then exist between the "triangle"
{a, b, c} and each of the triangles {2, 6, 7},

:# Non-matching graphs of fifty nodes required an
average of less than one-half millisecond on the 7090
computer during a test run.

t 2 3 4 5 6 789
I t
2 t I 1 I I 1

3 t t a b cJ
4 t I 1 a I I!
5 t t b I lJ
6 t t c 1 1 J
7 1 1 1

8 1 t t 1

9 t t t

0) DieT IONARY STRUCTURE b) QUERY STRUCTURE

Figure 6. Symmetric Connection Matrices Derived
from Graphs of Figure 1.

{2, 8, 7}, {4, 2, 8} and {9, 4, 8} included in the
dictionary structure.

Another possible way of relaxing the condi
tions which are operative during the matching
process is to permit the introduction between
any two nodes in the query structure of a varia
ble number of intermediate nodes. This process
replaces the query structure of Fig. 1 (b) by the
new structures of Figs. 7 (b) and ? (d). (The
broken lines indicate indirect eonnections.)
Since each of the intermediate nodes mayor
may not match a given node in the dictionary
structure, it is now necessary to test whether
the query structure is a compieted partial sub
graph (rather than a subgraph) of the diction
ary structure. A comparison of Fig. 7 (b) with
the partial subgraph of Fig. 1 (a) represented
as Fig. 7 (a), and a comparison of Fig. 7 (d)
with Fig. 7 (c) reveals at least two additional
completed partial subgraphmatches that could
be obtained in addition to the four subgraph
matches already exhibited in the preceding sec
tion. Further completed partial subgraph
matches not shown in Fig. 7 are also possible.

0) PARTIAL SUBGRAPH OF
DICTIONARY STRUCTURE OF

FIGURE 1

~
~7

c) PARTIAL SUBGRAPH ~
DICTIONARY STRUCTURE OF

FIGURE 1

b) MODIFIED QUERY
STRUCTURE

d) MODIFIED QUERY
STRUCTURE

Figure 7. Matching Partial Subgraphs.

592 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

I 2 :3 4 5 6 7 8 9
I I 1 1 I

2 I I t

:3 1 I 1 1 1 abc
4 1 1 I 1 a I I
5 b 1
6 1 c
7
8 1

9 I I 1 1 t I

a) DICTIONARY STRUCTURE b) QUERY STRUCTURE

Figure 8. Path Matrices (Including Indirect
Connections) for Graphs of Figure 1.

To determine whether a gral'h is a completed
partial" subgraph of another graph, it is no
longer sufficient to know whetRer two nodes
are directly connected or not, but it is also nec
essary to know whether a (possibly indirect)
path exists between any pair of nodes. Thus
the connection matrices of Fig. 1 must be re
placed by the "path matrices" shown in Fig. 8
in which the i_jth element is 1 whenever a path
exists from node i and to node j. * * Each 1 in
the matrices of Fig. 8 thus indicates either a
direct or an indirect connection between the
corresponding nodes, and use of the algorithm
of Section 2 with the path matrices of Fig. 8
(instead of the connection matrices of Fig. 2)
will generate the isomorphisms derived in Figs.
3 as well as a number of additional completed
partial subgraph matches including those ex
hibited in Fig. 7.

Consider now, on the other hand, methods
which will tighten the requirements to be met
for a satisfactory match. Instead of specifying
less information than for the directed subgraph
comparison, it is now necessary to add restric
tions to the graph of Fig. 1. A possible method
consists in adding labels to the unlabelled
branches of the graph to simulate, for example,
various types of relations between the nodes.
Another possibility is the addition of labels to
the nodes of the graph so as to restrict the
correspondents of a given labelled query node
to only those nodes in the dictionary structure
which carry the same label.

Consider first the two graphs shown in Fig.

** The path matrix may be generated automatically
as a sum of powers of the corresponding connection
matrix.l3

a) DICTIONARY STRUCTURE b) QUERY STRUCTURE

Figure 9. Abstract Graphs Including Branch Labels.

9. Clearly these graphs are identical with those
shown in Fig. 1, except for the added branch
labels which distinguish three types of relations
denoted respectively by the digits 1, 2, and 3.
The binary connection matrix of Fig. 2 may
now be replaced by a numeric branch label
matrix as shown in Fig. 10, whose i_jtll element

I 2 :3 4 5 6 7 8 9
t 2
2 2 :3 :3
:3 :3 I abc
4 :3 2 a :3 :3
5 b 2
6 2 c
7
8 2
9 :3 1 :3

Figure 10. Branch Label Matrix for Graphs of Figure 9.

is n if there exists a branch of type n from node
i to node j, and is 0 otherwise. In the set gen
eration and partitioning procedure, it is then
possible to keep with each node a list of branch
labels of all outgoing (or incoming) branches,

Set
Number Criterion for Set Generation Corresponding Sets

I Outward degree 2 (or greater) (a} S(2,9}
and outward branch label (3,3)

II Outward degree 1 (or greater) (b) S (l,2,4,6,8)
and branch label (2)

III Inward degree 2 and branch (c) S(2,7,8]
label (2,3)

IV Connections from set I includ- (b,c] S(4,7,8)
ing branch label (3)

V Connections from set II and (c) S (2,6,8,7}
branch label (2)

VI Connections into set III and (b) S (1,6,8,4}
branch label (2)

VII Connections into set III and fa} S{3,4,2,9}
branch label (3)

Figure lla. Set Correspondences for Graphs
of Figure 9.

SOME FLEXIBLE INFORMATION RETRIEVAL SYSTEMS 593

a b e 1 2 3 4 5 6 7 8 9

I 1 0 0 0 1 0 0 0 0 0 1

II 0 1 0 1 1 0 1 0 1 0 0 (a}£{2,9)

II 0 0 1 0 1 0 0 0 0 1 0 (b}£{4,8)

V 0 1 1 0 0 0 1 0 0 1 0 (e) £{7,8}

V 0 0 1 0 1 0 0 0 1 1 0
VI 0 1 0 1 0 0 1 0 1 0 1 0
'II 1 0 0 0 1 0 1 0 0 0 0 1

Figure llb. Set Inclusion Matrix for Sets of Figure lla.

and, obviously, given a pair of corresponding
sets not only must the nodes match as before,
but the branch labels must match as well. The
matching procedure is illustrated in Fig. 11.

The branch labels make it possible to gen
erate a large number of sets at the outset. The
set partitioning procedure illustrated by the set
inclusion matrix of Fig. 11 (b) then results in
the formation of the three small sets reproduced
in the figure. Assignment of @ to either node
® or node ® finally produces two one-to-one
mappings as follows:

®~®} {@~®
®~@ and @~®

©~® @~(f)

A comparison of the graphs of Fig. 9 can be
used to verify that these two mappings are the
only ones which obey the branch labelling re
strictions.

As a last extension, consider now the two
Syntol graphs2 of Fig. 12. These graphs cor
respond to an actual document abstract and to
a search request, respectively, as encoded under
the Syntol system, and may be seen to be iden
tical with the structures of Fig. 9 except for
the added node labels. In order fully to repre
sent the system, it is no;v necessary to add node
label matrices to the connection matrices and

Figure 12a. Typical Syntol Document Graph.

~o ®IERF OPTiOUE

CORTEX 2 ®~1
~ CHRONAXIE

@

Figure 12b. Typical Syntol Query Graph.

to the branch label matrices. The node label
matrices may be represented either as a table
including all the node names together with the
(possibly vacuous) corresponding labels, or
alternatively as a full matrix whose i_jtlt ele
ment is 1, whenever label j is attached to node
i. The node labels serve the same purpose as
the branch labels, since they restrict the num
ber of possible correspondents of a given node
to only those nodes which either carry the same
label, or else carry no label, thus indicating that
they can match any node whatsoever that satis;..
fies the remaining restrictions ..

The procedure used to determine whether the
query graph of Fig. 12 is a subgraph of the
document graph is outlined in Fig. 13. Since all
nodes are labelled, an immediate correspond
ence is established between the nodes of the two
graphs under consideration (sets I, II and III
of Fig. 13). It remains to determine whether
the connections and branch labels are preserved.
Sets IV of Fig. 13 reveal an incompatibility,
since node ® has two outgoing branches with
a branch lab~l (3), whereas the corresponding
node ® has only one such outgoing branch.
Since a set containing two elements cannot be
contained in a set containing only one element,

Set
Number Criterion for Set Generation Corresponding Sets

I Node label "cortex" (a) S{3)
II Node label ''nerf optique" {b}S{8)

III Node label "chronaxie" {c)S(7)
IV Direct connections from set I {b,c)S{2}

with branch label (3)

Figure 13. Set Correspondences for Graphs of
Figure 11 Using Direct Connections.

594 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1964

I Set I I I ! Number I Criterion for Set Generation Corresponding Sets I
I I Node label "cortex" {a} ~ (3)

II Node label "nerf optique" (b) ~ {8}
III Node label "chronaxie" (c) ~ {7}
IV 'Paths from I with branch label {b,c} ~ {2,7,8}

(3)
V Paths from II with branch label (c) ~ {7}

(2)
VI Paths into III with branch label {b} ~ (l,2,4,6,8)

(2)
VII Paths into III with branch label (a) ~ [2,3,4,9}

(3)
VIII Paths into II with branch label (a) ~ {2,3,4,9}

(3)

Figure 14. Set Correspondences for Graphs of
Figure 11 Using Indirect Connections.

the subgraph test fails, and there is no need to
proceed further.

It is therefore necessary to relax the match
ing conditions by taking into account indirect
connections and intermediate nodes. The path
matrix of Fig 8 is now used to verify that com
plete paths (rather than direct connections)
and path labels are preserved by the corre
spondence in the node labels. The set corre
spondences, shown in Fig. 14, demonstrate that
to each outgoing and incoming labelled path in
the query structure there corresponds a path
with similar properties in the document struc
ture. The query graph therefore matches the
document graph when indirect connections are
taken into account.

An adjustable procedure for the comparison
of query and dictionary structures can now be
outlined. The process uses the same matching
algorithm throughout, and is modified only by
altering the matrices which represent the con
nection patterns and the branch or node labels.
The exact strategy used in the progressive
alteration of the matrices may be made to de
pend on the type of document collection being
processed, and on preliminary retrieval tests.
Clearly, the weaker the restrictions which affect
the matching process, the more matches are
likely to be obtained, and the larger therefore
the collection of answers to a given search re
quest.

In general, elimination of the branch labels
from the query and document graphs reduces

a variety of possible relations between terms
to a single one (represented by an unlabelled
branch). Replacement of directed by non-di
rected branches further reduces the ability to
discriminate between a variety of relations,
since a relation from A to B is now equivalent
to one from B to A. Finally, removal of node
labels simplifies both the search requests and
the document identifications, since it eliminates
from consideration some of the terms used as
identifiers.

A possible strategy for the gradual broaden
ing of matching criteria is as follows:

a. Use unmodified query structure Q and
dictionary structure D and test whether
Q is a subgraph of D;

b. If the preceding test is negative use path
matrix including indirect connections to
determine whether Q is a completed par
tial graph of D;

c. If the preceding test is again negative,
selectively remove branch labels by alter
ing branch label matrix and test again
using first only direct connections (sub
graph test), then indirect connections;

d. If matching conditions must be further
relaxed, replace unilateral by bilateral
connections and use symmetric connec
tion matrices first with direct and then
with indirect connections;

e. Finally, selectively remove node labels and
test again for subgraph and then for in
complete partial graph.

A retrieval system using graph matching
procedures in conjunction with natural lan
guage data is outlined in the next section.

A SENTENCE MATCHING PROCEDURE
FOR DOCUMENT RETRIEVAL

A simplified automatic document retrieval
system is shown in Fig. 15.5•14 This system
makes use of the standard statistical proce
dures, including the computation of word fre
quency counts, word associations based on co
occurrence in the same sentences or texts, docu
ment associations based on . co-occurrence of
words, and document relevance coefficients.l5,16

In addition, a dictionary or thesaurus may be
used if available to normalize the vocabulary.

SOME FLEXIBLE INFORMATION RETRIEVAL SYSTEMS 595

INCOMI NG TEXT OR SEARCH REQUEST

DICTIONARY LOOK-UP TO OBTAIN
SYNTACTIC AND SEMANTIC LABELS

r----------- ------------1
I EXPANSION OF SEMANTIC LABELS I

L __ TH~~~3~~R~~ IN ~~~E!~~~R!3~H2:J
r------------I ------------,
I COMPUTATION OF SENTENCE SIGNIFICANCE I

L __ '=-NE !~~~':.!~C_SEN~E~':~ ~X2~~2:.I.::~J
r----------- - I ________ ---,

STRUCTURAL 1 SYNTACTIC ANALYSIS OF SIGNIFICANT I
r.WCHING --I SENTENCES AND STRUCTURAL MATCHING I

I I WITH CRITER ION PHRASES I

~=~~~=~~=~=~J[~~~~--~==~~~
I EXPANSION OF SEMANTIC LABELS I

LT~~O~~~ 5!~12S!~C~L TE~M_ ~~R~~A~I5:~J

COMPARISON OF SEARCH REQUEST
WITH DOCUMENT IDENTIFICATIONS

AND POSSIBLE DOCUMENT CORRELATIONS

// OPTIONAL STEPS

/ COMPULSORY STEPS

SIMPLIFIED SYSTEM USING STRUCTURAL MATCHING

FIGURE 15

Figure 15. Simplified System Using
Structural Matching.

The quantitative procedures may be supple
mented by choosing a set of significant sen
tences, as determined by the statistical process,
and using them to perform a structural analysis.
Specifically, each word is furnished with one or
more thesaurus category numbers (the seman
tic labels) as a result of the dictionary look-up
procedure. If no dictionary is available, each

0
0

_

~/J' \!:Io I

®/ i
I' i /~@)
I I I

J I
I '(IDa I
I 'I I
I I I
I I I
I I I
I I I

SYNTACTIC}
I I I

LABELS R 8 A S
• I
I

word can of course function as a semantic label
by itself. A syntactic analysis is then per
formed which determines a dependency struc
ture for the words of a sentence, and also gen
erates a syntactic label for each word. A typical
dependency tree, resulting from an automatic
syntactic analysis, is shown in Fig. 16. A syn
tactically analyzed sentence can of course be
represented as before by direct and indirect
connection matrices, as well as syntactic and
semantic label matrices; moreover, these ma
trices can be generated automatically from the
output furnished by the syntactic analysis pro
gram.17

It is now possible to compare the set of ana
lyzed sentences or search requests with a set of
"criterion phrases" included in a phrase dic
tionary. Each criterion phrase is representa
tive of one or more subject categories, and if
a match is obtained between a criterion phrase
and an analyzed sentence or search request, the
corresponding subject categories can be at
tached to the matching sentences or requests.
To retrieve a set of documents in answer to a
given search request, it is then sufficient to
compare the subject categories attached to the
requests, with the subject identifiers attached
to the documents as outlined in Fig. 15.

A typical criterion phrase is shown in Fig.
17. Each criterion phrase is represented, as
before, by an identification number and control

~ 0 0

@l @l @:

:@ /~0
I

@o i I
I , I
I I I
I I I
I I I
I I I
I I I

V A 0 S V C

SEMANTIC} BECAUSE
LABELS HE TEXT CONTAINS SECRET INFORMATION RETRIEVAL IS VITAL

Figure 16. Typical Syntactic Dependency Tree.

596 PROCEEDINGS-SPRING JOINT· COMPUTER CONFERENCE, 1964

® o

®/l o I

; :
SYNTACTIC} (A:O) (S~C)
LABELS i ' :'
SEMANTIC} (0;4, (0;7)
LABELS 023)

THESAURUS
CATEGORY 014: (I.N.FORMATION, \

DOCUMENT (5),\
FACT (5),)
DATUM, DATA
ETC.

THESAURUS
CATEGORY 017 (RETRIEVAL,)

PROCESSING,
ORGANIZATION,
SEARCH, ETC.

Figure 17. Typical Criterion Phrase.

information, the di]'ect and indirect connection
matrices, the syntactic and semantic node label
matrices, and the category indicators which
identify the subject classes for the given phrase.
The semantic node labels attached to the sample
criterion phrase are decoded in Fig. 17.

The matching process between a given crite
rion phrase and a sample sentence or search
request is identical with that used in the pre
ceding section for document graphs. That is,
two principal criteria must be satisfied:

1. Given a specified node of the criterion
phrase, all those sentence nodes are se
lected which have matching syntactic and
semantic labels;

2. From among those sentence nodes which
obey the restriction of part 1, some subset
must be chosen whose direct (or indirect)
connection pattern is identical with the
connection pattern of the corresponding
nodes in the criterion phrase.

Consider, as an example, the criterion phrase
of Fig. 17 and the sentence of Fig. 16. Clearly,
both syntactic and semantic labels of nodes CD
and @, and .of nodes ® and ® will match
properly. However, there exists a path from
node a to node ® in the criterion p·hrase,
while no such path exists from node ® to node
0. Therefore, the structure matching procedure
will not be successful for the given example.
On the other hand, it can be easily verified that
the trees of Fig. 18 will, in fact, prope-rly match
the criterion phrase of Fig. 17.

Several methods are provided in the system
for adjusting the matching process. First, the
matching algorithm itself is adaptable, since
node and branch labels can or cannot be taken
into account, and direct as well as indirect con-

®

(i)/~®
I ' ,"'-.,.
I : I",@
I , I 0
I I , I
I , I I
I I I I
I , I I

SYNTACTIC} A S PR 0
LABELS I I I

I I I
I I I I

SEMANTIC} THE RETRIEVAL OF INFORMATION
LABELS

(a)

SYNTACTIC} S V A + A 0
LABELS

SEMANTIC} HE DISCUSSES INFORMATION AND DOCUMENT RETRIEVAL
LABELS

(b)

TREE STRUCTURES WHICH MATCH THE
CRITERION PHRASE OF FIGURE 17

FIGURE 18

®

(0
I I I I I , I
I I
I I
I I
I I
I I
I I

SYNTACTIC} ~ I
S PR A LABELS ,
I I I , I
I I

I
I
I

SEMANTIC } T~E
LABELS PROCESSING OF DOCUMENT CONTENT

(e)

®

®/i
/Y !

0)/! I

9 I :
I I I
I I I

SYNTACTI C} I I I

U~~ ~ A S

SEMANTIC } DOCU~ENT FILE ORGANI:iATION
LABELS

(d)

TREE STRUCTURES WHICH MATCH THE
CRITERION PHRASE OF FIGURE 17

FIGURE 18
Figure 18. Tree Structures Which Match the Criterion

Phrase of Figure 17.

nections can be used. Second, it is possible to
provide the criterion phrases with a smaller or
larger number of syntactic and semantic labels,

SOME FLEXIBLE INFORMATION RETRIEVAL SYSTEMS 597

thus restricting or enlarging the possible sen
tence nodes which are compatible. Finally, the
thesaurus which can be used to replace text
words by thesaurus categories, as well as the
criterion phase dictionary can be enriched
to ensure inclusion of a larger variety of pos
sible sentence structures. The system is pres
ently being tested in order to determine the
practical effectiveness of these various meas
ures.

REFERENCES

1. M. DETANT, Y. LECERF, and A. LEROY,
"Travaux Pratiques sur l'Etablissement des
Diagrammes," Enseignemept Preparatoire
aux-Techniques de la Documentation Auto
matique, Euratom Report, Ispra (February
1960). •

2. J. C. Gardin and F. LEVY, "Le Syntol
Syntagmatic Organization Language,"
Proceedings of the IFIP Congress-62,
Munich (August 1962).

3. R. BARNES, "Language Problems Posed by
Heavily Structured Data," Communica
tions of the ACM, Vol. 5, No.1 (January
1962) .

4. G. SALTON; "The Manipulation of Trees in
Information Retrieval," Communications
of the ACM, Vol. 5, No.2 (February 1962).

5. G. SALTON, "Some Hierarchical Models for
Automatic Document Retrieval," American
Documentation, Vol. 14, No.3 (July 1963).

6. E. MARDEN and H. R. KOLLER, "A Survey
of Computer Programs for Chemical In
formation Searching," National Bureau of
Standa'rds, Report No. 6865 (May 1960).

7. H. SHERMAN,."A Quasi-topological Method
for'the Recognition of Line Patterns," In
formation Processing, Proceedings of the
International Conference on Information
Processing, Paris (June 1959), pp. 232-
238.

8. R. L. GRIMSDALE, F. H. SUMMER, C. J.
TUNIS, and T. KILBURN, "A System for the
Automatic Recognition of Patterns," Proc.
lEE, Vol. 106 (1959), pp. 211-221.

9. S. H. UNGER, "GIT-A Heuristic Program
for Testing Pairs of Directed Line Graphs
for Isomorphism," ACJl.-I National Confe1'
ence, Denver (August 1963).

10. E. H. SUSSENGTH, JR., Doctoral Thesis,
Harvard University (in preparation).

11. E. H. SUSSENGUTH, JR., "A Graph Theo
retic Algorithm for Matching Chemical
Structures," Journal of Chemical Docu
mentation (to ~ppear).

12. G. SALTON and E. H. SUSSENGUTH, JR.,
"Automatic Structure - Matching Proce
dures and Some Typical Retrieval Applica
tions," Report No. ISR-4 from the Harvard
Computation Laboratory to the Air Force
Cambridge Research Laboratories (August
1963) .

13. F. E. HOHN, S. SESHU, and D. D. AUFEN
KAMP, "The Theory of Nets," IRE Trans
actions on Electronic Computers, Vol. EC-
6, No.3 (September 1957).

14. .r""'t n & _...... ".4. ~1 ___ !1....1_ A. "- __ +.:". Q,.n+n.~
U. i::)ALTUN, i\..[' It:XIUlt: .l'1.U\'Ul11aL.l~ ..::J~ ...,"'CUI

for the Organization, Storage and Retrieval
of Language Data (SMART)," Report
ISR-5 to the National Science Foundation,
Harvard Computation Laboratory (Janu
ary 1964).

15. v. E. GIULIANO, "Automatic Message Re
trieval by Associative Techniques," Fi1'st
Congress on the Information System Sci
ences, Hot Springs (November 1962).

16. H. E. STILES, "The Association Factor in
Information Retrieval," Journal of the As
sociation for Computing Machinery, Vol.
8, No.2 (April 1961) .

17. A. LEMMON, "The Criterion Routine," Re
port No. ISR-5 to the National Science
Foundation, Harvard Computation Labo
ratory (January 1964).

SOME IMPROVEMENTS IN THE TECHNOLOGY OF

STRING MERGING AND INTERNAL SORTING

Martin A. Goetz
Applied Data Research, Inc.

Princeton, N. J.

GENERAL

Sort/merge programs for magnetic tape com
puter systems are of two basic classes: 1

Digital (or Radix) and
Collation

The digital sort is useful
number of cases and is not examined in this
paper.

The collation sort is the more general type
of sort and is composed of two basic sub-pro
grams:

1. The first sub-program internally sorts a
group of data. The group of data after
being sorted is referred to as a "string" or
"initial string." Such a sub-program is
referred to as an internal sort.

2. The second sub-program merges two or
more strings. It will produce as output
longer strings and will eventually produce
one string which contains all the data. Such
a sub-program is referred to as a "merge,"
or "string merge."

The input data enters the internal sort sub
program only once and the merge sub-program
one or more times. The various sortingsys
tems in use today all try to minimize the'execu
tion time of the merge sub-program. This is
accomplished by maximizing the' way of the
merge while at the same time keeping input

599

strings the same size thus resulting in an
"effective" power of the merge equal to the way
of the merge. * The read-forward Oscillating
Technique described in this paper is directed
toward this goal.

The Von-Neuman (T/2),1 Polyphase,2,3 and
Cascade4 merge techniques begin after all the
data is processed by the internal sort sub
program and the initial strings are placed on
tape (Figure 1). The Von-Neuman Technique
places the initial strings on only half the avail
able tapes; the Polyphase and Cascade place
data on all the unused tapes. Depending on the
number of tape units, one of the merging tech
niques will prove superior over the others. The
read-backward Oscillating Technique5 writes
several initial strings, transfers to the merge
sub-program, merges the strings and returns
to the internal sort-hence the name Oscillat
ing (Figure 2). As the number of tape units
used for sorting increase, the effectiveness of
the Oscillating Sort increases. Given T input
tapes, the effective power of this technique is
T-2. This technique, previously considered only
for r8ad-backward tape systems, is developed
for read-forward only tape systems as described
in the following pages.

~: For a d~st~n~tion b:tween "way of the m:rg"," and
"effective power of the merge" please see glossary of
sorti merge terms.

600 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

ExUIP1e - 6 tapee
16 etr1nqa

'1'1 '1'2 '1'3 '1'4 '1'
5 '1'6

VOH-1IBtJMUI I ~ ~I ~~ ~~ .u. ' -U- 5 ,jJ. 6

- ..--to

l~
.IJ. 7 ,u.. 8 .u.. 9

- I"e.d baoJarard.
,i). 10 .IJ.. 11 ,u. 12

.u. l' ,u.. n ,u. 1

.ij, lIS

DIlI!IIUft1111

IL
i58 ·EB ~E§ ~m ,u. 5

CASCAD\! .u. 16 .u. 6 .u. 9 .ij. 12

.u. 8 ..u. 10 ,jj. 13
- r.4-:to:rwar4 .u. 11 ..u. 1_

-..--- .u. 15 _ ..
_,111

IL
-11-b8 ~ffi ~m ~~ !~ POLYPHASE .,u. 10 .u. 6 .JJ. 7 .u. 8

- ..--tor00z4 ..u. 11 .u. 12 .u. n ---- -II- l' ,IJ.. 1~

_ ..
IIIM'IIIIIImIll

LlIGEIIID

........ d:1NO't1GD. 1:aIH. ... t~ d1ncrt1oa~
(_~.to_ .. _-_I

1I1D&l'- 1DU ___ -... (~)

Do@lo""",,1DU"'t __ writ..,.. C.u.)

Figure 1.
Distribution of Strings During Internal

sort for Von Neuman (N / 2), Cascade and Polyphase
Merge.

READ-FORWARD OSCILLATING
MERGE

The read-forward Oscillating Merge allows
the use of a preceding internal sort technique
which produces variable size string lengths
(e.g., Replacement-Selection/i). It also allows,
of course, techniques which produce fixed-size
strings (e.g., successive merging 1) •

This paper presents an example in which the
internal sort is a Replacement-Selection. The
Replacement-Selection Technique used as an
internal sort produces an initial string length
almost twice the size of the memory available
for sorting. Since the Oscillating Merge Tech
nique must merge initial strings formed by this
technique, it is important that we review the
nature of the output produced by the Replace
ment-Selection Technique.

Given a memory for building strings that
can hold R records, the expected string length
for random data for the first string7 is l.73R;
for successive strings, 2.0R; without replace-

'1'1 '1'2 '1'3 '1'
4

'1'. '1'6 5

2

~!~It::lil: ~[16

0 I -] I 4 to, 0 ,"
• :Ut~· t~,. JJ..t O

10

" 11

12

U

110 10

15 11

16

l'
110

15

16

LlIGBIIID
_ .u..et1«l ___ .u..et1«l.

(ooutb-torazod; ... _-_1
1I1D&l t_ t_.-....,.. (~)
DoUl>l ___ Vl'1tu... (~)

o 1DU __ oeq_ or -.. _

writ..,. ... t_.

Figure 2.
Tape Motion of Read-Backward Oscillating Merge.

mente l.OOR. Given T tape units, the string on
the first tape is estimated to be l.73R; for the
last tape unit. l.OOR. for all other tape units.
2.00R. This variability in string length re
duces the advantages of the read-backward
Oscillating Technique.8 As will be demon
strated, this variability also reduces the effec
tiveness of the read-forward Oscillating Tech
nique.

The read-forward Oscillating Technique can
also be used with an internal sort that produces
initial strings of a fixed size. In this case, the
initial string length is l.OR for all tape units.

THE TECHNIQUE

It is more convenient to describe the tech
nique when the initial string lengths produced
by the internal sort are fixed in length (l.OR),
It will then be shown how the read-forward
Oscillating Merge operates when used with the
Replacement-Selection Technique in which
variable length strings are produced.

Given N tape units (T1 to TN) available as
work tapes. (In the example· shown in Figure
3, N is equal to 5.)

SOME IMPROVEMENTS IN THE TECHNOLOGY OF STRING MERGING AND INTERNAL SORTING 601

IlIPtl'1'

S'l'Alt'l' 01" 'rAPZ

110 REWIND TIll!

LEGEND

Y Arrow point _bon poa1t1on ot read/wr1te head.

OIl. tape.

S1r>gl. arrow 1Dd1cat .. tap. 1'Qd1ng. l~)
Double arrow 1Dd1oat_ tape wr1t1Dg. (,u)
Dotted. arrow 1nd1cat .. tape re'W1Ddlngo(1)

Figure 3D

JIO RlllfIIIlD TIME

lig]K! ~I

1Ir--l II 11r---l
Jl. 21 ~ 17 ~ 18 ! ., 13

18 14
19 15
20 16

Figure 31"

1 :: t ~~:. ~~~ + ~:: ~ ~~~ 4
• I I I

I I I I I

17 I 13: 9 I 5 I 1 I

1
!!1 ~: ~~: ~: ~:
210 I 16: 12 I 8 I "I

I I I I •

; ; : : :
j" : : i :
I • ,

1 I

! ! · · 7 · · '" U
12
13 ..
lS

Figure 3.

9
10
11
12

~L-....J;

11r---J

~ 19

5
6
7
8

Tape Motion of Read-Forward Os~i1lating Merge.

3
4

L-.J

II r---t n 20

1. Initial strings are written on all tape units
(T1 to Tx). After each string is written
on successive tape units, the tape is re
wound. The last tape unit is not rewound
(Figure 3A).

2. Tape units Tl to TX- 1 are merged onto tape
units Tx, at which time all tape units are
rewound (Figure 3B).

3. As soon as tape unit Tl is rewound (this
tape unit contains only one string of data),
a string is written on tape unit T 1 and then
it is rewound. Strings are consecutively
written on tape units T2 to Tx- t • All tape
units except TX-l are immediately rewound
(Figure 3C). TX-l is not rewound.

4. A merge of Tl to T X - 2 and Tx is performed
onto TX - 1' Then all tapes are rewound
(Figure 3D).

5. The cyclings shown above continue for N
cycles at which time all tape units contain
a string length of size (N -1) times the
initial string length (Figure 3E).

6. The (N -1) size strings are merged, the
power being (N -1) as shown in Figure
3F.

7. The pattern shown continues until the
data is exhausted, at which time one
string will be formed, similar to the read
backward Oscillating Technique.

Note that after 16 strings were merged, the
rewind interlock time was equal to rewind time
for N -1 strings. This time is a relatively small
portion of the rewind time. Note that rewind
time is minimized by starting the development
of the next string in a group, although it will
not be merged until the next cycle (String 21
and Strings 17-20).

When using the Replacement-Selection Tech
nique in conjunction with the read-forward
Oscillating Technique, initial strings are con
strained not to exceed twice the number of
records (R) in memory. After 2.0R records
are written on tape, the string is completed.
Note that with other merge techniques the
minimum string length might be LOR as a
lower limit· and "all" records to be sorted (an
entire file) as the upper limit. When using the
read:'forward Oscillating Technique, the upper
limit is set at 2.0R. When 2.0R records can
not be formed, dummy records (and blocks)

602 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

are substituted to form 2.0R records. Since
2.0R is the expected length, excessive dummys
will not be formed. 2.0R may not be an opti
mum figure. It will, however, ciosely approxi
mate the optimum as the number of tape units
increase.

To the degree that the read-forward selection
technique must generate dummy records to
produce string lengths of 2.0R, it is less ef
ficient than the read-backward technique. As
stated above, however, this reduction in effi
ciency should be slight under most circum
stances.

THE PROBLEM OF WRITING ON TAPE
USING THE READ-FORWARD OSCILLAT
INGMERGE

The read-forward Oscillating Merge herein
proposed requires that data be written on the
front of a tape without destroying information
further down the tape which will be subse
quently read. Depending on the computer sys
tenl and the tape units, this may cause problems.
For some computer systems, the read head may
not be positioned properly due to start-stop
time variations, automatic bypassing of un
writable tape (bad spots), effects of the erase
head or differences in writing density. For
systems with a tape rewrite feature, there
would be no problem. For systems which allow
tape erase, gaps on the tape can be program
generated which will solve the problem. If
neither of these features are available "hash"
blocks can be inserted to protect information
which must be subsequently read. The tech
nique may not be applicable to older systems
where there is no programmed error control.

Because of the wide variety of tape systems,
this problem is not covered in more detail. It
has been investigated, and it can be shown that
the additional programming to cope with this
problem is trivial.

CONCLUSION

The technque described offers the same
potential as the Tead':bac:kwArd Oscillating
Technique, namely: as the number 'of ita pes
increase, this technique will perform the sort
ing task almost twice as efficiently as the N /2
(Von Neuman) and more efficiently than the

Polyphase or Cascade Merge Technique. The
Read-Forward Oscillating Technique might be
considered even in systems which allow back
ward reading. This is particularly the case in
systems where tape reverse interlock is high.

The foregoing presentation of the read-for
ward technique should not be construed as a
recommendation of this technique to the ex
clusion of other methods. The selection of
proper sorting techniques is a complex problem
dealt with in detail in other papers ri, H, 9, 10 and
which is not completely formalized at this time.

VARIABLE LENGTH RECORD SORTING
USING THE REPLACEMENT-SELECTION
TECHNIQUE

INTRODUCTION

Another area where efficiencies' in sorting
can be attained, is in the internal sort. Since
the number of merging passes is based on the
number of internal strings, it is desirable to
minimize the number of strings formed by the
internal sort. The number of strings are mini
mized when the amount of data sorted at one
time (the length of the string) is maximized.

The sorting techniques in use today limit the
string length for variable size records to the
number of records that can be stored in
memory. This section describes a sorting
technique that permits an initial string to be
formed that contains approximately twice as
much data as can fit into the working storage
a vailable in memory. 7

GENERAL

The variable-record length internal sort seg
ment uses a modified version of the Replace
ment-Selection Technique.6 This technique has
previously been applied to the sorting of fixed
size records or to a variable-size record con
verted into a fixed format.

The proposed technique temporarily "dis
joins" a \7ariable-size record into one or more
fixed-size "pieces" (re£erned 1il0> :M 'segments)
and at selection time ,combines the separate
segments of the record. No expansion of the
record occurs.

SOME IMPROVEMENTS IN THE TECHNOLOGY OF STRING MERGING AND INTERNAL SORTING 603

The selection of an "optimum" fixed-size seg
ment storage area is either determined by the
user (based on his knowledge of the data) or
assigned by the computer program. The opti
mum size is one which will produce the longest
string on tape without causing average size
records to be broken up into a large number of
segments. Long strings are produced by select
ing a fixed storage segment size into which the
records will fit without the need for excessive
"fill" when the last "segment" of the record is
moved into the fixed segment area. The selected
segment size should be such that all keys for
each record appear in the first disjointed seg
ment when subdivided.

A brief review of the selection logic for con··
ventional fixed size Replacement-Selection in
ternal sorting follows:

Core memory is divided into 4 parts ..
(1) Instructions
(2) Input Areas
(3) Output Areas

(4) A string building area (work storage
area)

The string bUllQlng . area is further sub
divided into pockets (or sl9tS) equal to a fixed
size plus about 12 characters to hold informa
tion tlsed during the selection process. The
selection process is similar to a tournament
match in which the selected record at each level
is referred to as a "winner." Assume as an
example, the string building area can contain
12 records. The logic for selection is as fol
lows:

1. A string building area is filled with records
(R) from the input area. (See Figure 4.)

2. The first record in the string building area
is compared against the second, the third

RECORD RECORD I~ORD 1 2

4 5 ! 6

7 8 9

10 11 12

Figure 4.
Example of Records in String Building Area.

against the 4th, etc. In this manner a
set of first round winners is selected. The
addresses of the winners are stored.

3. In a similar way succeeding rounds of
winners are selected until one final winner
is selected. Addresses of the winners of
each round are recorded. This process is
called initialization of the tree and re
quires R-1 comparisons. (See Figure 5.)

RBCORD 1

RBCORD 2

winner

RBCORD 3

RBCORD 4

winner

RECORD 5
winner

RBCORD 6
winner

RBCORD 7
w1nner

RBCORD 8

RBCORD 9
w1nner

RBCORD 10
winner

RBCORD 11
winner

RBCORD 12

-Figure 5.
Logical Relationship of Records in Tournament.

4. The final winner is moved to the output and
its position in the string building area is
replaced with a new record from the in
put area.

5. If the new input record could be put out in
sequence with respect to the last record
that was put out, it can participate in the
current tournament. Otherwise, it may not
participate in the current tournament.

6. Each subsequent record selected requires
Log~R comparisons. This selection process
is referred to as a "scan."

7. When no records can participate, the cur
rent tournament is over and a new string
must be formed.

U~ING THE REPLACEMENT-SELECTION
TECHNIQUE FOR VARIABLE LENGTH
RECORDS

A record in the input area is divided so that
one or more segments of it may be moved into

604 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

slots in the string building area. The first such
segment, containing the key, is called the
header; all other segments are trailers. Each
segment of a record, except the last, contains
as part of its indicative information, the ad
dress of the segment of the record which is its
immediate successor.

When the string building area is completely
filled it is "initialized." Only headers partici
pate in this initialization and only headers are
winners in each "round" of the tournament.
Initialization is concluded when a final winner
has been determined.

At this point, the winner is moved to the out
put area. Immediately, its place in the string
building area is filled from the input area.
Whenever a "segment" is moved from the
string-building area, that slot is immediately
filled. This is true irrespective of whether a
header or trailer segment was moved out (Fig
ure 6). As segments are moved out they are
rejoined in the output area into a variable
length record. Any "fill" in the last segment is
deleted at this time.

After a string building area slot has been
refilled, a "scan" takes place if one is neces
sary. It is necessary to "scan" if either a

INPUT

58

6A

RECORD SEGMENTS IN
STRIN3 BUILDING AREA

RECORD RECORD RECORD

3

Figure 6.
R3~or 1 Segments in String Eui.U:ng Ar:::a.

header was moved out of the string building
area or if a header was moved into the string
building area. In other words, the only time a
scan is not performed is when a trailer is re
placed by a trailer.

After the scan, the next, "segment" is moved
into the output area according to the follow
ing rules:

1. If the last segment moved to the output
contained a reference to a successor (which
must be a trailer), the successor is moved.
This accomplishes the result of assembling
the records which were segmented ini
tially.

2. If the last segment moved was without a
successor, the current final winner of the
tournament (which must be a header), is
moved to the output.

CONCLUSION

The logic for processing variable-length
records using the Replacement-Selection Tech
nique requires an additional address in the
tournament tree which is used to chain between
segments of a variable-length record. Addi
tional logic is required to p~ocess variable
length records. Records are segmented into
header and trailers. After the selection process,
they are recombined into a variable length
record. The logic of the Replacement-Selection
Technique requires modifications as described.
As in the Replacement-Selection Technique for
fixed size records, data is moved only twice.
The overall logic of the Replacement-Selection
Technique is retained and all its advantages
are exploited.6

ACKNOWLEDGEMENT

The author wishes to express his apprecia
tion to Mr. Warren F. Spalding of Applied Data
Research, Inc. for his assistance in the organi
zation and editing of this paper.

GLOSSARY OF SORTING AND MERGING
TERMS USED WITHIN THIS PAPER *

Backward read
A feature available on some magnetic tape

system whereby the magnetic tape units can
transfer data to computer storage while mov-

SOME IMPROVEMENTS IN THE TECHNOLOGY OF STRING MERGING AND INTERNAL SORTING 605

ing in a reverse direction. Normally used, if
available, during the external sort phases to
reduce rewind time.

Balanced sorting
See: (T/2)-way merging.

Cascade merging
A technique used in a sort program to merge

strings of sequenced data. Given T work tapes,
merging is performed at T-1 on part of the
data, T -2 on parts of the data, and so on. Strings
of sequenced data are distributed in a Fibonacci
Series on the work tapes preceding each merge.
The effective power of the merge varies be
tween T -1 and '1'_2 but in all cases is less than
the power of the Polyphase Merge. CF: effec
tive power of the merge.

Collating
Sequencing a group of records by comparing

the key of one record with another record
until equality, greater than, or less than is
determined.

Collating sequence
The sorting sequence; a description of the

sort key for a file of records.

Collating sorting
A sort which uses a technique of continuous

merging of data until one sequence is developed.

Computer limited
See: process limited.

Digital sorting
A sort which uses a technique similar to

sortIng on tabulation machines (e.g., IBM
Sorter). The elapsed time is directly propor
tional to the number of characters in the se
quencing key and the volume of data. Also
"radix sort."

Effective power of the merge
Equal to S~, where S is the number of input

strings and N is the average number of times
each element of data is read.

Fibonacci series .
A series where the current number is equal

to the sum of the two preceding numbers: i.e.,

* Source: A Glossary of Sorting and Merging Terms
-Communications of ACM, May 1963.

1, 2, 3, 5, 8, and so on. Some sort programs
distribute strings of data onto work tapes so
that the number of strings on successive tapes
form a Fibonacci series.

Fixed size records
Denumerable file elements each of which has

the same number of words, characters, bits,
fields, etc. Cf: variable-length records.

Generalized sort
A sort program which will accept the in

troduction of parameters at run time and which
does not generate a program.

Generated sort
A production program which was produced

by a sort generator.

Input tapers)
Tape(s) containing a file in arbitrary se

sequence to be introduced into a sort/merge
program.

Insertion method
See: Sifting.

Item
See: Record.

Key
Also, sequencing key; criteria; sequencing

criteria. The fields in a record which deter
mine, or are used as a basis for determining,
the sequence of records in a file.

Magnetic tape sorting
A sort program that utilizes magnetic tapes

for auxiliary storage during a sort.

Major key
The most significant key in a record.

Merge
A program that performs merging.

Merging
The forming of a single file of sequenced

records from two or more files of sequenced
records.

Multifile sorting
The automatic sequencing of more than one

file, based upon separate parameters for each
file, without operator intervention.

606 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

Multipass sort

A sort program which is designed to sort
more data than can be contained within the
internal memory of a central computer; In
termediate storage, such as disc, tape, drum,
etc. is required.

Optimum merging patterns

The determination of the sequence in which
specific sorted tapes in a file should be proc
essed so as to minimize the total number of
merge passes required to create a single file of
sequenced records.

Order of the merge

The number of input files to a merge pro
gram. Also: power of the merge.

Oscillating merge

A technique used in a sort program to merge
strings of sequenced data. For tape systems
that permit backward reading, the effective
power of the merge is equal to T -2.

Output tape(s)

Tapes containing a file in specified sequence
as a result of a specific sort/merge process.

Pass
The processing of each file record once for

the purpose of reducing the number of strings
of sequenced records and increasing the number
of sequenced records per string.

Phase
An arbitrary segmentation of a,sort program.

Many sorts axe segmented into,=<three phases:
initialization phase, internal-I phase, merge
phase.

Polyphase merging

A technique used in a sort program to merge
strings of sequenced data. Given T work tapes,
merging is performed at the power of T-l.
The effective power of the merge varies be
tween T-l and T-2 depending cn the amount
of input data and the number of strings.

Power of the merge
Also: way of the merge; order of the

merge, the number of inputs to a merge pro
gram. Cf: effective power of the merge.

Process limited
Also: computer limited. A sort program

in which the execution time of the internal
instructions determines the elapsed time re
quired to sort. Cf: tape limited.

Radix-sort
See: Digital sorting.

Record
The basic element of a file such that the sort

ing of file constitutes the re-ordering of file
records; also referred to as "item."

Replacement-selection technique
A technique used in the internal portion of a

sort program. The results of the comparisons
between groups of records are stored for later
lise. A selected record is placed on the output
tape and a new record replaces the selected
record. Given N records, a record is selected
with 1 + lag;.!N tests; the expected string length
for random data is 2N records.

Rewind time
Elapsed time consumed by a sort/merge

program for restoring intermediate and final
tape files to original position.

Scratch tape (s)
See: Work tapes.

Sequence break
That point in a file between the end of one

string and start of another.

Sequencing criteria
See: Key.

Sequencing key
See: Key.

Sifting
A method of internal sorting where records

are moved to permit the insertion of records;
also called "insertion method."

Sort
The copying of a file of records into a cor

responding file in a specified sequence.

Sort, external
The second phase of a multipass sort pro

gram, wherein strings of data are continually
merged until one string of sequenced data is
formed. Cf: string merge.

SOME IMPROVEMENTS IN THE TECHNOLOGY OF STRING MERGING AND INTERNAL SORTING 607

Sort, internal
The sequencing of two or more records with

in the central computer memory; the first phase
of a multipass sort program.

Sort generator
A program which generates a sort program

for production running.

String
A group of sequenced records, normally

stored in auxiliary computer storage; Le., disc,
tape or drum.

St'Jing merge
Program that performs merging.

String merging
The forming of a single string from two or

more strings of sequenced records.

(T /2)-way merging
A technique used in a sort program to merge

strings of sequenced data. The power of the
merge is equal to T /2.

Tape limited
Also: I/O limited. A sort program in

which the effective transfer rate of tape units
determines the elapsed time required to sort.
ef: process limited.

Tennis match sorting
See: Replacement-Selection Technique.

Tournament sorting
See: Replacement-Selection Technique.

Vanable-length rec(Yrds
Denumerable file elements for which the

number of words, characters, bits, fields, etc. is
not constant. Cf: fixed-size records.

Von Neuman sort
See: (T /2) -way merging.

Way of the merge
See: power of the merge.

Work tapers)

Also: scratch tapes. Tape (s) used to store
intermediate pass data during a sort program.

X mas tree sorting
See: Replacement-Selection Technique.

REFERENCES

1. FRIEND, E. H., "Sorting on Electronic
Computer Systems," Journal ACM, July
1956 ..

2. GILSTAD, R. L., "Polyphase Merge Sort
ing-An Advanced Technique." Proceed
ings of the Eastern Joint Computer Con
ference, December 1960.

3. GILSTAD, R. L., "Read Backward Polyphase
Sorting." Communication ACM, May 1963.

4. BETZ, B. K., and CARTER, W. C., "New
Merge Sorting Techniques." Paper 14, Re
prints of Summaries of Papers, 14th Na
tional Meeting ACM, 1959.

5. SOBEL, S., "Oscillating Sort-A New Merge
Sorting Techniq,ue." Journal ACM, July
1962.

6. GOETZ, M. A., "Internal and Tape Sorting
U sing the Replacement-Selection Tech
nique." Communications ACM, May 1963.

7. KNUTH, D. E., "Length of Strings for a
Merge Sort~" Communications ACM, N ov
ember 1963.

8. GOETZ, M. A., "Comparison between Poly
phase and Oscillating Sort Techniques."
Communications ACM, May 1963.

9. KNUTH, D. E., and GOETZ, M. A., Letter t.o
the Editor, Communications ACM, October
1963.

10. HALL, M. A., "A Method of Comparing the
Time Requirements of Sorting Methods."
Communications ACM, May 1963.

CONCEPTUAL MODELS FOR DETERMINING
INFORMATION REQUIREMENTS

James C. Miller
Arthur D. Little, Inc.

Cambridge, Massachusetts

INTRODUCTION

For years, we who are interested in data
processing have had a vague notion that one of
the problems facing managers today is the lack
of information. "If only I had known ... " is a
familiar phrase to all of us. Most of us would
like to cause that phrase to become unfamiliar.
Unfortunately, very few people, if any, have
been able to state very explicitly how we should
go about filling the information void. Progress
in developing a methodology for designing man
agement information systems has been slow.

So many people have written and said so
much about management information systems
that I would like to be sure that all of us have a
similar notion in mind. Therefore, I would like
to briefly define a management information sys
tem as-a collection of procedures, equipment,
and persons associated together for the purpose
of providing managers, who have the authority
to make decisions that commit the firm or its
resources, with descriptions of the elements
relevant to the performance of their function.
In other words, a management information sys
tem is a means of providing to the people who
"need" it, information to guide them in the con
duct of the business. An ideal management in
formation system, then, would do at least these
things:

1. Provide each level and position of man
agement with all the information that can
be used in the conduct of each manager's
job.

609

2. Filter the information so that each level
and position of management actually re
ceives only the information it. can and
must act on.

3. Provide information to the manager only
when action is possible and appropriate.

4. Provide any form of analysis, data, or in
formation whenever it is .requested.

5. Always provide information that is up to
date.

6. Provide information in a form that is
easily understood and digested by the
manager.

Whether or not you can fully agree with. this
as a description of J1 managerial utopia, I hope
that this will at least provide a frame of refer
ence that will help you to understand the use of
conceptual models.

PROGRESS IN MANAGEMENT
INFORMATION SYSTEMS

Using this ideal as a standard toward which
our efforts are directed, we must recognize that
no one has an ideal management information
system. Just because we have not yet reached
our ideal, however, we should not be di~cour
aged from attempting to make progress. I t is
not easy to produce a monumental improvement
in the science of management. Nevertheless,
considerable progress has been made. In fact,
progress has been striking in the fields of hard
ware, software, mathematical techniques, and

610 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

the integration of procedural systems. Com
puters are available that can produce informa
tion at fantastic rates. High-speed printers can
generate reports fast enough to inundate an en
tire committee. Teleprocessing has been devel
oped to the point where up-to-date information
can be maintained in a central data file. All of
these various types of hardware can and will be
improved,. and all of them will probably be made
less e.xpensive or more efficient. However, I be
lieve that management is not utilizing the capa
pility that is already available.

Software has been developed so that special
requests or changes in procedures need not
totally upset a system. I am not beating the
drums for FACT, COBOL, or any other pro
gramming language; I am sure that all of these
will be improved further. However, I believe
that even software is available today to assist
management more effectively than managers
realize.

Mathematical techniques have been developed
for many things. We can optimize inventories,
we can model markets, and we can predict the
outcome of an election when only a small per
centage of the returns have been reported. Even
so, this resource of mathematical techniques is
neither well-understood nor fully utilized by
managers.

Many systems and procedures people have
made substantial progress in developing inte
grated data processing systems. These systems
chew up customers' orders at one end and spew
out bills of lading, invoices, and production
orders from the other end. However, their pri
mary focus of attention has been on the routine
operating documents of the business. They have
made a substantial contribution in that they
have permitted many managerial tasks to be
directed by management instead of being sub
ject to the individual judgments of many oper
ating people. In inventory control, for instance,
stock clerks are no longer responsible for in
ventory levels; management has the key to the
inventory control system and can adjust its
mathematical judgment to management's will.

The point of all this is that in spite of tre
mendous progress on a countless number of
fronts, managers are not truly helped. Gener
ally speaking, managers are working with the

same variety of reports that they had several
years ago. We believe that a major area of sys
tems design has not been given sufficient atten
tion. The problem of developing and defining
the proper content of an information system
has been slighted in the general work of systems
analysis and design. One of the reasons for its
having been slighted is that it typically falls in
a no man's land between the technician and the
manager. The technician typically says to the
manager, "All you need to do is tell me what you
want, and I have the wherewithM to supply
it." Whereupon the manager, out of despera
tion, lack of foresight, or overconfidence, usu
ally supplies the pat answer: "Just what I am
getting now only quicker and more current."
Some managers will honestly say: "I don't
know, but you're the systems expert; can't you
tell me?"

This no man's land has created considerable
difficulty, and very few people have risen to the
challenge to try to do something about it.

Another reason for little having been done
about the ability to define the content of an in
formation system is that content is extremely
difficult td work with.

Let me define content as the message or infor
mation that is contained in a communication or
a record. Every report, analysis, or document
has some meaning (or message) that transcends
the actual format of the document or report.
When we are concerned with defining the con
tent of a management information system, our
concern is to determine the subject matter of
the messages that managers should receive.
When I talk about content, I am referring to the
subject matter of reports and documents, re
gardless of how the data is displayed or arrayed.

Information content is difficult to determine
for managers. It is almost impossible to sepa
rate the content of managerial information from
the field of organization theory. Organization
theory and practice is thin ice; it is a subject
that is emotionally charged for any manager in
a real-life situation. It is also a subject on
which highly qualified, reasonable men can be
expected to disagree. This is an extremely diffi
cult area for anyone to work in, and particu
larly for a person who is scientifically and ana
lytically inclined. You cannot determine the

CONCEPTUAL ·MODELS FOR DETERMINING INFORMATION REQUIREMENTS 611

information that a manager needs without con
sidering his responsibility and authority. You
must concern yourself with what he is, in the
ory, held responsible for, and how he discharges
his responsibility and delegates his authority.

Being concerned with the content of an infor
mation system forces us to be concerned with
"how to manage well." We must concern our
selves with: How does a manager operate?
How does he reach his decisions? How does he
make his decisions effective? How does he man
age '?" And perhaps an even more appropriate
question is: "How should he manage?" Noone
has an adequate description or an adequate set
of principles to tell us how to manage well. At
best, there are a thousand platitudes that are
collectively exhaustive and mutually contradic
tory. As if the lack of knowledge and under
standing of the subject (from any analytical
point of view) were not bad enough, this is also
a subject that managers have difficulty discuss
ing rationally and on which respected authori
ties disagree.

In spite of the difficulty, we believe that this
is one area in which substantial progress will
be made in the next decade. If nothing else,
managers and systems men will be forced to it
by the availability of hardware, etc., and the
fear that some competitor may do it.

We believe that much of this difficulty is men
tal, and that we can attempt to develop a method
for determining information requirements by
trying to make the job mentally easier. There
fore, what we have to suggest is not so earth
shaking, but we believe it is a sound approach
than can enable a poor, mere, mortal mind to
somehow get around the subject of management
and get into the business of defining informa
tion requirements. The approach that we have
to suggest might be described asa research ap
proach. It is an approach that should enable
analytically-inclined people to develop a defini
tion of their company's information needs. If
they want to, they can complete the entire job in
an ivory tower, but the job will be done better
if they have frequent reference to the regular,
operating facts. The analysts should not lose
touch with reality, but in fact, we have used
this technique when there has been no reality
to get in touch with. We have developed infor-

mati on requirements for nonexistent firms, and
we believe that the results were extremely satis
factory.

Of course, an approach that is freq.uently pro
ductive, but is not the research approach, is
that of expertise. Most information systems
and most informational improvements that are
made today are made on the basis of expertise.
Someone writes an article in a professional
journal or a scholastic business review describ
ing the types of reports that they use. Managers
read these reviews, think that they are wonder
ful and try to apply them to their business. The
formats of the reports are face-lifted, and the
manager tries to use them. Sometimes he has
great success, and sometimes no success at all.

There are many varieties of models, and they
can be used in many different ways. Operations
research people are accustomed to applying
mathematical models to business problems.
Some chemists and biochemists use physical
models of what they imagine the structure of
atoms to be. For now, we are interested in deal
ing with a conceptual model. It is a model that
deals with words and imagery to enable us to
focus our attention and communicate our im
pression about the operations and the manage
ment of an enterprise.

MODELS OF OPERATIONS

The first step in developing a conceptual
model of an enterprise is to attempt to state the
key operations that the enterprise must accom
plish in order to continue to function. We might
describe an operation as a "gross unit of work
specialization that is essential to the functioning
of the enterprise." The easiest way to deter
mine the appropriate operations for a concern
is simply to begin to list all operations. Once the
initial top-of-the-head list has been compiled, it
should be juggled, combined, expanded and or
ganized until it consists of a number-probably
between 10 and 20-of operations of approxi
mately equal importance.

As an example, I have chosen a wholesaling
business. We might think of this as being a
typical wholesaling business rather than any
one specific wholesaler. Figure 1 is an initial
list of potential operations for a hardware,
drug, or appliance wholesaler. Many of these

612 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

captions appear to be steps in a procedure, and
they should. Most business operations follow
a routine. On the other hand, very few of the
captions suggest a department or organiza
tional unit of a wholesaler. We believe that the
major concern of management is the basic op-

STOCK CHECKING MAINTAIN PRODUCT LINE

ORDERING TELEPHONE SEllING

SCHEDULING SALESMAN SElliNG

RECEIVING ADVERTISE AND PROMOTE

STOCKING - BUU< WRITE ORDERS

HOLDING PICKING

STOCKING - SHElf CHECKING

OK RETURNS DELIVERY

PICKUP RETURNS INVOICE

CREDIT RETURNS Bill

STORE RETURNS COllECT

SHIP RETURNS TO PIER. MAINTAIN ACCOUNTS

RESTOCK RETURNS

Figure 1. Potential Wholesaling Operations.

Figure 2. Operations of a "Typical" Wholesaler.

erations of the business. If management loses
sight of this and becomes preoccupied with peo
ple, the business can become a very nice place
to work, but an extremely disorganized mass of
human relations. We want to concentrate on
the basic operations.

Figure 2 shows the operations that I finally
selected as being the important ones for a typi
cal wholesaler. They are arranged in a flow
chart format. The reasons for this will be ex
plained later. Each block represents a job, task,
function, mission, or as we have chose:q. to call
them, operation of the firm. Take any one of
these blocks out of the diagram and the business
either ceases to exist, or is changed drastically
in its methods of operation.

In effect, this diagram of the operations of a
wholesaler is a macroscopic view of the busi
ness. Businessmen are already acquainted with
other models of their business. They are accus
tomed to an organization chart and they are
familiar with accounting statements. All of
these are macroscopic views of the business.

The view of the firm that is illustrated in
Figure 2 is specifically designed to focus our
attention on the important things that must be
managed. All of these things ~ust be under the
control and the close scrutiny of management.
Each of these operations can be accomplished in
a variety of ways. Each of these operations is
a positive reason for spending money, not just
an unavoidable expense-we have not included
the payment of taxes or the negotiation with
labor unions, nor, in fact, have we included the
information system itself.

The next step is to try to provide meaning
to each of the names that has been put in a box.
in our flowchart. Because these names mean
different things to different people, it may ap
pear that we have omitted a significant opera
tion, or we might have difficulty agreeing that a
certain activity is included in one operation
rather than another. Before we go any further,
we should provide a more careful delineation of
each operation. This delineation should take
two forms. The first form is a simple statement
of the input and the output for each operation.
Inputs and outputs are, in effect, the fences be
tween the operations. They serve not only to
help define the operations themselves, but also

CONCEPTUAL .MODELS FOR DETERMINING INFORMATION REQUIREMENTS 613

to make us certain that we have not omitted
some significant activities between the opera
tions. Figure 3 shows the wholesaler's opera
tions with their inputs and outputs. Notice that
the only original input is product ideas and the
only final outputs are: goods with customers,
payment, cash, and collections. Having all the
operations and all the inputs and outputs to
gether in a single flowchart is a help, but it is
still just a body of names which do not yet have
sufficient meaning to enable us to probe the
process of management.

The second form of delineation for operations
is a description of the suboperations that are
contained within the major operation. Figure 4
is a statement of the suboperations that are re
quired to transform the demand for specific
products, customers ready to buy, and prefer
ence for our services into orders. These lists of
suboperations can easily appear to be a descrip-

LEGEND

(OPERATION)

®
Figure 3. Wholesale Operations with Inputs

and Outputs.

OPERATION DESCRIPTION

4. GET ORDERS

ORDERS SHOOLD BE SECURED FROM RECOGNIZED CUSTOMERS. THESE
CUSTOMERS SHOULD BE GIVEN ANY APPROPRIATE ORDERING AIDS SUCH
AS WANT BOOKS, ORDER BlANKS, PREPAID ENVElOPES, ETC. FOR FOR
CUSTOMERS IN REMOTE CITIES, lEASED TElEPHONE LINES WITH lOCAL
MJMBERS MAY BE PROVIDED TO ENABLE CUSTOMERS TO PLACE ORDERS
WITHOUT PAYING lONG-DISTANCE TOll RATES, OR CUSTOMERS MAY BE
ENCOORAGED TO CAll COllECT.

TtE CUSTOMER'S INVENTORY MAY BE REVIEWED FOR HIM BY A REPRE
SENTATIVE OF THE WHOLESALER (POSSIBLY THE SALESMAN). THE
WHOLESALER MAY MAINTAIN A PERPETUAL INVENTORY RECORD FOR THE
WHOLESALER. AUTOMATIC DECISION RULES MIGHT BE PROVIDED AND
REVIEWED BY THE WHOlESALER.

A TElEPHONE CALLING SERVICE MAY BE ESTABLISHED TO SOLICIT ORDERS
FROM CUSTOMERS. THIS INCLUDES: III ESTABLISHING AND SUPERVISING
A TELEPHONE SALES STAFF; (2) SElECTING THE CUSTOMERS TO BE CALLED
AND ESTABLISHING A SCHEDULE FOR THE CAllS THAT IS GEARED WITH
OTHER OPERATIONS OF THE WHOLESALER; (3) CAlliNG CUSTOMERS: (4)
SUGGESTING ITEMS AND QUANTITIES TO BE ORDERED; (5) QUOTING PRICES;
AND (6) PREPARING ORDER DOCUMENT.

ORDERS MAY BE SOLICITED DIRECTlY BY SALESMEN WHO PREPARE THE
ORDER DOCUMENT, GET THE CUSTOMER'S APPROVAl., AND SEND IT TO THE
WAREHOUSE.

"TURNOVER" ORDERS MAY BE SECURED BY ENCOORAGING CUSTOMERS TO
SPECIFY OOR NAME TO MANUFACTURER'S SALESMEN. ALSO WORK WITH
MANUFACTURER'S SALESMEN TO INCREASE THE PROPORTION OF THEIR
ORDERS THAT ARE TURNED OVER TO US.

Figure 4. Description of an Operation.

tion of a general operating procedure. They are
likely to include some of the things that we
jotted down as potential operations in the very
beginning. (See Figure 1.) If we were dealing
with a specific firm, the description would be
more detailed.

This (Figures 3 and 4) completes a concep
tual model of the firm. Some of my associates
and I have gone through this exercise for many
firms and some command and control situations.
We have found in every case that when two,
three or four people sit down to prepare this
conceptual model of an activity, they can, by
constant negotiation give and take, agree upon
a set of operations and definitions of operations.
In short, a number of people with different back
grounds can follow this procedure to produce a
single, well-defined, comprehensive view of the
activities of a company.

MODEL OF MANAGEMENT ACTIONS

Now that we have a conceptual model of what
the firm, as a whole, does, we would like to
move on to a conceptual model of the functions

614 PROCEIE'DINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

of management. We have an adequate state
ment of what the company does, but we must
now decide how management manipulates the
things that the company does in order to make
it successful or unsuccessful. The basic ques
tion can be simply stated as: "How are the
operations managed?"

Before getting too deeply involved in the con
ceptual model of management actions and their
results, let's spend a little time poking into the
lore of management. Many books have been
written, from Frederick Taylor until the pres
ent time, about how managers can and should
operate. The business reviews of our leading
universities constantly publish articles about
how to manage. We commend these sources to
your attention. From our study of these sources,
we nave generalized and concluded that man
agement must evaluate, organize, select, decide,
train, and motivate. We can also recognize that
management has at its disposal a number of
resources. Resources can be summarized into
the ufour M's"-money, machines, manpower,
and materials. Somehow, citing these names
(evaluate, etc.) for the things that managers
do, and citing the names for the resources that
management manages seems to be helpful, but
it cannot be the final conclusion. These names
and labels are not sufficiently specific to help us
decide what information management needs in
order to manage effectively.

In addition to the lore of management, we can
logically consider the things that a manager
does in a typical work day. Those who are man
agers, and those who are familiar with the gen
eral operation of managers, can recognize that
many of the things that a manager does do not
have long-range significance for the company
as a whole. For instance, a large part of the
working day for a manager is spent communi
cating with those about him. This communicat
ing is, of itself, not truly significant. It is an
unavoidable expense. The decisions that may
result from those communications, or the eval
uations that can be made as a result of them,
are significant, but the communications them
selves are not. Similarly, a good manager
spends a large part of his time studying and
reading reports. In reality, this is simply an
other form of communication. The amount of
time that a manager spends actually making

policy and making key decisions is a relatively
small proportion of his total time. However,
we believe that these are the significant things
that a manager does that we would like to assist.
With a good information system we might be
able to reduce the amount of time that a man
ager must spend communicating and reading
reports. But more significantly, we would like
to assist him in making wise decisions about the
truly important facets of the operations that he
is managing.

One way to help cut out some of the chaff is
to recognize that we are attempting to deline
ate those important managerial actions that are
taken by management as a whole. We are not
trying to find out the specific actions that any
one manager takes. If we were, we would miss
the significant managerial actions taken by
committees. In many cases, a managerial action
is taken at different levels of the organization.
At each level, the manager has a different set of
limitations within which he makes his decision.
If we try to cope with all of these variations at
once, we will be swamped. Our immediate con
cern is for the information that is required by
management as a whole. We would like to post
pone until much later the actual job of deciding
exactly who should receive which information.

After many trials and errors, and consider
able study, we have concluded that the most
significant managerial actions can usually be
stated as "selecting a course of action," "adjust
ing a rate of expenditure (or level of effort),"
or "allocating resources." In a sense, allocation
of resources is simply a combination or special
case of selecting and adj usting.

To illustrate, a manager selects a course of
action when he decides to use a particular chan
nel of distribution, or decides to acquire a par
ticular piece of production machinery. In
general, these are discrete choices; the manager
must select one or more out of a number of
alternatives.

On the other hand, a number of elements can
be adjusted over a continuous spectrum, such as
prices or market area. These things can be
adjusted up or down over a broad range.

Allocation consists of assigning particular
resources to particular activities. The word

CONCEPTUAL MODELS FOR DETERMINING INFORMATION REQUIREMENTS 615

"allocation" suggests that the amount of the
resource is limited in some way. The grandest
sort of allocation is the allocation of money to
each of the operations conducted by the firm.
The general management of the firm must con
stantly reallocate its money among such activi
ties as selling, delivery, and inventory.

Keeping in mind these general sorts of man
agerial actions, we can return to the conceptual
model. We must examine each operation to
determine the significant managerial actions
that govern the quality of performance of each
operation. If management acts wisely, the op
erations will be performed well. A management
information system can not supply good judg
ment, but it can supply a sound base of facts
to which managerial judgment can be applied.
Figure 5 shows the managerial actions for the
operation "Get Orders." Discovering these
managerial actions for any operation is one of
the most creative and imaginative steps in the
process of constructing a conceptual model of

LEGEND

Figure 5. Managerial Actions for an Operation.

a firm. It takes time and it. takes. stargazing.
It is an iterative process that earn 00 improved
each time it is reviewed. It is also an extremely
educational process. If the managers them
selves can participate in the process, they can
probably ,profit 'by it.

There :are a few sources that we can look to
for assistance in pointing out the key mana
gerial actions. One of these is the detailed
description ,of the operation. (See Figure 4.)
We can review that description, looking for
instances. in which a manager must select from
a number of alternatives, or for key decisions
that are built into the regular conduct of the
operation. We can also consider the resources
that are required to perform the operation. It
might pay to construct a list of the resources
that are used in each operation. Resources
might be~

Particular skills
Manual labor
Existing facilities (physical capabilities)
Known suppliers
Existing public (customer) image
Existing products

Figure 6 lists the major resources that are used
to get orders. Some of these resources are sub
ject to quantity manipulation. However, the
rough proportions of the various resources are
dictated by the nature of the operation itself.
For instance, for a wholesaler, the selling ac
tivity cannot effectively use a large fixed capital
investment; almost the sole resource for selling
is the highly skilled ability of a salesman in per
sonal contact with the customer.

In considering the resources required to per
form an operation, there is a potential trap.
That trap consists of considering money as a
resource. Noone can deny that money is a
resource, but it is the one ultimate resource.
Given sufficient time, it can be transformed into

SALESMAN'S TIME

TELEPHONE SALES CLERK'S TIME

FAVOR OF MANUFACTURERS

TELEPHONE FAC ILITIES

Figure 6. Resources Used in Getting Orders.

616 PROGE,EDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

any of the other resources. Therefore, in deter
mining the resources that are used in the per
formance of an operation, we should exclude
money from our consideration. Otherwise, we
run the risk of doing a superficial job.

Another potential source of help in discover
ing managerial actions are job descriptions, or
ganization charts, financial statements, and
interviews with managers. All of these aids
should be used liberally.

N ext we would like to consider the results
of each managerial action. Usually, at least one
result of every managerial action is obvious
from the statement of the action itself. If the
action selects or adj usts, one result of the action
is a commitment to a course of action or a
change in the level of something. However, we
are interested not only in the direct effects of
the action itself, but also in the ancillary effects.
Almost every managerial action involves more
than one result. Many managerial actions imply
a trade-off between two potential results. Some
managerial actions simply have more than one
effect. Figure 7 shows two manageri~l actions
and their results. In total, when taken for all
managerial actions, these form a conceptual
model of a management of the firm.

ADJUST FREQUENCY
OF SALESMEN'S ORDER

SOLICITATION

ADJUST SALESMAN'S
EfFORT DEVOTED TO
SOLICITING ORDERS

LEGEND

I(MANAGERIAL)
ACTION

FACTOR

INFLUENCED

(ELEMENT OF

PERFORMANCE)

EFFECT •

Figure 7. Action-Result Models.

We slipped into using the word "result"
rather quickly. We might better call them ele
ments of performance, or parameters of per
formance. These are the factors or elements in
the business that are influenced by the mana
gerial actions. It is important to think of the
relationship between the action and its results
as an influence. If you try to think of it as too
direct a cause-effect relationship, you are likely
to get bogged down. For instance, if you try to
think of the purchase of particular delivery
vehicles as directly causing the cost of delivery,
you will get into trouble because delivery costs
are also affected by wage scales paid to drivers,
the distances the trucks are driven, and in fact,
the number of deliveries that are made. Each
of these things influences the cost of delivery,
but none of them controls it. Similarly, in Fig
ure 7, many of the results are influenced by both
actions, and if we added the action "adjust fre
quency of telephone calls" it would influence
many of these results also.

At this stage of the development of the con
ceptual model, we must be careful not to insert
results that are too far-fetched. Moreover, we
must recognize that some factors are influenced
directly by a managerial action, and some are
influenced only indire~tly. For instance, almost
all managerial actions have an influence on
profit. Similarly, a number of managerial ac
tions influence sales volume. To include these
as results will be helpful for only a few mana
gerial actions. We should concentrate on direct
results. For instance, some managerial actions,
such as "select products to sell," may directly
affect the size of the market in which the firm
competes. Others, such as "adjust advertising
expenditures," may directly influence the share
of the market that the firm enjoys. These ac
tions have an indirect or derived effect on sales
volume.

The results of managerial actions do not ex
ist in a void. They influence one another also.
For instance, to continue with the last example,
sales volume is influenced directly by the size
of the market and the penetration of the
market. With diligence and care, we can deter
mine which results are influenced by which
other results, and, in total, we can develop a
structure of results. Figure 8 represents a por-

CONCEPTUAL MODELS FOR DETERMINING INFORMATION ,REQUIREMENTS 617

Figure 8. Structure of Results
(Partial and Simplified).

tion of such a structure. It is drawn in flow
chart form, and it has a natural progression
from left to right. Observe that sales area is
the most causal, basic element of performance,
and return on investment is the most final, com
mon element.

The preparation of this structure of results
will assist in simplifying the statements of re
sults of each managerial action. From the
structure, we can infer that anyone result has
a chain of influences. Since we have the struc
ture, it would be redundant to repeat the chain
for each managerial action. It is enough to note
the left-most element in the chain as a result of
an action. For instance, Figure 7 does not show
number of salesmen as a result.

Furthermore, the very exercise of trying to
compile a complete structure of all results of
managerial actions is likely to point out some
results that have not been linked to any action.
If the result stands at the beginning of a chain,
we should try to find the managerial action that
influences it.

Figure 9 shows the same struct.lre of results
as does Figure 8, but superimposed on it are the
managerial actions that influence the results.
This exercise can help us to understand how the
results of one action can influence another ac
tion. It can also help us to see the managerial
actions that are influenced by specific factors.
For instance, the action "adj ust working hours
of salesmen" is affected by "salesmen's travel
time" and "call time."

The flowchart is a very cumbersome device
to display a complex structure of results. Fig
ures 8 and 9 are simple only because they depict
so few factors. We might try to simplify the
job by using a precedence matrix such as Fig
ure 10. A primary advantage of a matrix form
of documentation is that it permits us to say
something about the nature of the relationship
between an action and its results, and between
various results. Some of these relationships are
clearly defined. After all, some of them are
taken almost directly from accounting practice,
and are, therefore, susceptible to the accounting
definitions. We know that some other relation
ships are proportional, even though we may not
know what the exact proportion is. The inter-

Figure 9. Managerial Actions Superimposed
on the Structure of Results.

~:TOI OR RESULT \

line CORRESPONDING L~E NUMBER
No. 112314 ~ 1 8 9 10 1112 \3 415 1611 \819~ 2\

Alrust Market ~rea
SolEd Customers
Alrust Salesmen's EffOrt • promoting
Alliust Salesmen's EIIort· Soliciting Orders
AIIiust Frequency 01 Salesmen's Order Solicitinq
AIIiust working Hours 01 Salesmen

~
Sales Area
NuiTUer 01 Customers
Salesman's Travel Expenses
Salesman's Travel Time

Salesman's call Time
NuiTUer 01 Salesmen

CostalOirEd Sales

10

11

1
14

Cost 01 Telephone Sales 16
Total Costs 1
Sales VOlume ~
Profit 19·

Return on InVestment 21

I I p

I P

Figure 10. Matrix of Cause-Effect Relationship.

618 PROGE'EDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

sections of the matrix can contain all that we
know about the nature of the relationship. If
we could determine the exact mathematical
function that relates each of the actions to its
results and the results one to another, we would
have a fabulous mathematical model of the firm.
Unfortunately, the nature of many of the rela
tionships is simply unknown.

This exercise c()mpletes the conceptual model
of the firm, its management actions, and the
results of those actions. The model can be used
as a general guide to understanding how the
firm works. It might be used as the basis for a
mathematical model of the firm.

DETERMINING INFORMATION CONTENT

The major purpose of creating the model in
the first place was to assist in determining the
information that is needed by the management
of the company to manage the company well.
This can be done by simply reviewing the
action/result models. (See Figure 7.) We can
consider each element of the model as a require
ment for managerial information. We would
like to measure the managerial actions them
selves-how much action is taken, when was it
taken, etc.-and we would like to measure each
of the results of the action. A comprehensive
information system will contain each of these
measurements. In addition, it will contain many
similar measurements of competitors' business
practices.

In order to be more specific, we need to re
turn to the diagrams of actions and results. One
of the actions in Figure 7 is "adjust frequency
of salesmen's order solicitation." This auto
matically suggests the question, "How often do
salesmen solicit orders?" The simplest answer
to that question is the total number of calls
made by all salesmen in a month. Of course,
we might want a finer breakdown-number of
calls made by each salesman, and number of
calls made on each customer. A tally of the
number of calls is a frequency from the firm's
point of view, but we might want to turn it
around and look at it from the customers' point
of view. How many solicitations does the aver
age customer receive in a month?

Call frequency is not hard to measure. In
fact, if we tried a little bit, we might even be

able to learn how frequently our competitors
solicit orders. If we asked our customers who
else they buy from, and how freq,uently each
competitor's salesman calls, we can expect some
customers to refuse to answer, and some cus
tomers to give us wrong answers. But if we
carefully compile the data that we -do get, we
can expect to be better informed than we would
have been/otherwise.

If we dwell on the subject longer, we might
think of some other significant measures of the
action itself, but we should also be concerned
with the results of the action. "Salesmen's
travel time" would be fairly easy to measure.
All we need to do is ask the salesmen to keep
track, for a month, of the time of day at which
they leave one account and arrive at another
account. We might even ask the salesmen to
take an hour or so and prepare a "typical"
itinerary with an estimate of the travel time
between accounts. Either way, this is not an
onerous chore, and it might even be worthwhile
for the salesmen to go through the exercise just
for what they would learn from it. Then we will
need to compile it to learn the travel time.

"Salesmen's travel expenses" are regularly
measured by most firms. We should observe in
passing that there is a close connection between
tra vel time and travel expenses. Furthermore,
both factors, time and expenses, cannot be
attributed to individual customers. Any at
tempt to determine the amount of travel time
or travel expense that is incurred on behalf of
anyone customer is bound to be arbitrary.
Neither of these factors lend themselves to
interpretation from the customers' point of
view.

If possible, we would like to go beyond meas
uring the action and its results. We would also
like to consider the characteristics of the rela
tionship between them. For these particular
actions and results, we have a pretty good no
tion of the basic relationship-as the calling
frequency is increased, the travel time and ex
pense increase also. Any information beyond
this intuitive feel will be difficult to acquire. We
might ask a few salesmen to playa game with
us and prepare hypothetical itineraries for the
manner in which they would cover their terri
tories if they were to cut their number of calls

CONCEPTUAL MODELS FOR DETERMINING INFORMATION REQUIREMENTS 619

to one-third of their present frequency. Then
do it again for two-thirds, three-halves, and
double. A compilation of these estimates should
give us pretty good information about the rela
tionship between the action, "adjust frequency
of salesmen's order solicitation," and the re
sults ,"salesmen's travel time" and "salesmen's
travel expenses."

Another important characteristic of informa
tion is that it must be related in time, and in
many cases, it must be understood "through"
time. Each action and each result must be
thought of as a time series. We want more in
formation than just the present status. We also
want to know how frequently we called on cus
tomers last year and the year before; and we
want to know what frequency is planned or
expected in the future. In addition, we want
comparable information about travel time and
expenses. If we can get nothing better, we
might even use an historical comparison to tell
us about the relationship between call frequency
and travel time and expense.

The process of defining information require
ments-the content of an information system
is to find a ~vvay to measure each managerial
action, each result, and each connection between
an action and a result. Then see if a comparabie
measurement can be found for competitors. We
must be certain that the information can give
an historical perspective and a glimpse of the
future. In many cases, this method will lead us
to unexpected information requirements.

How many sales managers do you know who
could give you a satisfactory, quantitative an
swer to the question, "How often do salesmen
solicit orders?" Most management information
systems pass up this information completely,
and yet, if we have any faith in our model, we
can see that the action that is measured by the
answer to that question has a far-reaching effect
upon salesmen's time and expenses, and upon
sales volume.

The job of translating these information re
quirements into reports and files is no small
job, but it is a more familiar one. Systems and
procedures people have been doing this sort of
thing for years. Anyway, we have not yet
found a way to have conceptual models help
with this part of the job.

CONSTRUCTING CONCEPTUAL
MODELS

The procedure for developing a complete con
ceptual model is easy to work with mentally. It
progresses from one stage to the next, and at
each stage we can focus our attention on only
a few factors at a time. In the early stages,
these factors are abstract. They are so abstract
that they can apply with little modification to a
number of different economic enterprises. But,
as the early framework is expanded and com
pleted with more details, the conceptual model
begins to apply only to the economic enterprise
for which it is designed.

I would not mean to imply by these words
that conceptual models are easy to develop. It
is one of the most rigorous mental exercises that
I have run into. To complete a model requires
creativity, imagination, insight, and judgment.
I firmly believe that no one person can construct
a good conceptual model. The best way is to de
velop one through individual effort which is
followed up with a review by one or more per
sons. If this review is not available, the next
best alternative is to attempt to complete sev
eral stages of development of a model. Then,
put it away in a desk drawer and come back to it
in six months. By this time, you may be a dif
ferent enough person to review your own work
adequately.

Don't get fooled by all the flow charts and
geometric shapes. They are not the conceptual
model. The model exists in the mind. The lines,
words, and shapes are only a means of com
municating and permanently recording what
the mind has conceived.

Recall that we are dealing with a model, and
a model is something that simplifies reality. The
model does not faithfully reproduce every attri
bute and characteristic of the original; if it
did, it would be a duplicate not a model. A
wind tunnel model attempts to reproduce the
exterior shape of an airplane or flying object
so that engineers can observe the performance
of the shape in moving air. A mathematical
model for inventory control does not reproduce
all the characteristics of the real world; it re
produces only those characteristics which are

620 PROCE'EDINGS-SPRING JOINT COM·PUTER CONFERENCE, 1964

felt to be of primary importance in controlling
inventory. This same sort of attention must be
applied to conceptual models for determining
information requirements. The developer must
continually weed out and separate trivial de
tails from important generalities. For instance,
back in Figure 7, we might have shown "num
ber of salesmen's direct orders" as an element
of performance, but we cannot find anything
significant about that number.

At each stage of the development of a model,
the analyst should ask himself: "Is each of the
elements or factors which I have written on this
page of approximately equal importance ?"
Since there is no absolute scale of importance,
this question cannot be answered conclusively.
That is why our model is a conceptual one. It
deals with words, abstractions, and impressions.
As such, it is subject to arbitrariness and judg
ment. Even so, it is worth developing.

REVIEWERS, PANELISTS, AND SESSION CHAIRMEN

AFIPS and the 1964 Spring Joint Computer Conference Committee
would like to express their sincer'e appreciation to those listed belO'lv
for their contr"ibution toward the formulaUon and execution of the
technical program.

M. ADELSON

J. P. ANDERSON

B. ARDEN

G. ARNOVICK

P. BAGLEY

J. BULGER

R. G. CANNING

T. E. CHEATHAM

E. G. CLARK

M. CONNELLY

J. E. CREMEANS

E. P. DAMON

W. DORFMAN

A. C. DOWNING

K. EISEMANN

R. D. ELBOURN
P T ,.. A DnT T
.L • .LJ. '-J.l1...n.v 1..1'1

E. ADAMS

M. ADELSON

G. N. ARNOVICK

J. E. CREMEANS

A. E. DANIELS

W. DORFMAN

A. C. DOWNING, JR.

N. P. EDWARDS

P. L. GARVIN

H. HELLERMAN

W. R. HOOVER

W. F. BAUER

R. DAVIS

B. A. GALLER

H. L. GELERNTER

C. C. GOTLIEB

REVIEWERS

J. T. GODFREY

M. H. HALSTEAD

J. HAMBLEN

H. HELLERMAN

W. R. HOOVER

W. A. HOSIER

R. M. HOWE

E. T. IRONS

L. KANENTSKY

H. H. LOWELL

A. P. MACFARLAND

J. H. MACLEOD

M. S. MASON

E. ~. MCCORMICK

T. McFEE
M. MELKANOFF

D. ~f. ~fICHAEL

PANELISTS

W. A. HOSIER

R. M. HOWE

J. L. JONES

H. H. LOWELL

E. J. MAHONEY

R. P. MAYER

E. MCCLOY

J. McLEOD

D. N. MICHAEL

A. E. MILLER

J. L. MITCHELL

SESSION CHAIRMEN

R. W. HAMMING

R. M. HAYES

J. MOSHMAN

W. PAPIAN

J. D. PORTER

621

J. MINKER

G. L. MITCHELL

H. OSER

H. PETERSON

J. A. POSTLEY

A. RALSTON

L. C. RAY

A. ROBINSON

J. E. ROWE

B. SAMES

C. SHAW

H. K. SKRAMSTAD

A. E. SPECKHARD

T. B. STEEL

C. W. TURNER

H. VAN ZOEREN

J. A. POSTLEY

A. RALSTON

J. C. SHAW

H. K. SKRAMSTAD

A. E. SPECKHARD

N. STATLAND

T. B. STEEL, JR.

F. B. THOMPSON

W. P. TIMLAKE

R. VAN HORN

A. N. WILSON

L. C. RAY

J. E. SHERMAN

J. SINGLETON

T. D. TRUITT

AMERICAN FEDERATION OF INFORMATION
PROCESSING SOCIETIES (AFIPS)

211 E. 43rd Street, New York 17, New York

Chairman Chairman-elect

MR. J. D. MADDEN
IBM Corporation

P. O. Box 390
Poughkeepsie, New York

DR. EDWIN L. HARDER
Westinghouse Electric Corporation

700 Braddock Avenue
East Pittsburgh, Pennsylvania

Secretary

MR. SAUL I. GASS
IBM Corporation

1800 Yosemite Road
Berkeley 7, California

Executive Committee

DR. ARNOLD A. COHEN, IEEE
MR. WALTER M. CARLSON, ACM

MR. FRANK E. HEART, IEEE
MR. CLAUDE A. R. KAGAN, IEEE

ACM Di1'ect01's

MR. H. S. BRIGliT
Philco Corporation
Computer Division
3900 Welsh Road

Willow Grove, Pennsylvania

MR. EUGENE H. JACOBS
System Development Corporation

2500 Colorado Avenue
Santa Monica, California

MR, WALTER M. CARLSON
Director Technical Information

Office D D R&E
Office Secretary of Defense

Washinfton 25, D, C.

DR. ALAN J, PERLIS
Department of Mathematics

Carnegie Institute of Technology
Pittsburgh, Pennsylvania

IEEE Di'i'ectm's

MR. WALTER L. ANDERSON
General Kinetics, Inc.
2611 Shirlington Road
Arlington 6, Virginia

Treasurer

MR. FRANK E. H'EART
Lincoln Laboratory

P. O. Box 73
Lexington 73, Massachusetts

ExecutivQ Secretary

MR. REDMOND S. GARDNER
AFIPS Headquarters

211 E. 43rd Street
New York 17, New York

IEEE Directo1's

DR. ARNOLD A. COHEN
Univac Division

Sperry Rand Corporation
St. Paul 16, Minnesota

MR. G. L. HOLLANDER
Hollander Associates

P. O. Box 2276
Fullerton, California

MR. CLAUDE A. R. KAGAN
Western Electric Company

P. O. Box 900
Princeton, New Jersey

SCI Member of Governing Board

MR. JOHN E. SHERMAN
Lockheed Missiles and Space Company

623

Sta'lIding Committee Chai'rme')/

Admissions
MR. BRUCE GILCHRIST

Service Bureau Corporation
425 Park A venue

New York 22, New York

Confel'ence
MR. KEITH UNCAPHER

The RAND Corporation
1700 Main Street

Santa Monica, California

Finance
DR. R. R. JOHNSON

General Electric Company
Computer Division

13430 North Black Canyon Highway
Phoenix, Arizona

Planning

MR. G. L. HOLLANDER
Hollander Associates

P. O. Box 2276
Fullerton, California

Public Relations
MR. ISAAC SELIGSOHN

IBM Corporation
590 Madison A venue

Department 1-812
New York 22, N. Y.

624

Awards
MR. SAMUEL LEVINE

Teleregister Corporation
445 Fairfield Avenue

Stamford, Connecticut

Constitution & By Laws
MR. EUGENE JACOBS

System Development Corporation
2500 Colorado Avenue

Santa Monica, California

Inter'YUltional Relations
MR. 1. L. AUERBACH

Auerbach Corporation
1634 Arch Street

Philadelphia 3, Pennsylvania

Social Implications of Information
Processing Technology
DR. MORRIS RUBIN OFF

Moore School of Electrical Engineering
University of Pennsylvania

Philadelphia 4, Pennsylvania

Education
DR. RICHARD M. BROWN

University of Illinois
Coordinated Science Laboratory

Urbana, Illinois

1964 SPRING JOINT COMPUTER CONFERENCE
COMMITTEES

Chairman
HERBERT R. KOLLER, U.S. Patent Office

V ice-C hai1'man
ALEXANDER C. ROSENBERG, Goddard Space Flight Cen

ter

Secretary
JOSEPH O. HARRISON, JR., Research Analysis Corp.
RICHARD G. WILLIAMS, Research Analysis Corp., Al

ternate

Technical Program
JACK ROSEMAN, C-E-I-R, Inc., Chairman
DOMINIC A. LEITI, C-E-I-R, Inc., Vice Chairman
BERNARD COHEN, C-E-I-R, Inc.
HOWARD E. TOMPKINS, University of Maryland
G. H. SWIFT, I.B.M.
AUTHUR L RUBIN; Martin Aircraft Corp.
JACK MINKER, Auerbach Corp.
ELSIE M. MAMO, Computer ~ynamics, Inc.

Exhibits
SOLOMON ROSENTHAN, U.S.A.F., Chairman
GEORGE HOPPING, General Services Administration

Co-Chairman '

Printing and Mailing
MIKE HEALY, System Development Corp., Chairman
LOUIS ELIAS, System DeveloPIllent Corp., Co-Chair

man

Registration
JOSEPH H. EASLEY, UNIVAC, Chairman
NORMAN G. YOUNG, UNIVAC
JAMES LUNGWITZ, UNIVAC

Public Relations
J. HUGH NICHOLS, Dunlap and Associates, Inc., Chair

man
JOHN: E. KUMPF, UNIVAC, Co-Chairman
JOHN L. REYNOLDS, LT. & T., Co-Chairman

625

Hotel Arrangements
CLARK J. RISLER, Litton Industries, Chairman
RICHARD H. SMITH, Control Data Corp.
PAT DOYLE, National Bureau of Standards
MARY L. DOUGLAS, Applied Physics Laboratory

Finance
RICHARD C. LEMONS, General Electric Co., Chairman
NICHOLAS J. SUSZYNSKI, JR., General Electric Co., Co

Chairman

Field Trips
JOHN J. GLYNN, Defense Documentation Center,

Chairman
EDWARD J. CUNNINGHAM, Air Force Systems Com

mand, Co-Chairman

P1'oceedings
GORDON D. GOLDSTEIN, Office of Naval Research,

Chairman
MARGO A. SASS, Office of Naval Research, Co-Chair

man

Ladies Activities
RENEE JASPER, Auerbach Corp., Chairman
IBY HELLER
JUDY ROSEMAN
IDA GOLDSTEIN
RITA MILLER
SALLY PEAVY

Consultants
MARTIN S. BECKER, Legal Counsel
JOHN HOSKINS, Graphic Design
COMPTON JONES ASSOCIATES, Public Relations
JOHN C. WHITLOCK ASSOCIATES, Exhibits

EXHIBITORS
1964 SPRING JOINT COMPUTER CONFERENCE

AB ATVIDABERGS INDUSTRIER
ACADEMIC PRESS, INC.
ADAGE, INC
ADDRESSOGRAPH-MULTIGRAPH CORPORA-

TION
ADVANCED SCIENTIFIC INSTRUMENTS

DIVISION OF EMR
AERONUTRONIC DIVISION-

PHILCO CORPORATION
AMERICAN DATA PROCESSING INC.
BURROUGHS CORP., ELECTRONIC

COMPONENTS DIV.
CALIFORNIA COMPUTER PRODUCTS, INC.
CAMBRIDGE COMMUNICATIONS CORP.
C-E-I-R
CHRONO-LOG CORPORATION
COLLINS RADIO COMPANY
COMMERCE CLEARING HOUSE, INC.
COMCOR, INC.
COMPUTERS AND DATA PROCESSING

MAGAGZINE
DATAMATION MAGAZINE
DATA SYSTEMS DESIGN MAGAZINE
DATA PRODUCTS CORPORATION
DII AN CONTROLS, INC.
DIGI DATA CORPORATION
DIGITAL EQUIPMENT CORPORATION
DIGITRONICS CORPORATION
DYMEC
DIVISION OF HEWLETT-PACKARD CO.
GENERAL KINETICS, INC.
GPS INSTRUMENT COMPANY, INC.
HONEYWELL EDP DIVISION
IBM CORPORATION
INDIANA GENERAL CORPORATION
INTERNATIONAL COMPUTERS AND

TABULATORS, LTD.
INVAC CORP.
ITT DATA PROCESSING CENTER
MILGO ELECTRONIC CORP.
THE NATIONAL CASH REGISTER COMPANY
NAVIGATION COMPUTER CORP.
OHR-TRONICS, INC.
OMNITRONICS, INC.
PACKARD BELL COMPUTER
PHILCO CORPORATION - SUBSIDIARY OF

FORD MOTOR COMPANY (INFORMATION
SYSTEMS)

PHOTOCIRCUIT'S CORPORATION
RMS ASSOCIATES, INC.
ROYAL McBEE CORPORATION
SCIENTIFIC DATA SYSTEM, INC.
THE SERVICE BUREAU CORPORATION
SOROBAN ENGINEERING, INC.
STATISTICAL TABULATING CORP.
SYSTEM DEVELOPMENT CORP.
TALLY CORP.
TELETYPE CORPORATION
AMERICAN TELEPHONE AND

TELEGRAPH COMPANY

627

AMPEX CORPORATION
ANELEX CORPORATION
APPLIED DYNAMICS, INC.
BECKMAN INSTRUMENTS, INC.
BENSON-LEHNER CORP.
BRYANT COMPUTER PRODUCTS
COMPUTER DESIGN
COMPUTER SYSTEMS, INC.
COMPUTERS AND AUTOMATION
COMPUTER CONTROL COMPANY, INC.
COMPUTER SCIENCES CORPORATION
CONTROL DATA CORPORATION
COOK ELECTRIC COMPANY-

DATA-STOR DIVISION
CORNING GLASS WORKS
CYBETRONICS. INC.
DATAMEC CORP-BitATION
ELECO CORPORATION
ELECTRONIC ASSOCIATES, INC.
ENGINEERED ELECTRONICS COMPANY
ELECTRONIC MEMORIES, INC.
F ABRI-TEK, INC.
FERROXCUBE CORPORATION OF AME.RICA
GENERAL DYNAMICS/ELECTRONICS-

GENERAL ELECTRIC COMPUTER
DEPARTMENT

LIBRASCOPE GROUP, GENERAL
PRECISION, INC.

LOCKHEED ELECTRONICS COMPANY
AVIONICS AND INDUSTRIAL PRODUCTS

MAC PANEL COMPANY
MEMOREX CORPORATION
MIDWESTERN INSTRUMENTS, INC.
McGRAW-HILL BOOK CO., INC.
MONROE CALCULATING MACHINE COMPANY,

COMPANY, INC.-DIVISION OF LITTON
INDUSTRIES

POTTER INSTRUMENT COMPANY, INC.
PRENTICE-HALL, INC.
RADIATION, INC.
RA YTHEON COMPANY
RCA - EDP DIVISION
RCA ELECTRONIC COMPONENTS
AND DEVICES
RECORDAK CORPORATION
RFS ENGINEERING COMPANY
SPARTAN BOOKS, INC.
TEXAS INSTRUMENTS, INC.

INDUSTRIAL PRODUCTS GROUP
TRANSISTOR ELECTRONICS CORPORATION
UGC INSTRUMENTS - DIVISION OF

UNITED GAS CORPORATION
UNIVAC DIDVISON OF

SPERRY RAND CORP.
UPTIME CORP.
WESTINGHOUSE ELECTRIC CORP.
JOHN WILEY & SONS, INC.
WYLE LABORATORIES

ARANGO, H., 463

ARNOVICK, G., 537

BORKO, H., 529

CHEATHAM, T. E., JR., 31

COFFIN, R. W., 89

COFFMAN, E. G., JR., 397

COYLE, R. J., 125

DANIELS, A. E., 231

DAVIS, R. H., 161

DUNN, T. M., 413

EDWARDS, N. P., 211

ERICKSON, G. A., 445

EVANS, T. G., 327

FARR, L., 239

Fu, K. S., 315

GRAHAM, R. M., 17

GOETZ, M. A., 599

GOHEEN, M. E., 89

GULLAHORN, J. E., 103

GULLAHORN, J. T., 103

HAMPTON, R. L. T., 287

HANDLER, H., 303

HECKLER, C. H., JR., 515

HERMAN, D. J., 383

HILL, J. D., 315

AUTHOR INDEX

HILTON, A. M., 139

HURT, J. M., 169

JOSLIN, E. 0., 367

. KELLER, J. M., 425

KNOWLTON, K. C., 67

KUHNS, J. L., 577

LILES, J. A., 537

MANGELS, R. H., 303

MASHER, D. P., 515

McMURTY, G., 315

MEEKER, R. J., 115

MILLER, J. C., 609

MITCHELL, B. A., JR., 271

MONTGOMERY, C. A., 577

MOORE, W. H., JR., 115

MORRISSEY, J. H., 403

MUTSCHLER, E. G., 445

NANUS, B., 239

NEVIUS, W., 181

PICKERING, G. E., 445

ROSEN, A. H., 537

ROSEN, S., 1

ROSENTHAL, S., 359

RUTMAN, R. A., 477

SALTON, G., 587

629

SANTOS, J., 463

SATTLEY, K., 31

SCHWARTZ, J. 1., 397

SHAPIRO, R. M., 59

SHURE, G. H., 115

SIMMONS, G. J., 493

STAHL, W. R., 89

STEVENS, M. E., 563

STEWART, J. K., 125
QTTQQ'L"1I..TI!TTTl-T HI U To e::Of7
J..JVItrJItrJ.&;,I.L,",v ..1.'&''&', ~. ~.L., U.I."., t.10 I

STRINER, H. E.,155

STRUM, E. C., 425

THOMPSON, F. B.,219

TITUS, H., 181

TRAVIS, L. E., 339

TRUITT, T. D., 249

URBAN, G. H., 563

WARSHALL, S., 59

WEISSMAN, C., 397

WITTE, B., 195

WOOD, J. S., 537

YANG, G. H., 425

YARBOROUGH, J. M., 515

YOUNKER, E. L., 515

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629

