
l '-Y/ ').

AFIPS
CONFERENCE
PROCEEDINGS

VOLUME 23

1963
SPRING JOINT

COMPUTER
CONFERENCE

1963

SPARTAN BOOKS, INC.
Baltimore, Md.

CLEA VER-HUME PRESS
London

The ideas and opinions expressed herein are solely
those of the authors and are not necessarily repre
sentative of or endorsed by the 1963 Spring Joint
Computer Conference Committee or the American
Federation of Information Processing Societies.

Library of Congress Catalog Card Number: 55-44701

Copyright © 1963 by American Federation of Information Processing
Societies, P. O. Box 1196, Santa Monica, California. Printed in the United
States of America. All rights reserved. This book or parts thereof, may not
be reproduced in any form without permission of the publishers.

Sole Distributors in Great Britain, the British
Commonwealth and the Continent of Europe:

CLEA VER-HUME PRESS
10-15 St. Martins Street

London W. C. 2

ii

LIST OF JOINT COMPUTER CONFERENCES
1. 1951 Joint AlEE-IRE Computer Confer

ence, Philadelphia, December 1951
2. 1952 Joint AIEE-IRE-ACM Computer

Conference, N ew York, December 1952
3. 1953 Western Computer Conference, Los

Angeles, February 1953
4. 1953 Eastern Joint Computer Conference,

Washington, December 1953
5. 1954 Western Computer Conference, Los

Angeles, February 1954
6. 1954 Eastern Joint Computer Conference,

Philadelphia, December 1954
7. 1955 Western Joint Computer Conference,

Los Angeles, March 1955
8. 1955 Eastern Joint Computer Conference,

Boston, November 1955
9. 1956 Western Joint Computer Conference,

San Francisco, February 1956
10. 1956 Eastern Joint Computer Conference,

New York, December 1956
11. 1957 Western Joint Computer Conference,

Los Angeles, February 1957

12. 1957 Eastern Joint Computer Conference,
Washington, December 1957

13. 1958 Western Joint Computer Conference,
Los Angeles, May 1958

14. 1958 Eastern Joint Computer Conference,
Philadelphia, December 1958

15. 1959 Western Joint Computer Conference,
San Francisco, March 1959

16. 1959 Eastern Joint Computer Conference,
Boston, December 1959

17. 1960 Western Joint Computer Conference,
San Francisco, May 1960

18. 1960 Eastern Joint Computer Conference,
New York, December 1960

19. 19til Western Joint Computer Conference,
Los Angeles, May 1961

20. 1961 Eastern Joint Computer Conference,
Washington, December 1961

21. 1962 Spring Joint Computer Conference,
San Francisco, May 1962

22. 1962 Fall Joint Computer Conference, Phil
adelphia, December 1962

23. 1963 Spring Joint Computer Conference, Detroit, May, 1963

Conferences 1 to 19 were sponsored by the National Joint Computer Com
mittee, predecessor of AFIPS. Back copies of the proceedings of these con
ferences may be obtained, if available, from:
• Association for Computing Machinery, 14 E. 69th St., New York 21, N. Y.
• American Institute of Electrical Engineers, 345 E. 47th St.,

New York 17, N. Y.
• Institute of Radio Engineers, 1 E. 79th St., New York 21, N. Y.

Conferences 20 and up are sponsored by AFIPS. Copies of AFIPS Con
ference Proceedings may be ordered from the publishers as available at the
prices indicated below. Members of societies affiliated with AFIPS may
obtain copies at the special "Member Price" shown.

Volume List Member
Publisher

Price Price

20

21

22

23

$12.00 $7.00 Macmillan Co., 60 Fifth Ave., New York 11,
N. Y.

6.00 6.00 National Press, 850 Hansen Way, Palo Alto,
Calif.

8.00 4.00 Spartan Books, Inc., 301 N. Charles St., Balti-
more 1, Md.

10.00 5.00 Spartan Books, Inc., 301 N. Charles St., Balti-
more 1, Md.

NOTICE TO LIBRARIANS

This volume (23) continues the Joint Computer Conference
Proceedings (LC55-44701) as indicated in the above table. It
is suggested that the series be filed under AFIPS and cross
referenced as necessary to the Eastern, Western, Spring, and
Fall Joint Computer Conferences.

iii

CONTENTS
Page

vii Preface

1

9
17

29

41

51

59

ALGORITHMS IN BUSINESS DATA PROCESSING
Determining Fastest Routes Using Fixed Schedules

Equitable Distribution
RAMPS-A Technique for Resource Allocation and Multi

Project Scheduling

MACHINE ORGANIZATION I
Time Sharing on the Ferranti-Packard

FP6000 Computer System

The D825 Automatic Operating and Scheduling Program

A Time-Sharing Debugging System for a Small Computer

Experience with the Atlas Scheduling System

ANALOG AND HYBRID SYSTEMS I

69 DYSAC: A Digitally Simulated Analog Computer

83 DAS: A Digital Analog Simulator

91 Six Degree-of-Freedom Simulation of a Manned Orbital
Docking System

105 Application of Hybrid Analog and Digital Techniques in
the Automatic Map Compilation System

DATA ACQUISITION TRANS 1M ISS ION AND DISPLAY

113 Automatic Reading :Machine for Telegraph Service
117 A Research Laboratory for Processing and Displaying

Satellite Data in Real Time
127 A Real Time Multi-Computer System for Lunar and

Planetary Space Flight Data Processing

141 Ground Operation Equipment for the Orbiting
Astronomical Observatory

155 Error Detection Correction and Control

B. M. LEVIN

S. HEDETNIEMI

J. A. GOSDEN
J. MOSHMAN

J. JOHNSON
M. LARSEN

F. M. MARCOTTY

F. M. LONGSTAFF
A. P. M. WILLIAMS

R. N. THOMPSON

J. A. WILKINSON

S. BOlLEN
E. FREDKIN

J. C. R. LICKLIDER
J. MCCARTHry

D. J. HOWARTH

J. R. HURLEY

J. J. SKILES
R. A. GASKILL

J. W. HARRIS
A. L. McKNIGHT

J. C. Fox
T. G. WINDEKNECHT

S. BERTRAM

W. D. BUCKINGHAM

R. H. SPITLER
B. K. KERSEY

W. HOOVER
A. ARCAND

T. B. MILLER

A. G. FERRIS
E. J. HABIB

H. W. COOPER

R. L. MCCONAUGHY
R. STEENECK

Page

vii

1

9
17

29

41

51

59

69

83

91

105

113
117

127

141

155

Page Page
CRITICAL ANALYSES OF THE CURRENT STATE

OF THE ART

163 State of the Art in Scientific Computing R. W. HAMMING 163
169 State of the Art of Programming R. S. BARTON 169
179 Computer Applications for Industry and the Military: D. F. BLUMBERG 179

A Critical Review of the Last Ten Years

ANALOG AND HYBRID SYSTEMS II

191 Automatic Parameter Optimization as Applied to M. HOWELL 191
Transducer Design

197 Hybrid Computer Solution of Time-Optimal Control E. G. GILBERT 197
Problems

205 Multiple Integrals on a Non-Repetitive Analog Computer A. HAUSNER 205
213 Hybrid Techniques for Analog Function Generation W. E. CHAPELLE 213

INFORMATION RETRIEVAL

229 Automatic Stratification of Information D. LEFKOVITZ 229
N. S. PRYWES

241 A Computer Approaeh to Content Analysis: Studies P. J. STONE 241
U sing the General Inquirer System E. B. HUNT

257 Selective Dissemination of Information (SDI) : State of C. B. HENSLEY 257
the Art in May, 1963

263 Computer Controlled Printing M. P. BARNETT 263
D. J. Moss
D. A. LUCE

K. L. KELLY
289 On the Solution of an Information Retrieval Problem B. H. SAMS 289

COMPUTER AIDED DESIGN

299 An Outline of the Requirements for a Computer-Aided S. A. COONS 299
Design System

305 Theoretical Foundations for the Computer-Aided Design D. T. Ross 305
System J. E. RODRIGUEZ

323 Man-Machine Console Facilities for Computer-Aided R. STOTZ 323
Design

329 Sketchpad: A Man-Machine Graphical Communication 1. E. SUTHERLAND 329
System

347 Sketchpad III: A Computer Program for Drawing in T. E. JOHNSON 347
Three Dimensions

MACHINE ORGANIZATION II

355 Key Addressing of Random Access Memories by A. D. LIN 355
Radix Transformation

367 ADAM-A Problem-Oriented Symbol Processor A. P. MULLERY 367
R. F. SCHAUER

R. RICE
381 Associative Techniques with Complementing Flip-Flops E. S. LEE 381
395 Physical and Logical Design of a Highly Parallel Computer J. S. SQUIRE 395

S. M. PALAIS
MANNED SPACECRAFT SIMULATION

401 Introduction to the Panel Discussion J. H. McLEOD 401

410 Reviewers, Panelists, Session Chairmen and Panel 410
Moderators

411 1963 Spring Joint Computer Conference Committee 411
412 AFIPS Committees 412
414 Exhibitors 414
415 Author Index 415

PREFACE

This volume contains the full text of the thirty-seven technical papers
selected for presentation and discussion at the 1963 Spring Joint Com
puter Conference. It also includes a summary of one of the special panel
discussions. Thus it provides a permanent record of the more formal side
of the Conference.

The material herein represents a broad cross-section of activity in
computer and information-processing technology, as of early 1963. In
organizing the program for the Conference, general areas of interest were
tentatively established for each session, and these were used as guides in
selecting and grouping papers. On the whole, however, no real constraints
were imposed as to subject matter.

Indicative of the scope are three papers devoted specifically to critical
analyses of the current state-of-the-art. In other papers, the subjects dis
cussed range from basic concepts to practical applications, in both hard
ware and software, reflecting the ever-broadening impact of information
processing on modern society.

This volume is the product of much hard work on the part of the
authors who prepared the individual papers. We are indeed grateful for
these contributions-clearly the backbone of any highly technical Con
ference such as this. It is also a pleasure to acknowledge the contributions
of the many others-well over a hundred-who helped organize the Con
ference and who participated as session chairmen, panel moderators,
panelists, and reviewers.

E. CALVIN JOHNSON

General Chainnan
1963 Spring Joint Computer Conference

DETERMINING FASTEST ROUTES USING FIXED SCHEDULES

Dr. Bernard M. Levin and Mr. Stephen Hedetniemi
National Bureau of Standards

Washington 25, D. c.

INTRODUCTION

An interesting problem that is amenable to
solution by digital computer is posed by the
following questions. How late can a shipment
be detained at city A so that it arrives at city
B by a given time? By what route should it be
sent? The available routes consist of those
provided by scheduled common carriers such
as the airlines.

In some situations, no single scheduled
carrier trip satisfactorily connects the two
cities involved. In such a case it might be
necessary to rise two vehicles and to transfer
the mail between the two at a third city. Con
ceivably, it might be necessary to use three or
more vehicles and two or more transfer points.

The problem may have more meaning if it is
posed by the following more personal questions.
How late can I stay in my home town and still
get to an appointment in another city on time?
What route should I take?

An important application of a solution to this
problem can be found in the Post Office Depart
ment. The Department tI'ies to pyocess :mail
received in the afternoon so that it will be
delivered the following morning at distant
cities.

This problem has been studied at the National
Bureau of Standards under the sponsorship of
the Post Office Department. This paper de
scribes and discusses some solutions that have
been obtained. These solutions are related to
and stem from published literature regarding
the Shortest Route Problem.

1

THE PROBLEM

Relationship to the Shortest Route Problem

Given a network of points and lines, the
latter numbered by the distance between the
points they connect, it may be of interest to
know the shortest path between any two points.
This is the shortest route problem and many
solutions to this problem appear in the litera
ture.I, 3, 5, 7

If the points correspond to cities and the
values of the lines correspond to the travel
times between the cities, solutions to the short
est route problem yield the route with the least
time in transit. These solutions do not neces
sarily give optimum answers to the questions
posed in the introduction. For example, suppose
we live in Boston, Mass. and must get to Bing
hamton, N.Y., for a luncheon meeting. There
is a plane that leaves Boston at 6 :30 a.m. and
which arrives in Binghamton at 8 :37 -a total
flight time of 127 minutes. Getting up in time
to catch a 6 :30 a.m. plane is not a very satisfy
ing thought, so we investigate the possibility of
going another way. We find we can take a
plane from Boston to New York's Idlewild Air
port, leaving Boston at 7 :45 a.m. and arriving
at Idlewild at 8 :38. We can then transfer to
another plane leaving Idlewild at 9 :30 and
arriving Binghamton at 10 :37. This routing
requires 172 minutes from the time the first
plane is scheduled to leave Boston to the time
the second plane arrives at Binghamton; 52
minutes of the elapsed time is involved in trans
ferring from the first plane to the second. This

2 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

is not the shortest route, but it may be the
desired one.

Factors to be Considered

If our only consideration is to leave Boston
as late as possible in order to make our luncheon
appointment, then the routing by way of Idle
wild is superior because it leaves 75 minutes
later than the direct flight. There are, however,
other factors that must be taken into considera
tion in deciding which routing is superior, in
addition to flight time and departure time.

1. Cost: It costs $21.80 to fly directly from
Boston to Binghamton. It costs $28.80 to fly
from Boston to Idlewild to Binghamton. In
other words, we must pay seven dollars plus
tax for the extra 75 minutes of sleep.

2. Reliability: The routing by way of Idle
wild allows 52 minutes for transferring from
the Boston-Idlewild plane to the Idlewild-Bing
hamton plane. If the Boston-Idlewild plane
were late, the connection might be missed, caus
ing us to be stranded at Idlewild and, therefore,
to miss our luncheon. And further, if the Idle
wild-Binghamton plane were late, we mig}1t
also miss our luncheon. Also~ any scheduled air
line flight is subject to cancellation due to
weather or equipment problems. The direct
flight from Boston to Binghamton involves only
one plane and therefore such problems are less
likely to occur than in the two plane routing
by way of Idlewild. In other words, to get 75
minutes more sleep, we would increase the
probability of not arriving by the required time.

3. Transfer time: We have considered the
problem of missing connections due to the late
arrival of the first plane in a two-plane routing.
Even if the first plane is on time, some time
must be allowed for transferring from it to
another plane. This time varies according to
the size of the airport and according to whether
or not the transfer is between two planes of the
same airline or between planes of two different
airlines. The recommended minimum time for
transferring at Idlewild from the Boston-Idle
wild flight to the Idlewild-Binghamton flight is
30 minutes, which is less than the available 52
minutes. In addition to the 7 :45 a.m. flight,
there is a plane from Boston to Idlewild leaving
Boston at 8 :30 a.m. arriving at Idlewild at 9 :22
a.m., only 8 minutes before the departure from
Idlewild to Binghamton. We would not select

this flight because eight minutes is not sufficient
transfer time.

In summary, we have stated five factors that
are of importance in selecting routes: (1) de
parture time, (2) cost, (3) reliability, (4)
transfer time, and (5) arrival time. The only
required property of the arri~al time is that it
be before a specified time.

PRELIMINARY SOLUTIONS

Selection of Flights Along a Known Route

A digital computer can be programmed to
select flights along a known path. For example,
the known path could be Boston to Idlewild to
Binghamton. There are several flights each day
between both pairs of airports. The computer
can be programmed to select the set of flights
that best meets the criteria discussed in the
previous section. Only the criterion of time
will be discussed in this section.

To simplify matters, the procedures in this
paper will be described by means of terminology
peculiar to airline flights. The procedures can
be used for air transportation, surface trans
portation, and for combinations of surface-air
transportation.

The selection of the flights is not as simple
a task as it may at first appear. One solution
would be to check all possible combinations of
flights. While this is simple conceptually, it
involves an inefficient use of the computer.
Another obvious approach would be to select a
desirable departure time from Boston and
choose the flight to Idlewild with the departure
time closest to this desired time. The first flight
leaving. Idlewild for Binghamton after the
arrival of the selected Boston-to-Idlewild flight
would be the selected second link flight. This
solution is efficient but has two important short
comings which are easy to overcome:

1. It overlooks some problems involved in
making transfers.

2. It is not designed to answer one of the
specific questions asked, namely, that of
leaving as late as possible.

In making transfers from one flight to
another, it is necessary to consider whether or
not the transfer is between two planes of the
same airline or between two planes of different
airlines. A transfer between two planes of the
same airline is called an intra-line transfer; a
transfer between planes of different airlines is

DETERMINING FASTEST ROUTES USING FIXED SCHEDULES 3

called an inter-line transfer. The minimum
time allowed to make a transfer is usually less
in the first case than in the latter. There is no
problem in having two minimum transfer times
for each airport: one for intra-line transfers
and one for inter-line transfers. The problem
arises when the first flight to arrive requires an
inter-line transfer and a second flight, which
arrives soon afterward, involves an intra-line
transfer. It is possible that the earlier flight
cannot make connections with the plane which
departs at the desired time, while the later
flight can. For example, suppose there is a
flight from city A to city B leaving at 7 :00 and
arriving at 8 :00 on airline one. Suppose there
is also a flight between the same two cities leav
ing at 7 :05 and arriving at 8 :05 on airline two,
and there is a flight on airline two departing
city B for city C at 8 :45. If intra-line transfers
require 30 minutes and inter-line transfers re
quire 60 minutes, then the flight which arrives
at 8 :05 can make connections, while the 8 :00
flight cannot. The solution to this problem of
transfer times is to consider as potential first
link flights all flights whose arrival. time at
city B is within X minutes after the earliest
arrival time at city B, where X is the difference
between the inter-line and intra-line transfer
times at city B. In cases of routes having more
than one transfer point, this factor must be
considered at each transfer point.

The problem posed in Section I was to select
a routing that permitted the shipment to be
detained at the originating city as late as
possible. The solution described so far uses
a prescribed earliest departure time and,
therefore, does not really solve the problem
posed. This can easily be corrected by tracing
the route backwards. The last leg of the trip
would be selected first, based on its arrival and
departure times, and so forth. The basic nature
of the solution would be unchanged. In over
cOiuing the transier problem described in the
previous paragraph, we would consider as
potential last link flights all flights whose de
parture time at city B is within X minutes be
fore the latest departure time at city B.

Selection of Promising Routes

The backward tracing of the path with
proper correction for the transfer problem will
select the optimum path on a basis of the cri-

terion of latest departure. However, it requires
the routing to be predetermined. In order
to find the best set of flights, it will often
be necessary to trace out numerous routes.
These routes can be determined by another com
puter program or by someone making decisions
regarding the routes to be tested. An algorithm
has been developed which finds the N short
est routes between two given cities where
Nl < N <N'2' and Nl and N2 are variables. This
algorithm considers only the travel time among
the cities and does not consider delays involved
in transferring. It will be the subject of a
separate paper now being prepared. (It would
ha ve been possible also to have used other pro
cedures for finding the N shortest routes.) 2, 4

For each of the N routes, a set of flights is
selected and compared with the sets of flights
for the other routes, and the set of flights with
the latest departure time selected. A computer
program has been written which selects the N
shortest routes neglecting transfer times, se
lects a set of flights for each route considering
transfer times, and rank orders them on the
basis of latest departure time. This program
uses as input data IBM cards containing the
name of the airline, the flight number, the de
parture airport and time, and the arrival airport
and time. It can handle 2,000 trip segments
and 45 transfer points. To save space in the
computer memory, a trip that has several stops
is considered as a series of nonstop trip seg
ments. For example, a plane trip from Boston
to N ew York to Washington is treated as two
trip segments: Boston to New York and New
York to Washington.

The program was written in FORTRAN for
the IBM 704 and 7090 computers. On the IBM
7090, it took two minutes to find paths between
30 pairs of cities. This involved determining
and tracing 265 paths.

There is no assurance that the best route will
be one of the N shortest routes as determined
by the algorithm. All of the N shortest routes
may involve poor connections at the transfer
points while a longer routing may involve good
connections at the transfer points. This is a
weakness of the procedures. Also, cost is not
considered.

Until now, the only consideration given to the
arrival time has been that it be before the pre
scribed arrival time. After the latest possible

4 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

departure time at the city of origin is deter
mined, consideration can be given to selecting
the earliest arrival time. The airline passenger
may wish to depart as late as possible, but he
would prefer having idle time in the city of
destination rather than at a transfer point. In
the same way, we may want to have the depar
ture of the last dispatch of mail as late as pos
sible. (Mail ready for an early dispatch would
be sent on the early one.) However, once the
dispatch time is set, it would be desirable to get
the mail to its destination as early as possible
so that there would be more time to process it
at the destination post office. This can be ac
complished by retracing the path in a forward
direction after the departure time has been de
termined by the backward tracing. For ex
ample, if we wish to leave Minneapolis and
arrive at Cleveland by 7 :00 p.m., we would find,
by tracing backwards, that we could take a
3 :45 plane from Chicago, arriving in Cleveland
at 6 :20. We could take a 1 :45 plane from
Minneapolis to Chicago and connect with the
3 :45 plane. Tracing forward, we find we could
take the 1 :45 plane from Minneapolis and make
connections in Chicago with a plane arriving at
Cleveland at 6 :05, fifteen minutes earlier than
the trip selected by the backward tracing.

Selection of Optinl,um Routes

A computer program has been written that
does not have the limitations just described. It
always finds the fastest route; it includes cost
as a factor; and it does not require both a for
ward and backward tracing. It is based on the
algorithm presented in the Appendix (with
modifications indicated below) and is sinlilar to
a procedure suggested by Minty5. The basic
idea is to find the best direct flights given a
starting time from the originating airport to
all other airports being considered. The direct
flights are the links of the network. Each of
these selected direct flights is considered as a
possible first link of a two-link route to each of
the other airports. The airport at which the
direct flight lands is considered as a potential
transfer point. Every flight leaving that airport
is paired with the direct flight, Ea.ch resulting
two-link route is compared with the best previ
ously determined route to the arrival city of the
two-link route. If it is better, it is stored in
place of the previously determined best. After
all the stored one-link routes are tested, the

stored two-link routes are tested to see if they
can be used as the first two links of a usable
three-link route. Whenever the three-link route
is better than the previously stored route, it is
stored in place of the previous best. This proc
ess is continued until for some m, all of the
m-link stored routes are tested as the first m
links of a route having m+ 1 links, and none of
the (m+ 1) -link routes warrant retention. This
algorithm is similar to the "Moore Algorithm"4.

. The transfer problem described in the previ
ous section arises here also. I t is solved by
storing more than one route between a pair of
cities whenever conditions warrant, and using
each of the stored routes to see if it can be the
first part of a route to another city. The criteria
for storing additional routes are the same a..~

before. That is, consider as potential first-link
flights all sets of flights along any route whose
arrival time at city B is within X minutes after
the earliest arrival time found so far at city B,
where X is the difference between inter-line
and intra-line transfer times at city B.

It should be noted that this solution finds
routes not only from the origin city to the des
tination city but also from the origin city to
all other cities. Hence, some routes are retained
only because they are promising routes to po
tential transfer points; other routes are re
tained because they are tentatively the best
routes to a city as well as because they are
promising routes to potential transfer points.

As described above, the solution is geared
to an originating time rather than to a desired
arrival time. Another approach would have the
program "1yvork from a desired arrival time and
find the latest possible departure time from
each of the other cities to that city. After the
departure times are found, the earliest arrival
times to the destination city based on each of
the computed departure times could be deter
mined. However, the approach described below
should be more desirable because it finds good
routes (fastest for some departure time) for
all times of day in an efficient manner. If good
routes for all times of day are known, the de
sired route for a given arrival time can easily
be selected. The best routes for all times of day
can be computed by means of the approach that
follows.

The best routing for a given departure time,
say 11 :30 p.m., could be determined. Then the

DETERMINING FASTEST ROUTES USING FIXED SCHEDULES 5

best routes for a new departure time, say 10 :30
p.m., could be cop.sidered in the following man
ner: Using as first links only flights which de
part between 10 :30 and 11 :30, new potentially
useful multiple-link routes would be computed.
In deciding whether or not to save a computed
route, it must be compared with the best route
found so far, which includes those routes based
on the 11 :30 departure time. The computa
tions involved would be less time-consuming
for this second departure time because a set of
flights would be saved only if it is better than
the retained 11 :30 departure routes. A third
time, say 9 :30, could be selected and the process
continued by selection of earlier times through
out the day. The final results will be the fastest
routes from the origin city to all other cities for
each departure time used. (Duplicate routes
can be suppressed.) From this mass of data,
the routing that best answers the question origi
nally posed can be selected. In addition, data
are available to answer many similar questions.

This solution involves one minor problem.
This can best be described by an example. Sup
pose we wish to arrive at a given city by mid
night. If there are two direct flights, one which
leaves at 10 :50 p.m. and the other at 10 :40 p.m.
and both take an hour, the algorithm as de
scribed above would pick the flight with the
earlier departure and arrival times, the flight
leaving at 10 :40. The 10 :50 flight leaves later
and would be the better flight according to the
criteria described earlier in this paper. How
ever, the selected flight is so similar to the best
flight that this cannot be considered an impor
tant problem, especially since the interval be
tween the departure times considered is subject
to control.

An advantage of this approach is that a large
amount of useful data is obtained in a system
atic fashion.

LATEST SOLUTION

Routes to Be Stored

There is one property of the algorithm in
the Appendix that warrants emphasis. This
property can best be described using the net
work in figure one. Assume node A is the origin
point. The shortest routes to node B and node
C are the direct links of four and three units
length, respectively. We then try to develop

two-link routes to C, D, E, and F, using the
link AB as the first link. The two-link route
ABC is nine units in length, which is longer
than the direct link. Although we compute the
link ABC, we do not retain it. The links ABD
and ABE, on the other hand, are retained. We
then try using as a first link AC. The route
ACB is computed but rejected. The route ACE
(length 6) is computed and retained in place
of the route ABE (length 8). In going through
these operations we systematically consider all
possible ways of extending each M link route
to M + 1 link routes. In developing three-link
routes, the route ABD is extended to make the
route ABDF and the route ACE is extended
to make the route ACEF, which is longer than
the stored route ABDF and is therefore ignored.
The route ABDF is extended to the route
ABDFE which is longer than the route ACE,
and therefore is not retained. In finding the
route ABDF, the rule of using an M link route
to fin d an M + 1 link route still held. There
was no need to use any other procedure to find
this route, such as extending the route AB by
two links at one time.

Listing Procedure

In adapting the algorithm to find optimum
transfer airports and flights, it is sometimes
necessary to retain several routings from the
origin airport to a given transfer airport. If
time is the only criterion for the selection of
an optimum route, the only criterion for re
taining non-optimum routes to potential trans
fer points is also time, where the amount of
time is a function of the required minimum
transfer times at that city. We need consider
only the arrival times at that one point along
the route; we need not worry about transfer
problems at previous cities along the route nor
at cities yet to be added to the route.

As indic.ated above, it is sometimes necessary
to save more than one set of flights between
the origin city and another city, simultane
ously. To save space in the computer memory,
the retained flights are stored in a list format.
There is a limit on the space reserved for this
list. However, there is no limit on the number
of routes that can be stored between the origin
city and a potential transfer point so long as
there is space remaining in the list to store
information regarding these routes.

6 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Additional Criteria

The introduction of the list procedure per
mits additional route-selection criteria to be
introduced. In introducing additional criteria,
it is necessary to be very specific. Additional
criteria that have been introduced and pro
grammed are those of specific interest to the
Post Office Department in routing air mail.

The Post Office Department pays for air
transportation according to the following rules.

1. If only one airline is involved, the Post
Office pays a loading charge based on the size
of the airport plus a transportation cost based
on the "short line distance" between the origin
and destination airport. The short line dis
tances are the shortest distances between the
two airports involved, using a single carrier.
For example, suppose we wish to get from air
port A in Figure 1 to airport E and the routing
we wish to consider is from A to B to E on air
line 1. If airline 2 has planes between airpor,t
A and C and also has planes between C and E,
airline one will be paid for only one loading
charge and only six units of distance (the dis
tance of the ACE route) rather than the eight
units of distance that the mail was transported.

A~ _______ 4 ________ ~~B

3
F

c

3~
E

2. If more than one airline is involved, the
short line distance is paid each airline for any
continuous portion of the route handled by that
airline. An additional loading cost is added
each time the mail is transferred from one air
line to another, based on the size of the airport
at which the transfer is made.

It should be noted that when these rules
apply, a straightforward application of the
algorithm cannot answer questions regarding
cost. However, as actual sets of flights are
selected, costs can be computed. Whenever the
fastest route is not the cheapest, the cheapest

route found can also be saved. Hence, the cri
terion of cost, as well as that of speed, can be
taken into account.

The introduction of the criterion of cost with
the costing rules described above creates some
problems. If we consider the problem of getting
from A to B by way of T, the following could
happen. Let us say that the best flight from
A to T is on airline one, while airline two
provides a flight which arrives much later.
However, airline two provides the only service
between T and B; therefore, the more time
consuming connections from A to T and B on
airline two are cheaper, because there is no
inter-line transfer cost. In other words, many
poor flights and sets of flights must be retained
and tested if it is required that the cheapest
routing be found. This would greatly increase
the computer time necessary. In order to make
solutions practical, we have programmed the
computer to select the cheapest set of flights
that arrives at a transfer point less than X
minutes after the fastest, where X is a variable
set equal to, say, 120 minutes. Each of these
selected sets is tested as the firstm links of a
route having tn+ 1 links.

The problem of finding alternate routes when
the fastest route does not operate every day is
straightforward. Each computed routing can
be tested to see if it is the fastest for any day
of the week and if it is the fastest, it is -retained.

T he Pro gra,n

A computer program has been written and
debugged using the techniques described in this
section which does the following:

1. It finds the fastest route from an origin
city or airport to all other cities or air
ports.

2. It finds "cheapest" routes, using the rules
described above.

3. It finds alternate routes when the fastest
route does not operate every day.

4. It finds routes for all times of the day,
using the procedure of finding the best
flights for each of 24 different desirable
departure times throughout the day, as
described in section 3.

5. It can handle 50 cities and 2,000 non-stop
flight segments.

DETERMINING FASTEST ROUTES USING FIXED SCHEDULES 7

The program was written in FORTRAN,
with F AP function subprograms used to pack
and unpack data for the IBM 7090. It takes
about one second to compute the "best" routes
from one airport to the other nine airports in
a ten airport network with 200 trip segments
for a specified earliest departure time. This
computation time does not include "set-up"
time nor the time required to enter the data.

APPLICATIONS

The procedures described in this paper have
many potential areas of application. Two such
applications related to the Post Office problems
will suffice as examples.

The Post Office Department prepares lists
of multiple-link routes for the routing of air
mail. It is anticipated that the procedures de
scribed in this paper will be used instead of a
hand operation to develop these routes.

The Post Office Department schedules many
mail trucks to supplement service provided by
common carriers. The techniques described in
this paper can be used to evaluate a proposed
revision of schedules.

There are, of course, many other areas of
potential use. In most of these cases, a corre
sponding hand operation is now being used. It
is anticipated that computer procedures will be
more efficient and more economical in many
situations.

APPENDIX

A Computational Algorithm for Obtaining the
Shortest Path From One Point to Every Other
Point in a Network

Given a network of points Ph P:!, ... , Pm and
lines between them, construct a distance matrix
A, with elements aij representing the length of
the line between points Pi and Pj' If no line
exists between the points, let aij = 00.

The algorithm also applies to the situation
where the lines are directional. The value of
au would be the length of the line going from
Pi to Pj' It would not be necessary that aij = aji~

Let ei contain the ordered sequence of points
of the shortest path found so far from PI to Pi.

Let bi be the length of the shortest path found
so far from 1 to i. The original values will be
the direct distances, i.e., the first row of matrix
A.

Let di indicate if the path ei has been used
in an attempt to create improved paths to other
points. If di = 0, it means it has been used,
otherwise di = 1.

Let f = 1 if any di has been set equal to 1 since
the last test of f, otherwise let f = o.

Steps
(1) Set

Set
Set

(2) Set
Set

(3) If

(4) Set
(5) If

(6) If

bi = ali

di = 1
ei = 1, i;
i = 2
f = 0

i = 2,3, ... , m
i = 2,3,' ... , m
i = 2,3, ... , m

di = 1, go to step 7
di = 0, go to step 4
i = i + 1
1, ~ m, go to step 3
1, > m, go to step 6
f = 0, algorithm is finished
f = 1, go to step 2

(7) Set j = 2
(8) Compute c = bi + aij

(9) If c ~ bj, go to step 11

(10)

(11)
(12)

Set
Set
Set
Set
Set
If

(13) Set

c < bj, go to step 10
dj = 1
ej = ei, J
bj = c
f = 1
j = j + 1
j ~ m, go to step 8
j > m, go to step 13
di = 0
Go to step 4

When the algorithm is finished, the contents
of ei, i = 2, 3, ... , m, will be the points through
which a shortest path (more than one may
exist) from PI to Pi passes. The values of bi ,

i = 2, 3, ... , m, will be the length of the shortest
paths.

It should be noted that the values of aij are
used only in step 8. At that time, trial value
of bi is known and aij can be a function of that
value of bi• If bi is the time required to get to
i and aij is the time from the arrival at i to the
arrival at j~ then aij can be determined from
published schedules using bi in determining the
earliest possible departure time at i.

REFERENCES

1. BELLMAN, RICHARD, "On a Routing Prob
lem." Quarterly of Applied Mathematics,
vol. 16, p. 87-90. 1958.

2. BOCK, F., KANTNER, H., and HAYNES, J.,
An Algorithm (The r-th Best Path Algo
rithm) for Finding and Ranking Paths

8 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Through a Network. Chicago, Armour Re
search Foundation of Illinois Institute of
Technology, Technical Paper Number 19.
1957,

3. DANTZIG, G. B., "On the Shortest Route
Through a Network." Management Science,
vol. 6, p. 187-190. 1960.

4. HOFFMAN, \V., and PAVLEY, R., "A ~1ethod
for the Solution of the Nth Best Path Prob
lem." Journal of the Association for Com
puting Machinery, vol. 6, p. 506-514. 1959.

5. MINTY, GEORGE J., "A Variant on the

Shortest-Route Problem." Operations Re
search, vol. 6, p. 882-883. 1958.

6. 0 fficial Airline Guide, Quick Reference Edi
tion, vol. 6, No. 21. Chicago, Reuben H.
Donnelley. 1962.

7. POLLACK, M., and WIEKENSON, W., "Solu
tions of the Shortest-Route Problem-A
Review." Operations Research, vol. 8, p.
224-240. 1960.

8. SHIMBEL, A., "Structure in Communication
Nets." Proceedings of the Symposium on
Information Networks, New York, Brook
lyn Polytechnic Institute. 1954.

EQUITABLE DISTRIBUTION

John A. Gosden
AUERBACH Corporation

1634 Arch Street
Philadelphia 3, Pa.

THE PROBLEM OF DISTRIBUTION

The problem of distributing available re
sources occurs in a great variety of networks,
each with peculiarities of its own. Coal from
mines has to be distributed to central dumps
and to small yards. Ice cream must be dis
tributed only to refrigerated stores and has a
limited useful life. A buyer for a chain of stores
with their own stock rooms but no central ware
house must indicate where his purchases are
to be delivered. A farmer must distribute his
labor according to the state of the crops and
the weather, and many other distribution prob
lems exist in modern complex commercial life.

The problem of distribution is that the sum
of the requests or needs of consumers does not
equal the available supply. This is due in part
to failures to meet production or buying plans,
changes in consumer demand and other uncon
trolled variables, but also may be deliberate
policy to maintain level production rates, to buy
while raw material prices are favorable or to
build up stock in expectation of peak demand
periods such as Christmas or the Summer. The
standard solution to the mis-matching of sup
ply and demand is the creation of buffer stocks.

In practice, there may be one or many buffer
stocks in a network. In retail selling, there may
be 5 levels-display stock, counter stock, shop
stock, area depot stock and factory warehouse
stocks-apart from stocks in the pipelines be
tween them. For all these, it is possible to
establish optimum restocking periods and opti-

9

mum restocking levels. In ideal conditions, the
total available for distribution would equal the
sum of the amounts by which each store was
under-stocked and allocations would be made
to bring each to its optimum level at each re
stocking period.

To illustrate the principle of equitable dis
tribution, this paper considers an example con
sisting of a network in which there is one pro
duction site and several retail outlets. The
whole network operates on a weekly cycle and
the production in anyone week is available at
the end of the week to replenish the retail out
lets. Each outlet has its own stock room but
the production site carries no stock from week
to week. Each week the forecasters estimate
the weekly sales for each of the outlets. For
example, suppose that it has already been estab
lished that at the beginning of each week the
optimum restocking level of each of the outlets
is ten days' estimated sales. The production
plan, therefore, for anyone week consists of
.... hn "'.,~ ",4! hn ,.."' ~"""'n ,..rl "' ... 1,..", n~ ,.. ... ",1-, "' 1.,,+
I.I~H" "'U~U. V.1. IJU~ ~"'IJ~U.U;\.IJ~U QQ.l~Q V.1. ~Q\".ll VUIJ.lvlJ

plus any under-stock and minus any over-stocks
held in the outlets at the beginning of the week.
If all goes well, production meets its targets,
the sales volume is exactly that estimated and
then the production is exactly sufficient to re
stock the outlets to their optimum levels at the
end of the week.

However, at the end of the week, the situa
tion that arises is not identical with the esti
mated situation. Three factors have had their

10 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

effects. First, production may be above or
below that planned. Second, the actual sales
may differ from those estimated. Third, the
optimum restocking quantities may alter be
cause estimates of future sales are revised. In
such a situation, either the requirements of the
outlets exceed the production volume and some
form of under-supply must be imposed or pro
duction volume is in excess of the requirements
of the outlets and some form of over-supply
must be imposed.

There are two important restrictions which
must also be taken into consideration. The first
restriction is that no allocation shall be made
that causes the stock level in an outlet to exceed
the capacity of its stock room. The second
restriction (which does not occur in all situa
tions) is that no returns of stock from outlets
or transfers among outlets are allowed. This
latter restriction is a frequent feature of dis
tribution networks.

Numerical Example I

Consider a system of one production site and
four retail outlets in which the four outlets
have storage capacities of 64, 60, 126 and 160
items, respectively. At the start of week one,
the daily sales for each are estimated as 4, 4, 7
and 10 items, respectively. It is considered that
the optimum restocking level at the start of
each week is 10 days' estimated sales and they
are so stocked.

-

items i 20 I

I Items

")(
.)(

..A,," 'f. U
:)(

X 70
~It~~S)< 40 < ~~)< Items< ~X :i> 'Items

~. y. "J:I,' X"
,X

-"
:X

.X

4 per day 4 per day
FIHST SEeO:-''!)

()J.lTl ET OllTLET

7 per day
TIIIHD

OFTLET

~ Stock for 10 days' estimated s,dcs

c=J Unused storage capacity

X

:"

,X X
XX

:X

100 < ~ Items <
,AX ,X

' X}\

10 per day
FOUHTll
OllTLET

I

Diagram 1. Stock Position At Beginning Of Week 1.

Diagram 1 represents this stock position. On
the horizontal axis, each outlet has a base rep
resenting one day's estimated sales and on the
vertical axis, the height represents stock as a
number of days' estimated sales. In this dia
gram, area is a measure of items. There are
two areas shown for each outlet-occupied
storage space and spare storage space. The
storage capacities range between 15 and 18
days' sales. In this situation the production
volume calculated for week one is 150 items,
which is the total estimated week's sales with
no corrections required for over- and under
stocks.

Suppose that during week one the sales are,
in fact, 24, 35, 46 and 45 items, respectively.
As a result of these sales, the forecasters make
two changes, in which the estimated daily sales
for outlets 2 and 3 are altered to 5 and 6 items.
The position at the .end of week one is then
shown in Diagram 2. These changes have had

20 -

-

-

-
16

~'XX8
5 Items

4 per day 5 per day
FIRST SECOND

OUTLET OUTLET

r" 24

~Jt~ms

6 per day
THIRD

OUTLET

Amount of stock on hand

---. r ~

55

Items

lit per day
FOURTH
OUTLET

..

Diagram 2. Stock Position At End Of Week 1.

I
I

I

the important effect of reducing the capacity
of the store at the second outlet from 15 to 12
days' sales, although it can still hold 60 items.
The optimum stock levels of the outlets are now
40, 50, 60 and 100 items, and their closing stocks
are 16, 5, 24 and 55 items; therefore, the cur
rent demands of the outlets to restock to the
optimum level are 24, 45, 36 and 45 items,
making a total demand of 150. N ow suppose
production was held up and there were only

....l

'" ~
'"l
~

g
1;;

100 items to distribute. If each demand is
rationed by the same factor, and allocations of
two-thirds of demand are made, the new posi
tion would be as shown in Diagram 3. This

20

~ 15

]
E
~ ..,
~
'S

10

.,
'§
C

"C ;
!

4 per day 5 per day
FIRST SECOND

OUTLET OUTLET

6 per day
THIRD

OUTLET

~ Stock on hand before allocation

~ Stock allocated

10 per day
FOURTH
OUTLET

Diagram 3. Stock Position If All Demands Are Ra
tioned Pro-rata.

would mean that the outlets had stocks of 8, 7,
8 and 8.5 days' sales, respectively. This system
causes those that have been selling well to have
the poorer stocks even when the forecasts have
been corrected. On the other hand, the principle
of equitable distribution would allot 16, 35, 24
and 25 items to the outlets, which would mean
that each had a stock of 8 days' expected sales
as shown in Diagram 4.

Simple Model

The Diagrams are constructed in such a way
that after equitable distribution, the stocks are
represented by rectangles of equal height, and
a sirnple model can be used to illustrate the
principle of equitable distribution. Let the Dia
grams represent a vertical cross-section of a
rectangular tank in which the floor is divided
into rectangular strips, perpendicular to the
cross-section, one for each outlet. The widths
of the strips are proportional to the rate of
sales of each outlet. Solid blocks are inserted
into the tank to represent the occupied storage
space for each outlet. Each block fits exactly
onto the strip corresponding to its outlet, and

....l

'" ~
'"l
~

g
1;;

20

~
]

15

i -.,
~
'S 10

"' c

" C

"C ;
!

EQUITABLE DISTRIBUTION 11

4 per day 5 per day
FIRST SECOND

OUTLET OUTLET

6 per day
TtURD

OUTLET

Stock on hand before allocation

Stock allocated

10 per day
FOURTH
OUTLET

Diagram 4. Stock Position If Distributed Equitably.

its height, therefore, measures the stock as a
number of days' ex~ted sales. The tank is
completed by a stepped roof whose height above
the floor of the tank represents the limit of each
outlet's storage capacity.

Now let the week's production be represented
by a suitable volume of liquid which is poured
into the tank. The liquid will find its own level,
as shown in Diagram 4 for the case when the
volume is 100. Diagrams 5 and 6 illustrate

20-

15-

10-

4 per day 5 per day 6 per day 10 per day
FIRST SECOND THIRD FOURTH

OUTLET OUTLET OUTLET OUTLET

Stock on hand before allocation

Stock allocated

Diagram 5. Equitable Allocation of 30 Units.

12 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

~

20

h
"

• 15

4 per day 5 per day
FIRST SECOND

OUTLET OUTLET

6 per day
THIRD

OUTLET

~ Stock on haDd before al\ocatlon

IZZZZZ2I Stock allocated

h

10 per day
FOURTH
OUTLET

Diagram 6. Equitable Allocation of 240 Units..

alternative cases for production volumes of 30
and 240, respectively. Diagram 5 shows how
the fourth outlet is ignored when its level of
stock exceeds the equitable level, and Diagram
6 shows how the roof of the tank limits the allo
cation made to the second outlet.

Computation Procedure

The computation procedure consists of two
parts: the first determines the level of equitable
distribution; the second computes the appro
priate volume of production to be allocated to
each outlet.

SUDDOse there are N outlets. Let the esti
mated ~ daily sales of outlet n be Sn items, the
stock capacity be en days' sales, i.e., CnSn items,
and the actual stocks be An days' sales, i.e., AnSn
items. Now Cn and An denote the discontinui
ties in the system and let them be ordered into
a series Bi where i = 0, 1, 2, 3, ... , im,

where
and

Bi ~ Bi + 1
Bo = O.

Now calculate X in, which is the volume re
quired to bring up the stock of outlet n from
B i-1 to as close to Bi as the capacity en ailows.

If B i - 1 ~ en,
IfBi ~ An
Otherwise,

X in = 0
X in = a
x in = [min(C n, BJ

- max (An, B i- 1)]8n.

Compute Fi where
. N

Fi =.~ 2: X in.
i=1 n=1

Then Fi is the volume required to bring up the
stocks of all outlets to as close to Bi as the
capacities allow.

Let P be the volume of production to be
allocated. Then find I such that

FI ~ P ~ F H1.

Then the level L of equitable distribution is
defined by

where
Q = (P - FI)/(FH1 - F I).

The allocation Dn for outlet n is defined by

I

Dn = 2: X in + QX CH1)n.
i=1

These allocations have the property that their
sum is exactly equal to the volume of produc
tion, because

N N
2: Dn = FI + Q 2: X CH1)n
n=1 n=1

= FI + (F I+1 - F1)(P - F1)/(F H1 - F I)

= P.

Numerical Example II

Table 1 shows the values of Sn, ClI , A tl , for the
four outlets. The values of Bi are shown in
Table 2, and they correspond to the discontinui
ties marked in Diagram 2. Table 3 shows the
values Xin computed for the situation illustrated
• T"'\- 0 rT1t... _1.".., __ ..f--n+nln n~" n"",.....,111fl Hi J.Jiagrarl1 u. .1.Ut ~VIU.11111 lMIJC;U':' "'.1.0;;; ~UUH""''''

tively cross-cast at the foot to give the values
F i• Three cases are illustrated in which P (the
volume of production) is 100, 30 and 240,
respectively.

Case 1, when P = 100:
F4 = 37.5 <: 100 <: 200 = F5
Q = (lao - 37.5)/(200 - 37.5) = 625/162.5

= 5/13
L = 5.5 + 5(6.5)/13

= 8 days' sales.

Case 2, when P = 30:
F'2 = 15 <: 30 <: 37.,5 = F3
Q = (30 - 15)/(37.5 - 15) 15/22.5 = 2/3
L = 4 + 1.5(2/3)

= 5 days' sales.

Case 3, when P = 240:
F 5 = 200 <: 240 <: 280 = F6
Q (240 - 200)/(280 - 200)
L 12 1r 0.5(4)

14 days' sales.

Quant ity

Ollt let Number

Estimated Daily
Sales

Stock Capacity In
"Days Sa les"

Actual Stock In
"Days Sa les"

Code

Sn

c"

An

Ollt let Outlet
I 2

16 12

Discontinuity

Emp ty stockrooms

C..Jrren t leve 1 ou tIe t 2

0.5

Outlet Out let
3 4

10

2! 17

5.5

2,3 Cllrrent leve Is ou tIe t s 1 and)

BI

5.S

12

16

17

21

(Days)

5.5

12

16

17

21

Current ieve 1 ou tIe t 4

Capacity level outlet 2

Capdci ty level out let 1

Capacity level outlel 4

Capacity level outlet)

Value. of Xtn

outlet 1 outlet 2 outlet 3

15

0

7.5

26 32.5 39

16 24

6

24

~Xi FI
all

outlet 4 outlets

0.0 0.0

15.0 15.0

22.5 37.5

0.0 37.5

65 162.5 200.0

40 80.0 280.0

10 16.0 296.0

24.0 320.0

These cases are illustrated graphically in
Diagram 8. The graph is formed by joining the
pairs of points (Bi1 F i) computed from Table
2. By taking the value of L corresponding to
the value P on the Faxis, the same answers
are obtained as when using the algebraic
method given above.

400 IF

300

100

~~~~----~-----+-----+----~~L 
10 15 20 25 

DAn 

Diagram 8. Quantity F Required To Raise Minimum 
Stock Level to L Days' Estimated Sales. 

EQUITABLE DISTRIBUTION 13 

P1'actical Cases 

In practice, the procedure detailed above is 
not suitable for general computation. The pro
cedure suffers from the disadvantage that the 
determination of the series Bi is not straight
forward. In addition, it produces many more 
Bi values than are usually necessary for the 
precision required, and which increases the 
computing unnecessarily. With 50 outlets in 
the example above, there vlould be nearly 100 
values of B i • If, on the other hand, arbitrary 
choices of Bi are made, the effect is to produce 
a graph only slightly different· from Diagram 
8. Table 4 shows a possible set of Bi1 and the 

Bi 
(Days) 

12 

15 

18 

21 

Values of Xin 

outlet 1 outlet 2 outlet 3 outlet 4 

10 

U 12 

12 15 18 30 

12 15 18 30 

12 18 30 

18 20 

18 

Fi 

10 10 

40 50 

75 125 

75 200 

60 260 

42 302 

18 320 

Fi that result from it. All these points are on 
the graph shown in Diagram 8, but their con
nection lines sometimes cut across concavities 
of the more accurate graph. This is shown 
most significantly for small values of L. Dia
gram 9 shows the precise graph as a solid line 
and the approximation as a broken line. 

Re-working Case 2, using Table 4, gives 

Q = (30 - 10)/(50 - 10) = 112 
L = 3 + 3/2 

= 4.5 days' sales, 
I 

I 
F I 

50 B 

I 
I 

I 
I 

40 I 
I 

I 
I 

I 
I 

I 
>- 30 / !-o 

/ ~ I 
~ I 

I a 
I 

20 / 
I 

/ 
/ 

I 
I 

I 

10 

~~~ __ -+ __ ~ ____ ~ __ +-__ ~ __ ~L 

DAYS

Diagram 9. Enlargement of Diagram 8 Showing Ap
proximation Caused By Arbitrary Selection of Points B,

14 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

but L in this context is only an approximation.
It is more interesting to note that the alloca
tions that would be made are

4, 17.5, 6, and 2.5

which are very close to the preferred amounts

4, 20, 6, and 0

and would bring the stock levels up to

5, 4.5, 5, and 5.25

days' sales, with a maximum error of 0.5 days'
sales. This is much better than rationing the
available 30 by the fraction 30/150, which
would allocate

4.8, 9.5, 7.2 and 9,

giving stock levels of

6.4, 2.9, 5.2 and 6.4

days' sales respectively, in which case the sec
ond outlet is badly understocked. By setting
the Bi at one-day intervals, the approximation
error would be negligible.

Back-Orders

If a situation occurs where stock runs out
and back-ordering is involved, then an area
should be added below the horizontal axis rep
resenting the back-orders. Diagram 7 shows
how 100 items would be allocated if at the end
of week 1, the first outlet had 8 left, the fourth

4 per day 5 per day
FIRST SECOND

OUTLET OUTLET

6 per day
THIRD

OUTLET

~ Stock on hand before allocation

~ Stock allocated

10 per day
FOURTH

OUTLET

Diagram 7. Allocation Allowing l<"or Back Orders.

outlet had 10 left, and the others had sold out,
while the third outlet had taken orders for 18.
Each would have its stock brought up to a level
of 4 days' sales.

Negative Allocations

In some networks, transfers between outlets
are permitted. These may be direct transfers,
or indirect transfers by means of the distribu
tion point at the production site. There is al
ways a stock limit set below which items may
not be transferred. In the extreme, this is the
zero stock level, but is more likely to be some
emergency level of stock. Let the emergency
level be one of the values of Bh say BE' Then
the procedure is the same as before except that
it is preceded by reducing the stock of each
outlet to the level BE and increasing P by the
sum of these reductions.

Indefinite Capacities

Where an outlet deals only in one kind of
item, or where a bin system or special storage
is required (say for gasoline or frozen foods),
there are definite values that can be set for the
ClI , but in many cases the value of Cn varies as
other items held in the same store are under
or over-stocked. In this situation, let there be
J items considered and all the symbols used
before now have an extra suffix j (j=1, 2, 3 ...
J). Now values Cnj are allotted which must
conform to the restriction that when Vj is the
volume of an item j, then,

is less than the total capacity of outlet n. The
values Cnj should be set at a level above which
any extra stocks would not materially decrease
the chances of running out of stock.

Having allotted Cnj for all j for some outlet n,
let the storage space remaining, called the re
serve storage, be Rn measured in some unit of
volume. For convenience, we consider the re
serve storage in terms of capacity to hold some
item j whose volume is Vj' Then R = V 11 En.i
for any j and E nj is the reserve capacity of
outlet n in units of item j.

If Pj is greater than the total allocations nec
essary to bring up the stock of each outlet to
its Cflj , then the reserve capacities must be used,
and the remaining part of Pj is called reserve

stock. The reserve stock must be compared
with the total reserve storage space which is

N

~ Enj V j for any j.
=1

If the volume of reserve stocks for all items
together exceeds reserve storage space, the
values of Pj must be reduced by some system
until it is the case. Let H j be the fraction of
total reserve storage required by the reserve
stock of item j. Then, where reserve stock
exists, each outlet is filled to capacity Cnj and
then allocated a sufficient amount to bring its
reserve holding to H j E nj•

Computer Considerations

There are five major factors to be considered:
1. Volume of computation.
2. Complexity of computation.
3. Scans of the data.
4. Random or serial access to data.
5. Accuracy and rounding errors.
The volume of computation depends upon the

number of outlets and the number of points Bi •

The more Bi points there are, the greater the
precision of the result in general. For any
given degree of precision, an arrangement of
Bi in exponential steps minimizes the number
of Bi •

The procedure requires scans through the
data to:

1. Establish the values of Bi• This scan can
be saved if preset values are used.

2. Compute the values of Fi , and then deter
mine L.

3. Compute the individual allocations Dn.
Thus there are either 2 or 3 scans, depend

ing upon the method of establishing the values
of Bi •

If the data for the outlets can be held in a
random access store, the scan to determine L
can be made by computing each Fi in turn until
the allocation total P is reached. A more sophis
ticated procedure is to estimate I and arrange a
searching procedure. More frequently, the data
may have to be held in a serial access store.
In this case, the procedure is to calculate all
the X in for each n in turn and accumulate

N

~ X in for each i.
n=1

EQUITABLE DISTRIBUTION 15

Then at the end of the scan, the values Fi can
be formed.

Although the computation of Fi may be made
in basic items, allocations Dn may have to be
rounded to some multiple of a delivery unit.
When this unit is not small compared with the
smaller values of D,., the round-off procedure
needs care. Any errors introduced by rounding
are additional to those arising from the choice
of the set of Hi' Rounding cannot be carried
out indiscriminately or the sum of Dn may not
equal P. If independent rounding procedures
are carried out for each outlet, it is wise to
group the outlets with larger Sn at the end of
the scan where cumulative round-off errors can
be absorbed with least inequity. If such re
grouping is not desirable, the technique of
carrying the round-off quantity into the com
putation of the next ,outlet can be used. For
example, suppose Dn be rounded to D' nand D' n
- Dn = dn then D'n+l is computed by rounding
off (Dn + l - dn). This process minimizes the
cumulative round-off error at any time, and
each D' n may have an error of up to one delivery
unit.

CONCLUSION

There are five major advantages that can be
cited for the use of the principle of equitable
distribution that has been discussed in this
paper.

First, the basis of the principle is simple to
understand; therefore, it is easy to explain to
all employees concerned with distribution.

Second, the principle works just as easily in
times of crises as in easier times. During poten
tial crises-heat-waves, blizzards, or failures in
production or raw materials-supplies are ra
tioned with little fuss. During inventory build
up to minimize a future potential crisis, the
surplus is shared simply and effectively.

Third, the principle is easy to mechanize and
fits well into automatic data processing and
simpler systems.

Fourth, the principle can be extended to
cover more complex situations where several
levels of inventory or sources of supply are
involved.

Fifth, it can be used effectively with other
mathematical tools. Starting from past sales
records, exponential weighting techniquesl , 2, 3

16 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

can be used to forecast sales. From sales pat
terns and production costings, mathematical
analysis4 • 5 can be used to determine optimum
inventory levels and re-ordering rules. From
current stocks and . ~ales forecasts, production
plans can be made; then, when production
occurs, equitable distribution can be made.

ACKNOWLEDGMENTS
The author wishes to thank Mr. T. R. Thomp

son of LEO Computers, Ltd., and the staff of
A UERBACH Corporation for their help and
encouragement in the preparation of this paper.

REFERENCES
1., BROWN, ROBERT G. (1956) Exponential

Smoothing for Predicting Demand. Cam
bridge, Mass., Arthur D. Little, Inc.

2. HOLT, CHARLES C. (1957) Forecasting
Seasonals and Trends by Exponentially
Weighted Averages. Pittsburgh, Pa., Car
negie Institute of Technology.

3. MUIR, ANDREW (1958) Automatic Sales
Forecasting. The Computer Journal, Vol.
1, p. 113.

4. WHITIN, T. M., YOUNG, J. 'V. T. (1955) A
Method for Calculating Optimal Inventory
Levels and Delivery Time Naval Research
Logistics Quarterly, Vol. 2, No.3, p. 157.

5. ARROW, K. J., HARRIS, I., MARSCHAK, J.
(1951) Optimal Inventory Policy. Econo
metrica, Vol. 19, p. 250.

~AMPC: - 4. T o,."'",i,. •• o 'ft . . , - .-.. --..... ~-- .~.

Resource Allocation and Multi-Proiect Scheduling

Jack Moshman, Jacob Johnson, and Madalyn Larsen
C-E-I-R, INC.

1200 Jefferson Davis Highway
Arlington 2, Virginia

INTRODUCTION

Some Recent Developments

Work planning, a never-ending management
responsibility, has been aided tremendously in
recent years by the development of a new tech
nique commonly referred to as networking or
arrow-diagramming. Today, the network is
widely accepted by business, scientific, and
governmental organizations as a worthy re
placement for the Gantt chart and other less
flexible and less meaningful methods of plan
ning work. 1-:{. B. 1:.!

PERT,4']O Critical Path Method (CPM) ",8

and many other similar systems'" 6 use esti
mates of the time required to complete each
activity as the basis for determining the work
schedule. The scheduling system sequences all
the activities in the network and calculates the
earliest and latest completion dates for each
activity. These dates are then woven together
to form a schedule for the total project. In
some instances the scheduling function is auto
mated, that is, an electronic computer is used
to perform the calculations; in others the sched
ule is determined manually and monitored with
the aid of a computer. *

RAMPS, a system for Resource Allocation
and Multi-Project Scheduling, was recently de
veloped by C-E-I-R, INC. and now is an opera
tional IBM 7090 digital computer program.
RAMPS retains many of the basic concepts of

17

its predecessors; it uses the network for work
planning and relies on a careful analysis of the
needs of each individual activity, but it also has
unique features not found in other systems.
Two of these are readily apparent in its name
Resource Allocation and Multi-Project Sched
uling.

Acti'vity Resource Requirements

Major differences among many networking
systems lie in the information provided for each
activity and ultimately used in the work sched
uling function. In most systems, this informa
tion includes estimates of the time needed to
complete each activity· and the total cost of the
activity or a related group of activities. Where
a schedule is produced, it attempts to reflect the
most desirable time-cost relationships.

While RAMPS includes time and cost con
siderations in its work schedules, it also incor
porates the resource requirements of each ac
tivity and the availability of these resources at
the time the activity is to be scheduled-both
extremely vital factors in any meaningful
scheduling system.

Multi-Pr'oject Schedules

A unique feature of RAMPS is its ability to
schedule simultaneously more than one work

* A comprehensive bibliography is to be found in
Voress, et al. ll

18 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

project. The projects to be scheduled may differ
in size, type of work, importance and starting
times. They are related only in their reliance
on a common pool of resources.

RAMPS recognizes and responds to estab
lished priorities for the projects and competi
tion among activities within all projects for
limited quantities of available resources. The
system also strives to meet established target
completion dates by applying larger quantities
of available resources to critical activities
within all projects.

Competition for Available Resources

In addition to defining the work and resources
required by the various activities, the RAMPS
user provides the system with a knowledge of
the quantity of each resource type that is avail
able to all projects. Provision is also made for
using overtime or additional units of a given
resource at a premium cost.

There may be many activities in all projects
competing for the same resources during the
same work period. RAMPS weighs the needs
of each activity individually and in relation to
the other activities before deciding how the
resources are to be allocated.

Management Controls

Under the many constraints imposed by com
pletion deadlines, specified resource limits and
project priorities, RAMPS must weigh many
factors before deciding how best to schedule
each project. Frequently, there are many pos
sible routes that RAMPS could follow, each
with a different effect on the schedules pro
duced. There is, for example, the route that

SERIAL WORK FLOW

minimizes project completion time, but perhaps
at an increased cost because of the use of over
time. Another route may assure a minimum
of idle resources throughout the lives of the
projects, and another might maximize the total
number of activities being worked on during
each scheduled work period. In instances such
as these, RAMPS relies on control information
provided by the RAMPS user to determine
which course of action is most desirable. This
ability on the part of management to influence
and guide the scheduling function is one of the
major features of the RAMPS system.

ESTABLISHING THE NETWORKS

General Description

The foundation of the RAMPS system is the
network-a graphic display of a plan. The net
work portrays an orderly step-by-step series of
actions which must be performed successfully
in order to reach a specific, definable objective.
Simply stated, a network is a work flow
diagram.

Concurrency in the Network

In almost every real situation, there are many
activities that can be carried on concurrently;
others must be accomplished in a purely serial
fashion. By planning to allow several related
efforts to proceed simultaneously and converge
at the proper event, the manager is able to
reach his stated objective in a much shorter
period of time. Since the network is a work
plan, those activities which logically can be
worked on in parallel should "be shown in the
network as concurrent activities. The concept
of serial and concurrent activities is shown in
Figure 1.

CDORDER REPAIR PARTi®DISMANTLE EQUIPMENl@TRANSfERTOSHOP.@);-R_E_PA_IR ___ @REMOVEOLD BASE .®ERECT BASE ~

CONCURRENT WORK FLOW
)-____ -.(3 ERRECT BASE FORMS 6 POUR CONCRETE 7 ASSEMBLE EQUIPMENT 8

REPAIR ____ TRANSFER EQUIPMENT

;-----....... 5 TO SITE

Figure 1. Concept of Concurrent Work Flow arid Serial Work Flow.

RAMPS-A TECHNIQUE FOR RESOURCE ALLOCATION AND MULTI-PROJECT SCHEDULING 19

It is obvious that a considerable amount of
effort must be expended to determine which
activities may be concurrent and which must
proceed alone. But it is this effort at the plan
ning level that saves time and money later when
the actual work is done.

ESTIMATING TIME AND RESOURCE
REQUIREMENTS

Ge-neTal Descrip-tion

Although the importance of an accurate and
well-planned network cannot be over-empha
sized, there is perhaps no other function in the
total application of RAMPS that is more im
portant than obtaining accurate estimates of
the time and resources required by each activity.
Because RAMPS bases many of its scheduling
and resource allocation decisions on this infor
mation, the validity of the schedules produced
hinges on the thoroughness with which time and
resource requirements are estimated. It is im
perative that these estimates be made by those
individuals who are most familiar with the
work to be accomplished by each activity.

Determining Amount-ol-Work

With the preliminary networks drawn and
available as work guides, the next step in ap
plying RAMPS can begin: determining the
amount-ol-work required by each activity in the
networks.

Amount-of-work is derived from multiplying
the number of unit time periods required to
complete an activity under normal working con
ditions by the number of units of resource re
quired per time period. The unit time period
may be an hour, day, month, or any unit of
time that defines the smallest period within
which work will be scheduled and resources
allocated.

Although it is not necessary to record amount
of-work in the network, it is frequently bene
ficial because it provides a ready visual display
of the time and resource estimates for each
activity as illustrated in Figure 2. The amount
of-work figures are enclosed in boxes below the
activity lines. The units of resource -required
per time period are recorded beside the amount
of-work boxes. The estimated number of time
periods needed to complete each activity can be
quickly determined by dividing the units of
resource figure into the amount-of-work.

PROJECT A
MODERNIZE PLANT

PAINT EXTERIOR

6--SPEED-UP '1 NUMBER OF UNITS OF
AMOUNT-OF -WORK---I!!I ~~ ~~:~!sovml RESOURCE REOUIRED

PROJECT B
RENOVATE OFFICE

INSTALL AIR CONDITIONER

~!
2

Figure 2. Amount-of-Work and Alternate Resource
Utilization Rates in the Networks.

If we assume that under normal conditions
activity 3-6 of Project A will require three days
to be completed and will consume the work of
two painters during each day, the amount of
work for the activity would be six units.

The amount-of-work concept provides the
system with unique flexibility in work sched
uling and resource allocation. By including two
additional resource utilization rates to the nor
mal rate already established, this flexibility can
be further increased.

Establishing Alternate Utilization Rates

Under normal conditions, activity 3-6 would
require three time periods to be compieted and
would use two painters per time period. To
provide for the possibility of doing the job
faster or slower than normal, one can provide
two other estimates. The first is a resource
utilization rate under accelerated work condi
tions, speed-up; the second is a resource utiliza
tion rate under relaxed or extended work con
ditions, slow-down. The work efficiency at other
than the normal rate is introduced to account
for the absence of precise linear relationships.

20 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Once the amount-of-work has been deter
mined for an activity, it should be the guiding
factor in determining desirable speed-up and
slow-down utilization rates. It is necessary to
"tailor" utilization rates and work efficiencies
for a given resource to the individual activity
to which the resource is to be applied. Each
activity in the network and the resources it
needs are considered as autonomous units for
purposes of estimating amount-of-work, re
source utilization rates, and work efficiency at
the three utilization rates.

Scheduling and Allocating Flexibility

The three rates of resource utilization pro
vide RAMPS with great flexibility in manipu
lating tinle and resources requirements of
each activity to meet resource availability
levels. The same flexibility extends from the
activity level to the project level where the
speed-up, normal, and slow-down rates allow
the system to adjust work accomplishment rates
to meet project completion deadlines.

As shown in Figure 3, Project A could be
completed in as few as 9 time periods at the
speed-up rate, or as many as 32 time periods
at the slow-down rate. At the normal rate, the
project could be completed in 16 time periods.
Note that the use of each rate requires a differ
ent peak work force. The total work force re
quired reaches peaks of 20 men during period
5 at speed-up, 10 men during period 8 at nor
mal, and 6 men during period 15 at slow-down
rates.

If all the needed resources were available,
it is likely that RAMPS would schedule a proj
ect at the speed-up rate. However, in real
situations, all the needed resources are rarely
available at all times, especially when there
are several projects involved.

Let us assume, therefore, that only 7 men
are available for work on Project A. Under
this restriction, we can examine the steps taken
by RAMPS in developing a schedule for that
project considered in isolation. We will also
see how the three utilization rates are inter
mixed in the schedule produced.

Determining the Critical Path

One of the first uses RAl\IPS makes of the
amount-of-work values is in determining the
critical path within each project. The critical
path is the longest path or sequence of activi-

TIME PERIODS TIME PERIODS

11121314Isl&171·1,llol,,1121131 ... llsIIeI II 12 13 141,1&1 71.1 ' 1
<D (i) @ @ <00>
13:314:4@:sI6:6141

® .€>

o ® @ @ @(!)

12: 2:212;2;2;214:4:4:414;4:412: 21
® @

16:6:61 13:3:3:3:3:31
@@ SPEED-UP @ @ NORMAL

16:6:.1 13:3:3:3:3.:31
\(!) @

J;;'~
@ @
~

3316162011964 222S88810106664422

o ® @ @ @ (i)

II: I: I: I: I: III :-1: I: 1:1: 1:1: 112:2:2:2:2:2:2:212:2:2:2 :2:211: I: I: II
®@
fu :2:2:2:2 :2:2:2 :11

® (i) SLOW -DOWN
12:2:2:2:2:2:2:2)1

" @
,>:1:1:1:1:11

I I I I 1155555555633333322222221 I I I

Figure 3. Possible Project Completion and Workforce
Requirements at each Rate of Homogeneous Resource
Utilization (Project A, Figure 2).

ties, in terms of total time required, from the
starting to the ending activity.

All activities on the critical path are critical
activities. As shown in Figure 2, there are
three possible work paths in Project A, the
longest of which requires 16 time periods at
normal rates and travels through events 1, 2,
4, 5, 6, and 7. This path is the critical path;
any delay in the completion of a critical activity
will cause an equal delay in completion of the
project. If any or all of the activities not on
the critical path are completed ahead of sched
ule, there could be no time gained in project
completion. On the other hand, time gained
along the critical path means time gained in
project completion. Thus, the critical path cal
culation provides the following information:

1. The duration of the project if all activities
on the critical path are scheduled at the
normal resource utilization rate, and

2. The identity of those activities which are
critical and therefore must receive pref
erence when they are c()mpeting for a
limited resource with activities that are
not on the critical path.

RAMPS-A TECHNIQUE FOR RESOURCE ALLOCATION AND MULTI-PROJECT SCHEDULING 21

Therefore, the next step in developing a
schedule is determining when there will be com
petition between critical and non-critical activi
ties for the 7 men that are available. This is
done by establishing the earliest possible start
times for the nOR-critical activities so that the
total resource requirements for all activities in
each time period can be determined. Figure 3
shows the earliest periods at which work on
each activity in the project can begin. Note
that beginning in period 4, the resources re
quired at normal rates exceed the quantity
available.

It can be seen that by using the slow-down
utilization rates during periods 4 through 9, a
schedule could be produced that stays within
the limits of the available resources. However,
this can be done only at the expense of extend
ing the project completion time.

Since RAMPS strives to complete each proj
ect as quickly as possible, the use of slow-down
rates on critical activities is essentially a last
resort. Therefore, another alternative must be
considered: delaying the start of the non-criti
cal activities so that the resources they would
otherwise consume can be diverted to the criti
cal activities. This is called "floating" an
activity.

Determining Activity Float

Activity float is the difference in time peri
ods between the earliest time an activity can be
completed and the time it must be completed
without extending the project completion time.
An activity float analysis for Project A is
shown in Figure 4. Note that the critical activi
ties have zero float-they cannot be delayed
without delaying project completion.

TIME PERIODS 'I 1213141151617.18191101" 11211311411151161
CD ® @ @ (6)6)

12:2:212:2:2:214:4;4:414:4:412:21

® ®
13;3:3:3:3:3rITJ~I]

® ®
13:3:3:3:3:3IJG

® ®
12:2 ;2,--:-1

L..J

FLOAT
~ FREE INTERFERING

0 0 0

5 5 0

2 0 2

2 2 0

Figure 4. Activity Float Analysis.

The float for activity 2-6 is five time periods.
The earliest time it can be completed is period
9; it must be completed during period 14 to pre
clude a delay in the start of activity 6-7. This
kind of float is called free /loat because the
activity can be delayed without interfering in
any way with the float of other activities.

Conversely, activity 2-3 has two periods of
interferin{l /loat. Since it must be c6mpleted
before activity 3-6 can begin, 2-3 can be delayed
one or two time periods, but only with an equal
reduction in the float of activity 3-6. For this
reason, the float of activity 2-3 is said to inter
fere with the float of an activity that is to be
started later.

Producing a Schedule

With the combined power of the float analysis
and the three rates of resource utilization,
RAMPS is now equipped to produce an efficient
schedule that meets the work requirements of
each activity, minimizes project completion
time, and stays within the limits of available
resources. An idea of how this power is used
can be gained from Figure 5 which shows the
schedule produced for Project A.

By delaying the start of activity 2-6 and
using the speed-up and slow-down rates where
necessary, RAMPS has scheduled the project
for completion in 15 time periods using a total
work force of only 7 men. Note, too, that idle
resources have been minimized where possible.

Although this small example serves to illus
trate how RAMPS schedules work, a better idea
of the scheduling power of RAMPS can be
gained when one considers that this example
takes into account only one project and only

Time Pwloda

"""-"CTA>~

::~ f~ .-".\ t--- · I!l; E!I: m: 0~

I, 12131415 16171819~oIIlII2I13114"!51
0®® @ ®®
13'31.'.iz '2'2'2'2'2'414'4 '4141
I! , ! I ! ! , ! ,-, I ! ! , ,

si

MLABLE WORK. FORCE. 7 "' ..

RESOURCES AIAILABLE 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
RESOURCES ASSIGNED 3 3 7 7 7 7 7 7 7 7 7 7 4 4 4
IDLE RESOURCES 4 4 0 0 0 0 0 0 0 0 0 0 3 3 3

Figure 5. Derived Work Schedule for Project A Using
Float and Combined Resource Utilization Rates.

22 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

one resource type: men. Looking again at the
network for Project A, one sees that although
men are required in each activity, they have
different skills. There are carpenters, painters,
electricians, and other skills involved. There
fore, in scheduling this project, RAMPS would
not only have to consider total work force, but
also the availability levels of each of the skills
in each time period.

RESOURCE TEAMING

In our discussions to this point, we have in
cluded only the contingency of an activity re
quiring one resource type. There is a need, of
course, for a means of applying several differ
ent reso.urces to. the sanle activity while still
maintaining the amount-of-work concept. In
the RAMPS system, this need is fulfilled by
resource tearning.

When an activity requires several different
resource types, they are combined to form a
resource team for the activity. Each resource
team is composed of a lead resource and one or
more trailing resources.

The lead resource can be considered the re
source in the team upon which the greatest
overall demand is levied. I t then is used to
determine the amount-of-work for the activity
and the slow-down and speed-up co.mpletion
rates. The trailing resources are those "sub
ordinate" resources that are needed to support
the work to be done by the lead resource. Al
though trailing resources may actually perform
work on the activity, they do not enter into the
amount-of-work calculation. Amount-of-work
for resource teams is derived solely from the
lead resource date but all resources must be
available before the activity can be scheduled.

DETERMINING RESOURCES AVAILABLE

Ha ving covered the first two steps in the
application of RAMPS:

1. Project planning and network prepara
tion, and

2. Amount-of-work estimates and resource
requirements for each activity in each
project,

one must form the resource pools from which
RAMPS \vill allocate the needed resources to

the various activities and projects. The task
is to determine:

1. How much of each resource type is
available,

2. When and how long this quantity is avail
able, and

3. The resource cost.
For each resource, these questions must be

answered from two points of view. First, we
must determine the answers under normal
working conditions or at normal cost. Then we
must establish the various means by which ad
ditional resource units could be provided if
needed. The possibilities include overtime, sub
contracting, and hiring or acquiring additional
units.

These additional units are called premium
resources and, as the name implies, their unit
costs are usually higher than those of the nor
mal resources.

Obviously, normal availability data is re
quired by the RAMPS system; if work is to be
scheduled, resources must be provided. Pre
mium availability data is not required, but it
is important in providing RAMPS with further
flexibility in accomplishing the required work.
Certainly the application of additional re
sources, derived by any means, will contribute
to the completion of the required work in a
shorter period of time, but at an additional cost.
This data is particularly important when man
agement is willing to incur greater expense to
complete a project in a minimum amount of
time. The quantity of any resource may be con
stant over the total scheduling period or may
vary in level as a function of time.

Additional resource information needed in
cludes the unit cost per time period, the availa
bility of additional premium resources, and the
cost of premium resources.

Although RAMPS strives to avoid allocating
premium resources, it may use them under
either of the following two conditions:

1. To meet a project completion deadline
when no other means exists for accom
plishing the required amount of work
within the time specified.

2. To alleviate an otherwise untenable sched
uling bottleneck caused by an acute short
age of one or more resources during one
or more time periods.

RAMPS-A TECHNIQUE FOR RESOURCE ALLOCATION AND MULTI-PROJECT SCHEDULING 23

SETTING MANAGEMENT CONTROLS
AND OBJECTIVES

General Description

The next, and final, step before operating on
the data accumulated so far is the setting of the

. objectives to be reached in the schedules that
are produced. The use of the various controls
determines project priority and provides an
swers to such questions as: "In scheduling all
projects, should cost be minimized? Is time im
portant? Should idle resources be minimized?"

Establishing Project Priorities

In perhaps every instance of multi-project
scheduling, management can pinpoint those
projects which, when completed, will be more
beneficial to the company as a whole. Naturally,
if these benefits are to be realized as early as
possible, these projects must be given priority
when all projects are competing simultaneously
for a limited quantity of available resources.

Project priority can also be viewed from a
slightly different angle: "How much is it going
to cost if this project is not completed on time?
How much can be saved or gained if it is com
pleted ahead of time?" The answers to these
questions are crucial in the many areas of busi
ness where work projects are negotiated under
bonus-penalty agreements.

The relative importance of the various proj
ects is injected into RAMPS decision-making
by providing the system with three facts: proj
ect start dates, desired project completion
dates, and project delay penalties.

Establishing project starting dates is the
first step in exercising control over the sched
ules produced by RAMPS. This is done merely
by specifying the earliest time period at which
work may begin on each of the projects to be
scheduled.

The desired completion date is expressed in
the same manner as the starting dates-the
time periods during which the projects are to
be completed. In many instances, it is difficult
to provide a knowledgeable estimate of how
much time, from start to finish, a project should
require, particularly when the work is unprec
edented. In others, experience will allow rea
sonably accurate completion dates to be set.

By providing RAMPS with the costs incurred
in delaying each project, we can identify those
projects with the higher priorities and thus

provide the basis for deciding which projects
are to be completed on the deadlines indicated
if all targets cannot be met.

Control Factors

While the start date, completion date, and
delay penalties provide a means for expressing
priority among projects, there is also a need
for expressing other criteria that are to be
observed in the schedules that are produced for
all projects. For example, in addition to recog
nizing the relative importance of projects, man
agement may also recognize a need to minimize
project costs, minimize idle resources, or maxi
mize the total number of activities being worked
on at all times. These and other needs can be
conveyed to RAMPS through the use of the
management control factors.

It should be emphasized that RAMPS at
fempts to complete each project as soon as
possible by making the most efficient and ap
propriate use of time and resources. More spe
cifically, RAMPS continually strives to:

1. Start and complete each activity at the
earliest possible time.

2. Achieve a smooth rate of work accom
plishment and resource utilization by
"looking ahead" for possible bottlenecks.

3. Minimize idle resources.
4. Work simultaneously on as many activi

ties as possible.
5. Give priority to critical activities.
6. Avoid interrupting work on an activity

once it has been started.
In forming a schedule of work during a

given time period, RAMPS is almost always
confronted by conflicts among these objectives;
rarely can they all be achieved at the same time.
When there is conflict, the program must deter
mine which of these objectives are to be satis
fied at the necessary expense of excluding
others. For example, consider the following
situation: there are four activities that could
be started in the current time period and there
are adequate resources at the normal utilization
rates to start all of them. However, one of the
activities is on the critical path and in order to
meet the desired project completion time, it
must be scheduled at the speed-up rate. This
will mean delaying one of the other projects so
that the resources it would otherwise consume
can be diverted to the critical activity. In addi-

24 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

tion, another activity must be completed during
the current time period to avert a probable
work bottleneck in the subsequent time period.
To avoid the bottleneck, a second activity must
be delayed so that the activity preceding the
possible bottleneck can be accelerated.

Of the four activities that could be started,
only two can begin if a work bottleneck is to be
averted and a critical activity is to be given
priority. The decision to be made is whether
the first and fourth objectives are more impor
tant than the second and fifth objectives.

Certainly these considerations and decisions
are common to any scheduling system. Indeed
they are made every day by one means or
another. In most instances, however, they come
from an individual who is thoroughly familiar
with the project being planned and is therefore
able to judge the relative importance of each
of the considerations.

The control factors that are a part of RAMPS
offer a means for expressing the relative im
portance of the many items that bear on sched
uling decisions. Through their use, those who
are most familiar with the work to be done and
the environment in which it will be done, can
provide RAMPS with a means for determining
the best course of action when there is a con
flict in the overall scheduling objectives.

Thus, the discretionary use of management
controls in the situations we have just discussed
exercises a direct influence and control over the
schedule produced.

Weighting the Control Factors

Influence of RAMPS' scheduling decisions is
exercised by preparing a table of relative
weights for the following six factors:

1. Free Float
2. Total Float
3. Look-Ahead

4. Work Continuity
5. Number of Jobs

Scheduled
6. Idle Resources

As shown in Figure 6, each of these factors
can be used to exercise a unique influence on
the scheduling functions and thus satisfy one
of the' management objectives mentioned earlier
in this section.

The degree to which the schedule is affected
by anyone factor depends upon its weight rela
tive to the weights assigned to the other factors.

CONTROL MANAGEMENT
EFFECT ON SCHEDULE OBJECTIVE

FACTOR
SATISFIED

Total Float Gives priority to those activities • Minimizes Project
Free Float which cannot be delayed without Completion Time

delaying project completion. • Gives Priority to
Critical Activities

Look- Gives priority to those activities • Avoids Work
Ahead upon whose completion many Bottlenecks

activities are waiting.

Work Gives priority to those activities • Avoids Activity
Continuity which were started earlier and Work Interruption

are incomplete.

Nunber of Gives priority to starting as • Maximizes the
Jobs many new activities as possible. Number of Job

Being Worked On

Idle Gives priority to assigning all • Minimizes Idle
Resources available resources. ResOU'ces

Figure 6. Control Factors.

For example, if the paramount consideration in
accomplishing the work on a project is keeping
idle resources at a minimum, the idle resource
factor might be assigned an over-whelmingly
high weight in relation to the weights assigned
to the other factors. This would indicate to the
system that highest emphasis is to be placed
on minimizing idle resources in making sched
uling decisions.

Using the Control Factors

RAMPS first examines the three utilization
rates prescribed for each of the competing ac
tivities and lists all the possible assignment
combinations. The weighted control factors are
then consulted in deciding which combination
is the most desirable. - In evaluating the possible
assignments that can be made, RAMPS must
also consider the indicated project completion
dates, project delay penalties, and activity in
terrupt penalties.

Occasionally, these items override one or
more control factors. This might occur, for
example, when a project has a high delay pen
alty so that it becomes imperative from a cost
standpoint to give priority to critical activities
even though the free and total float control fac
tors carry a relatively small weight. In another
instance, an activity with an extremely low
interrupt penalty may be interrupted even
though the interrupt control factor is shown to
be most important. However, the management
control factors are used in scheduling every
time period and will therefore dominate sched-

RAMPS-A TECHNIQUE FOR RESOURCE ALLOCATION AND MULTI-PROJECT SCHEDULING 25

uling decisions and directly control the schedule
produced.

Four of the control factors, free float, total
float, work continuity, and look-ahead, are used
to evaluate individual activities that are com
peting for a resource during the time period
being scheduled. These controls are used in
deciding which activities are to be scheduled,
and how many units of resource they are to
receive.

The remaining two factors, number of jobs
and idle resources, pertain to evaluation of all
the assignments contemplated for the period.
They ask the questions: "Does this assignment
pattern minimize idle resources? Does it as
sure work on as many activities as possible?"

Total Float

The total float factor is intended primarily
to place special emphasis on scheduling those
activities with little or no total float. There
fore, the smaller the total float for an activity,
the greater the emphasis placed on fulfilling
its resource demands. Because activities on
the critical path have no total float, a high
total float weight forces early project comple
tion because those activities on the critical path
are given highest priority. After the critical

. activities have been served, activity priority
decreases as total float increases.

Free Float

The free float control allows priority to be
given to those activities with little or :r{o free
float. It therefore serves a two-fold purpose:

1. Expedites project completion by giving
priority to activities on the critical path,
and

2. Expedites activities with interfering float
and thereby avoids bottlenecks that can
occur when there is more than one critical
path.

Because it gives priority to those activities that
are likely to become critical in later time peri
ods, the free float control can be an effective
defense against delay in circumstances that de
mand that projects be completed as early as
possible.

Look-Ahead

The look-ahead control provides a short
range guard against undesirable work stoppage
or slow-down by giving priority to those activi-

ties upon whose completion several other activi
ties are waiting. By means of the look-ahead
control, RAMPS takes early preventive action
against work build-ups later that could possibly
delay completion of the project.

We can also see that the look-ahead control
can be extremely powerful in the production of
a schedule that calls for completion of the proj
ects in a minimum amount of time. The over
all effect is a maximum utilization of available
resources in the production of a schedule that
calls for a minimum project completion time.

Work Continuity

In every multi-project scheduling operation
there are certain to be several activities that
cannot be interrupted without incurring extra
costs. Some activities might have high start-up
costs; others might involve work with perisha
ble goods which would be ruined if work were
interrupted. In instances such as these, the
work continuity factor is used along with ac
tivity interrupt penalties to show the impor
tance of sustaining work on certain activities
once they have been started.

In effect, a weight assigned to the continuity
factor tells RAMPS that there are certain ac
tivities to be scheduled that should not be in
terrupted. The interrupt penalties assigned to
these activities provide an indication of the
relative costs of interrupting these activities.
It is important to understand that activities
with no interrupt penalties are most vulnerable
to interruption; all activities are vulnerable to
interruption, whether or not they carry an in
terrupt penalty, if the interrupt factor has no
assigned weight.

When the possibility of interrupting an ac
tivity exists, RAMPS weighs the value of the
interrupt factor and the individual interrupt
penalties for the activities involved to deter
mine the feasibility of interruption.

Number of Jobs

The purpose of the number-of-jobs control
is to maximize the total number of activities
scheduled during each time period. To achieve
this purpose, RAMPS tends to schedule many
activities at the slow-down rate to allow limited
resources to be spread thinly over many
activities.

The overall effect of this control is as follows:
1) many activities are started at their earliest

26 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

possHHe start dates, 2) speed in completing
activities becomes secondary to concurrent work
on all activities during a given time period,
3) the schedules for the projects are extended
over a wider span of time because of the slower
work rates.

Because the number-of-jobs control sacri
fices project completion speeds for ability to
work on the highest possible number of jobs
per time period, it is most applicable in situa
tions that require sustained, widespread work
at the expense of fast completion of activities
and projects.

I dle Resources

The idle resource control is concerned with
utilizing a high percentage of the available
resources during each time period. It is, of
course, useful for emphasizing the high impor
tance of keeping the number of idle resources
at a minimum during each time period. In
most cases, men, machines, and other resources
represent a continuous cost, whether or not
they are actually working. The aim of the idle
resource factor is to "work" all resources at all
times.

ANALYZING THE RESULTS

General Description

RAMPS produces two major reports, a work
schedule for each project and a summary of
units of resource used each time period by re
source type. Analyzing these reports to deter
mine whether or not the desired results have
been obtained invol\'res ansv"v"ering such qUes
tions as, "Have the desired completion dates
been met? Have idle resources been kept to a
minimum? When and where are the various
resources used and how many premium units
have been allocated?"

The Work Schedules

Figure 7 shows the work schedule for Proj
ect A and a breakdown of the various types of
information contained in all RAMPS schedules.
Although RAMPS internally interrelates the
schedules for all projects, the printed schedules
are produced separately for each project. This
allows those who are interested in a particular
project to receive only the information for that
project.

The heart of the schedule is the right-hand
portion which shows the time periods during
which each activity is to be worked and the
quantity of each resource allocated during each
period. To the left are the event numbers, ac
tivity names, resources required, the three uti
lization rates, and amounts-of-work-all of
which have been reproduced from the original
data given to RAMPS.

I"IfIO.£CTBIlEN:NAT!O"FICl

... W.llAfIIlJSTNn'DATE: 11

~ PfIO.,ECT MODERl-IIZ£PIJHT

tEL A\lAJL.NllfSTARTDlTE: 1

-aIVT =~:;-ps!ar~~:!~

1-7 lIE ACTIVITY II!SQJ!IItCe.

H~INTDfYERlc. l;
'3-',. 2-4 ~~:

__ SPA :~RSItS

~-6. " CO'AIESSOII

.... SJIfWIIIIE

HINST.tu..l6tfIXl\.llllES
ELfCT1l:1CIINS

, ,
1 !

IS IS
1 I

........ -:CT ACT::TY '"7' 7" ':"'''''' I' J , • • , ;'::." '; ~.~, " 11 " .. "I
OM'OE~"'OCTIVlTY __ "-""'''''' " J"" :';I~I:~'~'''/''''''I

-II~"'~CT:::TY'~~~ _ I"'" ,,~I~~:~'~'~I1I1""1
L -'-~CTACT;TY'T77 7" ::"." ;"':"=:~'~'''I7''I9''1

n~~~~~~;':::::~:~;;::::::!"
a...r;cnuCIIIH5 pP;lOIJIS,lllCUiHJI

I

I'IBJf:CT,llCTIYlT'I's-a:»!,...,.,. 5-4.P IIIJIK I 'l , " , , 7 I .If IlU 15.110 n.' 17111' •

'I-II 1 J ...
1-) 'J , • 11
.... , 2 ... Ii

: E ! ! : ~

. . ,'J t l' J l! J
2' J t J J t" ... , ,

ror-. AYAILMIt.f: 7 7 ~ ; ; ; ~ ~ ~ ; ; ~ ~ ~ ~ ~ ~ ; 1 1
lmAl. TDlI! fP'II!Mus(D):7 7 , J , , , , , 1 1 -1-1 J , , 1 1

Figure 7. Output Schedules and Resource Allocation
Summaries for Projects A and B.

The information in the upper left-hand cor
ner of the schedule includes the specified start
date, desired completion date, indicated or
scheduled completion date, and the delay cost,
if any. Obviously, this information is a key to
determining the adequacy of the work schedule.

The Summary of Resources Allocated

Supporting the project schedules are reports
showing how much of each resource was used
during each time period and the activities to
which the resource was assigned. These reports
also include the number of units available, as
signed, and idle in each period. Pren1ium re
sources are indicated as negative idle units.

RAMPS-A TECHNIQUE FOR RESOURCE ALLOCATION AND MULTI-PROJECT SCHEDULING 27

Note that each of these reports covers all allo
cations of a resource to all the projects.

When favorable answers appear, the reports
form a springboard for setting the work plans
in motion because they can be quickly turned
over to supervisors, buyers, managers, and
others throughout the organization who will be
directly or indirectly responsible for getting
the work done, obtaining the needed resources,
and monitoring the progress of the work.

Perhaps of more importance, however, is
how the reports are used to seek out flaws in
the work plans that have caused the initial
results to be disappointing or unsatisfactory.
"Why was the target completion date missed?
Should available resource quantities be in
creased? Decreased?" In large projects, there
may be oversights in planning that create prob
lems in the schedules. In many instances, they
can be quickly corrected and the schedules put
to immediate use; others will require extensive
changes to the plan that make new schedules
necessary.

It must be remembered, too, that because the
information used by RAMPS is derived from
the individual thinking of many people and
based on estimates, it is fallible. However, one
of the great advantages of RAMPS is that it
can illuminate mistakes in planning before they
are turned into wasted time, misspent funds,
and misused manpower and materials.

ACKNOWLEDGEMENT

The authors wish to acknowledge the major
contributions to the development of the con
cept, the basic algorithm and the operating pro
gram of RAMPS to W. Riley III and W. Dorf
man as members of the C-E-I-R professional
staff. G. J. Fisher, E. 1. du Pont de Nemours
and Company, Inc., was instrumental in pro
posing the original problem leading to RAMPS
and was responsible for many suggestions that
were eventually incorporated into the system.

REFERENCES

1. BELLER, WILLIAM, "PERT's Horizon Be
ginning to Widen," Missiles and Rockets
9, July 17, 1961, pp. 110-16.

2. BOEHM, GEORGE A. W., "Helping the Ex
ecutive to Make Up His Mind," Fortune
65, April, 1962, pp. 128-31 if.

3. CHRISTENSEN, B. M., "How to Take Guess
work Out of Project Planning," Iron Age
188, August 3, 1961, pp. 67-9.

4. DOD and NASA Guide-PERT Cost
Systems Design, Washington, Office of
Secretary of Defense and National Aero
nautics and Space Agency, 1962.

5. FRISHBERG, M. C., "Least Cost Estimating
and Scheduling-Scheduling Phase Only
(LESS) ," Los Angeles, International Busi
ness Machines Corp., n.d.

6. HUDSON, JAMES P., "Program Evaluation
Procedure. A Description of the WWDC
PEP Program," Wright-Patterson Air
Force Base, Aeronautical Systems Divi
sion, n.d.

7. KELLEY, JR., J. E., "Critical Path Planning
and Scheduling. Mathematical Basis,"
Operations Res. 9, 1961, pp. 296-320.

8. KELLEY, JR., J. E. and WALKER, M. R.,
"Critical Path Planning and Scheduling,"
Proceedings of the 1959 EJCC, National
Joint Computer Committee, 1959, pp. 160-
73.

9. MILLER, R. W., "How to Plan and Control
with PERT," Harvard Bus. Rev. 40,
March, 1962, pp. 93-104.

10. PERT and Companion Cost System
Handbook, Washington, NASA, 1962.

11. VORESS, HUGH E., et al., "Critical Path
Scheduling-A Preliminary Literature
Search," U. S. Atomic Energy Commission,
Report No. TID-3568(Rev. 1), 1962 ..

12. YOUNG, L. H., "Now Industry Schedules
by Computer; PERT (Project Evaluation
and Review Technique) or Critical Path
Method (CPM) ," Control Engr. 9, Janu
ary, 1962, pp. 16-18.

TIME-SHARING ON THE FERRANTI-PACKARD

FP6000 COMPUTER SYSTEM

M. J. Marcotty, F. M. Longstaff & Audrey P. M. Williams
Ferranti-Packard Electric Limited

Industry Street
Toronto 15

Ontario

INTRODUCTION

A major advance in the design of computers
was the provision of buffered or autonomous
peripheral transfers which enabled computa
tion to proceed concurrently with a transfer.
In many computations, however, the total sav
ing obtained is quite small; for instance, 10
milliseconds of computing overlapped with 100
milliseconds of transfer provides a gain of only
10% and the central processor must remain
idle for the remaining 90 milliseconds. An
extra burden is also placed on the programmer
who must arrange his work so that computa
tion can take place while the transfer is occur
ring. This is enough of a task when the pro
gram is written in machine language but, when
the program has to be compiled, the compiler
has to be considerably more sophisticated in
order to reach the same efficiency and, as a
result, compilation will take longer. The prob
lem boils down to an economic one of weighing
the cost of program production against the cost
of machine time gained by the extra efficiency.

One step away from this dilemma is to use
magnetic tape as the sale input and output
m'edium for the computer and to provide off
line equipment for the transcription of data
to or from magnetic tape. The transfer rate of
magnetic tape is much higher than that of
punched cards or printers and the loss of time
during transfers is thus reduced. This method ,

29

however, requi'res extra off-line equipment
which may be expensive and lack flexibility.

An alternative approach is to enable the cen
tral proeessor to store several programs simul
taneously, and, each time a program is forced
to wait for 'a peripheral device, to enter an
alternative program which is at that time able
to proceed. In this way the efficiency of the
overall installation is increased since the cen
tral processor is kept working for a higher pro
portion of the time ,and a larger set of available
peripherals can be kept operating. Thi,s method
does not require any special off-line equipment
and is very flexible in use.

In order to obtain system efficiency, one
method to adopt might be to arrange, at the
time of programming, for a number of jobs to
run concurrently. The problems encountered
with this method are connected with implemen
tation and are the same as those found with a
single program sys1tem using autonomous trans
fers, but increased in complexity by several
orders of magnitude. Once the marriage be
tween the several jobs has been consummated,
it is practically indissoluble and the same group
of jobs always has to be run at the same time.
This may be perfectly satisfa0tory in certain
special applications but generally this method is
found to be too restrictive.

Alternatively, programs can be provided
with suitable latching arrangements, so that,

30 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

although written separately, they may be joined
together to ma~e an efficient entity. However,
the programmer still has to be very conscious
that his program will be associated with a num
ber of others when being run and has to imbue
his program with a social instinct, which is
tedious and not always easy to do.

Therefore, in spite of some loss of central
computer time in order to perform organiza
tional functions, it seems advisable to be able
to write programs with no thought that they
may be sharing the computer with other pro
grams and to have a supervisory routine to
make all the switches between the programs.
This system of operation we refer to as "time
sharing."

As an example of time-sharing on a com
puter, consider the example of three programs
which are, in order of priority:

Program PI. A routine which reads data
from punched cards and stores
it on magnetic tape, the contents
of two cards being stored in a
single tape block.

Program P2. A routine performing a mag
netic tape sort with a simple
keyword.

Program P3. A routine performing a long
calculation using no peripheral
equipment at this stage.

The basic rule of operation is that the program
with the highest priority is entered whenever
possible. A program which is waiting for a
peripheral transfer to be completed is said to
be "suspended." In Diagram I a time chart is
shown which demonstrates how these three pro
grams share the time of the central processor
one with another. In order to demonstrate as
many program interactions as possible, the time
scale has been deliberately distorted.

In a recent paper, 1 it has been 8tated that a
minimum of five requirements must be provided
in order to have an operational time-sharing
system, unless i,t is to be restricted to jobs
which are specifically designed to be run con
currently or 'to fully debugged programs (but,
except for trivial cases, it is impossible to know
when programs are fully debugged since they
are similar to scientific theories-they can only
be disproved). The8e requirements are:-

PROGRAMS PROGRAI~ P I PROGRAM P2

PI P2 P3 R~!~~R MTU MTUO MTU I

••••••••• ••••••••••••• P I STARTS CARD REAP OPERA T I ON FOR LAST CARD IN
I I BATCH. CONTINUES TO PROCESS DATA FROM

t
PREVIOUS CARD

•• ••••••• •••• ••••• •••• P I SUSPENDED AWA I T I NG COMPLET I ON OF CARD READ.
P2 ENTERED.

••••••••••• •••••••• P2 STARTS Io1AGNETIC TAP[READ OPERATION.

'" ••• P2 STARTS MAGNET I C TAPE WR I TE orERAT ION.

••• ••• P2 SUSPENDED AWA I T I NG COMPLET I ON OF MAGNET I C I TAPE READ. P3 ENTERED.

I, :: !~::::~::::E!~ C ~~::~~:::O :~~:: ~~::~~~!:~~. ········l·· '" I MAGNETIC TAPE WRITE COMPLETED. P2 CONTINUED.

.
·I···.·j·.·.·· .. ·.··.· .. ··.·.·.·.r·.· ".!..P2 STARTS Io1AGNETIC TAPE WRITE OPERATION.

r .. .j..P2 SUSPEHDED AWA I T I HG COMPLET I ON OF l·tAGNET I C
I TAPE READ. P3 ENTERED.

I
...... j , P3 I~TERRUPTED BY COMPLETION OF PI '5 CARD READ.

P I ENTERED •

......... !... PI STARTS CARD READ OPERATIOH.

I PI SUSPENDEO AWAITI"G A MAGNETIC TAPE CONTROL
••••• (. ••• •• BECO~tING FREE. P3 ENTERED.

I
..... P3 t NTERRUPTED BY COMPLET ION OF P2' 5 MAGNET I C

TAPE READ. PI AND P2 ABLE TO GO. PI ENTERED.

:.(.. :.::::. :.:.:. :':':'1:':'·':':':':':':':':' :: ~~ i~;;;;~~G:~::~I::P~O::~:~t~:E::T~~:~ READ.

I
.. P2 SUSPENDED AWA I T I HG A MAGNET I C TAPE CONTROL

•
• ','" ". •• •••••••• •• P3 ~:~~:t~:;T::E:~ C:~P:;~~::O~F P2' 5 MAGNET! C

TAPt WRITE. P2 HOW ABLE TO GO. P2 ENTERED.

Diagram 1.

1. Memory protection to prevent one pro
gram from destroying others.

2. Program and data relocatability so that
the sam·e routine can be used in different
locations 'at different times.

3. A supervisory program.
4. An interrupt system.
5. Symbolic addressing of peripheral de

vices.
In this paper we hope to show how these

requirements have been met in the FP6000 sys
tem by means of a cO'mbinatiO'n of hardware and
software.

THE FP6000 COMPUTER SYSTEM

The FP6000 is a fast medium sized computer
system constructed in a packaged, modular
form. At the centre of the system is a general
purpose digital computer with a minimum core
stO're O'f 4096 wo'tds which may be increased in
modules O'f 4096 words to' a maximum of 32,768

TIME SHARING OF THE FERRANTI-PACKARD FP6000 COMPUTER SYSTEM 31

words. The machine operates in the binary
mode and a word, of length 24 bits, can be used
to represent an instruction, a signed integer or
fraction, or four 6-bit alphanumeric characters.
The store cycle time can be either 2 or 6 micro
seconds. The computer is a parallel machine
with a clock rate of one megacycle.

A large variety of peripheral devices can be
added to the computer, making the system
versatile and adaptable to commercial data
processing, scientific and real time applications.
The peripheral equipment is broadly divided
into two classes: character at a time, for exam
ple paper tape 'readers, and word at a time, for
instance magnetic tape. For each type of equip
ment in either one of these two classes, the
interface between :the peripheral device and the
computer is made the same. Due to this modu
lar method of attachment, it is easy to expand
any system ,to meet increasing demands and
wider applications.

A program called EXECUTIVE organizes all
peripheral transfers and the allocation of the
central processor's time to the various pro
grams being run simultaneously. This program
is wdtten in such a way that the programmer
does not have to consider time-sharing or the
mechanism of peripheral transfers when writ
ing programs. In addition, EXECUTIVE pro
vides certain macro-instructions for carrying
out floating-point arithmetic and enabling the
programmer to have a master program which
time-shares with one or more sub-programs.

The system is controlled from a console which
has deliberately been made simple. Basically,
it consists of an electric typewriter which en
ables the operator to give instructions to
EXECUTIVE and EXECUTIVE to pass mes
sages to the operator. A large number of these
messages are concerned with manual action
which is required on the peripheral equipment.
In addition to the typewriter, the console has
six buttons: to call the attention of EXECU
TIVE to an incoming message on the type
writer, to cancel such a message and so on. A
paper tape reader and punch, when incorpo
rated in a system, are also located on the
console.

THE CENTRAL PROCESSOR

The core store of the central processor is not
divided into blocks in any way; however, each

program in the machine at anyone time has a
definite area of store allocated to it. A region
of core store is allocated to a program by
EXECUTIVE; this is done by specifying two
addresses, the starting address known as the
"datum" and the final address called the "limit."
The core store area between a program's datum
and limit is called the program's reservation.
Datum and limit points occur only at multiples
of 64 words. These addresses are set by EXEC
UTIVE and stored in special registers in the
arithmetic unit during the time a program is
being obeyed. In operations where addresses
of locations are used, datum is added automat
ically by hardware to the addresses; because of
this, programs are written with addresses rela
tive to the datum and, therefore, are locatable
anywhere in the core store. Indeed, during the
running ofa program, EXECUTIVE may
transfer the program to another area of core
store in order to make"room for a new program.
All that needs to be done after the transfer
from one area of core store to another is for
EXECUTIVE to change the values of datum
and limit corresponding to the program. This
operation of relocation is only carried out after
EXECUTIVE has ensured that no peripheral
transfers 'are in progress.

The first. eight core store locations belonging
to leach program are known as "accumulators"
and can be used for arithmetic and counting.
Accumulators 1, 2 and 3 may also be used for
indexing.

p.rograms are stored with one instruction
per word; for a normal instruction the word
is divided as shown:

x F M

where X is an accumulator address
F is a function code
M is an index register address
N is a core store address or a number.

Obeying normal instructions consists of per
forming the function F between the contents of
the core store location N and the contents of
the accumulator X and placing the result in
either N or X depending upon F.

32 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

There are 16 groups of 8 function codes,
though not all function codes are allocated.
Five of these groups consist of macro-instruc
tion codes: these operations are performed by
EXECUTIVE. Whiie a function is being obeyed
datum is automatically added to the appropriate
addresses in the arithmetic unit and checks are
made that these addresses do not lie outside the
program's reservation. These checks are per
formed by special hardware in the arithmetic
unit referred to as the "reservation checker."
Since a program cannot be allotted less than 64
words there is no necessity to check that the
accumulators are within the program's core
store area. However, the N -address is so
checked.

The operation of a simple order takes place
in five phases or beats:

Beat l.
During this beat the address of the current
instruction is sent to the core store and the
instruction is obtained and placed in the
arithmetic unit. The contents of this core
store location are regenerated so that no
change is made to the store by this opera
tion. However, if at the end of the beat, it
is found that the address of the current in
struction did not lie in the area allotted to
the program, further accesses to the core
store are inhibited, though the remainder of
the instruction proceeds as usual.

Beat 2.
If the N -address of the instruction requires
indexing, the value of the index register is
taken from core store, regenerated, added to
the address and the result stored in the arith
metic unit. This beat is omitted where in
dexing is not required.

Beat 3.
The first of the two operands required for
the function is taken from the core store and
put into the arithmetic unit. It is arranged
that the first operand to be taken from the
core store is the one which is unchanged by
the function; that is, after being read out it
is regenerated in the core store. At the end
of this beat, the result of the reservation
check on the indexed 1V -address is exal11ined
and, as at the end of beat 1, if the check has
failed, further accesses to the core store are
prevented.

Beat 4.
The second of the two operands is obtained
and, since its value is to be changed, it is
not regenerated. The function is performed
during this beat.

Beat 5.
The result of the operation is written back
into store and, except in the case of branch
instructions, the address of the current in
struction is increased by one. This address
is retained in the arithmetic unit ready for
the next instruction.

Then follows the beat 1 of the next instruction.
If the reservation check has failed at either of
the two points where it was tested a forced
entry to EXECUTIVE is made at this time.

There are two modes of operation of the cen
tral processor: the Normal mode and the Ex
ecutive mode. The Executive mode, as its name
implies, is used while EXECUTIVE is being
obeyed. While in Executive mode, under the
control of EXECUTIVE, the current value of
the datum may be added to any or none of the
addresses N, X and M in an instruction. This
enables EXECUTIVE to have access to infor
mation within a program's area, using the
program's index registers when required. Res
ervation checking is not performed during the
operation of EXECUTIVE and some of the
functions in the group of macro-instructions
have special actions, though most are unas
signed.

The above example of an entry to EXECU
TIVE, due to a reservation check failure, might
be termed an "involuntary" entry or "inter
ruption.;; The other reasons for an involuntary
entry are:

(a) Depression of a console push button.
(b) An illegal order; that is, one with an

unassigned function code.
(c) A monitor point. In order to assist a

programmer in developing a program, EX
ECUTIVE can arrange for an interruption to
occur after certain specified types of instruc
tion, for example a successful branch instruc
tion, in a particular program.

(d) The time register has reached zero. This
register, which is an optional extra, enables
time-accounting to be performed in a service
center machine or interruptions to occur at
specific intervals so that an operation can be
performed on a special peripheral device.

TIME SHARING OF THE FERRANTI-PACKARD FP6000 COMPUTER SYSTEM 33

(e) A peripheral incident, which can be an
indication that either a peripheral transfer has
been completed or one of the automatic checks
on the transfer has failed.

When an involuntary entry to EXECUTIVE
occurs, the current instruction of the program
being interrupted is dumped in location 8 of
that program. The state of the overflow reg
ister and certain other indicators particular to
the program being left are also stored in the
same location at this time, so that, when a
return is made to the program, the state of
these~ may be reset correctly. A reason for
entrY register is set so that EXECUTIVE can
find out the reason for the interruption. The
machine is then set to Executive mode and the
instruction number in the instruction number
register is set to the entry point in EXECU
TIvE corresponding to an interruption,

When a program is input to the computer
a priority number is assigned to it. This num
ber is allocated by the programmer and is speci
fied on the program tape with a number of
other parameters such as the amount of core
store space, drum space and other peripheral
equipment required by the program. The pri
ority number is originally assigned on the basis
of the number of peripherals used by the pro
gram and the proportion of time spent in com
putation relative to that awaiting peripheral
transfers.

A maximum of four programs may be run
simultaneously; however, this is an arbitrary
limit set by EXECUTIVE and is not dictated
by hardware considerations. When EXECU
TIVE was being written, in order to assign
store space for certain lists, such a limit had
to be established, and it was felt that four was
a reasonable number for a machine of the size
of FP6000. Since this limit is set by EXECU
TIVE, there is nothing to prevent, where the
install::tion warrants it, a special version of
EXECUTIVE being assembled with a higher
limit. Each program may be divided into a
master and at most two sub-programs, which
are each assigned an individual priority. EX
ECUTIVE keeps a record of each program and
sub-program, in descending priority sequence.
This list is called the Priority List and has at
most twelve entries. Also recorded in the Pri
ority List is the present state of each program:
free to be obeyed (called Active), suspended

awaiting a peripheral, suspended awaiting an
operator message, and so on. Whenever EX
ECUTIVE has completed its required actions,
it scans the Priority List for the active pro
gram with the highest priority and transfers
control to this program. Each program is given
a code name which is made up of four alpha
numeric characters and is used in all commu
nications between the operator and EXECU
TIVE by means of the console typewriter.

During input of a program, EXECUTIVE
allots the core store to be assigned to the pro
gram according to the core store requirements
given on the program tape and the core store
available in the computer at the time. In order
to keep as large as possible an area of con
tiguous core store locations free, whenever a
program is finished and is no longer required in
the computer (the term used is "abolished"),
all current programs stored above the program
to be abolished are moved down the core store
to fill up the now vacant space. When the core
store area has been assigned to a program, the
appropriate values of datum and limit are
stored among the records which EXECUTIVE
keeps for each program currently in the
computer.

When referring to peripheral units in a pro
gram, the programmer numbers his units of a
particular type starting from zero. Suppose,
for example, that the program named "BILL"
uses four magnetic tape units. The programmer
will number these units 0, 1, 2 and 3. If BILL
is to be run on an FP6000 system with six tape
units which are numbered 9 to 14 and if, at the
time when BILL is input, units 9 and 12 of the
system are already being used by current pro
grams in the system, then EXECUTIVE will
allot units 10, 11, 13 and 14 to BILL. EXECU
TIVE will type out a message to the operator
giving the correspondence between BILL's unit
numbers and the system unit numbers. Every
time BILL refers to his magnetic tape unit 0,
system unit 10 will be used. Because of this
arrangement for the numbering of peripheral
units~ all peripheral transfers are handled by
EXECUTIVE. This method also shields the
programmer from a lot of the work in organ
izing peripheral transfers. If BILL is run on
another occasion, the allocation of actual units
to the units 0 to 3 in BILL may be quite differ
ent, but, since the change from the program's

34 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

unit numbers to the system unit number is per
formed automatically by EXECUTIVE, no al
terations have to be made to BILL.

ATTACHMENT OF PERIPHERAL
EQUIPMENT

In general, each peripheral device has its
own control unit; exceptions to this rule are
magnetic tape and drum units, several of which
may be connected to one control unit. Each con
trol unit has the address of a special-register
assigned to it; this special-register performs
the function of a mail box for the passing of
control information to and from the control
unit. In addition, each control unit has a core
store word associated with it which is used by
the peripheral control unit to store the transfer
address and the count of words or characters to
be transferred. The initial value of this control
word must be set prior to a peripheral transfer
being started. The operation may then be in
itiated by sending a starting signal to the
special-register for the device. The function
for sending instructions to the special-registers
is available only to EXECUTIVE.

Once a transfer has been started it proceeds
autonomously, each word or character being
transferred to or from the core store as re
quested by the peripheral control unit. Between
such transfers the central computer is free to
obey programs. When a request for the trans
fer of a word or a character occurs it competes
with similar requests from other peripheral
units and, eventually, the transfer takes place.
There is nothing new in this approach; several
of the larger computers use this method. How
ever, the usual system is to have a separate
piece of logic in each peripheral control unit
to perform the addressing and counting opera
tions required, the central processor thus being
able to continue with its normal operations,
unhindered except when the peripheral control
unit requires access to the core store at the same
time as the central computer. When this occurs,
a small hesitation in the rhythm. of the cen
tral computer takes place. Since FP6000 is a
medium-sized computer it was decided that, in
order to reduce the cost, it would be better to
use the central arithmetic unit to perform the
addressing and counting functions. The actual
amount of time spent by the arithmetic unit in
performing hesitations remains a small pro-

portion of the total time required for the trans
fer; for example, with a 2 microsecond core
store, during a magnetic tape transfer, the
arithmetic unit will be available for program
calculation for at least 90 % of the time.

When a peripheral control wishes to make
an access to the core store it sends a hesitation
request signal to the computer control unit. If
more than one of these signals occurs at once,
a priority system ensures that the faster pe
ripheral units get precedence over the slower
ones. The chosen peripheral control is sent a
hesitation select signal and, at the end of the
instruction currently being obeyed, the next
instruction is not started but a hesitation is
performed. A hesitation requires 4 beats:

Beat 1.
During this beat the core store address of
the peripheral control word is supplied to
the core store and the control word is read
into the arithmetic unit. A counting opera
tion is performed and, if this is the last hesi
tation in the transfer, a stop signal is sent
to the peripheral control unit. The address
part of the control word is augmented to give
the core store location to which data is to be
transferred during the next hesitation.

Beat 2.
The new value of the control word is written
back into the core store.

Beat 3.
The address from the control word is sup
plied to the core store and the word is read.

Beat 4,
Depending on the direction of the transfer,
either the new data word is written into the
store or the original data word is regenerated.

Then follows the next order or another hesi-
tation. Magnetic tape units attached to FP6000
have a character transfer rate of 65 I}C/S
that is, one character every 15 microseconds or,
since magnetic tape transfers occur one word
at a time, one word every 60 microseconds. The
net interval is a fraction of this if several
magnetic tape units are performing transfers
simultaneously. Some of the instructions in
FP6000 take longer than 60 microseconds to be
obeyed; provision has therefore been made for
hesitations to be carried out, if required, at
certain defined break-points within the sequence

TIME SHARING OF THE FERRANTI-PACKARD FP6000 COMPUTER SYSTEM 35

of basic operations which make up an instruc
tion, as well as between instructions.

The only instructions which have to be broken
into to make a hesitation are the longer ones
which nearly always involve some sort of loop
in the micro-program (for instance multiplica
tion or division), and therefore a breakpoint
is arranged in the loop. During the hesitation
process only two of the registers in the arith
metic unit are used. If a hesitation has to be
made, the contents of these two registers are
stored temporarily in core store locations 9
and 10, which are set aside for this purpose.
Diagram II presents a simplified flow diagram
of the operation. From this it will be seen that
only hesitation requests from peripheral con
trols which cannot wait, fast hesitations, are
allowed to interrupt the course of an instruc
tion. When the hesitation operation is com
pleted, and if there are no more fast hesitation
requests, the two registers are reset from core
store and the long instruction is carried on from
the point at which it was suspended.

CLEAR
SWITCH I
RESET B&N

FROM
CORE STORE

INR = INSTRUCTION NUMBER
REGISTER

0+8 = CORE STORE LOCATION 8
OF CURRENT PROGRAM

8&M = TWO AR I THMET I C UN I T
REG I STERS USED I"
HESITATIONS

Diagram II. Simplified hesitation flow diagram,

During the course of a hesitation no refer
ence is made to the output of the reservation
checker; to do so -would involve making suita
ble settings in arithmetic unit registers, which
would be too costly in time. EXECUTIVE
therefore checks, before initiating a transfer,
that the transfer does not involve any core store
locations outside the area of the program call
ing for it. This test is very simple to make and
involves taking the starting address for the
transfer, adding to it datum and the number
of words to be transferred, and checking that
the result is less than the value of the limit.

If, during a hesitation, a stop signal is sent
to the peripheral control unit because the end
of the transfer has been reached, the peripheral
control unit will terminate the transfer and,
when this has been done, send a signal to the
central computer. This signal causes an entry
to be made to EXECUTIVE at the end of the
instruction currently being obeyed. This type
of entry may also be classed as an involuntary
entry. When such an entry is detected by the
central control unit a mark is made in the
reason for entry register. This consists of a
special register which may be read by an in
struction available to EXECUTIVE only. Cor
responding to each of the reasons for entry
depression of a console push button, illegal
order or reservation check failure, monitor
point or the time register reaching zero-there
is one bit in this register. The peripheral inci
dent type of entry is expanded so that there is
a bit which corresponds to each peripheral con
trol unit. Before entry is made to EXECU
TIvE the current value of the instruction num
ber register is stored in core store location 8
of the program being obeyed at the moment of
the interruption. The machine is then switched
to Executive mode and the address of the entry
to EXECUTIVE is forced into the instruction
number register.

EXECUTIVE

Diagram III gives a flow diagram of the
operations which occur during an involuntary
entry. We will call this "EXECUTIVE Entry
1."

The first action on entry is to read the reason
for entry register; if this is not zero the cause
for interrupt with the highest priority is iso
lated. The bits giving the reasons for interrupt

36 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Diagram III. Executive Entry 1.

fall into two main classes: those involved with
special action, for instance an illegal function,
and those involved with peripheral transfers.

If the interrupt is one where special action
is required the necessary action is per
formed. In the case of monitor action the pro
gram development routine is entered to print
out the required monitoring information for
the programmer. In the case of an illegal op
eration or a reservation violation the offending
program is marked in the priority list as being
suspended. When a program is suspended for
either of these reasons it is marked in EX
ECUTIVE's records as awaiting a message
from the operator. The operator is informed,
by means of the console typewriter, that the
program has been suspended and the reason
for this suspension is also given.

If a peripheral incident is the reason for
interrupt, the actual control unit may be iden
tified from the reason for entry register. With
this information, the special-register associated

with the peripheral control unit may be inter
rogated. Since the reasons for an interrupt
can vary with the type of peripheral, a separate
subroutine is used for each type. For example,
a paper tape reader can cause an interrupt, not
only at the end of a transfer, but also if the
parity of the character read from the paper
tape is incorrect or if there is no paper tape to
be read. In addition to the three bits used for
signalling these three conditions there is also
a bit used to signal the fact that the reader is
busy. The subroutine which deals with the type
of peripheral causing the interrupt examines
these signals by reading the special-register
associated with the peripheral control unit,
thereby clearing the indicator bit in the reason
for entry register, and tests if the transfer has
been successful. If so, any program which has
been suspended because it is waiting for this
peripheral is reactivated. If the transfer has
not been successful, the program making the
transfer is suspended and a typewriter mes
sage is output.

In the case of the interrupt being due to the
end of a message from the console typewriter,
EXECUTIVE has to take action immediately
on this message. The types of message which
can be input on the typewriter are:

1. GO #BILL

This message will reactivate program BILL
and allow it to continue from the instruction
number contained in its core store location
8, where the instruction number at the time
of interrupt was stored. There are two main
uses for this instruction: to start a program
which has just been read in, since it is nor
mal to hold a program in suspension imme
diately after input to allow its data to be
set up on various peripheral devices; and to
continue a program which has been sus
pended awaiting some operator action, such
as changing a tape reel.

2. GO #BILL AT 1234

This message will reactivate program BILL
and allow it to continue from instruction
number 1234. This allows a program to have
optional entry points ,and may also be used
to facilitate restart procedures following a
peripheral failure.

TIME SHARING OF THE FERRANTI-PACKARD FP6000 COMPUTER SYSTEM 37

3. LOAD #BILL ON X

This informs EXECUTIVE that a new pro
gram is awaiting input on peripheral unit X.
Provided that there are not four current pro
grams already in the machine and that at
least 64 words of core store are free, EX
ECUTIVE will read the first part of the new
program to determine whether the require
ments for core store and peripherals can be
met. In either case a message will be output
and, if the new program can be accommo
dated, EXECUTIVE will read it in under a
binary read routine. This input operation
will be time-shared with the other programs.
The peripheral units of the installation each
have an absolute number by which EXECU
TIVE identifies them; these numbers are
prominently displayed on the units.

4. LOAD #BILL ON X, Y

The LOAD message may optionally request
Y words of core store, in which case 'this
request overrides the store request on the
program tape. This version of the LOAD
message is most useful for programs such
as matrix schemes for which the store re
quired varies considerably with the specific
data to be used.

5. SUSPEND #BILL

This suspends program BILL awaiting a fur
ther typewriter message. This message is
mainly used in an emergency, for example,
if the program seems to have got out of con
trol and is continuously reading the same
section of magnetic tape.

6. DELETE #BILL

This abolishes program BILL from the store
and lists. Normally a program will be ter
minated by a special instruction in the pro
gram and the typewritten message is only
used in special cases such as the program
having gone out of control or if the computer
is required for an urgent job for which there
is insufficient space.

7. ALTER #BILL AT 1234/FXMN

This changes instruction number 1234 of pro
gram BILL to FXMN. This provides a means
of altering a single instruction during pro
gram development.

8. CONTINUE #BILL ON X

This enables a further part of a program to
be read in or the input of a program to be
continued after a peripheral failure.

9. MONITOR #BILL ON X

This message informs EXECUTIVE that a
program development tape is to be read from
unit X.

10. PRIORITY PRINT

This is a request to EXECUTIVE to print
out the current contents of the priority list.

11. REVISE PRIORITY #BILL YY

This provides the facility of changing the
priority rating of a program so that an
urgent job can be accelerated, at the cost
of a reduction in efficiency for the overall
system.

When the input typewriter message or the
peripheral incident has been dealt with, a test
is made to determine whether there are any
further reasons for interrupt. This is done by
checking the copy of the reason for entry spe
cial-register retained by EXECUTIVE. If
there . are any further reasons the process is
repeated. If there is none the Time-Sharer is
entered. This scans the list of programs and
enters the active program with the highest pri
ority. If there is no program which is active,
a loop back is made to read the reason for entry
special-register. This loop will continue until
a peripheral incident occurs to make a program
active.

There is a second entry to EXECUTIVE:
this is from a program entry by means of the
macro-instructions. There are four types of
these:

1. Peripheral transfers.
2. Organizational instructions,
3. Master and sub-program instructions.
4. Floating-point operations.

Diagram IV is a flow diagram of EXECU
TIvE for this entry. When an instruction
which falls into one of these categories is en
countered in a program the control unit of the
computer first stores the current instruction
number in the program's core store location 8,
then transfers the indexed value of the N-ad
dress to core store location 1 in EXECUTIVE

38 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

PROGRAM
ENTRV

~
BRANCH ON FUNCTION

GROUP

A..

f (1) l
ILLEGAL

PER I PHERAL MISCELLANEOUS MASTER - FLOATI NG-
TRANSFER ORGAN I ZAT 10NAL SUB-PROGRAM POINT

I NSTRUCT I ON
REQUEST I NSTRUCT IONS I NSTRUCT IONS I NSTRUCTI ONS

1 l
TEST IF) EXECUTE PERFORM PERFORJ.I

PER I PHERAL FREE
REQUESTED REQUIRED REQU IRED

vh N'O OPERA TI ON OPERATION OPE RAT I ON

i
I TEST

, t ~ (THAT REQUESTED
TRANSFER IS I DISCRIMINATE ,

WITH I N PROGRAM'S) I (, .. ". SUSPEND ON PROGRAM (011 PRIORITV)
\ RESERVATIONS J PROGRAM ABLE TO OF MASTER AND

CONTINUE SUB-PROGRAM

~o I
AND ABILITY

Jo vb \ TO eONT; HUE

j) 1 I..
EXECUTE INITIATE

ERROR TRANSFER EHTER
ACT I ON SUB-PROGRAM IF

l
FREE & HIGHER
PR lOR lTV THAN

MASTER

""

ENTER RETURN TO
TIME SAME

SHARER PROGRAM

Diagram IV. Executive Entry 2.

core store area and transfers the instruction
itself, not indexed in any way, to core store
location 2. The machine is then set to Execu
tive mode and the entry address to EXECU
TIvE for a voluntary entry is forced into the
instruction number register.

EXECUTIVE first examines the function
which caused entry. Since not all the functions
which cause entry to EXECUTIVE have been
allocated, provision is made for an illegal in
struction. In this case the program is suspended
and a message to this effect is printed out on
the typewriter.

For peripheral transfers, more information
is required by EXECUTIVE than can be ac
commodated in one word. The actual transfer
instruction is only one word, but the lv-address
(which may be indexed) specifies the address
in core store of the control word, formed by
the program, for the transfer. This word con
tains a counter of the number of words to be
transferred and the core store address for the

start of the transfer. The type of peripheral
involved is defined by the function digits of the
transfer instruction, and the particular pro
gram's unit number is given in the X-address.
Before the peripheral transfer instruction is
obeyed, though not necessarily immediately
before, a mode of transfer must have been set
by a special instruction provided for this pur
pose, This mode controls whether, for example,
a reading or writing operation is to occur on
magnetic tape. EXECUTIVE checks that the
transfer lies within the program's reservation
and that the program has, in fact, a unit X.
If either of these checks fails the program is
suspended and the operator informed. The unit
is then checked to see if it is already busy, in
which case the program is suspended waiting
for the peripheral to finish its current transfer.
If the transfer can be made, EXECUTIVE
takes the information provided in the instruc
tion, forms the appropriate control word and
initiates the transfer. The program is then
re-entered.

There are a number of instructions available
concerned with the organization of peripheral
transfers. As we saw just now, the initiation
of a peripheral transfer does not cause auto
matic suspension of a program and it is up to
the programmer to ensure that he does not
cause any conflicts by neglecting this fact. The
philosophy of this method is that it allows the
programmer to arrange to be working with one
set of data while the next set is being read or
the previous set output and, at the same time,
removes the need for costly hardware to check
that a programmer is not using data before it
has been read. An instruction of the form "Sus
pend this program if its unit X of type N is
busy" is provided to enable the programmer
to avoid conflicts.

Another instruction in the class of organiza
tional instructions is "Suspend this program
pending an operator message to EXECUTIVE."
An instruction of this type will usually be pre
ceded by the output of a message on the console
typewriter, telling the operator of an action
that is required on a peripheral unit (for in
stance, changing a reel of tape). The output of
this message is under the control of the pro
gram. The program may, in this message,
mention its own unit number or may ask EX
ECUTIVE what absolute unit number has been
assigned on this occasion.

TIME SHARING OF THE FERRANTI-PACKARD FP6000 COMPUTER SYSTEM 39

Apart from the facility of being able to per
form time-sharing between independent pro
grams, FP6000 is able, by virtue of EXEGU
TIVE, to have a program time-sharing with
different parts of itself. We have already seen
how, by use of the instruction to EXECUTIVE
"Suspend this program if its unit X of type N
is buslY" a programmer is able to avoid over
writing information that is involved in a pe
ripheral transfer. However, this may lead to
the central computer being held up waiting for
a transfer when in fact it could be performing
useful work. Consider a program which is
producing results which are to be printed on
a line printer and suppose that, because of the
nature of the computation, the results are pro
duced in groups of ten lines, none of which can
be printed until all are computed. This situa
tion can easily arise in the production of cer
tain types of table. If we adopt the straight
forward approach, the sequence of events will
occur as follows:

1. Compute group of results.
2. Print group of results.
3. Return to step 1.

Even if we assume that there are other pro
grams in the machine which can use the arith
metic unit while the results are being printed,
the printer is still idle for part of the cycle, so
that it is not being used efficiently. This situa
tion can be avoided by splitting the program
into a master program and sub-program which
time-share with each other. If we divide the
core store originally allocated to the program
into an area containing the master program,
an area containing the sub-program and an
area of working store, and also arrange that
the datum and limit of the master program are
such as to include the whole of the program's
core store area and that those for the sub
program just include its own area and the
"\vorking store area, the master progral11 can
be made to time-share with the subprogram.
Because of the time-sharing ability of the com
puter, no computation can be timed absolutely,
relative to a peripheral transfer. It is therefore
necessary for the programmer to take suitable
precautions so that it is not possible for over
taking to occur. The master program must not
be allowed to overwrite results with new ones
before the previous set has been printed, nor
must the subprogram output a set of results

before they have been completely processed.
Similar situations arise with input sub-pro
grams.

Three instructions are provided to enable the
programmer to organize the time-sharing be
tween his program and sub-programs without
difficulty. When the master program reaches
a point at which it is ready to initiate the sub
program, for example when it has some results
'which are ready to be printed, an instruction
of the form "Activate my sub-program X en
tering at instruction N" is obeyed. The value
of X can be 1 or 2, allowing a master program
to have two sub-programs. This instruction
causes EXECUTIVE to activate the sub-pro
gram, set the sub-program's instruction num
ber equal to N and enter the time-sharing
routine. Note that the sub-program is not neces
sarily entered at this time; it is simply activated
within the priority list. Usually, because the
sub-program is using peripheral equipment, the
priority of the sub-program will be higher than
that of the master. The master program re
mains active so that it time-shares with its own
sub-program, and EXECUTIVE will pass con
trol initially to the part with higher priority.

When the master program has a new set of
results to be printed, but wishes to check that
the output sub-program is ready for them, an
instruction of the form "Suspend me if my
sub-program X is active" is obeyed. If the sub
program is still actively engaged in printing
the last set of results, the master program will
now be suspended to enable the sub-program
to catch up. If, however, the sub-program has
completed its task at this stage, it will have
made itself inactive by the instruction "Sus
pend me awaiting reactivation by the master
program, and reactivate' the master program
if it is waiting for me." Thus, whether the
master or sub-program completes its task first,
eventually a stage is reached at which the
master program is informed that the sub-pro
gram has finished and is inactive. The master
program may reactivate the sub-program im
mediately, or it may wish to do some prelimi
nary data transfers before initiating the next
set of output.

A more sophisticated programmer may im
prove on the utilization of the printer by divid
ing his working store into three areas, thus
buffering the supply of data from master to

40 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

sub-program. By means of markers set within
the common area, the master and sub-program
can communicate their relative states, and need
only enter EXECUTIVE when it is necessary
for one or other to be suspended. However,
for most purposes the simpler approach will
produce a satisfactory increase in peripheral
utilization.

The remaining type of instruction which
causes entry to EXECUTIVE is the floating
point group. These are macro-instructions
causing floating-point arithmetic operations to
be performed on operands by means of sub
routines in EXECUTIVE.

Since a system may have a variable number
of peripherals and a variable number of pro
grams, it is impossible to give absolute times
for any EXECUTIVE operations. However,
some sample times may give an indication of
typical EXECUTIVE operations. With a 2
microseconds core store, a peripheral transfer,
on a unit type of which there are 4 units in
the system, can be initiated within 350-600
microseconds. The time taken to suspend one
program and enter the next active program
can vary between 300-550 microseconds. The
size of EXECUTIVE varies with the configura
tion of peripheral types and with the variety
of typewriter messages required by this par
ticular system. The minimum size for EXECU
TIVE, corresponding to a small system, is about
600 words. A system with an 8096 word core
store and 4 peripheral types might have a 1200
word EXECUTIVE.

Since EXECUTIVE has been written as a
set of routines which communicate with each

other by means of codeword addresses, the
EXECUTIVE required for a particular system
may be assembled quickly. Similarly, if a new
peripheral type is added to an installation, an
instruction which previously was illegal is now
routed to a new subroutine to perform the
required transfer. The subroutine is simply
added to the EXECUTIVE program at the end
of its area. Since EXECUTIVE may have
packages added or removed so easily, the indi
vidual FP6000 installation may decide for itself
which facilities it wishes to have included at
the cost of some core store. For example, it
costs 40-50 words to permit ALTER messages
from the typewriter. In a system where an
established set of programs use most of the
operating time, it may be ielt that the ALTER
facility is not as valuable as an extra 50 words
of core store available to the programs.

In this paper we have tried to show the way
in which the time-sharing facilities normally
only available on larger computer systems may
be realized on a medium-sized system by an
intermarriage of hardware and software for
minimum cost yet still retaining all the safe
guards necessary for an operable system. We
have shown how the five criteria given by
Amdahl have been met and how, in addition,
we have been able to provide other facilities
designed to give a higher efficiency to the
system.

REFERENCE

1. GENE M. AMDAHL: New Concepts in Com
puting System Design. Proc. IRE Vol. 50,
No.5, May 1962.

THE 0825 AUTOMATIC OPERATING

AND SCHEDULING PROGRAM

Rankin N. Thompson and John A. Wilkinson
Burroughs Corporation, Burroughs Laboratories, Paoli, Pennsylvania

INTRODUCTION

This paper concerns a general executive pro
gram for the Burroughs D825 Modular Data
Processing System. The D825 is a large-scale,
multicomputer, expansible, general-purpose,
digital system employing automatic parallel
processing and an extensive system of inter
rupts, and is especially suited to military com
mand and control applications. Military desig
nation is AN/GYK-3 (V).

The implementation of the executive pro
gram, called the Automatic Operating and
Scheduling Program (AOSP), was completed
in the fall of 1962 and demonstrated at the
1962 Fall Joint Computer Conference (AFIPS).
Since then, the AOSP has undergone testing
with a variety of program mixes.

While the bulk of the AOSP concerns re
trieval of named objects from files, run-time
allocation of memory, and input/output (I/O)
control, the primary AOSP function is to pro
vide facilities for multicomputer multiprocess
ing-that is; the use of one, hvo, or more proc
essors (computer modules) by time-sharing
their arithmetic/control functions between one
or more object programs under control of an
executive system. In this way, not only maya
program time-share a processor with other pro
grams, but a processor may time-share the ex
ecution of a program with other processors.
The programmer need not indicate that his
program may be processed in parallel with
other programs; the AOSP effects parallel proc-

41

essing of job entries as a matter of course.
However, if a large program involves major
independent subtasks, the specification of par
allel operation within the program may be made
by the programmer. Hence, a characterizing
feature of the AOSP is that a program may
invoke a parallel process. Another feature is
that several processors may be-although none
are aware of it-simultaneously executing t~e
same set of instructions, referencing different
data sets. This provision allows more efficient
use of memory.

The assignment of processors and memory
space to programs is accomplished through a
program designed for execution in parallel on
several processors. This program ar.d its asso
ciated tables constitute the AOSP. The AOSP
has embedded within it controls which prevent
simultaneous assignment of a given equipment
module to several tasks, or of a given task to
several modules. A program has associated
with it not a processor, but an entry in a job
table which any processor may select for execu
tion. \Vhen a processor suspends a program to
service an interrupt, the values of its registers
at the moment of interrupt are stored in the
area from which they were originally loaded.
Any processor, not necessarily the interrupted
processor, may then resume the execution of
the program.

Much of the A OSP necessarily functions
"behind the back" of a user's program. The
establishment of linkages between programs
and data, the scheduling of deferred I/O re-

42 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

quests, equipment scheduling, and the response
to system interrupt conditions are independent
of any foreknowledge of the interrupted pro
gram. However, many of the AOSP functions
are available to the programmer at his option,
via control macros, which are essentially sub
routine-like calls. Macros are used, for example,
to locate a specified object in system files, to
request parallel processing at an appropriate
branch point, or to permit certain tasks to be
suspended until all paths of a branched pro
gram reach a rejoining point.

The AOSP was designed to operate on D825
systems with various module configurations.
Processors, memory, I/O control modules, and
I/O devices may be added or removed by appro
priate changes to systenl configuration tables.

BASIC D825 SYSTEM CONFIGURATION

The D825 Modular Data Processing System 1

consists of an arbitrary configuration of iden
tical memory, I/O control, and computer
(arithmetic/control processor) modules. The
configuration may be organized as a combina
tion of the following modules:

1 to 4 arithmetic/control processors.
1 to 16 memory modules (4096 words/
module).
1 or 2 I/O exchanges.
1 to 10 I/O modules per exchange.
1 to 64 peripheral devices (drums, mag
netic tapes, card readers, etc.) per ex
change.

The memory complement in the D825 is fully
shared-accessible by all processors and I/O
control modules. Physically, the memory con
sists of a number of separate core memory
modules. Each processor has exclusive use of
a data transfer bus by which it can communi
cate with any memory module. There is no
direct data transfer between processors and
I/O control modules; processors are used for
more suitable tasks during transfers between
memory and I/O. The I/O control modules of
an I/O exchange are connected to the memory
modules by a single time-shared bus. The vari
ous peripheral devices are interconnected with
all of the channels of the I/O exchange. All
data flow between modules is effected as inde
pendent memory read or write operations by
the processors or the I/O control modules. In

addition, there are control lines between each
module and all other modules which indicate
status and provide clock synchronization.

A schematic diagram of a D825 system is
shown in Fig, 1. The significant features of
each module type of the D825 are listed in
Table 1. The design rationale which led to the
organization of the D825 has been described
by Anderson, et al.1

SIXTEEN
MEMORY
MODULES

COMPUTER MODULE Icl
COMPLEMENT 'T

l------,-+---,---+---
FOURTH COMPUTER

ISECOND I!OM~~~~!N~~ ~

64 PERIPHERAL DEVICES

Figure 1. D825 System Organization.

THE OPERATING ENVIRONMENT

The AOSP is designed for use by a computing
system operating in a command and control
environment. As stated by Anderson, et al.,l
"Operation of command and control systems is
characterized by an enormous quantity of di
verse but interrelated tasks-generally arising
in real time-which are best performed by
automatic data-processing equipment, and are
most effectively controlled in a fully integrated
central data-processing facility. The data
processing functions alluded to are those typical
of data processing, plus special functions asso
ciated with servicing displays, responding to
manual insertion (through consoles) of data,
and dealing with communications facilities."

These anticipated applications seem definitely
to discourage a mode of operation wherein a
"main program" and its auxiliary routines are
conglollierated, by hand or automatically, to
constitute a "program deck" which, for each
"run," is loaded into the computer and given
control. The design of the D825 and its in
tended uses seem rather to indicate a mode of
operation, in which many tasks are performed

THE D825 AUTOMATIC OPERATING AND SCHEDULING PROGRAM 43

concurrently, and in which assignments are
determined automatically. In such an environ
ment, the operating system must have access
to a very large set of programs and data which
can be referenced without human intervention.
Thus, we have assumed that there is a file of
programs and data, which contains not only
the raw items, but a substantial amount of in
formation about their nature, interrelation
ships, requirements, and constraints. The
greater part of this information can be collected
and appended to the files by the programming
system, primarily the compiler in the case of
programs, explicitly by the operator, or implic
itly by an external signal, in the case of run
requests.

RELATED HARDWARE FEATURES

Before discussing the AOSP itself, it will be
well to describe briefly the D825 hardware fea
tures most closely affecting the structure of
the AOSP. These include the switching inter
lock, the modes of operation of the processors,
the system interrupts, and the methods of in
itiating I/O data transfers.

Switching Interlock

The switching interlock, physically distrib
uted among system modules, provides the in
terconnections which allow the memory modules
to interchange information with I/O modules
and processors. The switching interlock con
sists of a crosspoint switching matrix, which
performs the actual switching, and a bus alloca
tor, which detects, defines, and resolves all time
conflicts resulting from simultaneous requests
by processors and I/O busses for access to the
same memory module. Modules simultaneously
requesting access to the same memory module
are serviced in a bus-dependent order; that is,
if the memory module is available, requests
from_ I/O modules pre-empt processor requests.
Each requesting module is suspended until ac
cess to the addressed memory is attained. If
access is not obtained within a specified time,
appropriate interrupts occur at the requesting
module. (Analyses of queueing probabilities
have shown that queues longer than one are
unlikely.) The switching interlock relieves the
AOSP of module intercommunication schedul
ing, and also provides indications of possible
hardware malfunctions within the system.

Interrupts and Operating Modes

D825 arithmetic/control processors have two
modes of operation, normal (interruptible) and
control (noninterruptible). Several special
control instructions are permitted in control
mode in addition to the normal complement of
instructions-for example, instructions for
setting special registers and transmitting I/O
descriptors. In general, operational programs
are executed in the normal mode, and' control
programs such as the AOSP are performed (at
least in part) in the control mode. The control
mode provides the facility to accomplish neces
sary control functions without interruption. In
addition, complete control of all I/O activity is
maintained, since it may only be initiated in
this mode.

An automatic interrupt capability is an in
tegral function of the D825. The interrupt sys
tem, implemented in hardware, provides the
means of switching processor operation from
the normal mode to the control mode, either by
a specific instruction or by the occurrence of
some anticipated event.

Each processor contains an interrupt regis
ter. When a particular condition has occurred,
a bit is set in a specified position of the inter
rupt register; the setting of this bit causes this
processor to be interrupted. There is also a
mask register which can inhibit certain classes
of interrupts. The mask register, which may be
loaded only in the control mode, allows the
AOSP to determine which processors are to re
spond to particular conditions.

An interrupt initiates an entry to the AOSP.
When a processor is operating in the normal
(interruptible) mode, its interrupt register is
scanned by logic circuits at the completion of
each instruction. If a bit has been set in the
interrupt register, the processor switches im
mediately to the control mode (noninterrupt
ible). The various control registers are saved
(representing the point at which the task was
interrupted), the interrupt bit is reset, and
control is established at a point, predetermined
by the AOSP, corresponding to the type of in
terrupt. When the new task is completed, an
AOSP instruction causes the processor to switch
from control to normal mode and to restore the
control registers to their prior normal mode
settings. In this way, the interrupted program
is resumed at the point at which the interrupt

44 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

occurred. (It may be, of course, that some other
processor has, in the meantime, been assigned
to complete the interrupted program, in which
case the interrupted processor is assigned
another new task.)

There are two classes of interrupts in the
D825: internal (or processor-generated) and
external. The internal interrupts are:

1. Real-time clock overflow.
2. Attempt to write out of bounds.
3. Illegal instruction.
4. Parity error from memory.
5. No access to memory.
6. Arithmetic overflow.
7. Halt instruction.
8. No presence bit (indirect address).

The external interrupts are:
1. An I/O operation is completed.
2. An external request (16 possible) has

been made.
3. Primary power (which had failed) is now

restored.
4. Another processor directs that this proc

essor be interrupted.

If reserved control mode functions are at
tempted in normal mode, an appropriate inter
rupt occurs. These functions are:

1. Initiate I/O.
2. Establish base of interrupt transfer table.
3. Interrupt a computer.
4. Load interrupt mask register.
5. Load memory bounds registers.

I/O Initiation

An I/O control module is in one of four
states:

1. Transferring data.
2. Held (not released, but not transferring

data) .
3. Released (available to accept an I/O in

struction) .
4. Not in the system (either off-line or non

existent) .

When a processor causes a descriptor (I/O
transfer instruction) to be transmitted fronl
memory to an I/O bus, the descriptor is accepted
and serviced by the lowest-numbered I/O con
trol module on the bus which is in the released
si-ni-e T.c no I 10 L 1 d I' ., 1 1 t'

l;Q.v • H I COnl.,rOl mo u e IS avallaOle, ne
processor embarks upon the conditional trans-

fer specified in the instruction which causes
transmission.

When an I/O module accepts a descriptor, it
returns to memory a copy of the descriptor re
ceived. This echo is checked by the processor
to ensure that proper operation has been
initiated. When an I/O operation is completed
(or terminated for some other reason), the I/O
module returns to memory a word (result de-
scriptor) which describes the status of the
equipment involved and the cause of I/O ter
mination. At the time of I/O termination, an
interrupt signal is sent to the processors, one
of which is assigned by the AOSP with the re
sponsibility for determining whether or not the
resulting I/O status is satisfactory, and so
notifying the initiating program.

INTERNAL FEATURES OF THE AOSP

The AOSP is an executive program whose
primary function is to control multi-processing
in a multicomputer system. Description of its
internal features is preceded in the following by
an example of its operation.

Example of AOSP Operation
(Multiprocessing in a Multicomputer System)

Envision an arbitrary number-let us say
four-of programs in core memory which are
suspended (having previously been readied by
the AOSP). Consider priorities to be as fol
lows:

Program A: 0.25
Program B: 0.50
Program c: 0,75
Program D: 1.00

Also, consider a D825 system consisting of
two processors-call them 1 and 2, where proc
essor 2 is established to process I/O complete
interrupts. Initially, processor 1 would assign'
itself to program D, and processor 2 would
assign itself to program C (or vice versa, arbi
trarily). Let us assume further, that, in pro
gram D, the requirement exists that no further
processing of this program can be accomplished
until new data is brought into the system. For
this type of condition, the compiler (or pro
grammer) would have coded the necessary re
quest for I/O such that the request would be
followed by an AWAIT macro. ("I can do noth
ing more until I receive the new data I told you

THE D825 AUTOMATIC OPERATING AND SCHEDULING PROGRAM 45

about.") The processor executing program D
would enter the AOSP in response to the I/O
request and would do the following, as directed
by the AOSP:

1. Initiate the I/O operation and record the
name of the program which had requested it.

2. Suspend program D (store its registers in
the register image area reserved in the job
table) , and mark program D as awaiting an I/O
operation.

3. Execute the scheduling program to find
the program of highest priority that is capable
of being executed (program B, in this case).

4. Load the register image of program B into
its registers.

5. Transfer control to program B by per
forming an interrupt return instruction.
When the I/O operation for program D is com
pleted, processor 2 would be interrupted (since
it had been assigned to process all I/O com
pletes), and would perform the following
events, as controlled by the AOSP:

1. Store its registers in the appropriate job
table entry.

2. Determine the originator of the I/O re
quest, and report to that program (D, in this
case) that the operation has been completed.

3. Note that the status of program D is
changed in the report.

4. Execute the scheduling program to scan
the job table for the highest priority job entry
that is capable of being executed (program D,
in this case).

5. Load the register image of program D
into its registers.

6. Transfer control to program D by per
forming an interrupt return instructi~n.

As may be seen in the foregoing example, a
program is executed by any free processor, and
processors assume control of any free program.
If programs C and D were independent subtasks
of a larger program (let us say E), the initial
assignment of processor 1 to Eland of processor
2 to E:! would involve parallel computation
within a single program. This is an inherent
facility of the AOSP.

Parallel Control Logic

There may seem to be some difficulty in pre
venting control interference in a multicomputer
system. For example, it might seem that it
could conceivably require more program control

for a processor to establish exclusive use of some
system configuration table than would be re
quired to do the table updating itself. Or, hav
ing obtained information from one table, it may
be necessary to obtain consistent corresponding
information from another table (that, con
ceivably, another processor is modifying).
There are several techniques which could be
used to avoid these conflicts. Logic or program
controls could be designed to ensure that only
one processor at a time can execute the control
program, inhibiting (by means of some sort of
switch) any other processor from entering the
program. Another method might be to allow
only some preferred processor to perform con
trol functions; whenever another processor has
a control function to be performed, it would
interrupt the "control" processor, and have its
request processed indirectly.

In the design of the D825, it was determined
that, to enhance interrupt response time, and to
maintain a balance of interrupt service among
the processors, the AOSP may be executed in
parallel by any number of processors. It was
also determined that some sort of inhibit func
tion must be included in the AOSP to prevent
processors from interfering with each other in
modifying system tables (such as memory maps
or job tables). Associated with each set of
modifiable tables and functions is a Boolean vari
able which indicates whether or not the tables
are being modified. This variable may be tested
and set with an AOSP instruction. Any num
ber of processors may simultaneously execute
the AOSP, each invoking programmed lockouts
when use of modifiable tables is required. Cer
tain quantities (subroutine return points, re
quest path indicators, and so forth) do not
warrant the use of a lockout. If lockouts were
to be provided in these cases, major sections
of the AOSP would be executable by only one
cornpuLer at a time. To avoid this restriction,
these quantities are maintained in processor
registers, and are request-path-dependent.

Processor Scheduling

After a processor suspends some job, it looks
for work. The set of current jobs is maintained
in a job table. Each job entry in the job table
contains the values of the registers of the
processor which last suspended the job and a
status indication of the reason for suspension.

46 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Typical status indicators are: now running,
waiting completion of I/O, available to be run,
awaiting some indicator, and so forth. The
processor looking for a new job establishes ex
clusive use of the job table and selects the high
est priority job entry which is ready to be run.
The processor loads its registers from the regis
ter image area of the entry selected, and pro
ceeds to execute the next instruction of the
previously suspended job.

A program may have more than one entry
in the job table. This can be initiated by a
BRANCH macro which causes the generation
of another job table entry, In this manner, a
program may initiate parallel processing on
(potentially) several processors. Of course, if
only one processor is in the system, the two
paths will be executed in essentially a serial
manner. There are advantages accrued in
branching, even if only one processor is avail
able. The major use of branching is to con
veniently buffer I/O operations and computa
tion. If several independent tape or drum sorts
are required, it is a relatively simple matter to
separate the functions and allow them to pro
ceed in parallel.

M emory Scheduling (Allocation)

The use of a modular memory configuration
introduces slight complications in memory allo
cation. The memory will not necessarily con
sist of a consecutive set of addressable
quantities, since some memory module may be
offline. The memory 'map, composed of an avail
able space 1nap, an in-'use map, and an unavail
able space map, allows the control program (in
the AOSP) to determine which areas are in use
and which areas are available. To increase sys
tem efficiency or to provide some sort of super
global area, a particular block of memory may
be reserved for whatever use a particular in
stallation requires. The AOSP is protected in
this way.

When a processor must allocate space for
some requestor, it attains exclusive use of the
available space map. The smallest adequate
block is selected and removed from the available
space map. If adequate space is not currently
available, a deferred space request entry is
established, which will be serviced whenever
the required space becomes available. The de
ferred space request item indicates the amount
of space required, the name (if any) of the

block, the type of object this will later repre
sent, and identification of the requestor (s). An
attempt is made to allocate a deferred request
whenever the size of the largest block of avail
able space increases. The priority of the de
ferred request increases with time, and if the
priority reaches a certain threshold, allocation
of any request is suspended until this deferred
request is serviced.

USER FACILITIES OF THE AOSP

Some of the many user facilities provided by
the AOSP are discussed in the following. (Some
of the more important details of program for
mat are discussed in Appendix 1.)

Initiation of Jobs

The AOSP reacts to all external request in
terrupts by scheduling the execution of pro
grams which the user has designated to inter
pret messages from external lines. The action
to be taken upon receipt of a message on the
external lines depends upon the inherent
priority of the requesting device and the con
tent of the message. Associated with each ex
ternal request line is the corresponding decod
ing program, an area in memory in which to
place the message, and the inherent priority of
the requesting line. An external interrupt indi
cating the presence of a command message is
the initiating signal for a new process (called a
.fob). If the message is a run request (a new
process to be initiated) the required program
(or programs) is fetched from the files, parame
ters are established and control is given to
it. Note that there may be several run requests
for execution of the same program on different
data sets. Hence, requests, as well as programs,
are given identification.

I/O Facilities
Some of the features of the AOSP facilitate

multiprocessing. Several independent user pro
grams may reference a single shared I/O device
(output tape, library tape, etc.), and facilities
are provided to prevent interleaved use by two
programs of serial-read/write devices (card
punch, reader, printer). To prevent two pro
grams (being run by two processors) from
alternately reading small consecutive pieces of
data from mutually remote areas of the same
tape, one (or both) of the programs must first
attain exclusive use of the device to prevent

THE D825 AUTOMATIC OPERATING AND SCHEDULING PROGRAM 47

excessive tape motion. Different rules apply if
shared input and output tapes are used, with
subsequent processing, than if real time func
tions are dominant.

Associated with each I/O device is a table
which indicates current allowable usage of
this device. In each such table is a status con
troller which indicates the name of the job
which controls how the device may be used.
Only the status controller can establish how this
piece of equipment may be used (read only,
write only, allows no other user, allows any
user, allows any job to attain exclusive use,
etc.). In addition to the status controller, the
current exclusive user, if any, is maintained.
Tape position and reel numbers are maintained.
Programs may make requests of the, type:
"Read the 14th record after the fourth end-of
file mark on tape reel #143"; and "Establish
this job as status controller of the tape unit
on which reel #236 is mounted."

If an I/O request cannot be honored, the re
questor is terminated. This procedure could be
replaced with other alternatives. The job could
be given an error answer. A message could be
printed requesting the operator to provide the
required equipment, with the job suspended
until he has done so. Our current thinking is
that a job scheduling routine should not activate
a job until its I/O requirements are available;
hence, termination is a reasonable action.

File Facilities

A file is a set of named objects which, in
some sense, logically (but not necessarily phys
ically) belong together. At the base of the
AOSP filing system is a system directory table
which contains the name, size and location of
the file directory for each file in the system
(whether active or inactive). Each file direc-
tory is of similar format and contains the
name, size, and location of every object in the
file. The directory of a file need not be stored
on the same device as the objects in the file.

Additional AOSP Facilities

The AOSP also provides facilities for user
programs to make run-time requests for named
data structures, procedures, and I/O devices.
One of the major functions of the AOSP is the
coordination of I/O activity. Buffered I/O
transfers are provided for the user as a matter
of course. In addition to a rich vocabulary of

I/O requests, facilities are provided to allow
run-time priority modification, initiation of a
parallel process, establishment of set-up parame
ters for a procedure, and file modification
during servicing of requests from a file. There
are also specialized time-dependent provisions,
such as "Suspend this job for n milliseconds of
real time." (A real-time clock is included in
the D825.)

A ntidpated Extensions

We anticipate that, after further study and
development of the AOSP, run requests will be
filed. A job scheduling program will be acti
vated at appropriate times to introduce new
work for the system by analyzing the require
ments of runs (such as time, storage space,
branches, priority, and so forth) and the en
vironment of the system. In this way, more
efficient control can be maintained of equip
ment usage.

SUMMARY

The paper describes the initial implementa
tion of an operating system for a multicomputer
data-processing system. Major emphasis in the
operating system design has been placed upon
coordinating several processors sharing mem
ory and I/O equipment while executing many
concurrent tasks. Important features of the
program include the response to interrupts,
run-time allocation of memory, coordination of
I/O activity, initiation and removal of pro
grams, and filing facilities.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the out
standing efforts of their many colleagues at
Burroughs Laboratories who have contributed
so well in the design and implementation of the
D825 Modular Data Processing System and the
Automatic Operating and Scheduling Program.
In particular, we wish to acknowledge J. Ander
son, W. Hopper, and S. Hoffman for the initial
system concept; L. Mott and the logic design
staff; and J. Maestrelli, F. Zurcher, A. Fox, and
E. Amarnick for the implementation of the
AOSP.

The authors also wish to acknowledge the
efforts of K. Sattley and S. Warshall of Compu
ter Associates Inc., for their contributions to
the concepts and initial design of the AOSP.

48 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

REFERENCE

1. ANDERSON, JAMES P., SAMUEL A. HOFFMAN,
JOSEPH SHIFMAN, and ROBERT J. WILLIAMS,
III, "D825-A Multiple-Computer System
for Command and Control," Proc. F JCC,
1962, p. 86.

APPENDIX I-PROGRAM FORMATS

The basic program entity in memory con
sists of two parts: the body of instructions,
called the program area (PA), and a block of
words used as data by the program, called the
data area (DA). (Several DA's may, of course,
correspond to a single P A, since any program
may be executed simultaneously by two process
ors without mutual interference.) The P A and
DA blocks correspond to the two principal base
registers in the processor-the base program
register (BPR) and the base address register
(BAR). The BAR and BPR control relative
addressing. When a processor is executing a
program, the BPR of that processor is set to
the beginning of the P A, and the BAR normally
contains some address within the DA of the
program. When a program is run simul
taneously by two processors, the BPRs of the
two computers are set to the same value, but in
general, the BARs are set to different values.
Data objects allocated independently of the DA
of a program which refers to them are termed
external.

To meet the bookkeeping requirements of the
AOSP, both the P A and DA are preceded by a
few additional words of information. The words
preceding the P A are called the program header
(PH), and those preceding the DA, the data
header (DH).

Examples of the format of program headers
and data headers are illustrated in Figs. 2 and
3. The first five lines of the headers are created
and maintained by the AOSP. The remaining
lines of the headers, the adaptor blocks, are
created at compile time, and remain in this form
in the system files.

The adaptor block contains the names of data
or program items which; for various reason~.
cannot conveniently b~ allocated within t}l~
prime program areas or data areas. vhenever
a program is made ready for execJtion, the
external data objects referred to by the pro
gram are obtained by the AOSP, and the cur-

rent addresses of these objects are inserted in
the appropriate locations within the adaptor
block of the D A.

As shown. in Figs. 2 and 3, one area in the
adaptor blocks of the program area is the names
of necessaries. Also shown, in the adaptor block

BITNO I 4a
NAME 1 BITS I USER I LENGTH

FILE NAME I ALPHA LINK I ALPHA LINK

1 MEMORY LINK I MEMORY LINK

RESULT DESCRIPTOR

NUMBER PARAMETERS I NUMBER CONDITIONALS I NUMBER NECESSARIES .

NAMES OF NECESSARIES

NAMES OF CONDITIONALS

I.t WORD OF CODE

2nd WORD OF CODE

Figure 2. Program Header.

32 4Z ..
0

BITS USER LENGTH

I POINTER TO PROGRAM HEADER I LOCATION OF STARTER

""j MEMORY LINK , MEMORY LINK

RESULT DESCRIPTOR

0 I 0 ",. °Uolo'
0 /" /

ASI LINES OF NECES!lAIUES. [E I NUMBER ,I
COMDITlON.u.,s.AHD PARAMETERS BIT NECESSARIES

CONSTANTS

WONtING 8"1'ORAGE

Figure 3. Data Header (Before Ready)

of the data area, are the ABI lines of neces
saries. ABI stands for the "Ith adaptor block
line." One of the functions of the AOSP is
to ensure that all of the "necessary" items re
quired by the program are in core memory at
run time. (Necessaries may be library sub
routines, data objects, or other programs in the
files.) Let us suppose that the necessary item
for a particular program is an array or table of
data, and that this table has the name HENRY.
The program would then have a necessary line
for this data object in both the data header and
the program header. The two necessary lines
in qnestion would appear as in Fig. 4.

Figure 4. PA-DA ABI Linkage (Before Ready)

THE D825 AUTOMATIC OPERATING AND SCHEDULING PROGRAM 49

In preparing this program for execution, the
AOSP would first determine whether there were
any external blocks necessary for the execution
of the program. In this particular case, the
AOSP would scan the program header and data
header and find the requirement for the data
object HENRY. The AOSP would then initiate
a routine that would first scan the list of data
blocks presently in core memory. If HENRY
were in core memory, the pointer in the adaptor
block of the DA would be changed to the abso
lute location of the data object, and the file name
would be changed to the link of users of
HENRY; the presence bit would be set to per
mit indirect addressing by the object program.

If HENRY were not in core memory, the
AOSP would initiate a chain of operations that
would locate HENRY in the system files, allo
cate space in core memory for HENRY, and
bring HENRY into the allocated core space.
The address field in the adaptor block would
then be changed to the absolute address of
HENRY.

It should be noted that this sequence describes
the handling of one necessary item. In general,

there may be many necessary items, and it is
the function of the AOSP to see that all are in
core memory at program run time. Indeed,
some of the necessary items of a program may
themselves have necessary items, and the AOSP
would fulfill the same function for these. Only
when the whole structure is in core memory
will the AOSP report to the original requestor
that the program is ready to be run.

Some items required by a program may be of
a conditional nature. This is especially true
where procedures or data sets of programs are
required only as the result of a particular de
cision at run time. It would be wasteful to
clutter the core memory with these items if they
are not to be used in the normal program
cycling. This type of item is considered condi
tional. Adaptor block entries of conditional
items are also carried in the program and data
headers, but are not readied initially. The ready
ing of conditional items is identical to the ready
ing of necessary items, but the items are only
readied as a result of macro calls on the AOSP
by the program during the course of the pro
gram execution.

Memory module:
Table I. Features of D825 Hardware

16 modules maximum

Arithmetic/ control
processor
(computer module) :

I/O control module:

word length: 48 bits plus parity bit
4.33-microsecond cycle time; I-microsecond access

time
4096 words/module
5 busses/module
3 Mc logic rate
normal and control modes of operation
program-controllable interrupt system
128 magnetic thin-film storage registers (300 ns

cycle time)
four-level operand stack (thin films)
independent program and data base address regis

ters
0-, 1-, 2-, and 3-address instructions
15 index registers
syllable-string instruction format
one to seven syllables per instruction
n-Ievel indirect addressing
data presence bit test
fixed, floating, and field instructions
10 modules per exchange, maximum
500 kc maximum character (six bits plus parity)

rate in I/O exchange
32 input channels
32 output channels
transmits I/O complete interrupt signal to every

processor

A TIME-SHARING DEBUGGING SYSTEM

FOR A SMALL COMPUTER

J. McCarthy
Computation Center, Stanford University, Stanford, California

S. Boilen
Bolt Beranek and Newman Inc., Cambridge, Mass.

E. Fredkin
Information International Inc., Maynard, Mass.

J. C. R. Licklider
Advanced Research Projects Agency, Department of Defense

The purpose of the BBN time-sharing system
is to increase the effectiveness of the PDP-1
computer for those applications involving man
machine interaction by allowing each of the five
users, each at his own typewriter to interact
with the computer just as if he had a computer
all to' himself. The effectiveness of this inter
action is further enhanced by the use of the TYC
language for controlling the operation and
modification of programs.

First the computer. The PDP-1 * is a single
address binary computer with an 18 bit word
and five microsecond memory cycle; most in
structions require ten microseconds to execute.
The basic memory size is 4096 words, but up to
65,536 words may be addressed indirectly. The
machine we used has 8192 words, 4096 of which
are reserved for the time-sharing system. Each
user sees a 4096 word memory. We shall de
scribe further relevant features of the computer
later.

* The PDP-l computer is manufactured 'by Digital
Equipment Corporation of Maynard, Massachusetts.
All the equipment described in this paper was made by
D.E.C. and their cooperation in developing and building
the modifications and additions to the basic computer
required for time-sharing was essential to the success
of the project.

51

Attached to the computer is a high speed
magnetic drum memory divided into 22 fields
each of 4096 words. A basic operation of the
drum system is the memory-swap accomplished
in 33 milliseconds. In this operation 4096 words
are transferred from the core memory to a
drum field and simultaneously the core memory
is loaded from a different drum field. This per
mits the following time-sharing mode of opera
tion.

A 4096 word drum field is allocated for sav
ing the core image of each user when his pro
gram is not running. A user's program in run
status is run for 140 milliseconds, then if there
is another user also in run status, the state of
core memory is stored in the first user's core
image on drum and simultaneously the second
user's core image is loaded into core and the
second user's program is started in the appro
priate place. In the worst case of all five users
in run status, the system makes its rounds in
5 x (140 + 33) = 865 milliseconds. For man
machine interaction this means that if the user
types a character calling for a response from
his program that requires less than 140 milli
seconds (= 14,000 machine instructions), he
will get the first character of the response in
less than .865 seconds. This worst case is ex-

52 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

pected to be rare because when a user's program
types out a multicharacter message, successive
characters go into a buffer area in the system
core; when the buffer is full the user's program
is removed from run status until the buffer is
nearly empty. Therefore, users with extensive
output spend very little time in run status and
the other users get correspondingly quicker
service. (In fact the condition in which no
users are in run status is expected to be so
common that a provision for a background pro
gram to be run only when no time-sharer is in
run status is contemplated.)

THETYCCONTROLLANGUAGE

The language used to control the debugging
is adapted from the DDT language devised by
the TX-O and PDP-1 group at M.LT. directed
by Jack Dennis for the TX-O and PDP-1 com
puters. The use of typewriters rather than the
console switches· for on-line debugging has been
developed at M.LT. and M.LT. Lincoln Labor
atory since 1957, and at BBN since 1961. These
languages have greatly increased the effective
ness of the TX-O, TX-2 and PDP-1 computers
and are now being developed for the IBM 7090
time-sharing system by F. J. Corbato of the
M.LT. Computation Center. Unfortunately, ex
cept for a recent paper by Corbato, the work
has not been published. Our only bow at history
is to credit John Gilmore with the first such
system for the TX-O in 1957.

First, we shall consider the facilities for ex
amining and changing registers. Suppose the
user wanis to examine register 344. He types

344/

and the computer types back the contents of
this register interpreted as a computer instruc
tion if possible. Thus it might type back "add
4072". The user then has several options.

1. He can carriage return and close the reg
ister if he is satisfied with its contents.

2. He can ask to see the next register by
hitting the backspace key. The computer might
then type back

345/ sub 4075.

3. He can ask to see the previous register.
4. He can ask to see register 4072 by hitting

the tab key.

5. He can ask for the contents of the register
as an octal or decimal number.

6. He can change the contents of the register
by typing new contents such as "add 4073" and
then hitting one of the delimiter characters.

The computer user who does not have ex
perience with systems of this kind may not
immediately realize the increase in effectiveness
that these facilities alone give over console de
bugging. The advantages are that typing is
easier than flipping switches, that a record is
obtained of what was done, and that useful
features can be added to the control language.

As a further feature the user can define sym
bolic names of addresses so that his typeouts
can take the form

al add b + 3
a + 11 sub b + 6

In order to start a program say at register
3145 the user types 3145G. This gives the type
writer up to the program, but he can get it
back for control purposes by typing center dot.
If he does so. he can interrogate and change
registers without stopping his program but if
he wants to stop it he types H. Once it is
stopped he can start it where it left off by typ
ing G without a numerical argument. He can
also interrogate the arithmetic registers either
while the program is running or while it is
stopped. Of course, the contents of a register
interrogated when the program is interrupted
at a random moment may not be significant;
this depends on the program.

Except at the beginning and the end of his
session the user does not ordinarily use the
paper tape apparatus. Instead he designates
a position on the drum for the punch and a
position for the reader using TYC. An instruc
tion in the user's program to punch a character
onto paper tape actually results in enterin·g the
character into a buffer for transmission to the
drum when the buffer is full or no punch in
structions have been given for a while. This
feature allowed us to make available in the
time-sharing system symbolic assembly pro
grams and other utility programs that were
developed previously.

The TYC language is described in detail in
reference 7.

A TIME-SHARING DEBUGGING SYSTEM FOT A SMALL COMPUTER 53

RELEVANT FEATURES OF THE PDP-1
COMPUTER

In order to explain the detailed functioning
of the BBN time-sharing system, it is necessary
to understand the input-output system of the
PDP-1 computer, the sequence break system and
the restricted mode.

1. Typewriters and paper tape
Each iot instruction transfers a single char

acter between the 18 bit io register of the com
puter and the external device. All io instruc
tions have the same left 5 bits, the 6th bit is
normally used to determine whether the wait
before the next instruction is determined by
the external device or whether the program
keeps this responsibility. The remaining 12 bits
of the instruction are used to determine the
device and the direction of transfer. The char
acters are 8 bits on paper tape and 6 bits for
typewriters. When the computer is not in se
quence break mode a character typed by the
user results in turning on a sense flag which can
be interrogated by the program to determine
when to pick up the character.

2. Drum
In transfers from the drum the number of

words to be transferred and the . locations in
core and on the drum are specified. During the
transfer the arithmetic unit of the machine is
tied up.

3. The machine has other input-output devices
but their operation does not have to be described
in this paper.

4. The sequence-break system.
Besides the simple form of input-output de

scribed above, the machine has a sequence-break
system which permits input-output and com
putation to be carried out simultaneously and
asynchronously. The BBN time-sharing system
makes full use of sequence break.

The sequence-break system has i6 channels
to the outside world arranged in a priority
chain with channel 0 having highest priority
and channel 17 il lowest priority. Associated with
each channel are four registers in core O. When
a signal comes from an io device that the device
has a character ready for the computer or is
ready to receive a character from the computer,
an interrupt will occur if an interrupt is pres
ently allowed on that channel. When an inter
rupt occurs the contents of the ac (accumulator)

io (input-output) and pc (program counter)
registers are stored in three of the regis
ters and control is transferred to the fourth
which must therefore contain a jump to a pro
gram for dealing with the interrupt. When this
program has finished its work it must execute
an indirect jump through the register where the
program counter was stored when the break
started. This returns control to the program
that Vias interrupted and tells the sequence
break system that the break is over. Once a
break is started on a channel a break cannot
occur on a lower priority channel nor can
another break occur on the same channel until
the break is over. Each channel can store one
break until it is allowed to .occur.

5. Restricted Mode
This mode was devised specifically for the

time-sharing system. When the computer is in
this mode and if there is no break started in
the sequence break system, then any of the
following events lead to a sequence break on
channel 16.

1. An attempt to obey an io instruction.
2. An instruction that would normally stop

the computer such as a halt instruction or an
illegal instruction.

3. An attempt to refer to core O.
The instructions that enter and leave extend

mode and restricted mode are considered io
instructions. The time-sharing system operates
only when a sequence break has occurred and
hence is not subject to the restrictions.
6. The Channel 17 Clock.

Every 20 milliseconds a signal for a sequence
break on channel 17 occurs. Programs can turn
off channel 17 (or any other channel) by an io
instruction if they don't want breaks to occur.
Note that channel 17 is the lowest priority
channel. The clock is a multivibrator whose
period is controlled by a potentiometer.

HOW THE TIME-SHARING WORKS

The time-sharing executive program is not
readily described by a single flow chart because
its different parts act asynchronously as de
termined by sequence breaks. It includes the
following programs:
1. The typewriter io program

Associated with each typewriter is an input
output program and a buffer area. These pro-

54 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

grams are entered when sequence breaks occur.
Suppose a user types a character w. The pro
gram knows whether the character is addressed
to the user's program or to TYC.

On the other hand, if the interrupt comes
from the completion of the type-out of a char
acter the program types the next character
from the buffer if any.

After transferring the information the break
is ended.

Channels 6, 7, 11, 14 and 15 are allocated to
typewriters.

2. The channel 16 dispatcher.
The computer is in restricted mode during

the operation of the time-sharing system. As
we stated earlier, this means that 1:0 instruc
tions and instructions that halt the machine
lead to sequence breaks on channel 16. The user
programs his input-output just as if there were
no time-sharing system. Therefore, when a
channel 16 break occurs the program first looks
at the instruction that caused the break. Sup
pose the instruction is a type-out instruction.
If the type-out buffer is not full the character
that the user program wants to type is added
to the buffer and if necessary a sequence break
on the typewriter channel is instigated to start
typing. If the type-out buffer is full the pro
gram must be dismissed from run status. If the
instruction is a type-in instruction, a character
is given to the user program if there is one in
the buffer; otherwise the program must be dis
missed from run status.

If the instruction is discovered to be one that
halts the machine~ the program is dismissed
from run status and a note is left for TYC to
tell the user what happened.

Paper tape input and output is handled in a
similar way except that the dispatcher must
check whether the user has the punch or reader
assigned to him. If not, the user's program is
dismissed, and a complaint is made to him. As
soon as the reader or punch has been relin
quished he can continue the program from
where it left off.

The typewriter and paper tape instructions
are interpreted and simulated by the channel
16 dispatcher so precisely that programs
written before the time-sharing system was
developed can be run without change in the
system, provided they do not themselves use the
sequence break system. This means that almost

all the previously used symbolIc assemblers,
typewriter input-output routines, text editors
etc. can be used without change and that the
user can use the TYC language to debug rou
tines that are to be used outside it.

3. The channel 17 clock routine.
Every 20 milliseconds or so a sequence break

signal is given on channel 17. Since channel 17
is the lowest priority channel this break can
take effect only when no typewriter, p.aper tape
or channel 16 dispatcher break is in progress.
Moreover, except when the channel 17 program
turns off the sequence break system it can be
interrupted by typewriter or paper tape se
quence breaks.

The basic task of the channel 17 clock routine
is to decide whether to remove the current user
from core and if so to decide which user pro
gram to swap in as he goes out. A user may be
removed from core for any of several reasons.

1. His quantum of time is up and he should
be put on the tail of the queue.

2. He has filled an output buffer.
3. He has ask(~ for a character and there is

none in the input buffer.
4. He has tried to execute an illegal instruc

tion or to use input-output equipment not avail
able to him.

5. The typewriter control program has filled
a buffer or has finished a request concerning his
program.

If the channel 17 routine decides to remove
the current user it will swap into core the next
user in the round robin who is in run status. A
user not in run status can become so for any of
the following reasons.

1. An output buffer is almost empty.
2. A character requested by his program has

arrived.
3. The typewriter control program wants

him in core to interrogate registers, to change
them, or to run the program.

4. The typewriter control program (TYC).

The typewriter control program is in core 0
and it interprets and obeys requests from the
user to give him information about his pro
gram, to change it, to run it, and to stop it.
The same program must work for all users and
whenever a user is put in core TYC is modified
so that it refers to the current user's program.

A TIME-SHARING DEBUGGING SYSTEM FOT A SMALL COMPUTER 55

The user makes his requests and receives in
formation from TYC using the same typewriter
as his program uses for input and output.
Therefore, it is. important that no matter what
program the user is attempting to debug he
shall be able to regain control if it goes astray.
This is accomplished as follows: When the user
starts a program running he can either retain
the typewriter for control purposes or else give
it up to the program. If he gives the typewriter
to the program, then characters it types appear
on his typewriter and characters he types are
given to his program if it asks for them. Sup
pose his bad program is taking characters from
the typewriter but ignoring them. He can then
type the character center dot"'" which is a non
spacing character on the PDP-I. If he follows
this by a carriage return the typewriter is then
in the control of TYC and subsequent charac
ters are interpreted by TYC. If he actually
wants center dot to be transmitted to his pro
gram, he must type it twice.

Suppose now that his program is in an output
loop and refuses to stop typing. Then he turns
the power off on the electric typewriter. The
result of this is that the computer fails to get a
"done pulse" from the next character typed
within a second. Control then goes to TYC
which tells the channel 17 program to dismiss
the user's program from core and returns the
typewriter to the control of TYC as soon as
the power switch is turned on again.

APPLICATIONS

The most obvious application of the BBN
Time-Sharing system is to speed up debugging
by allowing each user more console time and
good debugging languages. In our opinion the
reduction in debugging time made possible by
good typewriter debugging languages and ade
quate access to the machine is comparable to
that provided by the use of ALGOL type lan
guages for numerical calculation. Naturally,
one would like to have both but this has not yet
been accomplished on any machine.

We can now mention some other applications
that our system makes possible by providing
inexpensive console time.

1. Small calculations. At present there is a
large gulf between desk calculators and compu
ters. One can start getting results 10 seconds
after sitting down at a desk calculator, but

extensive calculations are very tedious. The
BBN Time-Sharing System makes possible and
economically reasonable providing a continuous
transition from using the computer as a desk
calculator at one extreme to writing· ALGOL
programs at the other. An intermediate step is
a system that allows the user to define functions
by statements like

f(x) = x j 2 + 3.0x x + 4.3

or even
g(m"n) = if m>n then g(n,m) else if rem

(n,m) = 0 then m else g (rem (n,m), m)

and then be able to use these functions in arith
metic calculations by writing something like

g (3,21) x f (38) + 19 =

and have the computer print the answer by
interpreting the formulas for the functions. To
some extent this has been achieved by the pro
gram "Expensive Desk, Calculator" written by
Robert Wagner at M.l. T.

2. Editing Texts. Several programs have
been written to use the PDP-1 comJ?uter to edit
paper tape texts .. The user can originate text,
make insertions and deletions, display the cor
rected text to make sure it is correct, find all
occurrences of certain strings of symbols.
These editing programs are much more con
venient for correcting programs than using
flexowriters or than making changes in a card

One such program, Colossal Typewriter,
operates as follows:

There are two modes, text mode and control
mode. When the program is in text mode, each
character typed by the user is added to a buffer
held in the core memory of the computer. There
are four exceptions to this: If the user types a
backspace, the program deletes the last char
acter from the buffer, and this operation can
be repeated as many times as may be required
to correct a local error. Another character
causes the program to type out the last 20 char
acters in the buffer, and a third returns the
computer to control mode. The fourth special
character-the single quote ' causes the cliche
whose name is the following character to be
entered in the text if there is such a cliche. Thus
typing , a causes the cliche named a to be
entered. In addition, the cliche Feature may be
used to enter any of the four control characters
into the text. The user need only type' followed
by the character in question.

56 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

In control Diode the user has the following
facilities: to type out the buffer, to punch
(pseudo-punch) the buffer, to read (pseudo
read from the drum) into the buffer a number
of lines or until the first occurrence of a given
cliche, to reset the ends of the buffer, to give
the current buffer a name as a cliche, to kill the
buffer, and to go into text mode.

Other text-editing programs allow the use of
the CRT on the computer to display lines of
text.

3. Teaching Prograrns. An experimental
teaching laboratory using a system based on the
principles of this paper is being installed at
Stanford University.

Additional applications of large time-sharing
systems are described in (2), (3) and (5),

OPERATING EXPERIENCE

The BBN Time-Sharing System has been in
operation at Bolt Beranek and Newman Inc.
since September 1962. The computer is oper
ated in the time-sharing mode four hours per
day. Initially, the number of typewriters was
two but this has been increased to five. The
present system has been found to have the
following weaknesses which we hope will be
corrected: There is no program library on the
drum so that excessive use of the paper tape
reader is required. Magnetic tape files for user
programs are not available in the system. Five
computer operated typewriters in one room
make too much noise. Versions of the utility
programs especially adapted to time-sharing
are desired.

EXTENSION TO LARGER COMPUTERS

It is worthwhile to ask to what extent the
time-sharing technique described in this paper
is of more general use. As a computer the PDP-1
is characterized by high speed and relatively
small memory. Its low cost means that it will
not ordinarily have to be shared by a very large
number of users. Suppose we wanted a time
sharing system based on core-drum swapping
on another computer. Suppose that

n = number of simultaneous users
t = time for a memory cycle

,n = number of words in user's memory that
have to be swapped

r = response time
f = fraction of time taken by swaps;

then vIe have
1

r = n t m (1 + 7) under the assumption that

the drum keeps up with the core memory and
that the read and write halves of the core
memory cycle are used separately.

In the present case if we put f = .25, n = 5,
t = 5 X 10-6 sec m = 4000 we get r = .5 sec.
The difference between this result and the
actual maximum response time of .85 sec. comes
mainly from the fact that the present drum
system swaps a word about every 8 micro
seconds instead of every five microseconds
which in turn comes from using a standard 1800
rpm motor on a drum on which each track has
4096 bits around.

If we were to make a similar system for the
IBM 7090 computer, we could have n = 5,
t = 2 X 10-6, m = 16,000 (the memory of this
machine really consists of 16384 72 bit words)
f = .25 and would get

r = .75 sec

Thus, on account of its much larger memory
the 7090 would have about the same relation
between number of users and maximum re
sponse time as the PDP-l. This is less satis
factory because the expense of the larger ma
chine requires it to serve many more users.
Nevertheless, such a system would still be use
ful. If we make the more optimistic but reason
able assumptions that only 'lh of the users sitting
at typewriters will be in run status at a given
time and that a 3 sec9nd response time is
tolerable, then the system could accommodate
100 typewriters which i~ econornically quite
reasonable. This would require a better drum
system than is available connected so as to
allow memory swaps at core speed.

REFERENCES

1. J. GILMORE-Lincoln Lab memo (out of
print)

2. C. STRACHEY-Time-Sharing in Large Fast
Computers in Proceedings of the Inter
national Conference on Information Proc
essing, UNESCO, Paris 15-20 June 1959,
UNESCO, Paris, 1960, pp. 336-341.

3. J. C. R. LICKLIDER-"Man Computer Sym
biosis". IRE Transactio'YI.".s on Hl1,man Fac
tors In Electronics, (l\iarch 1960).

A TIME-SHARING DEBUGGING SYSTEM FOT A SMALL COMPUTER 57

4. F. J. CORBATO-1962 WJCC An Experi
mental Time-Sharing System, Fernando J.
Corbato, Majorie Merwin-Daggett, Rober,t
C. Daley, 1962 Spring Joint Computer Con
ference.

5. J. MCCARTHy-Time Sharing Computer
Systems in Management and the Computer

of the Future edited by Martin Greenberger,
M.l. T. Press, 1962.

6. PDP-1 manual-Digital Equipment Corpo
ration, Maynard, Mass.

7. S. BOILEN-User's Manual for the BBN
Time-Sharing System-Bolt Beranek and
Newman? 50 Moulton St.? Cambridge? Mass.

THE ATLAS SCHEDULING SYSTEM

D. J. Howarth, P. D. Jones and M. T. Wyld

INTRODUCTION

, Atlas is the name given to a comprehensive
computer system which has its origin in the
Computing Machine Laboratory under Pro
fessor T. Kilburn at Manchester University.
The final design is the result of close collabora
tion between this group and Ferranti Ltd. This
paper describes the basic principles of the
scheduling system adopted for Atlas. The main
features discussed are the ordering of a queue
of jobs awaiting execution, the allocation of
main store space and tape decks, the assembly
and preparation of jobs for execution and the
communication system between operator and
scheduler' program, which includes the alloca
tion of external priorities to jobs. A later paper
will describe the dynamic time-sharing of jobs
during the course of their execution, and asso
ciated simulation studies.

Virtually no information has been published
which is of practical value in formulating the
Atlas scheduling system, and hence the system
is designed to facilitate alterations in the light
of operating experience. The basis of the sys
tem may be expected to require little changing,
but certain decisions, which depend upon a bal
ance of various factors, luay requil~e lilOdifica
tion when the relative importance of these fac
tors is known in more detail.

SUMMARY OF THE ATLAS OPERATING
SYSTEM

The principles of the Atlas Operating Sys
tem, all the activities of which are controlled
by a program called the supervisor, have been
described in previous papers. I, 2, 3 In order to

59

appreciate the action of the scheduler, it is
advantageous to summarise first the salient
features of the system. It is designed to over
lap the operation of those parts of the comput
ing system which can function concurrently,
namely, input and output peripherals, magnetic
tapes, the central computer and the huma~ op
erators. In order to achieve overlap of Input
and output operations with computing, regions

d " II" of the core and drum store are use as we s,
which can be filled and emptied at peripheral
speeds by the peripheral equipment, and at
computer speeds, for short bursts, by the cen
tral computer. These wells are supplemented
by system magnetic tapes (a system magnetic
tape is one which is controlled by the supervisor
in contrast to a private magnetic tape which is
under direct control of an ordinary program),
which are not used to supply the central com
puter directly, but which are used to fill and
empty the wells in core and drum store. Jobs
whose peripheral input is complete are as
sembled in main store, prior to execution, from
the system input tape or from other system
tapes on which they have been loaded previ
ously. Program results occupy the output well
in main store before being recorded on the
system output tape.

Complete jobs may consist of several sepa
rate input documents (a document is a self
contained section of input information pre
sented to the computer consecutively through
one input channel), one of which must contain
a job description. This lists all other input
documents required, the titles of any magnetic
tapes required, the output stream and the type
of peripheral required for each, and also sup-

60 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

plies approximate estimates of storage space
(in combined drum and core store) required
for execution, computing time, and quantity of
output for each output stream. These estimates
are used by the supervisor program as a guard
against serious program error and are also
available for use by the scheduler. Decisions
called for by the operator are thereby reduced
to a minimum, sufficient information being sup
plied to the computer by the user to enable a
job to be run. Allowance is made for operator
intervention in exceptional cases and this is
described in a later section.

The scheduler is the part of the supervisor
program which determines the order in which
the available jobs awaiting execution should be
assembled in main store, and should be com
piled and executed. In the following sections
it will be assumed that no special priority has
been attached to jobs by the operator, and that
the scheduler is' permitted to select jobs in any
order; we shall consider later how this order
may be influenced by the action of operators.

THE ADVANTAGE OF A COMPUTER
ORGANISED SCHEDULING SYSTEM

After recognising that the proposed dynamic
buffering scheme (described above) on Atlas
means that normally all slow peripheral trans
fers are indirect and overlapped with comput
ing operations, the merit of doing anything
other than executing jobs in precisely the same
order as they enter the computer might be open
to doubt. However, this simple method of op
eration can lead to extremely inefficient use of
the computer. This 'would be the case, for ex
ample, if a long sequence of jobs all produced
output for one peripheral, while other periph
erals, which later jobs wished to use, remained
idle. On a very large computing system (32
tape decks, 4 line printers, etc.) the order in
which jobs are executed is not so important
since there may be enough peripherals to deal
with any load, irrespective of the order in which
jobs are executed. However, it is uneconomical
to buy a computing system with more than the
minimum number and types of peripherals~
which, if used efficiently, can handle the ex
pected load.

If jobs are sorted by' the operator before they
enter the computer, then inefficiencies of this
type are less likely to occur. However, due to

the speed at '\vhich the machine executes jobs,
and also the operator's comparative lack of
knowledge of the immediate state of the ma
chine, the task of efficiently ordering a large
number of jobs is extremely difficult. A far
better method of operation is for the operator
to take no account of the types of job entering
the computer (all jobs being fed in as soon as
they appear), and for a scheduling program.,
which at any instant knows the exact state of
the computer, to determine the order of execu
tion.

A sophisticated and efficient scheduling sys
tem is the ultimate component of the overall
Atlas supervisor, made possible by the special
time sharing features of the Atlas hardware
and basic supervisor routines. If a computing
system does not have built in features for pro
tecting and interrupting programs during ex
ecution, then anything other than a very simple
scheduling system is probably not worthwhile,
even if it is possible to design some elegant
system. In these circumstances the advantages
of an "efficient" scheduling system are offset
by the time and effort required to devise the
system, and then, when the scheduler is work
ing, by the time spent in the scheduling routines.

On Atlas, the main difficulty lies not so much
in the implementation of any given scheduling
system, but in formulating the particular rules
and framework of the system. If the scheduler
is designed properly, it should be possible, in
the light of operating experience, to tailor it
to obtain the 'best results for the particular
installation concerned and type of work it is
doing. Excessive scheduling, when considerable
time is spent in routines doing detailed look
ahead processes, should be avoided: inaccurate
estimates and error monitoring of jobs tend to
nullify any attempt at detailed future planning.

THE TASK OF THE SCHEDULER

The object of the operating system on Atlas
is to maintain the fullest possible useful activity
in those parts of the computing system which
can function simultaneously; that is, to reduce
to a minimum periodR of idleness in any part
of the system which is required for further use.
Such periods can be caused by a delay in pass
ing information from one branch of the system
to another; for example, if a job is using a
magnetic tape, either the central computer may

EXPERIENCE WITH THE ATLAS SCHEDULING SYSTEM 61

be idle awaiting the conclusion of a transfer
between store and tape or the tape may be idle
awaiting a command from the central com
puter. A period of idleness can also occur when
a peripheral is free and no attempt is being
made to execute available jobs which could use
this equipment.

The scheduler may be visualised as arrang
ing for the transfer of jobs from a list of avail
able jobs to a list of jobs in course of execution.
The supervisor progra111 on Atlas permits shar
ing of the central computer between several
object programs in course of execution, and
thus the Execute List may hold more than one
job at anyone time, if this is necessary to
achieve efficiency; the composition of this list
will be described in this section. At first sight,
it would appear that maximum efficiency would
be obtained if the Execute List comprised one
job using each output peripheral and magnetic
tape, together with a base load job to use any
available central computer time. Due to the
wide difference in the rate of use of information
by the peripherals and the central computer,
the central computer might be expected to be
in use for only a small proportion of the total
time on anyone problem, and whilst not in use
for this problem eould be used by other prob
lems. The presence of so many problems on the
Execute List is not necessary to achieve effi
ciency however, and is to be avoided in the
interests of efficient use of store. The opera
tive parts of such problems must be in core
store to permit fast switching of control be
tween problems without the need for transfers
between core and drum stores; this would imply
an excessively large core store, anyone part of
which is only in use for a small proportion of
the total time. Inefficient use of store also
results from the fact that, for many problems,
the combined core and drum store required for
execution considerably exceeds that required
for storage of input :materiaI, and hence total
storage requirements are reduced by reducing
the number of problems present at anyone
time on the Execute List. Since frequent
switching of control between object programs
is not desirable, the supervisor program is de
signed to provide rapid switching of control
between an object program and supervisor rou
tines, rather than between two object programs.

A straightforward reduction in the length of
the Execute List is achieved by using the output

well in core and drum store and on the system
output tape to collect output information from
all object programs for all output peripheral
equipments. Problems which are output limited
(that is, those which use an output peripheral
for a longer time than they use the central
computer) can then be executed in series, filling
the output well. During their execution, such
jobs are not held up for peripheral transfers.
Only when the output well is filled for all
peripherals is control switched to programs
which are computer limited, only one of which
need be in course of execution at anyone time.
The output well is emptied by the output periph
erals until a low level of available output is
reached for any peripheral, when output-limited
jobs are again executed in series to refill the
output well. In the absence of jobs using mag
netic tape, therefore, the presence of two jobs
on the Execute List achieves efficiency, and for
most of the time only one of these is actually
active. Jobs using magnetic tapes cannot be
dealt with in this way, since it is impractical
for the supervisor program to provide an ade
quate buffer for information transferred to and
from magnetic tapes. If tape limited problems
are run, therefore, it is essential in the interests
of efficiency to maintain these on the Execute
List in addition to the two entries described
above; the central computer will use tape wait
ing time to proceed with other jobs in the
Execute List. The number of such jobs will
depend upon their computing time, and the
number of tape decks required; one such prob
lem may be sufficient under normal conditions
on many Atlas installations.

The object of the scheduler is to maintain
a supply of problems to the Execute List and
to arrange as far as possible that a vacancy on
the Execute List can be filled immediately by
a problem already assembled in the input well
in main store. The scheduler will therefore be
activated whenever a vacancy appears on the
Execute List, through termination of a prob
lem, and whenever input of a job through the
input peripheral equipments is complete. Since
no peripheral limited problem (i.e. problems
which are entered to the Execute List in order
to supply output to the peripherals) will be
executed once the output well is full, and while
the peripheral equipments are emptying it, the
scheduler is also activated whenever the level
of available output for any peripheral which is

62 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

in use reaches a lower limit. Problems are then
executed in series until the output well is filled,
and then a vacancy is left on the Execute List.
By this means, frequent interruption of a long
computer-linlited job by short output-limited
jobs is avoided; the latter are run in bursts,
during which the computer limited job becomes
inactive, and between these "bursts" the com
puter limited job is free of interruption. Fol
lowing sections will describe in more detail the
types of jobs handled by the scheduler, and it
will be found that the simple description so far
given of the necessary entries in the Execute
List is capable of extension to embrace all jobs
which occur in practice.

STREAMS

Having stated the general aims and method
of the scheduler there remains the practical
problem of how this program selects the right
type of job from those available and assembling
it for execution. The major difficulties con
nected with selecting jobs of the right type
from a single long list of jobs are the time
required for searching and the possibility that
some job may be permanently overlooked since
it never fits into the desired category. A simple
solution to these difficulties is obtained by sort
ing jobs into streams as they enter the com
puter. For scheduling purposes there is need
for a computer and a tape stream and for vari
ous peripheral streams. The tape and periph
eral streams supply jobs which will maintain
steady use of the tape decks and peripheral
devices whilst computer stream jobs keep the
central computing unit active.

There are several factors which influence the
types of jobs which enter the various streams;
these are now listed and their effects on the
composition of the streams discussed.

1. The most obvious way of classifying jobs
into streams is according to whether they
are computer, tape or peripheral limited.

2. With short jobs where execution time is
less than some specified time (say five
minutes) there is a strong possibility that
estimates for the w~e of peripherals, tapes
and the central computing unit are in
accurate. This is particularly b'ue of
"common" jobs which contain no job
description of their O"\VTI but use the
standard Atlas one.

3. If long and short jobs occur in the one
stream, there is the possibility that a
large number of short jobs may accumu
late during the execution of a long job
and this is undesirable.

4. Since a job's output may occur in uneven
bursts, a long job, even if it is peripheral
limited, cannot be relied upon to maintain
steady use of the peripherals.

5. For reasons already mentioned peripheral
stream jobs are to be executed in series
and hence they must be short in order to
ensure that all the peripherals are regu
larly supplied with output ..

6. Since there are only a finite number of
tape decks there is need for a tape alloca
tion routine which governs the allocation
of tape decks; this is most easily imple
mented if all jobs which require tape
decks fall into only one or two streams.

Taking all these factors into account, a rea
sonable solution as to the composition of the
stream lists, which fits in with the rest of the
scheduling system, appears to be:

1. All short jobs which do not use tapes are
allocated to the stream belonging to the
peripheral which they use most.

2. All short jobs which use tapes and all
long jobs where tape time exceeds their
computing time are allocated to the tape
stream.

3. Remaining jobs, that is all long jobs
which are not tape limited, are allocated
to the computer stream.

Jobs are sorted into their streams as they
enter the computer according to the informa
tion given in the job description. When a par
ticular type of job is required on the Execute
List, the appropriate stream is consulted and
the first job chosen; by this means the search
time is reduced to a minimum and there is no
possibility of any jobs being overlooked. When
a computer or tape job leaves the Execute List
it is replaced by a job from the computer or
tape stream. When a peripheral job ends and
there is a peripheral whose backlog is below a
certain desired level or when there is noperiph
eral job on the Execute List and the output
backlog on any peripheral falls below an emer
gency low level, then a job from the relevant
peripheral stream is entered on the Execute
List. Also, every time a new job joins a stream

EXPERIENCE WITH THE ATLAS SCHEDULING SYSTEM 63

queue and becomes available for execution the
scheduler is consulted to see if this job is
wanted on the Execute List. Once the tapes for
a short tape job have been mounted, and it is
not entered in the Execute List as a tape job,
then it may be treated as a peripheral job and
selected for execution on this basis; this affords
a means whereby short tape jobs may by-pass
long tape jobs. Some peripheral stream jobs
may be willing to have their results output on
anyone of a number of peripherals and jobs in
this category are queued in an "any" stream.
In this case the scheduler outputs the results
on the peripheral which is being used the least,
thus helping to spread the output load evenly
over as many peripherals as possible.

Since the stream queues must contain entries
for every complete job in the computer they
may become very long. It is essential therefore
that entries in these lists be as short as possible
to permit efficient scanning by the scheduler
and tape and space allocation routines without
excessive use of central computer time, core
store and transfers to and from the drum. The
simple method of choosing jobs in order from
the stream queues for the Execute List makes it
possible to implement the system if each entry
only contains a condensed form of the job title,
some reference position of the job on tape, and
a link with the next job in the stream.How
ever, jobs have to pass through an assembly
stage (see next section) before entry to the
Execute List and it is convenient if there is
sufficient information (i.e. number of tape decks
and system tapes required) in the stream queue
to tell whether it is possible to go ahead and
prepare the job. Also, in certain special cir
cumstances it may be necessary to execute jobs
out of their natural stream order. For these
reasons approximate estimates of execution
time, amount and type of output and space
requiremenb!7 the type of compiler to be used
and any external priority of the jobs are kept.
This information is also valuable to the rou
tines which govern the allocation of tape decks
and space. The whole of this information is
kept in 120 bits, which means that a single
block of store (512 words) is sufficient to list
over two hundred jobs which may be present
in the computer at anyone time. Precise in
formation (names of tapes and system docu
ments, location in store and on tape of each

document, etc.) necessary for the assembly and
preparation of jobs is contained in an "inter
nal" job description, which is formed at input
time from the programmer's job description
and is recorded in an input stream as a sepa
rate document belonging to this job.

The question arises as to the action taken
when a peripheral or tape becomes free and
there are no jobs awaiting execution in that
particular stream. Under the present stream
structure it is possible that there are jobs in
other streams which may make a great deal of
use of this peripheral or tape deck; this is the
case, for instance, with long peripheral limited
jobs which have been placed in the computer
stream. When a stream becomes empty it there
fore appears worthwhile to search and see if
there are jobs in other streams which could
profitably be transferred to the empty stream.
However, the fact that the stream is empty
means that this peripheral is not likely to be
in great demand in the near future and hence
there is no point in transferring jobs, which
make little use of the free peripheral, to the
empty stream; in fact doing this could lead to
inefficient operation. In order to ensure enough
work for the central processor there should
always be at least two jobs on the Execute List,
even if it means taking jobs from the same
stream.

ASSEMBLY OF JOBS

The computing speed of Atlas is such that
small problems may be expected to occupy the
central computer for only a few seconds during
their execution. It is therefore essential that
an entry in the Execute List should be able to
be replaced rapidly by the next problem selected
by the scheduler, and one of the tasks of the
scheduler is to assemble problems in advance
so that compiling and execution may begin im
:mediately and are not subject to delays. The
scheduler in fact selects in advance problems
which are to be assembled, deals with any long
term preparations and then transfers these
from the list of available jobs to an Active List,
which comprises jobs in the course of assembly
prior to execution. Normally computer and tape
jobs are not entered on the Active List till the
previous computer and tape jobs are finished;
since these jobs are long it is difficult to predict
when the previous job is likely to finish and a

64 PROCEEDINGS-SPRING JOINT COMPUTE~ CONFERENCE, 1963

short delay between the running of these jobs
can be tolerated. Peripheral jobs are entered
on the Active List when they are likely to be
selected for execution, and where possible a
certain minimum of jobs are kept on the list to
ensure a ready supply of prepared jobs for the
Execute List. When a problem is required for
execution, only those problems on the Active
List whose assembly is complete are considered,
with the exception of when the central com
puter can only be used to start execution of a
partially assembled problem.

Assembly of a problem involves collecting all
the information required to run a problem so
that it is available to the central computer with
the minimum possible delay when the problem
is entered to the Execute List. A completely
assembled problem on the Active List has the
relevant input information in the input well in
the combined core and drum store, the required
compiler or input routine in the drum store, and
any private magnetic tapes mounted and their
titles checked. The process of assembly may
therefore consist of reading input information
from the system input tape, reading documents
previously recorded on previous system tapes
("document" tapes), reading a compiler into
store where necessary, instructing the operator
to mount magnetic tapes, and verifying the
titles of all such tapes. The system may be
easily extended to permit "on-line" use of other
peripheral equipments which would be treated
as being in the same class as magnetic tapes
and prepared for use in a similar manner.

It is essential to observe that assembly of a
problenl Inay extend over a long period of tilne,
although, of course, the central computer is only
occupied for a small proportion of the time.
Collection of a document from the system input
tape may not be completed until a full "swing"
of this tape has elapsed, a time interval, in the
worst case, of around 16 seconds. Since the
same tape is used to both write blocks received
from input peripheral devices and read back
previously written blocks to recover documents
as they are required, the tape performs a
"sv/ing" action in which frequent scans are
made over a few feet of tape, although it will
gradually progress forwards. Collection of
documents from other system tapes may require
scanning over long sections of tape, and a delay
of up to 5 minutes may be experienced even

when the correct tape is already mounted. The
mounting of magnetic tapes by the operator
may be expected to occupy a variable length of
time, but one which is necessarily long con
sidering the speed of the central computer.
The logic of the scheduler and the assembly
routine takes into account these wide variations
in assembly times, and attempts to minimize
the effect of delay in any branch of the system
on the other branches of the system which can
operate concurrently.

The process of assembly is divided into two
main phases. The first phase deals with long
term assembly of magnetic tapes, documents
from system tapes other than the system input
tape, and compilers. Not until this phase is
completed is a job made available to the sched
uler for inclusion on the Active List, and not
until called for by the scheduler is the assembly
of any documents from the system input tape
initiated. The space and tape allocation rou
tines, to be described later, scan the complete
job list and initiate the first assembly phase
for jobs near the head of the stream queue.
As tape mechanisms become available, the op
erator is instructed to mount private tapes and/
or system tapes; the required documents are
read from system tapes into main store and
from there may be temporarily recorded on the
system dump tape. The space allocation routine
makes main store available for compilers,
which, if they are not already in main store,
are read as required from a system library tape.
As this stage of assembly of each problem is
completed, the scheduler is activated, and
should the problenl be required on the Active
List, any relevant documents are collected from
the system input tape. The problem is, in fact,
entered to the Active List, and is scanned by
the routine controlling the system input tape;
this routine collects documents required by any
job on the Active List as the system input tape
moves forward to the writing position, and
hence can assemble several problems during
one "swing" of the system input tape. The
location of documents is obtained from the in
ternal job description ·which, if necessary, is
read in from the system input tape on the back
ward swing. It should be noted that any or all
of the phases of assembly are omitted where
they are not required. Frequently a problem
wHl require only information recently input

EXPERIENCE WITH THE ATLAS SCHEDULING SYSTEM 65

through the input peripherals and will require
a compiler already present in main store, in
which case the first assembly phase is omitted.
If demands on store are not heavy, the problem
may also be already in main store, in addition
to being recorded on the system input tape, and
in this case, assembly is virtually instantaneous.

INTERACTION WITH OPERATORS

The scheduler can be independent of any
operator scheduling but there does exist a two
way communication system between the opera
tor and scheduler. When the scheduler requires
action by the operator, such ~s the mounting
of magnetic tapes, an explicit command is
printed out to the operator. Because of the
comparative slowness of operator action, re
quests to the operator are given, where possible,
well in advance of when the action is needed.
In fact, it is advisable that jobs which require
some operator action should be fully prepared
before entering the execution phase, otherwise
inefficiencies resulting from a prolonged delay
in operator action can be serious.

It is possible for the operator to convey in
formation to the scheduler and an example of
this is the allocation of an external job priority.
From the scheduler's viewpoint external pri
orities given to a job through the operator at
the user's request are necessary to satisfy the
user, but may lead to gross inefficiencies in
computer operation. The need to obtain the
operator's approval before allocating a job
special priority affords some protection, but it
should be recognized that external priorities
impinge on the scheduling system and deter
mine independently what is to happen. Of
course, the change of state in the computer
brought about by the allocation of an external
priority is taken into account by the scheduler
when determining the best course of action in
the future. Also, the framework of routines set
up to implement external priorities may be
used by the scheduler to achieve its own ends.

The normal scheduling system on Atlas is
based almost solely on efficiency considerations
and allocation of an external priority to a job
by the operator affords the means whereby the
individual user's requirements may be satisfied.
There appears to be a need to allow four pri
orities, top, high, normal and low, with the
following functions:

1. Top priority: the specified job is executed
and the results output as soon as possible,
regardless of the state of the computer,
or what other jobs are awaiting execution.

2. High priority: the specified job jumps to
the head of its stream queue.

3. Normal priority: the specified job is given
the priority and treatment described in
previous sections.

4. Low priority: the specified job is treated
as normal until it reaches the execution
list when it remains at the bottom of the
list.

TAPE ALLOCATION ROUTINE

The Atlas operating system normally re
quires three tape decks for its own use, viz:
input tape, output tape and dump tape; this
means that three decks are occupied perma
nently by the supervisor, though the system is
flexible enough to operate with fewer decks
when absolutely necessary. When only two
decks are available the input and output tapes
are combined on one tape. Both tapes are nor
mally used in a similar fashion, and the cost
of combining them into one is a reduction in
the effective size of input and output wells on
tape. If only one deck is available this must be
used by the dump tape which acts as an exten
sion of main store. The operating system still
functions when no decks are available, but only
as efficiently as circumstances will allow, and
care must be taken that input and output wells
are not allowed to occupy all the free space in
main store. If a computer installation has a
large number of decks then it may be worth
while for the operating system to use more than
three decks; for instance, it would be valuable
to have one deck permanently loaded with the
library tape and another with a separate dump
tape to record error monitor dumps of object
nroO'r!=lm~ r--o--............... ·

Part of the information which accompanies
each job into the computer is a list of the tapes
required and any documents which have to be
obtained from system tapes. Thus, before a
job commences execution the number of decks
it requires and the names of the tapes to be
mounted are known; this information is valua
ble for scheduling purposes and the assembly
of jobs prior to execution. However, in certain
cases tapes are only required during part of

66 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

their total time of execution and thus tape decks
can be called for or made free during the course
of a job's execution; one common example is
the use of tapes as temporary working space
during compilation.

It is the job of the tape allocation routine to
allot tapes to the various sources which require
them in such a way that the scheduler can main
tain efficient operation of the computer. There
is clearly strong inter-action between the sched
uler and tape allocation routine, the behaviour
of one affecting the decisions of the other. The
normal order of priority for allocating tape
decks is as follows:

1. Supervisor system tapes.
2. Jobs or compilers which call for tapes

during execution.
3. Jobs called to enter the execution list and

requiring either private tapes or docu
ments from system tapes.

4. Jobs near the head of their stream queues
which require private tapes or documents
from system tapes.

Since jobs have not direct access to system
tapes and it is the supervisor's job to collect
documents from these tapes, they can be dis
mounted as soon as the relevant documents are
read into main store. However, there is no
point in dismounting a system tape if the deck
is not required, and if the deck is required it
is worthwhile before dismounting the tape to
read off any other documents which are likely
to be called for in the near future. Exactly how
many documents should be read into main store
depends on the size of the documents, the state
of the dump tape and the present demand on
tape decks. If the space occupied by documents
which are read into main store before they are
called for is wanted, then the documents are
recorded on the dump tape. It should be noted
that apart from this reason the dump tape is
used to record error monitor dumps, suspended
programs and overflow from'main store, which
could include such items as jobs in process of
execution and documents or output which lie
outside the scannable region of the output tape.

SPACE ALLOCATION ROUTINE

Every block of main store space in Atlas is
a member of a group, depending ori its owner,
and there are six main groups of owners; these
are:

a) Free space
b) Input and Output wells
c) Jobs that are being prepared for execu-

tion
d) Jobs being executed
e) Compilers
f) The supervisor

The basis of the space allocation routine is
that a hierarchy is formed of all these owners
and also of all requests for space, and no re
quest is allowed to take space from an owner
of higher priority. The ratings of each member
of this hierarchy are essentially dynamic, de
pending on the state of the machine at the time.

There is an area of space in the machine
which is readily available to any request, this
consists of all free space and all blocks in input
and output wells which have been duplicated
on magnetic tape, copies of which have been
kept in main store. The number of these avail
able blocks is known at any time. Essentially,
a request can only take space from this group,
and if there is not sufficient space, then routines
are activated which begin to free blocks of a
lower priority than the request. When this
happens, the request is put into the space re
quest queue, and each time a block is freed, the
top element in the queue is checked to see if
there are enough blocks for it. In certain cases
the request is not queued but the space alloca
tion routine returns to the routine which made
the request with the information that the re
quest has been refused, thus allowing the rou
tine to take alternative action. For instance,
the scheduler may ask for space to enter a
peripheral job in the Execute List; if insuffi
cient space is available, it may be possible for
another smaller job on the Active List to fit
into the space available. Certain other requests
are allowed to by-pass this main queue, these
are the types of requests which asked for single
blocks at relatively infrequent intervals, and,
if the request is not granted, some part of the
computing system would be halted, e.g. if a
request for input well space is not granted,
then a peripheral may be halted.

The ordering of the space l'equest queue is
important because low priority requests for a
large amount of space should not be allowed
to block small, relatively high priority requests.
Of course, care must be taken that a request
is not always by-passed, and if it has been in

EXPERIENCE WITH THE ATLAS SCHEDULING SYSTEM 67

the queue for more than a certain length of
time it is allowed to begin to reserve space.
Also, the priority of most requests will be pro
portiona.1 to the length of time that they have
been in the queue.

There are two types of information in main
store, the first is information which has no
copy on magnetic tape, i.e. programs being
executed. In order to free this type of space
it is necessary to dump the information on the
dump tape. This can take a long time and
owners in this class have a fairly high rating.
However, the second class is information which
is duplicated on magnetic tape, i.e. compilers;
this information can be lost immediately.

It is a complicated task to keep track of the
information in the store and on the dump tape,
but a directory system has been devised which
makes it possible to overwrite peripheral stream
information in units of one block. However,
for other information it is necessary to dump
or overwrite it in reasonably sized sections, i.e.
even if only a few blocks are needed an entire
document might be overwritten.

The actual routines which do this work are
in two sections. One section is in the fixed
store, and this is sufficient to take care of most
requests for space. The other section is in the
main store and this contains the longer rou
tines which deal with dumping and retrieving
information. These space allocation routines,
and in fact the whole supervisor, have been
written in such a manner that it is possible to
overwrite the major part of the main store

routine, leaving virtually the entire store avail
able to the user.

CONCLUSION

It must be emphasised that the system out
lined above is suitable for any type of Atlas
installation and is independent of the configura
tion of peripherals, core store and drum store,
apart, of course, from changes in essential
parameters at different installations. However,
the scheduling system has been designed in two
parts. Routines called into action most fre
quently are held in the fixed store, and these
will be the same on all installations. They are
called into action and effectively controlled by
routines in the core and drum store and by
parameters in the subsidiary working store,
which can· be changed in the light of experi
ence, and to meet any particular requirements.

REFERENCES

1. KILBURN, T., HOWARTH, D. J., PAYNE, R. B.
and SUMNER, F. H. (1961) "The Manchester
University Atlas Operating System, Part I:
Internal Organisation," The Computer
Journal, Vol. 4, p. 222.

2. HOWARTH, D. J., PAYNE, R. B. and SUMNER,
F. H. (1961) "The Manchester University
Atlas Operating System, Part II: User's
Description," The Computer Journal, Vol.
4, p. 226.

3. KILBURN, T., PAYNE, R. B. and HOWARTH,
D. J. "The Atlas Supervisor," Proc. E.J.C.C.,
Dec. 1961.

DYSAC: A DIGITALLY SIMULATED ANALOG COMPUTER

J. R. Hurley
Senior Engineering Analyst

Allis-Chalmers Mfg. Co.
Milwaukee, Wisconsin

SUMMARY

A digital computer program which simulates
a large electronic analog computer has been
written for the CDC 1604 digital computer. In
addition to providing many non-linear comput
ing elements rarely found in electronic analog
computers, the program accepts the input data
in a form which may be written down directly
from a block diagram or analog computer wir
ing diagram. Graphical output in the form of
plotted curves is available by use of a digital
plotter. The simplicity of the input language
permits the program to be used easily by per
sons having no digital computer experience.
This digital computer program, called DYSAC,
an acronym for DigitallY Simulated Analog
Computer, is, in reality, a complete program
ming system, and as with FORTRAN, has a
special language to facilitate its use.

Introduction
A large class of engineering problems in

volving the dynamics of systems is far more
easily attacked by simulating the physical sys
tem on an analog computer, than by numerical
integration of a set of differential equations.
The factor which favors the analog machine
is that it consists of separate components each
performing some particular mathematical func
tion continuously in time. This continuity of
operation permits basic analog components to
be arranged in groups which simulate complex
systems by individually simulating portions of
the physical system. Thus a minimum of effort
is required for set-up and a physical significance

and

69

J. J. Skiles
Professor of Elec. Engr.
University of Wisconsin

Madison, Wisconsin

may be attached to the signals at various points
in the simulation.

The convenience of analog methods has
prompted the development of digital computer
programs which simulate the operation of ana
log computers yet retain the accuracy of digital
devices. Selfridge1 has done some of the basic
work in this area. His original approach has
been extended by Lesh and Curl into the DEPI2
program. The existing simulator programs vary
considerably in the degree which the input
language is related to an analog computer. For
example, considerable additional digital coding
must be done by the user of DIDAS3 to set up a
problem. On the other hand, Stein, Rose, and
Parker4 have devised a digital compiler for the
IBM 704 which employs FORTRAN as an inter
mediate in the compilation. It accepts an input
language tailored expressly for the Electronics
Associates PACE analog computer.

The DYSAC program to be described here,
was written by the first-named author for the
Control Data Corporation 1604 computer, * and
was designed with particular emphasis on the
simplicity and clarity of the input language.

Description of the DYSAC Program

The DYSAC program has been written so
that, from the user's viewpoint, there are sup
plies of analog computer components available

* The University of Wisconsin's CDC 1604 is a high
speed, 32K core machine with four magnetic tape units.
Typical speeds are 7.2 microseconds for add, 36 micro
seconds for floating multiply. The 1604 uses a 48 hit
word length with 2 instructions per word.

70 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

which may be interconnected according to direc
tions supplied by the user. The 1154 components
available include integrators, summers, limiters,
square root generators, sine and cosine genera
tors, natural logarithm and exponential gener
ators, arbitrary (tabular) function generators
of single variables, transport delay units, di
viders, and relays as listed in Table I. Multipli
cation is performed as an auxiliary operation by
the integrators and adders.

The input data to describe a problem to the
DYSAC program includes the specification of
the inputs to each DYSAC analog computing
component and is called the patching. (This
corresponds to physically patching the com
ponents of an analog computer.)

The "patching" iniormation, the nunlerical
data for the problem, and certain auxiliary data
are used by the DYSAC program to obtain a
numerical solution to the problem.

The numerical methods that are used in the
DYSAC program for digital simulation differ
from those inherent in analog computation with
conventional analog computers in several im
portant ways. In conventional analog compu
ters the outputs of all computing components
are calculated simultaneously and continuously
in time. In a DYSAC simulation, the outputs
of all analog components are calculated for
discrete increments in the value of the independ-

ent variable (usually time.) For each Incre
ment in the independent variable, new outputs
for each DYSAC component are calculated in
sequence in the order specified in Table I; after
new outputs for all components have been calcu
lated (this constitutes an iteration), the inde
pendent variable is incremented and the process
repeated iteratively until the program reaches
a predetermined stopping point.

The DYSAC Input Language

The input data required to describe a simula
tion have been grouped into seven sections, as
given in Table II.

Of the seven data sections required for a
problem 1 five are straight-forward and their
purpose fairly obvious. All sections of the data
are presented on standard IBM cards. The title
and headings are merely alphanumeric data
used to identify problems and output values.
The potentiometer settings, initial values on
integrators, and arbitrary tabular functions
comprise the numerical data.

Section 7, supplementary machine language
instructions, is not generally used, but provides
a method of introducing a sequence of computer
operations at the basic machine language level.
This sequence is executed once each time the
main program does one iteration.

TABLE I

DYSAC CO~'IPO~E~TS

Components Serial Numbers Quantity

Integrators XOI to X99 99
Adders AOI to A99 99
Limiters LOI to L50 50
Sq. Root Generators QOl to Q50 50
Sine Generators SOl to S50 50
Cosine Generators COl to C50 50
Log. Generators GOI to G50 50
Exp. Generators XOI to X50 50
Function Generators FOI to F50 50
Time Delay Units TOI to T12 12
Dividers DOl to D99 99
Relays ROI to R99 99
Potentiometers POI to P99 99

" HOI to H99 99
" J01 to J99 99
" KOI to K99 99

DYSAC: A DIGITALLY SIMULATED ANALOG COMPUTER 71

TABLE II:
DYSAC INPUT
DATA SECTIONS

1. Problem title.

2. Patching. Descrip
tion of connections
between compo
nents.

3. Initial values for
integra tors.

4. Potentiometer set
tings.

5. Function tables.

6. Headings.

7. Supplementary
machine language
instructions.

Section 2, patching, describes the intercon
nections between the hypothetical analog com
puting elements available in DYSAC. This de
scription is formulated by giving the inputs
to each component used. The components are
described in the order given in Table 1. The
serial numbers shown in this table are used in
the descriptions. The method can be best ex
plained by illustration. The "patching" for in
tegrator N01 could be:

NOl == AOlA02 + A03.

This is read, "the input to integrator NOl is
(the output of adder A01 times the output of
adder A02) plus (the output of adder A03) ".
Note that multiplication is performed at the
input to the integrators. The patching structure
for adders is identical. The equal and plus
signs used in the patching have no operational

TABLE III:
CONTROL OPTIONS

TITLE
RETAIN TITLE
PATCHING
RETAIN

PATCHING

INITIAL VALUES
CLEAR INITIAL

VALUES
RETAIN INTEGRA

TOR VALUES
POT SETTINGS
RETAIN POT

SETTINGS
FUNCTION

TABLES
RETAIN FUNC

TION TABLES
HEADINGS
RETAIN

HEADINGS
MACHINE

LANGUAGE
INSTRUCTIONS

NO MACHINE
LANGUAGE

RETAIN MACHINE
LANGUAGE

significance, they serve merely as punctuation.
If the input of NOl was to be the product of the
outputs of AOl and A02 minus the output of
A03, the standard plus sign must still be used in
the patching and thus the patching would be
written:

NOl = AOlA02 + A03P05.

~lhere P05 is a po·tentiometer set to a value of
-1. Another important point is illustrated in
this patching example. Pots are not considered
as computational units with inputs and outputs,
but are merely constants and can be used as
reference values or in conjunction with multi
plication as coefficients for variables. There is
no limit on the number of terms which may be
summed at the input of an adder or an integra
tor, but the number of factors in each term of
the sum is restricted to 20 or less. DYSAC

72 PROCEEDING8-SPRING JOINT COMPUTER CONFERENCE, 1963

adders and integrators do not cause an alge
braic sign reversal as do their usual electronic
analog counterparts.

The patching for other components is fixed in
form. For example, a time delay unit accepts
only two input signals, one providing the signal
to be delayed and the other the amount of the
delay:

TOl = N02A21.

Here the output of time delay generator T01
is the output of integrator N02 delayed by the
amount given by the output of adder A21.

Operation of the DYSAC Program

The major part of the DYSAC program in
volves dissecting the alphanumeric input data
and converting it into the proper machine lan
guage instructions. Since operations of this
type are not generally feasible with the FOR
TRAN compiler available for the CDC 1604, the
DYSAC program was written in symbolic ma
chine language. In its present state, DYSAC
operates as an interpretive program, that is,
during each iteration in the numerical solution
the interconnections between simulated analog
computing elements are scanned by the pro
gram to determine the proper calculation se
quencing. After the data describing the analog
configuration of a problem is read by DYSAC,
one initializing pass is made upon the patching
information in order to reduce it to a sequence
of memory location addresses. This sequence
can be very efficiently and rapidly "interpreted"
repetitively by DYSAC, thus the low net com
puting speed usually associated with an in
terpretive routine is greatly increased without
sacrificing the inherent flexibility of the in
terpreter.

All the 'DYSAC components of a given type
are "serviced" in order, starting with the
adders and progressing to the relays according
to the order in Table 1. Machine language in
structions, if present, are processed next. The
integrators are then processed and the sequence
continues again with the adders, etc. The pro
gram is divided up into sub-sections which each
process a particular type of component. During
the development of the numerical results of a
simulation problem, the mathematical opera
tions implied by the patching description for
each component must be performed at each
iteration. In order to save computing time dur-

ing this interpretive iterative solution, the en
tire patching sequence is translated once by the
DYSAC program into a more easily used form
before the numerical solution starts. The se
quence of serial numbers and punctuation
marks is translated into a sequence of numbers
by replacing each alphanumeric serial number
with the address of the memory location in
which the output of that component is stored.
Certain numerical codes which can not be con
fused with permissible component output ad
dresses are used to replace the plus signs and
periods which occur in the patching. Serial
numbers appearing to the left of an equal sign
as well as the equal signs themselves, are de
leted from the translated patching sequence.
However, a count is made of the total number
of each type of component defined in the patch
ing. Then, since all the components were de
scribed in order, there can be no ambiguity con
cerning which component is described by any
portion of the sequence of translated patching.

The translated patching sequence is used by
the interpreter at each iteration during the
numerical solution. The operation of the pro
gram can be shown, in principle, by considering
the processing of the hypothetical dividers. The
dividers follow the time delay units in the proc
essing sequence. Patching for dividers is fixed
in format. For example:

DOl = N01A02.

Here the output of divider DOl is to be the
output of integrator N01 divided by the output
from adder A02. After patching translation,
numbers equal to memory addresses of the
quantities which are to be the numerator and
denominator occupy consecutive locations in the
translated patching sequence. These addresses
are taken from a patching table and inserted
into "load accumulator" and "floating divide"
instructions when the divider DOl is to be proc
essed. These two instructions are then executed
and are followed by an instruction which stores
the result in the memory location allocated to
DOL The program then counts having processed
a divider, checks to determine if there are any
more dividers in the simulation, and on this
basis either proceeds to the portion of DYSAC
which processes the next type of component
(relays) or continues processing dividers. This
is done by increasing the address of the "store
output of DOl" instruction so the next time it

DYSAC: A DIGITALLY SIMULATED ANALOG COMPUTER 73

functions, it will store the result in the location
corresponding to D02. Then the index which is
used as a tally to count through the translated
patching is increased by 3 (translating the
patching for a divider results in 3 consecutive
words, a numerator address, denominator ad
dress, and a period symbol) and the process is
repeated by inserting addresses taken from
the patching sequence into "load accumulator"
and "floating divide" instructions.

The processing of other components makes
similar use of instruction skeletons as outlined
for the divider processing.

The sine, cosine, logarithm, exponential, and
square root functions are computed with the
usual rational approximation subroutines and
provide approximately 10 place accuracy.

Special Features

The time delay units produce true transport
delays. The delay time can be a continuously
variable quantity generated by some other com
ponent in the simulation. (This method of de
lay realization is far superior to DYSAC simu
lation of usual analog computer techniques such
as the use of a Pade approximation, although
such delay simulations are straight forward
with DYSAC, if desired.)

The arbitrary function generators operate
with tables which contain pairs of coordinates
of points of the function. An extra degree of
flexibility is provided by a feature which en
ables the function generators to operate with
any of three methods of interpolation. The
methods available are "1 point" or "boxcar",
2 point or linear, and 3 point or parabolic.
Figure 1 illustrates these interpolation methods.

The relays operate when the output of a speci
fied component exceeds that of a second speci
fied component. When the relay operates, it will
set the output of a particular pot or integrator
equal to the current output of still another
component. An example of relay patching is:

ROI = AOlA02P08P09.

Relay ROI will set pot P09 equal in value to
pot P08 when the output of adder AOI exceeds
that of A02. Electronic analog computer relays
are usually used to alter the connections be
tween analog computing components. Even
though DYSAC relays operate considerably
differently than their electronic analog compu-

I POINT----
2POINT---
3POINT-

Figure 1. Function generator interpolation methods.

ter counterparts, they may be made to perform
the same function by setting a coefficient pot
to zero to "open" a circuit or by changing a
zero pot to some non-zero value to "close" a
circuit.

Four of the potentiometers (POI to P04)
have special functions during the solution of
a problem. Pot POI is automatically increased
during the solution so that it always contains
the current value of time (independent vari
able). P02 contains the value of the time in
crement used in the numerical integration algo
rithm. P03 contains the time value at which
the solution is terminated. P04 determines the
number of iterations performed between points
at which the output of specified components are
listed. All four of the special pots are subject
to alteration by relays during the course of the
solution.

When a series of problems is run, it often
happens that only a few parameters are
changed from the preceding proble:m. In order
to save card punching effort it is possible to
retain any of the main data sections (as given
in Table II) from the previous problem. These
possible variations in the operation of the pro
gram are regulated by 7 control cards, one pre
ceding each of the 7 main data sections. Table
III lists the various options available for the
control cards.

The provision for inclusion of machine lan
guage level instructions as part of a problem

74 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

may seem to be strange since the purpose of
DYSAC is presumably to avoid having to pro
gram in machine language. Actually this op
tion was provided originally as a "last resort"
method for implementing calculations and
special function generation impossible with the
normal DYSAC components; however, it has
proven valuable for making experimental
changes and modifications in the DYSAC pro
gram itself. This option is also quite convenient
in the simulation of sampled-data systems
where the discrete and digital functions may be
realized directly by the proper machine lan
guage instructions, as is illustrated later in
Example 3.

Magnitude and time scaling which are often
bothersome necessities of electronic analog
problem preparation are, for all practical pur
poses, not required when using the DYSAC
simulator. Floating point arithmetic is used
throughout, which provides a 36 bit fraction, a
ten bit exponent, and a sign bit for each num
ber (48 bit wordlength). Thus a number range
from 10-308 to 10308 is covered and about 11
decimal places of significance is provided.

Generation of Special Functions

The DYSAC integrators and adders do not
duplicate their analog counterparts in all
respects. In particular, nothing in DYSAC
corresponds to the summing junction of a con
ventional operational amplifier. Thus DYSAC
cannot duplicate directly some of the standard
analog computer techniques for realizing special
transfer functions such as the appropriate con
nection of series or parallel combinations of
capacitors, resistors, diodes, etc., to the sum
ming junction. However, such transfer func
tions can usually be generated easily in other
ways by a suitable combination of DYSAC
components.

Some simulations may call for functions that
are inconvenient, or impossible, to implement
with available DYSAC components. Three
alternatives are available:

1. Rewrite DYSAC to include the new func
tion generator as an additional component
every time the need for a new function arises.
This procedure would require the services of a
skilled CDC 1604 programmer, familiar with
the DYSAC program, to alter extensively the
basic structure of the patchword conversion

routines, and would necessitate a reassembly of
the program after every modification. This pro
cedure has not been used.

2. A simple nlachine language program using
octal addresses and instructions can be written
to realize the desired function. This program
is then punched on IBM cards as supplemental
machine language instructions and read into
the 1604 with the patching and data cards for
the problem. Differentiation, using the funda
mental relation,

dx xCt) - xCt - t1t)
dt - t1t

implemented in this manner requires the execu
tion of 10 1604 instructions. A more accurate
differentiation algorithm obviously can be im
plemented in this manner, if desired. (A differ
entiator can also be constructed to realize dx / dt
by using a time delay unit to generate x (t-Dt) ,
a divider, and relays to set up initial conditions.
However, the octal machine language differen
tiator program is executed considerably faster
than the processing time for the differentiator
constructed by patching the DYSAC com
ponents.) Octal machine language is the most
commonly used and least costly method of gen
erating special functions.

3._Use a previously written symbolic lan
guage program generating the required func
tion. The original symbolic language DYSAC
program is then reassembled with any new
function programs as subroutines. From the
new assembly, the octal addresses of these ad
ditional subroutines are noted for reference.
If one of these special functions is required it
is only necessary to use a few octal machine
language instructions to enter and exit from
the subroutine. This procedure does not require
a time-consuming and costly modification of
the DYSAC program logic; however, reassem
bly of the DYSAC symbolic program is neces
sary at a cost of approximately 3 minutes of
1604 time whenever new functions are added.
These new functions then become permanent
additions to DYSAC. (The additional circular
functions of tangent, arctangent, arcsine and
arccosine have been added to the original
DYSAC program to facilitate coordinate con
versions required in the solution of such prob
lems as aircraft and missile dynamics.)

DYSAC: A DIGITALLY SIMULATED ANALOG COMPUTER 75

Accuracy Considerations

The operation of the simulator program is
centered around the fourth order Runge-Kutta
method of numerical integration. The choice of
integration algorithm is necessarily a compro
mise between the desirable but conflicting re
quirements of accuracy, minimum computer
running time, ease of starting a solution, and
the ease with which the increment in inde
pendent variable may be changed during the
~olution. Although in comparison with Runge
Kutta methods, algorithms like the Adams
Moulton and other predictor techniques permit
the use of larger increments in the independent
variable 6 t as well as simplify error estimation
during solution, a fourth-order Runge-Kutta
method has been used in DYSAC primarily be
cause of the ease both in starting solutions and
in making changes in independent variable in
crement during solutions.

The value of 6 t must be sufficiently small
that the Runge-Kutta process not only is stable,
but gives acceptable accuracy. In general, the
smaller the time increment, the greater the ac
curacy, but also the more computer time re
quired. Cumulative round-"off error due to very
small increments is in general not a problem
since the floating point number system used by
the 1604 provides about 11 decimal places of

,significance. If the time increment is too large,
the numerical integration method becomes un
stable and solutions "blow up".

A certain amount of experimentation with
the value of 6t is often necessary when begin
ning unfamiliar simulations. As in selecting the
time scale in conventional analog computer
studies, prior knowledge of the approximate
system natural frequencies and loop gains can
be extremely useful in selecting a trial value of
6t.

The mathematical literature contains methods
for annroximatinQ" the error in the lise of
sever~l-integratio; algorithms, and suggestions
for automatically changing the increment in
independent variable to keep the error during
each step within prescribed bounds. However,
selecting a suitable error tolerance can be quite
difficult, particularly for simulations involving
many variables, since during portions of a solu
tion relatively small errors may propagate to
produce significant errors at later stages of the
solution. Conversely, relatively large errors in

some variables during certain portions of the
solution may be inconsequential in their later
effect on the solution. Different methods of
numerical integration and possible ways for the
DYSAG program to automatically adjust 6t
during solution to improve accuracy and mini
mize computer time are the subject of current
study.

D YSAC Outputs

The output from a DYSAC digital simulation
is: a) a printed tabular listing with seven out
put variables listed per page, 50 values per
variable per page, with a maximum of 56 out
put variables, but with the number of output
values for the variables limited only by number
of iterations necessary to obtain the solution
to the problem; b) graphical plots of the output
variables cross plotted in any desired manner
obtained by use of a digital plotter and auxiliary
plotter programs.

Two output tapes are written by the 1604
during every DYSAC solution of one or a series
of problems. A binary output tape contains only
the raw numerical output quantities, with end
of..;file marks separating data of different prob
lems. The second, or printer tape, has the nu
merical results in BCD format with descriptive
column headings and additional alphanumeric
information as the title assigned to the problem,
a complete printout of the patching, a listing
of the settings of all pots and function table
values. This printer tape is then printed off
line through a small CDC 160 computer using an
Anelex 1000 line/minute printer.

The binary output tape is the input to another
program, DYPLOT, which rearranges the nu
merical output, and generates the necesary com
mands to prepare curves on a CALCOMP Model
570 plotting system. The output of DYPLOT
is a third tape, the plotter tape, which is read
by the CALCOMP 570 tape unit and the curves
then plotted on the CALCOl'viP 500R incre
mental digital plotter. The DYPLOT program
requires certain additional information, such
as the title of the graph, axis designations, scal
ing, etc., be supplied on punched cards by the
user.

Illustrative example:

A block diagram of a simple control system is
shown in Figure 2. Its purpose is to energize an
inductive load with currents up to 10,000 am-

76 PROCEEDINGS-SPRING JOINT COMPUTER. CONFERENCE, 1963

OUT

".

L-_________________ ~~~~--------------------~

Figure 2. Block diagram of illustrative problem.

peres in response to input signals in the range
up to 20 volts. The characteristics of the ele
ments are given below.

Component Time Constant Gain
amplifier 0 40 volts/volt
exciter .4 sec. 1 volt/volt
generator 2 sec. 25 volts/volt
load coil 1 sec. 25 amps/volt
sensing element 0 .002 volt/amp

The DYSAC solution is to show the response
of the system to a 20.4 volt step input over a
7 second interval. The time increment selected
for the numerical integration is 0.005 second
and printout is desired every .02 seconds (every
4th iteration). Figure 3 shows one of the pos
sible DYSAC configurations which will simulate
the system of Figure 2. The complete DYSAC
input data for the sample problem is repro
duced from IBM cards in Figure 4. Figures 5
and 6 illustrate the two modes of output possi-

13

I

POll POT P09 PI3 PIS

Figure 3. Dysac diagram of illustrative problem.

BCD t3 T lTLE
3CD CURRENT REGULA Tl ON S Y S T EI~
3CD ;; 20.4 VOLT 5TEP INPUT
aCl) tl PATCHING
aCD NOl&A02. N02=A04Pll+NO~P12. N03:N02P13+ N03P14.
SCD NOlo=P15N03+P16N04.
aCD AOl=P05+P06N04. AJ<=P07AOl+P08N01. A03=P09A02+NOI.
aCD AOlosPIOA03. OUT=POI. OUT=AOI. OUT=A03.
aCD a OUTaA04. OUT= N02. OUT=N03. OUT=NOlo.
RCD tl CLEAR INITIAL VALUES
RCD a POT SETTINGS
DEC 0 .. 005,7,4

20.4,-.002.,. 50 ;-5 0
1.20,40,2.;,-2.5
12.5,-.5.25,-1

DEC
DEC
DEC
BCD RETAIN FUNCTION TABLES
BCO c
aeD

HEAOINGS

RCD B
RCD B NO
FND

TIME, SEC ERROR VOLTS
EXCIT. VOLTS GEN. VOLTS

MACHI~~ LANGUAGE INSTRUCTIONS

CO!~P II OUT., V
LOAD AMPS

". I
I
\

Figure 4. Dysac encoding for illustrative problem.

TIIII~. SEC ~

. 2J'Ino· -1
•• ''':01'- -1
.6 ir"~' _!.

: ~~ ~~:; :;
:i~~~~: :;

11ii!i ;;
•]r>n .. o ~
.32 8:' .0
.3." "0 .~

: ::;:: - . ~
,.2!'!"O'" .?
• •• r'lO" .':'
• .I,t .. o ~ .'J
.",,,n"o
• """ ~D'l

)mm ::
• 6.0'" 0) • ~

.6~':'''O'' .0:1
· 6"" 'O~ · '')nno ~ .,;
.121'"'10

~m111 ~!
.e.,."'o" .'!

:mm :;
::::~~o .)

:;[It. V'::LIS
O

.,..,ISIl3 -3

.U997~ ·3

:::;!;;
.117,1'2

::::!:i ...
.5" 71192
.S'U!i?

:~~~i;: .~

lmm ::
.""177
,1111"6;:>0 ·3
.l!1IIt'618 '3

:: ;~~f;: :~
·,'''''2--7
... , 111 ~S'" '50 ...

•• ,~,4tJ"1jI

·.! ... ~1""
-.17<',1).
-.'731·' .•
-,1",11°.5
-.1'i'>311 !,> ••

-.1''''2''2 ' •
-.11"'.9.,
·.''''17;>8 ·3
- ,""?6"' .~
-.,..",1'·8 ·3

~mm ~!
:~~~::~
.1111'61>1 -4

:::~!~:
:!:;~!; '.

LOAO.""S"

.,.,50'. -..
:;~~~!! ::
. ~~~~;~

::;:::: ..
1'50101"

:r;::~: ::
UilS .. -!:o

I~!ll i!
' !!In • .,

H1eH ::

"'1U~
.11tISlln .1Ij.

'97' ••
111ft!"'"
140 .. 'IIIr; ••
,~ 73.q

.".~ "1'1'1

.'5"'''211)11

.mm ::
5"1IIj!1II;>

. '5c,~e"iill ••

:~~:::~
."170'l'i
•• 06S7~
.flU,.&? ••
1I'Oj."" .. .,

.112'#11\, ·5

Figure 5. Sample output for illustrative problem.

REGU...ATOR SYSTEM RESPONSE TO A 20. 4 VOLT STEP llPUT

0

0 2 4 5
Tl HE I N SECONDS

Figure 6. Sample plotter output for illustrative
problem.

ble with DYSAC, the printed listing and the
graphical output provided by the CALCOMP
digital plotter.

This simulation involving 1400 iterations on
4 adders and 4 integrators required 40 seconds
of CDC 1604 computer time.

Examples of Sirnulations

Three broad classes of system simulations
that are representative of the applications of
DYSAC are:

1. Aircraft and missile problems.
2. Electromechanical transients in electric

machines.
3. Chemical processes.

DYSAC: A DIGITALLY SIMULATED ANALOG COMPUTER 77

Exa.mple 1: An Aircraft Simulation

Aircraft and missile simulations are often
characterized by the large number of analog
computer components necessary to represent
the airframe, autopilot, power plant character
istics, aerodynamics, coupling between control
axes, and coordinate transformations required
by the analysis. The drift and noise free char
acter of digital simulations and the freedom
from the usual scaling problems are distinctly
of value in these simulations, which are often
of linear systems or of systems with only one
or two small nonlinearities. Large nonlineari
ties, when they do occur, can also be handled
easily using DYSAC.

In a recent series of studies Grzelak5 has
made extensive use of the DYSAC program in
studies of automatic landing systems for air
craft. In these studies the aircraft was pre
sumed to fly a straight line extension of the
glide slope of an existing ILS (Instrument
Landing System) down to a point at or near
the approach end of the landing runway, but
at a height of 40 ft. above the runway. A flare
computer continuously generated commands to
the autopilot which caused the aircraft to fol
low closely a predetermined flare path and to
land about 1500 feet down the runway, with a
rate-of-descent at touchdown of 2 feet/second
or less.

Of primary interest in these studies was the
dispersion of the point-of-touchdown and of the
rate-of-descent at touchdown as influenced by
the choice of flare path controller and wind
gusts. Comparative studies were made of the
system performance with many types of flare
paths, including exponential, circular, seg
mented straight-line, and terminal control, and
some combinations of these flare paths. The
studies were conducted using a simplified pitch
axis representation for a F94C aircraft with an
v 11\ ~ __ .L __ ~'_.L ,__" _ •
.cJ-.LV aUl,UpllUl, uecause tne necessary aircraft
and autopilot data and some check solutions
from conventional analog computer studies
were available. 6, 7

The block diagram of the system studied is
shown in Figure 7. The system is completely
linear for some types of flare paths, such as
exponential, when the airspeed is assumed to
be constant. Air speed computation and some
types of flare path controllers resulted in non
linearities that required the use of dividers and

... ·ARSPEED
AIRSPEED EQUATIONS
l u_-.0503u+.2l6a-.5626
2. a--,0703u-.721a+9-.04418e
3. y- 6- a

FLARE COMPUTER

Figure 7. Biock diagram of aircraft probl~m.

multipliers in the DYSAC representations of
these situations. However, the problem was
basically that of a linear system and the
DYSAC representation for each combination
of autopilot-aircraft and flare computer studied
employed an average of 13 integrators and 15
adders.

Although the distance to the point of touch
down and the rate of descent at touchdown were
of primary concern, additional information on
the aircraft performance as a function of time
during flare-out was also desired and the follow
ing quantities were included in the printout:
time (from initiation of the flare), elevator
deflection, pitch rate, pitch attitude, change in
airspeed, angle of attack, glide angle, height
rate (rate of descent), altitude, and distance
(from beginning of flare to touchdown).

Approximately 8 seconds of flight time
elapses from the beginning of the F94C aircraft
flare to the point of touchdown, varying slightly
with the type of flare controller and with the
nature of the gust disturbances (which were
introduced as step changes in the angle of
attack or airspeed). The actual solution time
on the 1604 computer for a complete flareout·
solution averaged about 10 seconds, using a
value of time increment 6.t = 0.05 seconds, with
excellent accuracy in the results. This approxi
mated real time operation. A time increment
of 0.1 second could have been USed with accept
able accuracy in the results, with even less com
puter time required per solution.

With such a short computer time required'
for a complete solution (approximately real
time), many combinations of flare controller,
airspeed and gust conditions were economically
studied, at a computer cost of about $1 per case.

Example 2: Electric Machine Transients
The study of electromechanical transients in

electrical machines is complicated by the wide

78 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

disparity in some of the electrical and me
chanical time constants. In many studies it is
convenient, and quite accurate, to assume the
machine to be in a steady state condition either
electrically or mechanically, thereby greatly
simplifying the computer study. However,
there are also many problems of interest where
it is necessary to represent both electrical and
mechanical transients. Digital simulation using
DYSAC has been utilized by several University
of Wisconsin staff members and graduate stu
dents in studies of induction and synchronous
machines with non-sinusoidal applied voltages
and with complex control circuits, including dis
continuous controllers and silicon controlled
rectifiers. The digital simulations have been
convenient, and in some cases, possible only be
cause DYSAC handles nonlinearities so easily.

It is common practice to transform the tran
sient electrical equations describing machines
to reference frames convenient to the problem
under study. Commonly used reference frames
include the stator, the rotor, and a synchron
ously rotating reference frame.

With both electrical and mechanical tran
sients considered, and neglecting saturation,
the dynamic equations describing a two-phase,
two pole, uniform air gap, wound rotor induc
tion motor, referred to rotor reference axes a
and ,8 coinciding with the stator phase axes a
and b, may be written as:

where Ra(o L aa, RJ'J" La and M are winding con
stants; ia, i{3, ia, and ib the current variables;
Om the angular position of the rotor; POm the
instantaneous speed; and T L the load torque (a
function of speed).

Flux linkage equations are probably more
commonly used in machine analysis than eq' t

tions (1) - (5), which are limited to those ap
plications where saturation can be neglected
(as is often reasonable). Both the flux-linkage
forn1 of the equations and equations (1) - (4)
have been used in digital simulations.

Both equations (1) and (3) contain both Pia
and Pia; similarly, equations (2) and (4) con
tain both Pib and Pi{3. Thus two of the same
highest-order derivatives appear in each of two
pairs of equations, a condition knovvn to lead
to "algebraic loops" (loops without integra
tors), and instability in analog computer set
ups. Because the variables are thus implicitly
defined in terms of themselves, the Runge-Kutta
integration method of DYSAC will usually also
be unstable if equations (1) - (4) are pro
grammed directly.

The undesirable implicit relations between
the variables can be eliminated by eliminating
either Pia or Pia between (1) and (3); and
eliminating Pib or Pi{3 between (2) and (4).
The two resulting new equations are then pro
grammed for solution together with a proper
choice of two of the original equations (1)
(4), plus the torque equation (5). There are
16 different combinations of equations that can
be derived in this manner.

Studies of electromechanical transients in
both relatively high rotor resistance, small in
ertia servomotors and studies of multiple
horsepower, large inertia machines have shown
that some of the methods of elimination give
distinctly more accurate results for a specified
t6.t than is obtainable with the other methods.
We conclude that attention should be given to
the method of elimination used in eliminating

= Va (1)
Vb (2)
Va (3)
v~ (4)

(5)

algebraic loops in any system of equations and
that some experimentation with different meth
ods may ~e worthwhile.

The nonlinear differential equations (1)
(5) give rise to variable loop gains with the
appearanc.e of speed dependent terms such as
(Mib) (POm), because both ib and Om are varia
bles that vary with time. Values of t6. t that.
result in stable Runge-Kutta numerical inte
grations for small values of speed (wm = POm),
can result in instability and obviously incorrect
results at larger values of speed because of the
larger loop gains.

DYSAC: A DIGITALLY SIMULATED ANALOG COMPUTER 79

In a series of studies of electromechanical
transients during the starting of a 5-HP induc
tion machine a value of D. t = 0.001 seconds gave
excellent accuracy, while D. t = 0.01 seconds
gave an unstable solution. It is characteristic
of the Runge-Kutta process in unstable situa
tions that the solution appears to be proceeding
smoothly, and then diverges suddenly as the
speed, and thus a loop gain, exceeds a critical
value.

In a series of studies8 on the starting tran
sients in servomotors, with some of the non
linearities in the machine represented, the
simulations have used 8 integrators, 14 adders,
1 sine generator, 1 cosine generator, 4 function
generators, 1 divider and 1 relay. The phe
nomena of interest lasted about 0.07 seconds
and a D. t of 0.0001 seconds was used to get
acceptable accuracy. The DYSAC solutions for
each case averaged about 50 seconds of CDC
1604 computer time.

Example 3: Sampled Data Systems

Chemical processes often have inherent trans
port time delays and DYSAC can be used
readily for such simulations. Due to the ease
with which nonlinearities may be handled,
DYSAC is particularly valuable in conducting
simulations of chemical reacting systems, where
nonlinearities are nearly always associated with
reaction kinetics. A simulation of an isothermal
catalytic reactor which was approximated by 5
ideally mixed stages and involving only 3 chemi
cal species required 20 multiplications and 5
divisions. Had the reactor temperature sensi
tivity been included, an additional 4 function
generators would have been required. Turbu
lent fluid flow problems often require genera
tion of non integral powers of flow rate in order
to determine pressure drops. The logarithm
and exponential generators of DYSAC handle
these situations easily and accurately.

The inclusion of relays and transport time
delay units in the DYSAC program (as well as
the possibility of including discrete logical in
structions using the machine language option)
has resulted in a programming system well
adapted as a tool for the analysis and simula
tion of sampled-data or pulsed data systems in
addition to continuous systems.

To indicate both the feasibility and ease of
data preparation for such applications, a very

H
: : : : : : : : : : I I I 7 I I I r~ :;;;;;;;n I I I In 1= I

10 SEC TRANSPORT TIME

~Q
v

10 SECOND
TIME CONSTANT

-.
1.

H HEAT INPUT RATE, BTU/SEC
Q FLOW RATE, I FT 5/SEC
T TEMPERATURE, OF
CpFLUID HEAT CAPACITY, I BTU/LB OF
V VESSEL VOLUME, 10 FT 5

p FLUID DENSITY, 50 LB/FT 5

Figure 8. Sketch of transport process.

simple sampled-data system and a digital con
troller was simulated via DYSAC. The process
as shown in Figure 8 consists of a heater with
a liquid flowing through it at a constant rate.
On leaving the heater, the fluid flows through
a long pipe exhibiting a 10 second transport
delay. The long pipe empties into a perfectly
mixed vessel having a 10 second retention time.
The temperature is measured at the outlet of
the vessel and is to be controlled by varying the
heat rate to the heater. The controller is to be
a sampled-data device which compares the de
sired and actual temperatures every 5 seconds,
and makes an adjustment on the heating rate
every 5 seconds. The controller is to operate so
that the temperature error due to a step change
in set-point is reduced to zero in a minimum
nUlllber of salI1pling periods. The signal flow
diagram for the sampled-data system is shown
in Figure 9.

SAMPLING INTERVAL 5 SECONDS

Fig:ure 9. Signal flow diagram of sampled data system.

80 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

The Laplace transform of the process func
tion is:

(6)

U sing the standard techniques of sampled-data
system design,\) the z-transform of a controller
exhibiting the specified characteristics is found
to be:

D(Z) = 127 07 (1 - .6065Z-
1
) (7)

. (1 - Z-3)

After the form of the desired controller was
developed by analytic means, the entire system
was simulated by DYSAC. The first step was
the formulation of a basic analog computer
diagram as shown in Figure 10. Four relays
and an integrator can be arranged to create the
sampling switch.

As mentioned previously, the possibility of
simulating the controller function via machine
language instructions exists. This is in fact an
easy and efficient course of action to follow since
in essence the digital control function is per
formed by the 1604 digital computer directly
instead of being simulated by DYSAC. Chang
ing equation (7) to a time domain recursion
formula where c is the controller output and l'
its input:

Cn = Cn-3 + 127.07rn - 77.07rn_l (8)

To use this algorithm, the output values (c's)
must be saved for 3 sampling periods and the
input values (r's) for one sampling period.

A slightly different algorithm which closely
parallels the analog flow diagram for realiza
tion of D (Z) as shown in Figure 10 may be
developed by arbitrarily defining a quantity en
as follows:

(9)

and thus

Cn = 127.07en - 77.07e n_l (10)

substituting for C1l -3 in the right member of
equation (8)

Cn = 127.07(en_3 + rn) - 77.07(en_4 + rn- ! (11)

In comparing equations (10) and (11) it is
obvious that

(12)

Thus a method of computing en front known
quantities has been derived so that it fulfills
the arbitrary definition of equation (9). Note
that en corresponds to the output of the third
adder in Figure 10. The method of realizing
the digital controller involves saving only one
quantity for 3 sample periods, a saving of 1
storage cell over the method of equation (8).
Furthermore, only 19 CDC 1604 instructions
are required to implement the controller and
the sampling switch action, one less than re
quired for the first method.

The response of this sampled data system to
a 50 degree change in set point is illustrated in
Figure 11.

SET
POINT

.------D(z) ------'

H

Figure 10. Generalized analog computer diagram.

6

0

0

0

0 o

I
I 1l.I rJ¥TANT1OF 10 iCONj C>

z

e- i 1--- ---t-- r -I T ~-
0

~
0

PROCESS TIME CONSTANT OF 12 SECONDS
~-,

1 II..
0

z
0 I ~
0 CONTROLLER OPTIMIZED FOR
:J 10 SEC TIME CONSTANT AND Q.
Q. 10 SEC TRANSPORT DELAY ~

I

1
~ w ~ ~ ~ w ro ~ ~ 00

TIME - SECONDS

Figure 11. Response of transport process.

CRITIQUE OF DIGITAL SIMULATION

Advantages

1. The easy-to-learn coding structure of
DYSAC enables individuals with no prior
knowledge of either analog computing

DYSAC: A DIGITALLY SIMULATED ANALOG COMPUTER 81

techniques or digital computer program
ming to very quickly solve analog computer
type problems.

2. It is not necessary for the analog computer
type of connection diagram to be drawn
for all problems. The DYSAC patching
can be written down directly from the
differential equation in many instances.

3. Retention of the block diagram representa
tion of systems and components; while not
necessary, is a desirable feature to many
users. Conventional digital solution of sys
tem problems often results in some loss of
identification of the system.

4. Elimination of the necessity for number
scaling with DYSAC is a substantial ad
vantage over conventional analog computer
studies, particularly in the case of complex,
nonlinear systems.

5. The problems of noise and drift in dc levels
so familiar in analog computers do not
exist with digital simulation.

6. Nonlinear operations such as squaring,
cubing, forming sine, cosine, exponential,
logarithm functions, and multiplication
present no special problems in digital
simulation with DYSAC.

7. The availability of true representation for
time variable transport delays is a real
advantage over most of the analog com
puter techniques that use truncated expan
sions of various functions to approximate,
and often poorly, transport time delays.

'8. The patching and data for a problem can
be completely and inexpensively checked
before going on the computer. While
punching and checking program and data
cards may take an appreciable time for a
large simulation, the digital computer is
not required.

9. Individual case studies can be run ;vith
practically no setup time once the program
patching deck is available. (This compares
favorably with the use of separate patch
panels, tape set pots, etc., in large analog
computer installations.)

10. Studies of many different problems can
proceed almost simultaneously, unlike with
an analog computer installation where one
complex simulation may tie up the com
puter for several weeks.

11. The floating point arithmetic used in
DYSAC can be used to achieve accuracy
in problem results that is completely unat
tainable with an analog computer.

12. Graphical outputs from digital simulations
are easily prepared, are accurate, and are
readily reproducible when using a digital
plotter such as a California Computer Pro
ducts Model 570 off-line magnetic tape
plotting system,

13. The ability to do large scale analog-com
puter type simulations on a digital com
puter is attractive to many users having
good digital computing facilities and little
or no analog computation capability.

Disadvantages

1. A DYSAC solution to a problem will re
quire more computing time than would be
required for a conventional digital com
puter program written by a skilled pro
grammer to run on the same computing
machine. (However, the time required to
program DYSAC will be much less than
the time necessary to write a conventional
program to solve the same problem.)

2. Some flexibility is lacking in DYSAC, as
in similar programs, becam~e the user is
usually limited to only those components
available in the program. The provision
in DYSAC for special machine language
instructions substantially improves the
flexibility of the program.

3. In its present form, neither DYSAC nor
similar programs have provision for the
introduction of real-time data from exter
nal hardware, as is done in some analog
computer simulations.

4. The choice of the value of 6. t to be used
in a simulation is a compromise; a small
value of 6. t is desirable for accuracy, while
a large value minimizes computer rental
cost. While rule-of-thumb guides can be
used to determine an initial value of 6. t
to be used for a given problem, no proce
dure exists for manually or automatically
selecting a value of 6. t to give a prescribed
accuracy to all output quantities of interest
at all times during a simulation. Some
experimentation with the value of 6. t is
often necessary when studying a new sys
tem of equations.

82 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

5. Because of the expense of computer time,
digital simulation does not permit the type
of experimentation with pot settings and
immediate observation of the results that
is possible with analog computers, particu
larly for repetitive type computers.

6. To avoid unnecessary computer rental,
decision making and data changes while
actually running problems must be dis
couraged.

7. The computer running time and thus the
cost of digital simulations varies almost
directly with the number of components
in the simulation, in contrast with analog
studies where computer running time is
not a function of the number of compo
nents. (However, rental costs for an analog
facility will increase with the size of the
facility.)

8. As presently written, DYSAC is not readily
adaptable to random process studies, al
though HurleylO has made a number of
simulations of an adaptive process con
troller using a machine language random
noise generator.

CONCLUSIONS

Digital Simulation should be considered as an
extremely valliable supplement for an analog
computer, but not as a complete replacement.
It will prove very useful where inadequate
analog computer facilities exist to solve a par
ticular problem, whenever more accuracy is
desired than can be obtained from an analog
computer, or when it is necessary to obtain
results in less elapsed time than would be re
quired for either a conventional analog or a
digital computer solution. Although Digital
Simulation is usually excessively time consum
ing and costly on small digital computers, it is
economically attractive on computers in the
CDC 1604 and IBM 7090 class.

The DYSAC program is receiving wide usage
at the University of Wisconsin and research
is continuing both in the development of im
proved digital simulation techniques and in ap
plications, in many areas of engineering and
science.

ACKNOWLEDGEMENTS

The DYSAC program was developed as one
phase of a continuing project on digital simula
tion, under the direction of Professors J. J.

Skiles and V. C. Rideout, Department of Elec
trical Engineering, University of Wisconsin,
with National Science Foundation support
under grant G19886.

Early phases of the "Digital Simulation"
project were supported in part by the Research
Committee of the Graduate School from funds
supplied by the Wisconsin Alumni Research
Foundation.

We wish to acknowledge the many' helpful
suggestions and comments from Professor V.
C. Rideout, who is participating in the Digital
Simulation studies.

REFERENCES
1. Coding a General-Purpose Digital Com

puter to Operate as a Differential Analyzer,
R. G. Selfridge. Proc. of the 1955 Western
J oint Computer Conference (IRE).

2. DEPI: An Interpretive Digital Computer
Routine Simulating Differential Analyzer
Operations, F. H. Lesh and F. G. Curl. Jet
Propulsion Laboratory, California Inst. of
Tech., Pasadena, CaL, March 22, 1957.

3. DIDAS, A Digital Differential Analyzer
Simulator, G. R. Slayton. Twelfth Na
tional Meeting of the Assoc. for Computing
Machinery, June 1958.

4. A Compiler With An Analog-Oriented
Input Language, M. L. Stein, J. Rose and
D. B. Parker, Proc. of the 1959 Western
Joint Computer Conference. (IRE).

5. A Comparative Study of Flare Paths for
Aircraft Automatic Landing Systems, T.
Grzelak, MS Thesis, University of Wis
consin, June 1962.

6. Automatic Flare-out for Landing, D.
Markusen, R. McLane and O. Pomeroy,
W ADC Technical Report 55-506, March
1956.

7. Flare Out Program for Air Force Type
E-10 Automatic Pilot, R. V. Gaertner, R.
C. McLane and V. Baxter, W ADC Technical
Report AD 5501-TRI, August 1957.

8. Transient Response Characteristics of an
AC Servomotor, Ph.D. Thesis, J. Law, Uni
versity of Wisconsin, August 1962.

9. Digital and Sampled-Data Control Sys
tems, J. T. Tou, McGraw-Hill Book Co.,
New York, 1959.

10. Control of Chemical Processes by Parame
ter Perturbation, J. R. Hurley, Ph.D.
Thesis, University of Wisconsin, 1963.

DAS - A DIGITAL ANALOG SIMULATOR

R. A. Gaskill*,J. W. Harris* and A. L. McKnight**

SUMMARY
Digital Analog Simulation (DAS) is a pro

gramming technique which makes a digital
computer operate much like an analog compu
ter. The application of the technique to pro
gramming an IBM 7090 computer is described.
Although it is not intended primarily as an
analog computer simulator, the similarity of
DAS programming to analog programming is
readily apparent. DAS combines remarkable
ease and speed of programming with reasonably
high computing speed.

The DAS input language is designed to per
mit a simple and concise description of an
analog-style block diagram of the problem to be
solved. The blocks in the diagram are restricted
to summers, integrators, multipliers, limiters,
relays and other "components" for which

'macro-instructions appear in the DAS compiler.
The construction of a DAS block diagram is
more straight-forward than an analog computer
block diagram because there is virtually no
restriction on the number of available com
ponents, and because no amplitude scaling is
required.

The standard output format provides a com
plete record of the problem by printing the en-
tire input program and all input data. This is
followed by a multiple column table of sequen
tial values of the desired output quantities.
These columns of data serve the same purpose
as the recording channels of a conventional
analog computer output device in that each
column provides a complete history of one
variable.

* Martin Company, Orlando, Florida.

INTRODUCTION
A new programming technique, Digital Ana

log Simulation (DAS), has been developed
which makes a digital computer operate much
like an analog computer. The technique was
developed because it was believed that the key
to easy programming is the block diagram ap
proach normally associated with analog compu
tation. Experience with DAS programming for
an IBM 7090 computer has emphatically con
firmed this belief.

Analog computers contain a set of compo
nents which serve as mathematical building
blocks. It is natural to prepare a problem for
analog computation by drawing a diagram indi
cating how these blocks should be intercon
nected. The conversion of a problem statement
into block diagram form is fundamentally
straightforward. This characteristic of block
diagram problem formulation makes analog
programming relatively easy. Analog program
ming would be still easier if it were not neces
sary to consider limitations of the computer
while developing the block diagram. These limi
tations include: (1) a fixed number of available
components of any given kind, and (2) a limited
allowable (voltage) magnitude at the output of

the preparation of a suitable analog computer
diagram to the point where it may be argued
that it would be just as easy to prepare the
problem for digital computation, using a prob
lem-oriented input language such as FOR
TRAN. But block diagram problem formula
tion has intrinsic advantages often outweighing

** Thompson Ramo Wooldridge, Inc., RW Division, Fort Huachuca, Ariz. Mr. McKnight's participation in this
paper commenced prior to his association with TRW.

83

84 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

the difficulties which may be encountered in pre
paring or implementing the diagram.

The advantages of block diagram problem
formulation are particularly evident in the solu
tion of equations representing a mathematical
model or simulation of a physical system. Be
cause each block in the diagram corresponds to
some component or characteristic of the system
under study, the inputs and outputs of each
block have physical significance. By recording
the outputs of the computer representation of
these blocks an extremely thorough picture of
the inner workings of the simulated system is
obtained. The close association between com
ponents of the computer and components of
the system under study also permits represent
ing the addition, subtraction, or TIlodification
of components in the physical system by analo
gous changes in the computer.

The objective of the DAS programming tech
nique for digital computers is to profit fully
from the many advantages of block diagram
problem formulation. The DAS program makes
a digital computer appear to contain an in
definite number of integrators, multipliers,
summers, function generators and other com
ponents normally associated with analog com
puters. The DAS input program is essentially
a description of how these components should
be interconnected to solve the problem. In this
sense DAS is similar to DEPP and DYSAC2,3,
but DAS uses a more basic set of components
and a simpler procedure for writing the input
program. Of course, the components are not
physically interconnected as they would be in
an analog eomputel'; a.nd it. is in t.he rapid as
sembly of machine instructions to represent the
interconnection of components that DAS is par
ticularly unique.

DAS COMPONENTS

A catalog of DAS components is shown in
Table 1. Available quantities of the various
components are unspecified because the DAS
compiler generates as many of each component
as required for the problem at hand. Each com
ponent (block) is identified by an abbreviated
name and a number. The numbers are arbi
trarily assigned by the programmer when he
prepares the block diagram of his problem and
they serve only to distinguish between other
wise identical components.

Each component is represented by an open
subroutine (macro-instruction) in the DAS
compiler. So far as the programmer is con
cerned, however, a component is simply a block
with one or more inputs and outputs. For ex
ample, assume an integrator receives an input
from the output of a summer. The output of
the integrator is the integral of its input and
hence the integral of a sum. The various input
output relationships are indicated in Table 1.
Constants, K, and initial conditions, IC, do not
receive inputs from the other components. In
stead, their inputs come from data cards. Up
to six numbers can be punched in each data
card. The significance of each number of a
data card is explained by the corresponding K
or IC card. The K and IC components do not
require serial numbers because they are com
pletely identified by their inputs. The arbitrary
function component requires two kinds of in
puts: an independent variable from another
component and a table of values from data
cards.

DAS PROGRAMMING TECHNIQUE

The DAS programming technique is best ex
plained by an example. Consider the following
differential equation:

The first step in the preparation of a D AS pro
gram is to solve for the highest derivative. This
is usually just a matter of writing the original
equation in a slightly different form. For the
example we have:

-AX

The next step is to draw a block diagram of
the problem, starting with the assumption that
the highest derivative is available as an input
to an integrator (Fig. 1), The output of this
integrator is the next highest derivative. This
derivative is used as the input to another inte
grator, and the chain of integrators is extended
in this manner until the output of the last inte
grator is the dependent variable, X. It is now
a simple matter to complete the block diagram
showing how the outputs of the integrators
must be combined to produce the highest deriva-

DAS: A DIGITAL ANALOG SIMULATOR 85

TABLE I

Catalog of DAS Components (Blocks)

Function

Integrate

Sum

Change Sign
Mult~ply
Divide
Constant
Initial

Condition
Time

Read-Out

Stop Problem

Square Root
Exponential
Logarithm
Arc Tangent
Sine-Cosine

Limit

Symbol*

In

Sn

KEGn
Mn
Dn
K
IC

IT

ROn

FIXn

SQn
En
LKn
ATn
RESn

Ln

Input Switching IRn
Relay

Output Switching ORn
Relay

Dead Space

Time Delay
Bang-Bang

DSn

TDn
BBn

Inputs

A

Ai(i = 1, ... , K ~ 10)

A
A,B
A,B

Data card
Data card

Computing Increment
(DELT)

A constant and up to
six component out
puts

A,B

A
A
A
A
A

A,B,C

A,B,C

A,B

A,B,C

A, IT, C
A,B

Outputs

Initial output + fot Adt
K

~Ai
i=l

-A
A·B
AlB

Up to six constants
Initial values for up to six

integrators
Present value of independent

variable (time)
Prints component outputs at

constant intervals

Ends computation when
A~B

eA
log eA

arctan A
B output = sin A
C output = cos A

A, B ~ A ~ C
B, A < B
C, A > C
A,C > 0
B,C < 0

C output = 0 I B > 0
D output = A

C output = A I B < 0
D output = 0
O,B ~ A ~ C
A - C, A > C
A - B, A < B
A delayed by C seconds

+B, A > 0
-B, A < 0

Arbitrary Fn A; D1l.t~, Ca,rds Flln~t,lon of A ~.~ t.Rhll htpn
Function I ,- -;;;: d~ta -~a;ds -- --- ------

* The "n" indicates where an identifying number should appear.

tive. In the example the highest derivative is
formed by multiplying the output of the last
integrator by a constant, - A.

The DAS input program is a description of
the block diagram, together with a specification
of the constants, initial conditions, desired out-

puts, and conditions for ending computation.
Assume we wish to obtain a printed record of
the integrator and multiplier outputs as func
tions of time until time equals Tl seconds. The
DAS input program may be written virtually
by inspection. It looks like this:

86 PROCEEDINGS-SPRING JOINT COMPUTER. CONFERENCE, 1963

Component

K
IC
Ml
II
12
ROI
FINI
END

Inputs to Components

Cl, C2, Tl
II, 12
12, Cl
Ml
II
C2, IT, II, 12, Ml
IT,Tl

The symbol Cl takes the place of -A in the
program because all symbols must begin with a
letter. Each line of the program is called a
program statement, and each statement is
punched on a separate card. The cards are pre
sented to the computer in the order shown. The
first statement indicates that three numbers
must be obtained from a data card. The data
cards follow the program, and the first data
card contains the numbers required by the first
statement. These numbers appear on the data
card in the same order as the corresponding
symbols on the statement card. For example,
the third number on the first data card is Tl,
the maximum value of the independent variable
(time) to be considered. Floating point nota
tion is used for all data.

The second card of the example program indi
cates that the initial value for the output of each
integrator must be obtained from a data card.
The second data card must contain the desired
initial conditions in the order listed on the IC
statement. The next three statements describe

n t
dX +

dt2 ! dt I, X

-AX

X
1

I -A

dJ
'-...-/

Figure 1. Block Diagram of Example Problem.

the block diagram. Each statement describes
the connections to one component. The compo
nent is identified in the left-hand column and
its inputs are listed in the opposite column. For
best accuracy, the part of the dia.gra.m which
provides the highest derivative should be de
scribed first. The components should be listed
in the order indicated by the arrows on the
block diagram. In this case, the highest deriva
tive is formed by Multiplier 1. Multiplier 1
receives its inputs from Integrator 1 and Cl, a
constant equal to -A. The description of this
part of the diagram is contained in the third
statement. Following the arrows, the diagram
description is completed by writing statements
for Integrator 1 and Integrator 2, in that order.

The next statement describes what answers
are to be printed out and how often. The Read
Out component corre~ponds roughly to a multi
channel strip-chart recorder. The first symbol
in the right-hand column specifies the printout
interval (analogous to chart speed) and the re
maining symbols identify the components which
are to have their outputs printed and the order
in which they are to appear. For the example,
the left-hand column will be time, printed at
intervals of C2 seconds. The outputs of II, 12,
and .lUI will be printed at these times in columns
two through four. Two more columns are avail
able but are not needed for this problem. The
DAS print-out format is described more com
pletely in a later section. The next to last state
ment directs the computer to stop computing
when the independent variable reaches Tl
seconds, and the END statement is used to
separate the program cards from the data cards.

PROGRAM PROCESSING

When program cards are punched, the key
punch operator inserts an equal sign between
the component name and the list of its inputs.
The card for the third statement of the example
will be:

Ml = 12, Cl

The equal sign is an arbitrary symbol used to
assist the computer in distinguishing the com
ponent from its inputs. The· DAS compiler
interprets the input program statements and
assembles them into a suitable machine pro
gram. Because the present DAS is designed for
use with an IBM 7090 computer, it is appropri-

ate to make use of some special features of F AP
in the required assembly. One of these features
is the provision for writing and using macro
instructions. The DAS compiler contains one
macro-instruction for each of the 22 different
component types. Each macro-instruction serves
as a prototype for a given kind of component.
The multiplier macro-instruction is as follows:

MULT MACRO
LDQ
FMP
STO

MULT END

INl, IN2, OUT
INl
IN2
OUT

When the input program statements are trans
lated into the corresponding macro form, the
name of the component appears in the OUT
location. For example, the statement for Multi
plier 1 becomes:

MULT 12, Cl, Ml

The macro-instructions effectively construct as
many of each component as is required by the
input program. There is a limit to the total
number of components, and for the IBM 7090
this is about three thousand. A separate memory
location is reserved for the output of each
component listed in the input program so that
the outputs of all components are available for
print-out or as inputs to other components. By
using the same name for the output of a com
ponent as for the component itself the writing
o~_an input program is kept extremely simple.
When all of the input program statements have
been converted to macro-instructions and mem
ory locations have been assigned, the DAS pro
gram automatically turns control over to the
F AP assembly program and the assembled pro
gram is automatically executed. The machine
time required prior to execution is about one
minute.

DAS METHOD OF SOLUTION

The output of each component in the list of
input program statements is updated in se
quence by one time increment until all of the
outputs have been updated. The time increment
(DELT) is automatically 10-4 seconds unless
otherwise specified by a K statement. The value
of 10-4 seconds was chosen for DELT because
it was found to provide the best accuracy for a
test problem. The sequence of updating steps is

DAS: A DIGITAL ANALOG SIMULATOR 87

repeated until the solution has been completed.
Time (the independent variable) does not enter
directly into any of the updating except for the
integrators. Rectangular integration is used.
The updated integral is obtained by multiplying
the integrator input (the integrand) by DELT
and adding this product to the present integral.
The time required to update all of the compo
nents in the list of input program statements
may be estimated by multiplying the number of
components by 50 microseconds.

DEMONSTRATION PROBLEM

The previous example problem has been ex
panded to better demonstrate certain features
of DAS (Figs. 2, 3, and 4). The differential
equation used for the example has a solution
which is known to be sinusoidal. For the dem
onstration problem, A has been chosen to pro
vide a solution frequency of 1000/360 cycles per
second or one degree per millisecond. The solu
tion is printed at intervals of fifteen millisec
onds (fifteen degrees). The initial conditions
for II and 12 are 0 and 1, respectively. This

Equation Diagram 1-------,

G
-----------------~

I
dX
dt

IT

I
I I
I ~ I
I V I L ______ ...J

DELT

, '\:...-

~
L1J L::j ~

"--- ./
List in reverse order

c6 FIN C3

IT

Figure 2. Block Diagram of Demonstration Problem.

88 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

provides a cosine output from 12 which may be
checked against standard tables. The output of
11 is divided by its amplitude of oscillation to
provide a similar sine output. This output is
accurate to five significant figures. The cosine
output is passed through a delay component set
for a delay of ninety degrees. Ideally, when the
output of the delay component appears it should
be the same as the sine output. The small error
seen in the printed record (Fig. 4) is due to a
small error in the cosine. The cosine output is
also passed through a differentiator. The output
of the differentiator should be (and is) the
same as the output of 11.

The differentiator consists of three blocks. It
would have been a simple matter to include a
differentiator component in the catalog of DAS
components, but it was decided not to include
seldom needed components in the catalog if they
could be constructed from the available compo
nents. The differentiator takes the first differ
ence of its input and divides by DELT. The
first difference is obtained by listing NEG lout
of order. Any component introduces a delay of
DELT if it is not listed in the order indicated
by the arrows on the block diagram. For ease
of comparison, the output of the differentiator
is printed directly below the output of 11.

Two FIN statements are used. The first one
stops computation at 180 degrees if everything
proceeds properly. The second stops computa-

K = C1,C2,C3,C4,C5, C6
K = C7

Ie = II, 12
M1 = 12, C1

II = M1
12 = II

D1 = II, C2
81 = 12, NEG1

XEGI = 12
D2 = 81, DELT
M2 = IT, C3

TD1 = 12, IT, C7
R01 = C4, II, 12, D1, TDl,]\12
R02 = C4, D2
R03 = C4

FIN 1 = IVf2; C5
FIN2 = 12, C6
EXD =

Figure :3. Input Program for Demonstration Problem

tion in the event that some error causes the
cosine output to significantly exceed unity.

The DAS print-out always begins by listing
the input program (Fig. 3). This is followed by
some program processing information and
finally by a table of numbers (Fig. 4) contain
ing all input data as well as the desired output
quantities. The significance of the numbers in
this table is determined by reference to the
input program. The numbers on the data cards
are printed first. For the demonstration prob
lem there are three lines of data printed, corre
sponding to the numbers required by the first
three input program statements. All data is
printed in floating point notation. The two digit
number after the E indicates the number of
digits that the decimal point should be shifted.

The significance of the numbers following the
data is determined by the Read-Out statements.
Three Read-Out statements are used for the
demonstration problem, all of them calling for
print-out at intervals of C4 seconds. The first
statement calls for printing the outputs of 11, 12
(the cosine output), D1 (the sine output), TD1
(the delayed cosine) , and M2 (the angle) across
the page in the order listed. The second state-
ment calls for printing the output of D2 directly
below the output of 11. The third statement pro
vides a double space to separate blocks of
answers corresponding to different times.

SPECIAL OPERATIONS

The catalog of DAS components contains re
lays, limiters, and other special devices for use
in solving nonlinear equations or simulaLing
complex control systems. In addition to more
obvious aplications, these components serve as
basic building blocks for providing other special
operations. Three of these special operations
will be described. In accordance with analog
computer practice, these combinations of com
ponents are called circuits.

Absolute Value Circuit

An absolute value circuit is shown in Figure
5. It consists of an input switching relay and a
sign changer. The arm of the relay switches to
the opposite input whenever X is negative. Be
cause of the sign changer this input is positive
when X is negative, so the output of the relay is
always positive and equal in magnitude to X.

DAS: A DIGITAL ANALOG SIMULATOR 89

-3.0462E 02 -1.7453E 01 l.OOOOE 03 1.5000E-02 1.8000E 02 l.1000E 00
9.0000 E---02 -0. -0. -0. -0. -0.
O. l.OOOOE 00 -0. -0. -0. -0.

-4.5172E 00 9.6570E-01 2.5882E-01 O. l.5000E 01
-4.5173E 00
-8.7266E 00 8.6559E-01 5.0000E---01 O. 3.0000E 01
-8.7266E 00
-1.2341E 01 7.0649E-01 7.0711 E---O 1 O. 4.5000E 01
-1.2341E 01
-1.5115E 01 4.9924E-01 8.6602E-01 O. 6.0000E 01
-1.5115E 01
-1.6859E 01 2.5798E---01 9. 6592E---O 1 O. 7.5000E 01
-1.6859E 01
-1.7453E 01 - 8. 7271E-04 10.0000E-01 10.0000E-01 9.0000E 01
-1.7453E 01
-l.6858E 01 - 2. 5966E-0 1 9.6592E-01 9.6570E-01 1.0500E 02
-1.6858E 01
-1.5115E 01 - 5.0075E-01 8. 6602E-0 1 8.6559E-01 1.2000E 02
-1.5115E 01
-l.2341E 01 -7.0772E---01 7.0710E-01 7.0649E-01 l.3500E 02
-l.2341E 01
-8:7266E 00 - 8.6645E-01 5.0000E-01 4.9925E-01 1.5000E 02
-8.7266E 00
-4.5172E 00 - 9.6614E-01 2.5882E-01 2.5798E-01 l.6500E 02
-4.5171E 00

4.5593E-06 -9.9999E-01 - 2.6123E-07 - 8. 7003E-04 1.8000E 02
7.4506E---05

Figure 4. Solution Print-Out for Demonstration Problem

The circuit of Figure 5 is directly analogous
to absolute value circuits used in analog com
puters. A simpler circuit for obtaining the
absolute value of X consists of a single bang
bang component using X for both the A and B
inputs.

Sample and Hold Circuit
The sample and hold circuit, shown in Figure

6, is used in the simulation of sampled-data con
trol systems. The input to the sample and hold
circuit represents a continuous signal. This
signal is samp!ed periodically, and the latest
sampled value appears at the output. It is simply
an input switching relay with the output con
nected to the A input and with the C input
coming from a periodic negative trigger pulse
generator (to be described next). Between
samples, the circuit from A to D and back to A
functions as a circulating memory, and the out
put remains constant. When a negative trigger
occurs the output is momentarily connected to
the B input. The arm then returns to its normal
position and this sampled value of the B input is
held in 'memory until the next trigger pulse
occurs.

Trigger Pulse Generator

One trigger pulse generator can operate as
many sample and hold circuits as desired. The
circuit is shown in Figure 7. Initially, the out
put of Summer 1 is equal to - Tl and the other
two outputs are zero. When time (IT) becomes
equal to the desired time (Tl) for the first
pulse, then the relay switches to the other input,
and the relay output becomes - P. This number

x
IXI

Figure 5. Absolute Value Circuit.

A

D Output

Input B

Ie
Figure 6. Sample and Hold Circuit.

90 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

o -p

IB L
IT \ L c

...-----
-Tl

-
D

Tr igger Pulses

L2~
Figure 7. Trigger Pulse Generator.

is added to the present output of Summer 2,
making the new output of 82 equal to - P. This
negative jump in the output of 82 makes the
output of 81 also jump to - P, causing the relay
to return to its original position and the output
of the relay to return to zero. The feedback
loop around 82 causes the output of 82 to re
main at -Po

When IT increases by P seconds, the output
of 81 again goes positive, making the relay
produce another negative pulse. This pulse is
added to the present output of 82, making the
new output equal to -2P. This again causes
the output of 81 to jump to - P and the process
is repeated, producing a pulse every P seconds.

SUMMARY OF DAS FEATURES

The outstanding feature of the DAS tech
nique is the extreme ease of programming. Com
plex problems may be programmed and solved
in the same day that they are conceived. No
amplitude scaling or knowledge of numerical
analysis is required. The usual features of
digital computation are retained, such as:

1. Complete printed record of problem and
solution.

2. Automatic checking for careless errors in
programming.

3. Convenient program storage
4. Rapid access to the computer
5. Extreme dynamic range
6. Good accuracy
7. No drift

Many of the best features of analog compu
tation are obtained, such as:

1. Easy program alteration. Adding or sub
tracting a card in a DAS program corre
sponds to changing one or more patching
connections in an analog setup.

2. Enhanced problem understanding. The
block diagram approach to programming
provides valuable problem insight.

3. Outputs of all components available for
recording. For problem check-out pur
poses, it is convenient to print the output
of every component. When the minor out
puts are no longer needed, the cards which
call for their print-out are simply thrown
away.

FUTURE MODIFICATIONS

Although DAS is highly useful in its present
form, several improvements are being planned.
The most important is an approved integrator
permitting the use of longer computing incre
ments (DELT) without sacrificing accuracy.
This modification will increase the speed of
solution and make it economically feasible to
solve larger problems. Other planned improve
ments will provide conveniences such as better
labeling of the printed answers, provision for
automatic plotting of the answers, and more
complete automatic error analysis. With or
without these improvements, the DAS program
ming technique is a significant new tool for the
solution of problems in dynamic analysis.

REFERENCES

1. LESH, F., "Methods of Simulating a Differ
ential Analyzer on a Digital Computer/'
Journal of the Association for Computing
Machinery, July, 1958.

2. HURLEY, J., "Digital Simulation I: DYSAC,
A Digitally Simulated Analog Computer,"
presented at the AlEE Summer General
Meeting, Denver, Colo., June, 1962; Univer
sity of Wisconsin Reprint No. 548.

3. SKILES, J. and HURLEY J., "Digital Simula
tion II: Applications," presented at the
AlEE Summer General Meeting, Denver,
Colorado, June, 1962; University of Wis
consin Reprint No. 549.

SIX DEGREE ... OF-FREEDOM SIM1JLATION

OF A MANNED ORBITAL DOCKING SYSTEM

J. C. Fox and T. G. Windeknecht
Control Systems Department

Space Technology Laboratories
One Space Park,

Redondo Beach, California

INTRODUCTION

This paper describes an analog computer
simulation of a manned orbital docking system
conducted as a fe~sibility study. In addition to
determining the possibility of a human operator
performing guidance and attitude control func
tions with a minimum amount of displayed in
formation, additional purposes of the study
were to determine (1) terminal values of range
rate, line-of-sight (LOS) angle, LOS rate, lat
eral miss, relative attitude angle, and fuel con
sumption, (2) pilot procedures and capabilities
and, (3) minimum display requirements.

The orbital docking system studied consisted
of an orbiting Earth satellite (target vehicle)
and a manned astrovehicle (chaser vehicle).
The target vehicle was assumed to be attitude
stabilized in a circular orbit so that the longi
tudinal (roll) axis was coincident with the
orbital velocity vector. Initially, the chaser ve
hicle was plaeed ahead of the target in a nearby
orbit with a fixed closing· velocity relative to
the target. Using a periscope view of the target
plus radar-derived range and range rate infor
mation, the pilot's task was to guide the chaser
vehicle toward the target such as to satisfy pre
scribed terminal conditions. In particular, he.
was required (i) to maneuver his vehicle into
the orbit plane of the target, (ii) to align his
roll axis with that of the target, (iii) to estab
lish a specified roll attitude relative to the

91

target, and in this orientation (iv) to reduce
the vehicles' separation distance with a decreas
ing rate of approach. The feasibility of this
task was heavily dependent upon the pilots'
ability to operate effectively with only the rela
tively small amount of explicit information pro
vided by the periscope and radar.

The study was oriented such that the initial
and final conditions could be related to condi
tions described in previous studies. (1,2) In ref
erence 1, the Manned Rendezvous Simulation
(MRS) study results were partially utilized to
define reasonable initial conditions of chaser
vehicle velocity and position with respect to
the target vehicle.

The MRS study considered the planar anal
ysis of a rendezvous system consisting of a
cooperative orbiting target vehicle and ~
manned chaser vehicle. The MRS chaser vehI
cle was assumed to have perfect attitude control
such that one body axis was directed along the
T f""'t.("'1 J.. .1-1 J... ___ L __ ..J ,... ____ ;:J Tnn ." l";~.n..rI
LVi.::) W LI1e Lal-gt:L i:UIU a. "~~Vl1U VVCl,Q Cl,H 6 H '''''A

normal to the orbit plane. Hence only transla
tional accelerations along and normal to the
LOS were considered in the MRS study. In
addition, the target vehicle was assumed to
continually point its docking face toward the
incoming chaser vehicle. Pilots, in the MRS
study were provided with metered displays of
the following quantities:

(1, 2) Superscript numbers refer to references.

92 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Range and range rate
LOS rate
Lateral velocity normal to LOS
Target elevation with respect to a local

horizontai

In the MRS study the initial and terminal
values of range were, respectively, 200,000 feet
and 1250 feet. Rendezvous was consistently
achieved with closing range rates of about five
feet per second and LOS rates near one mill i
radian per second at the terminal range.

The present docking study expanded on the
MRS two degrees-of-freedom study by consid
ering the complete six degrees-of-freedom of
the dynamics, by assuming a non-cooperating
target, and by requiring complete pilot control
over all chaser vehicle motion. The target vehi
cle was assumed to be attitude stabilized about
its pitch, yaw, and roll axes with motion re
stricted to its orbital plane at a constant orbital
rate. The target was assumed incapable of
guidance accelerations and variations from a
300-mile altitude circular orbit were not con
sidered. It was intended that the docking task
should be performed by the pilot using a mini
mum of displayed information, Le., in this
study, the pilot was provided with the follow
ing information:

Optical view of the target vehicle
Range rate and range (on log scale)

The present study considered the chaser vehi
cle to be initially 3000 feet away from the target
vehicle with a closing range rate of 30 feet per
second and with negligible* LOS rates (2 milli
radians per second or less). Various combina
tions of 10 degree chaser attitude errors were
also included as initial conditions. Termina
tion of each flight occurred when the docking
faces of the two vehicles reached an 8 foot
separation.

Reference 2 defines the acceptable limits of
terminal errors in position and velocity result
ing in successful dynamical operation of one
docking mechanism considered. The acceptable
limits, specified at a vehicle interface range of
10 feet, are

* The latter assumption does not appear to limit the
study "results. This is because in early portions of suc
cessful experimental flights, LOS rates of 1 and 2
degrees/second were recorded, indicating the ability
of the pilot to overcome such values of LOS rate.

(1) 15 degrees LOS angle (angle between
the vehicle roll axes)

(2) 1 deg/sec LOS rate
(3) 1 ft/sec closing velocity
(4) 5 degrees roll error
(5) 2 feet lateral center-to-center miss

The above set of terminal errors was taken to
represent a relative minimum performance cri
teria for the simulated flights.

A fixed-base cockpit simulator was utilized
as an integral part of the analog computer
setup. Two (three degrees-of-freedom) control
sticks were provided in the cockpit such that
the pilot commanded on-off translational accel
erations along each body axis and proportional
attitude rates about each body axis. In addi
tion, the cockpit contained a viewing port which
presented the pilot with the simulated optical
view of the target on a viewing screen (oscillo
scope) . Also present on the viewing screen
were metered indications of range and range
rate.

System Model and Coo'rdinates

The initial system orientation and the geo
metrical shapes of the vehicles are shown in
Figure 1. The cylindrical target dimensions
were 24 feet in length and 5 feet in diameter.
Referring to Figure 2, three docking face mark
ers (such as lamps) were assumed to be
mounted on the docking face of the target.
The markers were spaced 90 degrees apart so
that a relative roll error between the chaser
and target could be determined from the pilot's
display.

The chaser vehicle '~las assumed to have a
geometrical shape similar to a truncated cone
as shown in Figures 1 and 2. An optical sensor,
such as a periscope or TV camera, was as-

DOCKING FACE~
INERTIAL

VELOCITY

CHASER

EARTH RADIUS
TARGET LOCALE VERTICAL

EARTH

Figure 1. Orbital Docking System Initial Geometry.

SIX DEGREE-OF-FREEDOM SIMULATION OF A MANNED ORBITAL DOCKING SYSTEM 93

EARTH
RADIUS
VECTOR

Figure 2. Vehicle Orientation.

sumed mounted on and body-fixed to the chaser
docking face with the optical line-of-sight col
linear with the roll axis. The chaser transla
tional engines were assumed to be mounted
such that (i) misalignments between the line
of-force and center-of-mass could be neglected.
The chaser vehicle was also assumed to have
(ii) negligible cross products of inertia, (iii)
equal principal moments of inertia, and (iv)
rotational torques applied as independent
couples about each body axis. It is felt that
none of these assumptions limit the applica
bility of the results of the study. * The mass
and inertias of the chaser vehicle were treated
parametrically, hence numerical values of
thrust levels and fuel utilization are given in
normalized units.

Equations of motion and display equations
for the docking mission were programmed for
the computer by utilizing several orthogonal
coordinate sets pertaining to both vehicles. One
coordinate set is fixed to the target vehicle
with origin at the center-of-mass such that the
reference directions coincide with the principal
axes of inertia of the target. This set is de
noted the (ih·, ul', U;".) or target coordinate sys
tem. The Ux direction is defined as collinear
with (but opposite in sign to) the inertial
velocity vector of the target vehicle. The Uy
direction is defined as collinear with (and di-

* The first three effects would all tend to make the
attitude control task more difficult for the pilot because
of increased coupling between control axes and control
functions. However, the attitude control task as given
was demonstrated to be trivial even for untrained pilots.
Thus, the complication of the task due to the above
effects appears negligible. The fourth assumption is
valid because attitude control thrust is generally very
small compared to the thrust of engines used for
guidance.

rected upward along) the local Earth vertical
at the target center-of-mass. Due to the as
sumed attitude motion of the target, the Uz
vector is inertially fixed. The iix and Uy vectors
rotate at a constant (orbital) rate about uz•

(n is a positive rate according to the right-hand
rule). The chaser vehicle center-of-mass is dis
placed, respectively, distances X, Y, and Z
along the target reference directions ux, Uy,
and uz. This (X, Y, Z) target coordinate sys
tem is an expansion of the planar (X, Y) set
defined in reference 1.

For the purposes of this study, a set of
spherical coordinates (R, a, (3) were used to
describe the displacement of the chaser center
of-mass relative to the target coordinates in
stead of the rectangular coordinates (X, Y, Z).
In this set, R is the radial distance from the
target center-of-mass to the chaser center-of
mass, [3 is the angle between R and the X-Y
plane projection of R, and a is the angle be
tween the X-Y plane projection of Rand X
axis. These relationships are illustrated in
Figure 3. An explicit relationship between (X,
Y, Z) coordinates and the R, a, (3) coordinates
is given by

x = - R cos f3 cos a

y = - R cos {3 sin a

Z = R sin {3

(1)

To facilitate transformation of chaser body
rotations and body rates to the target coordi
nate system, an "ideal" chaser attitude coordi
nate system (UR, Us, UT) is defined as shown in
Figure 4. (The UR' US, UT) coordinate system
has its origin at the center-of-mass of the
chaser vehicle but is not body-fixed. The Un
vector is directed from the chaser center-of-

Figure 3. Target Coordinate System.

94 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

1
· ~ TARGET

Uy

(CM)T x

Figure 4. Ideal Chaser Attitude Coordinate System.

mass to the target center-of-mass. Us and UT
are chosen such that the set is orthogonal and
right-handed. Further conditions used to spec
ify the set are that ur is normal to the local
vertical at the target and that it makes an
acute angle with the Uz direction. The former
requirement specifies the relation (UT· Uy) = O.
The latter requires that the matrix relating the
(ih .. , ·Uy, uz) set with the (UR, Us, UT) set reduce
to the unit matrix for a = f3 = O. Utilizing
these conditions, the (orthogonal) matrix VV
relating the (UR, Us, itT) set to the (ux, ur, uz)
set according to

[~~] = [lY] [.~~]
UT Uz

(2)

becomes

where

r cos Il cos '"

~ ~~;:'Il s~n a cos '"

The line-of-sight (LOS) angle is defined as
the angle between UR and Ux and here is de
noted A. The LOS angle is related to angles a
and f3 by

A = cos-1 (cos a cos (3) (4)

By direct differentiation of equation (4), the
following expression for A, the LOS rate, can
be obtained:

A = a sin a cos {3 + {3 sin {3 cos a (5)
(1 - cos2a cos2{3) 1/2

A coordinate system, (Un Uy , Up) fixed in the
chaser vehicle may be conveniently defined as
follows. See Figure 5. The origin of the (Un Uy ,

Up) set is coincident with the chaser vehicle
center-of-mass and the directions of the set

m u, 8, __

w, ~-'(e ____ "- I Y __ UR'

~-- _--- 8
-::::;::.-:::::.--- P uR

Figure 5. Relation Between the Ideal Chaser Coordi
nate System (U R • us. UT) and the Body-Fixed Coordi
nate Set (ur • u y • up),

cos {3 sin a

o

(Q\
\'-IJ

coincide with the principal axes-of-inertia. The
ur vector lies along the longitudinal (roll) axis
of the chaser and makes an acute angle with
UR' The (un Uy , Up) coordinate set is defined
relative to the (UR, Us, UT) set of "ideal" atti
tude coordinates by the sequence of ordered
angular rotations depicted in Figure 5. In se
quence, the rotations have magnitude Op (pitch
angle),Oy (yaw angle), and Or (roll angle). The

SIX DEGREE-6F-FREEDOM SIMULATION {)F A MANNED ORBITAL DOCKING SYSTEM 95

rotational transformation matrix, [AJ, which
relates the (un Uy , Up) coordinate system to the
(UR' Us, UT) set according to

U y = [A] Us (6)

can be shown to be

1

[A] (7)

1

under small angle approximations on Op, Oy and
Oro Note that small angle approximations on
this transformation are justified on the basis
that the pilot's task was to maintain essentially
the "ideal" attitude defined earlier and that an
"adequate" control system for this purpose was
to be provided him.

In the light of the foregoing definitions, the
transformation of coordinates between the
target (ux, Uy, uz) set and the chaser (un Uy ,

Up) set may be written as

Ux

Uy [B] Uy (8)

Uz

where

[A] [W] [B] (9)

The [B] matrix elements were explicitly gen
erated in the computed simulation and are
given by

where

[

b11

[B] = b21

b31

(10)

(Op cos2{3 sin a cos a + Oy sin (3)
b 11 = cos {3 cos a - ...;....:..---=--------'''----------

b - . {3 + (Op sin {3 cos {3 sin a - Oy cos (3 cos a)
13 - -SIn

(J

() {3 (cos2{3 sin a cos a - Or sin (3)
b21 = - p cos cos a-

(J

b22 = -Op cos {3 sin a + (J (11)

() . {3 + (sin {3 cos {3 sin a + Or cos (3 cos a)
b23 = - p sm

(J

L ro ___ 1"1 _ _ _ I (Or cos2{3 sin a cos a + sin (3)
U31 = U y CUtS P CUtS a ""I

b O
• {3 (Or sin {3 cos {3 sin a - cos (3 cos a)

33 = - y SIn -
(J

The equations of motion for the translation of
the chaser c.m. with respect to the target-cen
tered (X, Y, Z) or (R, a, f3) coordinate set are
well known and defined elsewhere. (2, 3) The
equations of motion for body attitude rotations
of the chaser vehicle are similary defined in
reference 3. For the purposes of this paper,
discussion of the derivation of these two sets
of motion equations is not considered. The
equations of motion implemented in the com
puter program are set forth in the Appendix.

Displays

In the fixed-base simulator cockpit, the pilot
was presented with an oscilloscope display of
the docking and rear faces of the target. In
addition, log range and range rate markers
were superimposed on the same display sur
face directly below the periscope view as shown
in Figure 6. The circular target faces were
essentially the same size. The target docking
face was identified by roll axis markers which
were not present on the rear face. The display
dimensions corresponded exactly to a target
view as seen through an aperture on the chaser
docking face.

REAR FACES
OF TARGETS

FRONT fACE _--f-;.
OF TARGET

o 30 FT/SEC., RANGE RATE
I-----.J.....-_---I

• I
30 300 3000 FT., LOG RANGE

Figure 6. Optical Display.

96 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Again referring to Figure 6, attitude errors
were indicated in the display by the distance
that the centroid of the two target circles was
displaced from the center of the simulated
viewing screen. Guidance errors were indi
cated by the relative displacement of the front
and rear circles. This displacement was pro
portional to the LOS angle in the case of per
fect attitude control (Le., when the centroid of
the target coincided with the viewing port cen
ter) . Errors appeared 'on the display in this
manner because the optical sensor was assumed
body-fixed and pointing along the chaser roll
axis.

The generation of the periscope image of the
target as seen from the center of the chaser
docking face may be implemented by consider
ing two closed curves; one representing the
(circular) outline of the target docking face
and a second representing the outline of the
rear face.

Mathematically, the two curves to be dis
played may be defined by first describing the
components of two general points, one on the
rim of each face of the target vehicle, in a par
ticular coordinate system fixed to the chaser
vehicle. This coordinate system has its origin
at the center of the docking face of the chaser
and its directions are parallel to those of the
chaser body coordinate system previously de
fined. The components of these general points
required for display are those parallel to the
chaser yaw and pitch axes (and are referred
to as the chaser vertical and horizontal display
components) .

The entire outline of each face is described
if the two general points previously defined
are considered to move around the rim of the
target face as a function of time. In particu
lar, one can consider the general points to trace
out their respective faces at a constant angular
rate. With respect to generating a display of
the target, it can be seen that an observer
located at the center of the chaser vehicle dock
ing face, who watches the moving points, es
sentially sees a continuous picture of the faces
of the target. A requirement which assures the
continuity and accuracy of the image is that
the angular rate of the moving points be large
compared to the rates associated with the target
and chaser vehicle motions.

In an analog computer simulation, the mo
tion of the points on the target faces can be

introduced by use of a constant frequency si
nusoid generator. The superposition of the
target faces on a single oscilloscope display
requires use of an electronic switch that com-
11lutates the siguals which drive the "x" and
"y" inputs of the oscilloscope. Roll axis mark
ers may be superimposed on the curve repre
senting the front (docking) face of the target
by impulsively increasing the oscilloscope in
tensity for appropriate values of the phase
angle of the output of the sinusoidal generator.
These techniques were utilized in the present
study.

Referring to Figure 7, a general point (PI)
located on' the rim of the target docking face
may be expressed in target coordinates as a
function of the target cylindrical radius (a,)
and the distance (l) from the face to the ve
hicle center of mass:

Pr: J:::: :in ~ (12a)

lz! ~ a cos ~
Similarly, a general point (Pr) on the target
rear face is,

P,: f::: ::in ~ (12b)

lz, ~ a cos ~
The points PI and P r may be conveniently

expressed in terms of distances (Xa, Y d, Za)
measured along target coordinates but refer
enced to an origin at the chaser center-of-mass
as follows:

{

X dt = -l + R cos {3 cos a

Pt: Y dt = a sin cf> + R cos {3 sin a

Z d, = a cos cf> - R sin {3

{

X d = l + R cos {3 cos a

P r : Y d: = a sin cf> + R cos {3 sin a

Z dr = a cos cf> - R sin {3

(13)

The points (Ph P r) may next be transformed
into chaser body-fixed coordinates by use of
the B matrix Le.,

[B]
(14)

SIX DEGREE-OF-FREEDOM SIMULATION OF A MANNED .ORBITAL DOCKING SYSTEM 97

Figure 7. Target Display Surfaces.

The components of P, and P r required for dis
play are those which lie along the chaser yaw
and pitch axes. These quantities are, dy and

f
dp respectively, in the case of the front target

f1ce. Performing the indicated matrix multi
plication gives,

dYf = b21 (-l + R cos 13 cos a)
+ b22~a sin c/> + R cos 13 sin a)
+ b23 (a cos c/> - R sin {3)

dPf = b31 (-l + R cos 13 cos a)
+ b22(a sin c/> + R cos (3 sin a)
+ b33 (a cos c/> - R sin {3)

(15)

Identical expressions may be obtained for the
rear face components in chaser coordinates ex
cept that (-l) is' replaced by (+l). Since
the bij terms are functions of the chaser atti
tude angles, the above equations give a general
point on each face of the target in chaser coor
dinates as a function of range (R), LOS angle
(a, (3), attitude angles (Or, Oy, Op) and target
dimensions (a, l) .

Equations (15), must be divided by the dis
tance (Q) from the center of the chaser docking
face to the center of the front face of the
target. This is required in order to maintain
the proper ratio of optical image magnitude
to optical path length in the quantities to be
generated as oscilloscope display inputs. To
generate the continuous optical display of the
target faces, the quantities cos cp and sin cp may
be replaced with cos cut and sin cut. These func
tions are derived from a sinusoidal generator
operating at a constant angular frequency (cu).

In light of the foregoing, the oscilloscope
input quantities are defined by:

d Yf vertical optical component of
Iv Q' target front fa'ce in chaser co

ordinates.

I = ~f horizontal optical component of
H Q ' target front face in chaser co-

ordinates.

dYr vertical optical component of
rv = Q' target rear face in chaser GO-

ordinates. J
r = dpr horizontal optica;l .component of

H Q ' target rewr face III chaser co-
ordinates.

Writing out these expressions results in

d

I v = df = b 21 (- ~ + ~ cos 13 cos a)

+ b22(~ sin wt + ~ cos 13 sin a)

+ b23 (~ cos wt - ~ sin 13)

I H = ~f = b31(- ~ + g cos (3 cos a)

+ b32(~ sin wt + ~ cos (3 sin a)

+ b33(~ cos wt - g sin 13)

(16)

(17)

Expressions for the rear face components (rl"
rH) are identical to Equations (17) except that

(~) replace (- ~).

In this study (Q), the optical path length,
was considered to be given by the approximate
expression

Q ~ R - (m + l) (18)

where m is the distance along the chaser roll
axis from the center-of-mass to the chaser
periscope aperture. (See Figure 8.)

This assumption is justified on the basis that,
(1) at long range, when attitude errors and the
LOS angle may be great (m + l) is much less
than R, and (2) at short range, because atti
tU'de errors and the LOS angle must then be
small, the distances Q and R are essentially
collinear.

N ear the terminal conditions, under the as
sumption that f3 and a are small angles, Equa
tions (17) reduce to

98 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Because the angles (Op, 0.,,, a, and (3) must all
be small for successful docking, the products

(
R R R R) Op Q' Oy Q' a Q , and Or a Q are all second-

order terms as R becomes small. This fact
justifies the approximation that for R <300

feet, ~ = 1 in these terms. If a reasonable

terminal configuration is achieved, the front
face display quantities will be dominated by
the terms:

f l a. I v = Op Q + Q sm wt
l a (20)

f II = - 0 Y Q + Q cos wt

Equations (20) present the form of the dis

placement of the target face center8 (0 ~)
corresponding to attitude error and the termi
nal magnitude of the circular docking face

radius (~).

Figure 9 depicts typical errors displayed
during a flight (although attitude errors (eell'
eep) would normally be corrected prior to the
500 ft. range shown). In Figure 9, points 1, 2
and 3 were not explicitly displayed and hence
were estimated by the pilot. In order to correct
the error~ rli~p]ayed, the pilot would: (1) com
mand a negative attitude pitch rate, W p , until
eep was nulled, (2) command a left yaw rate,
W y, until eey was nulled, (3) command a clock
wise roll rate, w,., to correct for On (4) apply
a positive vertical guidance thrust until a rate
was detected in ea , then apply compensating
negative thrust to null the rate (a) such that
the rate would become zero when ea was small,

'L--: _~~~:_).~~==Q~==R-==-==-==~·=Er-t~~=j:!:..\ M:::sJ()

:

Figure 8. Terminal Geometry.

(19)

and (5) apply positive horizontal guidance
thrust to correct el3 in the same manner as in
(4) .

During the initial portion of a flight, the pilot
was provided with a magnified display of the
target vehicle. The percent of magnification
used increased the optical view of the target
diameters by a factor of 20 and corresponded
to a periscope viewing cone angle of 3.5 degrees.
The display magnification was required to pro
vide adequate LOS and attitude information to
the pilot during the time when a normal optical
image would be extremely small (i.e., for 3000
to 300 feet range). When the range decreased
to 150 feet (nominally) the pilot manually
switched to a non-magnified view of the target.
This short range display assumed a periscope
viewing cone of 70 degrees. The terminal view
ing angle was one of the conditions which de
termined the minimum range considered in
the study. The minimum (vehicle) interface
range was also dependent upon the target dock
ing face diameter (5 feet) and upon the width
on the display screen of the target docking face
at termination (1/2 display screen width).
U sing the above factors, the terminal inter
face range was then fixed at 8 feet.

The range and range rate information shown
in Figure 9 were assumed to be radar derived~
The resolution of visual determination of these
quantities was purposely limited by the width
of the display markers . shown in the figure.
The marker widths corresponded to an uncer
tainty in range rate of ± .25 fps and an uncer-

ef3 = displacement due to LOS angle

e a ~ di splacement due to LOS angle

eO
y

"" displacement due to yaw error

eO
p

== displacement due to pitch error

8, == relative roll angle

Point 1: Center of target docking face

Point 3: Torget centroid

o 30 FT/SEC
R. RANGE RATE +i --t--+--+-----ij

R, LOG RANGE +-1 ---+1 -----+1'--+1 ---41
30 300 500 !ooo 3000 FT

Figure 9. Error Interpretation from Optical Display.

SIX DEGREE-OF-FREEDOM SIMULATION OF A MANNED ORBITAL DOCKING SYSTEM 99

tainty in short scale range of ± 3 feet. For the
final phase of the flight (range less than 300
feet), a fine indication of range rate was sup
plied on a meter with a scale resolution of ± 0.1
feet per second.

The simulation of the target optical image
did not include the parallax effect of the front
and rear target faces. The parallax effect is
significant at short range when the front face
appears larger than the rear face. LOS angles
less than a value determined by the range
cannot then be determined in the physical case.
This limitation, however, does not restrict the
results of the study (as obtained from use of
the simulated display) since LOS information
can easily be derived from a view of the targets'
front face alone.

A method of obtaining LOS information
near the terminal range, with a sensor of the
kind as considered in this study, requires addi
tion of an auxiliary LOS angle indicator
mounted on the target docking face. As shown
in Figure 10 the auxiliary indicator consists
of an illuminated collapsible rod on which are
mounted LOS centering disks. With this device,
LOS angles can still be detected accurately
when the rear face view is lost. This LOS in
dicator could also be mounted on the rim of the
target docking face if the chaser periscope was
correspondingly rim-mounted. This configura
tion would also serve to indicate roll errors.

TARGET

Figure 10. Terminal LOS Indicator.

Controls

As shown in Figure 11, the pilot was pro
vided with two 3-axis controllers for guidance
and attitude control corrections. The left-hand
controller commanded translational accelera
tions along the longitudinal (roll), vertical

POS
VERT

THRUST

NEG ~ LONG
THRUST EG

VERT
THRUST

POS
HORIZ
THRUST

ROLL,.
C.C.w.

PITCH
UP

GUIDANCe: 3-AX!S CONTROLLER toes 3-AXiS CONTROLLER
(LEFT HAND) (RIGHT HAND)

Figure 11. Translational and Rotational Controls.

(yaw) and horizontal (pitch) axes of the
chaser. The accelerations generated on the
chaser body were in the same direction as the
hand motion. As shown in Figure 12, the chaser
translational engines were assumed to be the
on-off type. Three translational channels (iden
tical except for thrust level) were used for gen
eration of longitudinal, vertical, and horizon
tal accelerations.

CONTROL
STICK

ACCELERATION
COMMAND

+ LIMITER INTEGRATOR

Figure 12. Guidance Command System.

With the right hand controller body angular
accelerations could be generated for attitude
control. The attitude control channels contained
rate gyro feedback as shown in Figure 13.
Three identical channels were provided for atti
tude control about each chaser body axis. The
commanded rates were in the same direction
as the hand motion, e.g., deflecting the attitude
control stick downward produced a negative
(nose down) pitch rate.

In addition to the controllers shown in Fig
ure 11, other controls available to the pilot were
the long range/short range periscope magnifi
cation switch and an on/off switch for initiat
ing and terminating the flight.

CONTROL
STICK
BODY
RATE
COMMAND

COMMANDED
RATE

BODY 1--.....-. RATE
Iwl

Figure 13. Attitude Oontrol System.

100 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

System Performance

Five pilots (referred to as pilots A through
E) were selected for simulator training. Selec
tion was based on the requirement of non
familiarity with the orbital docking system.
However, pilots D and E were deliberately
selected because of their previous aircraft flight
training and experience. The latter was done
for the purpose of comparing aircraft flight
procedures with the simulated orbital flight
tasks and also to determine if previous aircraft
experience provided an advantage in achieving
successful docking.

Each pilot received training prior to the data
flights from which the statistical averages were
determined. The training started with an ex
planation of (1) the system and its character
istics, (2) desired terminal conditions for a
flight, (3) the 3-axis controllers and effect of
accelerations, and (4) the optical display, range
and range rate markers (including the fine
range meter). Subsequently, a total of 2 hours
of test flights (prior to making the data flights)
were made by each pilot in 112 hour increments.
During the test flights, discussion of the pilots'
progress took place freely and suggestions for
improvement were made.

It was suggested, (3) prior to the start of the
simulation, that the pilot follow a nominal ap
proach guidance law determined by keeping
the range rate and log range markers vertically
aligned (See Figure 6). This procedure, how
ever, resulted in excessive LOS rates and angles
during the initial part of the flight. An experi
mentally determined R-R schedule is shown in
Table 1 below.

Range Rate, ft/ sec
25
20
10
5
2
1 or less

Range Interval, feet
3000-2000
2000-1000
1000- 500

500- 100
100- 50

50-Dock (28)

Table 1: Approximate Range Rate-Range
Schedule

A suggested range of values for guidance
and control parameters was given in one of the
study directives. Through experimentation a
satisfactory set of values was determined for
use in the simulation, all within the suggested

limits. The control parameters used during
data flights were:

Longitudinal acceleration
Vertical and horizontal

acceleration
Command body rate

saturation level
Rotational acceleration

saturation level

1.5 ft/sec2

0.5 ft/sec2

1.15 deg/sec

0.7 deg/sec2

Note the use of a larger translational accelera
tion along the longitudinal axis than along the
other two body axes. This proved desirable so
that large corrections in range rate could be
made in a relatively short time.

Each pilot made an identical set of 12 data
flights (starting with 12 sets of initial condi=
tions). The sequence of initial conditions was
varied randomly for each pilot. The data re
ferred to in the following was derived from the
successful flights.

A set of average terminal values has been
computed for each pilot (A through E) so that
comparisons of average pilot performance can
be made. Further, an overall set of statistical
average terminal values has been compiled. The
originally specified acceptable limits on ter
minal values are easily satisfied by the overall
average values as given in Table 2.

Terminal LOS angle 4.2 degrees
Terminal LOS angular rate 0.5 degrees/sec
Terminal Lineal closing

velocity 0.4 feet/sec
Terminal Relative roll angle 3.3 degrees
Terminal Lateral center-to-

center miss 10 inches
Time of Flight 6.7 minutes
Normalized * Guidance Fuel

used 71 feet/sec
Normalized* Attitude con-

trol fuel used 19.5 degrees/sec

Table 2: Overall Statistical A verage Ter
minal Values (5 pilots)

In Figures 14 through 21 the average terminal
values of each pilot are presented on a bar
graph to facilitate comparison of individual
pilot performances. The overall average is in
dicated with a dashed line.

* Body mass and inertias not explicitly defined
numerically.

SIX DEGREE-OF-FREEDOM SIMULATION .OF A MANNED ORBITAL DOCKING SYSTEM 101

DEGREES

6.0 -1----E

5.0 - A

~-----Q--AVERAGE
4.0 - 4.2 DEGREES

1----8

3.0 -
~--C

2.0 -

I.°L
--0

Figure 14. Average Terminal LOS Angle.

OEG/SEC

0.8

0.7

0.6

E

8
0.5 -----~--AVERAGE

o 0.5 OEG/SEC

0.4

0.3

0.2 C

0.1

---- 0 ~-------

Figure 15. Average Terminal LOS Rate.

Referring to Figures 14 and 15, the variation
of the individual average of the pilots from the
overall average is approximately 50 % of the
overall average value for both LOS angle and
LOS rate. Note that excluding pilot E data
would lower the overall average values sig
nificantly. On an individual flight basis, the
extremes of terminal LOS angle and rate re
corded were:

LOS angle
LOS rate

0.5 to 11.0 degrees
0.1 to 1.0 deg/sec

The overall average value of range rate (0.4
ft/sec) and the variation of individual averages
from this value are small as shown in Figure
16. The acceptable limit on terminal range rate
was defined to be 1 ft/sec. Hence these average
terminal values easily satisfy the requirement.
A large variation between pilots in lateral miss

was recorded (Figure 17). It is felt that this
variation would be reduced with increased pilot
training.

FT/SEC

0.5 -1----0

I----E
---------AVERAGE

0.4 -4--- C 0.4 FT/SEC

t=:==:
0.3 -

0.2 -

0.1 -

------ 0 -L-_____ _

Figure 16. Terminal Range Rate.

FT

1.25 -1----- 0

1.00 _I----E

'--------- AVERAGE
0.77 FT.

0.75 -1--__

0.50 -

0.25 -

--- 0 -'---------

Figure 17. Terminal Lateral Miss.

Average roll errors are shown in Figure 18.
It should be stated in connection with Figure 18
that during the earlier flights, some of the pilots
concentrated on LOS corrections and neglected
to correct the roll error until almost the last
possible moment. After being instructed to de
vote more attention to roll angle error, the
corrections were made- quite easily. In view
of this, it is reasonable to assume that the aver
age roll angle error as shown is actually greater
than would be realized with more training.

102 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

DEGREES J
6.0 J
5'0J=~
4.0 ~

3.0 r----i~~E~:~~EES
2.0 C

I.°L
---0 ---

Figure 18. Terminal Roll Angle Error.

As shown in Figure 19, four of the pilots had
similar average flight times, while pilot B's
average is somewhat lower. Pilot B's data per
haps gives an indication of the minimum flight
time to be expected for the given set of initial
conditions. Note that pilot B's average ter
minal conditions are generally below the overall
average; hence his performance was not gen
erally degraded relative to the other pilots by
maintaining a high closing velocity.

SECONDS I
600~

500~ C
~EA

400 ----Q-AVERAGE
400 SECONDS

300 B

200

100

--- 0 ..L.-__ _

Figure 19. Time of Flight.

As indicated by Figure 20, the individual de
viations from the overall average of guidance
fuel required was small, indicating that all the
pilots encountered approximately the same de
gree of difficulty in making efficient guidance
corrections. Note that an "absolute" minimum
of guidance fuel would correspond to the initial
condition on range rate of 30 ft/sec. However,
orbital coupling in general increases the "abso
lute" minimum somewhat above this value as
does the requirement for maneuvers to termi
nate in the target's orbital plane. The devia
tions from the overall average of attitude con
trol fuel in Figure 21 appear to be relatively
large. However, if typical values of inertias,
moment arms and specific impulse are assumed

for the vehicle, the individual averages of
normalized ACS fuel as well as the overall
average can be shown to be very small in terms
of weight.

FT/SEC

90.0

B

75.0 A

--- -c.. -AVERAGE
E 71.0 FT/SEC

60.0-+---0

45.0

30.0~
15,oL

--0

Figure 20. Normalized Guidance Fuel.

DEG/SEC}-

30.0
o

25.0
C

20D --- - - - AVERAGE
A 19.5 DEG/SEC

15.0 B

E

10.0

5.0L
---0

Figure 21. Normalized ACS Fuel.

DISCUSSION

Minimal display requirements are related to
the level of pilot training. The display used in
this simulation has been demonstrated to be
adequate (since docking feasibility was estab
lished). It is felt, however, that pilot training
was not high enough to permit optimal utiliza
tion of the displayed information. One of the
most neglected features of the display was the
roll error indication. Roll errors frequently
were not corrected until very near the terminal

SIX DEGREE-OF-FREEDOM SIMULATION OF A MANNED ORBITAL DOCKING SYSTEM 103

point or not at all. This was because the pilots
had not fully integrated left and right hand
motions. In the latter part of the data flights,
when the training level was higher, the errors
due to concentration on one control or the other
decreased considerably.

Only approximate indications as to the mini
mum display requirements were derived from
the study due to the limited time available. Pilot
A made three flights with no R-R information
given, the first which was very successful. The
second flight was moderately successful, while
the third flight was not suceessful. Pilot D made
one flight with no R-R information, but was
given a metered indication of LOS angle. This
flight was moderately successful. It appears
that a highly trained pilot may be able to ade
quately estimate values of R and Ii from the
display alone. It is conceivable that docking
systems need provide the pilot with only a
periscope display.

A potentially useful addition to a display
would be a metered indication of LOS rate.
This information could decrease the difficulty of
the flight significantly as LOS rate was the
quantity most difficult for the pilot to estimate.
As the study has shown, however, LOS rate
information is not necessary for the success of
a flight. . Of course, hardware considerations
may preclude the sensing of LOS rate.

The most sensitive factor affecting the rela
tive success of the data flights was the terminal
value of lateral miss. In no case was a flight
unsuccessful due to unacceptable terminal
values of LOS angle, LOS rate, or roll angle
error. Eight flights were unsuccessful because
of unacceptable lateral miss. It is felt that some
of these large values of lateral miss may have
been caused by a contradiction in the pilot's
instructions. For example, the pilots were told
to align the target centroid with the display
center so that the proper gllidance corrections
could be easily determined. However, a contra
diction of this instruction was given, as the
pilots were also told to perform attitude correc
tions such that the target front face would be
centered at the terminal point. The pilots were
also instructed not to make extreme attitude
corrections during the last few seconds of the
flight although some of the pilots did not adhere
to this procedure. If these last second correc
tions had been made, the lateral miss could
have been corrected at the terminal point in

many cases (but not without a subsequent
change in LOS angle).

One observation that can be made from the
study data is that no particular set of initial
conditions proved to be significantly difficult
compared to any other set. It can be concluded
from this that the relative success of the flight
is independent of the initial conditions (within
the limits given).

To determine the relative Sllccess of a flight,
an error criterion was developed as the sum of
weighted values of the terminal conditions. By
intuitive reasoning, velocity quantities were as
signed a squared weight while angles and
lengths were weighted linearly.

Nominal terminal values of a successful flight
were arbitrarily taken to be :

0.5 ft/sec range rate (R)
5.0 degree LOS .angle (A) •
0.5 degree/sec LOS rate (A)
5.0 degree reI. roll angle (Or)
0.5 ft lateral c-c miss (0)
70 ft/sec norm. guid. fuel (F G)
20 degree/sec norm. ACS fuel (FA)

Constant weighting factors were assigned to
make each term in the following error criterion
equal to unity for a nominally successful flight.

E = 4(R) 2 + ~ + 4 (X) 2 + ~ + 2(0) + F G + FA
T 5 5 70 20

Defining ET = overall terminal error, the
nominal value is;

E Tnom = 4(.5)2 + ~ + 4(.5)2 + ~

70 20
+2(.5) + 70 + 20 = 7

As an indication of the relative success of the
pilots' orbital docking missions, a tabular ac
count of the four most successful flights made
by each pilot is presented below, as determined
from the (ET) error criteria.

Several interesting conclusions ruay be noted
from the selected data. The most successful
flight by each pilot (with lowest E T) was
always made on the later flights (sequence No.
6 or later). Only 5 flights of the 20 shown were
made with a sequence number lower than 6.
The 11th flight for each pilot (none with the
same initial conditions) was among his most
successful, indicating that increased training
level allowed a significant improvement in the
later flights. A more detailed analysis and dis
cussion of the data is given in Reference 3.

104 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Flight Flight Flight
Pilot Sequence Initial Conditions, degrees IC Time, ETnom=7.0

No. No. sec. ET

I ex (3 8r By OJ')

A 11 +20 0 0 10 10 2 300 3.81
9 +20 +20 0 10 10 4 423 3.86
6 20 0 10 0 0 6 464 5.42
if -20 0 10 0 0 5 348 7.11 ':t:

B 11 0 20 10 0 0 7 311 5.03
4 20 20 10 0 0 8 225 5.06
2 -20 0 10 0 0 5 238 5.10
7 +20 0 0 10 10 2 326 6.10

C 8 0 20 0 10 10 3 372 3.27
6 +20 20 0 10 10 4 437 3.66

11 +20 0 10 10 10 10 388 3.91
I 10 -20 0 0 10 10 1 351 4.95

D 6 20 0 10 0 0 6 260 3.94
7 -20 0 0 10 10 1 291 5.50

10 0 20 0 10 10 3 308 5.51
11 -20 0 10 10 10 9 485 8.99

E 10 0 20 10 0 0 7 342 3.61
5 -20 0 10 10 10 9 459 5.05
1 0 20 10 10 10 11 510 6.84

11 20 20 10 0 0 8 412 7.85

TABLE 3

Successful Flight Data

APPENDIX

The translational equations of motion are
derived from perturbation equations(!) where
the difference in orbital radius is small com
pared to the total orbital radius with respect to
earth center-of-mass. In the (ux, Uy, uz) co
ordinate system, the translational equations
are:

ax = x· - 2Qjj
ay = y + 2Qx· - 3Q2y (A-I)
az = z· + Q2Z

As chaser body translational accelerations
are generated along body axes in the (un Uy , Up)
set, the [B] matrix transformation is utilized
such that;

where (an ay , ap) are pilot-commanded accelera
tions. The chaser body rotational accelerations
are given by;

· Wr

• My
Wy = -I-

• }vI p
Wp = -1-

(A-3)

where Mr My, Ivip, are, respectively the control
torques applied about the roll, yaw and pitch
axes.

REFERENCES

1. WAKAMIYA, Y. and WARD, J., "Manned
Rendezvous Simulation," STL/TM
9313.8-153, November 1961.

2. WARD, J., and WILLIAMS, H., "Orbital
Docking Dynamics", ARS Paper 1953-61.
Guidance, Control and Navigation Con
ference, August 1961.

3. Fox, J., and \VrNDEKNECHT, T., "Six-De
gree-of-Freedom Simulation of a Manned
Orbital Docking System", STL/TM
9352.8-37, April 1962.

APPL!CAT!ON OF HYBR!D ANALOG AND DIGITAL TECHNIQUES
IN THE

AUTOMATIC MAP COMPILATION SYSTEM

Dr. S. Bertram
Thompson Ramo Wooldridge Inc.

RW Division
8433 Fallbrook Avenue

Canoga Park, California

SUMMARY

The Automatic Map Compilation System,
developed and operating at Thompson Ramo

Wooldridge abstracts terrain altitude informa
tion from aerial photographs by correlating the
imagery appearing on stereo pairs, and outputs
contour information and new photographs in
which the imagery appears in "true" ortho
graphic projection position. The system uses a
small digital computer to control analog ele
ments that provide access to the photographic
store and process the resulting signals to meas
ure the altitude errors; the errors are then pro
vided as an input to the computer. The system
operates through a set of continuous profiling
operations to cover the stereo area.

Since the input for the map compilation is
in analog form as pairs of photographs, some
precision analog equipment is required for the
processing. The solution described avoids trans
ferring the information to a digital store, and
thus tremendously simplifies the storage· and
data handling problem. In effect, the integra
tion of the computer with the analog elements
produces a special purpose computer that is
extremely efficient for the application. The
system represents a solution to a problem which
until recently was believed to lie exclusively
within the domain of human sensory functions,

viz., the precision mechanization of stereo per
ception for the purpose of measuring altitudes
from aerial pho~ographs.

INTRODUCTION

The Automatic Map Compilation System
developed at Thompson Ramo Wooldridge under
the auspices of the U.S. Army Engineer
Geodesy, Intelligence and Mapping Research
and Development Agency correlates the imagery
appearing on stereo pairs of aerial photographs
and outputs a chart showing the altitude con
tour intervals over the stereo area and a new
photograph in which the imagery has been
moved so as to appear in correct orthographic
projection position to a selected scale. The sys
tem utilizes a combination of digital and analog
techniques to achieve the required accuracy and
speed of operation. In effect, a sm.all digital
computer is integrated with an analog memory
and other peripheral equipment to obtain a very
effective special purpose computer.

105

The input data for a given compilation is in
the form of a pair of aerial photographic trans
parencies together with pertinent camera data;
i.e., position and attitude of camera for each
transparency, focal length of camera and dis
tortion characteristics of the lens. The amount
of detail information available in the photo-

106 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

graphs and the nature of the access require
ments makes it expedient to use the original
photographs as the principal data store for the
system.

The system therefore requires a digital com
puter being on-line with suitable scanning
equipment to provide access to the photographic
store. It is also convenient to process the photo
graphic data external to the computer and to
store the desired output information on new
photographs prepared by the equipment. The
process then reduces to one in which the digital
computer provides precise control information
to the analog system with the analog system
providing feedback in the form of measured
errors which then serves to keep the computer
functioning in response to the photographic
store.

DEVELOPMENT OF HEIGHT-ERROR
SIGNALS FROM STEREO PAIRS

The development of a height-error signal,
the key· to automatic map compilation, can be
seen by reference to Figure 1. Two camera
stations C and C' are shown together with an
object point P on the surface and its images
p and p' in the film plane for the two camera
positions. Suppose that the point P was, in
some manner, estimated to be at Pc, i.e., below
its correct position. One would then be led to
look for p and p' by scans sand s' centered on
the two representations of P e; it is obvious that
p appears to the left of center and p'. to the
right of center in these two scans. If Pc had
been estimated too high instead of too low, then
p would appear to the right of center and p; to
the left of center in the two scans. Since P is
an arbitrary point in the stereo field, its location
in a scan is meaningless. Of extreme signifi
cance, however, is a comparison of the position
of corresponding imagery within the two scans.
If the altitude selected is correct, corresponding
imagery will appear at the same positions in
the two scans, while if there is any altitude
error it will show up as a proportionate shift
in the positions in the two scans. A measure
ment of this shift is, therefore, equivalent to a
direct measurement of the error in the estimate
of altitude. It is of interest to note that the
camera separation B is made large--of the
order of the altitude-to exaggerate the shift
ing of the images with altitude changes.

In the Automatic lVlap Compilation System,
flying-spot scanners are used to obtain signals
from areas estimated to be centered on the same
point on the surface. If, as shown in Figure 1,
scanning proceeds from left to right a low esti
mate of altitude will yield signals in which
elements from C are ahead in time of corre
sponding elements from C'; for a high height
estimate, the reverse is true. Correlation cir
cuitry, described below, is used to match cor
responding signal components and to provide
an appropriate output to the related control
elements.

I- B • I
~'

SYSTEM DESCRIPTION

The photographs to be compiled, in the form
of positive transparencies, are mounted to
gether with a photosensitive film sheet on a
common carriage, as shown in Figure 2. The
carriage is mounted on precision ways, and
arrangements made to communicate its position
to the computer. For the purpose of the com
pilation, a rectangular system of coordinates
is used with the origin centered at one camera

I~I I~R_I

I PHOTQ
i SENSITIVE

FILM
SHEET

Yo

L"

APPLICATION OF HYBRID ANALOG AND DIGITAL TECHNIQUES 107

station and the Z axis passing through the
second camera station extending vertically
upward"s. These are related to carriage coordi
nates through the desired scale factor; i.e.,
Xo = X/m and Yo = Y /m while Zo = Z/m is used
in the computer program. This coordinate sys
tem permits a common Yo value and Xo and Zo

values that are simply displaced by the corre
sponding camera station separation components.

In this system of coordinates, the position of
a given terrain point as it appears on the two
photographs (assuming a distortionless lens)
may be expressed by the relations

\
UIX + U2Y ()

X = WIX + W 2Y + Z la

VIX + V 2Y
y = W IX + W 2Y + Z (1 b)

and, for the second photograph

U~(X - B) + U~Y
x' = W~(X - B) + W~Y + (Z _ ilZ) (lc)

V~(X - B) + V~Y
y' = W~(X - B) + W~Y + (Z - ilZ) (ld)

Equations (1) are in normalized form; the
origin of coordinates in the photographs is
taken to be the nadir point, the point where
the vertical through the center of the lens
passes through the film (and hence where the
image of the point directly beneath the camera
appears). The origin of coordinates of the
field of view, i.e., of the (X, Y, Z) system, is
taken to be at the position of the lens for the
first photograph; the displacement B of the X
coordinate, and ~Z of the height coordinate for
the second photograph represent the change in
position of the camera station for the two
photographs.

Equations (1) permit the calculation of the
coordinates on each of the photographs where
a given spatial point (X, Y, Z) is to be found.
In general, the positions (x, y) and (x', y') will
not agree with the table position (xo, Yo) ; the
system permits the observation of the offset
position through the use of a flying-spot scan
ner with an associated imaging lens whose posi
tion is under the control of the computer. The
imaging system is shown in Figure 3. The
flying-spot scanner is shown positioned over a

FLYING-SPOT SCANNER

LENS MOVES UNDER
COMPUTER CONTROL

point (xo, Yo) with the lens displaced by (XI,

Yl) so that a centered- spot would be imaged
at a desired position (x, y).

Four flying-spot scanners are used--()ne with
each photograph and two for data printout.
The latter are used with fixed lens so that the
data is printed out at the position (xo, Yo);

i.e., at the properly scaled map coordinates of
the area under observation at a given time.
Data printout takes two forms: (1) An altitude
chart exposed by computer control of the bright
ness of one scanner in accordance with the
measured altitude; three brightness levels are
used in a rotary sequence to show successive
contour intervals; (2) A new photograph ex
posed by reproducing the image picked up by
one of the photograph scanners and imaging
it appropriately on" the photosensitive film
sheet.

During the setup operation, the photographs
are mounted so that their axes agree closely
with the machine axes. The computer then
directs the system to move to the position of a
point which can be identified easily and whose
photographic coordinates are accurately known.
The operator observes the scanned area as re
produced on a stereoviewer, basically a twin
TV system having an electronically generated
crosshair. Through Flexowriter control of the
computer, the operator moves the lenses until
the required point on the scanned area is cen
tered on the crosshair; when this has been
accomplished, the computer records the posi
tion of the point in system coordinates and then
moves the scanned area to a second point where
the operation is repeated. Once this has been
accomplished, the computer modifies the coeffi-

108 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

cients of equations (1) (including a shift of
the origin) and commands the system to move
to a third "check" point as defined by spatial
coordinates (X, Y, Z) so that the modified
equations (1) are used. If the check point is
well centered in the crosshairs, it is assumed
that the correct relationships have been entered
into the computer and the compilation process
is started.

The compilation operation consists of a series
of profiling runs in each of which Xo is con
stant and Yo proceeds in 0.010 in. steps. At each
step, with Xo and Yo defined and an estimate of
altitude available from previous measurements,
the computer performs the arithmetic indicated
by equations (1), subtracts Xo or Yo to obtain
the required offset to iocate the estimated point
on the two photographs and outputs the result
ing four values to corresponding digital-to
analog converters. The computer also outputs
a signal corresponding to the altitude of the
camera above the point under consideration
and a signal to control the printing of the alti
tude chart. The analog system then takes over
while the digital system proceeds to update the
information for the next measurement point.

The rasters of the .:flying-spot scanners are
centered on the designated areas by the servos
acting in response to the corresponding d/a
outputs. In addition, the rasters are individ
ually controlled in shape and size so as to scan
the photographs in one-to-one correspondence
with the instantaneous position of the printout
scanner exposing the new orthographic projec
tion photograph. The process is best explained
by the pertinent mathematics: let equations
(la) and (1 b) be rewritten in the form

x = F(xo, Yo, zo) (2a)

y = G(xo, Yo, zo) (2b)

If the nominal orthophoto position (xo, Yo) is
varied by (dxo, dyo) the corresponding changes
in x and yare given by

replaced by F' and G'. The current implemen
tation includes only the scaling terms a F / axo
and aG/ayo as obtained by a low accuracy d/a
from the computer. It has been demonstrated
that an appropriate error signal for use in
implementing the terrain slope terms a zo/ axo
and a zo/ ayo can be obtained by the analog sys
tem by comparing the altitude error signals on
appropriate halves of the scan. It is anticipated
that the scan equations will be more completely
approximated in the near future with the re
mainder of the partials required to implement
the scan equations (3) obtained from the
computer.

With the two photographs examined at
nearly corresponding areas and with the scan
ning proceeding along lines that are effectively
in the direction of the camera separation, it is
possible to use straightforward analog correla
tors to detect any height error as evidenced by
a time delay of corresponding elements in the
pair of video signals.

The height-error measuring unit is dia
grammed in Figure 4. It consists of the corre
lation circuitry which yields the height-error
signal, an integrator, a ± threshold detector, a
reversible counter and an associated d/ a con
verter providing an appropriate x deflection
voltage to the photograph scanners. At the

VIDEO
SIGNALS COR RELATORS

ERROR

SIGNAL
INTEGRATOR

COMPUTER

RESET SIGNAL

MEASURED HEIGHT

ERROR TO COMPUTER

XO OEFLECTION

SIGNAL

+AND
THRESHOLD
DETECTOR

dx = (aF + aF azo) dxo + (aF + aF azo) dyo
axo azo axo ayo azo ayo

(3a)

and

dy = (aG + aG azo) dxo + (~~ + ~~ azo) dyo (3b)
axo azo axo iJyo iJzo iJyo

In equations (3) dxo is implemented as a
fast (line) scan and dyo as a slow (frame)
scan. For the second photograph F and G are

beginning of a measuring cycle, a pulse from
the computer sets both the counter and the
integrator to zero. As the scan progresses, if

APPLICATION OF HYBRID ANALOG AND DIGITAL TECHNIQUES 109

there is any error the integrator output will
increase until the threshold is exceeded. This
causes the reversible counter to step in the
appropriate direction and the integrator to be
reset to zero so that an independent error
evaluation can again be made.

The count operates through the d/ a converter
to shift the photograph scan in a direction to
compensate for the observed error. As the scan
continues, any uncompensated error will cause
further stepping of the counter until equilib
rium is reached. At an appropriate point in
the computational cycle, the measured height
error is transferred into the computer and
added to the original height estimate to cor
rect the value in the computer memory. The

cycle is then repeated for the next point in the
profiling sequence.

As the photographs are scanned the result
ing video information is used to recreate the
photographic element on the scanner used to
expose the new photograph. In practice the
original height estimate is sufficiently close to.
insure adequate accuracy in the resulting photo
graph. A height signal, in the form of one of
a set of three brightness levels, is obtained
from the computer and used to control a fourth
scanner exposing the altitude chart. An ortho
photo and corresponding altitude chart made
by the equipment are shown in Figure 5. A
photograph of the basic mechanical assembly
for the system is shown in Figure 6.

ALTITUDE CHART

110 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

The· description of the system given above
omitted many interesting details. Some of these
will now be described.

COMPUTER PROGRAM

The timing problem for the computer pro
gram for a Y profiling operation is shown in
Figure 7. It consists basically of three phases:

PHASE I-Initiated by reading the altitude
correction signal and followed
by the computer preparing the
new photograph position output
command;

PHASE 2-The analog system operates to
evaluate the height error while
the computer prepares the data
to expedite the Phase 1 opera
tion;

PHASE 3-A waiting period for the analog
system to move to a new posi
tion. The table position is read
periodically during this period
and the next cycle is initiated
immediately on the signal indi
cating that a new position has
been reached.

During the first phase the altitude error,
measured at the last position, is added into the
previously prepared denominators of 'equations
(1), and these are divided into the previously
prepared numerators. The quotients are then

added to a constant term and the result out
putted through the digital-to-analog converters
to the analog system. The analog system is idle
during this period, so the time is made as short
as possible.

The major part of the calculations are made
in the second phase. The operation begins with
the calculation of the output for the altitude
chart. This is accomplished by assigning the
current altitude to one of three levels in a
rotary sequence. The result is outputted to the
analog system where it is used to set the bright
ness of the altitude chart printout scanner.
(Since the printout is made one cycle late, the
analog printout is displaced one element ahead
to compensate.) The numerators and denomi
nators of equations (1) are then updated for
the next cycle by adding a constant to each
appropriate to the Yo increment being used
(0.010 in.). The computer then calculates the
position code for the next expected position (a
two bit Gray code is used). This is then fol
lowed by one of a group of calculations that
are rotated among six cycles, since they change
very slowly compared to the accuracy require
ment, Included here are corrections for distor
tion in the photography and the scale required
by the analog system for scan adjustment.

When a profile has been completed the car
riage is moved over the desired amount in Xo

and the numerators and denominators of equa
tions (1) incremented a corresponding amount.
The commands to increment the terms during
the y profiling operation are then reversed in
sign and the y motion started in the opposite
direction.

STOP-MOTION SYSTEM

The speed requirement for the system is such
as to make the design of a mechanical carriage
that stops at each measurement point inlprac
tical, while the accuracy requirement demands

APPLICATION OF HYBRID ANALOG AND DIGITAL TECHNIQUES 111

that measurements be made about well-defined
positions in the photographs. These seemingly
incompatible requirements are satisfied through
the stop-motion element.

The stop-motion circuitry develops a pair of
sawtooth voltages, as shown in Figure 8. These
are triggered by alternate Gray code changes
and have slopes that are dependent on the rate
of motion of the carriage. If either of these,
say A, is supplied to the flying-spot scanners,
the result is to make the movement of the spot
such that its image on the photograph appears
stationary. The sawtooth voltage persists for
two Gray code intervals-0.020 in.-and then
shifts to permit a new area 0.020 in. behind to
be examined.

~~ -"~#-~~-I-*'::Jj~-I--I+::.iI~-I-~ZERO
·lEVEl

A B A B A B A

In steady state operation, the output is
switched between the two voltages A and B
by computer command. Successful operation
requires that each computer operating cycle
take less time than the interval between Gray
code changes. A given computer cycle might,
for example, be completed at point C; the com
puter would then stall until the next Gray code
change before providing the signal to switch
to the alternate sawtooth. Thus, the two sig
nals can be adjusted dynamically, independ
ently of the computer, without danger that
operation with the computer will change the
calibration.

SERVO COMPENSATION

The speed requirements for the system also
pose a problem for the rapid positioning of'the
scans to the required positions on the photo
graphs. The displacement of the scans from
orthophoto position is so large that it is not
practical to use a completely electronic sean
positioning system. As described earlier, and
shown in Figure 3, primary positioning is ac
complished using a pair of servo systems to
position the lenses. The response of such servos
operating by themselves is too sluggish to op
erate effectively in this application. For this
reason the servo error signals are supplied to
their respective scanners to compensate for any
instantaneous error. Thus immediately after
t~ ,computer outputs a new position command

through the d/ a, the system can start accumu
lating a meaningful error signal since the scan
is centered on the desired areas.

The basic correlator used in tlie system is
essentially a quarter-square multiplier. The
configuration is shown in Figure 9. Operation
is as follows:

Assume the diodes shown operate as square
law devices for signals of appropriate polarity.
The two transformers are arranged to supply
various combinations of the two input voltages
A and B to the four diodes. If the output of a
diode is expressible by i = Ke2 , where e is the
input voltage and i the output current, then
for the four diodes the sum is

i = K[(A + B)2 + (- A - B)2 - (A - B)2
- (-A + B)2] = 4KAB

so that the output is proportional to the instan
taneous product of the-two input signals. (Devi
ations of the diodes from square law does not
significantly affect operation of the circuit as
a correlator.) The integrated output, obtained
from the capacitor, is then used as a measure
of the correlation of the two input signals.

Two correlators are used in the height sens
ing circuitry along with a pair of delay lines,
as shown in Figure 10. The figure illustrates
the operation where the signal from the first
photomultiplier is ahead of the signal from the
second. For this condition Correlator 1 receives
signals that are nearly coincident in time, and
it therefore has a large output. Correlator 2,
however, receives signals that are displaced in
time so that it has a low output. The differenc
ing network produces a corresponding output.

112 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

If the signals are coincident in time, the differ
ence goes to zero, while if the direction of the
differential reverses, the output reverses in
polarity. The output is therefore appropriate to
drive the integrator of the height-error measur
ing unit shown in Figure 4.

SLOPE COMPENSATION CIRCUITRY
Implementation of the photograph scanning

signals described by equations (3) is dependent
upon the derivation of suitable slope error sig
nals (an early implementation used the com
puter to define the slopes, but the data for this
is too noisy). The slope error signals have been
derived from circuits analogous to the height
error sensor. The error in azo/ a Xo is deter
mined by time-gating the photomultiplier sig
nals so that for the first half of an x scan the
signals are applied to the output with one sign
and for the second half with reversed sign. If
there is a uniform altitude error over the scan,
it will be cancelled between the two halves;
however, if there is a height-error differential
over the scan (a slope error), the output will
be appropriate to drive the slope error store
to correct the slope in the system. Similarly,
any error in azo/ ayo is determined by time
gating the signal at the middle of the y scan.

CONCLUSION
The problem of automatically reducing stereo

pairs of aerial photographs to contour intervals
and orthophotos as a step in map making in
volves the manipulation of a large amount of
data. The solution described retains the origi
nal photographs as the principal store for the
process, thus avoiding the necessity of shifting
data around in a digital store of hundreds of
megabits.

Appropriate scanning equipment provides
rapid access to the photographic store as
needed, and straightforward analog techniques
permit the processing of this information exter
nal to the computer so that the computer oper
ation can be largely limited to those requiring
accuracies not readily achievable in the analog
system. Since the computer is in the system,
it is expedient to use it for some lov/ accuracy
calculations that would otherwise unduly com
plicate the analog system-for example

1
the

correction of distortion in the photography is
made in the digital computer. It is believed that
the system configuration' represents a nearly

optimum marriage of digital and analog tech
niques for the application.

A prototype of the Map Compilation System
makes about fifty independent altitude meas
urements per second to an accuracy of better
than one one-thousandth of the flying altitude.
It has compiled a stereo pair in about an hour
and a half, with very little assistance from the
operator. A corresponding hand compi~ation
would take much longer, and, in complex areas,
would probably miss some information. Th€
present system has adequately demonstrated
the feasibility of automatic compilation. A
second generation instrument is now contem
plated that will be faster, more accurate, and
more versatile. It will follow closely the opera
tion of the present system.

ACKNOWLEDGEMENT
Achievement of a working system required a

team effort. The contributions of George Miller,
mechanical engineer, Glen Kimball in electronic
design, and Jules Mersel in computer program
ming were particularly significant.

BIBLIOGRAPHY
1. R. D. ESTEN. "Automatic Contouring," Pho

togra,m,metric Engineering (March 1957).
2. R. E. 'VILLIAMS. "The Automatic Map Com

pilation System," Photogram,metric Engi
neering (March 1959).

3. G. L. HOBROUGH. "Automatic Stereo Plot
ting," Photogrammetric Engineering (De
cember 1959).

4. W. C. CUDE. "Automatic and Semi-Auto
matic Mapping," Photogrammetric Engi
neering (April 1960).

5. U. V. HELA VA. "Analytical Plotter Using
Incremental Computer," Photogrammetric
Engineering (June 1960) .

6. G. C. TEWINKEL. "Trends in Automatic
Photogrammetry," Photogrammetric Engi
neering (September 1961) .

7. E. C. JOHNSON. "Systems Design of a Dig
ital Control Computer for an Analytical
Stereoplotter," Photogrammetric Engineer
ing (September 1961).

8. S. JACK FRIEDMAN. "AP-I-A New Concept
in Stereoplotting," Photogrammetric Engi
neering (July 1962).

9. S. BERTRAM. "Automatic Map Compilation"
Photog'nrmmetric Engineering (January
1963) .

AUTOMATIC READING MACHINE FOR TELEGRAPH SERVICE

W. D. Buckingham
Assistant Electronics Engineer

The Western Union Telegraph Company
Research and Engineering Departrnent

Water Mill, L.1., New York

In the field of optical character reader re
search, emphasis heretofore has been placed
on the development of high speed readers capa
ble of handling large quantities of information
at speeds sufficient to meet the input require
ment of data processing and computer systems.
Speed capabilities of presently available char
acter readers range up to 25,000 words per
minute.

Telegraph Service Requirements

Equipment of this type is not suitable for
telegraph service, load concentrations at any
one point in a network generally being insuffi
cient to permit economic usage of reader ca
pacity. Other economic factors affecting appli
cation are the necessity of providing a high
ratio of spare reader capacity to protect con
tinuity of service, and the need for special re
perforator equipment to adapt the high speed
output of the readers to a number of slow speed
telegraph channels serving several points.

Western Union, recognizing the potential
value to the telegraph industry of a low speed
optical message reader, instituted a program
of development several years ago. This proj
ect produced the new Western Union, Type
11343-A, Optical Character Reader shown in
Figure 1. The reader automatically reads mes
sages stored in a magazine at a rate of 16.2
characters per second, or 162 words per min
ute, converting them into five-unit code punched
tape form. It is designed to provide the tele
graph industry with a comparatively simple

113

low-cost reader compatible with telegraph net ...
work speeds.

Loading

Referring to the photograph of the new ma
chine shown in Figure 1, messages are placed
in the slotted magazine, shown at the upper left
hand side of the reading machine, one message

Figure 1. Western Union Optical Character Reader
Type 11343-A.

114 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

per slot. They are automatically loaded, one at
a time, in sequence, as the scanner calls for the
next message. Twenty-four messages can be
stored in the loader magazine.

When the scanner is empty, a message drops
from the magazine and is automatically
wrapped around the scanning drum. The drum
appears at No.1 in the schematic drawing of
Figure 2.

MESSAGE ON REvOLVING
SCANNING DRUM

I
I
I
I
I
I

"ESISTlYIE COMBINING CIRCUIT,
ON! FOA EACH CHARACTER.
TOTALS OUTPUTS OF 24 SELECT
ED CELLS,IZ WHICH ARE COVER
ED AND 12 WHICH ""E NOT
COVERED BY THE I "AGE. TO
GIVE ".XIMUIII OUTPUT WHEN
THAT CHARACTER CUHERS
ON IIATRIX

I G)

~

Figure 2. Pictorial Schematic of Reader.

Scanning

The scanning drum revolves at a uniform
speed of 11.4 RPM as the copy is read. It is
positioned to bring the typewritten characters,
of the top line of the message, in sequence to
the focus point of the projection lens. Since
this section of the drum is brilliantly flood
lighted by two 100-watt quartz-iodine lamps,
enlarged images of the characters under the
lens are projected onto the photocell matrix.
They are magnified 25 times, or to a height of
about 21j2 inches.

The first revolution of the drum scans the
top line of the message. The drum is then
moved along its axis so as to scan the second
line and then a new line on each subsequent
revolution. If there is a short line, the machine
scans the blank portion at five times normal
speed.

A total of 170 low-cost cadmium selenide
photo resistive-type photocells are used in the
machine. Their speed of response is compara
tively slow, but adequate for the 162 words per
minute required of the machine. Their sensi
tivity, however, is very high, being of the order
of amperes per lumen, the equivalent of a photo

TI1ultiplier tube. Physically, they take the form
of a cylinder 1ft," in diameter and 1J2" long with
the sensitive surface on the end. They are
arranged with a compact rectangular 8 x 11
cell matrix of Reading Cells in the center of the
field surrounded, on the top and bottom by long
horizontal rows of Vertical Centering Cells,
and, on each side by a vertical row of Margin
Cells. This arrangement is shown at No.2 of
Figure 2.

The action of the drum, the lens and the cen
tering mirror combine to produce an enlarged
and reversed image of the character on the
photocell matrix. During reading, the letter
image moves across the matrix at a uniform
speed. It is locked in the correct vertical posi
tion, balanced bet.ween the upper and lower
rows of Vertical Centering Cells, through their
control of the inclination of the centering mir
ror on its horizontal axis.

Letters on the copy, read by the machine, are
spaced to produce a clear margin on either side
of each character. The moment, when the
moving image of a character may be covering
only the Reading Cells, is indicated when both
rows of Margin Cells are clear of any character
image. Power is applied to the Reading Cells
during this period only. At. the instant when
the image is centered on the Reading Cells, cer
tain of the cells WILL be covered by the dark
image of the character and their resistance will
be high. Another group of cells WILL NOT be
covered by the image and their resistance will
be low. The division of the cells into these two
groups of "Covered" and "Not Covered" cells
is unique for each different character and is the
basis of the recognition system used in the
reader.

Recognition

A Reading Photocell circuit is shown in Fig
ure 3. The cell is connected so that one termi
nal is fed positive battery through a resistor
and the other terminal negative battery through
a similar resistor. The junction of the- cell and
the resistor going to plus battery is termed the
"Covered" connection point. Its potential to
ground is strongly positive when the cell is
covered by the black portion of the image and
approaches zero when the cell is not covered
by the image. The other cell terminal, called
the "Not Covered" connection point, has a low

AUTOMATIC READING MACHINE FOR TELEGRAPH SERVICE 115

PHOTO CELL CIRCI.IIT

IS POSITIVE WITH RESPECT TO GROUNO

WHEN THE CEll IS "COVEREO" AND

SueSTAP'IiTIALLY ZERO TO GROUND

1$ SUBSTANTIAllY ZERO *ITH RESPECT TO GHr)u'-lO

WHEN THE CELL IS "NOT COVEREO" ANO NE.GATlvE

TO GROUND WHE ~ "COVE RED"

'NOT COVERED"

Figure 3. Reading Photocell Circuit.

negative potential to ground when the cell is
not covered and a high negative potential "\vhen
the cell is covered.

The reader has a printed-circuit "Resistive
Combining" card for each of the different char
acters to be recognized. The cards are all alike
and are shown in Figure 4. The output point
on each is connected, through twenty four sepa
rate 2.2 megohm resistors, to the "Covered"
connection point of each of a group of 12 cells
selected from the "Covered" and to the "Not
Covered" connection point of 12 cells selected
from the "Not Covered" cells of the character
to which the card is assigned. It has been found
that twelve cells of each kind give sufficient
information for positive recognition. If the
cell selection is made properly, the output volt
age of a given "Resistive Combining" card will
be maximum positive when the image of its
assigned character is centered on the reading
matrix. Any other character produces an out
put which is substantially less on this card
but a maximum on its own card. The voltage
margin above the interference, varies from
character to character, but averages more than
a volt. The card, whose high output indicates
that its character is the one on the matrix, fires
its associated thyratron, which in turn causes
the tape punch to punch the code for that par
ticular character.

Auxiliary Functions

A space in the message being read is indi
cated and punched in the tape when the margin

RESISTIVE COMBINING CIRCUIT FOR CHARACTER· x·

TO" COVERED"

CONNECTION POINT OF

12 CELLS SELECTED
FROM THOSE "COVERED"
BY "x H

~ : I E TO NOT covon.D
CONNECTION POINT OF, '2

~ 3, CEleS SHECTED FROM

~~ ~ ~~O.SxE. NOT COVERED

~~~ OUTPU~ TO GROUND ,S MAX,MUM POS,T,vE WHEN 

CHARACTER "x" IS IN READING POSITION ON CELL MATRIX ANO sueSTANTIALl'I' LESS 

WHEN ANY OF THE SELECTED CELLS ARE NOT IN THE CORRECT CONDITION 

Figure 4. Resistive Combining Card Circuit. 

cells on the entering side of the reading cell 
matrix fail to detect the passage of a character 
across them at the end of the proper time inter
val. Three or more spaces in sequence are rec
ognized as the end of a line and the machine 
is shifted to high speed and advanced to read 
the next line. 

A "letter" or "figure" shift is automatically 
inserted in the punched tape by the machine 
when needed. "Carriage returns" and "line 
feeds" are punched in the tape when symbols 
assigned to them appear in the copy being read. 

An unreadable character is indicated when 
the entering margin cells detect a character 
and none of the "Resistive Combining" cards 
operate the punch. In this case, "Bust This" 
is automatically punched into the tape, the mes
age unloaded from the drum, deposited in a spe
cial file and an alarm given to alert an operator 
who will process the'messages manually. 

A message that has been read completely is 
unloaded, time stamped and deposited in the 
"sent" message file. 

The present machine is equipped with 60 
"Resistive Combining" cards and can recognize 
the total of 60 capital letters, figures, punctua
tion and other symbols of one particular type 
font. One- of the symbols acts to delete, or in 
effect erase, any character on which it is over
typed. Additional characters and fonts can be 
read by adding one "Resistive Combining" card 
for each new character. 

Accuracy 

The first Western Union Optical Character 
Reader is now undergoing accuracy tests. More 
units are being built so as to give the first 
test installation sufficient operating and spare 
reader capacity for economic evaluation. Accu
racy tests, thus far, are favorable. It appears 
that the new low-speed, low-cost machine will 
achieve, in its speed range, accuracies quite 
comparable to those reported for the higher
speed, higher-priced units now available from 
other sources. 

Application 

The message reader is expected to have wide 
application in private wire network, as well as 
in our own services. In'modified form it would 
be useful for automatically introducing a 
limited amount of printed information into data 



116 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

processing or computer systems. Initially, copy 
to be read will be prepared using electric type
writers with one-time plastic ribbon and with 
Farrington self-check type so as to produce 
the highest quality copy. Lower quality copy 
may be used in the future if accuracy require
ments can be met. 

BIBLIOGRAPHY 

A Reliable Character Sensing System for Docu
ments Prepared on Conventional Business De
vices. David H. Shepard, Pickard F. Bargh & 
Clyde C. Heasly, Jr. IRE Wescon Convention 
Record, 1, part 4 (1957) 111-120. 
Linear Decision Functions with Application to 
Pattern Recognition. \V. H. Highleyman. Proe. 
IRE, June 1962, p. 1501. 

Image Processing with Optical Panels. H. O. 
Hook & H. Wernstein, Electronics, December 
12, 1962, p. 35. 
Print Reader Recognizes Variety of Fonts. G. 
L. Shelton, Ibid., p. 58. 
The Simulation of Cognitive Processes. R. L. 
Simmons and R. F. Simmons. IRE Transac
tions on Electronic Computers, September 1961, 
p. 462. A bibliography of 460 references on the 
subject of character recognition. 
Simulation of Three Machines which Read 
Rows of Handwritten Arabic Numbers. L. A. 
Jameulsky. Ibid., p. 489. 
An Analog Method for Character Recognition. 
W. H. Highleyman. Ibid., p. 402. 
Computer Synthesis of Character Recognition 
Systems. D. N. Freeman. Ibid., December 1961, 
p.735. 



DISPLAYING SATELLITE DATA IN REAL TIME 

R. H. Spitler and B. K. Kersey 
Lockheed Missiles and Space Company 

Sunnyvale, California 

Section 1 

BACKGROUND 

Sometime ago, it became apparent to the 
Management of Lockheed Mis~iles and Space 
Company (LMSC) that a real-time data-proc
essing system would be required for one of the 
specific satellite weapon systems then being 
developed at LMSC. Following discussions 
with personnel of the Air Force Space-Systems 
Division, Los Angeles, California, it became 
obvious that many technical questions would 
have to be answered before approval for the 
construction of a world-wide command and 
control system would be granted. 

Systems being developed throughout the 
country to process satellite data in real time 
had one thing in common: they were-and still 
are-expensive to build, operate, and maintain. 
In many cases such systems were installed 
before adequate preliminary studies could be 
made. With this factor in mind, we suggested 
+1,<:1+ Tlt:n'1,<:lTlC! f-"ho O<:lC!;oof- " .... ;:1 .,...,,; ..... 1,..,,<,-4- .... " .... T -4-r. 
",.L.a......,,,, 1:'''''' .... .I..I.t..4t.t'tr..JI V..L.l.V ,",~U.&.,""O\J u,..~J.\A 'i"J.\..-.n..~Ol; yva..:/ lr\..I 

provide answers was to build a small Research 
Laboratory able to simulate accurately various 
portions of a world-wide data:-collection and 
processing system. 

Immediate implementation was one of the 
key requirements, so with Air Force approval, 
construction of the Laboratory was started on 
12 March 1962 when the first wall was erected 
in the LMSC Sunnyvale facility. By 30 June 
1962-only 90 working days after go-ahead-

117 

the Laboratory was in operation. Much of the 
credit is due companies such as IBM, Ampex, 
and General Dynamics, who worked with LMSC 
during this comparatively short time span to 
design, build, and deliver the input, interface, 
computer, and display equipments. 

LMSC was aided in no small part by the 
experience it had gained during extensive real
time processing of data from operational and 
experimental satellites. In particular, the 
LMSC-designed and -constructed equipment 
was based in some cases on actual equipment 
presently in operation throughout the world, 
and in other cases on advanced but tested de
signs. In other words, LMSC stayed within 
the state-of-the-art. Fortunately, in the area 
of programming personnel, we were able to 
obtain highly qualified specialists. 

While the primary objective of the Labora
tory is to realize substantial savings by proving 
designs on a small scale prior to implementa
tion, anyone who operates a computer such as 
-4-1.." TD1\1T '7f\Of\ 1 .. ~" .. 'OT'" -4-1..", ""''''''" .... ''''' ,,~ ... ",,;1.. n 
1,,~1C; .1..1J.I..'.1. IViJV n.l~VVV" 1,,~1C; C;ApC;ll.,C; V.L .,U\.-ll eN 

machine when idle. Therefore, an operational 
philosophy was devised to reduce the cost per 
job processed on the computer. To implement 
this approach the Laboratory operates in two 
modes: first as a laboratory to simulate by ex
periments the real-time data-processing sys
tems under study. This mode has top priority. 
The second mode prevails when experiments 
are not being conducted. Then "fill jobs" are 
obtained from the centralized computing area 



118 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

and handled in a standard batch-processing 
mode. As a result of this practice, the cost to 
the Air Force for this working facility has been 
reduced well below original estimates. 

Section 2 

LABORATORY SYSTEM 

The Laboratory was designed to simulate the 
operation of both a Tracking Control Center 
and a Remote Readout Station. It was intended 
that the following benefits would be realized 
through the use of this simulation facility: 

• New techniques for reliable assessment of 
data processing in near real time 

• Computer and display equipment specifi
cations for the Tracking and Control 
Center 

• Computer programs suitable for process
ing satellite data in real time 

• Development of improved man/machine 
relationships and operational procedures 

• Improved detection capability under simu
lated operational conditions 

• Detailed requirements for the Satellite 
Communication System 

2.1 System Description. 

To make the Laboratory operational as soon 
as possible and to enable the programming per
sonnel tQ concentrate early on the basic pro
gramming tasks of simulation, an IBM 7090 
Data Processing System was selected. The IBM 
7090 Computer serves as the central processing 
element to control and process the raw satellite 
data into forms suitable for dynamic presenta
tion on display equipment in near real time. 

The IBM 7090 is used to establish data proc
essing routines for the Tracking and Control 
Center and Remote Station operation. Basi
cally, it is similar to the standard 7090 Batch 
Processor. Additionally, in this case it has an 
IBM 7281-II Data Communication Channel 
with a direct data device connection. Attached 
to this channel are various subchannels, engi
neered by IBM to take a variety of inputs, such 
as the timing equipment and data compressor 
outputs, and convert them to a format suitable 
for entry into the IBM 7090. Five outputs from 
the system are available for inspection: 

• General Dynamics displays used to develop 
the initial programming concept and pro
vide devices for demonstration purposes 

• IBM displays allowing operators to view 
the output of one satellite and determine 
validity of computer decisions regarding 
recognition of patterns 

• IBM displays for operators to determine 
validity of computer decisions regarding 
pattern correlation and identification, 
input data to this device being that which 
survived the pattern recognition function 

• Modified PAM Analog display which shows 
the raw data collected by the satellite 

• Off-line listings on IBM 1401 Computer 

Figure 2-1 indicates the interconnection of 
the major components. Major components are 
the PAM Data Conversion Station, Data Com
pression Unit, IBM 7090 Computer, and the 
displays. Inputs to the system are: 

• Frequency-modulated signals from the 
FR700 Tape Machine, demodulated and 
digitized b~fore entry into the IBM 7090 

• Parallel digital data from the modified 
Ampex FR100 Tape Machine 

• Serial digital data (simulated telephone 
input at 1200 bits per second) from the 
Communication Simulator 

• Parallel digital data from the IBM 729 
Tape Machine 

2.2 Operation. 

The Laboratory operates under two basic 
....... ",.1"'" "oJ! " ..... ,.,."...,-1-;" ...... -I-l,,., T .., h"."...,-I-" ...... r 1\/f "~n ..,....,~ 
.1..liVUv~ V..1. Vp\J.L"'I.J.1.V~~. \J.L.Lt,,:; ..I..-J(.40UV.i.u,.\JV..L.1 .... ,~V\A.\.... (.4o.1.J.u 

the Batch Processing Mode. In the Laboratory 
Mode, one or more of the external devices is 
connected on-line with the computer to process 
one or more simulation tasks. The Batch Proc
essing Mode approximates a commercial data
processing and computation center. 

Laboratory Mode. Within the Laboratory 
Mode it is possible to exercise any combination 
of the equipment described in Section 3. Table 
2-1 shows 14 possible combinations to illustrate 
the nlore inlportant configurations used for 
experimental purposes. 

In order to provide coordination between the 
operation of the digital computer and external 
devices, it is necessary to provide separate op
erating procedures to ensure that each piece of 



A RESEARCH LABORATORY FOR PROCESSING AND DISPLAYING SATELLITE DATA IN REAL TIME 119 

INPUT 

eMir RE.4GER 

7606 

U 

l 

T 

P 

l 

E 

X 

o 
R 

COMPUTER 

ISM 729 
TAPE MACHINES 

7617 J 
CONSOLE 19M 

~MA{~~ES 
7607 
DATA 7617 CH7-- CONSOLE 

b;'~ 7631 FILE L DISK 
CHAr CONTROL r STORAGE 

7100 L 7151 
CPU !. CONSOLE 

7302 CORE I 
STORAGE 

DISPLAY 
COMMON 

DATA 7617 
CHANNEL ,CONSOLE 

......... "' ... "'!'!! .......... '! .. 

MAChiNES 

~
ELEMENT 

___ lJt-----1o"',;-~~ 

Figure 2-1. Flow Diagram of Data-Processing Laboratory. 

equipment is operational at the scheduled time 
of the experiment. To facilitate the integration 
of these two parallel processing capabilities, 
a Test Director Console manned by the Test 
Director was established. The Test Director 
proceeds through a countdown cycle prior to 
beginning the experiment. This procedure en
sures that all equipment is operational and 

1- FR 700 ---__ PAM -----< __ mM 7090 --_._ G. D. DISPLAY 

2. FR 700 ---__ PAM ---...... _mM 7090 ---__ mM DISPLAY 

3. FR 100 -----PAM -----< __ mM 7090 ---___ G. D. DISPLAY 

4. FR 100 ---__ PAM -----<._ mM 7090 ---....... _ mM DISPLAY 

5. FR 700 ___ PAM _ DATA COMPRESSOR ---.... mM 7090 _ G. D. DISPLAY 

6. FR700 -PAM_DATACOMPRESSOR ---mM7090_mMDISPLAY 

7. FR100 -PAM_DATACOMPRESSOR ___ mM709O_G. D. DISPLAY 

8. FR 100 _PAM - - DATA COMPRESSOR ___ mM 7090 -_ mM DISPLAY 

9. IDM729 • mMT090 . G. D. UlSPLAY 

10. mM729 .. mM 7090 - mM DISPLAY 

11- TRIPLE ROO· SIMULATOR .. mM 7090 - G. D. DISPLAY 

12. TRIPLE ROS SIMULATOR -mM 7090 .. mM DISPLAY 

13. SINGLE ROO SIMULATOR -mM 7090 -G. D. DISPLAY 

14. SINGLE ROS SIMULATOR .. mM 7090 - mMDISPLAY 

"ROO-READOUT STATION. 
Table 2-1 

OPERATING COMBINATIOIIS 

minimizes delay times that could be caused by 
malfunction or setup delay of the various 
devices. 

Intercommunication .between the operators 
of the various equipments and the Test Director 
is provided by means of a Public Address Sys
tem and an Intercommunication System. The 
Public Address System is used to alert opera
tors to man their statio·ns or to call in main
tenance engineers if equipment malfunctions 
develop. The Intercommunication Equipment 
is used to provide direct communications during 
the experiment. As part of the experiment, pri
mary diagnostics (described in Section 4) are 
executed before and after the run. This en
sures that the equipment is functioning prop
erly and validates the results. 

Batch Processing Mode. While the primary 
objective of the Laboratory is to provide opera
tional support of project experiments, there is 
a basic requirement to operate the facility effi
ciently and provide development facilities for 



120 PROCEEDING~-~PRING JOINT COMPUTER CONFERENCE, 1963 

programming personnel. For these reasons the 
Laboratory is often operated in the Batch 
Processing Mode. 

Section 3 

EQUIPMENT AND FUNCTION 

3.1 Data Acquisition. 

This is achieved by means of a PAM Gen
eral-Purpose Ground Station, Data Compressor, 
Communications Simulator, and Timing Sys
tem. The equipment is used as a data source 
for the various signals required to simulate the 
components of a command and control system. 

PAM General-Purpose Ground Station. This 
is a versatile, general-purpose unit capable of 
processing a variety of pulse-amplitude-modu
lated telemetry signals. Within the Laboratory 
it is used as the primary source of simulated 
data for use by the other laboratory equipment. 
Its major components are an FR700 Wideband 
Magnetic Tape Recorder, a Pulse-Amplitude 
Modulated Signal Detector and Subcarrier Dis
criminator, Synchronization Signal Separator 
and Digitizer, and an FR100 Digital Magnetic 
Tape Recorder. 

Because it can handle many data channels 
per frame, sampled at high rates, this station 
(of which 10 are currently in use) is singularly 
suited to the laboratory. The pulse train pre
sented is synchronized, separated into individ
ual data channels, and formatted into digital 
eight-bit-per-channel parallel outputs. 

The FR700 Wideband Tape Unit records and 
plays back the PAM-FM raw data for use by 
the Laboratory System. The PAM Signal De
tector serves to remove the carrier wave from 
the data recorded on the magnetic tape. The 
detector then presents an analog signal, modu
lated by the PAM pulse train, to the Synchro
nization Signal Separator and Digitizer. This 
unit separates the synchronization pulses from 
the applied P AM pulse train, normalizes the 
data by utilizing calibration channels in the 
pulse train, and finally digitizes the individual 
data channels for either recording and/or fur
ther processing by the Data Compressor. 

Data Compressor. This unit is capable of 
accepting PAM telemetry data from the PAM 
General-Purpose Ground Station. The high 
data rate is reduced and compressed to a rate 

compatible with a transmission systenl by 
thresholding all invalid information. The quali
fied data is entered into the 7090 Computer 
through one of the IBM 7281-II data subchan
nels. Thresholding data is entered into the 
Data Compressor from the 7090 through an
other IBM 7281-II data subchannel. 

Two modes of operation are available. The 
first is a Status Operational Mode whereby only 
changes in data status, that is, in-limits to out
of-limits or vice versa are sent to the Com
puter. The second mode sends all out-of-limits 
conditions to the Computer. The modes are 
selectable for each data point in the telemetry 
wave train. Both normal telemetry data, such 
as azimuth information and payload data sig
nals~ are processed. Also, upper and/or lower 
limit comparisons are possible. 

Communications Simulator. This equip
ment accepts simulation tapes recorded on IBM 
1401 and 7090 Computer Systems. The infor
mation recorded on these tapes simulates re
mote readout station data transmissions. It 
can simulate actual data transmission using a 
COBI Modem driving a telephone line, incor
porating noise and other data representing the 
real-life situation. Or it can simulate multiple 
communications lines transmitted in parallel 
to the IBM 7090 Computer simultaneously for 
processing. 

The specific tape drive associated with the 
Communications Simulator is capable of accept
ing simulation tapes that have been recorded 
on the IBM 1401 or 7090 Computer Systems. 
Such tapes contain information representing 
six data transmission systems from remote 
readout stations. All six channels may be fed 
directly to the 7090 Computer System through 
a subchannel of the IBM 7281-II Data Commu
nication Channel to simulate the ground net
work operation. Or one channel may be sent 
to the 7090 Computer through the Communica
tion Simulator Equipment (COBI) for evalua
tion and development of the data transmission 
system. The Communications Simulator is de
signed to be operated manually or under com
puter control. 

Ti1ning System. The Timing System has 
two operating modes. One mode is used for 
recording simulated data and timing signals, 
and the other mode decodes recorded timing 
signals. In the recording mode, parallel data 
and timing signals are accepted from the IBM 



A RESEARCH LABORATORY FOR PROCESSING AND DISPLAYING SATELLITE DATA IN REAL TIME 121 

7090 Computer via the IBM 7281-II Data Com
munications Channel. The data and synchro
nizing signals are recorded on 11 digital tracks 
of the FR100 Tape Recorder. The timing sig
nal is serial-encoded, placed on a modulated 
carrier and recorded on a separate analog track. 
In the reproduce or playback mode, serial an
alog timing signals from the PAM General
Purpose Ground Station recorders are demodu
lated and decoded into a parallel digital format 
for use in the computer. 

During both modes of operation, registers 
are available for recording time and for pro
viding time-controlled computer interrupt sig
nals. Time register outputs are available to the 
computer for processing and display by the 
remote timing displays. An accurate time 
base is provided for timing various functions 
throughout the laboratory. 

The Timing System also includes a set of 
Status Monitor Registers and a Control Regis
ter. The Status Registers monitor the opera
tional status of various equipment throughout 
the laboratory and present this information to 
the IBM 7090 Computer on demand. The Com
puter can also control the operation of certain 
equipment through the Control Register. 

3.2 Interface 

7281-11 Data Communication Channel . . The 
IBM 7281-II Data Communication Channel ex
pands the input/output capabilities of IBM 
7090 Data Processing Systems. This channel 
provides direct connection to a variety of input/ 
output devices operating at various speeds for 
real-time applications. Like the IBM 7607 Data 
Channel, the 7281-II transfers data to and from 
the core storage through the Multiplexor in a 
36-bit parallel fashion, concurrent with opera
tions within the central processing unit. Data 
transmitted between core storage and real-time 
equipment passes through the 7281-II Channel. 
Operation is initiated by the execution of a 
single new instruction in the 7100 Central Proc
essing Unit. 

Once started, the 7281-II channel operates 
independently of the main program being ex
ecuted in the central processing unit. The 7281-
II channel controls the quantity and destination 
of all data transmitted between storage and 
real-time equipment. Data transmission to and 
from storage is in 36-bit (or less) parallel fash-

ion. Within the IBM 7281-II Data Communica
tion Channel there are 11 subchannels. Each 
subchannel has been uniquely designed to pro
vide an interface between the 7090 Computer 
and the external device and to perform an input 
or an output interface. For the Data Com
pressor, two subchannels are used. The input 
subchannel transfers data to the 7281-II at a 
high-burst data rate which is stored in a block 
of core storage cells within the Computer. If 
the volume of data exceeds the limit of one 
block, the IBM 7090 is interrupted and the data 
is fed to an alternate block. This allows the 
programmer to process the first block of data 
during the time that the second block is being 
filled. The output subchannel for the Data Com
pressor allows the Computer to send limit data 
to be used by the Data Compressor for thresh
olding inputs. It is also used to send command 
functions for execution by the Data Compressor. 

Two identical output subchannels are availa
ble to drive the SC 1090 Displays. Data is fed 
from the 7090 at the demand rate of display, 
allowing the display equipment to present pic
torial information at a flicker-free rate. 

One input subchannel is available to handle 
the direct data from the PAM General-Purpose 
Ground Station. This subchannel packs four 
data samples into a computer word before 
transmitting the data to the 7090, thus allow
ing more processing time between data inputs. 

One input and one output subchannel are 
available to interface the Timing Equipment. 
The input subchannel to the Timing Equipment 
uses a single word buffer and interrupts the 
computer each time a word is submitted to the 
7090 Computer. The output subchannel can 
work in two (2) modes: The first mode submits 
data words to set the time registers, the second 
is used to provide data for recording simulated 
data on the FR100. 

There are four subchannels available to in
terface the Communications Simulator equip
ment. One input subchannel is used to provide 
an interface with the COBI Modem or with a 
single tape channel input. The other input sub
channel is used to provide up to six channels of 
data simultaneously. One output subchannel is 
used to transmit data to the COBI Modem, 
while another subchanneI is used to command 
the Potter Tape Drive machine within the Com
munications Simulator. 



122 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

The demand transfer rate for all of the above 
subchannels, except the Communications Simu
lator interface, exceeds the transfer rate of 
20,000 computer words per second. 

3.3 Computation 

General Computer. The Type-7100 Central 
Processing Unit contains the arithmetic and 
stored-program control circuits for the 7090 
system. The Type-7151 Console Control Unit is 
a separate unit which provides centralized con
trol of the 7090 Computer System. It contains 
indicator switches, key and register displays. 
Channel indicators are provided, and the regis
ter displays have been grouped for operator's 
convenience. 

The Type-7302 Core Storage has a capacity 
of 32,768 thirty-six-bit words with random 
access time for extraction or storing of each 
word not exceeding 2.18 microseconds. The 
Type-7606 Multiplexor provides the only access 
to core storage. It accomplishes the necessary 
data and address switching to transmit data to 
and from core storage. The data channels and 
the central processing unit transmit all data to 
and from core through the Multiplexor. 

Input/Output Equip'ment F01' C01nputer. 
The following components comprise the input/ 
output connection to the computer from the real
time and supporting equipment. The equip
ment is connected on-line to assist in perform
ing real-time simulation. 

The Type-711 Card Reader is used to enter 
instructions and data into the 7090 Computer. 
It is controlled by the computer and reads cards 
at the rate of 250 cards per minute. 

The Type-729 Model VI Magnetic Tape Drives 
are each capable of storing or reading almost 
4 million computer words of information on 
each reel of tape at a rate of 15 thousand 36-bit 
words per second. Tape drives are used to store 
status and historical data, executive programs, 
support routines, test programs, test program 
data and temporary storage. Additional tape 
drives are used for assembly and checkout of 
programs and the evaluation of simulation runs. 
They provide the following: 

• Programming systems and library storage 

• Scratch areas for intermediate storage 

• Coupling and buffering information be
tween other components of the system 

• Extension of memory for large programs 
or data storage 

• Checkpoint and restart 
• Problem program dat.a 

The IBM 729 Model-VI Tape Drives provide 
the following: 

• Data Storage 
• Storage of application programs 
• Working storage 
• Simulation output 
• System protection 

This enables the central processing unit to 
accomplish its functional assignments on a 
more timely basis. These uses are applicable to 
each of the various types of simulation. 

The Type-716 Printer is a line printer for re
cording information from the computer in 
printed form at 150 lines per minute. The 
printer is used to provide on-line messages dur
ing simulator runs and also to notify operators 
when to control and change parameter charac
teristics for a given run. 

The Type-7607 and 7617 Data Channel and 
Console channels are connected to the 7090. 
When information is to be processed on mag
netic tape, one channel is used as an input 
channel and the other as an output channel. 
The Type-7607 -III accommodates the input 
functions. It includes the 711 card reader and 
the 716 printer in addition to eight 729-VI Tape 
Drives. The Type-7607-IV Data Channel ac
commodates the output functions and is con
nected to the eight output tape drives. The Data 
Channe] enables the 7090 to initiate and moni
tor input-output operations, but the Computer 
need not be involved with the detail data han
dling steps between the input/output devices 
and the computer memory. The Data Channel 
provides for the transmission of data between 
the Input/Output Units and Core Storage. 

The Type-7617 Data Channel Console pro
vides for greater input/output flexibility, and 
efficiency between the 7090 and its operator. 
One Data Channel Console is used with each 
Data Channel. 

Mass Memory. The memory equipment pro
vides real-time storage for data to be displayed 
or processed and receives data from the IBM 
7090 Central Processing Unit. The information 
is then made available to the Display Equip
ment or Central Processing Unit by answering 



A RESEARCH LABORATORY FOR PROCESSING AND DISPLAYING SATELLITE DATA IN REAL TIME 123 

requests for specific information. The equip
ment consists of a Disk Storage, File Control 
U nit, and a Data Channel. 

The Type-1301 Disk Storage File provides 
storage for 56 million 6-bit characters with a 
transfer rate of 90,000 characters per second. 
It is used for storing Display Data, Program
ming Systems and Library Routines. It also 
provides working storage such as scratch files 
and tables, core memory extension for data re
quiring more rapid access than possible from 
tape units and less rapid access than required 
from the core memory, and storage of diagnos
tic routines. 

The Type-7631 File Control Unit provides 
the interface circuitry between the 7909 Data 
Channel and the 1301 Disk File for access to the 
Disk File memory addresses. 

The Type-7909 Data Channel provides the 
interface between the disk memory and other 
units of the computer and display equipment. 

Peripheral. In order to provide a complete, 
self-contained configuration within the labora
tory, the IBM 1401 Data Processing System 
was selected to provide peripheral support. The 
1401 system provides the following support 
services: 

• Card-to-Magnetic-tape transfer of pro
grams and data 

• Tape-to-Printer write-out of test results 
• Tape-to-Card transcribing of programs for 

reassembly or permanent storage 

The system comprises a Type-1401 Process
ing Untt which contains core storage and per
forms all the machine logic. A Type-1402 Card 
Read Punch has two card feeds that enable 
simultaneous punched card input/output opera
tions. It has a rated reading speed of 800 cards 
per minute and a punch speed of 250 cards per 
minute. A Type-1403 Printer has a rated speed 
of 600 lines per minute with 132 positions per 
line and 48 different characters per position. 
Type-729-V Magnetic Tape Drives are also 
provided. 

3.4 Display 

Direct-View Data-Display-General Dynam
ics SC 1090. Two direct-view data-display con
soles are in use in the laboratory. These dis
plays are general-purpose units designed to 
provide visual outputs from digital data sys
tems. The design is based upon the Charactron 

shaped-beam tube, which presents precisely 
shaped alphanumeric and special symbols di
rectly on its 19-inch diameter tube screen and 
can be viewed in ambient light. 

When equipped with all options, this display 
can present symbols, vectors, and up to four
line formats of four characters each plus a vec
tor, or combinations of all three. Up to 21,000 
random symbols per second can be presented. 
Operator-controlled category selection allows 
the inhibition of unwanted data to prevent clut
ter, and feature selection allows inhibition 
within a category. Expansion and off-centering 
permit viewing any portion of the screen in 
expanded mode with a resolution of 2,000 lines. 
Test patterns can also be called up for diag
nostic purposes. 

Display System-IBM Z61A. The principal 
features of the Display System are: 

• Fast response time 
• Manual inputs by use of a light pencil and 

push buttons 
• Internal automatic display generation 
• Expansion capability of 1, 2, 4, 8, 16, and 

32 times and bright display in ambient 
light 

• Off-centering to virtually any point where 
data is displayed 

• Solid-state circuitry except for Charactron 
display tube 

• Flexibility in operator selection of data 

The unit contains a 2,048-word, 24-bit-word 
core memory. The console accepts data at a rate 
of one message each 396 microseconds with the 
capability of accepting no more than 152 mes
sages in 2.5 seconds and can display one mes
sage every 396 microseconds. Each message is 
displayed at a repetition rate of 5 to 100 cycles 
per second, depending on the amount of infor
mation accepted by the console. 

Fixed geography rriessages are accepted at a 
rate of one each 396 microseconds with a maxi
mum capability of accepting 72 messages. The 
fixed geography messages are displayed each 
396 microseconds and are displayed only once 
per display cycle (2.5 seconds). 

Digital display data is accepted at a rate of 
one message each 66 microseconds with a maxi
mum of 96 messages provided for in the 
memory. Display data is shown at a rate of one 
message each 66 microseconds. 



124 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

P AM Analog Dispiay. The P Aryl Analog 
Display was originally constructed by Baird 
Atomic Corporation and has been modified by 
Lockheed Missiles and Space Company to per
form a specific Laboratory function. The origi
nal equipment consisted of two cabinets con
taining an externally-viewed 19-inch PPI Dis
play Tube with an additional PPI Tube mounted 
internally for use with a closed circuit TV sys-

'tern. In addition, Oscilloscope, Controls, TV 
Display, and Command and Status Equipment 
were also part of this unit. Modifications for 
Laboratory use consisted of removing the 
Closed Circuit TV system, the Command Sys
tem, and the Status Display System. 

Functionally, this display unit accepts the 
pulse-amplitude-modulation signal from the 
P AM Ground Station accompanied by the vari
ous frame, block, and subframe synchronized 
signals. These signals are displayed as vehicle
stabilized PPI presentation and as either ampli
tude versus elevation or as amplitude versus 
azimuth on an oscilloscope. A photo camera is 
available to record successive sweeps as they 
are presented on the internal PPI Display. 

Section 4 

DIAGNOSTIC PROGRAM 

The purpose of the diagnostic program is to 
accomplish the following: 

• Determine that the total system is working 
satisfactorily before conducting experi
ments 

• Upon determining that the total system is 
not operating, to find which subsystem has 
failed 

• Upon determining the failure of the par
ticular subsystem, to locate the faulty unit 
within that subsystem 

• Determine that all equipment is working 
satisfactorily during running of experi
ments 

The programs which will fulfill these pur
poses have been classified as Static Diagnostics 
and Dynamic Diagnostics. 

4.1 Static Diagnostics 
A Static Diagnostic is a program which 

allows operation personnel to determine the 
failure of the entire system or a specific sub-

~ GROSS MALFUNCTION 
DETERMINED 

SWrrcR TO 
SECONDARY 
DIAGNOSTIC 

Figure 4-1. Primary Static Diagnosis. 

system prior to start of an experiment. This 
particular phase of the task has been divided 
into primary, secondary and tertiary diagnos
tics. 

Referring to Fig. 4-1, it can be seen that, for 
the primary case, known test data is fed into 
the PAM Station and checked in the IBM 7090 
for validity. Simultaneously, the computer 
generates display data to check the validity of 
the display equipment. If the PAM and display 
data paths are correct, then the experiment pro
ceeds. If the output is not correct, then the 
equipment switches automatically to the Second
ary Diagnostic. 

During the Secondary Diagnostic Check, as 
shown in Fig. 4-2, each major subsystem is 
tested to determine whether or not it has failed, 
by inserting test data which exercises the equip
ment through wider limits than is required in 
the primary case. To provide a rapid means of 
checking this equipment complex, a device 
called a Status Register has been installed. 

Figure 4-2. Secondary Static Diagnosis. 



A RESEARCH LABORATORY FOR PROCESSING AND DISPLAYING SATELLITE DATA IN REAL TIME 125 

The function of the Status Register is to 
collect signals indicating that specific items of 
equipment are operating satisfactorily and to 
report when gross malfunctions occur. For ex
ample the following is stored in the register: 

• Status of the synchronization quality in 
the PAM Station 

• Density, file protect, and ready signal from 
the IBM 729 Tape Machine 

• The reproduce signal from the FR700 Tape 
Machine 

Thus, the Status Register is a series of flip 
flops that indicate the correct condition of each 
connected piece of equipment. Several Status 
Registers are available and physically housed in 
the Timing Equipment. As an economic con
sideration, the same circuitry for accessing 
Timing data to be fed to the computer via the 
IBM 7281-II is also used to access the Status 
Register. Additionally, during the exercise of 
equipment throughout its limits, each operator 
observes the various displays and measuring 
instruments to assist in ascertaining the par
ticular subsystem which has failed. 

Upon' location of the particular subsystem 
which has malfunctioned, the Tertiary Diag
nostic is started. The Tertiary Diagnostic for 
the PAM Station, Data Compressor, and Dis
play devices, as shown in Fig. 4-3, merely re
quires that the Laboratory maintenance people 
be notified. If the failure appears to be in the 
IBM 7090 computer, then IBM Customer Engi
neers are notified and they begin detailed in
ternal diagnostics of the computer. 

4.2 Dynamic Diagnostics 

Dynamic Diagnostics may be defined as the 
ability to determine if the equipment is oper-

Problem area 

ating satisfactorily during an actual experi
ment. The equipment can be exercised during 
an experiment by using either of two ap
proaches. 

When known input data is fed into the system 
(Fig. 4-4), it is possible to validate the equip
ment from "a priori" knowledge of the data 
input. Many experiments are available to give 
known outputs on the various displays. After 
a particular experiment, such as a raid or a 
cloud cover pattern, has been checked out, it is 
possible to rely on the display operators to as
certain whether or not the equipment is work
ing properly. However, when non predictable 
data, such as actual target data is fed into the 
system, this "a priori" knowledge is no longer 
available. 

VALIDATION 
BY 

"A PRIORI" 
KlIOWLEDGE 

Figure 4-4. Dynamic Diagnosis Utilizing Known In
put Data. 

During this condition, as shown in Fig. 4-5, 
the Status Register becomes a rather important 
tool because it allows the determination of any 
gross malfunction in the system while an ex
periment is being run. At present, the Status 
Register holds four 36-bit computer words. An 

Solution 

1. P AM Station 
2. Data Compressor 
3. ROS* Simulator 

Call Laboratory Maintenance personnel, who 
will begin detailed component check of specific 
subsystem. 

4. Situation Display 

• 5. IBM Display 
6. IBM 7090 Computer 
7. IBM 1401 Computer 
* ROS-Readout Station 

Call IBM Customer Engineers, who will begin 
detailed internal computer diagnostics. 

Figure 4-3. Tertiary Static Diagnosis 



126 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

TEST SIGNALS GENERATED 

".~ .. ,~" \ 
GROSS SYSTEM MALFUNCTION 

DETERMINED 

Figure 4-5. Dynamic Diagnosis With Non-Predictable 
Data Input. 

error anywhere in the first computer word 
causes the experiment to stop by making it indi
cate a catastrophic-type failure such as the re
produce switch on the FR700 failing to actuate. 
Word "two" stops the experiment if two errors 
are indicated. Word "three" stops the experi
ment if five errors are indicated, while errors 
in word "four" do not stop the experiment, but 
a complete error record is maintained. 

Utilizing this type of decision element, it is 
relatively simple to isolate the particular part 
of the P Al\l Station, Data Compressor, or Dis
play that is inoperative. Since it is also possible 
to monitor various portions of the IBM 7090 
Computer, such as the settings on the IBM-729 
Tape Machines, catastrophic failures in the 

computer can be readily determined. In addi
tion, various programs are available which 
cause test signals to be inserted by the com
puter into the various display devices. As long 
as this test data, which is inserted between 
processing times, is observed by the operator 
in specific portions of the display, the experi
ment is allowed to continue. Variations of this 
method cause different diagnostic codes to be 
displayed which give the operator some insight 
into the reliability of the observed data. 

Section 5 

CONCLUSION 

The research facility as described is no\v op
erational within the Research and Engineering 
Branch of the Lockheed Missiles and Space 
Company (LMSC). ,Preliminary results indi
cate that the philosophies outlined herein are 
valid. Since the facility was first activated, 
equipment designs have been successfully 
tested, and the techniques used in developing 
the computer programs have been refined. 

LMSC's experience in this area has shown 
that, whenever possible, a modest facility such 
as this should be constructed before a large 
scale, worid-wide system is undertaken. In ad
dition to reductions in time, manpower, and 
equipment, the financial gains are more than 
substantial. 



A REAL TIME MULTI-COMPUTER SYSTEM 
for 

LUNAR AND PLANETARY SPACE FLIGHT DATA PROCESSING 

W. R. Hoover, A. Arcand and T. B. Miller 
Jet Propulsion Laboratory 

California Institute of Technology 
Pasadena, California 

1. INTRODUCTION 

The California Institute of Technology, Jet 
Propulsion Laboratory (JPL) is responsible 
for National Aeronautics and Space Adminis
tration projects for the unmanned scientific 
exploration of the moon, the planets, and inter
planetary space. The use of unmanned space
craft has resulted in a need for rapid process
ing, display and analysis of data from the 
spacecraft and from the tracking equipment in 
order that ground control, using transmitted 
commands to the spacecraft, may be accom
plished. Commands to the spacecraft are for 
(1) instructions for midcourse and terminal 
maneuvers, (2) instructions for telemetry and 
mode control, and (3) instructions for deploy
ment and activation of spacecraft subsystems. 

The general data acquisition, processing, and 
display problem for space flight support is rep
resented in Figure 1. The data handling prob
lem is logically divided into four phases: 

1. Spacecraft to Deep Space Instrumenta-
tion Facility (DSIF) tracking sites, 

2. DSIF on-site processing, 
3. DSIF to JPL communications, and 
4. Central acquisition, processing and dis-

play. 

The central processing facility provides infor
mation to the engineering, flight path and 
scientific analysis groups and to flight opera-

127 

tions director. A centralized command and con
trol system approach has been established for 
the execution of space flight operations at JPL. 
An integrated facility is now under construc
tion at JPL, called Space Flight Operations 
Facility (SFOF), and a multi-computer system 
providing on-line acquisition processing, dis
play and control is being developed for data 
processing support. 

The criteria which governed the design of 
this system were: 

1. Provide automatic on-line acquisition and 
conversion of all data for automatic 
processing. 

Figure 1. General Data Flow. 



128 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

2. Provide a form of parallel processing of 
analysis programs. This processing to 
be at the millisecond level for restricted 
classes of computation, such as conver
sion to engineering units and display, 
and at the 15-minute level for the major 
analysis programs such as orbit determi
nation, midcourse guidance analysis, sci
ence analysis, and engineering systems 
analysis. 

3. Provide automatic on-line alarm monitor
ing and distribution of both raw data and 
reduced data in three analysis centers 
and at a central operations center. The 
system must have the capability to auto
matically retrieve past telemetry and 
tracking data. 

4. Provide capability for distribution of 
selected parameters to a central status 
display. 

5. Provide processing capability for the 
complete non-real time processing of all 
data associated with the spacecraft test 
program and flight. 

The advantages of this approach are: 
1. Providing an independent computer for 

input/output distribution and conversion 
leads to a natural subdivision and sim
plification in the programming systems 
effort. A basic monitor for the sequencing 
of the analysis routines has been devel
oped placing very few restrictions on 
the independent development of analysis 
programs. The input/ output processor 
programming system can similarly be 
designed to efficiently handle the large 
volume asynchronous input/output prob
lem. This was a major advantage at JPL 
due to the sophistication and magnitude 
of the analysis programs. 

2. The system provides the ability for inde
pendent expansion of input/output proc
essor, bulk storage, and main processor. 

3. The system provides the capability for 
using only the input/ output processor 
during phases of the mission where only 
acquisition, monitoring, and non-real time 
batch processing are required. This frees 
the larger more expensive main processor 
for general scientific computing. These 
same general advantages were later noted 
in a p~per by \V. Bauer.l 

4. The above advantages assisted in more 
optimum selection of computers. The 
input/ output processor was selected for 
high input/output capability and byte 
logic, while the main processor was se
lected for arithmetic capability and speed 
of double precision operations. 

II. HARDWARE SYSTEM 

The Hardware System is composed of three 
major subsystems: the Central Computing 
Complex, the Telemetry Processing System, 
and the Command, Control and Display System. 

A. Central Computing Complex 

The central computing complex consists 
of three major subsystems: an IBM 7094, 
an IBM 7040, an IBM 1301 disc file system, 
and a Direct Data Connection between the 
IBM 7040 and the IBM 7094. The initial 
configuration, scheduled to be operational 
on January 1, 1964, will have a second 
IBM 7040 for backup. The second configu
ration, scheduled to be operational on J an
uary 1, 1965, will have all three systems 
backed up with a full dual thread system. 

A graphic description of the system con
figuration is shown in Figure 2. 

1. IBM 7094-Main Processor 

r"'~-' 
I I 
I 7094 I 
I I 
L ___ J 

The composition of the IBM 7094 
system is shown in Tables I and IV. 
A detailed description of the IBM 7094 
may be found in IBM publications 
A22-6703 and G22-6647. 

f--~ 
I I 
I OISC I 
l __ J 

7040 

CONTROL 

I ~I ----~----~I----~ 

B B 

Figure 2. Hardware Configuration. 



No. 

1 
2 

16 

I ... nu. 

1 

1 

1 

1 

1 

MULTI-COMPUTER SYSTEM FOR LUNAR AND PLANETARY SPACE FLIGHT DATA PROCESSING 129 

UNIT No. NAME REMARKS 

CENTRAL 
7100 PROCESSING UNIT 
7606 MULTIPLEXER 
7302 MEMORY 32K WORDS 
7909 II DATA CHANNEL COMMUNICATE WITH 

1301 DISC FILE 
7607 II DATA CHANNEL 8·TAPE DRIVES AND 

DIRECT DATA CON· 
NECTION TO THE 
IBM 7040 

7607 I DATA CHANNEL 8·TAPE DRIVES AND 
MONITORING GROUP 

716 PRINTER 
711 CARD READER MONITORING GROUP 
721 CARD PUNCH 
7631 FilE CONTROL 

I 1301 DISC FILES 
729 IV TAPE DRIVES 

Table 1. 7094 Configuration. 

The IBM 7094 system is a high-speed 
digital data processing system. In the 
SFOF digital data system it serves as 
the primary element for the processing 
of the complex analysis programs, such 
as the Orbit Determination, Tracking 
Data Editing, and Guidance Maneuver 
programs. These programs, because of 
their size, may require the entire capa
bility of the 7094. All programs and 
data are stored on the disc and are 
transferred to the 7094 when required. 
Results in the form of tabulations, 
plots, commands and antenna pointing 
predictions are returned to the disc 
when completed. 

2. IBM 7040-Input/Output Processor 
a. IBM 7040 Central Processing Unit 

unll ng. 

3880 

5080 

7498 

W04882 

W05187 

The composition of each IBM 
7040 system is shown in Tables II 
and III. A detailed description of 
the 7040 system may be found in 
IBM publication A22-6649-2. 

... A.i:: "i::.""KS 
EXTENDED EXTENDS DOUBLE 
PERFORMANCE PRECISION AND 

REFERENCE FLOAT· 
ING POINT 

MEMORY PROTECT 

STORAGE CLOCK & 
INTERVAL TIMER 

DIRECT DATA ON 
7904 

FI LE PROTECT ALLOWS TESTING 
INDICATOR FOR FI LE PROTECT 

PRIOR TO WRITE 
SELECTING A TAPE 

Table II. 7040 Special Options. 

No. 

1 

2 

1 

1 

1 
1 

1 

I 8 

No. 

1 

! 

1 

1 

1 

I 

1 

UNIT No. NAME REMARKS 

7106 IV CENTRAL PROCESS· 32K·WORD CAPACITY 
ING UNIT 

7288 DATA COMMUNI· 
CATIONS CHANNEL 

1414 IV 1/0 SYNCHRONIZER USED FOR MONITOR· 
ING. TEST. etc. 

1402 II CARD READER 
PUNCH 

1403 II PRINTER 
7904 II DATA CHANNEL SERVICES CORE AND 

TAPE CONTROL AS 
WELL AS DIRECT 
DATA CONNECTION 

1414 I 1/0 SYNCHRONIZER SERVICES 8·TAPE 
DRIVES 

729 IV TAPE DR!VES TAPES PRESENTLY 
ASSIGNED L 

Table III. 7040 System Configuration. 

UNIT No. 

W05229 

W05!86 

W04882 

W05664 

W05185 

W04917 

W04221 

Two IBM 7040's are being incor
porated into the initial configuration 
of the SFOF Central Computing 
Complex to provide the degree of 
reliability required for the space 
flight operations. One is designated 
the prime IBM 7040; the second 
serves as backup. The two IBM 
7040 systems are identical in all 
respects. In the event of a failure 
of the prime system, switching ar
rangements are provided to remove 
the prime system from on-line op
eration and substitute the backup 
system. The IBM 7040 performs 
the following functions. 
(1) Input Processor. All inputs to 

the Central Computing Com
plex are routed through the 
IBM 7040. These inputs are 
from the communications inter
face and from the inquiry con-

NAME REMARKS 

STORAGE CELL 
CLOCK & INTERVAL 
TIMER 
!NTERVAL TRAP 
CONTROL 
DIRECT DATA ON 7607 II DATA 
CONNECTION CHANNEL 
2·WAY DIRECT ON 7607 II DATA 
DATA SWITCH CHANNEL 
TEST READY WRITE ALLOWS TESTING 

FOR FILE PROTECT 
TO WRITE SELECT· 
ING A TAPE 

TEST READY ALLOWS TESTING 
STATUS FOR READY STATUS 

PRIOR TO READ OR 
WRITE SELECTING 

THREE WAY 7631 ALLOWS DISC TO 
OPERATE WITH 
EITHER OF TWO 
7040'S 

Table IV. 7094 System Special Options. 



130 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

EXTERNAL 
WORLD 

110 
DEVICE 

soles and card readers in the 
seven remote analysis and con
trol areas. The IBM 7040 for
mats, time tags, logs and routes 
this input data to other parts 
of the system. 

(2) Output Processor. The IBM 
7040 acts as the source and con
trol of all displays in the seven 
remote areas. It also formats 
and controls all output to the 
teletype and high speed com
munications nets. 

(3) Quick-Look and Alarm Proc
essor. The IBM 7040 decom
mutates incoming telemetry 
data, converts this data to en
gineering units and monitors 
the data for out-of-tolerance 
conditions. In response to re
quests from remote areas, a 
subset of this data will be 
printed and/ or plotted in the 
remote area within millisec
onds of real time. 

b. IBM 7288 Data Communications 
Channel 

An understanding of this chan
nel is important for an understand
ing of the whole data processing 
system. A simplified block diagram 
is shown in Figure 3. 

The IBM 7288 Data Communica
tions Channel expands the input/ 
output capabilities of the IBM 7040 

7288 7040 

MULTIPLEXER 

MEMORY 
CYClE 
REOUEST 

7040 

CENTRAL 
PR·JC 

Figure 3. IBM 7288 Data Communications Channel. 

conlputer. The channel can provide 
direct connection with a variety of 
external devices operating at vari
ous speeds for real time operation. 
The data link between the IBlVI 
7288 and the external device is 36 
bit parallel; however, special 
adaptors can accommodate serial 
or parallel transfers of fewer bits. 
Like other overlapped data chan
nels, the IBM 7288 transfers data 
to and from the computer core stor
age in a 37 bit parallel fashion con
current with operation of the cen
tral computer program. 

The number of input/output con
nections (subchannels) is limited to 
48. 

The external equipment can ac
cess the computer memory with 
little supervision by the central 
processor. The IBM 7288 controls 
the address of the memory areas to 
be used for input/output data, and 
interrupts the IBM 7040 program 
when the external equipment has 
filled (input device) or emptied 
(output device) its core area. Each 
subchannel has its own unique 
buffer area in the 7040 core mem
ory. The location and length of this 
buffer is set by switches and jumper 
wires within the 7288 subchannel. 
The buffer location may be assigned 
to any portion of the core storage, 
nnrl ......,nn 1,.£'1 Ai! nnn 1£'1...,0+1-. .,1"\ +A ~1 ') 
CArJ.J.U ~J.J.",J U\,., V.L CAlJ.J.J .l\"",u.,oV.I..L "P lJV U.L ... 

words. This assignment is made at 
the 7288 and may be field changed, 
but cannot be altered with program
ming. Theoretically, data transmis
sion between the IBM 7040 and the 
IBM 7288 can be 62,500 words per 
second maximum. Practically, the 
transfer rate will be limited by pro
gram interrupt frequency, trap 
processor program length and load
ing of the other data channels. 

The multiplexor is the control 
portion of the IBM 7288 to which 
subchannels for input/output de
vices are added. It contains control 
circuitry for determining in what 



MULTI-COMPUTER SYSTEM FOR LUNAR AND PLANETARY SPACE FLIGHT DATA PROCESSING 131 

priority subchannel service requests 
are granted. There are two separate 
priority networks: one which con
trols subchannel memory cycle re
quests, and one which controls sub
channel program interrupt requests. 
These two priorities are assigned 
independently, so that it would be 
possible for a subchannel to have 
high memory cycle priority but low 
program interrupt priority. Mem
ory cycle requests always have pri
ority over program interrupt re
quests. 

The subchannels do the interfac
ing between external equipment 
and the multiplexor. They contain 
a data register for one word of data, 
the circuitry for demand-response 
control of the ex~ernal device to sub
channel data transfer, control cir
cuitry for giving memory cycle and 
program interrupt service requests 
to the multiplexor, and a memory 
address register to control which 
7040 core location a word of data 
will reference. 

For an input subchannel, the se
quence of events is as follows: (1) 
the IBM 7040 program selects the 
subchannel, thereby allowing the 
subchannel to function, (2) the 
input device signals the subchannel 
that there is data to be sampled on 
the data lines, (3) the data is en
tered into the subchannel data reg
ister and the subchannel initiates a 
memory cycle request, (4) the mul
tiplexor grants the memory cycle 
request, the data word is entered 
into the 7040 core location desig-
nated in the subchannel memory 
address register, and this memory 
address register is incremented by 
one, (5) the subchannel signals the 
external device that it is ready to 
receive another data word, (6) steps 
2 through 5 are repeated until the 
block of core storage assigned for 
the subchannel is full, (7) the sub
channel initiates a program inter
rupt request to the multiplexor, (8) 

the multiplexor initiates a data 
channel trap to the CPU. Steps 2 
through 8 continue until the com
puter program or a non-standard 
occurrence in the device causes the 
subchannel to be deselected, thereby 
inhibiting further data transfer. 
By reversing the memory cycle and 
program interrupt logic, and the 
logic for demand-response control 
between the subchannel and the ex
ternal device, the subchannel be
comes an output subchannel. Table 
V is a list of subchannels planned 
for the initial computer configura
tion. 

3. Disc Files 
The disc file system consists of an 

IBM 7631 File Control and two IBM 
1301 Disc Files. The 7631 can commu
nicate with one IBM 7040 and one IBM 
7094 on a time shared basis. Each IBM 
1301 can store 54 million characters, 
to give the system a total medium ac
cess storage of 108 million characters. 

The disc file is the volume data stor
age medium in the computing system. 
The· disc file will contain the disc dic
tionary, all raw data, all 7094 generated 
output data, the raw data table, the 
master data table, the operating pro
grams for both the IBM 7040 and the 
IBM 7094, planetary and lunar ephem
erides, and scratch regions to be used 
by analysis programs. 

4. Direct Data Connection 
The Direct Data Connection allows 

the parallel transfer of 36 data bits or 
10 sense bits between the 7904H Data 
Channel on the IBM 7040 and the 
7607H Data Channel on the IBM 7094. 
Either the IRM 7040 or the IBlYI 7094 
programs may initiate the transfer. 
Transfer rates are limited only by the 
core memory speed of the IBM 7040 
and can reach instantaneous speeds of 
62,500 words per second. 

The Direct Data Connection is used 
primarily to transfer control informa
tion between the' IBM 7040 executive 
program and the IBM 7094 executive 
program, and between a remote anal-



132 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

ysis area and its associated IBM 7094 
analysis program. The most important 
function performed is the control of 
joint disc file usage. When either of the 
computers wishes to have access to the 
disc file, the other computer is notified 
via the Direct Data Channel. 

5. Computer Complex Switching 

I 

I 
i 
I 

miN 
TTY OUT 
PHONE IN 
PHONE OUT 
/.l WAVE IN 

I 

t----
ADMIN 
PRINTER 
INQUIRY 
STATUS 
PLOTTER A 
PLOTTER B 

P"'"TE" I (TAB) CARD 
REA~EH 

I 

I CLOCK 
INTERVAL 

i TIMER I SENSE 
(COMM) 

There are two ways that the required 
reliability of the data processing sys
tem is achieved. The first method is by 

I 
.... 

en w .... 0 
Z 

w Z 
Z ;:::: C 
Z I c :II: ~ 

c 

I 
a:: a::U Zen :II: w', 

en "1 " !:to =?~ 

I 

Z :I a:: dii SPEED ~ ;;) ;c CD~ Z :I za:: en w 
:I .... 

;~ 
Zw 

"- L C"-
Ii. Gen 
0 0 ;:::: 0" .... "1z ~~ ci ci :I ow 
Z Z II ..... en~ 

12 2 6 I 40 1 
12 2 6 I 100 1 
2 2 -

I 
100 36 

1 2 - 200 36 
1 1 - 100 36 

I '" 
iii .... 2 I III 

I i "'" 

I 
ai", ~= '" I Ii SPEED 

~ • a iilii 
i it II £ 

Ii ~ ~ i: 

• • I ..... 

I 
i 

--
8 1 32 100 6 300 ch's 

4·S lines s 
7 I 20 14 36 10K w s 

I 8 35 10K w.s 
S 5 - 100 35 10 pts 's 
4 4 - 100 35 5 pts 's 
~ ~ - 200 ~ 500 e! 

cn iii 
.... 0 

Z 
w Z 
Z ;:::: c 

~ Z C :II: 
C a:: a::U Zcn :II: w'-

en "1 " "-0 =?~ 
~ Z "-a:: .... -
Z CD a =0 wCD SPEED :I CD. za:: :I cn .... ;= Zw 

I 
Ii. Ii. L C"-

I 0 

I 
0 ;:::: 0" Gen 

.... "1z CD Z 

I 0 ci :I ow a~ Z Z II ..... 
I I 

I I 36 

i i - I 12 I 36 

Table V. Subchannels. 

providing subsystem redundancy with 
the capability of switching in backup 
subsystems. This capability is described 
in this section and in Paragraph II. C. 
5 below. The second method is by plan
ning alternate operational modes to 
allow continuing operation at reduced 
capability in the event of subsystem 
failure. These modes are discussed in 
Section IV. B. 

The computer complex switching will 
be implemented in two steps. The first, 
to be available in the initial system op
erational on January 1, 1964, will allow 
the disc files to be switched to either 
of the two IBM 7040 systems and the 
Direct Data Connection to be switched 
from the IBM 7094 to either of the IBM 
7040's. 

The second step will be accomplished 
when the second disc file system and 
IBM 7094 are added to the SFOF Data 
Processing System by January 1, 1965. 
In this configuration, it will be possible 
to switch either IBM 7040 to either disc 
file, and either disc file to either IBM 
7094. It will also be possible to switch 
the Direct Data Connection from either 
IBM 7040 to either IBM 7094. 

The initial system will be able to 
recover from any failure in the IBM 
7040 system without loss of capability. 
The single thread computer complex 
(IBM 7040-Disc file-IBM 7094) is esti
mated to have a mean time to failure 
of 55 hours. "Tith the IBM 7040 backup, 
the initial system will have an esti
mated mean time to failure of the data 
acquisition, quick-look and alarm moni
toring functions of 10,000 hours. 

In the 1965 configuration, it can be 
seen that it will be possible to have two 
full single thread computing complexes, 
and that no capability will be lost unless 
there is simultaneous failure of two 
IBM 7040's, two disc file systems, or 
two IBM 7094's. 

6. Volume Output 
Large volume data output will be 

prepared off-line by using an IBM 1401 
system for tabulations, and a General 
Dynamics Electronics 4020 microfilm 



MULTI-COMPUTER SYSTEM FOR LUNAR AND PLANETARY SPACE FLIGHT DATA PROCESSING 133 

printer/plotter system for both plots 
and tabulations. 
a. General Dynamics Electronics 4020 

The function of the G DE 4020 is 
to produce at high speed large vol
ume tabular printouts and plots. 
Magnetic tape output from the IBM 
7094 system is carried to the GDE 
4020 system for processing. Output 
from the GDE4020 is in the form 
of 35 mm film or exposed 7112 inch 
by 7112 inch paper, known as the 
hard copy option. The film is proc
essed through an automatic Fulton 
processor and hard copy is provided 
using a Haloid Xerox Copy Flo ma
chine. The hard copy option output 
must be processed through a stand
ard oscillogram processor. Micro
film output can be converted to hard 
copy in approximately one-half 
hour. The hard copy option can be 
developed in 10 minutes (Ref: Gen
eral Dynamics Electronics, Spec. 
II) . 

b. IBM 1401 System 
The two IBM 1401 systems pro

duce large volume tabular printout 
and punched cards. Each IBM 1401 
system consists of an IBM 1401 cen
tral processor, an IBM 1402 card 
reader-punch unit, an IBM 1403 
printer, and two IBM 729-II tape 
units. The printer is a 600 line-per
minute printer with 132 characters 
per line (Ref: IBM manual D24-
1401-1). Tabular output is availa
ble within five minutes of complet
ing the writing of the magnetic tape 
output on the IBM 7094. 

B. Telemetry Process{ng Syste'fn (Figure 4) 

The purpose of the Telemetry Process
ing System (TPS) is to convert telemetry 
data received in analog, digital, or com
posite sub-carrier form to IBM 7288 sub
channel compatible, 36 bit format or to 
IBM compatible magnetic tape. This proc
ess is accomplished either in real time, 
using data from the microwave link to the 
Goldstone tracking site, telephone lines 
from the Goldstone tracking site, or tele-

phone lines from the Atlantic Missile 
Range; or in non-real time, using data 
recorded on magnetic tapes. The capa
bility for producing strip chart recordings 
of the analog discriminator outputs exists 
at both the TPS and in the remote analysis 
centers. 

During the most critical portions of a 
mission, it is possible to provide parallel 
processing through TPS, thus providing a 
backup capability in the event of prime 
station failure. Each station is equipped 
with two parallel output buffers which feed 
subchannels in two different IBM 7288' s. 
In the event of prime IBM 7040 failure, 
the two parallel output buffers permit the 
backup IBM 7040 to be switched into the 
prime position without disturbing the data 
flow. 

The telemetry processing complex (Fig
ure 4) consists of three identical groups 
of general purpose equipment, and six 
groups of mission oriented special purpose 
equipment; two for each of three missions. 
Patching between one of the special pur
pose equipment groups and a general pur
pose equipment group creates a station 
capable of supporting a given mission. 
Patching of the twin special purpose equip
ment group to another general purpose 
station yields the backup signal processing 
path mentioned earlier. 

Each general purpose equipment group 
contains a longitudinal wideband tape unit, 
ground instrumentation discriminators, a 

Gr. o-..u lTA110N I,. 

IA. lANG_ SPtCW. .....a.1 STAnON '. 

1M .. ~SPC:W.~ST ... TIOH'. 

s. SUI'ttIlaSPICIAlPWPCISfSTATtoN'" 

f
MIOOWA VI! "ACKIAfT DATA 
KAlDu.." DAtA 
KAlDUHf I] DATA 
e4AaDUNl'lDATA 
MICIOWAYf DStf nATION COWCIltTf 
1M CODl G&f •• Wl.F IIHIf:NCI 

~cZu~S:~ l DIGITAL DATA SMltl.A.ATOI 

Figure 4. Telemetry Processing System. 



134 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

time code translator, a tape search unit, 
a PCM decommutator, an analog to digital 
converter, and a small general purpose dig
ital computer used as a format converter. 
The special purpose groups of equipment 
include mission compatible discriminators, 
voltage to frequency converters, a PAM 
decommutator, a bi-phase modulation to 
digital converter, and all necessary level 
shifting amplifiers to properly interface 
between the general and special purpose 
equipment groups. 

The TPS contains a third category of 
equipment for test, calibration and anal
ysis. This category contains frequency 
calibration equipment, a panoramic spec
trum analyzer, a wave-fornl generator, and 
standard electronic test equipment. The 
Data Analysis Laboratory contains the 
equipment necessary to do non-standard 
data recovery that TPS is not able to 
handle. 

C. Command, Control and Display System 

1. Data Analysis Modules 
There are seven areas in the SFOF 

which have items of computer input/ 
output equipment. These areas perform 
data analysis and/or command-control 

I/O CON· 
SOLE 
SC 3070 
PRINTER 
MILGO 
PLOTTER 
DYMEC 
PLOTTER 
CARD 
READERS 

functions on the Data Processing Sys
tem. The equipments described in this 
section are primarily meant for the 
data analysis function; however, cer
tain of these modules are located at the 
two special purpose console areas: the 
Data Processing Control Console, and 
the Communications Center Console. 
Table VI is a listing of the area place
ment of these on-line input/output de
vices. A remote analysis area is shown 
in Figure 5. 

I-e I I I 
ae .... 
oae I ~~ ... c ~ III 

,15111 Z , !~ ~~ ~ i ae 0 

I~~ 
c 

:ae 

I 
t: 

I 
I IIIZ ~= ~c III C .... 0 ....... c Z U Uu CC UIII LIII 0 i ~5 aeZ 111_ 

I-~- ~ uc_ .... ~- =ae 

I 
Lo:_ 

~ .... = C ~ .... 
~ .... = : .... = 0: :lEI- ... c~~ CU L 5;;~ ~=a: .... o~ iii ~Z LZ III L coo IIIC_ ... C_ 0 uu Q QU_ 

I 1 1 1 1 i 1 I 

1 1 1 1 1 

1 1 1 1 I 

I 1 1 I 

1 1 I 1 J 

i 
·There are two Idministrative printers in the Data Processing Control 
Console I 0 Console. 

Table VI. Remote Center Input/Output Equipment. 

Figure 5. Remote Anal~sis Area. 



MULTI-COMPUTER SYSTEM FOR LUNAR AND PLANETARY SPACE FLIGHT DATA PROCESSING 135 

a. I/O Console 

The I/O consoles will incorporate 
voice communication modules and 
modules that display the state of the 
IBM 7094 analysis program option 
switches and the name of the anal
ysis program which is currently 
being processed by the IBM 7094. 
Three input/output devices will be 
used to send information to, and 
receive information from, the I/O 
consoles. 

(1) Inquiry device. This device is 
composed of an alphanumeric 
keyboard and 72 character mes
sage composer, 36 program op
tion keys, and 25 special option 
buttons. All inquiry devices 
are multiplexed into one IBM 
7288 36 bit parallel input sub
channel with a once-requested
even tually-served priority 
scheme. 

(2) Status Displays. These dis
plays are driven by a 36 bit 
parallel output subchannel. On 
each I/O console are eight 
alphanumeric indicators, and 
36 program option lights. The 
alphanumeric indicators dis
play the current operating pro
gram in the IBM 7094 and the 
analysis program to which the 
displayed 36 program option 
lights refer. The display de
coder and driver located in each 
I/O console can be easily ex
panded to drive additional dis
plays as they become necessary. 
All status displays are driven 
by one IBl\1 7288 subchannel 
with the update priority under 
IBM 7040 program control. 

(3) Administrative Printer. This 
is a Motorola TP-3000 electro
static character printer. The 
printer will communicate mes
sages to the console as required 
for feedback from the analysis 
program or the programming 
system, and to communicate 

messages of an administrative 
nature to the various I/O con
sole areas. All administrative 
printers are driven by one IBM 
7288 6 bit parallel output sub
channel with priority under 
control of the IBM 7040 pro
gram. 

The I/O consoles will permit 
the following general functions 
to be performed from the con
sole location. 
(a) Input such things as pa

rameter values, option se
lection, output format se
lection, etc., to the analysis 
programs. 

(b) Make requests for on-line 
plots and listings. 

( c) Make requests for off-line 
IBM 1403 or GDE 4020 
plots and listings. 

(d) Make requests for encod
ing and transmission of 
data to the DSIF sites 
( commands, predictions, 
etc.) . 

(e) Make requests for encod
ing and transmission of se
lected parameters to the 
central status display, or 
to another analysis area. 

(f) Receive messages concern
ing data condition, proc
essing status, existing op
erational priorities, etc. 

b. General Dynamics Electronics 3070 
Printer 

This printer is an electrostatic 
character printer that prints at a 
rate of 300 characters per second. 
It can print up to 120 characters 
per line. It produces a single copy 
that may be reproduced by Thermo
fax or other copy reproducing de
vices. This printer will be used to 
produce all on-line tabulations of 
raw and reduced data. 

Each GDE 3070 printer is driven 
by a 6 bit parallel output subchannel 
of the IBM 7288. 



136 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

c. Milgo Plotter 
This is a 30 inch by 30 inch plot 

board that has the capability of both 
ink line or character (point) plot
ting. It has an annotating head 
with the full Fortran character set. 
Paper must be changed manually 
after each plot is completed. The 
plotter will be used to plot on-line 
raw and reduced data. Program
ming options permit dividing the 
plotting surface in up to 12 fields 
for the plotting of multiple parame
ters. 

Each Milgo plotter is driven by a 
standard 36 bit parallel output sub
channel oi the IBM 7288. 

d. Dymec II Plotter 
This plotter has an 11 inch by 

17 inch plot board and, like the 
Milgo plotter, can both ink line and 
character (point) plot. It also has 
a character head, but it is limited 
to 16 characters. An automatic 
chart advance is a feature of this 
system and allows many plots to 
be made before paper needs to be 
changed, and also allows "pseudo" 
strip chart plotting. This plotter 
will also be used to plot on-line raw 
and reduced data. Programming 
options permit dividing the plotting 
surface in up to six fields for plot
ting of multiple parameters. 

Each Dymec plotter is driven by 
a standard 36 bit parallel output 
subchannel of the IBM 7288. 

e. Card Reader 
The card reader SUbsystem is a 

Burrough's B-122 card reader that 
has been modified to interface with 
the IBM 7288. It is a column serial 
reader which reads 200 cards per 
minute. Standard IBM Hollerith 
cards are used. The card reader 
serves a function similar to the in
quiry device oi the I/O console and 
in fact, the two devices can ~ct a~ 
backup to each other. In general, 
however, the card reader will be 
used where there is a larger volume 
of data to be input, or where input 

data can meaningtully be selected 
from a pre-punched set of cards. 

All card readers are multiplexed 
into one IBM 7288 6 bit parallel 
input subchannel. Card read-in can 
be initiated either from the analysis 
area, or by the computer program
ming system. If the programming 
system initiates the card read, then 
the multiplexing priority is under 
program control; if the card read 
is initiated at the card reader, the 
multiplexor operates on a simple 
sequencing priority. 

2. Communications Center Module 
The Communications Center is re

sponsible for switching all teletype lines 
to provide optimum coverage. The 
standard I/O console functions will be 
augmented by two ways that will be 
used to deterinine the status and con
figuration of the communications sys
tem. The first way is to assign the 25 
special function buttons on the inquiry 
device to allow rapid reply to queries 
from the computer program as to 
source and type of any garbled or non
standard teletype message. The second 
device is an entry device to the card 
reader subchannel that echoes the tele
type switching network, whenever the 
network is changed. 

3. Data Processing Control Console 
In addition to a standard I/O console, 

the Data Processing Console (Figure 
6) has two other modules. One module 

Figure 6. Data Processing Control Console. 



MULTI-COMPUTER SYSTEM FOR LUNAR AND PLANETARY SPACE FLIGHT DATA PROCESSING 137 

contains equipment status indicators 
for both peripheral devices and central 
computing complex subsystems, and 
the controls for effecting the switching 
as described in Sections III. A. 5. and 
III. c. 4. The other module contains 
teletype line switching and status in
formation determined from the Com
munications Center Console. Controls 
for initiating "loop" tests between 
input and output teletype sub-subchan
nels are also located on this module. 

The flow of data through the data 
processing system is controlled from 
the Data Processing Control Console 
(DPCC). All switching of computer 
complex and input/output equipment 
is initiated at this console, as well as 
control of the computer program pri
orities. To fulfill these general func
tions, the following specific functions 
are performed at the DPCC: (1) The 
equipment status of all computer com
plex and input/output equipment is dis
played, (2) the IBM 7040 and the IBM 
7094 program status is monitored, (3) 
all central computer complex and input/ 
output device switching is controlled, 
and (4) test routines and diagnostics 
for all computer complex and input/ 
output equipment are controlled. 

4. Data Processing Switching System 
(Figure 7) 

The Data Processing Switching Sys
tem (DPSS) is made up of three types 
of modules: switching modules, multi
plexing modules, and status generat
ing modules. The switching module 
switches the data and control lines to 
or from and input or output device 
from one IBM 7288 to ::mother. The 
multiplexing module provides the se
quencing or priority of those devices 
(card readers, inquiry devices, admin
istrative printers and status displays) 
which time share an IBM 7288 sub
channel. The status generating modules 
convert the contact closures which indi
cate the status of computer complex 
equipment, input/output equipment, 
and teletype line switching into dis-

COMMUNICATION 
DPSS CENTER 

SWITCHING 

ANALYSIS AREA 

-DATA 

- - - STATUS 

Figure 7. Data Processing Switching System. 

plays for the DPCC. In the case of tele
type line switching status, the module 
also codes and converts this data into 
a form to be entered, through the card 
reader subchannel, into the IBM 7040 
for use by the 7040 programs. 

5. Timing System 
The Data Processing System Timing 

System is composed of two Astrodata 
Model 6190 time code generators which 
have their outputs compared to alarm 
if one malfunctions. The generators 
have four types of output: (1) a deci
mal parallel output for time of day and 
day of year to one second resolution, 
(2) pulse outputs at selectable rates 
from one megacycle to one pulse per 
hour, (3) a 36 bit parallel binary time 
of day and day of year with resolution 
to the millisecond, and (4) a serial 
NASA 36 bit modulated code output. 
The timing system can be synchronized 
with WWV or other suitable Greenwich 
Mean Time synchronizing source. 

The SFOF Data Processing System 
Timing System has the following func-



138 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

tions: (1) drive remote time of day, 
count-up and count-down displays, (2) 
enter 36 bit binary time of day into the 
IBM 7288 clock subchannel, (3) enter 
pulse rates of one kilocycle, one pulse 
per second or one pulse per minute into 
the IBM 7288 interval timer subchan
nel, and (4) supply the Telemetry Proc
essing System with NASA 36 bit serial 
modulated time code for time correlat
ing oscillograph and magnetic tape 
recordings. 

III. OPERATING MODES (Figure 8) 

A. Mode I 

This mode will be used where maximum 
redundancy and minimum failure recovery 
time are required. It will be used mainly 
for very critical portions of a flight where 
the quickest reaction time of the SF OF is 
required to accomplish the mission. 

Mode I involves a full parallel computer 
complex of two IBM 7040's, two disc file 
systems, and two IBM 7094's. Data is 
flowing in parallel through both systems, 
but only one system is driving display de
vices and accepting feedback from analysis 
areas. Very rapid recovery from a mal
functioning system is available in this 
mode. As discussed earlier, eight-way 
switching of the central computer complex 
devices will be available, allowing several 
sub-modes with different hardware con
figurations. The backup computing system 
will be performing all functions of the 

2., 
d~ ~ I=:1 r---, r----, 

L~~J L!o;'J 
L;~~ ............... l 

Q 
~ ........... .! 

MODEm Q MODEN 

. Figure 8. Operating Modes. 

prime system, except that of display and 
processing analysis area requests. This 
mode will not be implemented initially as 
an on-line backup disc file and IBM 7094 
will not be available until 1965. 

B. Mode II 

1. Mode IIA 
The input data to the system are flowing 

in parallel into both IBM 7040 computers. 
Only one of the IBM 7040's is connected to 
the user areas and to the disc files and 
Direct Data Connection. The standby IBM 
7040 is logging all input data and prepar
ing a magnetic tape to be used for recovery 
in the event it is necessary to enter one of 
the failure modes. 

Continuous monitoring of both IBM 
7040's as well as the disc and IBM 7094 
will be employed so that rapid detection 
of a failing or failed subsystem can be 
made. In the event of a major subsystem 
failure, it will be impossible to maintain 
operation in this mode, unless the computer 
configuration of Mode I is available. 

2. Mode lIB 
This mode will provide the same capa

bility and throughput time as Mode IIA, 
except that the second IBM 7040 and TPS 
backup will not be on-line with the input 
data. The throughput time for all types 
of data in this mode is identical to that of 
Mode IIA, but failure recovery time will be 
longer. An IBM 7040 failure could require 
up to one hour delay in recovery, and a 
TPS failure could require 15 minutes. As 
in Mode IIA, the performance of the on
line system is continually monitored to 
detect existing or impending malfunctions. 

In the event of an IBM 7094 or complete 
disc file failure, it would be impossible to 
maintain operation in this mode, unless 
the Mode I computer configuration is 
available. 

C. Mode III 

In this TIl0de, the IBM 7040's are not 
connected to either the Disc file system or 
by the Direct Data Connection to the IBl'rI 
7094. Data is being logged for bulk proc
essing on the IBM 7094; quick-look proc
essing, alarm monitoring, and display are 



MULTI-COMPUTER SYSTEM FOR LUNAR AND PLANETARY SPACE FLIGHT DATA PROCESSING 139 

available. This Mode is separated into 
Modes IIIA and IIIB depending, as in Mode 
II, if the second IBM 7040 is on-line or not. 
If the second IBM 7040 is on-line, it will 
allow a one minute IBM 7040 failure recov
ery. If the second 7040 is not on-line, up 
to one hour could be required for failure 
recovery. 

D. Mode IV 

In this mode, data which has been 
written on magnetic tape in Mode III will 
be batch processed by the IBM 7094-disc 
file system. The processing will be essen
tially the same as that of Modes I and II, 
but the input data to the IBM 7094 pro
grams will be on magnetic tape rather than 
on the disc file. 

IV. PROGRAMMING SYSTEM 

The overall programming system (Figure 9) 
logically consists of three different SUbsystems. 
Each system operates asynchronously but must 
be cognizant of the status of the other subsys
tems. Mutual control between subsystems is 
required. The three subsystems are: the 7040 
system, 7094 system, and the Data Control 
System which operates in both the 7040 and 
the 7094 and is responsible for sequencing and 
issuing all disc file transactions and all direct 
data communications. The 7040 and 7094 sys
tems both have time sharing schemes; however, 
these schemes are completely different due to 
the difference in the functions performed by 
the two computers. 

A. 7040 System 

The 7040 system's function is to handle 
all raw data inputs, time tag the incoming 
data with SFOF time, record all data on 

-....... 
I. COlI ..... -.' ... . 

• ........ " .... IIICI • • ~CII!IIf'r_. 
'- •• CC*l ..... 

I . .....,'~ ... ' .... 

s. ""'iII'IIOC(-..s ....... , ...... 
:::.:c". 
'f~~'-

.flllf ..... OU~T 
"""-...u, 
f.au.-.~'Ml'" 
.. pe. ..... "eo-.... ... 

I. .. """,......,.. ... . 

. ;;.;r-'*' 
., ",1UMI'r""":1 _.'fAL.,., ... ....... , .... 

Figure 9. 

I l.CUYOll 
.'-'l~lIOul"lI( 

~ ~_ ... ::=:::.IIOu"1I( 
• .... s.tTCoI •• $S.IIII( _ .. 1' 

Programming System. 

B. 

magnetic tape, transmit data to the disc 
file, distribute output from the raw data 
stream and from disc to the analysis cen
ters and to the DSIF and control commu
nications from the remote consoles. The 
7040 can also convert data to engineering 
units and perform out of tolerance alarm 
monitoring on the telemetry data. The 
7040 must be able to perform acquisition 
and monitoring on two missions in paralleL 

The basic structure of the 7040 includes 
the following types of routines. 

1. Trap Processors 
2. Input Processors 
3. Output Processors 
4. Priority Control 

7094 System 

The 7094 system consists of three basic 
parts: the monitor, the input/output sys
tem, and the analysis programs. The anal
ysis routines include orbit determination, 
science analysis, guidance analysis, etc., 
and will not be discussed here. 

1. Monitor 

The monitor is responsible for the 
control of analysis program execution 
with a priority scheme, intra-computer 
communications, editing and sorting of 
the raw data table to the master data . 
table, status reporting, and accounting 
and creation of old raw data prints and 
plots. Since the flight missions divide 
into logically different operation peri
ods the priority control must be capable 
of being modified on-line. All modifi
cations of this type are made from the 
central data processing control console. 
The 7094 time-shares the analysis pro
grams by keeping a list of the programs 
which should be sharing time in the 
7094. Associated with each program 
in this list is the percentage of real 
time which that program should get. 
An interval timer trap will periodically 
cause entry to the monitor. The moni
tor will guarantee the time sharing by 
interrupting programs, saving them 
on disc, and starting a new program 
which needs time. 



140 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

2. Input-Output Routines 
Input routines are necessary in order 

that an analysis program may request 
cards to be read from the appropriate 
analysis center. Output routines pro
vide the analysis program capability 
to print and plot in the analysis center 
and to transfer teletype output to the 
DSIF. 

C. Data Control Program 

Data control programs exist in both the 
7040 and 7094. These programs control all 
disc transactions and all direct data trans
actions. 

The Control programs are referenced 
by the user to obtain disc transmissions. 

The primary function of these programs 
is to interpret the user's request and to 
make appropriate entries into various 
queue lists. The trap supervisors interpret 
traps from disc and issue new requests by 
accessing the queue list entries stacked by 
the control programs. The communication 
programs provide the necessary inter
computer communication necessary to pro
vide dictionary updating and system con
trol. The disc routines are special subrou
tines used by 7094 trap supervisor and 
control program. 

REFERENCE 

1. W. F. BAUER, "Why Multi-Computers?" 
Datamation, September, 1962. 



GROUND OPERATION EQUIPMENT FOR THE ORBITING 

ASTRONOMICAL OBSERVATORY * 

E. J. Habib and A. G. Ferris 
Goddard Space Flight Center 

Greenbelt, Maryland 

H. W. Cooper 
Westinghouse Electric Corporation, 

Air Arm Division 
Baltim,ore, Maryland 

R. L. McConaughy 
Grumman AircTajt Engineering Corporation 

Bethpage, Long Island, New York 

INTRODUCTION 

The Orbiting Astronomical Observatory 
(OAO) is one of a new class of scientific satel
lites under the cognizance of the Goddard Space 
Flight Center (GSFC) of the National Aero
nautics and Space AdministratiQn (NASA). 
The spacecraft will provide a highly stable and 
precisely orientable reference for the payload. 
It will also furnish all the communications, data 
processing, and power to reorient the observa
tory, to command the payload, and tOo store and 
transmit scientific data to ground stations. 

This report presents the ground operation 
and control aspects of the OAO system. Descrip
tions of certain of the key portions of the space
craft system, the operating philosophy, and the 
experiments carried in the payload are pre
sented to aid in the understanding of the 
Ground Operation Equipment (GOE) require-
'I"V\,a,n+o U£\"I'S'TO"~'TL'\.~ +"hn n.""""''I'''\hnn';n .; ..... +h· -+ 
.L.a...L""' ....... vu. ..L.LV yy ...... v~.L, ....... J.-..:;; v.lJ..l}J.l.lQ.O.10 1..11 lJ.l.lIS r€pO.l lJ 

is on the Ground Operation Equipment. 

THE OAO SYSTEM AND EXPERIMENTS 

Figure 1 shows the OAO as it will appear in 
orbit. The central structure is 10 feet in length 
and 7 feet in diameter; with the paddles ex
tended it will be approximately 16 feet wide. 

It will weigh 2500 pounds and will carry 1000 
pounds of experimental equipment (for a total 
weight of 3500 pounds). The flap on top serves 
two purposes: it is a shutter to protect the tele
scope optics which will be damaged if the OAO 
points within a few degrees of the sun, and it is 
a sun shade to maintain the isothermal environ
ment which will be degraded if the- OAO points 
even within 45 degrees of the sun. With the 
spacecraft oriented as shown, sunlight arriving 
from the left side is converted to approximately 

Figure 1. The OAO in orbit. 

* Presented at the Institute of the Aerospace Sciences National Tracking and Command of Aerospace Vehicles 
Symposium, San Francisco, February 19, 1962. 

141 



142 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

1/2 kilowatt of electrical power. The mean tem
perature in the equipment bays is maintained 
at 10 ± 36°C, while the temperature in the cen
tral tube will be isothermal within 10°C of any 
design- temperature between ooe and -80°C. 

The OAO will be placed in a 32-degree orbit 
at an altitude of 400 to 600 statute miles. In 
this orbit, the period per circuit of the earth is 
about 100 minutes and the OAO is within view 
of a ground station a maximum of 12 minutes. 
The three remote stations will be located (Fig
ure 2) at Rosman, North Carolina, Quito, Ecua
dor, and Santiago, Chile. These locations were 
selected to provide one contact per orbit with 
a minimum duration of 5 minutes. 

The OAO differs from all previous satellites 
in that it is an orbiting ground controlled sci
entific laboratory and it is the first to allow 
extremely precise pointing of the sensors. The 
control problem is quite difficult. Whereas in 
prior earth-viewing satellites the means of sta
bilizing or of procuring a stabilization reference 
have been simple-either spin stabilzation or 
stabilization to the earth's vertical with infrared 
sensors tracking the earth's edge-in the OAO 
the stabilization to an arbitrary direction in 
space will be by reference provided by six star 
trackers. The complexity of the star tracking 
arrangement requires more sophistication in 
the ground operation equipment than was re
quired for the previous satellites. 

The spacecraft operates in four principal 
modes: first, the initial orientation and stabili
zation mode; second, the calibration mode; 
third, the operational mode; and fourth, the 
backup, or trouble shooting mode, which is used 
when there appears to be trouble in the space
craft subsystems. 

Figure 2. Locations of the remote control stations. 

The OAO is designed to stabilize automati
cally in three axes after being placed in orbit 
and then to align its optical axis toward a spe
cified area of sky on the basis of information 
entered in the spacecraft mernory before launch. 
The maneuvers executed by the spacecraft to 
accomplish this initial orientation and stabili
zation are described in Appendix A. During 
this mode, the Gound Operation Equipment 
monitors the status of these maneuvers and 
provides a means for assisting in the event of 
any malfunctions. This mode may take up to 
three orbits. 

In the calibration mode, the OAO's optical 
devices are calibrated with respect to one an
other so that the effects of any distortion or 
inaccuracies which may have been introduced 
during launch are eliminated. 

The major portion of the satellite life will te 
in the operational mode, gathering data and 
transmitting these data to the ground control 
stations. 

The backup mode allows the Central Control 
Station to command the spacecraft in real time 
through the North Carolina station which is 
linked to the Central Control Station by micro
wave. 

Figure 3 is a functional diagram of the maj or 
elements of the OAO system. In essence, the 
control equipment on the OAO points the tele
scope which secures the scientific information; 
the communications equipment relays these 
data to the ground stations where they are 
recorded. The recordings are mailed to the 
Data Reduction Facility for processing. The 
scientific data are then distributed to the person 
conducting the experiment. 

The primary experiments for the first three 
observatory systems are all concerned with 
stellar astronomy in the ultraviolet range 
(1000A to 3000A). The OAO-I will carry two 
prime experiments complementary in their use 
of the spacecraft systems: (1) a mapping study 
of the celestial sphere in three ultraviolet 
ranges (as shown in Figure 4) under the direc
tion of Dr. Fred Whipple of the Smithsonian 
Astrophysical Observatory, and (2) a broad
band photometry study of individual stars and 
nebulae using the equipment shown in Figure 
5 which will be developed by the University of 
Wisconsin team headed by Dr. Arthur Code. 
The sky mapping experiment will use primarily 
picture transmission in real time, while the star 



GROUND OPERATION EQUIPMENT FOR THE ORBITING ASTRONOMICAL OBSERVATORY 143 

and nebulae study data will be stored and read 
out on command. In these experiments, the 
spacecraft controls must aim the roll (or main 
optical) axis of the satellite at specific portions 
of the sky with accuracies approaching 20 sec
onds of arc. Although this is not the ultimate 

COMMUNICATIONS GOE 

EQUIPMENT REMOTE OPERATOR 

RECORDER LETYPE 

rr::.---------------.- - -
I DATA GOE 

I REDUCTION CENTRAL 
FACILITY I 

~__ _ __ L-------~ ______ =...J 

EXPERI MENTER OPERATOR 

Figure 3. Functional diagram of the OAO system. 

" fLLlf'SOiO 

-<»~, 

UlTIAVIOl.~T :tl"l 
fill ... WI 

II\7tI j" •• , 
I 
r 

"'AN '0 PMorOOI,.,N 70~ Of sa' IN. aONrHS IN 'Hl:I' UUIA-YIOUt COl.o. lANDS 

_,11001. 2000,105oA. AND ,_ TO '0.01 

Figure 4. The OAO-I sky mapping experiment: plan 
to photograph 70 per cent of the sky in 6 months in 
three ultraviolet color bands-3000A to 1700A, 2000A 

to 1050A, and 1600A to 1050A. 

desired accuracy of 0.1 second of arc (corre
sponding to a displacement of 0.03 inch at a 
distance of 1 mile), it is near the limit obtaina
ble without using error signals taken from the 
experimenter's optics. 

The OAO-II will contain an absolute spectro ... 
photometry experiment designed by a GSFC 
team headed by Dr. James Milligan. The opti
cal system will employ a 36-inch primary mirror 
and will use both the spacecraft's coarse and 
fine control capabilities. However, the experi
ment is designed to obtain useful data even if 
the fine control system does not operate. Data 
from this experiment will be stored and read 
out on command. 

The experiment on the OAO-III is concerned. 
primarily with determining the absorption fea
tures of the interstellar medium. This experi
ment will be directed by Princeton University 
under the direction of Dr. Lyman Spitzer and 
will require maximum performance from the 
optical and thermal systems and a control ac
curacy of 0:1 second of arc. The OAO-IV and 
later space craft in this series probably will be 
used for studies of the sun and planets, in addi
tion to a limited amount of payload capacity for 
small secondary experiments. 

In order to accomplish the satellite mission 
and to secure and transmit the data required by 
the experiments, the spacecraft requires elec
tronic equipment as shown in the block diagram 
of Figure 6. The essential features of the space
craft electronic system are: a precision clock; 
a core memory data storage system; a TV sys
tem for attitude verification; and data process-

COlOlwttHU 

I 
I 
I 

I I 
I /\ I 
II \ I 
~ W 
,,- NfMA.AI SYSTEM OIJECnvl 

GUTING 

Figure 5. The OAO-I stellar energy exepriment: de
termination of ultraviolet stellar energy distribution in 

the 'spectral region from 300A to SOOA. 



144 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

~l[~Bb I 
EXPERIMENTAL TELEMET'!" SYSTEM ~ 

TT 

Figure 6. The electronics of the OAO. 

ing and communications equipment in the form 
of transmitters, encoders, receivers, command 
memory, etc. Provision is made in the elec
tronic system for the addition of a future on
board computer which can reduce the amount 
of data which must be transmitted from the 
spacecraft to the ground and back. 

lARGEr 
IWIal1C& SEQUENCE 

CWECK 

COMMAND 
DWlIG1lC6 GENERATOR 

0RMAl 
1».1A (SUft
MOON-DAD) 

The OAO communications include conul1and 
operation on 148 megacycles and telemetry on 
136 and 400 megacycles as shown in the portion 
of Figure 7 marked "Remote Control Station." 
The 400-mc receiver is operated at 300-kc IF 
band width and the narrow-band signal is re
ceived on 136 Me with a 10-kc IF band width. 
The 300-kc band width is necessary for trans
mitting the slow-scan television image. The 
stable nature of the image allows slow-scan 
techniques with adequate resolution. The Pulse 
Code Modulation (PCM) data can be trans
mitted on either the narrow-band or the wide
band links if malfunctions occur in the space
craft communications. 

High-power ground transmitters and high
gain ground antenna systems are used to in
crease the signal-to-noise ratio. In addition, 
because of the extreme importance of trans
mitting correct commands to the spacecraft, 
the commands and their- complements are trans
mitted, compared and, if correct, retransmitted 
to the remote control station for further com
parison. 

- COMMANDS - REAL TIME (SEMI) 
- STATUS DATA - REAL TIME (SEMI' 
- SCIENTIFIC DATA - REAL TIME (SEMI) 

Figure 7. The OAO ground operation equipment. 



GROUND OPERATION EQUIPMENT FOR THE -ORBITING ASTRONOMICAL OBSERVATORY 145 

GROUND OPERATION COMPLEX 

Figure 7 is a block diagram of the OAO 
Ground Operation Equipment complex. Table 
1 lists the system elements and functions. The 
operational simulator-command generator es
tablishes the feasibility of the commands which 
the experimenter requires. These commands 
are verified on a large-scale digital computer 
which introduces orbital data and spacecraft 
conditions as 'well as other constraints on the 
operation. Upon verification, these commands 
are passed to the PrOoject Operations Center. 
The commands are then sent by teletype or by 
microwave to the remOote control station which 
actually communicates with the satellite. 

In addition to a radiOo beacon which is used 
for tracking, three radio links are used to com
munciate with the OAO. The remote control 
stations are all identical in their functions and 
equipment. They normally only secure data 
from the satellite and transmit predetermined 
commands to the satellite. However, in case of 
emergency or if desired the GSFC Central Con
trOoI Station can assume real-time control of 
satellite operations through the North Carolina 
station. This is done by direct microwave con
nection. The predetermined commands are 
originated and checked at GSFC and are trans
mitted to the remote control stations by teletype 
at least a day in advance of their use. 

The two telemeter links transmit to the re
mote control statiOons all the data available in 
the OAO; these data are recorded on magnetic 
tape at the remote control stations. Tapes con
taining scientific or experimental data are 
mailed to the Data Reduction Facility at the 
Central Control Station for processing for the 
experimenter. Data indicating the status of the 
spacecraft and the experiment are processed by 
the remote control station-first, tOo determine 
whether the satellite is in a satisfactory state 
to accept commands for the next orbit, and, 
second, to prepare the data for transmission 
to the Central Control Station where it may be 
analyzed and used to up date predictions of the 
OAO behavior. 

The essential functions of the Ground Opera
tion Equipment-message distribution, data 
processing, signal distribution logic, displays, 
controls, and command mod ulators-are dia
grammed in Figure 8. 

~ COMMUNICATION HRECORDERI 
r-------f--J-------, 

GROUND OPERATIO,NA L 

IBM-7090 
COMPUTER 

EQUIPMENY . , 

Figure 8. Functional diagram of the ground operation 
equipment. 

The equipment described here will be com
mon to all OAO spacecraft, and portions of it 
may be used for other future scientific satellites. 
It monitors the condition of the spacecraft and 
subsystems and generates the commands neces
sary to accomplish the scientific experiments 
and, if possible, to correct any malfunctions 
that may occur in the satellite. 

Remote Control Stations 

The data processing function at each of the 
remote control stations is handled by a general
purpose computer of intermediate capacity, the 
General Mills AD/ECS-37. This equipment is 
used in conjunction with a display and control 
console which provides the operator link to the 
system (Figures 9, 10 and 11). Figure 12 
shows the data flow in the normal mode of op
eration. The control console at the remote con
trol station (block diagram shown in Figure 
13) implements the operating functions which 
are: 

1. Receive commands, predicted status, and 
instructions from the Central Control 
Station and store these in AD /ECS-37 A 
computer. 



146 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

Table 1 

System Elements and Functions 

Operational 
Element Simulator- Project Operations Data Reduction Remote Station 

I 
Command Center Facility 
Generator 

Equipment IBM 7090 Communications PCM-DHE. RF Equipment. 
peripheral terminal equipment. On-off line printer. PCM-DHE. 
equipment. PCM-DHE. Off-line plotter. Display and control 

Display and control Small computer. console (limited). 
console. General Large computer. General Mills 
Mills AD /ECS-37a. AD/ECS-37a. 

Functions Command Duplicate remote I Decomm-sort- I Command 
Generator control station catalog scientific Transmission. 
Simulator capability. data. Status compare. 
diagnostics. Display scientific Quick-look at Command 

data (limited). scientific data. Verification. 
Final Format-output Format conversion 
data complete. and check. 
Status data time. Decomm and con-
History by version for display. 
parameter. Scientific Data. 

Decomm and display 
(limited). 
Signal routing. 

Inputs Orbital data. Punched paper tape Magnetic tape from Punched paper tape 
Star catalog. from remote control remote control from project opera-
Sequence of stations. station. tions center. 
targets. Predicted status Punched paper tape RF (NB & WB) 
Status of data- from operational from project opera- from spacecraft. 
spacecraft and simulator. tions center. 
experiments. Command from Direction and Re-

command quirements from 
generator. experiments. 

Outputs Commands. Punched paper tape Status data-time Commands to space-
Predicted status. to remote control history. craft. 
Diagnostics. stations. Experimenters Punched paper tape 
Ground rules for Direct digital to data package. to project opera-
experimen ters. microwave link. tions center. 

Magnetic tape to Go, no-go to space-
IBM 7090 craft system. _. --------I DIrect to LH1Vl rlU~U. I 



GROUND OPERATION EQUIPMENT FOR THE ORBITING ASTRONOMICAL OBSERVATORY 147 

Figure 9. Ground operation equipment at a typical remote control station. 

2. Set the Estimated Time of Arrival display 
per instructions from the Central Control 
Station. 

3. Perform precontact checkout of station 
equipment. 

4. Monitor the Minitrack signal for the OAO 
contact. 

Figure 10. Remote control station operating panel
station control/GOE control. 

5. Interrogate the spacecraft when station 
time agrees with Estimated Time of 
Arrival and beacon signal exceeds 
threshold. 

6. Verify commands. 
7. Receive current status data, check parity, 

and check with predicted status. 
8. If status check fails, transmit hold com

mands and notify the Central Control 
Station. 

9. Transmit and verify additional commands 
(stored or manual). 

10. Record all commands transmitted and all 
data received. 

11. Display results of command-verify, par
ity, and status checks. 

12. Display Greenwich Mean Time, Estimated 
Time of Arrival, and real-time contact 
remaining. 

13. Convert status data to TWX format and 
transmit to the Central Control Station. 

14. Send magnetic-tape recording to the Cen
tral Control Station. 

The remote control station operator may 
select the satellite transmitters and beacons 
which he wishes to use and the type of data to 



148 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

be transmitted from the satellite. The OAO 
control portion of the console provides this ca
pability (Figure 11). Control over the physical 
motions of the satellite is limited to prepro
grammed commands for future execution or a 
"hold" command to sustain it in an unchanged 
condition. 

'i-' j 1#., "~I 

.tIl 

Figure 11. Remote control station operating panel
OAO control. 

O.tlO_ ----
CPmIAL CQITIIOL IIIIDTECOItIIICIL 

IrATQI I11ITlOII --
OAOC_ ----~,--_£.Ift __ 

c-..r if""" __ STA"" 

E_TALOATA 

• TML.-

~ 
OAO I 

~ 

Figure 12. Data flow in the normal mode of operation. 

2 N-B TIM RECEiVER 
l COMMAND TRANSMITTER 

.. FR-600 RECOROER 

I w-B TIM RECEiVER } 

~ PCM DATA HOLG EQUIP 
6 MINITRACK SYSTEM· STATION 

STATUS 

, ~ 
OPERATOR- _____ ___ .1. ____ _ ..J. __ - --'-- - ----' 

Figure 13. Block diagram of the remote control sta
tion control console. 

The rest of the console provides control of 
the ground station and equipment (Figure 10). 
The station status is a simple go, no-go signal 
which indicates the readiness of particular 
pieces of equipment. The system functional test 
controls initiate actions which establish the 
operating readiness of the Ground Operation 
Equipment. The mode selector control is 
present only on the North Carolina station and 
transfers control to the Central Control Station 
via the microwave link. 

Central Control Station 

The foundation of the OAO ground opera
tions is a large-scale computer which keeps 
track of astronomical and orbital motions, 
which maintains an up-to-date status of the 
observatory, and which accepts programmed 
operational and performance constraints of the 
OAO system. In addition to the large scale com
puter the equipment in the Central Control 
Station is the same as that at the remote control 
stations with certain display and control por
tions augmented. The Central Control Station 
console consists of five relay racks of equipment, 
The three units shown in Figure 14 combined 
with those shown in Figure 10 make up the 
console. Figure 15 is a block diagram of the 
Central Control Station equipment not including 
the large scale digital computer. 



GROUND OPERATION EQUIPMENT FOR THE ORBITING ASTRONOMICAL OBSERVATORY 149 

The functions of the Central Control Station 
are: 

1. Generate commands, predicted status 
values, contact times, and instructions. 

2. Convert commands and other data to 
TWX format and transmit to remote con
trol stations. 

3. Generate and store alternate program for 
quick takeover. 

4. Receive the previous OAO contact data 
fronl the l'emote control stations and con
vert these data to IBM 7090 format. 

5. Display status data. 
6. Enter data and experimenter's instruc

tions into a large-scale digital computer 
for evaluation and use in generating com
mands for the next contact. 

7. Display Greenwich Mean Time and satel
lite equivalent time. 

By using the information from the satellite 
and the desired sequence of astronomical obser
vations, the computer generates commands in 
spacecraft language, predicts the state of the 

Figure 14. Central Control Station-OAO control/dis
play. 

Figure 15. Block diagram of the Central Control 
Station equipment. 

spacecraft at the start of each ground contact, 
and establishes tolerances within which the 
prediction is valid. The tolerances established 
for the go, no-go evaluation must account for 
the accuracy with which the forecast is made, 
the accuracy with which the quantity can be 
measured, and the importance of the quantity 
to the successful performance of the OAO. Dur
ing the one contact per orbit, lasting from five 
to 12 minutes, data must be read from the 
memory on the spacecraft and new instructions 
stored in the command memory of the space
craft. The design problem of the ground opera
tion equipment is basically how most efficiently 
to transfer information from a multiplicity of 
sensors in the spacecraft to the human operator 
on the ground, how to assist him in making de
cisions, and how best to redirect the necessary 
controlling actions to the spacecraft subsystem. 

Although the Central Control Station com
municates only with the satellite in real time 
via the North Carolina remote station by micro
wave link, considerably more data are displayed 
here than are displayed at the remote control 
stations. 

The Central Control Station equipment en
ables the operator to examine the data received 
from 294 analog measurements within the satel
lite. In addition to the analog status items, 
there are 192 bi-Ievel status items. These items 
provide information on equipment components 
whose status is characterized by one of two 
states, for example, on-off or open-close. 
Another 28 items provide, in decimal form, 
angular data and time from the satellite. The 
angular data is called up from the AD /ECS-37 A 
Computer using a plastic index card with a title 
in English which provides a positive means of 
identifying the display status item. Holes in 
the card actuate a set of microswitches (Figure 
16), which provide coding for entry of the 
command to the computer, which, in turn, calls 
up the desired infornlation from the computer 
memory. For a permanent record of the entire 
514 channels, a printer is used. 

The optimum amount of information which 
the operator can read and act upon would re
quire an extensive human factors study. How
ever, the amount of information presented upon 
the control and display panels at the Central 
Control Station has been determined by a 
human factors analysis to be well within the 
capability of the average operator. 



150 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

Figure 16. Selector switch assembly. 

As a means of verifying the orientation of 
the OAO, a television camera with a field of 
view approximately eight degrees square is 
boresighted along the optical axis of the space
craft. With a I-second frame period and the 
available communications band width, a resolu
tion of 350 lines is possible. The ground based 
television monitor, provided at the Central Con
trol Station only, can be used for coarse veri
fication of the pointing data derived from the 
star tracker gimbal angles. The space craft 
camera, operating in the visible spectrum, is 
entirely separate from ultraviolet-sensitive 
cameras provided as part of the experiment. 

DESCRIPTION OF OPERATION 

Satellite Commands 

The most important task of the Ground Oper
ation Equipment is to generate and transmit 
commands to the spacecraft. The commands 
transmitted to the satellite consist of seven basic 
types in either a real-time command mode or a 
stored command mode. The commands and 
their codes are given in Table 2. 

The Gimbal angle commands are commands 
to the star trackers, while the attitude change 
commands control the OAO's momentum wheels 
directly for changing attitude. Each command 
consists of two 32-bit words. The first word 
classifies the command and addresses the proper 
channel for coding and the second word is the 
command itself. Figure 17 shows the formats 
for the control and gimbal angle commands 
which are typical of command formats. Note 

Table 2 

Satellite Commands and Their Codes 

C· - I 
·ommand I Code 

Control ----~-I-OOOl--
Data Handling 1- 0011 
Address Transfer 0010 
Attitude Change 0110 
Experimenter's 0111 
Gimbal Angle 0101 
Ground Synchronization 0100 

that the control command format permits 225 
bi-level conlmands. 

The commands transmitted to the OAO from 
the remote stations are in a PCM NRZ format 
at a I-kilobit rate. The data transmitted con
sist of the command words and their comple
ments to provide error checking. The comple
ment form simplifies the on-board command 
verification. After verification by the electronic 
equipment in the satellite, the commands and 
their complements are echoed (retransmitted) 
to the ground where the ground operation 
equipment compares the echo from the satellite 
with the original transmitted command to en
sure that they have been properly received. 

An alarm is generated and transmitted by 
the OAO when the complement is not verified on 
board. Receipt of the alarm causes the Ground 
Operation Equipmentto inhibit transmission of 
the commands to the OAO. The command 

EXPERIMENTERS COMMAND 

(FIRST COMMAND WORDI 

(SECOND COMMAND WOIDI 

EXPERIMENTERS COMMAND CODE :7 C CHANNa SEueT 

11 EXPERIMENTERS CONTROL INFORMATION (30 lilTS) 

GIMBAL ANGLE COMMAND 

(FIRST COMMAND WOlD) 

GIMBAL ANGLE COMMAND CODE 7 STARTRACKER 
SRECTION lilTS 

(SECOND COMMAND WOlD) 

1 1 INNER GIMIIAL ANGLE (IS IITS) OUTER GIMBAL ANGLE (IS IITS) 

!'!'OU'"IMES 

'-1 1213141516171,19110111112113114115116"711'119\201211221231241251261271281291301311321 

Figure 17. The OAO command format. 



GROUND OPERATION EQUIPMENT FOR THE ORBITING ASTRONOMICAL OBSERV ATORY 151 

message is then retransmitted, beginning with 
the command that failed, or beginning with a 
preceding command. Similar action occurs if 
the command echo is not verified. 

Typical Contact with the OAO 

Contact with OAO is established at predicted 
time of contact or when the beacon Automatic 
Gain Control level indicates that the OAO is in 
range. The operator initiates a start command 
to cause the data processor, under control of a 
stored program, to issue the commands neces
sary to cause a readout of current status from 
the OAO. Necessary gating signals are sent to 
the PCM data handling equipment to define the 
format and word size for proper signal flow in 
and from the PCM data handling equipment. 

The computer program causes current and 
predicted status to be compared word-by-word. 
In the comparison, the limits of predicted status 
are extracted from storage an item at a time 
and the difference between limits and actual 
values for that parameter are computed and 
evaluated. If one or more items are out of 
tolerance, the computer causes the spacecraft to 
be reinterrogated and recompares status. This 
cycle is repeated until predicted and current 
status are compared successfully, or until a 
fixed number of cycles have been executed. If 
compared successfully, the computer activates 
a status comparison Go indicator and will sense 
the position of a Proceed/Halt switch associated 
with this indicator. If this switch is in the 
Proceed position, the program will direct the 
computer to initiate the next subroutine. If the 
status does not compare or if the· switch is in 
the Halt position, the computer will halt until 
the Proceed switch or the restart button is de
pressed. The next subroutine, command trans
mission and verification, routes commands in 
the sequence defined by the Central Control 
Station. The complement of each command 
word is transmitted immediately following the 
command word proper as previously described. 

Command output synchronizer logic converts 
the command message to serial form and accom
plishes the synchronization and format conver
sions. The bit-rate synchronizing signal is 
initiated by computer control and after a delay 
(3 to 10 milliseconds) determined by the com-
puter subroutine, the command message is 
initiated. The spacecraft data processing sub-

system compares the command word with its 
complement and also retransmits the command 
and complement to the remote control station. 
If the complement check in the spacecraft fails, 
the spacecraft transmits an alarm in lieu of 
echoing the command. A gating signal routes 
the commands through the PCM data handling 
equipment into the computer where the echoed 
command is compared with the transmitted 
command as described previously. 

Receipt of the alarm signal initiates a sub
routine that will determine which specific com
mand word failed, reset the spacecraft verifica
tion logic, and start a new transmission at the 
command where the error occurred. If this com
mand is transmitted and verified, the process 
continues until the message is completed or a 
subsequent error is detected. If a fixed number 
of repeat cycles has- been executed on a given 
command and an error persists, the New Com
mands Transmitted light goes red and the pro
gram halts until the operator either: (1) starts 
over, (2) switches in redundant communication 
links and then starts over, or (3) overrides by 
depressing the Proceed/Halt switch. When the 
New Commands XMTD light shows red or no~ 
go, the operator can base his decision of which 
alternate to pursue by reference to the Satellite 
Command Verification, Ground Command Veri
fication, and Parity Check lights which indicatE 
the source of the no-go condition. 

When the computer has successfully trans
mitted, received acknowledgment of, and veri
fied the assigned command message it will eitheI 
halt or proceed with the next subroutine, de
pending on the state of the Proceed/Hal1 
switch. The manually switched commands ma) 
be employed as necessary by the station operatoI 
in any of the halt positions discussed previously. 

After the contact is completed, the computer 
is directed to transcribe the actual status data 
received from the spacecraft to teletype format 
and to punch a paper tape containing these 
data. The information on the tape is trans
mitted to the Central Control Station via tele
type. All data received from the OAO (includ
ing stored status), all commands transmitted 
to the OAO, Greenwich Mean Time from the 
station clock, and an appropriate voice com
mentary by the OAO operator are recorded on 
magnetic tape. In certain cases of failure, the 
Central Control Station may request that stored 



152 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

status (data gathered during the previous orbit 
and stored on board) be teletyped back to elim
inate the delay encountered in mailing the 
magnetic tape. 

CONCLUSION 

The Ground Operation Equipment which has 
been described and discussed will achieve re
liable system operation: First, by forecasting 
the spacecraft. performance on an operational 
simulator-a large capacity digital computer 
at the Central Control Station-and establish
ing tolerances. Second, minimizing human 
error by using a medium-capacity digital com
puter as part of the Ground Operation Equip
ment to compare status data received from the 
satellite with the forecast status. Third, mini
mizing human error by displaying a minimum 
of information to the remote control station 
operator and minimizing the number of com
mands that he must or can transmit to the satel
lite using his own judgment. 

A complete status data print out is used in 
the Central Control Station as a rapid, error
proof means of displaying the greater amount 
of intelligence available there. With this greater 
intelligence, emergency control over the satel
lite may be exercised in a real-time mode. Even 
here the philosophy is to use this capability as a 
backup or abnormal operating technique and to 
rely on the fundamental preprogrammed opera
tional philosophy. 

These techniques are new and are funda
mental to the success of a precision scientific 
satellite, such as the OAO, and should find wide 
application in future satellite and spacecraft 
upon verification by the OAO program. 

APPENDIX A 

Initial Stabilization 

Immediately after injection of the satellite 
into orbit, the orientation may be random and 
there will probably be a residual motion caused 
by the separation mechanism. There are four 
steps to accomplish stabilization: 

First, the motion is stopped and an initial 
orientation is established. Three orthogonally 
mounted rate gyros and six coarse and fine sun 
sensors accomplish this. The rate gyros detect 
the motion of the satellite about all axes and, by 
pulsing gas jets, bring the spacecraft to a near 

stanaStll1. Simultaneously, the sun sensors 
locate the sun with respect to the satellite and 
their signals, also by pulsing the gas jets, rotate 
the satellite so that the optical axis is aligned 
with the sun. 

Since the sun, in effect, rotates about the 
satellite at 1 degree per day, the next step is 
to produce a non rotating celestial reference in 
the satellite. This is performed by six highly 
accurate star trackers gimbaled with respect to 
the pitch, roll, and yaw axes. The angles of the 
star trackers with respect to the satellite axis, 
properly transformed, indicate the pointing of 
the satellite optical axis. 

Before launch six reference stars are chosen, 
and for that particular day, the angles of these 
stars with respect to a line connecting the earth 
and sun are computed. The star trackers are 
then erected to coincide with these prede
termined angles. 

The second phase is then initiated by slowly 
rotating the satellite about the roll axis. At a 
particular roll angle, the star trackers will 
produce a star presence signal simultaneously. 
Since the earth may be occulting some of the 
stars, a minimum of four simultaneous sign~ls 
is preferred, although this may be reduced to 
two on ground command. Once this has oc
curred, the primary satellite control system, 
consisting of momentum wheels, is switched 
from the sun sensors to the star trackers for its 
error signals. 

This provides the initial celestial reference but 
the optical axis still points at the sun. 

The next step is to aim at a desired target 
star. To accomplish this, the satellite carries 
core-storage command memory of 256 30-bit 
words, a star-tracker gimbal-angle digital logic, 
an analog coordinate transformer, and a system 
clock. 

As soon as the initial reference is acquired, 
the command memory sends new gimbal angles 
to the proper star trackers. The large inertia 
wheels are commanded to rotate through a 
specified number of revolutions, thus turning 
the spacecraft through a predetermined angle. 
While moving to this new position, a star 
tracker nlay reach its gimbal limit, but this will 
be anticipated on the ground and the error 
signal source will be commanded to another 
star tracker, again by the output from com-



GROUND OPERATION EQUIPMENT FOR THE ORBITING ASTRONOMICAL OBSERVATORY 153 

mand memory. On reaching the new orienta
tion, the star tracker error signals are con
nected to the small inertia wheels to maintain 
attitude. 

Alternatively, by using the satellite as the 
reference, the error signal can be used to move 
a star tracker to acquire a new guide star. By 
driving either the satellite or the star trackers, 
a reference in space is continually maintained 
while moving the satellite to any orientation, 
subject to the restriction that pointing the 

optical axis at the sun is not permitted. As a 
safety measure, the sun shutter automatically 
closes if the optical axis approaches within 45 
degrees of the sun. 

Summarizing, the initial stabilization routine 
is: 

1. Initial rate stabilization and solar orienta-
tion. 

2. Roll orientation. 
3. Celestial orientation. 
4. Celestial pointing and holding. 





ERROR DETECTION CORRECTION ANn rnNTDnl 
~.".- ~ ....... ". ............. 

Robert Steeneck 
The Western Union Telegraph Company 

Although Error control is a desirable thing to 
have in any communication system it is obvi
ously much more desirable in communication 
systems that handle data. 

Error control resolves itself into three prob
lems. First, there is the problem of error pre
vention. Second, there is the problem of error 
detection, and third, there is the problem of 
error correction. 

Error control in data systems is not a new 
subject. Considerable effort has been directed 
toward the control of data errors perhaps long 
before the invention of the Quill pen. 

The advent of digital computers and the asso
ciated Data communication systems, however, 
has now introduced some new sources of errors 
into data processing. 

Consequently considerable effort has been 
directed in the past few years toward the de
velopment of various methods of error control 
in both computer and communication systems. 

As a result of these efforts many methods of 
controlling digital errors were devised. The 
use of these control methods, however, has not 
kept pace with the growth of computers. The 
reason for this lag lies in the fact that trans
mission faults are not usually the prime source 
of data errors. 

Humans and machines also contribute errors 
that are often far more serious than transmis
sion errors. Consequently most data systems 
usually include error protection methods within 
their format structure to control this potent 
source of trouble. Since this type of error pro
tection, originated primarily to control human 

155 

errors, can also serve to control transmission 
errors; there is not as much use being made of 
error control in data communication as one 
might at first believe to be necessary. 

It might be well therefor to examine a few 
of the methods used to control human errors 
before investigating the methods used to control 
communication errors. 

Perhaps the first step taken to prevent human 
errors in the handling of data was to punctuate 
large numbers in groups of three. Thus a num
ber such as 8734569 becomes much easier to 
transcribe if it is written as 8,734,569. Today 
we have progressed to a point where our Social 
Security numbers are punctuated in a broken 
rhythm so that the digits read out in a three
two-four beat. 

In data handling it is common practice to pro
tect numerical information such as catalog num
bers or credit card numbers by the addition of a 
single check digit. The check digit is usually 
derived through an arithmetic process involving 
all of the digits comprising the number to be 
protected. 

The development of a check digit from a 
simple sum of the digit.s comprising the number 
to be protected, however, is not adequate. Such 
a process affords no protection against the most 
common of human errors; namely, the trans
position of digit pairs during the process of 
transcri ption. 

Although check systems vary, the protection 
digit in general is derived by doubling every 
other digit, adding the results together, and 
using the last digit of the grand total' as the 
check digit. (FlO' 1 \ 



156 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

NUMBER 8 7 3 4 5 
XI Xl XI X2 XI 

CHECK SUM 8+(1+4) + 3 + 8 + 5 = 

l PROTECTED 
NUMBER 8 7 3 4 5 

The Zero, until recently thought to be dis
covered by the Arabs (actually the zero was 
discovered by the Mayan Indians five thousand 
years earlier), not only plays its part in the 
mathematics involved in data processing, but 
also is used to protect against loss of informa
tion. 

Inserting zeros to the left of a number in no 
way alters the value of that number but does 
make possible a number format in which all 
numbers from zero to a preselected maximum 
contain the same number of digits. By reserv
ing various predetermined specific numbers of 
digits for various information, a format can 
be established where the loss of a single digit 
can be instantly recognized as an error. An 
example is shown in Fig. 2. 

QUANTITY UNIT PRICE 

000 5 o 0 6 7 2 

USE OF ZEROS IN DATA 

'T1h..., ... ." .... ",..., '1-.,,+ .... ~...,n • ...,.f! +h..., """' .... "'T. ~h,,~l~ ....... "'~ 
.LHC.,C aLC uu~ a .LCVV V.L v.llC J.uaJ.J.,Y I."UCI.".[\.., aJ.J.u 

balances used in data handling to guard against 
errors. Often these methods adequately pro
tect an entire data system against transmission 
errors as well as data handling errors. 

In systems where this protection through for
mat structure does not exist transmission error 
control would probably be desirable even though 
the error rate is low. When the error rate is 
high, however, for example, on overseas H.F. 
radio circuits automatic error control is vital 
to successful data communication. 

For this purpose Western Union has de
signed its EDAC equipment to provide auto
matic error detection and correction to circuits 
operating at teleprinter speeds. This system 
will be described later in this paper. 

Error Detection 

One of the first problems in error control in 
data communication is that of error detection. 
Error detection usually requires redundant in
formation applied to each character transmitted 
or applied to a block of characters after they 
have been transmitted. 

With the advent of digital computers came 
the first widespread use of parity error detec
tion codes. In parity codes at least one extra bit 
level is provided exclusively for the purpose of 
checking the validity each code combination 
used. The presence or absence of a check level 
bit serves to make all code combinations contain 
either an odd number of bits if odd parity is 
desired, or an even number of bits if even parity 
is desired. (Fig. 3) 

t 
0 0 0 P A R T Y 

I 
I 

• • • • • • • • • • 2 • 
t 

• • • • •• • • 
3 • ••• • • • • • 4 • ••• • • • . • 
5 • t • • • • • ••• 

CK • •• • • • • • • • 

Although a single parity bit included in each 
character provides adequate protection against 
undetected errors in computer operation where 
parallel transmission under more or less locally 
controlled conditions is used, iram;mission tests 
show that at teleprinter speeds the simple 
parity code fails to dete<;t about 10 % of the 
errors when serial transmission over typical 
telegraph circuits is employed. 

This failure is due to the fact that in serial 
transmission about 10% of the errors involve 
an even number of bits. 

In some systems error detection is accom
plished by using only code combinations in 
which the selecting- and non-selecting bits 
always occur in a fixed ratio. 

This provides a good means for detecting 
errors since both gains and losses of an equal 
number of selecting bits must occur within an 
errored character to produce an error detection 
failure. 



ERROR DETECTION CORRECTION AND CONTROL 157 

The chart shown in Fig. 4 illustrates the 
number of different fixed ratio combinations 
that are available in various binary codes up to 
9 bits in length. 

0-811 I-Bll 2-81T 3-Bll 4-BIT 5-81T 6-81T 7-811 8-BIT 9-811 
CODE CODE CODE CODE CODE CODE CODE CODE CODE CODE 

FIXED RATIO CODES 

It is interesting to note that the numbers 
found on this chart exactly duplicate Pascal's 
triangle of binomial coefficients discovered by 
this famous French scientist a little over 300 
years ago. 

There is undoubtedly some sound mathe
matical reason that makes the coefficients of the 
terms obtained when (X + Y) 5 is expanded, 
exactly coincide with the number of 1 bit, 2 bit, 
3 bit, 4 bit and 5 bit combinations available in 
the Baudot code, but the reason is obscure at the 
present time. 

The distribution, however, does suggest that 
perhaps an improvement in coding efficiency 
might be obtained by making use of more than 
one fixed ratio code group when handling data 
in a given binary code. Different code ratios 
might then be used to identify the type of data 
being transmitted. 

Whenever error control is obtained through 
the use of single character error detecting codes, 
at least one extra bit must be included in every 
character transmitted. 

To improve transmission efficiency block 
checking systems have been developed in which 
the check information is added only after a 
block of information characters has been trans
mitted. 

Several block checking systems have been de
veloped, block parity being perhaps the first. 
(Fig. 5) 

B L 0 C K P A R I T Y CK 

•• • . • • • • 
• • • • • • •• • • • . . . ••••• . . .0 • • • • •••• . • • ••• . . 0 • • 0 • • • • 

In block parity a single character combina
tion is added to the end of each block of in
formation. This added character serves to make 
the total number of selecting bits in each level 
either odd or even as desired. In the illustration 
odd block parity is shown. 

When block parity alone is used to protect 
information it is quite vulnerable to failure 
whenever serial information is converted to 
parallel information and directed through cir
cuits individual to each code level. A fault in 
any of the individual code level circuits will then 
produce errors that tend to be confined to a 
particular code level; and under such condi
tions the chance of detection failure rises to 
50%. 

When parity as shown in Fig. 6 is applied to 
both the individual character and to the block 
of characters, however, the chance of failure is 
reduced to an insignificant figure. 

t 
T HIS I SAT EST CK 

••••••••••••• 
~2~--~---.--~~~e--------~ 

3 • • • •• • • • • • • 
4 •••• •• • • • ••• • • 
5 ••••• • • • • • • • • • 
6 ••••••••••••• • 
7 ••••••••••••• • 

CK. ••••••••••••• • 

CROSS PARITY 

This system of cross parity creates an error 
detection means that is practically foolproof. It 
is this system of error detection that is used to 
control errors in the largest datacommunica
tion system in the world namely the Air Force 
Syn-Com Network. 

Chances of block parity failure can also be re
duced by the use of spiral parity. In spiral 
parity bits applied at the end of a block of in:" 
formation are not each assigned to one code 
level throughout the block but are shifted one 
level for each character transmitted. Errors 
that occur on one level only are then not apt to 
influence only one code level of the check parity 
character and thus the error detection probabil
ity is greatly inereased. This is shown in Fig. 7. 

S P I R ALP A R I T Y CK 

• 



158 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

The shortcomings of simple block parity may 
also be avoided by considering first of all, that 
code combinations are in reality nothing more 
than binary numbers. As binary numbers it is 
obviously possible to add code combinations 
together, as illustrated in Fig. 8. The binary 
number that results may then be transmitted as 
check information and compared with a similar 
binary total developed at the receiving terminal. 

B ••••• I I 0 0 I 
I · • ••• o 0 I I 0 

N •••• • 0 I I o 0 
A · • ••• 000 I I 
R • •••• 0 I 0 I 0 
Y ••••• 10 I 0 I 

• • •• . o 0 I 00 
S · • • • • o 0 I o I 
U •••• 1'\ 1'\ · V v 

M ••••• 0 0 

TOTAL I I I I 00 I 
COMPLEMENT + 000 0 I I 0 

CHECK TOTAL I I I I I I 

In actual practice comparison is more easily 
effected by transmitting the complement of the 
block binary total. The complement when added 
to the block binary total at the receiving ter
minal results in an overall binary total con
taining no zeros at all. The presence of a single 
zero thus indicates a non-check condition. 

It is not necessary to use the entire binary 
sum for check purposes although it is quite ob
vious that the number of bit levels in the binary 
sum cannot be less than the number of bit levels 
in the code. 

At this point it would be well to analyze the 
protection to five unit code data that is pro= 
vided by using only 5 digits of the binary sum 
as check information. 

Whenever transmission erors occur they are 
generally quite consistent in nature. Most fre
quently circuits consistently lose information 
bits; less frequently bits are consistently gained, 
and the least frequent occurrence of all is the 
mixed loss and gain of bits of information under 
the same transmission difficulties. 

In the first analysis we will consider the be
havior of a five digit check when consistent 
losses of information bits are experienced. Con
sistent gains, of course, will produce the same 
effect. 

The basic 5 digit binary counter at a given 
starting condition when stepped through a cycle 

of 32 counts or any multiple thereof always re
turns to that starting point. 

In code level # 1 each bit has a value of 1 
unit in the binary counter and consequently 32 
bits in this level would have to be lost in order 
to lose one complete cycle of the binary counter 
and thus produce a false check. It would seem 
therefor that this level has more than adequate 
protection against lost bits. (Fig. 9) 

CODE DROPOUTS TO 
LEVEL. VALUE FAIL 

I I 32 
2 2 16 
3 4 8 
41 8 4 
5 16 2 

ANALYSIS OF USE OF (32 COUNT) 5 DIGIT 
BINARY SU .... AS CHECK INFORMATION 

In code level #2, however, the bit value rises 
to 2 units and the drop-out protection falls to 
16 bits, which is still more than adequate. 

By the time we examine the fifth level of the 
code, however, we find that the steady 50 % 
loss in protection foreachlevel has reduced the 
protection level to only' 2 bits. The fifth level 
thus has only the protection of block parity. 

Protection could be improved of course, if 
more than 5 bits were used for check informa
tion, or if a spiral system of binary addition 
were employed. There is, however, a much 
simpler solution to this problem. 

If the 5 digit binary counter is slightly altered 
so that it goes through a complete cycle in 31 
counts instead of 32 we obtain some unusual 
results. 

The first level with a bit value of one unit 
now requires 31 drop-outs to produce the loss 
of a complete cycle and thus produce a detection 
failure. Its protection level was lowered by 
1 bit. (Fig. 10) 

CODE DROPOUTS TO 
LEVEL VALUE FAIL 

I I 31 
2 2 31 
3 4 31 
4 8 31 
5 16 31 

ANALYSIS OF USE OF (31 OOUNT) 5 DIGlT 
... ARY SUM AS CHECK INFORMATION 

The second level, however, with a bit value of 
2 units will not evenly divide into a 31 unit cycle 
but will divide into two cycles having a total 
of 62 units. This results in a dropout protection 
of 31 bits for this code level as well as for the 
first code level. 



ERROR DETECTION CORRECTION AND CONTROL 159 

If we examine each code level in turn we find 
that they all require 31 bit drop-outs for check 
failure. 

Thus, with this simple change in the binary 
counter error detection protection is equalized 
on all code levels. 

With a 31 bit drop-out protection on all code 
levels it is safe to say that more than adequate 
protection is provided for consistent error con
ditions with this system. 

If we examine the system now for operation 
under the least frequent error condition, namely 
when both bit losses and bit gains are experi
enced within the same block, we find that not 
only are both losses and gains necessary to 
produce a check failure, but we find that the 
gains and losses must exactly compensate each 
other. 

Since errors involving both gains and losses 
under the same transmission conditions are in 
themselves rare, and since there are many more 
gain and loss combinations of non-equal value 
than of equal value the chances of compensation 
within a block of information are extremely 
remote. 

Error Correcting Codes 
Some attempts have been made to design 

codes that not only detect errors but pin point 
their location so that correction may be made. 

In 1950 Dr. R. W. Hamming suggested a 
system of coding that could detect and also cor
rect an ~rror if that error involved only one bit 
of information within the code. (Fig. 11) 

HAMMING CODE 10 II 

PARITY 

~RITY LEVEL 2 • 

PARITY LEVEL 3 • 

PARITY LEVEL 4 ..... -~ ........... --......... 
HAMMING SINGLE BIT ERROR CORRECTING CODE 

The illustration shows 4 parity hits desig
nated as PI, P2, P3 and P4 protecting 11 bits 
of information designated by the numbers 1 
through II. 

The four check bits of the Hamming code 
each add parity to selected combinations of 
information bits arranged in four levels in a 
pattern that resembles consecutive binary 
numbers. 

With this pattern of parity generation any 
single information bit when errored will pro-

. duce non-check parity in at least two of the 
four parity bits of the code. 

If we now observe a condition where more 
than one parity bit does not check and we are 
reasonably certain that only one bit is in error, 
the position of that bit may be determined by 
considering the non-checking parity bits as a 
four level binary code pointing to the particu
lar single code bit that is in error. 

It 'will be noted that if only one parity hit 
does not check and only bit has been errored 
there is only one conclusion possible-the parity 
bit itself is in error. 

The Hamming Code although most ingenious 
in its concept has not yet found too much use 
in Data Systems. The reason is that there is no 
assurance that errors are going to involve only 
one bit in the code structure. 

There is a system contemplated, however, in 
which bits are first examined upon reception to 
determine whether any are of doubtful quality. 

The Hamming Code will be used in this sys
tem and if only one bit of doubtful quality is 
discovered within a character and a parity fail
ure is observed a bit correction will be made. 

If more than one bit of doubtful quality is 
observed no correction will be made. Are-run 
of information will be requested. 

Other error correcting codes have been pro
posed in which errors involving more than one 
bit can be corrected. They require more re
-dundant bits within their structure, however, 
and also involve more complex error correcting 
precedures. 

It might be noted in the Hamming code that 
although four parity bits can protect 11 infor
mation bits, four parity bits are also required 
to protect only 5 information bits. 

Unfortunately, no error correcting code can 
function on the complete drop-outs of informa-
tion that often occurs on oVerseas H.F. l~adio 

circuits. Here error correction can only be 
effected by retransmission of the errored in
formation. 

About ten years ago Hendrick C. A. Van 
Duuren developed a synchronous system that 
does just that. 

In the Van Duuren system traffic must first 
be cOl)verted into a fixed ratio seven unit code 
for error detection purposes. Upon detection 
of an errored character the entire system is 



160 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

stopped and the errored character repeated, 
from storage. 

The accepted information is then converted 
back to the original code for delivery. 

Many versions of the Van Duuren System 
have been developed, including a Japanese sys
tem using an 8 level fixed ratio code. The 
American version is the well known A.R.O. 
system. 

Western Union has developed an automatic 
error detection and correction system known 
as EDAC and shown in block form in Fig. 12. 

RCVG. 

THE WESTERN UNION EDAC. SYSTEM 

OUTPUT 
TRAFFIClA) 

I 

J:,...CONTROL (8) 
I 
I r. -., 

EDAC I INPUT EOPT 14- _____ _ 

I I TRAFFIC (8) 

I SEND I (IF DESIRED) 
L __ J 

In the EDAC system information will be 
transmitted without code conversion in block 
form, each block being followed by a single 
character developed from the sum of the binary 
bits contained within the block. 

Although transmission will be in start-stop 
form the character delivery will be paced by 
a time standard similar to that used on many 
military circuits. 

Pacing the transmission with a time stand
H.rei not only makes possible the use of encipher
ing equipment but also provides a simple method 
of distinguishing between check information 
and data information at the receiving terminal. 

EDAC may be operated on a duplex basis 
with automatic error control in both directions. 

In most data systems numerical information 
is of far greater importance than alpha infor
mation and consequently should receive top pri
ority if only a limited amount of protection is 
available. 

The five unit teleprinter code can provide 
just this amount of protection within its own 
structure; for concealed within the five unit 
code ~are I justlten\combinations with\a fixed code 
ratio of three selecting and two non-selecting 
bits, as shown in Fig. 13. 

I I 1 I I I I 1 1 1 1 I 1 I I I I I I I I I I I I I ~. 3' "5 8 9 4 I 7 2· 0 6 IF i L 

l S C II ~ 
T A I N 0 Z S R H D L U C M B W J P F G Y K V xlG 0 S K E 

I I I I I I I I I I I I I I I I 

2 2 2 2 222 2 2 2 2 2 2 2 2 2 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

4 44 4 4 444 41 441 1414 44 4 
5 55 5 5 555 15 5151 15 5 5 5 5 

ANALYSIS OF PRINTER CODE 

By assigning the ten digits to this fixed 
ratio code group errors that occur in numerical 
information will produce meaningless symbols 
that can be easily recognized as errored numeri
cal data. 

Such a code has been used with some German 
teleprinters and is available to Western Union 
subscribers who may wish their equipment con
verted to this code. The code has been chris
tened the L code, L meaning logical. It is the 
only error control code having zero redundancy. 
(Fig. 14) 

~~~~~~~~~~~~Rr~~~~~~~1 
2

3
4

~~~~~~~~~~ffiffi~~~5 

It is interesting to examine various data 
codes to see if by their structure, they avoid 
the possibility of conversion through error, of 
one number into another number. 

If we examine the Hollerith card code (Fig. 
15) we find that the ten digits are each desig
nated by a single punched hole at different levels 
in the card. In reading this card code it is thus 
not possible to convert one number to another 
number through a reading failure. A failure 

80-0123456789 

• -- 1ft; .1- I 
I ~.,-® 

I ~,fiJ • • I I 
I • I I I 

I ~I~ 
I • • 
I I I (D-.:.ljfJ 
I I I ®-= • I I I I • I I 
I I 9 I 



ERROR DETECTION CORRECTION AND CONTROL 161 

to read can only result in the drop out of an 
entire digit which can easily be recognized as 
an error. 

If we examine the Remington Rand Card 
Code Fig. 16 we find six levels are used for 
information instead of 12. Six of the ten digits 
have one punched hole assigned to their code 
selection and four have two holes assigned to 
their selection. 

0123456789 

• •• •• •• •• •• ••• 
REMINGTON RANO CARD CODE 

Failure to read one of the holes in any of the 
two hole numeric combinations will always re
sult in the conversion of one digit to another 
digit, a most serious data system error. 

It is perhaps for this reason that the Hol
lerith Card Code instead of the Remington Rand 
Card Code is now being used in peripheral 
equipment of Modern Computers. 

It is also interesting to note that the Busi
ness Equipment Manufacturers Association is 
now proposing to change the punched card code 
so that more information character combina
tions might be available. To do this they pro
pose to have all digits except zero contain two 
punched holes as shown in Fig. 17. 

PROPOSED X3.2 CARD CODE 

A card code of this kind is a step backward 
as far as error control in numeric information 
is concerned, as it transfers the tight error 
control possibilities of the Hollerith card code 
from numeric information to unimportant and 
seldom used data symbols. The numeric infor-

mation then becomes vulnerable to errors that 
simply alter numerical values of data. 

The Business Equipment Manufacturers As
sociation has already adopted an American 
Standard Code for Information Interchange, 
the numeric portion of which is shown in Fig. 
18. 

0 I I o 0 0 0 --- 0 0 I I 0 I 0 I --- 5 

0 I I 0 00 I --- 1 0 1 1 0 I 10 --- 6 

0 1 1 o 0 1 0--- 2 0 1 1 0 1 1 1 --- 7 

0 1 1 o 0 1 I --- 3 0 1 1 10 00 --- 8 

0 1 1 0 1 o 0 --- 4 0 1 1 1 o 0 1 --- 9 

This code is similar to the Binary Coded 
Decimal code used in most computers and is also 
similar to the Fieldata code used by the armed 
forces. 

This code is quite attractive for computer 
operation because it provides a simple and more 
or less direct means for converting numeric in
formation into binary form. 

Without error protection, however, this code 
is most vulnerable to data errors that are most 
serious in nature for every one of the ten digit 
code combinations can easily be errored to pro
duce other digits that might be accepted as 
valid information. 

As time progresses we shall see more data 
prepared automatically without introducing the 
need for human transcription and the conse
quent introduction of Human Errors. 

Pre-punched cards are now being used in 
many places to insure the preparation of data 
messages at the point of origin in proper format 
without depending on human skills. 

In a short time the marked data card devel
oped by Western Union to automate the collec
tion of data at the source will also be available. 

The Marked Data card shown in Fig. 19 is 
printed with conductive ink. Bit markings are 
printed at the bottom of the card and are read 
by passing the card under sensing styli. These 
bit markings serve the same purpose as the 
punchings in a pre-punched card in that when 
sensed they are converted into the fixed format 
text of a data message. The data proper may 
be inserted in the upper portion of the card by 
marking appropriate boxes with a soft pencil 
and thus establishing conductivity to the data 
boxes selected. 



162 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

Ii 
• • U' 

10 10 ~Io 10 
l.t<l:.11 • I II I' 
I>:W- I> 12 I> 
1313 13)0( 1 3 

1'1' I' 14).4 
1'1' I' I' I' 
1616 1616 16 
Irl' 1717 17 
IS 18 18 Is I. 
1.1. 19 I. I. 

I " ! I 

Readout errors and errors due to careless 
marking in the upper portion of the card are 
discovered by accepting as correct those col
umns in which only one box has been marked. 
If no boxes have been marked or if more than 
one box has been marked the card reader will 
stop and an alarm will be sounded. 

As the trend toward automated preparation 
of data increases and as more computers are 
made to talk to other computers there will be 
more need for error control techniques that are 
also automatic in their function. 

It is then that we shall see more actual use 
of the error control techniques described in this 
paper . 

It might be said that these techniques were 
developed perhaps a little before they were 
actually needed in data systems. 

Passing this area under sensing styli can 
then convert these pencil markings to data 
signals. 

Readout error control is established in the 
lower or fixed format area of the card by the 
inclusion of a parity hit level which can serve 
only for readout protection and be deleted from 
transmission if desired. 



SiAiE OF iHE ART' iN SCiENTiFiC COMPUTING 

R. W. Hamming 
Bell Telephone Laboratories, Incorporated 

Murray Hill,New Jersey 

In order to understand the current state of 
an art it is often necessary to examine its his
tory to see how it evolved. In examining the 
growth and present state of scientific comput
ing, as contrasted to the other three fields of 
this session, machine design, software, and 
business applications, I find that there have 
been, and are, significant differences-in par
ticular scientific computation has had a much 
more orderly growth than the others and is 
probably much more stable now, stable in the 
sense that the immediate future can be seen 
reasonably accurately. For example the com
paratively ancient text by Whittaker and 
Robinson can still be used, but a book on coding 
of five years ago is hopelessly out of date. 

Two reasons can be given for the more 
orderly growth of scientific computing. First, 
for practical purposes scientific computing has 
had a much longer history of development. It 
is true that some of our earliest records are 
clay tablets recording commercial aspects of a 
civilization, and it is true that in the 1930's and 
40's accounting machines of various types were 
adapted to scientific work, yet it seems fair to 
say that scientific computing was far more 
highly developed over most of the last 2000 
years than was commercial computing. Further
more most of the machines of World War II and 
the early post-war period were designed by and 
for men in science. 

Second, behind much of scientific computing 
stands a highly developed and elaborated body 
of knowledge known as mathematics. This is 
very true for the field of numerical methods and 

163 

to a somewhat lesser extent for many areas 
such as artificial intelligence which I suppose 
fall in the area of scientific computing. Scien
tific computing involves the application of engi
neering judgment to adapt the precise theorems 
of mathematics to the practical ends of comput
ing, but the existence of mathematical theories 
is a great asset that none of the other three 
fields of this session can draw on to any similar 
extent. The fields of statistics and engineering 
also contribute to the orde'rly growth of scien
tific computing. 

In saying that the growth of scientific com
puting has been, and probably will be, reason
ably orderly, I do not want to give the impres
sion of smugness and complacency-there is 
much that still needs to be done-but I do want 
to make clear the point that we have a very 
definite advantage in having a framework of 
known theorems, accepted notation, and form 
of publication, against which to judge our field. 

I should also observe that both the hardware 
and the software fields have been generally de
veloped for use in scientific computing before 
the uSe in business applications. 

Let me now turn to an examination of some 
special areas of computing, taking them to some 
extent in the order of the amount of current 
machine time used. It may come as a surprise 
to some of the younger members of the comput
ing fraternity to be told that many of the early 
relay machines as well as the ENIAC and 
probably th"e ORDV AC had their motivation 
in the demands of exterior ballistics-the solu
tion of the ordinary differential equations of 



164 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

the flight of a missile-in order to produce 
range tables. Even today many of the simula
tion problems we find on our computing ma
chines involve the solution of ordinary differ
ential equations of missiles. 

A few people may have been aware of the 
stability problems that can arise in predictor
corrector methods for the solution of ordinary 
differential equations, but most of us at the end 
of the Second World War were blissfully igno
rant of this fact. Not everything about stability 
is now known, but we seem to have the problem 
well under control-except in the so-called "stiff 
equations" where for the equation 

we have 

y' = ~; = lex, y) 

of 
oy 

large and negative. Special cases of stiff equa
tions have been handled, but a good general 
approach still seems to be lacking. 

In the solution of ordinary differential equa
tions it is usual in mathematical circles to 
speak of the step size-in engineering circles 
the sampling rate is a better way to describe 
the situation. In defense of my opinion that 
matters are well under control I will say that I 
would be greatly surprised if any new general 
methods will be found that would allow a sig
nificantly lower sampling rate unless they go 
to using many past data points; the sampling 
theorem of information theory is against it, 
more or less. However, for special systems of 
equations very little is known. For example, 
there seem to be no generally accepted methods 
for solving orbit calculations of space missiles 
in spite of vast sums of money spent for ma
chine time to compare various methods. Nor 
has the theory so far been able to help much in 
the matter. 

Data reduction is another activity which con
sumes much time, and which has had no great 
surprises-except to those who underestimated 
the amount of data that can be telemetered 
from a space missile in the course of its active 
life! 

Turning to partial differential equations, we 
did know about stability in this case and were 

able to solve on primitive equipment rather 
difficult cases during the Second World War. 
The main advance seems to me to have been the 
discovery of implicit methods of solution which 
permit us to escape from the net size restric
tions. Much work goes on in this area, and I 
would suspect much remains to be done. 

Simultaneous linear algebraic equations have 
seen an enormous number of published papers, 
and I suspect the volume is due more to the 
mathematical elegance of the problem than to 
the intrinsic importance. In spite of all the 
research and proposed new methods I keep 
hearing the words Gauss, Seidel, Jacobi, relaxa
tion-indicating to me that the older methods, 
somewhat modified are still widely used. Thus 
I am forced to say that comparatively little 
progress has been made. I suspect that House
holder's modification of Given's modification of 
Jacobi's method, and Wilkinson's analysis of a 
slight modification of the Gauss elimination 
method are the most popular methods at the 
moment. 

Again special cases have found special 
methods; for example systems with many zeros 
(so-called "sparse systems") have great im
portance in many fields of applications. Another 
example is the special systems which arise in 
the implicit methods of solving partial differen
tial equations. 

Eigenvalues and eigenvectors of matrices 
have had a similar history; we have had many 
small advances, we by no means know as much 
as we wish we knew, but the fields have had 
no really great improvementg~ and matters seem 
to be in a state of orderly evolution. 

Zeros of polynomials and more generally 
zeros of functions are further topics with long 
histories and no completely satisfactory 
methods of solution. When I recall that the 
great mathematician Gauss gave seven different 
proofs of the fundamental theorem of algebra 
and all of them are difficult to apply to practical 
computation, I do not expect to see a really easy 
method appear tomorrow-but I could be 
v/rong. 

Having described some of the more static 
parts of numerical analysis, let me turn to 
some of the more changing ones. 

I would say that the use of Chebyshev (equal 
ripple) approximation has produced, and will 



STATE OF THE ART IN SCIENTIFIC COMPUTING 165 

produce, great changes in our methods. It now 
tends to dominate completely the special func
tion approximation area. A few cultivated 
mathematicians knew about Chebyshev poly
nomials many years ago, but their importance 
and central role seem not to have been ap
preciated before Lanczos rehabilitated them. 

Along with the development of Chebyshev 
approximation I would also place the growth 
of non polynomial approximation in computing. 
Some methods, such as Prony's method of ap
proximation by sums of exponentials, were 
known and used, but they remained curiosities 
rather than regular tools of the trade. In par
ticular I would call your attention to the growth 
of use of power spectral methods and band 
limited functions as a significant step forward. 
Both are as yet in their infancy and much work 
remains to be done to make their use better 
understood and more widely appreciated. The 
band limited function approach goes back at 
least to Gray and Rubinoff at the University of 
Pennsylvania, while the name of Tukey is as
sociated with the development of the power 
spectral approach. Both have their beginnings 
in electrical engineering practice. Indeed it 
should be evident that electrical engineering 
and information theory are two branches of 
knowledge from which computing can draw 
new inspiration and new methods. 

Monte Carlo methods, meanings using ran
dom numbers in a computation, have received 
a great deal of publicity. However, I would 
hazard the opinion that the use of random 
processes, when the original problem does not 
have such a process, has not so far had the value 
most of us in the early days expected it would. 
It is in simulations, which currently occupy a 
lot of machine time, that random numbers are 
so often used to simulate various random proc
esses, including noise. A rather large body of 
knowledge has been developed in this area, and 
a good textbook would be of tremendous help to 
those who are not specialists in the area. In
deed, I suspect such a book would stimulate 
the field itself. Several eminent men have 
started such books but were too busy to com
plete them. Thus the field is cursed with such an 
extensive "oral tradition"-von Neumann knew 
-it is in Herman Kahn's notes-that the out
sider cannot easily get started in the field. 

Game theory is closely associated in my mind 
with Monte Carlo methods. The importance of 
the ideas of game theory is very great, but so 
far they have had comparatively little influence 
on current computing practice. Usually only 
comparatively trivial situations can be explicitly 
solved, and this may be the reason for the 
failure to influence computing practice in other 
areas such as integration. If so this would seem 
to be a fruitful field for investigation. 

A couple of completely new fields are linear 
and dynamic programming. Both arose out of 
attempts at optimization, and are probably not 
the last fields that will arise from this fruitful 
source. 

I have been surprised at the variety of prob
lems which have been reduced to linear pro
gramming problems, especially those requiring 
integral solutions, but many times it seems to 
turn out that the general linear programming 
method is so expensive to use that the reduction 
is mainly of academic interest. As a result 
many special cases of the linear programming 
problem have been investigated and special 
methods for their solution found. I suspect that 
much remains to be done and that it will be 
economically valuable as well as intellectually 
sa tisfying. 

I am gradually working my way towards 
such fields as scheduling, critical paths, and 
mechanization of certain design methods. All 
of these can, I believe, be summarized under the 
broad topic of find an "algorithm" for a prob
lem or process that previously had been solved 
by guess, intuition, experience and dumb luck. 
This area has a bright future if you judge it by 
the money involved. Usually there is only a 
fragmentary mathematical background to draw 
upon, and this often in the difficult fields of 
integer solutions, and combinatorial mathe
matics. The history of mathematics seems to 
suggest that combinatorial mathematics and 
number theory are both difficult fields in which 
to find general methods, and hence we cannot 
expect to find a supporting structure such as 
numerical analysis has. The work, therefore, 
is likely to be fragmentary, irregular in de
velopment, and highly frustrating at times. 
Yet, let me repeat, it probably has a bright 
future in the sense that spectacular, unexpected 
results can be found in many special, important 
cases. 



166 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

I would like to summarize a couple of points 
I have been developing. Optimization, and dis
crete, integer processes are two threads of 
scientific computing which have recently given 
rise to much new material, and should produce 
even more in the future. Both lack an adequate, 
practical mathematical theory for background, 
but both are of great economic importance, 
and support for work in these areas should be 
easy to find in the form of special situations of 
urgent importance to management. 

I have avoided to a gre.at extent discussing 
topics which have statistics as opposed to 
mathematics as the formal background, as well 
as the topic of statistics itself. Clearly statistics 
is required in the analyses of roundoff effects 
in long computations, in the design of experi
ment plan for examining situations involving 
many parameters, in sampling plans, in sig
nificance tests connected with "least squares" 
fitting, etc. Here again we have many topics 
awaiting further development, but for which 
much of the formal background information is 
reasonably well developed. In particular, in 
Roundoff Theory our knowledge is still in a 
sad state in spite of its obvious importance and 
extensive bibliography. 

Statistics itself seems to be changing some
what due to the impact of computers and the 
problems that are arising from the available 
data that can now be processed economically. 

Topics in the general area known as "arti
ficial intelligence" seem to fall in the domain of 
scientific computing, but unlike most of the 
topics so far discussed there is seldom a body 
of precise knovvledge behind them. 1fost of them 
are in spirit like the other three areas in this 
session, subject to uneven growth, surprises, 
our inability to judge easily the significant re
sult from the trivial and, even at times, false 
results. 

I think this is the proper time for me to de
velop the themes of the advantages and dis
advantages of having a body of precise knowl-
,edge like mathematics behind a field of activity. 
In trying to do this let me contrast research in 
numerical analysis to research in artificial in~ 
telligence. The vastness of the known relevant 
material in mathematics means that one can
not just sit down and write a paper with some 
new results in numerical analysis; rather a long 
apprenticeship is necessary. On the other hand, 

the ideas are available, the notation and style 
of presentation are well developed (one merely 
writes up the mathematical aspects and almost 
totally ignores the art and engineering judg
ment involved), so that it is in this sense easy 
to do research in numerical analysis. Just the 
opposite is true in artificial intelligence; almost 
anyone can sit down and imagine some new 
attack, but it is difficult to carry it out and 
especially difficult to present it in a written 
form suitable for publication. Furthermore, 
in the artificial intelligence area startlingly new 
results are of frequent occurrence and hence 
stimulating to further work. However, it is 
difficult to judge the significance of one's work 
and to know whether it is along a "good" or a 
"bad" path. In short there are advantages and 
disadvantages to having a well described body 
of knowledge as a background for activity. 

I was asked to comment on what we did in 
the past that was wrong and what was right. 

I believe one of the errors in numerical anal
ysis is that we have too long tended to regard 
it as a branch of mathematics and to believe 
that the mathematical theorems were more 
relevant than we should have. Thus a corollary 
of the fundamental theorem of algebra states 
that 1,x,x2, ••• , XII are linearly independent in 
any interval, but the Chebyshev polynomials 
show their dependence in the presence of noise; 
T 21 (x) /220 = X21 + . . . and is less than 10-6 

in -1:::;; x < 1. Of the right moves, we have 
been aggressive in opening new areas of 
thought like linear programming, Monte Carlo 
methods, etc. and if at times we have overesti
mated their jmportanr.e that wag far better 
than to have underestimated them. Another 
error we have made is to fail to produce text
books in various areas such as Monte Carlo 
methods and hence the newcomer or outsider 
has difficulty in getting started easily. 

I suppose I am expected at this point to take 
a grand view of scientific computing and briefly 
summarize years of development by thousands 
of workers in the world. It is an impossible 
task to do justice to, but here goes. 

The heart of scientific computing, namely 
numerical analysis has had a fairly steady, 
reasonably controlled growth in the past decade. 
Three main classes of problems, often overlap
ping, namely, simulation, optimization, and 
combinatorial-integer problems, have given rise 



STATE OF THE ART IN SCIENTIFIC COMPUTING 167 

to new disciplines and will probably spawn even 
more in the future. At present there are dozens 
of areas of specialization; in the near future 
there will probably be hundreds. The process 
of finding algorithms for areas previously con
sidered as requiring thinking has also produced 
whole new fields such as theorem proving, 
drafting, language translation; more will arise. 

The problems of becoming acquainted with 
what is known is now hard, and it will only 
become harder in spite of all we manage to do 
with machines to help out. While the need for 
good, clear, simple presentations of known and 
new results is increasingly great, . very few 
people seem willing to do much about it. 





A CRITICAL REVIEW OF THE STATE 
OF THE PROGRAMMING ART 

R. S. Barton 
Altadena, California 

... When once the engine shall have been constructed, the difficulty shall 
ha1)e been reduced to the making out of cards; but as these are merely 
the translation of algebraical formulae, it will, by means of some simple 
notations, be easy to consign the execution of them to a workman. Thus, 
the whole intellectual labour will be limited to the preparation of the 
formulae, which must be adapted for calculation by the engine. 

INTRODUCTION 

What follows is intended not as a scholarly 
review of the programming art, but as a per
sonal appraisal. The bias is that of one inter
ested in the subject of machine organization 
and its relation to programming. 

Surveying the still small body of computer 
literature, one is struck by the scarcity of sub
stantial material on programming as such, and 
might wonder if the subject of programming 
is inherently trivial, or whether its study is 
being neglected as a separate discipline. 

The writer thinks that while programming 
has developed as a practical art rather than as 
a science, present trends suggest that a formal 
theory of programming will emerge and become 
an important branch of mathematics. It is not 
clear why those with formal training in mathe
matics and logic were not attracted in larger 
numbers to the subject in the preceding two 
decades; and it is now difficult to predict how 
quickly a formal theory of programming will 
affect existing technology in the computer 
sciences. 

169 

L. F. Menabrea, 1842, from 
Sketch of the Analytical Engine 
Invented by Charles Babbage 

THE PRACTICAL ASPECTS OF 
PROGRAMMING 

Superficially, programming is an easy skill 
to acquire. A few hours of instruction on a 
particular machine or language is enough for 
a start. Aptitude varies and successful pro
grammers, in the past, acquired much lore 
which became part of their stock in trade. 
Today, however, many of the machine peculi
arities and operational technicalities are han
dled in the workings of system programs so 
that the practical difficulties of programming 
have been alleviated for the average machine 
use!". The professional programmer designs 
and constructs these programming systems. 

The practical aspects of programming today 
consist of (1) the design of suitable languages 
to express problems of interest, (2) the in
struction of people in the use of these lan
guages, (3) the maintenance of a library of 
programs to economize on effort, (4) education 
of users in techniques of efficient program 
organization, and (5) the designing of the 



170 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

translators and systems for the machines. All 
other considerations are extraneous. 

Language Design 

A programming language must meet, ideally, 
these criteria: (1) it must enable precise de
scription of any representative of the class of 
problems for which it was intended; (2) it 
must be mechanically translatable to a common 
standard; (3) it should be concise; and (4) it 
should take into account the preferences of the 
average user. 

The user's preferences are influenced by his 
training and experience. Within a field of ap
plication, programmers are likely to have simi
lar educational backgrounds, and hence, famili
arity with certain notations and language 
forms. Then, too, the nature of the human 
mind, eye, and nervous systems may predis
pose people towards certain notational forms. 

Machine characteristics should no longer be 
allowed to influence language design in any 
way. Matching the human language to the ma
chine language is the task of the system pro
gram. Compromises tending to favor machine 
requirements have been often detrimental, and, 
as an intermediate measure, hand transcrip
tion-as a separate clerical task-might be 
preferable to the use of a restrictive notation 
in the case of certain problem-oriented lan
guages. 

Teaching the Language. 

A language is characterized by its vocabulary 
and a grammar, and recently, beginning with 
the description of ALGOL in Backus notation, 
precise and concise descriptions of s:,rntax have 
appeared. The value of such a precise descrip
tion is not yet fully appreciated as an aid to 
learning and subsequent use. 

Instructional texts have been prepared both 
in linear and branching programmed text form. 
Practice in the writing of programs can be 
made more convenient in some cases through 
use of an automated programming laboratory. 

These developments in methods of precise 
language description, techniques of presenta
tion, and economical methods for providing 

. machine practice are all potentially very impor
tant in teaching fluent and widespread use of 
programming language. It is desirable to teach 
both reading and writing of programs rather 
than, as in the past, only program writing. As 

an aid to encouraging correct gramrr...ar, the 
existence of a precise syntax for a language 
permits mechanical checking of correct usage 
as an additional feature of automated instruc
tion. 

It would now seem both feasible and desira
ble to delegate all programming language in
struction to a computer program provided with 
each computer. 

The Library Problem 

The importance of a library to provide a 
repository for programs was recognized early, 
but full exploitation has been impeded by poor 
program documentation, lack of interest on the 
part of programmers, and language problems. 
Many program libraries now consist of pro
grams in languages either dead or destined for 
an early demise. Limitations result from the 
dearth of program "readers" and the serious 
practical difficulties in translation between ma
chine languages. 

Libraries will, of course, be stratified, rang
ing from the personal through the semi-private 
to the public; and classification and abstract
ing systems become increasingly important as 
programs enter the public domain. Part of the 
education of programmers must be directed to 
the construction of the most general routines 
likely to be of use, since such routines rather 
than specialized ones, are most likely to be use
ful items in a library. 

A standard language is needed to ensure per
manence and maximum utility for programs in 
the public domain. This need not be directly 
readable, and hence, can be a universal machine 
1~_~ •• ~~_ 
Utugue:tgt:. 

Automatic documentation techniques of flow 
diagram synthesis and language expansion are 
relevant to library maintenance and conveni
ence of library usage. Library space is less of 
a problem than in libraries containing books. 
Programs can be in hierarchical form, it no 
longer being necessary to accept the constraints 
of serially accessible storage to allow efficient 
assembly. 

It is important to note that in addition to 
explicitly referencing the library in the pro
gram, an ever-increasing amount of implicit 
referencing will result from the use of prob
lem-oriented (as distinguished from proce
dural) languages. Thus, the geometric lan
guages cause the selection of library programs 



to carry out geometric solutions implied rather 
than stated procedurally. Use of the pertinent 
part of the classification system is built into the 
translator. 

Teaching Programmers the Techniques of 
Program Organization 

Program organization is, in some respects, 
the heart of programming, and should be 
independent of the processor characteristics; 
though, in the past, these have intruded pre
maturely in most analyses. Perlis has summed 
up the matter in seven words: definition, se
quencing, selection, substitution, binding, repli
cation, and evaluation. It is unfortunate that, 
as yet, there is no sufficiently general standard 
notation to represent these programming con
cepts. Fragments appear in various languages; 
examples are the block, conditional, and for 
statement of ALGOL. The flow diagram nota
tion is the most common method of represent
ing structure, but is a cumbersome device for 
use with complex programs unless a hierarchy 
of diagrams is used. 

I verson, in his recent book, "A Program
ming Language,"! defines general operations on 
structured operands such as vectors, matrices, 
and trees at one extreme and descends to a 
level of detail pertinent to the logic designer 
at the other. 

The writer believes that the representation 
of structure is the most important aspect of 
programming for purposes of formalization. 
With this accomplished, suitable basic educa
tion would be feasible in the schools, and a 
mathematics of program transformations 
might follow. An eventual consequence would 
be the mechanical resolution of the problem 
of determining the best arrangement of a pro
gram subject to given constraints. 

Designing Translators and Systems for the 
Mo.,chines 

The systems programmer now has the re
sponsibility of statisfying the user-programmer 
and making-do with a machine that is already 
in existence, or, equivalently, completely speci
fied. The second requirement which now pre
sents serious difficulties need not be a perma
nent obstacle, since the system programmer will 
enjoy increased participation in the design of 

1 Wiley, 1962. 

STATE OF THE ART OF PROGRAMMING 171 

future machines. Of course, this poses the prob
lem of educating system programmers in the 
subject of computer organization. 

A machine language need not be suited for 
direct use by human beings. This is convenient 
only if one allows for a translation in both 
directions between _ person and machine. If the 
fact is accepted that a machine language need 
never be seen or directly manipulated by pro
grammers, some artificlal constraints in the lan
guage design are removed, and its representa
tion in the machine insofar as both format and 
codes are concerned is a problem that need con
cern only the logic designer. 

For the immediate future machine language 
will be of procedural type, whereas the con
venience of nonprocedural languages for the 
programmer is widely recognized. The syntax 
of the machine language seems likely to be 
simpler than that of the usual programming 
language. Most important, the essential part 
of the machine language will be descriptive of 
program and data structure and the choice of 
evaluative operations is of secondary impor
tance, since in principle as few as one logical 
operation is sufficient to synthesize higher level 
operations, provided the structure of the pro
grams can be represented. Putting this last 
point in a somewhat different way: The evalua
tion-type operations required can always be 
effected by subroutines, and these can be made 
as efficient as desired by use of high-speed stor
age, concurrent operation, and compact coding. 

HISTORY AND THE PERIOD OF 
COMMERCIALISM 

T he Pioneers 

The recently published book, "Charles Bab
bage and his Calculating Engines,"2 makes fas
cinating reading and helps to provide some per
spective. The book contains notes by Ada 
Augusta, Countess of Lovelace, who could be 
justly described as the first programmer. 

After the work of Aiken and Stibitz inde
pendently led to the first automatic computers 
in the early 1940's, the first programs com
parable to those conceived for the Babbage 
Analytical Engine were prepared and executed, 
though prior to this, astronomers had used 
punched card machines in a manner analogous 

2 Dover, 1961. 



172 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

to Babbage's proposed Difference Engine. It 
is interesting to note that Aiken, realizing that 
the preparation of computer codes was a de
manding and fatiguing task, designed a coding 
machine with keyboard labelled with appro
priately arranged mathematical symbols. Aiken 
also foresaw the coming shortage of adequately 
trained personnel, developed some of the earli
est academic courses, and taught many of to
day's leading theorists in the computer field. 

In the mid-forties, when the stored-program 
computer had been conceived, Goldstine and 
von Neumann prepared a report which was 
fairly widely distributed, but not formally pub
lished, entitled "Planning and Coding of Prob
lems for an Electronic Computing Instrument." 
This report contains one of the earliest discus
sions of program structure and its representa
tion by flow diagrams and is worth reading 
today. During this same period, Mauchly de
veloped coding methods for the new stored
program machines. 

The Commercial Era 

The present period began when Unjvac, 
which was to be the first commercially available 
large computer, became, as a result of an air
plane crash, a "business machine," and its in
ventors, Eckert and Mauchly, were no longer 
in control of the manner of its introduction to 
the market. The business machine industry, 
managed by executives of the pre-electronic era, 
absorbed the few scientist/engineer-run com
puter firms, and imposed on a new, struggling 
technology the ideas and practices of the 
punched card and office machine industry. The 
promotionai and sales effort that followed has 
had, in little more than a decade, the effect of 
making computers a familiar part of our indus
trial, business, and government operations, but 
the competition has had some unhealthy side 
effects pertinent to the development of pro
gramming as a profession. 

The intense competition of the early fifties 
quickly turned instead into a quasi-monopolistic 
situation dominated by IBM, with a semblance 
of competition maintained through fear of anti
trust action, some equity in distribution of gov
ernment orders, and the rapid growth of the 
market. The programmer, during this period, 
was in the paradoxical position of being much 
in demand and the recipient of ever-larger pay
checks and yet was often regarded as being of 

subprofessional status. This followed, in part, 
from the efforts of the marketing man, who, 
with his semi-technical sales-support alid ad
vertising staff, has promulgated so much non
sense about computers that the programmer, 
in the position of having to make good the 
claims, has been often only partially successful, 
and sometimes foredoomed to failure. 

During this time, the universities were rela
tively inactive in computer design and pro,:, 
gramming theory. Since the manufacturers al
located funds mainly to the development of 
new components and hastily-conceived designs 
for the market, technical progress in machine 
organization and programming was erratic. 
The relation between the ever-growing pro
gramming problem and machine organization 
was overlooked. The programming problem, 
finally reaching massive proportions, was at
tacked via programming systems, also hastily 
designed. 

The professional general-purpose applica
tions programmer was soon obsoleted by an 
abundance of cheap machine time and the dele
gation of nuisance aspects of programming and 
machine operation to the inside of system pro
grams. Somewhat amusingly, the machines 
became their own best customers with FOR
TRAN, a leading contender for machine time, 
not because of quality of compiled program, 
but rather because of its own lengthy compila
tion process. 

There was a hasty exodus of the more skill
ful into the new field of system programming, 
a specialty in which it was quite possible to 
forget the purpose of computers in the face of 
challenging problems to solve. 

Emphasis on the old goal of efficient machine 
utilization diminished and attention was re
focused on systems. User organizations, dedi
cated to sharing and good fellowship, the 
salesmen selling "software," and the language 
standardization committees were typical of the 
new period. 

The user organizations, pioneered to share 
developmental cost and programmer talent in 
support of new machines, soon degenerated into 
pressure groups intended to persuade the manu
facturers to provide system programs and 
other support for their products. 

The former self-reliance of many of the 
major computer users was replaced by depend
ence on the manufacturer, and many of the 



most capable programmers from the user in
stallations gravitated to the manufacturer's 
support activities. 

One may wonder where the foolish term, 
"software," originated, but need not doubt 
that it was eagerly seized upon by the gimmick
hungry salesmen. There is something conveni
ently intangible about "software," and an agile, 
alert salesman can make promises as his needs 
dictate. Irresponsible marketing and unreason-

harassment of the programmers supposed to 
produce the systems, and who were already 
handicapped by poorly defined machines and 
languages and the lack of a sound technical 
basis for the work being attempted. Subject 
to whimsical sales pressures and working, as 
is often the case, directly under nontechnical 
marketing management, the results were sel
dom satisfactory, often near-fraudulent. 

The language standardization issue, by com
mittee or de facto, had three main episodes: 
FORTRAN, ALGOL, and COBOL. 

FORTRAN was sufficiently useful to achieve 
widespread use and was known to be a program 
of great size and sparsely documented com
plexity. It was the first compiler to be widely 
advertised and aggressively sold to the market, 
and not surprisingly, a user-cult formed which 
is now quite effectively hampering progress in 
the adoption of improved scientific languages. 
For. some time, superior methods for imple
menting a language of the comparatiye sim
plicity of FORTRAN have existed. Useful 
translators have demonstrated this fact. But 
still the usual FORTRAN compiler is little im
proved over the earlier systems and the few 
exceptions to the rule are not widely used. The 
user remains satisfied with a limited language 
and absurdly inefficient translation. The user 
excused indifference to improvement by point
ing out the investment in program libraries, 
the difficulties of conversion, and the cost of 
retraining. 

ALGOL was an attempt to make a step 
beyo'nd· FORTRAN and achieve, at the same 
time, a standard. Manufacturers' representa
tives, members of the academic computer world, 
and prominent computer theorists from abroad 
made contributions. Programmers in this coun
try seemed uninterested in ALGOL, in contrast 
to the Europeans and Soviets, criticizing it in 

STATE OF THE ART OF PROGRAIV[MING 173 

the superficial way that has its origins in igno
rance. This opportunity to introduce some pro
fessional standards in place of crass commer
cialism was rejected because of such factors as 
mental laziness in the face of the Backus nota
tion, awe of recursion, and the use of a larger 
character set than was then available for exist
ing equipment. 

COBOL was a rather different phenomenon. 
Bureaucratically inspired, industry politics 
ridden, and representative of an eccentric view 
of programming, it and its forerunners seem in 
retrospect to have been predicated on the notion 
that inability to learn concise notations could 
be circumvented by providing a kind of pidgin 
English. The possibility was overlooked of 
making programs intelligible to the nonspecial
ist by language expansion during translation. 
It is unfortunate that the real contribution of 
the business application programmers, the no
tion of data descriptions logically separate from 
the procedural description, was obscured by as
sociation with narrative-style language. 

Machine Organization and the Programming 
Problem 

It is true that the earliest machines were, 
from a programming standpoint, often logically 
more elegant than their successors. Anxiety 
about circuit reliability was a motivating factor 
behind their simplicity, but it should also be 
remembered that the logical organization was 
usually the concept of one, or at most a few, 
closely associated inventors. 

By the time that computers had become more 
reliable, the commercial organizations had 
taken over and the committees and other foibles 
of human organization did violence to the logic 
as the demands for greater speed and ease of 
use increased and more elaborate computers 
were built. The clumsy designs which followed 
inspired application of the word "kludge" and 
programmers, guilty more by omission than 
commission, were wryly amused. 

It is notable that even as early as 1947, 
Stibitz, at the Harvard Symposium on Large
Scale Digital Calculating Machinery, pointed 
out the intimate relation between machine or
ganization and the practical usefulness of the 
machine in terms entirely appropriate in 1963. 

A difficulty is that both designers and pro
grammers are now overspecialized. A pro
grammer to be professional must not ignore 



174 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

the subject of machine organization, since pro
gramming and machine organization are inex
tricably intertwined. The machine designer, on 
the other hand, cannot remain ignorant of pro
gramming in the general sense; he must, for 
example, have some knowledge of the problems 
of translation of mechanical languages and an 
appreciation of the control problems arising in 
the preparation and use of very large programs. 

The designer is still under marketing in flu
en'ce, defined here as what the salesman thinks 
the customer wants or what he has convinced 
him that he wants, and speed measured in terms 
of time for individual memory accesses, arith
metic operations, or simple loops provide easy, 
if inadequate measures. Marketing, of course, 
wants the latest glamour component since the 
user has learned, with some reason, to equate 
the new devices with easily observed improve
ments in performance. The result of these pres
sures is a neglect of improvements in machine 
organization, improvements which could en
hance over-all performance of systems and re
move an obstacle to substantial advances in 
programming system design. 

Programming and Education 

The computer sciences are beginning to find 
a place in the university. Still overshadowed 
by matters of computer procurement and de
mands for internal services, there is now con
siderable serious research going on in program
ming and machine organization, automata 
theory, switching theory, and mathematical 
linguistics. 

Programming is not trivial, and to quote 
from the previously cited report by Goldstine 
and von Neumann: "Since coding is not a static 
process of translation, but rather the technique 
of providing a dynamic background to control 
the automatic evolution of meaning, it has to 
be viewed as a logical problem and one that 
represents a new branch of formal logics." 
For some reason, formal treatments of pro
gramming have been both specialized and rare. 
The idea that the construction and description 
of algorithms is a legitimate concern of mathe
matical instruction has its advocates. In view 
of the major revision now taking place in the 
mathematics curriculum, it would seem timely 
to put programming on a formal basis for mass 
education. Neither existing machine languages 
nor the one-level-removed programming lan-

guages will do for this purpose. Considering 
the enormous impact that the computer is cer
tain to have in education, the necessity of avoid
ing excessive influence from the computer 
manufacturer must be recognized by all con
cerned. 

THE DESIGN AND CONSTRUCTION OF 
PROGRAMMING SYSTEMS 

Some of the important ideas that have filtered 
down into current practice are reviewed in the 
following sections in roughly the order of occur
rence. Since the development of programming 
techniques and concepts is poorly documented, 
it is difficult to assign credit for origination of 
the ideas or their succesful application. Work
ers in the field know that most of the useful 
concepts had multiple origin. Significant ideas 
have been embodied in useful programs, but not 
otherwise documented, long before publication. 
In view of the scarcity of program readers and 
the lack of standards in language for descrip
tion, one might say that the work in point was 
not "published," though its existence is implied 
by the operating programs. 

Combining Programs, Assembly 

The importance of combining programs from 
different sources was recognized early and a 
program to accomplish this was described by 
Goldstine and von Neumann. 

Today, the assembly process is often a sub
ordinate function in a compiler and symbolic 
forms of machine language are rapidly declin
ing in use in the technical application area. 

Interpretation 

Interpretive programs were important for a 
number of years in programming technical ap
plications, and it is interesting that one of the 
first, developed at MIT, accepted an algebraic 
language. Most of the later programs simu
lated multiple-address machines with floating
point arithmetic, index registers, and built-in 
mathematical functions. Interpreters were suc
cessful in spite of their inefficiency because 
many of the deficiencies of the machine could 
be easily corrected in the simulation and, thus, 
in addition to more convenient and compact 
codes, checkout was greatly simplified. The 
success of these interpreters helped to ensure 
the incorporation of more powerful operations 



in the popular machines of the middle fifties 
which change, together with the development 
of compilers, caused the interpreter to pass out 
of use. 

Compilation 

The most promising solution to the program
ming problem was Clearly compilation and, -be
cause of work volume, was conceived first for 
business data processing use. The first attempts 
were not outstandingly successful from the use 
standpoint. Excessive compilation time, diffi
culties in checkout that encouraged patching in 
machine language, and relatively bulky gen
erated codes tended to discourage users. 

The first languages were compromises of pro
grammer convenience, complication require
ments, and machine characteristics. N ow that 
the compilation process is better understood, 
and machine designs less restricted, the pro
grammer should soon have the use of the more 
powerful languages now practical. 

The deficiencies of some of the first compilers 
stemmed from neglect of integrated design,· use 
of existing programs for the assembly process, 
and storage limitations in the machines. 

In the scientific systems, translation and code 
generation were conceptually separated into 
two problems through use of an intermediate 
language describable as that of an "ideal" 
object machine for the translator writer. The 
use of an intermediate language (often three
address or Polish) was one of the first impor
tant advances in compiler design. 

Scheme I 

syntax description L 
~ 

STATE OF THE ART OF PROGRAMMING 175 

Many improvements of technique were dis
covered only in recent years: the incorporation 
of a simplified assembly process as an integral 
part of the compilation, the use of linked lists 
for storage pools, stacks for analyzing tree 
structures in the input language, improved 
symbol dictionary techniques to eliminate bulky 
sorting passes unnecessary for the symbol
handling requirements of a compiler, and the 
coupling of sequential processes via buffer areas 
in storage to minimize intermediate storage on 
magnetic tape are notable examples. These 
techniques have made possible compact, fast, 
and inexpensively constructed compilers. 

Later ideas applied successfully include the 
organization of a translator using recursive 
subroutines to handle control; and the writing 
of a system in its own language, followed by 
hand translation of a sufficient part of the code 
to allow compilation of the entire compiler 
program. 

Syntax-Directed Compilers 

Syntax-directed compilers are representative 
of the latest thinking in the field. In one plan 
(see the diagram) a translator is constructed 
for a machine A which for some class of lan
guages described will produce as output a ma
chine-independent intermediate language from 
input in language L. Statements in the inter
mediate language are then used as input to a 
machine-code generator, which produces actual 
machine code for machine B. Then, if trans
lator and generator sections for use with ma-

machine-code 
specifications (B) 

~ 
machine-

input in 
language 
described 
by syntax L 

in termedia te 
machine language 

code - machine 
generator code B 

Scheme II 

machine-code 
specification 
(machine B) 

machine A 

syntax description L 
~ 

machine A 

input in language 
described by syntax L 

~ 
code for compiler 
for given language 
and machine code 

Syntax-Directed Compilers 

machine A 

machine B 

machine 
code B 



176 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963 

chine B are written in language L, the system 
can be transferred to machine B. The machine
code generator might itself be of a general na
ture in that specifications for the object ma
chine B might determine its output. In another 
plan, a compiler-generator on Machine A pro
duces the code for a compiler to run on ma
chine B given the syntax of the language Land 
the machine-code specifications for the object 
machine B. In practice, the intermediate lan
guage has only a transitory existence within 
the machine. 

Just how close these schemes are to practical 
application in their entirety is not known as 
published material is scanty: possibly the tech
niques are regarded as proprietary. There has 
been much speculation about and occasional 
partial demonstration of these ideas during the 
past few years. Both notions need clarification. 

Theoretical investigations by Chomsky and 
others on formal languages are beginning to 
influence practical work. The least clear aspects 
remain in the areas of machine-code specifica
tion, and the writer suspects that the general 
machine-code generator of Scheme I is ill-de
fined in a practical sense, and perhaps presents 
the same order of difficulty as a machine-Ian
guage-to-machine-Ianguage translator. The 
first part of Scheme II presents a similar diffi
culty, but by properly associating the syntacti
cal elements of the language with desired ma
chine code, a relatively simple program might 
serve for the first step, although it is not obvi
ous what restrictions would have to be placed 
on the syntax and machine code. 

A Standard Machine Dam,g1J.a,ge 

A simple, and the writer believes effective, 
solution to the problem is in standardization on 
the transitional language of Scheme I as a sym
bolic machine language. The machine-code gen
erator is then a straightforward program which 
handles differences of representation and makes 
substitutions for evaluative operations not 
available in the object machine. The descrip
tion of the object machine relative to the stand
ard language would consist of code representa
tions for standard operators, code bodies in the 
machine language equivalent to omitted evalua
tive operators in the standard language, and 
with limitations, operator symbols in the ma- . 
chine language -not corresponding to evaluative 

operations in the standard language, together 
with their equivalent symbol strings in the 
standard language. In the foregoing, the term, 
"evaluative operator," is used to distinguish 
from control and descriptive operators since 
the standard machine language would be com
plete and definitive in that regard. 

Storage Allocation 

Storage allocation was the primary function 
of the early assembly programs and continues 
to be an important part of a modern program
ming system. A resident program is given the 
responsibility of handling the grosser storage 
allocation problems because many machine en
vironments require this to be done dynamically. 

Since multi-level storage is an economic 
necessity, its efficient utilization has long been 
a prime objective, though the difficulties appear 
formidable. In this regard, the machine de
signers have largely ignored the problem; ex
tensive programmed control, very costly in 
terms of storage, is usually the consequence. It 
now appears that things can be done to alleviate 
this problem by providing adequate interrupt 
signals indicating states of tape, disc, and drum 
storage components and, through use of simple 
adaptive schemes for handling information 
transfers between storage levels. 

The incorporation in procedural program
ming languages of notations for describing data 
structures such as arrays, files, and trees, and 
the provision to use these structures recursively 
together with indications of the scope of defini
tion, will help greatly with the storage alloca
tion problem and assist the programmer organ
izationally, and yet not burden him with need 
to cater to special machine characteristics. The 
structuring of programs should be, of course, 
an important part of the education of machine 
users. 

Operating Systems 

If operating systems are defined as a means 
of automatically accomplishing gross storage 
allocation, the ordering of programs, and the 
assigning of processor subsystems, it is reason
able to expect that these functions be mainly 
built into the equipment as a judicious combi
nation of circuit logic and fixed program. That 
bulk of present-day systems is an implicit criti
cism of the machine designs. In the allocation 
of tape control, processor, storage, or input-



output subsystems, experience shows that if a 
choice must be made between equivalent units, 
the hardware should make the assignment. 
Automatie interrupt logic should make availa
ble error signals and state indications for the 
units involved, and should cause the automatic 
preservation and restoration of machine states, 
and thus, is closely related to mechanisms for 
the handling of subroutines. 

Levels of Language 

If machine languages are thought of as first
level languages, then procedural languages are 
second-level and problem-oriented languages 
third-level. ALGOL is an example of a second 
level, and the geometric language, APT, the 
third level. 

Often a problem-oriented language will con
tain a procedural-type language as a sub-lan
guage, and ideally, that procedural language 
should be that in which the system is written 
and extended. 

A procedural language should not contain a 
machine language as a subset, since this, in 
eifect, is tantamount to admitting that the pro
cedurallanguage is incomplete, or that the ma
chine is of such peculiar characteristics that 
rules for its use cannot be subordinated algo
rithmically within the translator for the pro
cedural language. The fact is, however, that 
procedural languages, as defined at present, 
tend to be incomplete, and this is presumably 
compensated for in a nonstandard fashion by 
augmenting the language for each compiler, or 
including machine language. Machine pathol
ogies are still with us, and this will be the case 
until the design philosophy in fashion is. re
placed and the machines now in use are obsolete. 

A wealth of problem-oriented languages must 
be expected, since these will be the most power-

STATE OF THE ART OF PROGRAMMING 177 

ful means of communication with machines, and 
their translators will manage the program li
braries which grow up about the specialties for 
which the languages are conceived. 

Variations of taste will ensure a number of 
procedural languages, but these are likely to be 
very similar. Standardization at level two 
might be desirable, but the difficulties seem tre
mendous and the cost of not standardizing will 
not turn out to be forbidding if some rationale 
is developed for level-one languages. 

The reasons for rigid standardization at level 
one have been mentioned elsewhere in this 
paper, but are worth repeating. Machine lan
guages need not take account of the questions 
of taste or humanly suitable representations, 
since virtually instantaneous translations in 
both directions between person and machine 
are clearly practical. All programs are ex
pressed in terms of the same structural ele
ments, and thus the designer has a standard 
which is completely independent of the pro
posed class of applications· for the machine. In 
a given design, some characteristics could be 
emphasized at the expense of others (though 
probably not in a true general-purpose ma
chine), but all control and data accessing func
tions would be present. The particular repre
sentation of elements in the machine language 
employed is also at the option of the designer, 
but each element must be available separately 
and be combinable in all m~aningful ways. 

In the sense just described, there can be a 
standard machine language acceptable to both 
machine designers and system programmers, 
and this language would be the logical and eco
nomically most satisfactory level for standardi
zation. By developing a standard for machine 
language, both programming and machine de
sign can proceed in a more orderly fashion with 
better use of valuable technical manpower, 





COMPUTER APPLICATIONS FOR INDUSTRY AND THE 
MILITARY-A CRITICAL REVIEW OF THE LAST TEN YEARS 

Donald F. Blumberg 
Director, Planning; and Information Systems 

Pennsylvania Research Associates 
Phia., Penna., and member of the Staff 
Moore School of Electrical Engineering 

University of Pennsylvania 

1. INTRODUCTION 

The utilization of data-processing equipment 
in the United States over the last ten years has 
been growing at a phenomenal rate. Digital 
computing systems are now in use in almost 
every sector of the economy, and employed in 
an extremely wide variety of applications. The 
data processing field has come a long way from 
the early stages of computer development when 
systems applications could be divided into the 
extremely simple classifications of "business" 
and "scientific" use. When discussing the ap
plications of data-processing equipment in the 
early 1950's, one had in mind either their uti
lization for accounting and standard payroll 
functions, or the processing of complex mathe
matical formulae which would be too unwieldy 
and complicated to do by hand. There were a 
few individuals on the far-out fringe of the 
field who suggested that electronic data-proc
essing equipment would some day have a pro
found effect on wholesaling, retailing, the con
trol of complex processes, and the entire middle 
management field. But, by and large, most 
people were primarily intrigued by the com
plexity of the technology rather than the spe
cifics of new application. 

When the Univa(c I was spanking new, back 
in 1953, those few individuals who were pre
many as 3,000 computers within the U.S. econ-

omy were simply ignored as being wildly opti
mistic. In ten short years we have progressed 
to the point where over 10,000 data-processing 
machines are now installed, and computer ap
plications run the gamut from allocation algo
rithms to weather processing. This ten-year 
range is a fairly long period of time, and is 
sufficient to begin to draw some conclusions 
dicting that there were applications for as 
about the applications development process and 
identify those functional areas for which com
puters have been successfully applied. Typical 
application surveys are often not very helpful 
in that they simply enumerate as extensive a 
list as possible of the range of applications with 
as many references as space permits. However, 
in the long run it is not very significant that 
Company X is now using a computer to main
tain an accurate warehouse inventory. The key 
issue is the degree to which a particular class 

179 

. . t'l" t '1"0 1XT.n no"" of Industry IS U",l. . .lZlng compuve .... u. "'"' va.l~ 

assume that there is a standard range of func
tions, by industry, that computers can perform. 
In other words any important attempt to struc
ture and delineate the applications of com
put:rs in the United States must first quantita
tively analyze the range of installations by 
sector of the economy.; This.critique will also 
involve an examination of the pathways used 
in developing and applying the computer to 
various functional problems in the economy. 



180 PROCEEDINGS-SPRING JOINT COMPUT~R CONFERENCE, 1963 

and to place needed focus and emphasis on some 
key underlying factors in the development of 
new applications. 

There are some who might question why this 
historical review is required. The computer 
industry has always been looking forward; why 
not just make the pat, optimistic predications 
about future applications and be done with it? 
The fact is that the biggest single problem in 
the computer industry has been the lack of 
competent and realistic planning. The absence 
of a reasonably extensive performance pattern 
upon which to base future predictions, and to 
structure future developments has often led to 
a situation in which a new technical achieve
ment was enough to generate an entirely new 
range of apparently "believable" speculation. 
It is essential to use the past as a structured 
method of at least delineating the future. By 
objectively criticizing past developments, we 
can begin to understand ·the real underlying 
factors in achieving success or failure in this 
industry. 

In trying to summarize this extremely com
plex situation in a relatively short paper, the 
writer has been forced to present the facts in 
an abridged and somewhat biased form, paint
ing the blacks a bit darker, and the whites a 
bit lighter, in order to emphasize certain gen
eral conclusions. Critical license has been taken, 
and the reader should be, and is herewith 
forewarned. 

In summation, the general intent of this 
paper is to quantitatively examine the range of 
computer applications in the U.S. economy and 
to qualitatively consider and critici7:e the effi
ciency and effectiveness of the development 
process which led to the present situation. 

II. GENERAL TRENDS IN COMPUTER 
APPLICATIONS 

The United States computer industry has 
been growing at an extremely rapid rate since 
the introduction of commercially available 
equipment in the latter half of 1952. Some idea 
of the extent of this growth can be obtained 
by looking at the market for data-processing 
equipment and services during the period 1953-
63 (Exhibit 1). 

Two historical trends in this expanding field 
deserve sonle conlment: 1) the inter-relation
ship between the special military systems and 

IOPOOt 

9POO~ 

~~~~:SOF 8 .ooot 
INSTALLE D 7.000+

6.000j-
5,OOO~

4.~

3,000-

TOTAL
. SMALL CLASS SYSTEMS

} MEDIUM CLASS SYSTEMS

~-~~~~~~=t-_--:-!'\ LARGE SYSTEMS

1952 1954 1956 1958

YEARS

Exhibit 1. Number of Digital Computers Installed in
United States, 1952-1962, Small, Medium, Large.

standard computer systems market, and 2) the
growing market for data processing services.
The military system market has always been
a keystone of the data processing industry. For
example, military expenditures for research and
development of advanced computer hardware
and "software" has given a tremendous degree
of technical impetus to the field through the
years. Military requirements have also led to
the implementation of a wide range of new
applications for information processing, weap
ons systems control, command control, etc. Al
though most of these applications originally
utilized specially developed equipment, the re
quirement"s are now being satisfied by commer
cially available units. In fact, as will be indi
cated elsewhere, the National Security Sector
of the economy is a major user of commercial
data processing equipment. The military re
quirement for complex weapons and supporting
equipment has also led to growth in the utili
zation of computers in other sectors of the econ
omy. For example, the large aero=space and
electronics manufacturing concerns working on
major government contracts have also widely
applied computing equipment in direct or over
head support of these government programs.
Thus, both directly and indirectly, the federal
government's expenditures for goods and serv
ices formed the basis for a large number of
data processing applications during the last
ten years.

A second major trend which has occurred in
the last decade has been the rapid riRe in the
development of computer services. The major
problem in the data processing industry, at
first, was simply the design, development, and
production of reliable, efficient processors. It
was believed that the user would easily develop

COMPUTER APPLICATIONS FOR INDUSTRY AND THE MILITARY 181

and program his own applications once the ma
chine was made available. In the latter half
of the last decade, with the appearance of a
wide range of equipment, it became quite clear
that the development and programming of the
application, and even the operation of the proc
essing system could not be ignored. The result
was the development of a whole new market for
computer support services including:

• Applications analysis
• Development of computer programs
• Operation of computer system, providing

available processing as needed (e.g., the
EDP Service Bureau)

This new field has grown to the point where
the availability of these services can exert in
fluence on the development of new applications.
For example, in the banking field there were
very few people who had the technical skill and
competence to analyze operations and develop
working programs. The introduction of con
sulting firms and programming services with
bank systems skills furthered the development
of this particular application. The availability
of data processing time through service centers
on an as-needed basis, without major invest
ment in a machine installation, has led many
new firms to begin to apply data processing
techniques.

A better understanding of the nature of com
puter applications in the United States during
the last ten years can be gained from an analysis
of the trends in the number of installations of
small, medium, and large systems (Exhibit 2).

04,000

3,000

~ 2,000

~

o
j '.000
i

OI9±~2~~~~-='=~~'9~~.------:-'9±57:----+:::--±:---+,-,--L------I
YEAR

Exhibit 2. Market for Computer Systems and Services
in the United States-1952-1962.

The exponential growth in number of units
installed since the 1956-1957 period has been
in the small to medium class categories. Large
scale systems installations have also increased,
but at a much more stable rate. Application of
small systems to date have been largely for
accounting and administrative operations. A
significant percentage of these applications
have been upgraded replacements* for punched
card and tabulation installations.

The ability of the economy to accept so many
of these small to medium size units in such a
short period of time becomes less surprising
when the replacement units are discounted.
However, there are a number of computer ap
plications for the small to medium size user
which have been developed in the last·few years
to provide the basis for these new installations.

A final important factor in the trend of com
puter applications over the last decade involves
the critical inter-relationship between the de
velopment of an applications concept, and the
availability of an appropriate computer system
upon which to implement the concept. A corre
lation of the availability of various types of
computer systems (Exhibit 3) with the rate of
installation and development of various classes
of applications would clearly demonstrate the
importance of various systems configurations.
For example, the availability of the IBM 305
RAMAC System opened up a wide range of in
ventory management applications which had
been impractical with previously available sys
tems. On the other hand, the lack of availability
of an economical, yet efficient system for infor
mation storage and retrieval in a price range
which most users consider to be acceptable has
been holding back this interesting application.

The extensive use of a particular application
is closely tied to the availability of an efficient

:;: The replacement factor in the growth of the com
puter market has been apparently neglected by almost
every manufacturer except IBM. RepJacement of unit
record equipment with computers, and the replacement
or augmentation of one computer with another has been
a major element in the apparently high installation
rate over the last three years. This installation upgrad
ing has almost always been accompanied by an increase
in the variety, as well as the complexity, of applications
on the system.

182 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962

I UNIVAC I I'·· '" BURROUG~S 205 MONROBOT III IBM 704 IBM 705 III IBM 610 NCR 304 GE 225 RCA 50l IIURROUGHS

I I B270-280

I
I

ALWAC IIIE IBM 650 IBM 705 I,ll IBM 305 BURROUGHS 220 IBM 7090 IBM 7070 RCA 301 ASI210

I ISM 702 BURROUGHS!01 I UNIVAC !!03A UN!VAC II P~ILCO S 2000 I UNIVAC SSIO IBM 1620 I NCR 310 I NCR Sl5 I

UNIVAC 1101 BENOIX G-15 DATAMATIC UNIVAC 1105 UNIVAC SS~ CDC 1604 BENDIX 6-20 IBM 7074
1000

LGP 30 RECOMP I IBM 709 RCA 501 CDC 160 RPC 9000

UNDERWOOD 100 UNIVAC FILE RECOMP II PHILCO SIOOO RPC 4000 CDC 160A
COMPUTER

HONEYWELL IBM 7080
800

I LARC UNIVAC III

PHILCO HONEYWELL
2000-211 290

IBM 1401 HONEYWELL
400

I
PB 250 RECOMP III

I I
UNIVAC 490 I

I
IBM 1410

I IIURROUGHS , ,
I i , , , B250 I

NCR 390

STRETCH

Exhibit 3. Date of Initial Installation of Computer Systems.

III. A SURVEY OF COMPUTER APPLI
CATIONS IN THE UNITED STATES

Although computers are to be found in almost
every sector of the economy, their applications
in specific sectors vary, depending on the nature
of the problems to be found, the array of tech
nological equipments available at a particular
point in time, and the existence of application
concepts which have been proved feasible. An
analysis of the degree of use of small-medium
class, and large class computer systems in
various sectors* of the economy (based upon
a percentage of total installations) is depicted
in Exhibit 4.

In general, the Manufacturing sector and the
Federal Government sector of the U.S. economy
are the largest single users of the ten major
sectors of the U.S. economy. However, there is

~, The sectors considered include:

• Agriculture
• Mining
• Contract construction
• Manufacturin'g
• Transportation
• Communications and Utilities
• Wholesale and Retail Trade
• Finance, Insurance and Real Estate
• Services
• Government-state and local
• Government-federal

a difference in the degree of utilization of small
medium versus large class systems in these
different sectors. These differences are caused
by the variations in computer applications func
tions in each of the sectors, as well as the size
and structure of each of the industrial seg
ments. For example, certain segments of the
economy are so fractionalized that very few
firms are big enough to support a large-scale

SMALL TO MEDIUM ECONOMIC SECTOR
SYSTEMS LARGE SYSTEMS

Fg22Mfsn;nlnWH(~=URE 9W:? (100 %)',01
'CONTRACT CONSTRUCTiOi-t/~'

""!!',,';;\g .. MANUFACTURING ·1
"'~: .. :.:?\:~<.:::':":> MACHINERY a EQUIPMENT

ROCESS INDUSTRIE"-----J·'

" , , , ',' ! , , , , , , , '" " GOVERNMENT
I b TATE S LOCAl.='"

,EDERAI:------..,

Exhibit 4. Use of Computer Systems in Ten Major
Sectors of the U. S. Economy.

COMPUTER APPLICATIONS FOR INDUSTRY AND THE MILITARY 183

computing center. In certain sectors, the lack
of computer applications concept, or suitable
equipment, has prevented the development of
applications. For example, the Agriculture,
Mining and Contract Construction sectors of
the economy make use of data processing sys
tems to only a limited extent. In these indus
tries, most of the work is done in the field, and
the lack of availability of ruggedized, mobile
computer systems which can operate under such
field conditions have hindered the development
of applications for these sectors. These indus
tries also have a limited number of extremely
large firms or organization units which can
make effective use of large-scale processing sys
tems. It is of interest, however, that the Agri
culture, Mining and Contract Construction
fields have all been marked by extensive use of
materials handling automation.

The Manufacturing segment of the economy
is the largest single industrial user of data
processing equipment. Computers are utilized
in a wide range of standard functional areas
such as production planning, financial and ac
count processing, warehouse and inventory con
trol, and support of research and development
data analysis and calculations. Computers are
also being applied to such advanced applications
as real-time process control and numerical ma
chine tool control.

Machinery and Equipment manufacturing
forms a major sub-section of the manufacturing
sector of the economy. This industry is com
posed of over 20,000 companies manufacturing
a wide variety of mechanical and electrical
systems, subsystems and components, ranging
from carbon resistors to huge hydroelectric tur
bines and airplanes. Computer use in this sec
tor is extremely heavy for scientific engineering
calculations, as well as for the standard busi
ness functions. This industry is also beginning
to apply numerical machine tool control sys
tems. Over 800 such systems are now in use for
virtually all types of machine tools.

There are two types of numerical control
systems:

Positioning or point to point control, in
which the tool, such as a drill, can be moved
in place, but cannot be angularly displaced.
The path taken by the tool between suc
cessive points and the work piece is not a
consideration.

Contour continuous path control, in which
the cutting axis of the tool itself can be
changed, under the direction of the tool's
controller. The path taken across the work
piece is subject to continuous precise con
trol.

Although point-to-point numerical control sys
tems can be manually programmed, there have
been a significant number of applications in
which the programs are prepared by an off-line
computer. Numerically controlled contouring,
however, does require a digital computer to pro
vide for the preparation and coding of machine
tool commands. Program controlled, multi
operation machines may also require computers
to co-ordinate their operations on a real-time
basis. The application of numerical machine
tool control has increased with the development
of standard automatic programs, such as APT
and Autoprompt.

Process manufacturing industries are also
large users of data-processing equipment. For
example, petroleum manufacturers were one of
the first industrial groups to develop computer
techniques for determining optimal blend ratios
and to mechanize their billing and sales analy
sis operations. One of the most significant com
puter application areas in the process manufac
turing industries at present is the development
of computers for real-time process control. This
application has been developing at a slower rate
than was originally predicted, but the number
of units installed is significant (Table 1).

TABLE 1.

Process Control Systems
Installed in the United States

1962

Estimated
Number of Estimated Value

of Systems Economic Units
Sector Tnstalled I nsiallaiions

Manufacturing
Chemicals
Petroleum

77 $8,736,000

Iron & Steel
Other

Communications
and Utilities 29

TOTAL: 106

22 $2,641,000
31 2,405,000
11 2,350,000
13 1,340,000

$5,421,000

$14,157,000

184 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Process controi systems perform one or more
of the following functions in the operation of a
complete process:

• Data reduction
• Data logging
• Complete data control

If the system performs all three functions, it
is termed a closed-loop operation. Several of
the process control systems indicated in Table 1
perform only a data reduction or a data logging
function. At least half of the units do involve
a general purpose digital computer as part of
the process control system.

The Transportation industry has generally
not been a major use of data-processing equip
ment. Some of the larger railroads originally
installed digital computers for accounting and
financial operations, as well as for processing
of freight traffic and rate calculations, in the
late 1950's, but this application was never
completely developed by the smaller railroad
systems. More recently, railroads have been ex
perimenting with digital data transmission op
erations. However, the present state of railroad
finances has prevented any material develop
ment of this application. The largest segment
of computer users within the transportation
industry today are the airline companies.
Almost every major airline firm is developing,
or has already installed, a mechanized airline
reservation system to maintain automatic count
of seat inventories and availability. Some of
these systems are also used for processing flight
forecasts, weather information, manifest and
passenger lists, schedules of operations, and
management control reports. Approximately 11
major airline reservatioI) systems will be in
stalled by the end of 1963.

The Communications and Public utilities sec
tor of the economy has also not made significant
use of data-processing equipment. Most of the
larger public power utilities have applied data
processing equipment for accounting and billing
operations. Some of these organizations are
now either installing, or considering the in
stallation, of process control systems for real
time control of load assignment and dispatch
ing. The major communication firm in this
country, American Telephone & Telegraph, has
always made extensive use of special-purpose
data-processing systems for switching and net-

work control. These applications have generally
been specially engineered devices more properly
identified as telephone switching and support
gear than data-processing equipment, per se.

The Wholesale and Reta,il Tra,de Sector has
been a fairly substantial, but not overly aggres
sive, user of small to medium class computer
systems. Most of these units have been installed
in the wholesale segment of the industry, for
inventory control, and accounting operations.
The automation of retail operations has been
under consideration for several years, but most
of these applications have been limited to the
use of punched cards, punched tags and punched
paper tape activated by cash registers as mech
anized input/output devices. Larger depart
ment stores (such as lVlacy's and Gimbel's) as
well as major mail order houses, are users of
data-processing equipment for a wide variety
of functions, including billing and accounting,
integrated order processing and warehousing
inventory control. However, the wide range of
retail organizations in this country have not
been affected by the application of data-proc
essing equipment. Some consideration is now
being given to the mechanization of the check
out operations in supermarkets with complete
sales information prepared at the check-out sta
tion and transmitted directly to a control data
processing system. An important application to
the retail industry is now under development.
Credit Bureau operations, which are a basic
element in retail store activities, have generally
been performed manually, as a service in a
regional area. The application of a digital com
puter system, to maintain credit references on
all individuals in a regional area has been re
cently tested on the west coast.

The wholesale and retail industries have been
slow to apply data-processing techniques pri
marily because of the unavailability of equip
ment geared specifically to their economic and
operational requirements. Those organizations
large enough to support tab equipment for their
operations have recently turned toward the
application of small class systems (such as the
IBM1401 and the Remington Rand 1004), but
the wholesale and retail field remain an area
where the computer application development
process has not moved at a rapid rate.

The Fi'na'nee, Insurance and Real Estate field
has been steadily applying the concepts of data-

COMPUTER APPLIGATIONS FOR INDUSTRY AND THE MILITARY 185

processing technology to their operations. The
Insurance field has been one of the most prolific
users of data processing, with industry interest
in computers, starting with the original UNI
VAC development after World War II. The
industry is a large user of medium and large
tape-oriented computers. Banks have also been
stepping up their application of computers, pri
marily for real-time systems in support of de
mand deposit operations. The applications of
computers in the banks have been spurred by
the development of Magnetic Ink Character
Recognition (MICR) as a standard method of
identifying and processing checks. Stock and
commodity brokers have also been utilizing
data-processing equipment. Recently the major
stock markets have begun to install large-scale
processing equipment to handle stock price
changes and transactions.

The Services industries have also begun to
increase their application of data-processing
equipment in the last two to five years. An
entirely new service of providing data-process
ing facilities on call has developed. Mechanized
credit bureaus have already been mentioned as
an application area which has just started to
develop. Hospitals have also begun to turn to
the use of small-scale computers for accounting
and billing operations, as well as for mechanized
information retrieval and processing of clinical
information. Information service centers are
also now appearing, based on the application of
digital computers and large capacity memories
to provide efficient processing and retrieval of
information of a specialized nature for a fee.

The Government Sector has always been an
extremely large user of data-processing equip
ment, although State and local Government
utilization has been negligible. The Federal
Government has applied computers to the
widest possible range of functional areas. from
the standard accounting activities to ext~emely
complex systems for the processing of intelli
gence information (Exhibit 5) .

The range of applications of computers and
the extent of penetration in the U.S. economy
is surprising. However, the number of seg
ments of the economy in which applications are
yet to be developed are even more intriguing.
Any list of computer applications would be
arbitrary, representing the bias of a particular

NUMBER OF
COMPUTER
SYSTEMS

NATIONAL
SECURITY
APPLICATIONS

1952 1954 1956 1958 1960 1962

Exhibit 5. Number of Computer Systems Installed
in the Federal Government.

orientation or discipline. However, a general
list might include the following:

• Standard Financial and Accounting Opera
tions

• Inventory Management Control and Analy
sis

• Processing of Scientific Engineering calcu
lations

• Simulation and Gaming
• Process and Numerical Machine Tool Con

trol
• Information Storage and Retrieval
• Management Planning and Strategic Con

trol
• Intelligence Processing

Specific applications could also be defined, but
they tend to be a subject of the broader applica
tion areas identified above. For example, PERT
and critical path method applications, as well as
the use of linear programming algorithms, may
be classified under the general heading, "Man
agement Planning and Strategic Control Opera
tions." Utilizing these applications categories,
we can arrive at some conclusions as to the ex
tent to which various applications have been
implemented in the 10 sectors of the United
States economy previously described (Exhibit
6). Certain sectors of the economy, primarily
the Federal Government and, to a lesser extent,
the Manufacturing segment, have been develop
ing a wide range of computer applications. Cer
tain standard classes of applications, such as
financial and account processing, have been

186 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

SECTOR

AGRICULTURE
MINING, AND
CONTRACT
CONSTRUCTION

M
A
N
U
F
A
C
T
U
R
I
N
G

MACHINERY
AND
EQUIPMENT

PROCESS
CONTROL

OTHER

WHOLESALE AND
RETAIL TRADE

FINANCE ,INSURANCE,

AND REAL ESTATE

TRANSPORTATION

COMMUNICATION
AND PUBLIC

UTILITIES

SERVICES

G
o
V
E
R
N
M
E
N
T

NOTATION:

STATE
AND

LOCAL

FEDERAL

FINANCIAL
AND
ACCOUNTING

WIDE USE OF APPLICATION

(MORE THAN 35"0 OF FIRMS)

MEDIUM USE OF APPLICATION
(10% -35% OF FIRMS)

EXE:CUTIVE
INVENTORY PROCESSING SIMULATION PROCESS PRODUCTION INFORMATION PLANNING a INTELLIGENCE

CONTROL STORAGE a STRATEGIC PROCESSING MANAGEMENT OF R a 0 AND CONTROL
a ANALYSIS : DATA GAMING

D
o

a PLANNING RETRIEVAL CONTROL

LITTLE USE OF APPLICATION
(LESS THAN 10 %) OF FIRMS

APPLICATION AREAS WHERE GREATER
USE OF COMPUTERS C01JLD BE MADE

Exhibit 6. Computer Applications in Various Sectors of the United States Economy.

COMPUTER APPLICATIONS FOR INDUSTRY AND THE MILITARY 187

utilized by organizations in every sector of the
economy. However, other classes of applica
tions, such as information storage and retrieval,
and process control remain generally unde
veloped.

We have surveyed the range of computer ap
plications in the United States and given some
semblance of structure to the application of
these systems. We now turn to a more critical
analysis of the applications development proc
ess, in order to assess the underlying factors in
the success or failure of the development of new
applications.

IV. A CRITICAL EXAMINATION OF THE
APPLICATION DEVELOPMENT PROCESS

The previous analysis has demonstrated the
wide range of computer applications, and the
degree of use of these applications in various
sectors of the United States. These applications
have not all appeared at the same time, nor
have they all been pursued with equal vigor.
The evolution of computer applications during
the last decade should be of deep interest to the
industry. The dynamic forces which speeded
up some applications and slowed others must be
identified and understood in order to plan for
the future.

Theoretically, the development of a computer
application involves a fairly simple and
straightforward process (Exhibit 7.1). A user
develops an intial concept, and proceeds to select
and plan for the installation of an appropriate
hardware system and the necessary "software"
and applications programs. In the event that
either or both of these elements (hardware and
programs) are not available, or are unsuited
to the original concept, the concept is modified
or discarded. If the required elements are avail
able or can be obtained, the hardware is in
stalled and programmed, resulting in (if all
goes vlcll) , a sUCCessful application. It is fairly

r- -l
SUCCi::..:Sfl...l..

APPLICATION J

Exhibit 7.1. Theoretical Evolution of Application

clear that certain critical stages exist in the
applications development process, involving
complex inter-relationships among:

• Concept development and planning
• Hardware selection and installation
• Program development and implementation
This applications development process is

much less straightforward in real life. For a
greater part of the last ten years, a majority of
users were not technically capable of realisti
cally developing new applications concepts. *

However, these concepts are an essential part
of the creation of a market for computer sys
tems. In order to generate orders for new in
stallations, the computer manufacturers had to
depend on its sales force. This sales role com
plicated and modified the Applications Devel
opment process (Exhibit 7.2). Thus, the
(computer manufacturers') sales force became
engaged in presenting and generating new
applications concepts as part of the successful
procedure for selling the hardware system.
Certain manufacturers, in recognizing this new
role, began to systematically develop applica
tions concepts to be used as part of the market
ing package. The introduction and use of the
sales force as a critical part of the applications
development process was a very real, but often
neglected, aspect of the computer industry in
the last decade.

In order to appreciate the significance of the
sales role, one must understand the basic mar
keting incentives involved. The salesman is re-

This situation is fortunately changing as a number
0_' "t~rs have begun to develop their own technical
st :.', However, the majority of the small to medium
size 'lsers have not, and will probably never be able to
support this type of technical skill.

Exhibit 7.2. Evolution 01 !pplication Stressing Sales
Role.

188 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

warded on the basis of the number and size of
the installations of his own company's systems
which his applications can generate. He is
therefore forced to oversell those applications
which are best suited to his own firm's com
mercially available product line, and undersell
all other applications. In addition, he must keep
a weather eye alert so that the application is
best suited to his own firm's products as op
posed to those of the competitors. He might
even suggest and sell certain types of applica
tions programs and software, especially geared
to his own firm's equipment. This bias would
not be terribly important if computer systems
were designed completely on the basis of user
needs. However, in the last decade, many com
puter systems were designed primarily by en
gineers intent on advancing their own view of
the state of the art, with little or no awareness
of the ultimate user application requirements.
Thus, the applications development process was
often not efficient, leading to bias in the devel
opment of applications, and a large number of
failures.

These remarks did not apply to one particular
class of user-the military departments of the
Federal Government. The growing threat to
national security, coupled with an increasing
budget, made it possible for military agencies
to introduce a stage in the applications devel
opment process which was generally not feasi
ble for most industrial users (Exhibit 7.3).
In essence, military users could, and often did,
pay for the development of advanced computer
systems and programs when none were com
merciaHyavailable. The military user was less

DE::~N~:L I
• ~CEPTA8LE·
CONCEPT OF
APPLICATION '

il NEW

\---------------Jl- APPLICATIONS
CONCEPTS

Exhibit 7.3. Evolution of Advanced Military Applica
tion Stressing Procurement Effects.

affected by the currently availabie product line
and sales force than were industrial users. The
array of military applications concepts were
generally wider and more spohisticated, em
bracing applications for the over-all control
of weapons, and forces, and for sophisticated
processing of qualitative (intelligence) infor
mation.

However, systems manufacturers and pro
gramming service firms, in recognizing the
growing special systems market, also intro
duced salesmen to exploit certain applications
concepts involving skills and capabilities which
they could supply.

This military systems application develop
ment process was made much more complex
than in the typical industrial cycle because of
the many different organizations and agencies
involved. There were many more military sys
tem suppliers than commercial computer manu
facturers. In fact, the computer manufacturer
usually separated his military systems work
from commercial computer development and
sales efforts, resulting in even greater splits in
emphasis. Programming services firms and a
variety of "not-for-profit" systems analysis and
development organizations also became involved
in the applications development cycle.

The development of applications in military
agencies of the Federal Government was also
aided by a significant "bandwagon factor."
New applications developments in one service
often caused the separate generation of similar
or slightly modified. developments in other
services. *

For example, command control applications
were developed separately by the Air Force,
Army, and Navy.

The military systems development process
also produced an interesting side-effect. En
tirely new computer systems and applications
concepts were generated which ultimately found
their way into the industrial applications de
velopment process.

Other factors affected the development of
computer applications in the United States.
One interesting example, from the standpoint

* This process was not necessarily inefficient. These
parallel efforts often increased the rate of tchnologicaI
development by allowing more than one set of firms to
generate new approaches to the same problem.

COMPUTER APPLICATIONS FOR INDUSTRY AND THE MILITARY 189

of future planning by manufacturers, is the
"Landslide" effect which can occur in a specific
industry or functional area (Exhibit 7.4).

MARKETING
ACnVITY BY

~sr:.i~i~ I
ETC.

PUBUCATION OF

APPlICATIONS
CONCEPTS IN
INDUSTRIAL
JOURNALS,ETC.

Exhibit 7.4. Expansion of Application in A Specific
Industry or Functional Area, Illustrating "Landslide"
Effect.

For example, an early area of computer ap
plications was for Insurance firms which had
a large degree of clerical operations easily con
vertible to machine functions. When the initial
applications of these computers in major in
surance companies demonstrated that EDP was
both economical and extremely efficient com
pared to the old manual functions, many other
insurance firms began to follow suit. This, in
turn, caused other insurance firms who had
been holding back, to begin to seriously con
sider the application of equipment simply be
cause their competitors were doing so. In other
words, successful application of particular func
tions in a competitor's operations has often
resulted in a stampede by other firms in the
same industry to develop and apply the same
data-processing concepts in their own opera
tions in order to continue to remain competi
tive. This cycle is strengthened by the effects
of applications consultants and the appearance
of articles in trade journals.

This competitive aspect can also affect the
development of new applications. Once several
competitors in the same industrial segment
have machines, there is a tendency for each one
to begin to improve his own system by broad
ening the number of applications and increas
ing the degree of mechanization in order to
become more efficient than his competitors.

The competitive aspect in the development
and implementation of applications of data
processing equipment is only one of the several

factors involved in the growth of computer ap
plications in the economy. Another factor stems
from technological improvements which were
made in computer equipment design starting
in 1956. As new classes of equipment with par
ticular capabilities became available, they
opened up new areas of application which had
not been previously considered, or were thought
to be uneconomic. For example, the availability
of the IBM 305 RAMAC equipment led many
firms to begin to seriously consider warehous
ing and inventory applications based upon this
medium-priced machine with extremely large
memory, and efficient access time.

The applications development process in the
last decade was the result of many different
factors. However, two key elements

• The role of the marketing force in gener
ating new applications concepts

• The role of the military in underwriting
the development of hardware and com
puter programs

were, perhaps, the most significant.

IV. SUMMARY AND CONCLUSIONS

In assessing the application of data-processing
equipment in the United States in the last few
years, it is quite clear that computers have had
a significant impact in all areas of the economy.
However, an examination of the types of com
puter applications suggest that computers have
been implemented for functional needs on only
a piecemeal basis.

The application development process which
led to the present situation was explored in
some detail, pinpointing critical elements and
factors in the cycle. The issue which should
now be examined is the effectiveness of this
past development process and changes which
should and will come in the future.

Viewed irom the objective of the national
utilization of computers as an economic and
technical resource, it is probably safe to con
clude that the development process was carried
out efficiently. Most of the applications devel
opment costs for the economy were paid for by
either the computer manufacturers (who stood
the most to gain), or by the military (which
the total economy supports). Those few com
puter manufacturers who understood and sup
ported the development process effectively, were

190 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

quite successful; although most paid a very
high price for technological improvement with
out reaping the rewards. Fortunately, the mili
tary developments were more than enough to
offset this economic and technical waste.

However, the situation is now changing.
Military expenditures for computer systems
developments are becoming more selective. In
addition, the services and OSD are beginning
to utilize commercial equipment to a greater
extent, and reducing their non-essential sys
tems development commitments. The "band
wagon" effect is slowly grinding to a halt.

In addition, certain manufacturers are be
ginning to finally recognize the need for intense
product-market planning in order to develop
user-oriented systems. Specialized industrial
segments such as newspaper publishing, credit
bureaus, legal practice, hospitals, and super
market operations are being given more at-

tention. More efficient and tlexlole computer
modules are being developed in order to pro
vide the sales force with the flexibility to gen
erate usable concepts, rather than adhere to the
parameters of technically advanced machines
There is also an increasing awareness of the
need to develop new applications concepts and
efficient software packages, as a basic com
ponent of the successful marketing program.
These tactics all stem from a recognition of the
underlying components of the applications de
velopment process, and an increasing awareness
of the need for detailed and extensive planning.

The emphasis of the last ten years was placed
upon technology and the justification of the
basic need for computers. If the computer in
dustry is to continue to grow during the coming
ten years, the emphasis must be placed upon
the development and implementation of a broad
range of sophisticated applications,

AUTOMATIC PARAMETER OPTIMIZATION

AS APPLIED TO TRANSDUCER DESIGN

Max Howell
Senior Analog Applications Engineer

Martin Company
Orlando, Florida

PHYSICAL SYSTEM

It was desired to design a transducer array
consisting of a circular piston source with three
concentric rings in the same plane and having
the same center. The rings were to be adjusted
in diameter and source strength to increase the
directivity of the piston by narrowing the main
beam and reducing the level of the minor lobes.
The directivity of a piston (Dp) is given by

where

Dp = 2JI (u) (1)
u

7rd . u = -- sm (j
A

J I (U) = Bessel's function 1 of the first kind
of order one,

d = diameter of the piston,
A.. = the wavelength of the sound, and
() = the angular direction with respect

to the main axis.
The directivity of a ring is given by Bessers
function of the first kind of order zero, J o (u).
If YI « 1) is the fraction of the piston source
strength used for ring source strength and Xl

(> 1) is the ratio of the ring diameter to piston
diameter, the resultant directivity of the piston
plus the rings can be expressed by

D(u) = 2JI(u) + y1JO(XIU) + y2JO(X2U) (2)
u

191

For convenience we normalize Equation (2),
by dividing by D (0), so that we have the new
function N (u) where N (0) = 1. For the nor
malized form of the directivity we have

1
N(u) = 1 + YI + Y2 + Y3 D(u) (3)

The range of values of u to be considered are
from 0 to 16. The driving source to the piston
and rings was considered to have the same
phasing for simplicity. A consideration of phas
ing would have required the optimization of
three additional parameters.

OPTIMIZATION PROCEDURE

In order to get the desired directivity, it was
decided to construct a model having a fast
crossing of the u (independent variable) axis
and little overshoot. Since a highly damped
second order system with the same initial con
dition is of this nature, it was used as a model.
N ow by solving for the normalized directivity
N (u) as a function of the u and comparing with
the second order model M (u), we have a u his
tory of the error f(U). If we integrate the
absolute value of the function f(U), we have a
criterion to compare the desirability of solu
tions N (u) for any given values of the parame
ters (Xl1 X2, X3, Yh Yz, Y3)' If we start with a
fixed set of the values (Xh X2, X3, Yh Y:!" Y.3) and
adjust one of the parameters, say Xl by a fixed
amount 8, we have the new set of parameters
(Xl + 8, X:!" Xa, Yh Y:!" Y3)' Now if we compare

192 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

the functions fiE (Xl + 8, X2, XS, Yb Y2, Ys) I du
and fiE (Xb X2, xs, Yb Y2, Ys) I du, we can deter
mine if the adjustment 8 has imprQved N (u).
If N (u) has been improved, we again make the
adjustment fj and continue to do so until N (u)
is not improved. When N (u) is not improved,
we make the adjustment -8, and continue to' do
so until N (u) is not improved. Then we again
make the adjustment 8, and switch to adjust
ments· in another parameter, say Yl' We go
through the same process and when finished, we
adj ust another parameter. After all parameters
have been adjusted, we repeat the cycle starting
again with Xl' This is continued until we no
longer have any improvements in E(U). The
resultant values of (Xb X2, XS, Yh Y2, Ys) are now
recorded and they establish a minimum of the
function E (u). Other minima of E (u) can be
found by starting with different initial condi
tions of the six parameters.

By implementing this procedure at 1 unit
of u equals 5 millisecQnds and a repetition rate
of one solution per 80 milliseconds, time for
convergence was in the order of one minute.

EQUATIONS AND MECHANIZATION
OF SYSTEM

The equations and mechanization (Figure 1)
for the ring cQntribution are as fQllows:

d2J O(XiU) dJ O(XiU)
XiU d(XiUF + d(XiU) + XiUJ O(XiU)

= 0, Jo(O) = 1
(4)

J~(O) = 0
i = 1,2, or 3

For the piston we have:

U2 d2~~~U) + U dJ;~u) + (u 2 - I)J l (u)

= 0, Jl(O) = 0 (5)
dJ 1(0) 1
(lU- 2

Figure 1. Ring Contribution.

However since we are interested in the function

2J ~(u), (Figure 2) we make the substitution

Jl(u) = UYl(U),

d2Yl(U) + 3 dYl(U) + ()
u~ au UYlU

= 0 l' dYl(U) = 0 ,1m d
u~o U

lim Yl(U) = -2~
u~o

...!..
u

(6)

2J 1 (u)
2y 1 (u) = --u-

Figure 2. Piston Contribution.

The approximation l/u = 10, (0 :s:; u < 0.1)
was used to achieve high resolution of the
variable l/u, (0.1 < u :s:; 16). This improves
the accuracy of the multiplications by l/u at
the expense of a slight error in l/u.

The mechanization of the normalIzed direc
tivity with scale factors, etc., is shown in Fig
ure 3.

LOGIC AND CONTROL CIRCUITS

Having now established the mechanization
of the directivity as a function Qf the six
parameters, we must determine a means to'
adjust the parameters sO' that directivity N (u)
will CQnverge Qn the mQdel M (u). First we will
establish the errQr criteriQn f lEI du, which fQr
a given run (N) will be called Ex (Figure 4).

The next step is to' have a device to' remember
the previQus errQr, E]V _ h sO' it can be cQmpared
with EN to tell whether Qr nQt we are CQnverg
ing (Figure 5). In this case, a "track and
hQld" integratQr2 fQllQwed by a "hQld and track"
integratQr will suffice. This is fQllQwed with a
cQmparatQr sO' that small differences can be
measured and alsO' to' give a digital type in
telligence.

AUTOMATIC PARAMETER OPTIMIZATION AS APPLIED TO TRANSDUCER DESIGN 193

The third step is a circuit to tell the parame
ter, if it is moving in the wrong direction, to
turn around and go the other way. It requires
a remembrance of the preceding direction and
a means of r~ersing this whenever ES-I-Es
goes negative. This was mechanized as indi
cated in Figure 6. In the circuit of Figure 6,
we compute the changes in the parameters.

_100,........1~ 5u
"'\111 ~ ~,~

0.1000 L.V"" " ."

Figure 3. Normalized Directivity Simulation.

Figure 4. Error Criterion Generation.

+ 50 Indicates Better
- 50 Indicates Worse

Figure 5. Error Memory and Comparator.

Notation For
Track and Hold

~
c::=J

Figure 6. Parameter Increment Logic.

N ext we need a circuit to switch from one
parameter's optimization to another. It was
decided the best time to do this is when a better
result is computed after two worse results. The
reason for this criterion is that if we initially
started iIi the wrong direction the computer
would be told to turn around and proceed until
the next worse result is obtained; then, take a
step back and change parameters. Before this

EK I-EN
could be done the value of 50 EK=I-E

N
had

to be remembered through the next hold cycle.
Incidentally, all of the adjustments in the
parameters were done during the hold (reset)
portion and the error was computed in the
track (operate) portion. This was mechanized
as shown in Figure 7.

After Two Worse

Figure 7. Parameter Sequence Logic.

An alternate method was to use digital logic
for this application. This was less complex,
but for this purpose was more susceptible to
extraneous disturbances and therefore gave in
correct signals to the parameter changers. This
circuit is indicated in Figure 8. This method
would have been more desirable had the logic
components been synchronous (clock driven).
In this case there would be less chance for
external interruption.

194 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

W ~F~m lOx.
1

Figure 8. Parameter Sequence Logic (Digital).

N ow it is necessary to count these "better
after two worse" signals from one to six, and
then reset the counter to one and start over.
Each state of the counter will determine which
parameter is receiving plus or minus voltages
from the "change directions if worse" circuit.
The parameter that is receiving these voltages
will accumulate them; otherwise, it will hold
its present value. This was accomplished by
means of a six position stepping relay. The
advantage of the relay is that when a parame
ter was not being optimized there was abso
lutely no bias feeding into its accumulator. A
ring counter in conjunction with six diode gates
was also tried for this purpose, but proved un
desirable because of the gate offsets feeding
into the accumulators. The stepping relay was
acceptable for 80 millisecond track and 40 milli
second hold periods. However, if a shorter
rep-op cycle had been used, high speed switch
ing would have been necessary and parameter
drift may not have been such a problem. The
stepping relay mechanization-is shown in Fig
ure 9.
Better After

~
Two ~orse o---o~St~!tg

+SOv

Relay
Comparator

To Parameter 1
o To Parameter 2
o To Parameter 3
o To Parameter 4
o To Parameter 5

o To Parameter 6

Figure 9. Parameter Sequencer.

The final link in the optimization is the ac
cumulator (Figure 10). Two methods were
tried in this case, the accounting circuit (A)
and a real time integrator (B). It was thought
that the accounting circuit would be desirable
because it would store the changes in the pa
rameters discretely. However, the accounting
circuit will tend to converge or diverge by itself
without any inputs. This is because if the loop
gain is greater than unity, each time the infor
mation is recycled it will be slightly increased.
Furthermore, if the loop gain is less than unity
when the information is recycled, it win be
slightly decreased. Therefore, the real time

Stepper

ON From

Stepper

Figure 10.

lOx.
1

•
Real Time
Integrator

Accounting
Circuit

Parameter Accumulators.

integrator approach was tried, and proved sat
isfactory. The circuits for these methods are
shown below.

Now by putting all of these components to
gether, we are able to optimize the given sys
tem. The complete logic and control diagram
is provided in Figure 11.

Figure 11. Combined Logic Diagram.

RESULTS

Figures 12, 13 and 14 illustrate the results
obtained from the described method. Three
cases are shown, each of which represents a

AUTOMATIC PARAMETER OPTIMIZATION AS ·APPLIED TO TRANSDUCER DESIGN 195

given set of initial conditions of the six parame
ters. There are two graphs for each case. The
first shows the directivity, error criterion, and
model before optimization (Figures 12A, 13A,
and 14A). The second shows· these same-func
tions after optimization (Figures 12B, 13B,
and 14B). The graphs were plotted in the nor
mal computing mode using the values of the
parameters obtained in the repetitive-operation
mode. Although the x's are initially equal,
which is physically impossible, the equations
are still good and the final configurations are
realizable.

REFERENCES

1. KENNETH S. MILLER, "Engineering Mathe
matics," Rinehart & Company, Inc., New
York (1956) : 116-123.

2. JACK M. ANDREWS, "Mathematical Applica
tions of the Dynamic Storage Analog Com-
puter," Proceedings of the Western Joint 1.0

Computer Conference (1960): 119-131, 0.8

0.6

1.0

0.8
~ I , ~ Initial Values L J

Xl 1.500 Y 1 = 0.7950_
f--

1 x
2

= 1.500 Y
2

= 0.7950
0.6

0.4

0.2

o

I'M(u) Xg = 1.500 Yg = 0.8950-I---

1
'[~ r\ r\ If"\ J.

.....
)~

-...,
U 'rJ I\J U TIS

N(u

-I"-
~ I '""'- -r-- - 1/2 S IE I dt

0.4

0.2

o

-0.2

-0.4

-0.6

-0.2

-0.4

-0.6

Figure 12A. Case I, Before Optimization.

Xl

x
2

= 0.000 Y2
= 0.0000

Xg = 0.000 Yg = 0.0000

Figure 13A. Case II, Before Optimization.

\ I I I
\ I lFinal Values I "-

Xl = 1.544 Y 1 = 0.2500_ -
\ x

2
= 1.315 Y2

= 0.2074 , Xg = 2.786 Yg = 0.1749-----
I I I I

[\yeu) 1 I I l. U AxIS

1 - 1/2 S I E I dt reu
I J I
I I I

4 8 10 12 14 16

Figure 13B. Case II, After Optimization.

:::~ I I I I I I I FiLL.! I I I
1.457 " ··"90U :::~ I I I I I

\\ i J 1 : ~.;;;;-H 0.6

0.4

Ii Xl = Y1

\ I x
2 = 1.648 Y2

= 0.1810

'V(u) x3 = 2.196 Y = 0.2054 .

I NI '(,
I g I I

" I u ~xisl I
I I -II; SIJ'I dj_ -

I I I I

0.2

o

-0.2

-0.4

-0.6
4 10 12 14 16

0.6

l
x

2
= 1.000 Y2

Xg = 1.000 Y3
= 0.9999

~ N(u) I I n ,......
k " I"""l u lxis J \

.... " -:::r \ / M(u) \ I
\/ --.... I -....... -- - 1/2 SI E I dt

0.4

0.2

o

-0.2

-0.4

-0.6

Figure 12B. Case I, After Optimization. Figure 14A. Case III, Before Optimization.

196 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

1.0

o

~ . I -1
Fmal Values

\ I
xl = 2.591 Y1 = 0.1545 W

I \' ! I , x2 = 1.756 Y2 = 0.2216-

I ' I x3 = 1.372 Y3 = 0.2451 ,
I

- +--

l

\ L1(u)
u ~XiS

0.8

0.6

0.4

0.2

M(u) II
- 1/2 .' I EI dt

-0.2

-0.4

-0.6 4 6 10 12 14 16

Figure 14B. Case III, After Optimization,

HYBRID COMPUTER SOLUTIO~ OF TIME-OPTIMAL
CONTROL PROBLEMS

Elmer G. Gilbert
Instrumentation Engineering Program

University of Michigan
A nn A rbor, Michigan

INTRODUCTION

Optimal control systems are of considerable
practical and theoretical interest. Although
solutions of certain optimal control problems
have been known for many years, it is only
recently that fairly general, rigorous solution
techniques have been developed. Unfortunately,
the computational aspects of these solution
techniques still present formidable problems.
The time-optimal problem which is treated in
what follows has a very well developed theory.
Our purpose here is to show the utility of
hybrid computer techniques. Some of the pro
gramming procedures described may also be
useful in the solution of other problems.

THE TIME-OPTIMAL CONTROL PROBLEM

I t is assumed that the physical system to be
controlled (hereafter called the plant) satisfies
the following system of first order linear differ
ential equations.

Xi = ij aii(l)xi(t) + bi(t)u(t),
i=l

Xi(O) = x~ i = 1, 2, ... n

(1)

To simplify notation vector-matrix notation is
employed.

X = A (t)x + b(t)u, x(O) = xli (2)

Thus x and b (t) are n vectors and A (t) is an
uxn matrix. For mathematical convenience it is
assumed that A (t) and b (t) are continuous.
Given an initial state x (0) = xo, the scalar con-

197

trol signal u (t) must be selected to achieve a
specified motion x (t) for t > O. To make the
problem of practical interest it is required that
u(t) be piecewise continuous and

lu(t) I ~ 1. (3)

A control which satisfies these two conditions
is said to be admissible.

The time-optimal control problem is stated
as follows: Given the plant (2) with initial
state x (0) = Xo and a desired terminal state xd

,

find an admissible control which makes x (t) =
xd for the smallest possible t. If such an optimal
control exists it will be called u* (t). The mini
mum time and optimal motion associated with
u*(t) will be denoted by t* and x*(t), i.e.,
x* (t*) = xd• Our concern is the computation of
u* (t).

The theory of the problem has been treated
by many authors (see, for example, the article
by LaSallel or the book by Pontryagin et aI2

).

The basic result of the theory is the following.
If a u* (t) exists it is given by

where
u(t) = sgn vet)

vet) = - (b, ~)

t

t
and Ht) satisfies the adjoint differential equation

(4)

(5)

~ = - A'(t)~, ~(O) = 1] t (6)

t The notation is conventional. sgn v = 1, v > 0; sgn
n

V = -1, v < 0; sgn v undefined, v = O. (b, ~) = ~bi(t)Ei(t).
i=l

A'(t) is the transpose of A(t).

198 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

for some initial condition vector TJ = TJ*. Equa
tion (4) says that u* (t) = ±1, i.e., it is a "bang
bang" control.

Since sgn v is not defined for v = 0, u* (t) is
undefined unless v (t) = 0 only at isolated in
stants of time (the switching times). If for all
TJ =1= 0, v (t) = 0 only at isolated instants of time,
the system (2) is called "normal" or equiva
lently, "completely controllable." LaSalle con
siders the normality condition at length. If A
and b are constant he shows that (2) is normal
if the vectors A kb, k = 0, 1, ... , n-1, are linearly
independent. In what follows it is assumed that
(2) is normal.

The fact that TJ* is not explicitly defined is a
disadvantage in practical computation of u* (t).
Each value of TJ produces a control u = sgn v
which, when applied to the plant equations (2),
produces a time-optimal motion. In fact, when
the set of all values of TJ is used, the set of all
time-optimal motions is generated. The compu
tational problem is to select the particular opti
mal motion x* (t) which passes through the
desired terminal state xd• This can be done by
searching through all value of TJ until an opti
mal motion through xd is obtained. Since for
each TJ, (2) and (6) must be solved together,
it is impossible to consider all TJ. Instead, a
finite set of TJ values must be used with the hope
that one of the optimal solutions will pass close
to xd

• A better approach is to formulate an
algorithm which generates a sequence of TJ's
{TJII, TJl .••. } which converges to TJ*. In later
sections both this approach and the search ap
proach are programmed on a hybrid computer.

Before considering the hybrid computer a
few additional facts should be noted. First. the
magnitude of the TJ vector is immaterial. This
is so because v is proportional to the magnitude
of TJ but u* (t) depends only on the sign of v (t) .
Thus the magnitude scaling of TJ (and 0 is
immaterial. Finally, normality implies that if
there is an optimal motion through xd it is
unique and so is the associated control. Thus
even though there are many TJ* which produce
the same optimal control, there can be only one
optinlal control.

THE HYBRID COMPUTER

The hybrid computer employs both analog
and digital computing devices, which may con
veniently be organized in three categories:

analog, analog-digital, and digital, according to
the kind of signals with which they deal. For
the class of problems considered here it is most
natural to let the analog devices integrate the
differential equations and to reserve the digital
devices for problem control. Because of the
rather modest requirements on the digital por
tion of the system it can consist of rather simple
logic elements.

Figure 1 gives symbols for the basic com
puter elements. Conventional analog elements
are not shown. To make signal designations
clear, light lines and lower-case letters are used
for analog signals and heavy lines and upper
case letters are used for logic signals. A denotes
the complement of A. Elements (a) - (f) are
analog-digital and elements (g) - (k) are digital.

Integrator (a) and (b). Each integrator is separately
controlled through its operate (0) and hold (H)
inputs.

A = 0: eo = - e, initial condition mode, B has no
effect

A = 1, B = 0: eQ = a.f/eId(J - e, operate mode
A = 1, B = 1: eo = constant, hold mode

Switch (c) single throw, (d) double throw.
A = 0: i = lOe2, eo = -e2 (for (c), e2 = 0)
A = 1: i = 10el, eo = - el

Comparitor (e). The comparitor has hysteresis
with dead zone ± E. B = 1 locks the comparitor
output A at the level present when B = 0 ~ 1. *

el + e2 > E: A = 1
el + e2 < - E: A = 0

leI + e21 < E: A = 0 or 1, depending on past
history of el + e2

A nalog }of emory or 'Track-Transfer (f)
B = 0: eo = e, initial condition mode, A has no

effect
B = 1, A = 0 ~ 1: take el + e2 and transfer to

eo, hold eo constant until next A = 0 ~ 1.
AND Gate (g)

D = A • B . C, D = 1 only if A = B = C = 1
OR Gate (h)

D = A + B + C, D = 0 only if A = B = C = 0
Flip-flop (i). The inputs A and C cannot simul
taneously equal 1

A = 1, C = 0: D = 1, set flip-flop
A = 0, C = 1: D = 0, clear flip-flop
A = C = 0: D = 1, 0, store 1 or 0
A = C = 0, B = 0~1: reverse D

* The nr)tation B = 0 ~ 1 is used to indicate the
transition of B from logic 0 to logic 1.

HYBRID COMPUTER SOLUTION OF TIME-OPTIMAL CONTROL PROBLEMS 199

4-~' (f) (al e1 I 0
el eo

rnJ=~
eZ

e

C (g) A~D B _

"-1("
C D

(b) 1
a = RC

A~D (h) B _
C D

e
.A .1

e1----GrJC>L eo (i) A~D (e) B T FF _
C C D

A .1

(d) el~e -r8=B eZ 0 i 0 (j)
A T B

(e) ',=6:~ e
Z

C A
(k) A~

Figure 1. Computer Symbols.

Single-shot (j)
A = 0~1: D = 1 for T seconds, otherwise

D=O
Time-delay (k)

B = ~4 delayed by ~ seconds

Some additional comment on the general
function of these elements should be made. The
comparitor dead zone ±e is small but nscessary
since it is the only way to assure uniformly
fast and positive transition of the comparitor
output. The track-transfer memory element
combines in a single unit the function of two
track-hold memory units connected in cascade,
along with initial condition provisions. For
ease of programming, each element with a logic
output also has the complemented output.
Finally, it should be noted that the elements
are not controlled by a master system clock.
This simplifies programming and prevents pos
sible errors due to the quantizing of time.

Additional computer equipment would in
clude input control buttons, display lights, shift
registers, clocks, counters, problem check provi
sions, etc. However, it is not necessary to go
into these details here.

THE COMPUTATION OF OPTIMAL
SOLUTIONS AND THE REACHABLE SET

Figure 2 shows the computer programming
for generation of time-optimal solutions. For
brevity the details of programming in blocks I

Adjoint Equations.
Generation of v

I

OSCillator

startsrl---

---./ ---I S

L--.J

A

Generation of
Optimal Control

II

x(t)

II ,----------,
Iv~ I

! L-J~1 I
" , -1 10 ,
I +1 u ,

I I L ___ . ________ -.J

Figure 2. Computer Program for Generation of Op
timal Solutions.

and III are not shown. The integrators must
all be started together; thus the operate (O}
inputs on blocks I and III are joined. Each
time A = 0~1 an optimal solution x (t) is gen
erated. By driving A from an oscillator and
running the integrators on a fast time scale,
conventional repetitive operation is obtained.
By systematically changing 1] a search for 1]*,
which produces the desired optimal control u*
and motion x*, can be made.

Actually, if all 1] values are to be scanned,
much more general information concerning the
control of (2) may be obtained. In particular,
the reachable set of (2) may be determined.
The reachable set R (t, x~) is the set of all states
which may be obtained at time t (starting from
X o at time t = 0) by means of admissible con
trols. Thus R (t, XO

) determines the extent of
possible motion with admissible controls. It
can be shown that the set of all time optimal
solutions delineates the boundary of R (t, XQ).3

Thus to obtain a boundary point of R (T, xo)

(T is a particular value of t) an 1] is chosen
and a solution from Figure 2 generated. At
t = '1', x (t) is the boundary point. By ta~ing
a suitable set of 1]'s enough boundary poInts
are obtained to define R (T, xo). Let us deter
mine a computer program for the second order
case (n = 2).

First, a procedure for scanning through a set
of values for 1] is required. Since the magnitude
of 1] is immaterial, only its direction is essen
tial. Thus take 1]1 = sin (J and 1]2 = cos (J. By
scanning (J in the interval (0, 21T) a suitable
set of time optimal solutions is generated.

200 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Figure 3 shows one procedure for generating
sin 0 and cos 0. The equation

z· + z = 0, z(O) = 1, ;(0) = 0 (7)

is solved, producing the functions z = cos T

and -z = sin T which, when held at T = 0, pro
duce the desired outputs. Operation of the vari
ous computer elements should be clear from
the timing diagram (a heavy line in the dia
gram indicates the presence of logic 1). The
outputs cos 0 and sin 0 are available T = 0
seconds after the input command B is initiated
and must be read out before B returns to logic
zero.

+1

e
TO

f-Operateo f- Hold -!--Reet _

T = 0 T=e

c

B-+--_+-__ '-_____ ~_

c -~----~--~~--~~-

z c coe T Z = co. e Z = 1

-i c Bin T -i = .in e -i = 0

z+z=O -z
z(O) ~ 1. z(O) = 0

Figure ·3. Computer Program and Timing Diagram
for Function Generation.

Figure 4 shows the program for generating
the boundary points of the reachable set
R (T, xo). Before the start of the computation
(S = 0) the oscillator is turned off (A = 0)
and the integrators in Figure 2 are in the reset
mode. Since the single-shot is in its rest state,
B = 0 and the function generator is in its reset
state. Thus 'YJl = 0 and 'YJ~ = 1. (0 = 0). At
S = 0--71 the first run begins since then A = 1.
At t = T the comparitor output D = 0--71, trig
gering the memory units and transferring the
first boundary point to their outputs. Since the
outputs are held until t = T in the next run,
there is ample time for read out (an x, y re
corder or oscilloscope depending on the time
scale). In the interval (0, 1) the single-shot

Figure 4. Program and Timing Diagram for Generat
ing Boundary Points of R (T, XO).

causes B = 0 and the function generator is reset.
At time 1 + 0 the 0 for the next run is set in.
By generating 0 in a slow time integrator which
is controlled by S, 0 is allowed to increase
slightly from run to run. When 0 = 27T the
computation is complete. In the interval (9,
10) of the first run the integrators are reset
for the next run, the new values of 'YJl and 'YJ2
being used. In the second and subsequent runs
the above pattern is the same.

Extension of the above program to higher
order systems is fairly straightforward. The
main complication is the scanning of the higher
dimensional 'YJ vectors. Also the number of runs
must be increased greatly because of the higher
dimensionality of the R (T, XO) boundary. In
fact, finding a suitable way of storing the
boundary points may be more of a problem
than their computation.

THE REGULATOR PROBLEM,
ITS ITERATIVE SOLUTION

In this section an iterative procedure is de
scribed for solving the time-optimal regulator
problem where the terminal state xl! = O. A
sequence of vectors {'YJ0

, 'YJ\ ..•. } is produced
which converges to 'YJ*. Additional detail and
proofs are given in the paper by Neustadt.3

First a condition which 7]* must satisfy is
given. In what follows 'YJ is always taken so
that

(8)

For each 'YJ there is always a corresponding
v (t) defined by (5) and (6). Thus the function

HYBRID COMPUTER SOLUTION OF TIME-OPTIMAL CONTROL PROBLEMS 201

(9)

is always defined. Because of (8),/(0, TJ) > o.
Also 1 (t, TJ) is clearly nonincreasing. In fact,
if there is a time-optimal solution 1 (t, TJ)
eventually becomes zero. Let ts (TJ) be the time
when I(t, TJ) = o. Neustadt shows that the
following facts are true: ts (TJ) =::; t*, ts (TJ) = t*
only if TJ ::;: TJ*, and grad ts(TJ) = 0 only if
TJ = TJ*· Thus by choosing TJ to maximize ts (TJ)'
ts = t* and TJ = TJ*. Since grad ts(TJ) = 0 only
if TJ = TJ* the method of steepest ascent is ap
propriate to maximizing ts (TJ) • Thus

1]i+l = 1]i + k grad ts(1]i) (10)

For k > 0 sufficiently small and (TJo, xo) > 0
the sequence of vectors {TJo, TJ\ .•. } converges
to TJ*.

Neustadt also gives a formula for determin
ing grad ts (TJ). It can be shown that evaluating
the formula is equivalent to. the following!:
take u = sgn v (t) and solve

~ = A (t)w + b(t)u, w(O) = XO (11)

from t = 0 to t = ts, at t = ts run time back
wards and solve (11) with u = 0, when t = 0
determine wand call it y (TJ)' then

grad is = K(1]) 1'(1]), K(1]) > 0 (12)

Since K (TJ) is a positive quantity it is not neces
sary to determine its value in order to emplo.y
the method of steepest ascent. Instead of (10)

1]i+l = 1]i + p'Y(1]i) (13)

is used (k = ~).

To summarize, the iterative procedure con
sists of the following steps:

(a) Choose an initial1]i j = 0 so that (1]i, XO) > 0

(b) Use (5), (6) and (9) to define J(i, 1]i)

(c) Determine ts(1]i) from J(t, 1]i) = 0

(d) Let u = sgn vet) and solve (11) from t = 0 to
t = t8(1]i)

(e) At t = ts(1]i) set u = 0, reverse time and solve
(11) from t = ts(1]i) to t = 0

(f) At t = 0 set w = 'Y(1]i)

(g) Determine the next value of 1]i from (13)

THE PROGRAMMING OF THE
ITERATIVE SOLUTION

The steps in the iterative procedure are suffi
ciently involved that it is wise to break the
programming down into. a series of subprob
lems: the solution of (11), the control of (11)
to produce y (TJ), the generation of t s, and the
implementation of (13).

Figure 5 shows the programming of (11).
Block I, as before, generates v (t) for a given TJ.
The operate (0) input F = 0 ~ 1 at t = 0 and
F = 1 until t = ts (TJ). During the reverse time
integration of (11) v (t) is not required so
during this time F = o. Block II generates u =
sgn v for t = 0 to t = ts and u = 0 as t goes back
ward from t = ts to t = o. The logic signal E,
which is 1 for forward time and 0 for reverse
time, exercises the desired control. When E
= 0 both AND gates have 0 output causing both
switches in II to be open. On the other hand,
when E = 1, either one switch or the other is
closed depending on the sign of v (t). Block III
solves (11), a typical integrator being shown
in Figure 5. When G = 0 ~ 1 the integrators
begin to operate. From t = 0 to t = ts, E = 1
producing forward time. At t = t s , E = 1 ~ 0
and the integrators begin to mo.ve backwards.
When t = 0 again, the hold signal H = 0 ~ 1.
Thus Y (TJ) is held at the integrator outputs as
long as G = H = 1.

The control program for generating F, E, G,
and H is shown in Figure 6. From what has
been said it is clear that E = F. The desired
sequencing of E, G, and H is shown in the
timing diagram. The signals E and I (never 1
at the same time) are the inputs to the control
program. When I = 1 the integrators in Figure
5 are reset in preparation for a run. The 0
stored in the flip-flop maintains this condition
even after I = 1 ~ O. To produce a run, E =
o ~ 1 and remains at 1 until t = ts (TJ), when
E = 1 ~ 0 and stays at 0 until the next run.
When E = 0 ~ 1 the flip-flop is set and G = 1
until the flip-flop is cleared by I for the next
run. The integrator, comparitor, and AND gate
produce H. The integrator output is positive
during forward time (t) and reverse time (t')
until t' = 0 is reached, when the comparitor
causes H = 0 ~ 1. The inputs E and G to the
AND gate prevent the possibility of H = 1
during reset or the beginning of forward t

202 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

when the comparitor input is within the com
paritor dead space. The input to L on the com
paritor locks H = 1 until I = 0 ~ 1 causes
G = 1 ~ o. This assures H = 1 even when the
integrator is held so long that it drifts out of
the comparitor dead space. H is an important
logic output because it indicates when /' (TJ) is
available.

The determination of t = ts is made by a com
paritor with input f (t, TJ) and output J. The
programming is straightforward and is shown
in block I of Figure 7. A switch and comparitor
connected to v (t) generate 1 v (t) I. Since v (t)
is obtained from the adjoint equations the in
tegrator for f (t, TJ) is controlled by F. J is
o until t = ts (TJ) .

The rest of Figure 7 shows the programming
of (13) and master control of the iterative
cycle. On the completion of a run TJj is updated.
This computation is shown in block II. Before
the computer begins the first run S = O. This
establishes the initial condition on the memory
units, TJo. At the end of the first run S = 1
and H = 0 ~ 1 which causes TJl to replace TJo.
The inputs E and I for Figure 6 are derived
from the logic elements in Figure 7. When
S = 0, I = 0 and the /' program is reset. When
S = 0 ~ 1 the first run begins. Since f (0, TJo)
> 0, J = 0 and E = 0 ~ 1. Thus the /' program
begins. When t = ts (TJO) = tos, E = 1 ~ o. The
L input on the comparitor holds E at 0 even
though the f integrator is reset by F = E. At
2t()s, H = 0 ~ 1, indicating that /' (TJO) is avail
able, triggers the memory units. At 2tos + 6.
the single shot causes I = 0 ~ 1. This resets
the /' program causing Hand J to return to o.
The delay 6. guarantees that H = 1 long enough
to trigger the single shot. At 2tos + 6. + 1 the
single shot returns I to 0 beginning the second
run.

The choice of p is important. If it is too
large t./+ 1 may be smaller than ts

j , indicating
that an overstep in the correction of TJj has been
made. Conversely, if p is too small the conver
gence of the TJj to TJ* may be very slow. It would
be helpful in the selection of p to have an over
step indicator in the computer program.

Figure 8 shows such an indicator. The mem
ory unit is triggered by J and therefore stores
the value of ts on the previous run. If during
the present run ts is larger, the comparitor pro-

duces a l output at the end of the forward t
portion of the run. The first AND gate with
input E assures that this comparison is ex
amined only during forward t. The first flip
flop is cleared by I at the beginning of each
run. If an overstep has not been made it will
be set during the run by the comparitor.
Clearly, if the first flip-flop is set, the second
flip-flop will remain cleared since H cannot pass
through the AND gate. If however there is an
overstep, the second flip-flop will be set by H
and K = 0 ~ 1 thus indicating an overstep.

An equipment count in Figure 5 through
Figure 8 yields the following requirements:

Integrators
Switches
Comparitors
Track-transfers
AND Gates
Flip-flops
Single-Shots

CONCLUSIONS

2n + 2
n + 4 (2 single throw)
5
n+l
9
3
1

A hybrid computer of the type described
appears to be well suited for the solution of
certain optimal control problems. The required
flexible control of analog elements is obtained
easily with a reasonable number of logic ele
ments. There seems to be no real obstacle in
extending the techniques outlined above to more
complex control problems and iterative cycles,
and eventually, to on-line control computation
for actual plants.

Adjoint Equations,
Generation of v

I

II ,..------;---------,

L _____________ .J

III ,------------,
I
I
I
I

-i ~
Wi I

+ iO 0 I·' I
o I I

x. I I

G~ I L _______ ~_H __ ..J

Figure 5. Computer Program for Generation of /' ('1/).

HYBRID COMPUTER SOLUTION OF TIME-OPTIMAL CONTROL PROBLEMS 203

ACKNOWLEDEMENT
The author thanks Edward O. Gilbert and

Edward J. Fadden for helpful discussions on
hybrid computing.

REFERENCES
1. J. P. LASALLE, "The Time Optimal Control

Problem," Contributions to Theory of Non
linear Oscillations, vol. 5, Princeton Univ.
Press. 1960.

2. L. S. PONTRYAGIN, V. G. BOLTYANSKII, R. V.
GAMKRELIDZE, and E. F. MISHCHENKO, The
Mathematical Theory of Optimal Processes,
Interscience Publishers, New York, 1962.

3. L. W. NEUSTADT, "Synthesizing Time Opti
mal Control Systems," Journal of Math.
Analysis and Applications, vol. 1, pp. 484-
493,1960.

4. E. G. GILBERT and E. J. FADDEN, article to
appear.

S

J

E

H

Calculation of T]j
II

,-.- Run 1

Start ,
o
I I I I

I , I

J I
I I
I I
I I
I J

I I
I I
I I
II

E

HI

"-----c:-:);;'
Reset

Reset -I !--Positivetteverse tTjY Available
I I {t'}

lOt 0 I I

Forward t E

8 ~ I I

~I 1 I I I
I I

! I ! I
! ~ I r i

I I I I

Operate G

Hold H

I I

Figure 6. Control Program for Figure 5.

E
Y(T]j), T]j, XO, v,
H, E, and I terminate
in Fig. 5 and Fig. 6.

Figure 7. Iterative Solution of the Optimum Regulator Problem.

204 PROCEEDING8-'-SPRING JOINT COMPUTER CONFERENCE, 1963

t
TO

J S

;Fi~ure 8. Program for Overstep Determination,

FFI-........ K

MUL iiPLE iNiEGRALS ON A NON-REFEiiiiVE

ANALOG COMPUTER

Arthur Hausner
United States Army Materiel Command
HARRY DIAMOND LABORATORIES

formerly
Diamond Ordnance Fuze Laboratories

Washington 25, D. C.

INTRODUCTION

Multi-variable problems are among the most
difficult types of problems for an electronic
analog computer to solve, for such a computer
is a single-independent-variable machine. Ap
proximations are invariably made and the
mathematics used is frequently borrowed from
the domain of numerical analysis. The area of
multiple integrals is no exception. A typical
numerical technique for evaluating an integral
of the type

(1)

is to divide the interval from a to h : __ L~ ~1.

intervals 6 Xi; as in Figure 1. Then

(2)

where Xi is the mean value of x in the interval
6 X i. It is well known that IA ~ I when n ~ 00

and max (6Xi) ~O. Generally, it is easiest to
compute the approximation of I by taking 6Xi
constant. Then, 6Xi = 6X, and

n flx = I a - b I. (3)

For a sufficiently large n, a reasonable approxi
mation is obtained. To minimize n, various
quadrature formulas! are available. Rubin,
Laudauer, and Totten2 used this technique with

205

y

~ ____ ~ ____ ~~ ______________ ~ ____ x
o a Ix' [

~ II--~xi
b

Figure 1. Interval from a to b Divided into n Intervals of
dX, Width.

a 16-point Gaussian quadrature formula in the
evaluation of a set of six double integrals in
volved in antenna pattern calculations on an
analog computer. This method affords a reason
able compromise between accuracy and time of
computation, as well as reducing the amount of
equipment r~quired. (All functions of x are
constants during the calculation in each in
terval.)

The above method is essentially a digital one,
and would become tedious on an analog com-

206 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

puter for integrals of order higher than two.
Rogers and Connolly3 suggest the use of a
scanning technique for higher-order integrals.
Each variable is forced to change continually
in a sawtooth fashion. No details are given in
their book.

This paper develops techniques for solving
(1) that allow x to vary continually from a to b
as y oscillates quickly between Y:! and Yl' The
scan is a continuous. path and affords an auto
matic and convenient method of analog compu
tation. The formulas derived do not require the
path to be linear, although such a path is' by far
the most convenient. Both diode and relay
circuits are given, as well as two illustrative
examples of how the circuits are used. Exten
sions to higher-order integrals are also made,
the accuracy of computation diminishing as the
order of the integral increases.

When a repetitive computer with memory is
used, a suggested method for calculating mul
tiple integrals4' introduces an error due to
mathematical approximation, even in limiting

cases such as & = O. The techniques used here
ay

introduce no approximation error for such a
situation. One easily concludes that the methods
introduced here are preferable even when a
repetitive computer with memory is available.

MATHEMATICAL APPROXIMATIONS

By distorting the path of integration to allow
for a continually increasing x, as in Figure 2,
the following approximation to I holds:

(4)

where LXi = Xi+l -Xi, and x in this interval is
a single-valued function of y but not necessarily
linear. The integration is performed with re
spect to !dyl to allow for a descending path
from y:! to Yh without changing the sign. (We
assume y:!(x) > ydx». It follows that as
max (Lxi) ~ 0 and n ~ 00, then IA ~ I.

For the purposes of analog computation, y is
made a single-valued function of x and is forced
to oscillate between y:! (x) and ydx). Mathe
matically, we seek a y such that

Y = (Y2 - Yl) n (x) + Yl (5)

where n (x) is a continuous function of x that
oscillates between 0 and 1, with bounded deriva-

y

~----~--~-L-----------L ____ X
o b

Figure 2. Distorting the Path of Integration to Provide
Continuity.

tives. n(a) can be either 0 or 1, and it is best
that n (b) be either 0 or 1, to eliminate any
partial intervals. Then

The frequency of oscillation is required to be
high so that the dominant term of (6) will be

(y:! _ Yl) d!l(x)
dx

Hence

(7)

and
I dy I = (Y2 - Yl) I n'(x) I dx. (8)

Equation (4) reduces to

1= t. t1Xif::+1 f(x, Y)(Y2 - Yl) In'(x) Idx· (9)

Equation (9) is the basis for making I the re
sult of a continuous integration of a single
variable.

THE CHOICE OF !l (x)

Of the more common oscillatory patterns, the
triangular wave offers the advantage of sim
plicity. Sinusoidal waves have been considered';;
but in~roduce additional multiplications and

MULTIPLE INTEGRALS ON A NON-REPETITIVE ANALOG COMPUTER 207

additional equipment. Their only advantage is
to eliminate switching problems which occur
when triangular waves are considered. Hence,
we let

Q(x) = k(x - Xi) for Xi ~ X ~ Xi+l (10)
and = 1 - k(x - Xi+l) for Xi+l ~ X ~ Xi+2

for k > 0 and odd i. Since Xl = a, we have
chosen n (a) = 0 without loss of generality. The
function Y for two successive inte-rvals becomes

and

for odd i.

Y = Yl + k(Y2 - Yl)(X - Xi)
= Y2 - k(Y2 - Yl) (X - Xi+l)

(11)

In each interval, n (x) changes by one unit
(from 0 to 1 or 1 to 0), so that from (10)

(12)
Since

/Q'(X)/ =k, (13)

I ~ ~ ~ 1::+1

kf(x, Y)(Y2 - Yl) dx

~ I:f(x, Y)(Y2 - Yl) dx· (14)

Note that the slope k has dropped out of
(14) before summation so that the approxima
tion holds if the area bounded by a :::;: X < b
and Yl :::;: Y < Y2 is traversed by straight lines
of any slope. The slope k may be permitted to
change slowly and vary from interval to in
terval, an important concept when considera
tion of generating (11) on the computer is
made. Since y:! - Yl will be, after proper scal
ing, a slowly changing function of x, for two
successive intervals (11) is amended to be

and
Y = Yl + c(x)(x - Xi)

= Y2 - c(x) (X - Xi+l)
(15)

where c (x) any positive function of x which is
roughly constant in any interval*.

The equations to be solved, from (14) and
(15) are

(16)

and

dy
dx ± c(x)· (17)

* This formulation accommodates the parametric
technique for avoiding division7 whenever denominators
contain function of x.

In differentiating (14), b is replaced by x. It
is understood that the computation ends when
x = b. In differentiating (15) to obtain (17), it
is assumed that Yb Y2, and c (x) are constants,
or that

dYl(X) dY2(X) and dc(x)
dx ' dx' dx

are small com pared to c (x) .

:MECHANIZATION ON THE COMPUTER

Three distinct problems are present in the
solution of (16) and (17) by an analog com
puter:

1. Generation of Y2(X) and Yl(X)
2. Generation of Y
3. Generation of f (x,y)

We shall be concerned only with the genera
tion of y. The techniques and difficulties of
generating functions of one or more variables
are discussed in virtually every text on analog
computation. This paper can only be applied
if all functions required by (16) are generable.

The function c (x) is virtually arbitrary
and is selected for convenience. The problem
involved in mechanizing (15) is to switch the
sign of the input to the integrator producing
Y when Y reaches either Y2 or Yl. One method
of doing this is illustrated in Figure 3 with c (x)

proportional to Y2 (x) - YI (x). The bang-bang
circuit is strongly stable and diode-limited. That
Y remains between Y2 and Yl can be observed by
tracing the output of the high-gain amplifier
when the summer output is both positive and
negative. Figure 4 gives an equivalent circuit
using a high-speed relay for switching. Note

Figure 3. Diode Switching for c(x) Proportional to Y2 - YI.

208 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

COMP

~
in

In

II
I-b-
I

Figure 40 Relay Switching for c(x) Proportional to Y2 - Yl.

that the frequency potentiometer in both cases
serves only to change the number of intervals
and has no bearing in the solution of (16) and
(17). However, the approximation (4) is im
proved when n is large. It is desirable, there
fore, to obtain as high an input rate as possible.

One obvious method of getting the largest
possible number of intervals is to let c(x) be
constant, for it may then be scaled to 100 v.
When diodes are used for switching in this case
(fig. 5) more equipment is required than when

+100

I n I .5000

ILJi
-100

~5000

-(Y2 -YI)

2

Figure 5. Diode Switching for Constant c(x).

relays are used (fig. 6). Vlhich circuit to use is
dependent upon the type of equipment available.
If high speed double-pole double-throw switches
are available, the circuit shown in figure 6 uses
a minimum of amplifiers and undoubtedly pro
vides the greatest accuracy.

The rest of the solution of (16) and (17) is
straightforward. Since Y2 (x) - ydx) is a
relatively slowly changing variable, it may be
used to drive the shaft of a servo multiplier.
The function f (x,y) must be generated with
high-speed equipment, as y will be a rapidly
changing function of time.

COMP

~
I I I

1m
I

-IOOV
------<>

+IOOV I
----0

I
-(YZ- YI)/2

~
I +

Figure 6. Relay Switching for Constant c(x).

ERROR AND ACCURACY

It is necessary to distinguish between ap
proximation error and computation error, even
though they are not mutually exclusive. The
limitation of the amplifiers in reproducing high
frequencies limits the number of intervals into
which the interval from a to b may be decom
posed. An effort to decrease the approximation
error by requiring a higher frequency of oscil
lation may very well decrease the net accuracy
due to a substantial increase in the computation
error. A case in point is the example in the next
section where a change in the number of inter
vals from 30 to about 800 does not materially
improve the net accuracy. One may generally as
sume that the approximation error is negligible
(by analog computer standards) unless there
are relatively high-frequency components in
f (x,y), Y'2, or Yl.

No approximation error exists in this tech
nique when the integrand of the double integral
is a function of x only:

MULTIP~E INTEGRALS ON A NON-REPETITIVE ANALOG COMPUTER 209

The approximation expressed by (14) is then
exact. One would not use multiple integral tech
niques for such a situation, but this example
serves well to show qualitatively why the tech
niques used here are preferable to those sug
gested when a repetitive computer with memory
is available. The basic scheme suggested4 is to
compute, store, and up-date the inner integral

j Y 2
y,f(x, y)dy

at a high repetitive rate as x is continually
increasing. The output of the memory is a
staircase function of x and is integrated to
obtain the required double integral. Even in the
trivial case given in (18), one is required to use"
a high repetitive rate in order to minimize the
approximation error. This is due only to the
staircase function which appears at the output
of the memory. One may conclude generally
that techniques involving memory introduce
more approximation error for an evaluation of
a multiple integral than the techniques intro
duced in this paper.

It was determined experimentally that com
putation error increased greatly when changes
in y exceeded 5000 v / sec for all examples tried *.
This upper limit would be greater if the fre
quency responses of the equipment were im
proved. Besides normal computing errors, non
ideal diodes and relays contribute to the com
putation error. For a 5000 v / sec excursion for
y, 100 v is attained in 20ms. Relays are in
applicable unless switching times are in the
microsecond ranges. Simple diode circuits, on
the other hand, will not give a constant output.
Not only does y deviate from its linear relation
ship with x, but also the switching occurs at
values other than Y2 and Yl. The use of idealized
diode circuits, however, completely eliminate
these errors although they require more equip
ment. 'Langill's multivibrator circuit6 may be
modified to satisfy the requirements on y and
produce accurate diode switching.

The accuracy with which all the test double
integrals were evaluated was better than one
percent, with many solutions giving better than
0.1 percent accuracy, when using the simple
diode circuits shown in this paper.

* An Electronics Associates, Inc., PACE 131-R
Analog Computer was used. Tests were made with
simple diode limiting circuits because no fast-acting
relays were available.

EXAMPLE

For demonstration, we take

I - jl jYl_x2

- -1 0 27rydydx (19)

which represents the volume of a sphere of
radius 1. By (14) we use

I ::::::: 27rfl yy1 - x 2dx = 47rjlYY1 - x 2dx (20)
-1 0

with the understanding that Y is generated by
anyone of the circuits shown in figs. 3-6. A
computer diagram, shown in Figure 7, utilizes
a servo multiplier for finding the square root
and for multiplication. Note that the output
of the integrator representing I is in reality

Figure 7. Flow Diagram for Solution of

/
1/.1/ 1-",2

I = 471" 0 0 y dy dx.

With an automatic hold circuit, the computa ..
tion is stopped when x = 1, and the value of I
is determined. Note also, the initial condition
A III .nAn lr1 hn n;i-h" {\ ,,_ 1 (\{\ .. T t\ no""rl "
V~~ Y ~V""H.A. '" "'~..,u"'.L V V.L .LVV v • .c:l. 5VVU P.LV-

cedure is to make both runs and to average the
value of I obtained.

Figure 8 shows a typical graph of y(x) ob
tained with the relay circuit as shown in figure
7. The number of intervals is comparatively
small, and the computation time was made 100
seconds so as not to exceed the dynamic range
of the variplotter in order to obtain the graph.
With a gain of 1, the frequency potentiometer
was set at 0.2, resulting in slopes of ±20 and

210 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Figure 8. A Typical y(x) Curve With Slopes of ±20.

guaranteeing a minimum of 20 intervals*. Note
that the size of the intervals decreases as Y2
approaches YI whenever the slopes are con
stant, as in this case.

Figure 9 shows the graph of I (x) obtained.
Note that the curve oscillates about the true
answer which is superimposed on the graph:

x VI_x2
3

I (x) = 47r j 0 j 0 ydydx = 27r[x - ~]. (22)

The results are most accurate at the end of each
interval.

.-- 5 -.---------

...... _-_. __ .. _j
I

4!

··3

I(x}

·2

__ .J.. __ L. __

Yo = Ov.

.~.-.--.-----J
i . -o.-o·----·~-·---l

- --- -.;.---.---...;. .. _----:--- ------... ----...:..---~

CURVE I{x) = 2TT(X - x3/3)

0.5

fXf~ Figure 9. lex) Approximation to 471" y dy dx
Using Slopes of ±20. 0 0

* When the slopes are constant, the number of in
tervals n obtained can be shown to be close to

n = 8 (b~_
J a Y2 - YI

where 8 is the slope. For this example, n = 71"8/2 which
equals 31 when 8 = 20. By actual count from figure 8,
there are 30 intervals.

In order to increase the slopes and shorten
computation time, the diode circuit for pro
ducing y as shown in figure 5 was used next.
The computation time was shortened to 10
seconds, and 5000 v/ sec was obtained for y
by using a O.lf-tF feedback capacitor with a
0.2M!1 input resistor. This produced slopes of
±500 and about 800 intervals. Because the oscil
lations are small, I (x) as shown in Figure 10,
appears as a relatively smooth curve.

~5~--~--~------~~~~

I

~

I

.o.;.._oo_o-' .. _ ~ ___ . ___ .c/.---o.-.---o.------.--o--o ... _0 • •• ...i ___ i.. ___ .i... __l

i----'-.o+-.. ~ ...•. -c-----~-----1
o_~ ______ -Co ___ ---:_-;-_: ___ .. -: .. _ ... o .. _ .. _._o,-_.:_! --1

L-~~~---~~-----~~x-~
0.5 1.0

f'" -V 1-",2

Figure 10. lex) Approximation to 471" J y dy dx
Using Slopes of ±-500. 0 0

EXTENSIONS TO HIGHER-ORDER
INTEGRALS

Integrals of the form

j
b JY (X)jZ (x,y)

I = 2 'f(x, y, z)dzdydx
a Yl (x) zdx,y)

(23)

are amenable to analysis similar to that which
has been applied to integrals of type (1).
Formulas similar to those of (14) are obtained
if straight line paths are used:

where
Z oscillates between Z2 and ZI, at the highest

frequency;
y oscillates between Y2 and YI, at a medium

frequency; and
x traverses from a to b.

In general, one requires n-1 different frequen
cies of oscillation for an nth-order integral. The
slowest variable does not oscillate but traverses
from one end of its limit to the other. The
accuracy of the computation is probably great-

MULTIPLE INTEGRALS ON A NON-REPETITIVE ANALOG COMPUTER 211

est if the ratio of successive frequencies of oscil
lation are equal. Thus the rate at which the
variables change should satisfy a geometric
progression. If the slowest variable is moved at
p v/sec and the fastest variable at q v/sec, the
ratio r of successive voltage rates satisfies

q = pr n- 1• (25)

The ith intermediate voltage rate Ri is then
given by

('\-

Jl,i = pri = p~ q/p ~_t_. (26)
t J n - 1

For the PACE 131-R Analog Computer used in
this study, a third-order integral would have
voltage rates of 1, 70, and 5000 v /sec. A typical
flow diagram for the solution of (23) is shown
in Figure 11. One may decrease p to increase the
ratio of voltage rates, but integrator drift rates
prevent too low a limit. If the independent
variable traverses 100 v during the computa
tion, then the computing time is 100 sec. De
creasing the computing time is accomplished
with a sacrifice of accuracy. A change of voltage
rates to 5, 160, and 5000 v /sec decreases the
computing time to 20 sec for a third-order
integral, but cuts the number of volume ele
ments by the same factor of 5, and the approxi
mation error increases. Fifth-order test in
tegrals have been evaluated with reasonable
success with voltage rates of 0.5, 5, 50, 500, and
5000 v / sec. In general, one can expect the ac
curacy to diminish quite severely for higher
order integrals unless sufficiently large voltage
ratios are obtainable. With the same computer,
approximate accuracy limits for a few sample
integrals were 1, 2, 5, and 10 percent for
second-, third-, fourth-, and fifth-order in
tegrals. Usually, the results were better, but
this was highly dependent on the problem.

ANOTHER APPLICATION

If a simple integral contains a parameter x

f
b(X)

lex) = f(x, y)dy
a(x)

(27)

then

dl = fb(X)af~~J!2 dy + f(x, b)db - f(x a)da (28)
dx a(x) ax dx' dx

from which

COMP I m
IrLJ I -

I'- Y : :>---.....

-IOOV

(y r- Yzl /2
~+ ---------'

1'-, x
: ..,.. >- - - L...--_----J

.... COMP2 ~

in +
+IOOV, -

in (ZI-Z2)/2

:+

Figure 11. Flow Diagram for a Third-Order Integral.

To apply this technique I (xo) must be known
or calculated for x = Xo for use as an initial
condition. In addition, the derivatives as indi
cated in .(29) must be generable. The procedure
is not unlike the generalized integration
method.

When the frequency of oscillation of y is
large, the amplifier output which represents the
double. integral appears as a relatively smooth
curye, so that (27) is reasonably represented
by (29).
For example

f x • lex) = 0 e-XY dy (30)

yields

f x • 3 l'(x) = 0 - y2e-xy dy + e-X (31)

and

f
x fX fX 3 I (x) = 0 0 - y2e-~Y2dydx + 0 e- X dx· (32)

Jx J b(.r)af(x y) fX [db daJ
lex) = .r a(x) - a~ dydx + x f(x, b) dx - f(x, a) dx dx + l(x o)· (29)

o 0

212 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Figure 12 shows a graph of (30) as approxi
mated by changing (32) to

1(' IX [3 ~.l d ,x) = 0 e- X
- xy"'e-XY J x (33)

and generating y with the diode circuit of figure
5 with slopes of ±500. The term xy2 was formed
by an electronic multiplier, e-xy' by a diode
function generator and e-x3 by a generalized
integration process.

1'1.0
1 , . . I

~tf·~Ij~:--+~_f~~~~~i~:J
r;: I : x I
-' 0.51 i 0.0 0.0
~~---+-) ; : : 0.2 0.1995_,,;
I ' + ' : · 0.4 0.3916 I

I--:~ --: -~-' 0".5 0'4,799]
f'---''~.' --t----~,: - ; g~ g ~~~T '-"
~-,-! -!,'-- 1.0 0.7468

: : X •
o 0.5 1.0

Figure 12. Double Integl~l A:proximation to

I(x) = J 0 e-x7I
- dy.

CONCLUSIONS

Multiple integrals are easily evaluated with
non-repetitive analog computers and com
ponents generally available therein. The ap
proximation formulas derived are inherently
more accurate than those used with techniques
involving memory. No approximation error is
accumulated if f (x,y) in (1) is equal to 1, and
the integral represents the area bounded by a,
b, y:!(x) and ydx). In fact, (14) is exact if
f (x,y) does not contain y. Therefore these tech-

niques are preferable even for repetitive com
puters with memory.

ACKNOWLEDGEMENT

The author would like to accredit Dr. E. W.
Chittenden (formerly of Harry Diamond Labo
ratories) with the basic idea of using a con
tinuous path of integration which provided the
stimulus for this paper.

REFERENCES

1. KOPAL, Z., "Numerical Analysis," John
Wiley & Sons, Inc., New York, N.Y., p. 347,
1955.

2. RUBIN, A. I., LAUDAUER, J. P., and TOTTEN,
H. Q, "Far Field Antenna Pattern Calcula
tions by Means of a General Purpose Analog
Computer", Proceedings of the National
Electronics Conference, Volume XV, Oct.,
1959.

3. ROGERS, A. E. and CONNOLLY, T. W., "Ana
log Computation in Engineering Design,"
McGraw-Hill Book Co., Inc., New York,
New York, pp. 254-255, 1960.

4. Application Data Sheet 0012, Computer Sys
tems, Inc., Monmouth Junction, New Jersey.

5. HAUSNER, A., "Multiple Integrations on a
Real-Time Analog Computer," Diamond
Ordnance Fuze Laboratories, Washington
25, D. C., Technical Report-1048, 30 July
1962.

6. LANGILL, JR, A. W., Accurate Simulation of
Nine Common Non-Linearities", Electronic
Design, p. 38, 21 June 1961.

7. HAUSNER, A., "Parametric Techniques for
Eliminating Division and Treating Singu
larities in Computer Solutions of Ordinary
Differential Equations", IRE Transactions
on Electronic Computers, p. 42, February
1962.

HYBRID TECHNIQUES FOR ANALOG FUNCTION GENERATION

W. E. Chapelle
The Bendix Corporation

Research Laboratories Division
Southfield, Michigan

INTRODUCTION

In computing systems involving real-time
simulation, data processing, or control, it is
often possible to combine digital and analog
computing techniques to improve the over-all
system capability or performance. Effective
combinations of analog and digital techniques
have been made at several levels. At the sys
tems level, general-purpose digital and analog
machines have been linked through conversion
equipment, enabling more effective solution of
classes of problems which involve both preci
sion arithmetic operations and rapid solution
of differential equations. At the component
level the capabilities of digital equipment for
information storage, logical decisions, and se
quence generation can be used in a variety of
ways to augment the capabilities of analog
equipment for wideband computation. Finally,
at the information representation level, hybrid
codes have been utilized1, 2 to represent varia
bles to obtain high-accuracy computing struc
tures from an assembly of less accurate com
ponents.

This paper discusses techniques for employ
ing hybrid concepts at the component and in
formation representation levels to generate
arbitrary functions. Particular emphasis is
placed on the generation of multivariant func
tions in analog systems. One reason for this
emphasis is that while currently available diode
function generators are adequate for univariant
function generation, they generally result in a
prohibitive amount of circuitry in multi variant

213

applications. Approaches involving servos have
been used to reduce the equipment require
ments, but these techniques are limited in the
areas of speed and programming flexibility. A
multivariant function generation capability can,
of course, be obtained by incorporating a digital
computer in the system. The present approach,
however, obtains this capability at a considera
bly lower level of complexity, is generally capa
ble of higher speeds, and does not contain the
limitations of sampled data systems.

In general terms, generation of an arbitrary
function requires two basic operations:

(1) Storage-Values of the output function
are stored, the number of values depend
ing on the required functional accuracy.
In analog systems, the function values
are normally stored on potentiometers,
often implicitly in the form of slope
values. If the function is not defined at
predetermined points (i.e., fixed break
points), it is also necessary to store the
values of the input variables at which
the breakpoints occur.

(2) Interpolation-After the function is de
fined in terms of stored values, the out
put is formed by interpolating among
these values as a function of the input
variables. In most analog systems, first
order interpolation is used.

The capabilities of digital techniques for in
formation storage are well known. These tech
niques, of course, are most advantageous where
the amount of stored data becomes large. This

214 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

condition tends to occur in multivariant func
tion generation. For example, airframe simu
lations often involve the generation of ten or
more bivariant functions, each of which may
require storage of several hundred functiO'n
values and breakpoint locations. Thus, the
total storage requirements are in the order of
several thousand quantities. Similar require
ments occur in the generation of just one func
tion of three variables.

The major objective of the following para
graphs is to show how the interpolation process
can be effectively implemented by employing
hybrid data representatiO'n codes and utilizing
a combination of digital and analO'g circuits. It
will be shown that these techniques are useful
even in cases vV"here storage requirements more
modest than those cited above imply that poten
tiometer storage will be more economical than
digital storage techniques.

As noted above, the major emphasis herein
will be on techniques for multivariant function
generation. However, many of the concepts
involved apply equally well to the single-varia
ble case, and are more readily visualized at this
level. Hence, the procedure in the following
paragraphs will be to show first how hybrid
techniques can be applied in the univariant
case, and then to extend these techniques to
functions of more than one variable.

BASIC CONCEPTS

In a conventional hybrid code, a variable,
X, is represented by the sum of two quantities:
a digital number, X d ; and a d-c analog voltage,
AX. For the present discussion, Xd can be
visualized as a short binary number, say 3 or
4 bits, which would be the most significant bits
of X in a normal binary representation. As
indicated in Figure la, each value of Xd corre
sponds to a particular segment within the range
of X:

X d = j for X j < X < X j +1

Within each segment, the analog quantity, AX,
varies frO'm zerO' to' a maximum value which
represents one bit of X d. In practice, AX is
scaled to vary over the full range of the ma
chine variable, which is assumed here to be zero
to unity, in order to utilize the full dynamic
range of the equipment. This scaling leads to

(a) _ VariatJOn of Xd and t.X as a FunctJOn of X

ANALOG EQUIVALENT

Of Xd

,b) . Analog-To-Hybnd Con\t:rtt'r

(k·BIT PARALLEL
BINARY)

(D·C VOLTAGE)

a definition for AX in a normalized form, which
is convenient for the following discussion:

(1)

Equation 1 defines AX as varying linearly from
o to 1 within each segment, independent of the
width of the segment in X.

The conversion of X from a d-c analog volt
age to the hybrid code is obtained with a circuit
similar to the familiar closed-loop analog-to
digital converter, as shown in Figure lb. The
term Xd is generated as a k-bit parallel binary
nunlber, which is conve~ved to analog and
differenced with X. This difference is scaled to
form AX in a precision gain section. The am
plifier gain of 2k is based on 0 to 1 full scale
ranges for X, AX, and the analog equivalent
of X d• Comparators increment the Xd counter
when AX exceeds unity and decrement Xd when
AX becomes smaller than zero.

Schmid3 describes a linear-segment analog
function generator which utilizes a hybrid code
generated in the above manner. This circuit,
shown in Figure 2, provides a good starting
point for the present discussion. The output
function, fo (X), is defined at fixed evenly
spaced breakpoints located at each of the transi
tion points of }(,;. Each segment of fo (X) , then,
is permanently associated with a particular

HYBRID TECHNIQUES FOR ANALOG GENERATION 215

'tM/VVV1 loX

o • X

value of X d• For each segment, the storage sec
tion is programmed with two quantities:

(1) f(Xj) , the value of the function at the ph
breakpoint.

(2) [f(Xj+1) - f(Xj)], the first difference of the
function values for the interval X j < X <
Xj+l.

The value of X d is used to control the read
out of the stored function and first difference
values into two parallel D-A converters which,
respectively, have unity and baX as analog in
puts. (The D-A converters can be visualized
as the standard resistor-matrix parallel de
coder, with the analog input replacing the nor
mal reference voltage.) The D-A converter
outputs, which are the products of their analog
and digital inputs, are summed to form

fo(X) = f(Xj) + AX[f(Xj+1) - f(Xj)], (2)

which is a linear segment approximation of the
desired function.

In Schmid's function generator, the control
logic consists of a decoder with 2k output lines,
one of which is energized for each segment.
The storage section is a diode matrix, driven
by the decoder, which can generate an inde
pendent parallel number for each function value
and first difference. The program is stored by
the presence or absence of a diode at each bit
location. Figure 2 has been drawn in the more
general form to emphasize that any form of
digital memory can be utilized, provided that

the access time is sufficiently short. It is also
possible to modify Figure 2 for potentiometer
storage; however, this concept, for convenience,
is introduced in a later section.

The configuration shown in Figure 2 has two
characteristics which are disadvantageous, par
ticularly when the approach is expanded to the
multivariant case:

(1) The fixed, evenly spaced breakpoint loca-
tions limit the programming flexibility.
A movable breakpoint capability is de
sirable for functions which change slope
rapidly in some places and are straight
in others. It is almost essential when
data are given in tabular form.

(2) The requirement for storing first differ
ences, in addition to the function values,
represents a redundancy which increases
both the programming effort and the
storage requirements.

The following paragraphs develop techniques
for overcoming these disadvantages.

MOVABLE BREAKPOINTS

Consider a function f (X) which is defined at
non-uniform intervals in X as shown in Figure
3a. Now suppose this function is re-plotted on
a new axis, X', on which the breakpoints are
evenly spaced. Note that the function values
and their first differences remain unchanged
in this process. Hence, if a function generator
of the type shown in Figure 2 is programmed
with f(Xj) and [f(XH1 - f(Xj)] and excited
with the new variable X' the correct function
will be generated.

It remains, then, to implement the mapping
of the independent variable from X to X'. This
can be done with another function generator;
however, a much more efficient method is to
modify the analog-to-hybrid (A-H) conversion
circuit already present in Figure 2 to a func-
tion generator which forms X' (Hybrid) from
X (Analog). In Figure 3b, the required non
linear conversion is obtained by placing the
basic hybrid function generator, developed in
Figure 2, in the feedback path of a closed-loop
system and replacing the programmed function
values and first differences with the X-break
point locations and their first differences. The
output of this function generator is differenced
with X at the input of a high-gain amplifier, the

216 PROCEEDING8-SPRING JOINT COMPUTER CONFERENCE, 1963

f(X}

I
HX'}

I(X
S

)

0 v

Xs ~ x; xi X; x~

(a) - Univariant Mapping Relations

(b) - Mapping Configuration for Generation of

Conventional Code

~

X

x' ..

lIX'

output of which is ~X'. Thus, within each seg
ment, the closed loop system continuously solves
the equation

X = X j + ~X'(Xj+l - Xj) (3)

where ~X' is the dependent variable. If Equa
tion 3 is rewritten as

it is clear that ~X' varies linearly from 0 to 1
within each segment. The generation of X' a, the
digital part of X', is carried out in the same
manner as before. Since X' is generated using
a feedback loop, there must be no slope rever
sals or points of zero slope in the nonlinear con
version from X' to X. This is equivalent to
requiring that the X breakpoints be assigned in
order, Xl <X:.: <Xa ~ ~ . . .

Comparing Equations 1 and 3 it is seen that
LlX = ~X'. This is true because both quanti
ties are normalized to vary linearly from 0 to

1 within the segment. The reader may argue,
then, that the introduction of the mapping con
cept is entirely academic-that Figure 3b is
simply a circuit which generates the D,X quantity
required to implement Equation 2 in the pres
ence of non-uniformly spaced breakpoints. This
is true, of course; but the mapping concept aids
in the visualization of a process which can be
come quite involved in the multivariant case.

Note that the X -breakpoint locations and
their first differences are inserted in numerical
form in the same manner as the function values
and first differences. This is an important fea
ture from the standpoint of programming ease.

DIRECT PROGRAMMING

In considering rnethods for elinlinating the
requirement for storing first differences, it is
helpful to re-write Equation 2 in the form:

Jo(X) = (1 - ~X)f(Xj) + ~Xf(Xj+l) (4)

Equation 4 expresses the output function within
a given segment as a weighted mean of two
stored breakpoint values, with the weighting
determined by the instantaneous value of the
independent variable, X, via the coefficients
(1 - ~X) and L\X.

The implementation of Equation 4 involves
the generation of a new hybrid code, which is
plotted versus X in Figure 4. In the analog
portion of the code, LlX is replaced by two
quantities, Al and A 2 , which are defined as:

Al = 1 - ~X}
For X dOdd

A2 = ~X

Al = ~X }
For Xd Even

A2 = 1 - ~X

Note that Al and A:.: are complementary; i.e.,
A:.: = 1 - Al and Al = 1 - A 2 •

X(HYBRtO)

" 1 2 I 4 1---

It,
A\, A2 i
o~---~-~-~~-~-~~-.

HYBRID TECHNIQUES FOR ANALOG GENERATION 217

The quantities Al and A2 excite the D-A con
verter configuration, shown in Figure 5, in
which all the function values stored for odd
numbered breakpoints (Xb X 3,X5, ••••) are
permanently associated with one D-A converter
and those for even numbered breakpoints are
permanently associated with the other D-A con
verter. (For convenience, in - Figure 5 and
future diagrams, D-A converters are shown as
boxes marked with their digital inputs which
are assumed to be generated by appropriate
storage and control logic equipment.) Then, if
the D-A converters are programmed according
to the following schedule it can be seen that
Equation 4 is obtained in each interval:

Xd Al A2 !odd !even

0 fj.X 1 - fj.X !(XI) !(Xo)

1 1 - fj.X fj.X !(XI) !(X 2)

2 fj.X 1 - fj.X !(X 3) !(X 2)

3 1 - fj.X fj.X !(X 3) !(X4)

...

f
even

Figure 6 provides a graphical explanation of
the synthesis of an arbitrary function using the
odd-even code which makes the. process easier
to visualize. Within the first two segments, Al
is multiplied by I(Xd to form a triangular
function having height I (X d as shown on line
b. At X 2 ,1 (Xd is replaced in the lodd D-A con~
verter by I (X3), so that the next triangle has
a height of I (X3), etc. A2 is multiplied by the
even numbered function values to form the
function shown on line c. The sum of the odd
and even contributions (line d) is the desired
function.

The configuration shown in Figure 5 is not
a unique method for implementing Equation 4.
However, the odd-even approach has several
virtues which would not be present if the con
ventional code were utilized:

(1) The permanent association of each func
tion value with one of the D-A conver-

'0 (Xl =

"'1 'odd + ~ 'e.en

ters eliminates switching of the stored
values between D-A converters. This
type of switching would be particularly
difficult in the simpler forms of storage
such as the diode matrix.

(2) All switching of function values in D-A
converters occurs when the associated
coefficient, Al or A 2 , is equal to zero.
This feature greatly reduces switching
noise seen at the output of the function
generator.

(3) The odd-even code, while more difficult
to generate than the conventional code,
contains no step changes and can there
fore be used by analog equipment with
less dist.ortion due to limited amplifier
high frequency response.

I t remains to be shown how the odd-even
hybrid code can be generated from a continuous
analog input. This explanation will be carried
out in terms of the previously discussed need
for movable breakpoints, so that the result will
be a movable-breakpoint univariant function
generator which can be programmed directly
with the function values and their locations in
X.. As shown in Figure 7, two odd-even D-A

218 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

"1'-'2

Xodd

X

"MPL.l

+GAlH FOR X dODD t
-G"iN FOil X d EVEN I

Xl

Xo

Xl X2
I I I 2

Xl X3

X2 X2

~ X~ Xs X6
I l I I I

X) Xs Xs

X
4 ~ X6

converter configurations are connected back-to
back and driven from Al and A2 which are,
respectively, the outputs of Amplifier 1 which
has high gain and Amplifier 2 which is con
nected to generate A2 = 1 - AI. Figure 7 also
indicates the programming schedule for the
D-A converters in the feedback path. The feed
back loop solves the equation

x = Al Xodd + A2 Xeven

where At is the dependent variable and A2
1 - AI.
In the first segment where X'd is even

or

x - Xo
A, = --- = t:.X and A2 = 1 - t:.X.

Xl - Xo

In the next segment where X'd is odd

or

I X 2 - X
Lil = --:v--u:-- = 1 - t:.X, and A2 = t:.X.

A2 - Al

Note that the feedback path of the A-H conver
sion loop contains a gain term X odd - X ecru.

Remembering that Xo <Xl <X2 ••• it is seen
that this term is positive during even numbered
intervals and negative during odd numbered
intervals. Thus, it is necessary to invert the
sign of the gain of Amplifier 1 at each break
point. The information for this switching is
contained in the least bit of X' ct.

The logic requirements presented in Figure 7
differ from those in Figure 2, in two ways.
First, signals to increment or decrement X'd,
which are generated when either Al or A2 be
come less than zero, must also be based on
whether X'd is odd or even:

Inc. Dec.

X~ even Dec. Inc.

The second control logic modification occurs in
the generation of the control signals for read
out of the stored quantities, where the follow
ing selection process is required.

jodd, Xodd X' d jeven, X even X' d

f(X I), Xl o or 1 f(X o), Xo 0
j(Xa), Xa 2 or 3 j(X2), X 2 1 or 2
j(Xs), Xs 4 or 5 j(X4), X 4 3 or 4

This selection can be implemented with a de
coder for X'd and one OR gate for each segment.

POTENTIOMETER STORAGE

The configuration shown in Figure 7 provides
a convenient place to introduce the method,
promised earlier, of using potentiometers to
store the function values and breakpoint loca
tions. Figure 8 shows a potentiometer-storage
univariant function generator having the same
capability as the Figure 7 configuration. Each
function value and breakpoint location is stored
as the shaft position of a separate potentiom
eter. Each potentiometer pair, X.i and f (Xj),

is connected to Al or A'2 by a switch during the
(j - 1) th and itk segments, using exactly the
same logic as for Figure 7. The potentiometer
outputs, then, represent' the products required,
to implement Equation 4 and are summed to
form the output function.

HYBRID TECHNIQUES FOR ANALOG GENERATION 219

Any of the function generator block dia
grams discussed in this paper can be converted
to potentiometer storage by replacing the dig
ital storage and the D-A converters with poten
tiometers and electronic switches. The required
number of potentiometers is equal to the sum
of the number of function values and break
point locations to be stored. The number of
switches is equal to the number of function
values.

BIVARIANT FUNCTION GENERATION

In considering the extension of the above
concepts to the generation of functions of more
than one variable, the first problem encountered
is that the linear segment approximation for
one variable has no unique counterpart in the
multivariant case. Restricting the discussion
to two variables for the present, Equation 2
(and its alternate form, Equation 4) can be

pvn!:lncl,::u'"l lntn !It la~<:+ t"h ... aa aC!C!a.nf-~~ llu rl~4l-',,~
- z:'- ~- - lJ .L",II,A,oUV v..&. "" "-'Ul.J1..1.l.I.lU.1..lJ U.1.1..L-';;:;;..L-

ent approximations to a surface I(X, Y) which
is defined by stored values at various points
in the X-Y plane.

In the following paragraphs, these three ap
proximations are briefly described, and their
relative advantages are evaluated. Initially, it
will be assumed that the function is defined in
the X-Y plane at all the intersections of evenly
spaced values of X and Y. (This does not pro
vide a movable breakpoint capability, but this

feature can be added as was done in the univari
ant case.) Thus, each approximation must de
fine the function inside a square sector using
stored values at the four corners. In general
terms, the discussion should be carried out for
the jith sector in which the function is defined
by the corner values 1 (Xj , Y i); 1 (Xj +h Y i);

I(Xj, Yi+l) ; and !(Xj +h Yi+l). However, this
notation is much too complicated for the present
requirements. It will suffice to denote the four
values 1 (11), 1(21), 1 (12), and 1 (22) as shown
in Figure 9, and let it be understood that the
square under discussion could be any sector in
the X-Y plane.

The first approximation method, which might
be called summation 01 partial derivatives, re
sults from noting that Equation 2 gives 1 (X)
as the sum of a stored function value and a
difference term which is proportional to the
slope in the X-direction. A two-variable ap
proximation, then, is obtained by adding a term
which includes the effect of the slope in the Y
direction:

f(X, Y) = f(l1) + llX[f(21) - f(l1)] (5)
+ llY[f(12) - f(l1)]

Equation 5 generates a plane surface which
passes through f (11), 1 (21) and 1 (12) as
shown in Figure 9a. In general, the surface
does not pass through 1 (22) -a plane defined by
three points will not pass through an arbitrarily
located fourth point. Thus, if the approximation
is repeated in adjacent sectors, a discontinuity

1(22)

(0) SUMMA.TION OF PARTIAL
DERIVATIVES

1(22)

(e) TRIANGULAR SURFACES

(b) DOUBLE LINEAR
INTERPOLATION

1(22)

(eI) TRIANGULAR SURFACES
(AL TERN A TlVE CONFIG.)

220 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

will occur at each sector boundary as indicated
by the shaded vertical areas in Figure 9a. For
many applications these discontinuities present
a severe disadvantage.

The inlplementatiol1 of Equation 5 is a direct
extension of Figure 2. A third channel, in
which the Y-first difference term is multiplied
by LlY, is added to the basic hybrid function
generator. However, although an analogy to
the odd-even method can be applied, the con
figuration cannot be rearranged to eliminate
switching of non-zero quantities. Since the
other approximations to be discussed present
neither this disadvantage nor the discontinuous
output surface, it is concluded that the summa
tion of partial derivatives method is the least
suitable of the three TIlethods for wideband
analog function generation.

DOUBLE LINEAR INTERPOLATION

The second approximation, which will be
called double linear interpolation, can be
thought of as being formed by a linear inter
polation in (say) the Y-direction between two
functions of X which, in turn, are formed by
linear interpolation between the corner values.
Expanding the form of Equation 4 gives the
following equation:

!o(X, Y) = (1 - liY)[(1 - liX)!(ll) + .1X!(21)] (6)
+ liY[(1 - t.X)f(12) + liX!(22)]

Reversal of the order of the LlX and ~ Y inter
polations will result in the same equation. The
surface generated by Equation 6 is shown in
Figure 9b. This is a curved surface which has
the property of being straight along any line of
constant X or constant Y.

Most approaches to bivariant function gen
eration make use of this approximation by util
izing a linear interpolation device to interpolate
between outputs of univariant function gen
erators.4, 5 This can be implemented in hybrid
form, using two univariant circuits operating
from a common control logic and storage sec
tion. In this approach, the linear interpolator
requires the formation of two products of
analog variables, and each multiplication must
be performed with an accuracy equivalent to
the desired output accuracy.

An alternate implementation which requires
only one multiplication, and this of less ac-

II • AY

12 • I-AY

Y 2 '4

II • AY

12 • I-AY

Yo '4 ~
leo XI

Al .. AX AI" I-loX

A2 .. I-AX "2. AX

'2

'4

'2

'4
X2

Al • AX

"2 - I-U

'I

'3 '4

'I

'3
X3 X4

"1 • I-U

"2-.u

curacy, is shown in Figure 10. Figure 10 also
extends the odd-even concept to the bivariant
case. Each stored function value is permanently
associated with one of four D-A converters ac
cording to the indicated schedule. Auxiliary
signals are generated as follows:

Al = 1 - liX}
A2 = liX

For Xd odd

A.l = AX) - --
AX ~ For X d even

A2 = 1 -"-\ J

BI = 1 - liY}
B 2 = li Y For Y dodd

Bl = liY }
B2 = 1 - liY For Y d even

The 1, 1 sector (X" = Y rl = 1, shown shaded in
Figure 10) is considered first. ~ere, Equation
6 becomes

or

fo(X, Y) = (1 - liY)[(l - liX)!1 + liXh]
+ liY[(l - liX)!3 + liX!4]

fo(X, Y) = BI(Adl + Ad2)
+ B 2(Ad3 + Ad4)

(i)

HYBRID TECHNIQUES FOR ANALOG GENERATION 221

Moving up to the 1, 2 sector, Equation 6 be
comes

fo(X, Y) = (1 - LlY)[(l - LlX)f3 + LlXf4)]
+ LlY[(l - LlX)fl + LlXf2];

and making the inverted substitutions, 1 - 6, Y
= B:! and LlY = B I , Equation 7 is again ob
tained. This equation also holds in the 2, 1 and
2, 2 sectors; and since all other sectors are repe
titions of one of these four cases, Equation 7
is valid for the entire X-Y plane.

In Figure 10 the coefficients for all four func
tion values are obtained with one analog multi
plier by using the relations

A:! = 1 - Al and B:! = 1 - B I

to rearrange Equation 7 as follows:

fo(X, Y) = AIBdl + (B I - A IB I)f2 (8)
+ (AI - A IB 1)f3 + (A2 - BI
+ A IB I)f4.

In addition to the multiplier, four summing
amplifiers are required to invert the multiplier
output and obtain the required summations.
Note that multiplier accuracy is generally not
as important as it would be in an output inter
polator because errors in the term AIBI in
Equation 8 tend to cancel. The error cancel
lation is greatest where the four stored values
are nearly equal; i.e., where the slope of the
function is small.

In a function generator having the configur
ation shown in Figure 10, the control logic sec
tion must perform the following type of selec
tion for each of the four D-A converters:

Xd

f(X I , Y I) Xo or Xl Yo or Y I

f(X3, Y I) X 2 or X3 Yo or Y I

f(X I , Y3) Xo or Xl Y2 or Y3
f(X 3, Y3) X 2 or X3 Y2 or Y3

For a function being approximated by N seg
Inents in the X-direction and M segments in
the Y-direction, the selection for all four D-A
converters can be implemented with approxi
mately N + M OR gates and NM AND· gates
in addition to the Xd and Yf/ decoders.

TRIANGULAR SURFACES

The third bivariant approximation, which
will be called the triangular sur/aces approxi
mation, is based on .passing plane surfaces

through values of the function taken three at a
time. For a unit square sector in the X-Y plane,
the approximation consists of two triangular
surfaces, as shown in Figure 9c. The equation
of the line dividing the two triangles is
dX = LlY. An equation for the right hand
surface, where LlX> LlY, is formed by adding
two terms to / (11) which aCGount for the
change in the function as the sector boundary is
traversed from point (11) to (21) and then to
(22) :

fo(X, Y) = f(l1) + LlX[f(21) - f(l1)]
+ LlY[f(22) - f(21)] for LlX > LlY.

Similarly, for the left hand surface

fo(X, Y) = f(l1) + LlY[(f(12) - f(l1)]
+ LlX[f(22) - f(12)] for LlY > LlX.

Rearranging,

fo(X, Y) = (1 - LlX)f(l1) + (LlX - LlY)f(21)
+ LlYf(22) for LlX > LlY

and (9a)

fo(X, Y) (1 - LlY)f(l1) + (LlY - LlX)f(12)
+ LlXf(22) for LlY > LlX. (9b)

An alternate method for subdividing the unit
square is shown in Figure 9d. In this case, the
equation of the diagonal is 1 - LlX = ~Y.
Conceptually, these two methods are the same.
Mathematically, one can be obtained from the
other by complementing one of the input
variables. However, it is interesting to note
that the two methods do not, in general, yield
the same functional error within a particular
sector. Comparing these surfaces with Figure
9b, it is seen that the double linear interpolation
method produces a surface which is, at all
points, intermediate to the two possibilities
available with triangular surfaces. Hence, it is
deduced that the triangular surfaces method
will generally produce a greater functional
error, especially if the diagonal is located indis-
criminately. On the other hand, it will be shown
that the triangular surfaces approximation is
considerably simpler from an equipment stand
point.

Figure 11 shows an implementation of Equa
tion 9 which continues the concept of perma
nently~ssociating each stored value with a
particular D-A converter. The accompanying
schedule indicates the assignment of function
values to the three D-A converters and also

222 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

o
+

A2--D~ __ '--____ ~

Xo XI X2 X3 X4

Al = AX Al = I-AX ;'1 = AX Al = I-AX

A2 = I-AX A2 = AX A2 = I-AX "-2. AX

shows the diagonal locations, which have been
selected to be compatible with the same set
of auxiliary signals-A], A 2, Bb B2-that were
obtained from ~X and ~ Y as in the previous
example.

In showing how Figure 11 implements Equa
tions 9a and 9b, the right hand portion of the
2,2 sector (shown crosshatched) is investigated
first. Here, ~X> ~Y; and by Equation 9a,

fo(X, Y) = (1 - !1X)!l + (.~X - t:..Y)!2 + t:..Yh

or

fo(X, Y) = Adl + (AI - B I)!2 + Bd:!
for A I > B I . (lOa)

In the triangle directly to the right of this,
Equation 9a can again be utilized by comple
menting ~X:

fo(X, Y) = f1X!1 + (1 - f1X - f1Y)!2 + f1Y!3

But, since moving across Xa has reversed the
definitions of Al and A 2 ,

fo(X, Y) = Adl + (AI - B l)f2 + Bds,

which is Equation lOa again. In a similar
nlanner, or by applying Equation 9a, it can be
shown that Equation lOa applies throughout the
shaded region and in all other regions vlhere
A, > B1•

In the rest of the regions, vlhere Bl > A.I, a
similar development results in

fo(X, Y) = Bdl + (Bl - A I)f2 + Ada
forB I > AI. (lOb)

Equations lOa and lOb, taken together, define
10 (X, Y) over the entire X-Y plane. However,
for the purpose of discussing their implemen
tation in Figure 11, it is desirable to combine
Equations lOa and lOb into a common equation.
This can be done by noting that A2 = 1 - Al and
B2 = 1 - Bb and observing the following:

(1) In Equation lOa, where Al > BI : B2 > A2
and Al - BI > 0

(2) In Equation lOb, where BI > Al : A2 > B2
and BI - Al > 0

Clearly, the coefficient of 12 can be written
IAI - BII in both equations. The coefficient for
11 can be written MIN (A 2 , B 2), if MIN
(A 2 , B 2) is defined as being equal to A2 or B2
whichever is smaller. (This quantity could be
called the analog AND of A2 or B2') The co
efficient of 13 can be treated in the same manner.
Thus,

!o(X, Y) = [111 IN(A 2, B 2)]fl + I A I - BII!2 (11)
+ [1\IIN(A}, B})]fs.

Figure 11 shows the implementation of Equa
tion 11 using diode AND gates to form MIN
(AI! B 1) and MIN (A 2 , B 2). The coefficient for
I:! is formed from

1 - lV IN(A I , B I) - illIN(A 2, B 2)

1 - B} - 1 + Al = A} - BI for Al > BI
= 1 - Al - 1 + BI = BI - Al for BI > Al
= IAI-BII

Thus, the required coefficients are obtained
from A and B quantities with hvo ... A.LND gates
and one amplifier. Diode AND gates can prob
ably be utilized in most applications, inserting
compensating diodes to cancel the first order
effects of diode forward conduction offsets, and
following the gate with a buffer amplifier. If
higher accuracy is needed, each AND gate can
be implemented with two D-C amplifiers. Either
of these configurations compare favorably with
the double linear interpolation approach from
an equipment standpoint, since both eliminate
the analog multiplier and one D-A converter.

The control logic required for selection of the
11 and 13 D-A converter inputs is the same as
that for the double linear interpolation method.
Ho·~.vever, the selection for 12 must also include
the At> Bl or BI >Al condition:

HYBRID TECHNIQUES FOR ANALOG GENERATION 223

f2 AI, BI Xd Y d

f(X I, Yo) AI> BI Xo or Xl Yo
f(X 3, yo) AI> BI X 2 or X3 Yo

f(X o, Y 1) B I > Al Xo Yo or Y I
f(X 2, Y I) B I > Al Xl or X 2 Yo or Y 1

Thus the control logic differs from that for
the dodble linear interpolation method only in
that a third input must be added to 112 NM AND
gates.

In comparing the triangular surfaces approx
imation to the double linear interpolation ap
proximation, the modest equipment savings
available with triangular surfaces must be
balanced against its generally higher functional
error. No general conclusion can be reached on
this point. However, it can be argued that
stability and repeatability-which both methods
provide in an approximately equal degree-are
much more important than true functional ac
curacy in most analog applications. On this
basis, it is concluded that the triangular
surfaces approximation will generally be the
optimum approach.

BIV ARIANT MOVABLE BREAKPOINT
SYSTEMS

If the approach for obtaining movable break
points that was developed for the univariant
case is used separately for each input variable
in a bivariant system, a mapping of the type
shown in Figure 12a is obtained. Breakpoints
located on arbitrarily spaced lines of constant X
are translated to a uniform spacing in X', the
only restriction being that order Xl < X 2

<X3 ... be retained. The same type of trans
lation is carried out for the Y breakpoints. The
feedback paths of the X and Yanalog-to-hybrid
(A-H) converters employ the odd-even con
figuration, of course, so that the AI, A z, B" B2
quantities required, in Figures 10 or 11, are
generated.

In Figure 12b, the flexibility of the mapping
has been increased by making the X break
points movable as a function of Y. This re
quires insertion of a bivariant function genera
tor in the feedback path of the X-input A-H
converter. Either of the bivariant configura
tions shown in Figures 10 or 11 can be utilized.
The feedback path is programmed directly with

Y

~

1

x Y; X'
Xl X2 X3 X4 Xi x; Xl X4

(a) x' = f1(X), Y' = f~Y)
y

Y'
~

I 1 I
13 114 15 116

9 10 11 12

5 6 7 8 --
L..-----_+X I 2 3 4

X'
(b) X' = f1(X, V), Y' = *2(Y)

Y Y'
I 1 1 I

13 14 115 116 --
9 10 11 12 --
5 6 7 8 --

l..-.-----+X I 2 3 4
X' -

(e) X' = f1(X,Y) y' =f
2

(X,Y)

the breakpoint locations in X. The generation
of the coefficients for the bivariant approxima
tion can be common for both the output and X~
feedback path.

Figure 12c indicates a completely general
bivariant mapping. Randomly located break
points in the X-Y plane are converted into a
uniform grid in the X'-Y' plane. To obtain
this mapping, a bivariant function generator is
required in the feedback path of both the X
and Y -input A-H converters.

The three movable breakpoint systems then
provide increasing programming flexibility
along with increasing equipment complexity
and, in particular, increasing storage require
ments. For example, if a 10 x 10 segment ap
proximation is implemented by each of the three
methods, the storage requirements are:

X umber of Stored Quantities

l\1apping X Y f(X, Y) Total

12a 11 11 121 143
12b 121 11 121 253
12c 121 121 121 363

224 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

It may be argued that the intermediate map
ping configuration, Figure 12b, is sufficient for
most applications because raw data for bivariant
functions is almost always presented as a set of
functions of one variable with the other vari
able as the parameter of the set. However,
since the configuration shown in Figure 12c is
the most general case, it will be used in the
following description of a complete bivariant
function generator.

Figure 13 shows the implementation of a
bivariant random-breakpoint analog function
generator utilizing the triangular surfaces ap
proximation. The output section (right half)
of Figure 13 is essentially a repetition of
Figure 11. The operation and logic require
ments of the digital storage equipment are also
as indicated in conjunction with Figure 11
except that three quantities-the value of the
function, the X-coordinate, and the Y-coordi
nate-must be stored for each breakpoint. The
assignment procedure for placing the X-co
ordinates in the X-input A-H converter and the
Y-coordinates in the Y-input A-H converter is
identical to that for placing the function in the
output D-A converters.

The X- and Y-input A-H converters, then,
simultaneously solve the equations

+ GAIN FOR X ~tI ODD l
- GA. FOR)1<. EVEN ~

.. GAIN FOR lC',j ODD t
-GAIN FOR X~tI EVEN)

y'

I I

X = [MIN (A2, B2)] Xl + IAI - BII X 2 + [.J1IN (AI, B I)] X3}
(12)

Y = [... il11N (A2, B2)] Y I + IAI - BII Y 2 + [MIN (AI, B I)] Y 3

in which Il.X' and Il.Y', as contained in the A's
and B's, are dependent variables.

A step-by-step proof that Equations 12 per
form the required mapping is a lengthy pro
cedure; consequently, only a summar! is pre
sented.

The first step. is to show that each of the
oblique triangles formed by joining breakpoints
in the X-Y plane is mapped into a correspond
ing isosceles right triangle in the X' -Y' plane.
This is done by showing that for any particular
triangle Equation 12 is satisfied along all three
boundaries, and that points in the interior of
the triangle in X-Y remain in the interior in
X'-Y'.

The second step is to show that the closed
loop system formed by the X- and Y-analog-to
hYbrid converters provides a stable solution of
Equations 12. Classical stability. criteria for
implicit solution of simultaneous eq'uations6 can
be applied to this problem to show that the

following conditions, taken together, are suffi
cient for stability:

(1) An increase in X always corresponds
with an increase in X'.

(2) An increase in Y ahvays corresponds
with an increase in Y'.

(3) The transformation does not invert the
triangle; i.e., if the corners are numbered
1, 2, 3 clockwise in the X-Y plane, this
order is not reversed in the X'-Y' plane.

(4) The phase shift in each amplifier is less
than 90 degrees at all frequencies where
gain exceeds unity.

The first three conditions restrict the choice
of breakpoint locations in a manner analogous
to the Xl > X 2 > X3 ' ... requirement in the
single variable case. Generally, they imply that
two lines of constant X' (or Y') cannot cross
in the X-Y plane and that no sector in X-Y can
contain ~! n interior angle of greater than 180
degrees.

HYBRID TECHNIQUES FOR ANALOG GENERATION 225

FUNCTIONS OF MORE THAN TWO V ARI
ABLES

Of the three approximations discussed for
bivariant interpolation, the first two have direct
extensions for functions of three or more vari
ables. For the summation partial derivatives
method, a new first difference term is added to
the basic equation, and another channel is
added to the block diagram for each new vari
able. As in the bivariant case, the major dis
advantage of this method is the discontinuous
output.

A trivariant linear interpolation is formed by
interpolating between the output of two bivari
ant function generators. Also, a trivariant ex
tension of the configuration shown in Figure 10
is available. However, in either approach, a
minimum of four analog multipliers are re
quired.

The extension of the triangular surfaces ap
proximation to functions of three or more vari
ables is less direct. Generalizing, it can be
argued that the virtue of the triangular sur
faces approximation lies in the fact that the
interpolation is carried out among the least
number of points that can define a surface.
Therefore, the trivariant analogy should im
plement an interpolation among the least num
ber of points that can define a volume-four
points in the form of a tetrahedron.

Figure 14 indicates a subdivision of unit cube
into six tetrahedrons each of which is defined
by a unique inequality among dX, dY, and
~Z. Assuming the function is defined at the
eight corners of the cube, and following the
same procedure used in the bivariant case,

'\
(4) t.y>t.z>lIX

222 AXzt.y

(2) loX> 6Z>t.Y

'4

'\
(5) t.Z>t.X>t.Y

~ .•. " .. , ...•. : ...•. , ... :.; ..• "'., ..•..•...•....•.• ,, .••.•.•.•.•••. "\ ,~
'\

(3) t.Y>!.X>6Z

'r{j
'\

(6) 6Z>t.Y>t.X

fo(X, Y, Z) = f(111) + ~X[f(211) - f(111)]
+ ~Y[f(221) - f(211)]
+ ~[f(222) - f(221)]

for ~X > ~ Y > ~Z.
Each of the four function values involved can
be assigned to one of four D-A converters as
indicated in the sketch of the dX > dY > dZ
tetrahedron in Figure 14. Thus,

fo(X, Y, Z) = (1 - ~X)fl + (~X - ~Y)f2
+ (~Y - t,.Z)f3 + t,.Zf4

for ~X > ~Y > ~Z.
Continuing, a set of six equations is obtained

which defines the output function throughout
the cube. Adopting the odd-even notation for
the variables, the set becomes

fo(X, Y, Z) = ~2Zl ~ ~~l -1!1!{2 ! ~!!l - ~~){3 + ~1~4 ~or Al > l!l > ~l)
= A2]I T \Al - C'l)h + (C l - Bl)h + Blf4 for Al > (,'t > 1311
= Bdl + (Bl - A l)f2 + (AI - Cl)f3 + Cd4 for Bl > Al > Cl (13)
= Bdl + (Bl - Cl)f2 + (Cl - A l)f3 + Ad4 for Bl > Cl > Al
= Cdl + (Cl - A l)f2 + (AI - B l)f3 + Bd4 for Cl > Al > Bl
= Cd! + (Cl - B l)f2 + (Bl - A l)f3 + Ad4 for C1 > Bl > Al

226 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

The first and last term of Equations 13 can be
generated as before with analog AND gates.
The center terms, however, involve the inter
mediate quantity in the inequality and cannot
be generated passively. They can, of course, be
generated with active switching, employing the
same logical process that must be implemented
in the selection of the correct set of stored func
tion values. The configuration retains the tri
angular surfaces' property of switching func
tion values only when the coefficients are zero.

Since the tetrahedral volume approximation
requires only four D-A converters and no ana
log multiplier, it possesses a considerable equip
ment advantage over the triple linear interpola
tion process. As more variables are added this
advantage becomes greater. In an-variable
function generator, generalized interpolation
requires 2n - 2n-2 -2 multipliers and 2nD-A
converters; whereas, the generalized triangular
surfaces approximation requires no multipliers
and n + 1 D-A converters.

HARDWARE CONSIDERATIONS

In general, the equipment configurations that
have been developed in the foregoing discussion
can be implemented with an assemblage of
standard components. The D-A converters,
switches, and control logic circuits fall into
this category. The amplifiers can be of the
standard operational type with the one excep
tion of the switched amplifier which is utilized
in the generation of the odd-even hybrid code.

The switched amplifier, Amplifier 1 in Figure
7, provides the forward gain for a feedback loop
whose feedback transfer function reverses sign
at each segment boundary. To compensate for
this reversal, the gain of the forward path must
be inverted within Amplifier 1. The design
should emphasize accomplishing this switching
without generating a switching transient at
the amplifier output, which is the signal voltage
AI' One rather conservative approach to this
problem is to design Amplifier 1 as a short time
constant integrator with differential inputs, one
for each feedback polarity, and then utilize the
following switching sequence:

(1) When Al or A2 less than zero is sensed,
open the forward path placing Amplifier
1 on hold.

(2) Switch the feedback path by inserting
the new value in the proper D-A con
verter.

(3) Close the forward path through the
opposite input.

STORAGE METHODS

It has been noted that hybrid interpolation
techniques are applicable with a variety of
storage media. Each of these media, of course,
has a characteristic set of advantages and limi
tations. The following paragraphs summarize
some of these characteristics, for the major
types of storage media.

Potentiometers

For requirements of less than about 1000
quantities, potentiometers probably are the
most economical form of memory, assuming
that manual setup procedures are employed.
The disadvantage is that considerable labor is
required in programming the equipment to gen
erate a new function. Automatic potentiometer
setting systems are in general more expensive
than an equivalent digital memory.

Static Card Readers

The diode matrix memory proposed by
Schmid can be increased in flexibility by mak
ing the connection at each bit location through
the contacts of a static card reader. Readers
are available which will handle about 1000 bits
or (say) 100, 10-bit quantities. The disad
vantages are a relatively high first cost and no
reduction in cost per bit with increasing stor
age requirements.

Magnetic Cores

The fast random access capabilities of the
core memory, together with the reducing cost
per bit for large capacities, are ideal for large
function generation capabilities. The only dis
advantage is that, in order to justify the basic
cost, the storage requirement must be in the
order of 1000, 10-bit quantities; e.g., generation
of several functions of two variables or one
function of three variables.

Delay Lines, Drums

These storage media suffer generally from
access time problems. If the full bandwidth
capabilities of the hybrid function generation

HYBRID TECHNIQUES FOR ANALOG GENERATION 227

approach are to be realized, access times of a
few microseconds are required. Some improve
ment is available by inserting a buffer store to
rapidly make available the values required in
adjacent sectors.

The above discussion has emphasized storage
methods which, by their programming flex
ibility, are best suited to general purpose com
puting applications. For special-purpose equip
ment, where a fixed or plug-in card program is
suitable, the diode matrix storage is probably
more economical than digital bulk storage
methods up to a level of several thousand
quantities.

CONCLUSIONS

Hybrid equipment and information represen
tation techniques can be effectively applied to a
wide class of analog function generation prob
lems. The simpler configurations, such as
shown in Figure 8, are comparable with the
conventional diode function generators in the
bandwidth and equipment complexity areas.
They are advantageous in that the function
values and breakpoint locations can be inserted
directly from numerical data. Also, each func
tion value and location is independent of all the
others.

The major advantage of hybrid techniques,
however, is that the above advantages can be
extended to include generation of arbitrary
functions of two or more variables with no
great increase in the required equipment. An
exception to this statement occurs in consider
ing the storage requirements, where an equip
ment increase is inevitable. However, the hybrid
approach makes efficient use of digital bulk
storage techniques to handle the large amounts
of data required to define multivariant func
tions.

In the discussion of bivariant approximation
methods, it is concluded that the triangular
surfaces approximation is optimum for wide
band analog applications since it generates a
continuous surface with the least amount of
equipment. This argument is strengthened when
the approximations are extended to functions

of three or more variables. Differing system
requirements may modify this conclusion, of
course. For example, in systems which involve
multiplexing of the variables, the continuous
output has no great advantage, and therefore
the summation of partial derivatives approxi
mation may be adequate. In other cases, the
fact that generalized linear interpolation is a
more conventional approach mathematically or
that it generally produces a lower functional
error may justify the added equipnlent. Perhaps
an additional advantage of hybrid function
generation techniques is that they present a
unified approach for implementing any of the
three methods.

ACKNOWLEDGEMENT

The author acknowledges the contributions
and many helpful comments of F. B. Lux and
other staff members of the Information and
Control Systems Laboratory at Bendix Re
search Laboratories during the investigation
whose results have been described in this paper.

REFERENCES

1. SKRAMSTAD, H. K., "A Combined Analog
Digital Differential Analyzer," Proceedings
of the Eastern Computer Conference, 1959.

2. SCHMID, H., "Combined Analog/Digital
Computing Elements," Proceedings of the
Western Joint Computer Conference, 1961.

3. SCHMID, H., "Linear-Segment Hybrid Func
tion Generators," Proceedings of the Com
bined Analog Digital Computer Systems
Symposium, December 16-17, 1960, Phil
adelphia.

4. CONNELLY, M. E., "Real-Time Analog Dig
ital Computation," IRE Transactions on
Electronic Computers, Vol. EC-ll, No.1,
February, 1962.

5. SANSOM, J., "Function Generation," Instru
mentsand Control Systems, Vol. 35, No.1,
pp. 127-129.

6. KORN and KORN, "Electronic Analog Com
puters," 2nd Edition, McGraw-Hill, 1956,
pp. 64-66.

AUTOMATIC STRATIFICATION OF INFORMATION*

D. Lefkovitz and N. S. Prywes
The Moore School of Electrical Engineering

University of Pennsylvania
Philadelphia, Pa.

1. INTRODUCTION

Much of the development of science has been
concerned with the organization of knowledge
into strata. Within such a structure new devel
opments are recorded and, as a result, may
change the structural organization. Humans
have found such stratified organizations useful
for retrieving facts and for applying deductions
to create what is a contemporary concept of
civilization. In the field of information storage
and retrieval we find similarly a need for struc
turing the information in strata. That is, the
use of content addressed memories by them
selves is not sufficient to solve the retrieval
problem, and additional stratification of the
descriptor language is necessary.

The stratification scheme proposed here con
sists of separation of a descriptor vocabulary,
used to describe the items in a library, based
upon two principles; namely, whether individ
ual descriptors do or do not occur together in
descriptions of items. This paper is directed
specifically to the lnechanization or stratifica
tion based on the latter of these principles.
Thus the problem treated in the following is:
Given an arbitrary information file how to
arrange the descriptors of the data to consti
tute large groups of descriptors which are
exclusive in that the descriptors in a group do

not co-occur in the description of any item?
For this purpose the input data are semi- _
automatically processed to form these "exclu
sive" attribute groups.

The proposed stratification scheme is flexible,
so that changes in the structure of the descrip
tor language can be easily carried out. This is
necessary for two reasons. (1) Every item
input to the file, based on its description, is
capable of changing the organization of the
descriptor language. (2) We visualize a human
machine tandem system in which a human
monitor can easily change the descriptor lan
guage organization, thereby affecting the proc
essing of new items considerably. This might
amount to a human starting or reorganizing
periodically a filing system and letting the ma
chine continue with the system. In this case,
the human monitor teaches the machine by
example.

The objectives of such an arrangement are
several. One is the speed and storage-capacity
efficiency in storage and retrieval of items as
described iurther in Section 3. Another is to
convey to the user semantic information re
garding the sense given to descriptors used.
These descriptors are usually words in a natu
ral language which may normally be given a
variety of meanings by a variety of people;
each person using the words in a somewhat

* This work has been supported by the Information Systems Branch of the Office of Naval Research, under Con
tract NOnr 551(40). Use of the IBM 7090 Computer facility was provided through a grant from the Atomic Energy
Commission.

229

230 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

restricted way. * Similarly the descriptors in
the library must always be used to convey the
desired meanings and not other unintended and
unforeseen meanings. This may become more
evident further through the discussion where
the proposed stratification is intended to pro
vide a structure for conveying to the user
the "appropriate" meanings for natural lan
guage descriptor words. The aim is ultimately
to mechanize information exchange between
user and machine in phrasing retrieval requests
and descriptorizing (indexing) new items
(documents). The "appropriate" meanings of
descriptors are defined only through associa
tion with other descriptors in descriptions of
items (or documents) filed in the library. How
ever, every new document may, if it is found
by the indexer to be desirable and not confus
ing, extend the meaning of a descriptor in a
natural language to convey additional concepts.

This paper however, due to space limitation,
is directed to the problem. of the stratification
only. The processes described in this paper have
been run on the IBM 7090. It is the intention
of this paper only to introduce the problem and
describe the solution strategy. A following
paper will report in detail on the results of
numerous experiments that have been per
formed to test the behavior of the stratification
process when applied to various types of files.

The desirable stratified descriptor language
is described in Section 2, and how this structur
ing fits into the retrieval system is discussed
in Section 3. The problem that faces us after
that is establishing the feasibility of a process
leading to such a stratified stiucture. Several
approaches to forming exclusive groups have
been suggested; however, the entire vocabulary
is involved in the process of accommodating
changes.! Instead, to satisfy the flexibility
needs stated above, a heuristic process is sug
gested, which progressively increases the num
ber of descriptors involved until a desired

* This is long known and well illustrated by the
quotation: "When I use a word," Humpty Dumpty said
in rather a scornful tone, "it means just what I choose
it to mean-neither more nor less."

"The question is," said Alice, "whether you can make
words mean so many different things."

"The question is," said Humpty Dumpty, "which is to
be master-that's all." Through the Looking Glass,
Lewis Carrol, Macmillan and Co., London, 1872, p. 124.

change is accommodated. To,\xlard this end a
process is flow charted in Section 4 that, we
judge, should achieve the desired stratification.
N ext, a small scale simulation has been carried
out in Section 2 to further illustrate the process.

2·. DESCRIPTION OF THE DESIRED
STRUCTURE OF A DESCRIPTOR
LANGUAGE

An entire file or library consists of many
items. Each item is categorized by a set of
descriptor words, called the description of the
item. The totality of descriptors represents
the vocabulary of the descriptor language,
which is expandable.

The desired stratification of the descriptor
language consists of separating the entire
vocabulary into attribute groups. The descrip
tors in each attribute group represent exclusive
values, i.e., no item description contains more
than one descriptor from a single attribute
group. Thereby an attribute-value stratifica
tion, illustrated in Figure 1, is obtained. The
only condition here governing the separation
of . the descriptor vocabulary into attribute
groups is that descriptors representing values
in a single attribute would be exclusive. The
attribute groups are defined as being inclusive
in that a description of an item in the informa
tion file may contain descriptors belonging to
any combination of attributes.

The field of information retrieval includes a
diversity of files ranging over business, scien
tific and language data. The stratification of
business data in the structure portrayed in Fig.
1 is sometimes obvious as its importance has
been evident to the initiators of the particular

ATTRIBUTES NO.1 NO. 2 NO. f

~r ~ = 1 ~ =1 en

~l
w _ w _ w- w

VALUES IN ::> - ::>- :::>- ::>
...I - ...1- ...1- ...I

EACH COLUMN ~ = 4= ~ ~ J
4

ARE EXCLUSIVE :> -
> = j > =j

~ = N_ ,:,/!- -0-= '0- ~-

Figure 1. Schematic diagram of a descriptor language
with two strata: f attributes and dk exclusive values
per attribute (1 ::::; k ::::; .f).

AUTOMATIC STRATIFICATION OF INFORMATION 231

business system. An example would be a mili
tary personnel file. Such a file may have a very
large number of items but relatively few de
scriptors. The attributes in the descriptor lan
guage would be age, rank, serial number, name,
height, etc., while the specific years of age, the
specific rank, specific serial number, the alpha
betic breakdown of the name, specific height,
etc., would be values corresponding to the re
spective attributes. In scientific problems, the
stratification of the descriptor language is very
complex. It is the contention of this paper
that both business and scientific problems can
be organized into attribute-value strata and
thereby handled efficiently in an information
retrieval system.

The ASTIA Catalog is an example of a sci
entific i:nformation retrieval system. It differs
from the personnel file in that it has a large
number of descriptors. The structure of the
ASTIA descriptor language is portrayed in
Fig. 2. As is shown, it is organized in three
strata: The descriptor vocabulary of up to
10,000 descriptors is divided among 19 fields
which are distributed into 292 groups. * An
example from this catalog is: Field: aeronau
tics, Group: aerodynamic configurations, De
scriptors: air foil, airplane model, etc. The
position of this example in the stratified ASTIA
language is illustrated in the middle of Fig. 2.
This stratified structure is generated by the
human analysts. It is expandable by the analyst
to include any degree of specialization but is
lacking as to any organized or algorithmic
structuring. Fig. 3 illustrates the structure of
a descriptor language similar to ASTIA but
structured in exclusive attribute-value groups.
The stratification into three levels,. similar to
ASTIA can be maintained. The entire descrip
tor vocabulary is divided into f inclusive at
tribute-groups. On the average, then, the
number of p.xp.ln~ivp Vnlllp.~ niPl'" ~tt1"ihllt£LO'TnllT\

---------. - . -----...... .1::'--- "'" ,..,,~""'-" b.&.'-J\A."t'

is obtained by dividing the entire vocabulary
(assumed to be 10,000) by the number of at
tribute-groups, f. (If f is taken as f = 40, then
there are approximately 250 values per attri
bute; the choice of f will be discussed further.)
The attribute-groups in Fig. 3 correspond in

* Since preparing this paper the number of fields,
groups and descriptors in ASTIA has been reduced
through a revision.

ASTIA

19 FIELDS

\

292 GROUPS/ \
ON THE \ /
AVERAGE 01,1 01,2 Ol,k--- Ol,?
15 GROUPS I I I .

09,1

PER FIELD [1 :
I

AIRFOILS
AIRPLANE MODELS

104 DESCRIPTORS
ON THE AVERAGE
30 DESCRIPTORS
PER GROUP

19,2

Figure 2. Schematic diagram of ASTIA descriptor
language with three strata: 19 fields, 292 groups ac
commodating up to 10,000 descriptors.

strata level to the fields in Fig. 2. Another level
of stratification is obtained by dividing the
values corresponding to one attribute-group
into the individual attributes which correspond
to the same level as "groups" in the ASTIA
system.**

It is our contention in the following that a
descriptor language of the size of the ASTIA
Catalog can be divided into a relatively small
number of exclusive-attribute groups (less than
40) . That such a separation into attribute
groups is possible can be satisfactorily demon
strated in two ways. First, by experimenting
with processes that perform such separations,
which is the subject of Sections 4 and 5 of this
article, and second, by a combinatorial and sta
tistical treatment of the subject which are so far
incomplete and too lengthy to be described here,
However, our initial assumption that such a

** So far this second level of stratification was at
tained manually. Development of machine processes for
the second level of stratification has just begun. The
determination of the sub-groups is based upon associat
ing descriptors, with inclusive descriptors in other at
tributes. The attributes in a single attribute-group may
"overlap" in the sense that they have some values in
common. Then inclusive attribute groups are forms
consisting of one attribute from any attribute group.

232 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

ASTIA

\
\
\
\
\
\

NO. 2-- ---- NO. k- - -- - NO. f (:40 ?)
ATTR!BUTE-
GROUPS NO.1

A
ATTRIBUTES 0,1 0,2 Ol,k

I I I
I ______ _

I

~
dl VALUES
IF f .. 40, THERE ARE
250 VALUES/ATTRIBUTE-GROUP
ON THE AVERAGE.

A
f,l f,2 000 f,k f,2

I I I I

Figure 3. Schematic diagram of descriptor language
with three strata that is proposed for possible use in
ASTIA. The attributes are inclusive, but the values
corresponding to a single attribute are exclusive.

separation is possible was based on statistics
of descriptor distributions in descriptions of
items and on the probabilities of existence of
a solution to the descriptor separation problem.

Available ASTIA data indicates that the
longest description of a document in that file
consists of 20 descriptors.1 Therefore, there
exists 20 "inclusive" descriptors. These must
then belong to at least 20 exclusive attributes.
In Figure 3, 40 exclusive attribute-groups are
assumed (f = 40) with an average number
of values per attribute group corresponding to
250 (dk average = 250 = d1 = d2 = da, etc.,)
where f is a reasonably small number slightly
larger than the minimum number of such at
tributes (which is for the case of ASTIA equal
to 20). This arrangement is such that descrip
tor combinations which would contradict the
exclusiveness of descriptors in each attribute
group correspond to descriptions not actually
used in the file. Since the latter consists of the
great majority of such descriptions, intuitively
the arrangement of descriptors in a relatively
small number of exclusive attribute groups ap
pears possible.

Human initiation of such a stratified descrip
tor language mayor may not precede the ma
chine process. The descriptor vocabulary may
be stated in a table where the columns corre
spond to attributes. The human initiator of the

file would examine a number of incoming items
and assign the descriptors to specific columns,
or the machine process, proposed in Section 4,
can either initiate the assignment of descriptors
to exc1usive-attribute-groups or continue such
a process after the initiation has been done by
humans.- This assignment is based entirely on
the descriptions of the items coming into the
file. Also, a human monitor can again use his
judgment from time to time in transferring
descriptors from one attribute group to another
or to initiate new attribute groups. He can also
create new descriptors by combining a number
of descriptors previously used, into a new one,
and by assigning this combination as a new
value to a specific attribute.

A decrease in the total number of attributes
f improves tetrieval and item addition-dele
tion efficiency. This is indicated in the next
section. Descriptors are assigned positions in a
complete description (by belonging to a specific
attribute group); the positional significance
reduces the number of digits necessary for a
description and it is sufficient to define such an
individual descriptor only within an attribute
group, instead of defining it in the larger vocab
ulary. In other words, the context within which
a descripto-r is stated conveys part of the in
formation. Other advantages of such a system
are evident from the application described in
the next section.

3. FUNCTION OF DESCRIPTOR LAN
GUAGE STRATIFICATION IN INFORMA
TION RETRIEVAL

The block diagram of Fig. 4 outlines the tasks
performed by the attribute assignment pro
grams in the overall information retrieval proc
ess of the Multi-List system.2 , a The process
is initiated by orders for retrieval (or storage) .
This is accompanied by an item description
which may appear in natural language (Block
1 of Fig. 4). In Block 2 the input description
is encoded in machine code in accordance with
the Adjusted Vocabulary, which is an updated
list of descriptors previously encountered. This
encoding may utilize a tree structure which
translates a natural language descriptor into
an updated machine code.4 As will be shown,
the machine code may 'change frequently as it
is designed to make machine operation efficient.

AUTOMATIC STRATIFICATION OF INFORMATION 233

DESCR IPTION ATTRIBUTE MULTI-IN ADJUSTED BALANCED
NATURAL ~ ~ ASSIGNMENT r--+ f---+ ASSOCIATION
LANGUAGE VOCABULARY PROGRAM TREES AREA

• I
I I L ______ ~

Figure 4. Gross flow chart showing the part of the Attribute Assignment Program in the Multi-List Information
Retrieval process.

In the case of a new descriptor, which does not
appear on the Adjusted Vocabulary, it is proc
essed in Block 3 and then entered in the Ad
justed Vocabulary in Block 2. A description
input is referenced to the attribute assignment
program block when two or more descriptors
in the incoming description have previously
been assigned to the same attribute group; i.e.,
previously they may have been considered "ex
clusive," while in the new item they are found
to be "inclusive." Thus, there is a reassign
ment of such descriptors in Block 3, and then
a correction of the Adjusted Vocabulary is
called for.

Block 3 contains a program which takes as
its input a new descriptor, or one that has been
previously reassigned, and assigns it to an ex
clusive attribute group. It may happen that a
previously assigned code will have to be reas
signed. These "adjusted" codes, and additional
codes which may change in the attribute assign
ment program, are fed back to the Adjusted
Vocabulary. Attributes are assigned fixed posi
tions in a description. A predetermined num
ber of positions constitutes a partial descrip
tion, which is used as a reference key. The
item is then stored in a simulated associative
memory as follows: 5 The keys are entered in
respective tree structures in Block 4, together
with the address of a corresponding. item, head
ing a list of all items containing the given key
in common. The tree performs a decoding func
tion which locates the list for retrieval (or stor
age) in the multi-association area shown in
Block 5.

The purpose of the Adj usted Vocabulary is
to maintain freedom of changing machine code
assignments of descriptors, without affecting

the descriptor language used to communicate
with the machine.

Consider a description to be an unordered
set of descriptors. Each descriptor, in turn, is
decoded by the Adjusted Vocabulary to a num
ber pair i,j, where i is the attribute-group
designator, and j is a serial index designating
the value within the attribute group. If the
given descriptor had appeared previously then
it has a current i,j entry in the Adjusted Vocab
ulary, otherwise it is put aside until all descrip
tors in the description have either been assigned
current i,j values or also have been put aside.
If any two descriptors have been assigned the
same i value in a current description, they are
in conflict, since the same i value implies exclu
sivity while being in the same current descrip
tion implies inclusivity. One of these conflicting
descriptors is renamed to another column (at
tribute group) by a Renaming Process within
the Attribute Assignment Program (Block 3).
Its i,j code (and possibly others) changes and
is immediately adjusted on the Adjusted Vocab
ulary (dotted line from Block 3 to 2). When
all conflicts have been resolved the Attribute
Assignment Program assigns the other new
descriptors previously put aside to unused col
umns. It is to be noted that the renaming proc-
eSS, when required, must not introduce unre
solved conflicts into the previous ensemble of
descriptions in the system.

The Attribute Assignment Program assigns
all input descriptors (initially) into f attribute
groups. Note that the word "initially" is used
in connection with f. This means. that, it should
always be possible to increase or decrease the
number of attribute groups should it be found,
either by machine or human, to be necessary.

234 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

4. THE AUTO:rvIATIC ATTRIBUTE
ASSIGNMENT PROGRAM*

The entire descriptor vocabulary may be ar
ranged in a two dimensional matrix consisting
of columns and rows. It is the object of this
program to organize all input descriptions into
f (initially) column.s, where, each colum repre
sents an exclusive attribute group.

The rule by which the exclusive attribute
columns are formed is simply that all descrip
tors in a given column must be exclusive. The
words "column" and "row" will become clear
in the example which follows, where the exclu
sive descriptors are arrayed into columns, and
inclusive descriptor groups are represented by
rows.

The process for dOing this is first briefly
described and is then followed by a correspond
ing set of steps and by a flow chart.

For a given input descriptor there may be
none or one or more exclusive columns to which
it can be assigned. If there is one exclusive
column then obviously the descriptor is placed
there. If more than one exclusive column exists,
then the descriptor may be assigned to any of
them. This is called a first order renaming as
it is performed in one step.

In the case where there are no exclusive col
umns to which the descriptor may be assigned
there arises the necessity of shifting descrip
tors to other columns in order to provide an
exclusive column. For instance, if a descriptor,
(i,j) exists in a column, Gi , thus preventing
Gi from being exclusive to the input conflicting
descriptor, (i,j) may be moved to another col
umn, C k. By such a process (i,j) would become
(k,j') and the input descriptor could be as
signed to Gj thereby becoming (i,j). This does
not mean that the input descriptor has the same

* There are a number of ways to solve the renaming
problem. The method selected here lends itself to a
heuristic which directs a search for certain goals
although it is not exhaustive. Other methods which
systematically scan all combinations of a given at
tribute-value configuration have also been considered,
but have been rejected on the basis of uncertain con
vergence properties. Future research is intended to
contrast the efficiency of these latter techniques with
the heuristic approach outlined in this paper. Prominent
among the combinatorial techniques is the Walker back
track method;7 the Sk sets and a linearly ordered set
A, both required by the Walker algorithm, have been
defined by the authors for the stratification problem.

attribute as the former descriptor in Ci, but
that Ci now represents a different set of exclu
sive attributes. Such a process is called a sec
ond order renaming consisting of two steps,
that of shifting descriptors fronl one column
and that of first order renaming. It is also pos
sible that the input descriptor be -in column G/o

in which case it is swapped with (i,i); how
ever, the renaming is still of second order. The
strategy defining the order of renaming will
be further discussed.

If for every Gi there is no descriptor (i,i)
which can be shifted to some G", so as to make
Gi exclusive to the input descriptor~ then a third
order renaming is attempted. Here a (k,j) in
a column Gk can be shifted to an exclusive col
umn Gm so as to make Gk exclusive to (i,i).
Upon the shift of (i,j) from Gj to G", Gi becomes
exclusive to the input descriptor, which can be
assigned to Ci • This process is a third order
renaming, and although it can inductively be
extended to the nth order, the number of de
scriptors and descriptions involved soon become
prohibitive in terms of processing time, for it
must be realized that the (i,j) in the above
scheme are actually sets, (i,l), (i,2) ... (i,s),
of descriptors which must be shifted, rather
than individual descriptors, and each descriptor
in this set may be renamed to a different
column.

The Transition Table

The process and the order of a renaming
can be systematically defined through the use
of the Transition Table illustrated in Figure 5.

The rows in the table consist of all descrip
tions in the file involved in the conflict and
renaming, up to but not including the conflict
ing description. Previously processed exclusive
descriptors of the descriptions fall into specified
columns of the table. A conflict is created when
two descriptors in a giv~n description (in item
6 of the example) have previously been as
signed to the same column. This is resolved by
a process which successively finds sets of de
scriptors in a given column, which if renamed
to other columns would enable one of the con
flicting descriptors to be renamed. These sets
are called transition sets, Tp , and contain the
descriptors of some column which enter into
the pth transition,. The maximum of p is the
order of the renaming. Transition arrows are
drawn in the Transition Table (Figure 5) for

AUTOMATIC STRATIFICATION OF INFORMATION 235

~ I 2 3 4
ITEM

I I ,I
2-~ 2,1 - r-4 4,1

2 -~
2,1. r-L- 3,1 4,2

3 .:! f-+- 2.2-
2 ~ I ,I ~ 3,2-

3
~ 3.2-~ 4 -I, I

5
2.2 -~ 4,2

6 1.1 -
4.1

1.2

Figure 5. Example: Third Order Renaming
Attribute-Value Table for a Third Order Renaming
Tl = [(3, 1), (3, 2)]
T2 = [(2, 1), (2, 2)]
T 3 =[(1,1)]

each set Tp , and correspondingly numbered with
the value of p.

The example in Figure 5 illustrates a third
order renaming, where the conflicting descrip
tors are (1,1) and (1,2) in item 6. (The ex
ample is being used for illustration and is not
intended to represent the minimum order solu
tion for this conflict.)

Alternatively the transition arrows can be
represented as an n level "tree" of goals and
sub-goals, which immediately makes evident an
exponential increase in memory requirement
with increasing renaming order. The tree rep
resentation shown in Figure 6 also suggests
more clearly the structure of the program
needed to effect an nth order renaming. How
ever, when swapping is involved, as in the
example, the "tree" can branch upward as well
as downward. *

Starting from the top of the "tree," the pri
mary goal is to rename the conflict descriptor,
(1,1). The first two subgoals are the renaming
of (2,1) and (2,2). A subgoaI of (2,2) is the
renaming of (3,2) which has no further sub
goals since it can be renamed first order. But

* Insofar as trees only branch downward, the above
representation is not a tree in the true mathematical
sense. The terminology of goals and subgoals and tree
description is borrowed, though not necessarily equiva
lent to, from reference 6.

p /(1,1)\
3

/(r (2,2)

I
2

1 1
(3,0 (3,2)

1
Figure 6. A "Tree" Representation of the Third Order
Solution of the Example.

the renaming of (2,1) has the subgoal (3,1)
which in turn has the subgoal (2,1), thus indi
cating a swap. The simplicity of the tree, at
this point, belies the complexity of the program
because (3,1) can only be swapped with (2,1)
if it does not obstruct any higher goals, namely
the (1,1)-(2,1) goal. If, for example, (3,1)
had occurred in the description of the 1st item,
this swap would not be possible.

Some upper limit on the order, n, should be
set in a computer program, though n may be
a parameter controlled by some performance
index. Any conflict reaching that order would
be considered an absolute conflict. At this point
the number of exclusive attribute sets, /, may
be increased by one, or the input of the descrip
tion which is not resolved may be shelved for
the time being or recourse is made to a human
monitor. In time, the number of attribute
groups, j, may thus increase.

At any given time there will be a number of
errors in the system, in the sense that a human
would not consider as logically exclusive all of
the descriptors classified by the machine as ex
clusive. But the machine can only relate what
it has seen and it is the entire body of preced
ing information (descriptions) which deter
mines in general the state of the system. Use
can also be made here of the human, who peri
odically monitors the system and introduces

236 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

changes to remove what appear to him to be
errors. He effectively adds a "correlative im
pulse" to the system which reduces or elimi
nates the error. Note, however, that the actions
of the automatic program are intended likewise
to make the system tend toward an errorless
state, but that its success depends upon the
correlation of all past descriptive data and the
chronological sequences of its inputs.

5. PROGRAM DESCRIPTION IN FLOW
CHARTS AND CORRESPONDING STEPS

The above renaming program is further de
scribed by the flow charts for first and second
order renaming in Figs. 8 and 9. The renaming
program is part of a larger process, the Attri
bute Assignment Program, described in Fig. 7.
In the following, the flow charts are explained
with the aid of steps corresponding to the num
bered boxes in the flow charts.

The input is a description D which consists
of a sequence of descriptors db d2, ••• , dh ••• ,

dr. Two constants appear in the program, kb
and k 2• kl is the allowable number of renam
ings, and .k2 is a "0" or a "1" indicating re
course to a human monitor or a continuation
of program control calling for an increase in
the number of columns, respectively .. f indi
cates the total number of columns at a given
time, and the constants are subject to change
by the machine operator during the course of
the program.

The process steps of the Attribute Assign
ment Program as outlined in the flow chart of
Fig. 7, are as follows:

Figure 7. Flow Chart of the Attribute Assignment
Program.

1. index the descriptors 1 through T. Set
k=l

2. n indexes the order of renaming. Set
n=l

3. Has descriptor dk been processed previ
ously? If the answer is in the affirmative, the
Attribute Assignment Program had previously
given the descriptor a code (i,j) , indicating
that it was placed in the ith column and was
the jth descriptor in the column. In this case,
go to step 4. If dk has not been processed previ
ously, go to step 15.

4. Since the descriptor name (i,j) indicates
that its previous column was Ci we try to place
it there; however, if some preceding descriptor
in the current description (db d2 , •• • dk-d was
placed in C i , then two descriptors that were
previously assumed exclusive are now found to
be inclusive. Therefore, if a descriptor from
D has not already been placed in Ci , go to step
5, otherwise, go to step 6.

5. Put dk into Ci and go to step 10.
6. Have kl renamings been performed? If

not, go to step 7. If so, go to step 12.
7. Perform an nth order renaming. The re

naming is required because two (or more) of
the descriptors' in D are in the same column.
Let these two descriptors be denoted (i,jl) and
(i,j2) . (If there are more than two descriptors
in a column then the following applies to the
entire set of such descriptors taken pairwise.)
Figures 8 and 9 show first and second order
renamings respectively. (The details of a gen
eral micro program flow chart for an nth order
renaming are omitted due to space limitation.)

8. Has the renaming succeeded? If not, go
to step 9, otherwise go to step 10, and also feed
the new i,j code back to the Adj usteq Vocabu
lary.

INPUT

7.2

7.8 : : •

m+l m m : q EXIT ~
1"'7.7

(RENAMING
UNSUCCESSFUL)

Figure 8. First Order Renaming.

(RENAMING
SUCCEEDED)

AUTOMATIC STRATIFICATION OF INFORMATION 237

7.9

7.11
7.10

IS THERE A (m, il 11'1 Cm

PUT ALL WHICH IS EXCLUSIVE TO

COLUMI'IS I'IOT !!!! OF THE t COLUMfo/S,

II'IOOI'ITO Ck, AI'ID WHICH WHEI'I

LIST T, REMOVED FROM Cm
WOULD MAKE Cm EX-

K tl't2 ,· ,.tq
CLUSIVE EITHER TO

(i,ill OR (i,izl ?

7.IZ

(m,il-Ck

(i,ill OR

(i,i 21- Cm
YES

(i,i 2 1OR

(itjl)~Ci

(REI'IAMII'IG
UI<ISUCCESSFULI

Figure 9. Second Order Renaming.

EXIT

(REI'IAMII'IG
SUCCEEDEDI

9. Increase n by 1 and return to step 6.
10. Have all r descriptions (dh d2 , ••• , dk - r)

been placed? If not, go to step 11. If so, go to
step 16.

11. Increase k by 1 and go back to step 2.
12. Is kI set to "0," calling for a human moni

tor? If so, go to step 13 otherwise go to step 14.
13. A human attempts to make an appro

priate renaming so as to make some column
exclusive to dl • If he cannot do so, then he
returns control to step 14. If he succeeds, then
the program feeds back all new i,j codes to the
Adj usted Vocabulary.

14. The number of columns is increased by
one and dk is put into this new column. The
new i,j code is fed back to the Adjusted Vocab
ulary and the program returns to step 10.

15. This descriptor has never been processed
by the Attribute Assignment Program before
and must be assigned a column and a position
in the column, i.e., an i,j code. These assign
ments are made, however, after all those de
scriptors that have an i,j code have been placed;
therefore, this descriptor is put aside onto a
list L, and the program returns to step 10.

16. All of the i,j coded descriptors have been
assigned places, and what remains is to drop
the descriptors put aside on the list, L, into the
remaining unused columns. There have to be
enough columns available because the maximum
description length always determines the mini
mum number of columns.

6. A HAND SIMULATED EXAMPLE

In the following example a list of seven
items are to be encoded into exclusive attribute
groups. There are four tables used to aid in
the explanation of the process. Table 1 pre
sents the seven input items as they would ap
pear at the machine input, in natural language;
however, for conciseness, two digit decimal
numbers are used to represent natural language

TABLE 1
Descriptions Corresponding to First Seven

Input Items in Chronological Order.

1. 11, 19, 32
2. 32, 25, 08, 18
3. 11, 18, 2,5
4. 41, 16, 08
5. 11, 41, 34, 25
6. 16, 34, 25, 08
" ... ~ nn
I. ~o,.:>~

descriptors. Table 2 consists of the Adjusted
Vocabulary. The numbers without parentheses
indicate the i,j codes of the descriptors at the
end of the processing of the seven items. The
parenthesized codes are the intermediate codes
assigned during the process and later renamed.
The i,j code consists of four digits; the first two
designate i and the last two j.

TABLE 2
Adjusted Vocabulary

K a tural Language
Descriptor

11
19
32
25
08
18
41
16
34

0101
0201
0301

(0102)
(0202)
0401

(0102)
(0302)
(0203)

i,j
codes

0501
0102

0402
0202
0302

Table 3 shows the placement of descriptors
into appropriate columns. The i,j cod~s are
used to establish the placement in Table 3, but
only the j part of the i,j code is retained since
the column indicates "i." However, in the Ad
justed Vocabulary the entire i,j code is re
corded. As an aid in following the problem,
the natural descriptor name is included in pa
rentheses in Table 3.

There is a short discussion on the entry of
each item in Table 3, that relates the algorithm
to the flow chart in the preceding section (Fig
ure 7). Table 4 is auxiliary to the discussion
and shows the input items with their current
i,j codes (current at the time of addition of
each item). Also Table 4 is effectively a syn
thesis of the information in Tables 1 and 2, and
it is inserted for convenience of explanation.

238 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

TABLE 3

Attribute Assignment Columns

Column
I After Addition

Items 1
,

2 I 3 I 4 I 5 I of Item

1 01 01 01 1

1 10(11) 01 (19) 01(32) 2 2 02(25) 02(08) 01(32) 01 (18)

1 01 (11) 10(19) 01(32)
2 02(08) 01(32) 01 (18) 01(25) 3
3 01(11) 01 (18) 01(25)

1 01(11) 01 (19) 01(32)
2 02(08) 01(32) 01 (18) 01(25)
3 01 (11) 01 (18) 01(25) 4
4 02(41) 02(08) 02(16)

1 I 01(11) 01(19) 01(32)
2 I 02(08) 01(32) 01 (18) 01(25)
3 01 (11) 01 (18) 01(25) 5
4 02(08) 02(16) 02(41)
5 01 (11) 03(34) 02(41) 01(25)

1 01(11) 01(19) 01(32)
2 02(08) 01(32) 01(18) 01(25)
3 01(11) 01 (18) U.1(25)
4 02(08) 02(16) 02(41) 6
5 01(11) 03(34) 02(41) 01(25)
6 02(08) 03(34) 02(16) 01(25)

1 01(11) 01(19) 01(32)
2 02(08) 01 (32) 01 (18) 01(25)
3 01(11) 01(18) 01(25)
4 02(08) 02(16) 02(41)

I

5 01(11) 02(34) 02(41) 01 (25)
6 02(08) 02(16) 02(34) 01(25)
7 02(16) 01(32)

TABLE 4

A uxiliary Table to Discussion of Table 3

Descriptors
Item Natural

ij
Natural

ij
Natural

ij
Natural

ij Added Lang. Lang. Lang. Lang.

1 11 ~ew 19 Xew 32 New
2 32 0301 25 ~ew 08 New 18 New
3 11 0101 18 0401 25 0102
4 41 New 16 Kew 08 0202
5 11 0101 41 0102 34 Xew 25 0501
6 16 0302 34 0203 25 0501 08 0202
7 16 0302 32 0301

Discussion of Table 3 (Entry by Entry) Figure 7. All of the descriptors would go onto
list L (Block 15) and would then be distributed
among the first three (unused) columns. The
sequence of blocks (Figure 7) traversed in this
assignment is as follows:

1. The first description contains three new
descriptors, none having been processed previ

ously; therefore, r = 3 in the flow chart of

AUTOMATIC STRATIFICATION OF INFORMATION 239

k = 3

I I
1-2-3-15-10-11 ~16.

i I
I Loop 3 times I
I I

The number sequence is read from left to
right while .loops are indicated by reverse di
rected arrows. The number of times a loop is

Only column 05 yields to a first order renaming;
hence, descriptor 25 (0102) is renamed to col
umn 05 and becomes 0501, and the Adjusted
Vocabulary is adjusted by erasing the code
0102 for descriptor 25 (denoted by parenthe
sized 0102 in Table 3) and entering 050l.
Descriptor 11 (0101) then remains in column
1 and descriptor 18 (0401) in column 04. The
process flow chart steps are:

i I I
1 - 2 - 3 - 4 - 5 -10 -11 ~6 - 7 -7.1 * -7.2 -7.3 -7.5 -7.7 -7.8
iii I
I Loop 2 times I I Loop 2 times I

I
~7.4-8-10-16.

traversed (including the first pass) is marked.
The loop exit is indicated by a line out of the
top or bottom of some step within the loop.

2. In the second item, descriptor 32 has an
assigned name of 0301 and hence can be as
signed immediately to column 03. The remain
ing 3 descriptors are new and are dropped
arbitrarily into columns 01, 02, and 04. The
descriptors receive an assigned code when they
are dropped into columns, and these codes are
fed back to the Adjusted Vocabulary.

The sequence of process flow chart steps used
to assign item 2 are:

1-2-3-4-5-10-11 ~2-3-15-10-~16.
i I
Loop 3 times I
I I

3. In item 3 all three of the descriptors have
previously been assigned codes, but descriptors
11 and 25, which were previously exclusive and
were in column 01 are now inclusive because
they both appear in the same description. A
first order renaming is sufficient to separate
the two inclusive descriptors. Since column 04
is a part of the item (descriptor 18) either 11
or 25 can be moved to columns 02, 03, or 05.

4. In item 4 descriptor 08 can be dropped
into column 02 again without conflict, and de
scriptors 41 and 16, which have never been
assigned a code are dropped into columns 01
and 03. The reader must note that Table 3 is
only a schematic used as a guide in explaining
the process. The information contained in that
schematic is stored explicitly in the multi-asso
ciation area as the assigned descriptor code
number. Hence, when we say that a descriptor
is "dropped" into a column without conflict it
merely means that an encoding on a tree can
be initiated immediately without a renaming.

The process steps for the entry of item 4 are:

I I
1-2-3-15-10-11 ~4-5-10-16.

i I
I Loop 2 times I

5. In item 5 descriptors 11 and 41 are seen
to be inclusive. A first order renaming again
suffices to remove the conflict. Descriptor 41
(0102) is renamed to column 04 (becoming
0402)). The process steps are: (Let jl = 02,
",,- _1'\'1 __l.l. __ l'\.n.L _1\.0 .L _"''' '\

J:!. - V.I., aHU VI - V.G, v2 - VV, u3 - V':I:.)

I
1 Loop 2 times

1-2-3-4-5-10-11-2-3-4-6-7-7.1-7.2-7.3-7.5-7.7-
I

1
7.8-7.4-8-10-11-2-3-15-10-11-2-3-4-5-10-16.

I

* Here block numbers refer to Fig. 8 for details of
the renaming process. Let j1 = 02, j2 = 01, t1 = 02,
t2 = 03, ta = 05.

240 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

6. The process steps for entering item 6 are:

1 1
1-2 - 3 - 4 - 5 -10 - 11 ~6 - 7 -7.1-7.2 -7.3 -7.4 - 8 - 10 -16.

r Loop 3 times I

7. Here for the first time we encounter a
second order renaming. Descriptors 16 and 32
must be separated, but both are inclusive to
every other column. The second order renam
ing is effected by shifting descriptor 34 (0203)
from column 02 to 03 (renaming it to 0302)
and 16 (0302) from column 03 to 02 (renaming
it to 0202). Then descriptor 32 (0301) can be
dropped into column 03 without conflict. The
process flow chart steps are:

ment, Remington Rand Univac, Blue Bell,
Pa., June 1961. Also see Status Report No.
1, Jan. 1961 for procedure used to schedule
technical conferences.

2. The Multi-List System Technical Report
No.1. Contr. NONR551 (40), The Moore
School of Electrical Engineering, November
1961.

3. PRYWES, N. S. and GRAY, H. J., The Multi
List System for Real Time Storage and

(Let il = 01, i2 = 02, and tl = 01, t2 = 02, t3 = 04, t4 = 05.)

I Loop 4 times
1

1-2-3 = 4-5-10-11-2-3-4-6-7-7.1-7.2-7.3-7.5-7.7

~------------------------------_I
1

7.8 = 8-9-6-7-7.9*-7.10-7.11-7.12-8-10-16.
1 __ •

7. CONCLUSIONS

The strategy described here has been pro
grammed for the IBM 7090. Experiments, to
be described in a separate report used first
artificially prepared input descriptions and a
limited amount of ASTIA live data. In all these
cases the machine was able to discover rapidly
a predetermined or satisfactory stratification.
More extensive experimellts using ASTIA data
are currently in process.

REFERENCES

1. Optimization and Standardization of Infor
mation Retrieval Languages and Systems.
Technical Status Report No.2, Contr. AF49
(638) 835, Applied Mathematics Depart-

* Here reference is made to the blocks in Figure 9.
m = 2, j = 3, k = 3

(i, j2) = 0302 is exclusive to CO2 when 0203 is
removed.

Retrieval, Proc. of the IFIP Congress 1962,
VIII, 1, p. 112-116, August 1962.

4. LANDAUER, W. 1. and PRYWES, N. S., A
Growing Tree for Descriptor Language
Translations, Proc. of the 1962 Symposium
on Symbolic Languages in Data Processing,
March 1962.

5. PRYWES, N. S. and GRAY, H. J., The Organi
zation of a Multi-List Type Associative
Memory, Gigacycle Computing Systems.
AlEE General Meeting, Jan. 1962, p. 87-
101.

6. NEWELL, A., SHAW, J. C., and SIMON H. A.,
Report on a General Problem-Solving
Program, The RAND Corporation Paper,
P-1584, January 1959.

7. WALKER, R. J., An Enumerative Technique
for a Class of Combinatorial Problems,
Proc. of Symposia in Applied Mathematics,
Vol. 10, p. 91, 1960.

A COMPUTER APPROACH TO CONTENT ANALYSIS:

STUDIES USING THE GENERAL INQUIRER SYSTEM

Philip J. Stone, Harvard University
Earl B. Hunt, University of Sydney

The General Inquirer1 is an IBM 7090 pro
gram system that was developed at Harvard in
the spring of 1961 for content analysis research
problems in the behavioral sciences. The first
part of this paper describes this system and
how it has been used. During the summer of
1962, the General Inquirer was merged with the
Hunt Concept Learner2,3 to produce a method
for automatic theme analysis4 • The second part
of this paper discusses the rationale behind this
development and some recent signs of its future
promise.

Within the behavioral sciences, much of the
ra w data to be analyzed consists of written text.
A psychologist, for example, may hand you an
inkblot and ask you to describe what you see.
A public opinion interviewer may ask for your
free answer to his questions. A sociologist may
record conference group processes and make
transcripts of tape recorded sessions. A polit
ical scientist may collect diplomatic notes. In
each case, the data is the same: written ma
terial such as you are reading right now. From
the viewpoint of the behavioral scientist, this
is raw data, consisting of words and punctu
ation marks recorded on a page. The analysis
is yet to be done.

As defined by Berelson5 in 1952, "Content
analysis is a research technique for the objec
tive, systematic and quantitative description of
the manifest content of communication". Berel
son uses the term ",objective" to indicate that
the procedure should be explicit, one that can
be replicated exactly by other analysts. "System-

atic" means that "all the relevant content is
to be analyzed in terms of all the relevant cate
gories" in order to secure unbiased information
for the hypotheses being tested. "Quantitative,"
of course, refers to the process of counting posi
tive or negative instances. Finally, in order to
do all this, the procedure has to be based on the
"manifest" aspects of the text; however, as
Berelson points out, "the results of content
analysis frequently serve as a basis for the
'interpretation' of latent content".

The General Inquirer was developed to help
further the rigor of these procedures. In de
scribing a content analysis procedure to a com
puter, nothing may be left implicit for processes
of intuition. The program is an "objective" de
scription of the content analysis process, it must
operate on "manifest" features of the text, and
it can be designed to yield carefully counted
"quantitative" results. Once the computer
handles the task, the program is "systematic"
in carrying out all of the details of the analysis.
Since a systematic program may analyze many
variables at once, one may discover trends that
are indeed "latent" to casual observation.

Verbal text Inay be regarded as the result of
many different psychological processes acting at
once, each revealing its influence in the final
product in different subtle ways. Our classifica
tion procedures in the General Inquirer are con
cerned with recurrently expressed or assumed
values, underlying types and intensities of
motivation, perceived demands of the environ
ment, and institutionalized structuring of both

"This work was supported by NIMH (JSPH M-4169) and ONR (TOSK 047-003). IBM 7090 computing has been
done with the cooperation of the computation centers at MIT, Harvard, D.C.L.A. and Stanford."

241

242 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

demands and action as these may be shown
directly or indirectly by text materials.

One common purpose of the General Inquirer
is to find psychological indexes that will dis
criminate between two text sources. While mak
ing such discriminations is indeed a problem
in identifying authorship, it differs from the
classical authorship problems (Federalist
papers, Shakespeare-Marlowe, books of Homer,
etc.) in several respects. First, each source is
usually not a· single author, but rather a group
of people. Second, our goal is not just to make
an efficient discrimination, but is also to gain
further understanding of the psychological
forces and perceived demands of the situation
that were in effect when the document was
written. If our only goal was to identify author
ship, usually we could find our best clues in
idiographic stylistic differences (noun declen
sion preferences, "while" versus "whilst,"6
etc.).

PROCEDURES

Text preparation. The alphanumeric charac
ters of the text (including punctuation) are
keypunched on IBM: cards, each card roughly
corresponding to a typewritten line with So
space fixed margins. Between-card breaks come
either between words or after a hyphen as in
regular typewriting.

System operation. The text is transferred
from the punched IBM cards to magnetic tape
by an IBM 1401 machine. The 7090 computer
then reads the alphanumeric characters and
separates them into words and sentences. Cer
tain regular word endings are removed and each
word is looked up in a dictionary. If a word is
found in the dictionary, tags indicating the
word's membership in one or more categories
specified by the investigator are attached to the
sentence. If a word is not found in the dic
tionary, it is put on a leftover list for further
examination by the investigator. The sentences,
together with their tags, are then stored on
binary tape for repeated use in inquiry pro
cedures. The investigator uses inquiry. pro
cedures to ask for the number of times (and
possibly the retrieval of each instance) where a
particular combination of tags or specific text
words co-occurred in the same sentence. Up to
a hundred such questions 11lay be processed on
one pass of the binary tape. By arranging the

questions into "question sets", it is possible to
ask about various disjunctive relationships.

If the keypunched text is marked with a
simplified form of syntactic coding, the investi
gator can rrmke inquiries not only about the co
occurrence of certain text words and/or tags,
but also can specify the syntactic relationships
that must appear between them. The computer
can also use the syntactic codes to help tag cor
rectly many otherwise ambiguous words.

A General Inquirer dictionary may be con
sidered as representing an operational explica
tion of the scientist's theory or frame of refer
ence. The investigator's questions represent
the "rules" he develops within that theory for
discriminating one kind of text from another.
Contrary to hand· content analysis procedures,
both dictionary and question inquiries can be
revised repeatedly without the necessity of re
coding or repunching the original data.

Selecting tag categories. Since dictionary de
velopment is a crucial step in General Inquirer
procedures, let us examine two different dic
tionaries currently in use. Figure 1 identifies the
tag categories employed by our third general
psycho-sociological dictionary7 for analyzing
texts of predominantly non-specialized vocabu
lary. Figure 2 gives the tag categories that Dr.
Benjamin N. Colby*, an anthropologist, uses
for studying themes in the folktales of different
cultures.

Both Colby's dictionary and our own contain
about 3500 entries each. Since the General In
quirer removes s, es, ed, ly, and ing suffix forms,
the actual number of words that can be found
in the dictionary is probably more than triple
that number.

Our psycho-sociological dictionary makes a
distinction between "first-order" and "second
order" tags: only one first-order tag may be
used in categorizing a particular entry word,
but one or several second-order tags may also be
applied. All the tags in Colby's dictionary are
first-order; each entry is associated with one
tag and one tag only. Since multiple tagging of
individual entry words can easily confuse later
analyses, the first-order, second-order distinc
tion should always be kept in mind.

* Dr. Colby is Associate Curator, Laboratory of
Anthropology, Museum of New Mexico, Santa Fe, New
Mexico. The dictionary and results referred to here are
described in an article by Colby and Postal, currently
in press in the journal, Folklore.

APPROACH TO CONTENT ANALYSIS: STUDIES USING THE GENE RAL INQUIRER SYSTEM 243

Figure 1. Third Psycho-Sociological Dictionary
(Harvard)

PERSONS
FIRST ORDER TAGS

EMOTIONS
self-all pronoun references to the personal self (I,

me, mine, myself)
selves-all pronoun references to the inclusive self

(we, us, ours, etc.)
other-all non-sex-specific pronouns for other (you,

yours, they, theirs, etc.)
male-role-all roles with specific male references
female-role-all roles with specific female references
neuter-role-all role names not connoting sex or

occupations
job-role-all roles with clear occupational reference,

theoretically open to both sexes

GROUPS
small-group-groups usually able to have face to face

interaction
large-group-collectivities usually too large for face

to face interaction

PHYSICAL OBJECTS
bodypart-parts of the body
food-articles or types of food
clothing-articles or types of clothing
tool-instrumental objects or artifacts of any kind

(broader category than hand tools)
natural-object--objects not made by man (plants,

animals, and minerals)
non-specif-obj-abstract references to objects (con

noting intellectualization)

PHYSICAL QUALIFIERS
sensory-ref-smells, colors, tastes, etc.
time-ref-references to measurement of time
space-ref-references to spatial dimensions
quantity-ref-references to units and measures of

quantity

ENVIRONMENTS
social-place-buildings and building parts; political,

social, and economic locations
naturai-world-geographical places, weather refer

ences and cosmic objects

CULTURE
ideal-value-culturally defined virtues, goals, valued

conditions and activities
deviation-culturally devalued goals, conditions, and

types of activities
action-norm-normative patterns of social behavior
message-form-names of communication media in a

very broad sense, including art objects and money
thought-form-units and styles of reasoning

arousal-states of emotional excite
ment

urge-drive states
affection-indicants of close, positive,

interpersonal relationships
pleasure-states of gratification
distress-states of despair, fear,

guilt, shame, grief, failure, or in-
decision

anger-forms of aggressive expres
sion

THOUGHT
sense-perception and awareness
think-cognitive processes
if-conditional words
equal-words denoting similarity
not-words denoting negation
cause-words denoting a cause-effect

relation
defense-mechanism-standard psy

chological terms for defense mech
anisms

EVALUATION
good-synonyms for good
bad-synonyms for bad
ought-words indicating a moral im-

perative

SOCIAL-EMOTIONAL ACTIONS
communicate-processes of transmis

sion of meaning
approach-movement toward
guide-assistance and positive direc-

tion
control-limiting action
attack-destructive, hostile action
avoid-movement away from
follow-submissive action

IMPERSONAL ACTIONS
attempt-goal-directed activity, im-

, plying effort
work-task activity
get--obtaining, achieving action
possess--owning, consuming
expel-ej ecting

: .. ~

244 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

SECOND ORDER TAGS
INSTITUTIONAL CONTEXTS-specification of the PSYCHOLOGICAL THEMES

social context of roles and actions

academic
artistic
community
economic
family
legal
medical
military
political
recreational
religious
technological

STATUS CONNOTATIONS-male-, female-, neuter-,

and job-role status implications
higher-status
peer-status
lower-status

overstate-emphatic or exaggerative
words, generally adjectives or ad
verbs (connotes a defensive style)

understate-words, generally adjec
tives or adverbs, connoting doubt
or uncertainty (connotes a defen
sive style)

sign-strong-words connoting
strength or capacity for action

sign-weak-words connoting weak
ness or incapacity for action

sign-accept-words implying inter
personal acceptance

sign-reject-words implying inter
personal rejection

male-theme-psychoanalytic symbols
of masculinity

female-theme-psychoanalytic sym
bols of femininity

sex-theme-direct or indirect refer
ences to the sex act

ascend-theme-words associated with
rising, falling, fire, and water, in
dicating concerns related to the
Icarus complex

authority-theme-words connoting
the existence or exercise of author
ity

danger-theme-words connoting
alarm or concern with danger

death-theme-words connoting dying,
end

Figure 2. Anthropological Dictionary (Colby)

1. Derived From Kluckhohn Value Categories
Determine, Order, Indeterminate
Dominate, Follow, Leader, Power, Agree
Fame, Pride, Equality, Status
Good, Evil, Suspicion
Assist, Empathy, Guest, Selfish, Rivalry, Trick, Scapegoat
Alone, Gregarious, Withdraw
Choice, Individual, Group, Reject, Punish
Chance, Curiosity, New, Protect, Caution
Independence, Dependence, Ask
Self-control, Over-indulge, Abstain
Rational, Wise, Truth, Unknown, Naive, Foolish, Anger, Happy, Sad,

Enthusiasm, Amuse, Dislike, Fear
Tense~ Relaxed
Unique, General
Quality, Quantity

APPROACH TO CONTENT ANALYSIS: STUDIES USING THE GENE RAL INQUIRER SYSTEM 245

2. Perception and Communication
A ware, See, Smell, Talk, Taste, Sound, Quiet, Bright, Dark, Heavy,

Hard, Hot, Cold, Color, Texture, Form
3. Space and Time

Little, Big, High, Low, Narrow, Wide, Fast, Slow, Place, Time, Now,
Old, Permanent, Future, Past, Building, Road

4. Self Identity
Bodypart, Beauty, Bathe, Clothing, Healthy, Sick, Pain, Ugly, Orna

ment
5. Nature

Sky, Earth, Air, Fire, Fluid, Dirt, Weather
6. Sex and Kinship

Genital (Male and Female), Sex, Male, Malesymbol, Female,
Marriage, Birth, Kinship, Kinship Affinal

7. Activities
Hunt, Husbandry, Fish, Farm, Manufacture, Magic, Ritual, Ex

change, Build, Repair
8. Miscellaneous Motif Groupings

Able, Accomplish, Goal, Get, Keep, Increase, Want, Work, Plan
Arrive, Leave, Move, Go Kinesthetic, Change
Rest, Sleep, Difficult, Easy, Lazy, Unable, Fail
Cover, Container, Complete, Empty, Full, Hole, Imperfect, Include,

Uncover, Reveal, Release
Boundary, Break, Cut, Pierce, Tear, Tie
Anal, Oral, Food
Death, Danger, Ruin, Lost, Secret, Prevent
Money, Ownership

Our psycho-sociological dictionary uses 83
tags. With the exception of the categories
"self", "selves", and "other", no tag category
contains less than twenty ~ords. Some second
order tags are used in categorizing over 300
words. While the number of tag categories is
relatively small, further categorizing specificity
is gained by considering those subgroups
formed by common membership under both a
first-order and a second-order tag. For example,
those words matching both "job-role" and
"legal" is a list in itself, quite different from
those words matching both "job-role" and
"academic" or "legal" and ~~ideal-value~~. These
groups of words defined by first-order, second
order intersections can be directly specified in
question retrieval procedures.

Inasmuch as sociological and psychological
concerns can be separated, those tags with pri
mary reference to the socio-cultural realm are
listed in the left hand column of figure 1, those
emphasizing psychological processes and themes
are given in the right hand column. The socio
logical and anthropological ~concepts of roles,

collectivities, actors, situations, values, norms,
institutions, etc., are represented by tags under
the headings entitled persons, groups, physical
objects, qualifiers, environments, culture, in
stitutions, and statuses. The psychological con
cepts of emotion and cognition, interpersonal
and instrumental behavior are represented by
the tags listed under the headings emotions,
thought, evaluation, social-emotional actions,
impersonal actions, and psychological themes.

If the distinction between the two columns is
then combined with the distinction between
first- and second-order tags, four distinct areas
emerge. The first-order tags in the left hand
column consist mainly of objects defined in
sociological terms. The second-order tags in
the left hand column refer to the social struc
ture of society, specifically to institutional and
status divisions. By contrast, the first-order
tags on the right indicate basic psychological
processes. The second-order tags on the right
refer to some of the underlying psychological
motivations of personality. Within each quad
rant, the tags are arranged in sets. Wherever

246 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

possible, the tags within a set are arranged in <

an order approximating a progression from the
more personal and intimate to the more imper
sonal and objective.

The Colby anthropological dictionary uses
180 tags. The number of entry words for each
tag ranges from 4 to 42. Many of the tag cate
gories were developed as part of an attempt to
validate cross-cultural ratings using the Clyde
Kluckhohn value categories.8 The tag cate
gories have been built up through a substruc
tion of the Kluckhohn binary categories (such
as Good-Evil, Determinate-Indeterminate) into
more precise units. In addition to the Kluck
hohn categories, other motifs and themes which
appeared to be important in the preliminary
content analysis of folklore texts have been
added. The tag categories are arranged under
very general headings in figure 2 for clarity of
presentation.

It should not be thought that all General In
quirer dictionaries must contain a large semi
comprehensive list of tag categories. For ex
ample, a General Inquirer dictionary9 recently
completed by the Stanford University project
on International Conflict and Integration uses
only tag categories relevant to the three major
dimensions of Osgood's Semantic DifferentiaPO ;
namely, good-bad, strong-weak, and active-pas
sive. Each of these dimensions has tag cate
gories representing six levels of intensity, thus
making a total of 18 different tags in all.

EXAMPLE APPLICATIONS

1. Comparing overt versus latent trends in folk
lore material.

The data. Approximately 12,000 words of
folklore text from each of ten cultures were
prepared for General Inquirer analysis. The

ten cultures are: K walnutl, Egypt, Eskimo,
India, China, Baiga, Russia, Kikuyu, Thailand,
and Japan. Usually, such folktale materials have
been gathered and recorded by missionaries and
anthropologists. English translations, of course,
have been used for purposes of the analysis.

The problem. Colby is interested in discover
ing themes which both characterize and dis
tinguish cultures. More ambitiously, it is hoped
that theme clusters may be discovered which
provide insight into the way cultures or sub
cultures cognitively structure the world.

One problem of particular interest is the
relationship between latent and overt themata
in folklore material. In the results reported
here, Colby compared the frequency of words
denoting overt sexual activity with the fre
quency of words connoting words of latent sex
ual reference. Similarly, comparisons were
made between overt and latent orality. Colby's
latent sex index included references to possible
symbols of the male sexual organ, to piercing or
thrusting actions, and to possible symbols of
the female sexual organ. The overt sex index
included direct references to affection and
sexual acts. The overt oral index consisted of
words referring directly to the oral body zone
and oral processes. The latent orality category
is made up of what are thought to be symbolic
references to ingestive states (full, empty, etc.) ;
it is admittedly unclear, however, exactly how
this latent oral category would relate to a
latent anal syndrome.

The results. The rank ordering of the ten
cultures on these four measures is shown in
figure 3. As can be seen by inspection, the rank
order for overt sex is inversely related to the
rank order for latent sex (r = .55, prob. < .06),
while the rank order for overt orality is posi-

Figure 3. Rank Order of Folktales on Four Tag Indices

Low Occurrence High Occurrence

Overt sex:
Eskimo, China, Kwakiutl, Kikuyu, India, Russia, Japan, Baiga, Egypt, Thailand

Latent sex:
Thailand, Baiga, Egypt, India, Kikuyu, Kwakiutl, Eskimo, China, Japan, Russia

Overt orality:
Kwakiutl,' Japan, India, Egypt, Thailand, China, Kikuyu, Russia, Eskimo, Baiga

Latent orality:
Kwakiutl, Egypt, Thailand, Eskimo, Japan, India, Russia,. China, Kikuyu, Baiga

APPROACH TO CONTENT ANALYSIS: STUDIES USING THE GENERAL INQUIRER SYSTEM 247

tively related to the rank order for latent orality
(r = .66, prob. < .05). With regard to sex, the
implication seems to be that if open sexual
references are inhibited in a culture, the sexual
motives will nevertheless find indirect outlets.
With regard to orality, several implications are
suggested. Perhaps our latent category is not
really latent. On the other hand, perhaps orality
is not subject to processes of inhibition. Cul
tures low on orality are perhaps simply not
making an issue of it, possibly because of their
better nursing and weaning practices. Within
a culture, sex is apparently always present in
one form or another, whereas infant orality
may be at least somewhat resolved.

2. Distinguishing real from simulated suicide
notes.

The data. With the cooperation of the Coroner
of Los Angeles County, Dr. Shneidman of the
Los Angeles Suicide Prevention Center has col
lected 721 suicide notes from the court records
of all recorded suicides for the ten year period
1945-1954. In each year, between 12 and 15 per
cent of those committing suicide left notes.
These notes come from both sexes (almost three
males to every female), with the individuals
ranging from twenty-five to fifty-nine years
in age.

Simulated suicide notes were obtained from
persons contacted in labor unions, fraternal
groups, and the general community. Subjects
were instructed as follows:

"A study is being done on the prevention of
suicide. For this, it is necessary to obtain
many suicide notes written by normal
people. For this reason, you are asked to
write below, in your own words, the suicide
note that you would write if you were
going to take your own life. Make your
note sound as real as you possibly can.
\Vrite what you think you would write if
you were planning to commit suicide. Be
fore you write the note, answer these two
questions first:

a) What method would you use to take
your own life?
b) To whom would you address the note
you are writing?"

In order to keep the two groups homogeneous
(and to emphasize whatever differences might

exist in the notes), all sixty-six real and simu
lated notes were selected from those written by
individuals who were male, Caucasian, Prot
estant, and native born. Each of the thirty
three simulated note writers was matched, man
for man, with a real note writer who was not
only of similar age (within five years), but also
of the same occupational level.

The problem. Our research was twofold. As
an academic exercise, we wanted to test whether
a set of General Inquirer measure~ could be
developed that together would effectively dis
criminate between real and simulated notes.
Second, we were interested in what meaningful
insights the Inquirer could offer as to the differ
ences between these two groups.

The correct identification of which note in
a pair is real and which is simulated is not a
trivial challenge. Osgoodll reports giving this
same task to eight graduate students in psychol
ogy and finding that they could do no better
than chance. One of us (Stone) gave this task
to six members of a sophomore tutorial at Har
vard, the students having no reading back
ground particularly related to suicide. As a
whole, the Harvard sophomores did better than
chance, the mean being 66 per cent correct, the
best performance being 75 per cent correct.
Let us consider the 66 per cent as a base refer
ence. Could the General Inquirer do better?

The results. The original analysis was done
in February, 1962, using a predecessor of the
Harvard Psycho-sociological Dictionary de
scribed above.12 The procedure for building and
testing a discriminate function was as follows:
the actual source (i.e. real or simulated) of each
of the first fifteen pairs of notes was revealed
to us by Dr. Shneidman. These notes were then
compared using the General Inquirer. Three
factors were found to discriminate:

1) References to concrete things, persons,
and places (higher for rea! notes).

2) Use of the actual word "love" in the
text (higher for real notes).

3) Total number of references to processes
of thought and decision (higher for
simulated notes).

A very simple discriminate function was then
developed: the score on the third measure was
substracted from the sum of the scores of the
first two measures. This index correctly dis
criminated thirteen of the fifteen pairs of notes.

248 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

This discriminate function was then applied
to the remaining eighteen pairs of notes, with
the members of the research team not knowing
which of these were real and which were simu
lated. After the predictions were nlade, Dr.
Shneidman was again consulted. Seventeen of
the eighteen pairs of notes had been identified
correctly. This figure is quite significant when
compared with chance expectation, the per
formance of human judges, and most attempts
of other investigators to analyze this same data
(cf. review of literature in article by Ogilvie et
a1.) .13

\Vhile constructing a successful discriminate
function was a complex task, a complete Ge~
eral Inquirer analysis of the differences between
the two kinds of notes was of a much larger
order. After our Third Psycho-sociological Dic
tionary was finished, the suicide notes were
again processed through the computer. At this
point, of course, our research staff was no
longer naive, so we could no longer make inde
pendent predictions on half of our data. Figures
4a and 4b show the differences in the actual
number of times certain tags appeared in a
specific syntax position in each of the two kinds
of text.

Figure 4a. Raw Tag Counts Higher for Real ~ otes

FIRST ORDER WORDS SECOXD ORDER WORDS

Syntax Number of Times Syntax N umber of Times
Tag Label Position Applied to Text Tag Label Position Applied to Text

Real Simulated Real Simulated

other attribute 17 6 family object 38 15
male-role subject 45 12 religious subject 10 2
male-role object 17 6 higher-sta tus subject 13 4
male-role attribute 5 0
female-role subject 200 67 higher-status object 11 1

female-role object 137 35 higher-status leftover 14 4
female-role attribute 21 5 male-theme (all) 18 1
tool s'ubject 5 0 sex-theme subject 17 4
tool object 10 2 sex-theme verb 46 13
non-specif -obj object 47 19

sex-theme object 8 2 sensory-ref object 6 0
q uan ti ty -ref subject 27 10
social-place object 27 4
affection verb 51 18
bad subject 9 2
bad verb 9 0
communicate attribute 14 3
attack TY", ... h 17 2 V\...J.J.U

attempt leftover 23 9
get verb 46 16
possess verb 20 6

Figure 4b. Raw Tag Counts Higher for Simulated X otes

FIRST ORDER WORDS SECOXD ORDER WORDS

Syntax Number of Times Syntax N umber of Times
Tag Label Position A pplied to Text Tag Label Position Applied Lo Tel~t

Real Simulated Real Simulated

selves (all) 17 23 academic object 5 12
time-ref object 3 10 Rign-weak subject 19 27
natural-world subject 4 11 death-theme (all) 54 62
natural-world object 5 17
ideal-value object 2 8
thought-form subject 1 10
thought-form object 3 10
distress object 5 12
think object 3 12

APPROACH TO CONTENT ANALYSIS: STUDIES USING THE GENERAL INQUIRER SYSTEM 249

In order to understand the criteria for select
ing the tag labels which appear in figures 4a
and 4b, we must first consider differences in the
lengths of the notes. While shorter notes might
be either real or simulated, most longer notes
were real. This causes the thirty-three real
notes to have a considerably greater combined
length (total number of text words = 4112)
than the simulated notes (total number of text
words = 2542). Thus, unless the differences in
raw frequency count for a particular tag label
are considerably more or less than the differ
ences in overall length, we are not impressed.
Our criteria reflect this:

1) Select for figure 4a all cases where the
total frequency of real suicide note tags
is at least 2.5 times greater than the
corresponding simulated note fre
quency, providing there is a minimum
difference of five.

2) Select for figure 4b all cases where the
total frequency of the simulated suicide
notes is at least five counts more than
the corresponding count for the real
suicide notes.

Five is an arbitrary selection, reflecting what
we feel to be a minimum difference to be of
interest. Any difference in favor of the simu
lated notes is against odds (since the simulated
notes are shorter), thus a simple difference of
five is all that is required.

Figures 4a and 4b show a number of tag
count differences which might be used in build
ing discriminate functions. No information,
however, is given on the distribution across
notes. In actuality, some tag count differences
are spread across many notes while others are
concentrated in just a few. A tag may be
highly discriminating for a few note pairs and
be irrelevant in discriminating many other
pairs. To account for this, \ve reason that there
are multiple factors involved in suicide notes,
some being a significant cue in one pair, others
being a significant cue in another. If a cue is
irrelevant to a particular pair of notes, then its
prediction should be randomly determined. If,
however, the cue is relevant, it should tend to
predict in the correct direction. Adding together
the different cues is like adding together signals
in a background of noise. In some cases, one cue
will be the signal while several others are

noise; in another case, several of the other cues
may serve as signals while the first cue func
tions as noise. In a similar vein, we can afford
to have a limited amount of "mistagging" in our
procedures, providing it acts like random noise
in our analyses. If enough cues are added
together, the signals usually emerge from the
noise and a correct prediction can be made.

The syntax positions shown in figures 4a and
4b are "subject", "verb", Hobject", Hattribute",
"leftover", and "all" (for all syntax positions
combined). These syntax marking procedures
are described in detail elsewhere1• .The terms
"subject", "verb", and "object" are used in a
sense similar to, but slightly broader than, the
meanings you learned in grammar school. ll "At
tribute" indicates those words in a phrase indi
cating the source of a statement, such as, "He
says ... ", "She knows that ... ", "It is true
that ... ", etc. "Leftover" refers to counts for
syntax positions not listed here and for words
lacking syntax marks. As we shall see, report
ing tag counts for each major syntax position
separately is a useful aid in analyzin~ the data.
Since the counts for each syntax position are
based on only a few words per sentence, a
separate analysis of each syntax position helps
keep counts from being determined by multiple
occurrences in just a few sentences.

The information in figures 4a and 4b can be
combined with retrieval procedures to gain
more information about the text. For example,
the tag "possess" is shown on the bottom of the
right hand column of figure 4a as being used
in the verb position more frequently in real
notes than in simulated notes. Who is seen as
doing the possessing? We see further up in
this same column that there are several likely
possibilities. Male-role and female-role, for ex
ample, are both relatively high in the subject
position for real suicide notes. If we make the
retrievals "male-role/subject-possess/verb"
and "female-role/subject-possess/verb", we
find that it is the sentences containing female
rather than male references as subject that are
causing high counts. The retrieval for the ques
tion "male-role/subject--possess/verb" consists
of only one sentence and this from the text of
a simulated note:

note 15, sentence #11
GOD BLESS AND KEEP YOU BOTH.

250 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

The retrieval for "female-role/subject-pos
sess/verb" brings back seven sentences from
the real notes and no sentences from the simu
lated notes. The seven sentences are:

note 4, sentence #21
SHE KEPT AFTER ME.

note 6, sentence #18
BUT GAITY YOU (WOMAN) SAVED
FOR STRANGERS.

note 10, sentence #7
AND SHE WOULD STAY WITH ME.

note 23, sentence #7
TOO BAD YOU (WOMAN) JUST
KEPT EVERYTHING INSIDE YOU
(WOMAN).

note 24, sentence #28
YOU (WOMAN) HAVE EVEN MORE
THAN YOU (WOMAN) HOPED FOR.

note 26, sentence #10
I HOPE YOU (WOMAN) HAVE ALL
THE LUCK IN THE WORLD.

note 29, sentence #5
(YOU [\VOMAN]) KEEP EVERY
THING QUIET AS POSSIBLE.

These retrieved sentences tend to picture women
as being rather powerful, the ultimate deciders
of what is or is not shared with, or given to, the
writer.

Note in these retrieved sentences the impor
tance of text editing. Part of the optional prep
aration procedure involves identifying proper
names and ambiguous pronouns. Five of these
seven sentences would have been missed if the
sex of the second person pronoun were not iden
tified. Syntax marking is used to separate the
verb "have" as a main verb from "have" used
as an auxiliary. Only "have" used as a main
verb is tagged with the label "possess".

Many of the other sentences having "female
role" as subject are concerned with giving in
structions in both the real and the simulated
notes. In an analysis by Ogilvie et aI.,13 using
our earlier dictionary, it was found that these
requests in the real suicide notes were rather
specific, such as, "YOU (WOMAN) TELL MY
FOLKS," or "YOU (WOMAN) PLEASE
T ARE CARE OF MY BILLS," while the re-

quests in the simulated notes were much more
vague, e.g. "YOU (WOMAN) FIND A NEW
LIFE FOR YOURSELF."

Question retrievals often help to locate the
cause of a particular tag count. In the left hand
column of figure 4b, for example, we noticed
that the tag "natural-world" was high for simu
lated notes in both subject and object positions.
In looking at a retrieval printout of this cate
gory, we noticed that many of the tag counts
for the simulated notes were caused by the text
word "life", particularly as an object in con
junction with the tag "self" as subject. While
life itself is a part of nature, it certainly differs
from (and is admittedly somewhat misplaced
with) other entry words in this category, such
as those pertaining to weather and cosmic ob
jects. A special retrieval was made for all those
sentences that combined the tag "self" as sub
ject with the appearance of the actual text
word "life" as an object. Eleven sentences were
retrieved from the text of simulated notes, only
three from the real notes. Given the fact the
real text is considerably longer, this is quite
contrary to chance expectation. The retrievals
are well distributed over the entire text. Both
real and simulated note retrievals yield mes
sages quite similar in content: "I CANNOT
FIND MY PLACE IN LIFE." "BUT I JUST
CANNOT STAND LIFE ANY LONGER."
"YOU SEE, I KNOW NOW THAT I CAN
NEVER HOPE TO REALLY MAKE A SUC
CESS OF LIFE." "BUT I CAN NOT SEEM
TO STAND LIFE THIS WAY." "I HAVE
NOT MADE LIFE SEEM WORTHWHILE."
"AND I CAN SEE NO USE IN PROLONG-
ING IT (LIFE)." "IN A FEW MINUTES I
WILL TAKE MY LIFE," etc. All but the first
of these sentences are from the simulated notes.

The results presented here are meant only
as examples of the kinds of analyses that can
be done using General Inquirer operations. The
tag categories listed in figure 4 are not the only
ones to be used in making analyses. Two cate
gories, each of which may not differentiate the
two texts by itself, may very well serve to dif
ferentiate when combined in a retrieval ques
tion. We have already written two articlesl~. 14

describing our work with these notes. A third
article probably will be written this summer.
Suffice it to say here, in summary, that the notes
can be differentiated by the General Inquirer.

, APPROACH TO CONTENT ANALYSIS: STUDIES USING THE GENERAL INQUIRER SYSTEM 251

Our analyses find real suicide notes character
ized by references to concrete events and inter
personal relationships (the role of women as
powerful and denying being of particular sig
nificance), and simulated notes characterized
by their abstract intellectualization, often
amounting to a reflection on the relative merits
of life and death.

AUTOMATIC THEME ANALYSIS

One of the problems frequently facing the
General Inquirer user is the 'construction of
question sets that tap more than a small frac
tion of the sentences in the text. For example,
an investigator may be able to develop questions
that are very powerful in discriminating sen
tences of source A from those of·source B, but
the number of sentences used in making such
discriminations may involve a total of as little
as twenty per cent of the entire text. What
about the rest of the text? May it not also have
some discriminating features?

One possibility is that the remaining text
does contain features that would permit dis
crimination between the two sources, but that
the investigator must ask different questions in
order to find them. Perhaps the investigator's
theory is orthogonal to the real differences lying
within the texts. Another possibility is that
there are real differences between the texts, but
that the dictionary itself is not relevant. If
this is the case, then there is no better alterna
tive than to develop better dictionaries. Finally,
there remains the possibility that there are no
differences between the two texts. If this is
the case, we are stuck. However, as we shall
see, the actual state of "no difference at all" in
such a multiple descriptive instrument as the
General Inquirer is quite rare.

From our experience in using the General
Inquirer, we came to feel that the main diffi
culty in developing rules that would discrimi
nate a greater percentage of the text was due
to our rule building procedures, not to any in
adequacies of our dictionaries or the lack of
real differences in the text itself. Dr. Hunt,
who was then at Yale, suggested that perhaps
we could use computer concept formation pro
ced1..lres to help find more discriminating rules.
He offered his own Concept Learner3 as a com
puter system for putting this into effect. Prob
ably many persons in this audience remember

hearing the Hunt-Hovland predecessor of this
system described at the 1961 Western Joint
Computer Conference.2 The current Concept
Learner (CL-2) is very large and has applica
tion to a wide variety of problems. There was
no doubt that CL-2 could do at least an "inter
esting" job of building rules for discriminating
between two text sources.

One source of considerable humor in the last
few years has been the characterization of com
puters as having semi-human qualities. While
the idea of two computing machines marrying
and having baby computers is perhaps best left
to fantasy, the merging of two large scale com
puter program systems to produce a new pro
gram system with an identity of its own is
indeed within the realm of possibility. What
follows is the story of such a romance.

As with any large scale affair, there were
some technical difficulties. In this case, our two
principals, the General Inquirer and the Con
cept Learner, did not speak the same language.
The General Inquirer is programmed entirely
in COMIT, a computer language developed by
Yngve and his mechanical translation group at
M.LT.I5 The Concept Learner is programmed
entirely in IPL-V, a computer language that
came from Carnegie Tech and the RAND Cor
poration.16 Fortunately, the General Inquirer
and the Concept Leamer had two bi-lingual
friends, namely Hunt and myself (Stone), to
act as interpreters. A programmed interlingua
was developed for handling translation prob
lems and the merged operation was on its way.

The resulting procedure is this: the General
Inquirer gives to the Concept Learner (via our
interlingua) a list of tags that have been ap
plied to each sentence of both texts A and B.
While the original text words are dropped, care
is taken to note the syntactic position that was
associated with each tagging operation. Each
~entence is thus replaced with a list of syntax
marked tags (hereafter called "labels"). Given
sentences described in this form, the task for
the Concept Learner is to find a near minimum
set of "rules" for distinguishing as many sen
tences as possible of document A from those
of document B.

Rather than have to consider all the com
plexities and interrelationships of actual lan
guage, the Concept Learner is provided by the
General Inquirer with a, description of each

252 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

sentence consisting of a list of tags chosen from
the 83 different categories, each tag marked
with one of the five different syntax positions.
There is thus a finite resource of 415 different
labels from which the dozen or so symbols used
in describing any particular sentence must be
selected. The number of combinations of 415
labels, taken a dozen or so at a time, is very
large, especially when anyone label may be
used more than once in a sentence. It is not
surprising that we find it very rare for two or
more sentences to have identical descriptive
lists. So long as there remain differences in
these descriptive lists, we have grist for build
ing discriminative functions.

The Concept Learner looks at all the sen
tences in each document to see if there are one
or more labels common to all sentences in one
document that are not found in any sentences
of the other document. For example, if all the
sentences in document A were retrieved by
these two labels:

1) The tag "family" in the syntactic posi
tion of subject.

2) The tag "control" in the syntactic posi-
tion of verb.

but none of the sentences -in document B
matched both these specifications, then this
single question, by itself, could be considered
as completely discriminating.

Usually no single question can successfully
serve as an "all-none" test for discriminating
all the sentences in one document from all the
sentences in another. Thus, it becomes neces
sary to develop a discriminating procedure that

procedure is one means for doing this.
The basic tree building strategy in CL-2 is

based on the following heuristic: if there is not
a single label or combination of labels that com
pletely discriminates the sentences in document
A from those in document B, the Concept
Learner takes whichever document has the
fewest sentences and finds which label occurs
in the most of these sentences. The occurrence
of this label is then used as a test to divide
t.he sentences in documents A and B into two
subsets each, depending on whether the label
is present (sets A 1+, B 1+) or absent (sets
A 1 _, B 1 -). The search for a successful all
none discriminating test can now be applied
separately to each of these new subgroup pairs.

First, subgroup pair A 1 +, B1 + is tested. If a
successful all-none discrimination is made on
this subgroup, the computer can immediately
turn its attention to finding a successful all
none test for subgroup A 1 -, B 1 _. If no suc
cessful all-none test is found, the subdivision
process continues until either a sub-subgroup
is found where an all-none test does apply or
one of the document sources runs out of sen
tences.

Figure 5 shows an example of this subdivi
sion process. A branch to the left represents
the sentences that successfully matched the
specifications at this node. A branch to the
right represents the sentences that failed to
match this specification. In actual operation,
the tree keeps subdividing to the left until a
complete discrimination is made. It then works
on the A,,_, B,,_ subgroups, starting from the
bottom subgroup (i.e. the right branch of node
#8) and working back up.

3

15

B A A

/\ /\
B A A B

0= a selected syntactic specific tag label.

o m one or more syntactic specific tag labels that together are found to completely
discriminate the sentences being considered.

A = an end point consisting only of sentences from document A.

B = an end point consisting only of sentences from document B.

Some results using the Concept Learner on
text Q,nalysl:S problem..s, There are several cri
teria that are useful for evaluating the success
of the Concept Learner. One is the simplicity
of the tree. Obviously, if the total number of
nodes in the tree almost equals the number of
sentences in both documents combined, we have

APPROACH TO CONTENT ANALYSIS: STUDIES USING THE GENERAL INQUIRER SYSTEM 253

not done much towards finding trends in our
data. A second test is how well a developed tree
can identify correctly the source of new sen
tences. To test this, we divide our data ap
proximately in half (as we did in the suicide
note study) and use only half the data to
develop a tree. The tree is then used to classify
the other half. of the data, the percentage of
correct classifications being our evaluation
index.

So far, the Concept Learner has been used
on about a half dozen automatic theme anal
ysis problems. Identifying reliable differences
where each source is the work of just one
author turns out to be much easier than iden
tifying reliable differences where each source
is the work of a group of authors. Most of the
trees developed on multiple author sources have
been quite complicated, some containing up
wards of sixty test nodes. Usually, these more
complicated trees are not very good at classify
ing additional test data correctly.

The suicide note problem, of course, is one
where each source contains multiple authors.
Partly because of this, the Concept Learner
yields a rather complicated tree that has less
success in discriminating real from simulated
notes than our regular man-machine General
Inquirer procedures reported above. In one
respect, this lack of complete success with all
machine procedures is somewhat of a relief.
After all, we do not want to create technologi
cal unemployment for ourselves as psychologists.

As a less complex example, let us consider
a study involving limited amounts of data with
only one author to each source. The data here
consists of four documents circulated in con
nection with the 1962 California state election.

California is famous for requiring its citizens
to act as legislators. The typical California
election ballot presents the voter with twenty
to thirty quite complex issues. To aid him in
decision' making, the Secretary of State dis
tributes a booklet describing the various propo
sitions on the ballot. This booklet contains
brief arguments by proponents and opponents
of each m~asure.

In 1962, an unusual event occurred. Substan
tially the same proposal appeared on the ballot
twice. Proposition 1, which arose in the State
Assembly, was a proposal which would have
authorized an increase in the pay of state legis-

lators to $11,000 a year. Proposition 17 was a
proposal by the State Senate to raise salaries
to $10,500. Different paragraphs were included
in the booklet urging and opposing each meas
ure. The arguments were quite close in each
case. Both opposing arguments were written
by a California property owners association,
the supporting arguments by committees of
the legislature. (As might be expected, the
voters apparently perceived the similarity be
tween the two propositions; both measures were
defeated at the polls.)

Twenty-four sentences were selected from
the arguments for and against Proposition 1,
and twenty-eight sentences from the arguments
for and against Proposition 17. Sentences
which obviously indicated the source, such as
"Vote no ... ," were excluded.

The sentences for and against Proposition 1
were processed through the General Inquirer
and then analyzed by the Concept Learner. The
result of the analysis is the tree shown in figure
6a. The original twenty-four sentences break
down into eight groups, each group correspond
ing to an end point in the tree. Four of these
groups collectively contain all the pro state
ments; the other four groups contain all the
opposing statements. Thus, if the inquiry is:
"economic/verb, work/verb, and group/verb,"

(Tree developed from 24 sentences)

Economic -verb

yes no

I I
Task-verb Ove"tale - verb

ye. I no yes I no

I
Group-v,rb

rhr
pro (4) anti (8)

I
Supporl-verb

r-L;
anll (31 pro (II

I
Task-y,rb

~
anli (I) pro (I)

I
N'uter-subj

~
anti (I) pro (5)

(T,., developed from 21 sentences correctly Idenlified by earier lree)

Quantitative - verb

I
Economic - verb

yes I no

I
I

protS)

yu no

~
I

pro(5)

pro (I) anli (7)

254 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

there will be only four sentences in the text
that match all these specifications, and they will
all be in support of the proposition. However,
the discrimination rule "economic/verb, work/
verb; and not group/verb" refers to a set of
eight sentences, all of them against the issue.
From the point of view of making General
Inquirer retrievals, the entire tree structure
can be converted directly into "question sets";
each branch of the tree defines a separate
question.

Clearly, the amount of data reduction in figure
6a is insufficient. Four of the eight end points
refer to only one sentence. These probably
represent specialized questions that are very
unlikely to be of discriminative value in future
analyses. Probably more powerful trees can be
developed to represent the differentiating main
trends in the data. Note, for example, that
"economic/verb" by itself is able to distinguish
eleven of the thirteen anti sentences.

Nevertheless, this tree does fairly well when
used to classify the twenty-eight sentences from
Proposition 17. Twenty-one of the twenty
eight sentences were classified correctly. If
these twenty-one correctly classified sentences
are given to the Concept Learner, a new, much
simpler tree can be grown, as shown in figure
6b. Basically, the sentences against the propo
sitions are concerned with "economic/verb,
quantitative/verb" aspects of the issue. Non
economic quantity references are in favor of
the issue, as are sentences not mentioning quan
tity references in the verb at all. Those arguing
against the bill are apparently preoccupied with
its economic costs; those supporting the bill
tend to focus on its other features. Granted,
most California citizens could have told us this
without our having to go to so much trouble.
Yet our machine has done thus via explicit
procedures, where our average citizen might
be a bit hard pressed to explain his exact cogni
tive reasoning. Maybe we can use one to help
understand the other.

As we have seen, the Concept Learner builds
trees using two main heuristics: an "all-none"
test for terminal nodes and special non-terminal
procedures for dividing text into subsets. There
are many other procedures that might also be
explored. We have decided to expand the Con
cept Learner to handle these other lJossibilities.
Given the inordinate proportions of computer

time consumed by our interlingua routines~ it
was decided to use this opportunity to repro
gram the Concept Learner, plus the new pro
cedures, in the COMIT computer language.
COMIT has proven to be well suited to the task.
The program has been designed and written
at Harvard by Mr. Marshall Smith and is cur
rently in the debugging stage. Hopefully, it
will be running at the time of this meeting.

The principal difference between the new
program and CL-2 is the number of tests avail
able at a given node. By using flexible dis
patching procedures, the investigator can seleGt
tests from the following list and order them in
any way he wants. All tests offer minimum
cutoff parameters which are again adjustable
by the investigator. The list of tests is as
follows:

1. All-none test based on a single label.
Looks for a label that characterizes all
the sentences in source A but none in
source B. This failing, it looks for a label
occurring in all the sentences of source
B, but none in source A.

2. Some-none test based on a single label.
Looks for the label that both occurs in
the largest number of sentences in source
A. that is not represented in source B.
A similar search is made of labels in
source B that do not occur in source A.

3. Many-few test based on a single label. A
search is made for that label which has
the largest absolute difference in the num
ber of occurrences in source A versus
source B. If the number of "few" sen
tences is below a certain minimum speci
fied by the investigator, they are thrown
away and the left hand side of the node
is marked as being terminal. If the num
ber of "few" sentences is above this mini
mum, the left hand side is considered non
terminal, and further subdivision occurs.

4. Hunt non-terminal heuristic. The com
puter determines which source contains
the fewest sentences at this node and
finds the label that occurs in the largest
number of these sentences.

By basing all our tests on a single label,
it is possible to execute tests quickly, using
matrix procedures rather than list commonality
searches. The cost is that we cannot then
develop single node discriminations based on

APPROACH TO CONTENT ANALYSIS: STUDIES USING THE GENERAL INQUIRER SYSTEM 255

a conjunctive combination of labels. While this
is essential for other Concept Learner prob
lems, it is not necessary for automatic theme
analysis when some-none or many-few tests
are also provided.

One addition planned for the near future is
a "look ahead and evaluate the various possible
outcomes" routine that will allow the investi
gator to direct the tree building procedures
according to his own theoretical interests.
Since it would be inconceivable for the machine
to search ahead and tryout all possible out
comes, it will look for a list of suggestions
supplied by the card reader. All these sugges
tions will then be evaluated by the computer
in terms of the extent to which they lead to
certain desirable tree properties. The most
highly evaluated suggestions will then be used
in building the tree.

FINAL REMARKS

While most of our research examples have
been given mainly to illustrate procedures, we
would not want to leave the impression that we
are blind to the many possible General Inquirer
applications. The General Inquirer is currently
being employed by different investigators on
a variety of theoretical and applied problems,
both serious and sometimes somewhat amusing.
Data already under study include small group
discussion procedures, diplomatic notes ex
changed between countries, personality differ
ences between northern and southern negroes,
congressional subcommittee testimony of dif
ferent lobby organizations, delusional language
of schizophrenics, college applications, descrip
tions of magico-religious role differentiation
in primitive societies, differences in attitudes
toward friendship in large and small town en
vironments, peace corps field reports, compari
son of police chiefs and probation officers re
garding their attitudes tovvard the juvenile
delinquent, the letters written by the "Three
Faces of Eve" as a study in multiple person
ality, cross-national comparison of college stu
dents' plans and expectations for the future
and thematic changes in popular song lyric~
during the last 30 years. While we cannot dis
cuss so many studies in detail here, the results
so far have been very encouraging. Pleased
with our initial results, we hold optimistic ex
pectations for the future.

REFERENCES

1. STONE, P. J., BALES, R. F., NAMENWIRTH,
J. Z. and OGILVIE, D. M. The General In
quirer: a computer system for content
analysis and retrieval based on the sen
tence as a unit of information. Behavioral
Science, 7, 1962, 484-498.

2. HUNT, E. B. The development of decision
trees in concept learning: model and basic
results. Working paper number 6, Western
Management Science Institute, U.C.L.A.
April, 1962.

3. HUNT, E. B. Concept Learning: an Infor
mation Processing Problem. New York:
Wiley, 1962.

4. STONE, P. J. and HUNT, E. B. The General
Inquirer extended: automatic theme anal
ysis using tree building procedures. IFIP
Proceedings, Munich, 1962.

5. BERELSON, B. Content Analysis, in Lindzey,
G. (ed.) Handbook of Social Psychology.
Cambridge: Addison-Wesley, 1954.

6. MOSTELLER, F. and WALLACE, D. L. Infer
ence in an authorship problem: a compara
tive study of discrimination methods ap
plied to the authorship of the Federalist
papers. Department of Statistics, Harvard,
1962.

7. MCPHERSON, W., DUNPHY, D., BALES, R.
F., STONE, P. and OGILVIE, D. M. A Re
vised Psychological and Sociological Dic
tionary for the General Inquirer. Dittoed
paper (two volumes) Laboratory of Social
Relations, Harvard University, December,
1962.

8. KLUCKHOHN, C. The scientific study of
values. University of Toronto Installation
Lectures, 1958.

9. HOLSTI, O. R. Computer content analysis.
Working papers numbers 1, 2, and 3. Stan-
forn !Stnn-iAQ -i,., T ,.,ta-r,.,o:>t;n, 1 ('1A +l~,...+;1
____ '""" -." '-'VL"-A.,1, -L.I....LvvL .I..~'""'\.I..LV..l...I."".1. '\....JV~~lll'-'li alJ.\...l

Integration, 1963.
10. OSGOOD, C. E., SUCI, G. J., and TANNEN

BAUM, P. H. The Measurement of Meaning.
Urbana: The University of Illinois Press,
1957.

11. OSGOOD, C. E. The effects of motivation on
style of encoding. In Sebeok, T. (ed.)
Style in Language. New York: Wiley, 1960.

12. BALES, R. F. and STONE, P. J. A general
psycho-sociological dictionary for the Gen-

256 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

eral Inquirer. Laboratory of Social Rela
tions, Harvard University, 1961. Ditto
(also briefly described in Stone and Bales,
et al.) 1

13. OGILVIE, D. M., DUNPHY, D. C., SMITH, C.,
STONE, P. J., with SHNEIDMAN, E., and
FARBEROW, N. Some characteristics of
genuine versus simulated suicide notes as
analyzed by a computer system called the
General Inquirer. Laboratory of Social
Relations, Harvard University, August,
1962. Ditto.

14. S_TONE, P. J., OGILVIE, D. lVL, and DUNPHY,

D. C. Distinguishing real from simulated
suicide notes using General Inquirer pro
cedures. Paper read at the joint annual
meeting of the American College of N euro
psychopharmacology, Washington, D. C.,
January 25, 1963.

15. YNGVE, V. COMIT Reference Manual.
Massachusetts Institute of Technology
Press, 1962.

16. NEWELL, A. (ed.) Information Processing
Language V Manual. New Jersey: Prentice
Hall, 1962.

SELECTIVE DISSEMINATION OF INFORMATION (501):

STATE OF THE ART IN MAY, 1963

C. B. Hensley
International Business Machines Corporation

Advanced Systems Development Division
Yorktown Heights, N. Y.

INTRODUCTION

Selective Dissemination of Information
(SDI) is a new and rapidly developing field.
The concept was originally set forth by Hans
Peter Luhn in 1958.1,:! As described by Luhn,
one part of a larger idea, the business intelli
gence system, was Selective Dissemination of
Information. SDI involves the use of the com
puter to select from a flow of new documents,
those of interest to each of a number of users.
This process may be thought 'of as the inverse
of information retrieval. In information re
trieval, a user precipitates a search of a file of
documents. In SDI a document precipitates the
search of a standing file of user interests. SDI
has been called "current awareness" since the
attempt is to keep the user aware of current
developments. This function has been tradi
tional with those few really excellent librarians
and executive staff assistants. SDI is a mecha
nization of this function.

The concept described by Mr. Luhn was first
implemented in 1959. At that thl1e in York
town Heights, New York, an IBM 650 Data
Processing System, together with other card
machines, reproduction equipment and human
operators, processed a small flow of documents
against the interest profiles of some 30-odd
users. This system has subsequently been called
"SDI 1."3,4, 15 In 1960 a second system, SDI 2,
evolved from the original one. SDI 2 is the first
system designed and documented so that it may
be installed remotely. 5, 6 In 1961, documenta-

257

tion for the SDI 2 System was completed and
the first public annotincement of a documented
SDI System was made on July 11. Implemen
tation started on a third system, SDI 3, early in
the year. Although SDI 3 was in partial opera
tion during the last part of 1961, complete
debug and documentation was not completed
until 1962. During 1961, several other systems,
all of which will be designated by their location
names, became operational. These included SDI
Owego,7 at the IBM Federal Systems Labora
tory in Owego, New York; Current Awareness
Service, a System at the Technical Information
Center at General Electric's Evandale installa
tion,8 and a manual current awareness service
available at cost to all United States Citizens
at the Office of Technical Services of the United
States Department of Commerce in Washing
ton, D. C.

More systems became operational in 1962.
The second system tested and documented for
remote installation, SDI 3, became available
through the IBM Data Processing Library for
the IBM 1401 Data Processing System.9 The
Poughkeepsie System went into operation near
mid-year at the Technical Information Center
of the IBM Data Systems Division in Pough
keepsie, New Y ork.10 A fourth system from
the Mohansic Group,* SDI 4, has been in partial
operation for nine months and documentation

* Mohansic is the IBM ASDD laboratory in Yorktown
Heights, N. Y., where SDI 1-4 have been developed and
tested.

258 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

is well under way.11 The Douglas Aircraft Cor
poration in Santa Monica, California, has a
system in an advanced state of debug.12, 13

Around the end of 1962, a second 1401 program
became operational at IBM, Data Processing
Division, Midwest Region, in Chicago, Illinois.
Over the past four years, SDI has moved from
a concept into a rapidly increasing number of
system installations.

Implementation

Implementation difficulties for a system are
often underestimated. This is in contrast to
reduced operational cost and increased quality
of service which are often overestimated. With
SDI, the choice is whether (1) to use an avail
able system, (2) modify an available system, or
(3) to write your own new one. Because of the
uncertainty, implementation cost is hard to
estimate. Quality is even more difficult to esti
mate. Everyone seems to feel he is an expert
on quality. There is disagreement in many
cases. Present SDI systems involve computer
programs, manual procedures and sometimes
special equipment. In order of increasing diffi
culty, implementation may involve the installa
tion of a well-documented, tried and true sys
tem which is in operation somewhere else;
modification of manual procedures; obtaining
special equipment; reprogramming or redesign.

Human skills available; experience of the
personnel with SDI, Information Retrieval or
related areas; and the number of other systems,
procedures or constraints interacting with the
new SDI installation all affect the effort re
quired for implementation. Not only are a wide
systems background, computer knowledge, and
documentation experience valuable, but spe
cialized knowledge with office machinery, in
dustrial engineering, typography as well as
psychology, sociology and organization theory
often help. Programmers seem to be necessary
for any type of installation. The more experi
ence with data processing as contrasted with
scientific programming the better, but any pro
gramming experience is better than none. Sys
tems and procedures personnel are well-known
in most organizations and are certainly advan
tageous for modifications or rewriting.

Experience with installations of documented
SDI systems is limited. It was estimated that
three calendar months and a total of three man

months effort would be necessary to install an
early SDI system. 3 Programmers have been
used in all cases. The time to get a SDI pro
gram through a monitor system or to fit in with
other existing operating procedures has been
quite variable. In one case the program as
sumed a particular load routine long in general
use, but not in use in this installation.

Experience with combining and modifying
existing systems is exemplified by Poughkeep
sie. There, despite the fact that the programs
had little, if any, documentation, one or two
programmers fought through SDI, KWIC* and
an IR program in a few months. The manual
procedures were in flux for a longer period.
The total system is still being modified and only
parts are in operation. Owego was a rewrite
from SDI 2 which took over a calendar year to
get into operation. The program rewrite itself,
from start to run, took about three months.
Prestart systems work extended longer and, to
my knowledge, the system is still rather weakly
documented for remote installationl8, 19 and is
being integrated with KWIC.7 What might
seem to be a relatively simple rewrite of SDI 2,
SDI 3, required one person for a calendar year
in a building being noisily rebuilt, although the
programming and documentation was done by
an experienced programmer who knew SDI and
the machine.

The classic problem seems to be an under
estimation of the amount of the programming
required to rewrite and document. For experi
enced personnel, e.g. SDI 3, estimates seem to
be low by a factor of four. For less experienced
(with SDI) personnel perhaps six would be
better, e.g., Poughkeepsie. It should be pointed
out that certain phases can sometimes be esti
mated accurately, e.g., programming at Owego.

User Interests

Most user profiles (interests) have been ob
tained without any problem by blindly mailing
a short form to the potential user. t In three
tests * some 65 % of those contacted became
users. Mass meetings of potential users have
been used as well as blindly mailing longer

t Key Words in Context, a machine prepared printed
index.17

* 5, Pages 94-5.

* a, Page 41.

SELECTIVE DISSEMINATION OF INFORMATION (SDI): STATE OF THE ART IN MAY, 1963 259

forms with either term dictionaries attached,
e.g., Owego (modified ASTIA), or enclosing
examples*** of indexed document items. In
direct methods have also been used to derive
profiles from personnel or project informa
tion. *** Only with SDI 1 was a comparative
study made and it had too small a sample to
be conclusive. *** Each of these methods have
been proven feasible. Further research is
needed to define situations where one is pref
erable to another.

Adjustment of user profiles has been done
largely at the user's instigation. At Mohansic,
blanket mailings of current user profiles with
change forms have been made to encourage
users to make changes. Users have also been
notified that they can make changes. The effec
tiveness of these measures is subject to doubt.
The only known attempt to automatically up
date or adjust profiles based on user's responses
was tried at Mohansic on SDI 1. The results
were inconclusive. Manual attempts to suggest
or arbitrarily make changes in user profiles
based on various hypotheses have been made
from time to time, usually without controls.

Although how to get new users to join and
give the "best" possible profile seems to be a
difficult theoretical problem, in practice there
seems to be no difficulty. Experiments with
automatic updating are in order but adequate
user response histories seem to be necessary.

The number of users serviced by SDI systems
now in operation has ranged from tens, to
one to two thousands. Experience with larger
groups is lacking although no new problems
are anticipated. One problem, not initially an
ticipated, which increasing number of users
has proven to be important, is that of address
changes. These occur so frequently that not
only must they be considered part of every
normal run, but provision is necessary to
(>h~Tl{T,p ~r1{lr,pQQ,pQ hotuToon nAt;-hn<)t;~).'n ,.1 1-. ,.1
_ -.-...... 0. _'-'L"-'L'&' _JoJJV_"'-'" f',J'-'U YT ,","'~.i. .1...I.V'-'..lJ..I.\,...rL4.0\J.l.V.l.J. U.I..I.U ..1J.a~ u

copy order. As we shall see below (Abstracts
and Notifications) this affects the notification
itself.

Documents

Document sources for SDI are usually defined
by the application. The range of subject matter

*** Ibid., Page 6.

on which there is experience is quite wide, in
cluding science, engineering and management.
There are no known cases of letters, memo
randums, or picture annotations being processed
although this has been proposed and no prob
lems are anticipated. Document source has been
shown to be a significant factor in response.14

Owego uses ASTIA documents predominately.
Poughkeepsie uses internal IBM reports. Sur
veys of what users read15 or library usage could
be used to determine what document sources to
use for an SDI system. Most such data indi
cates a skew distribution of usage with a few
highly used journals. It is assumed but not
demonstrated that different types of users need
different document sources. Experimentation
in this area might influence the selection by
professional journals of items to abstract. SDI
provides a tool in this area through its response.
SDI 4 and a revised Chicago system will allow
exclusion of documents by source, e.g. need-to
know or excluding journals user subscribes to.
·Volumes of document items being processed in
SDI systems run from tens to hundreds per day
with experience upward lacking. Subscribing
to a journal is not much of a problem, but
getting on internal distribution lists is more
difficult than one might expect. It cost the
Mohansic group several man months of effort
to locate internal sources of information and
arrange to be added to these distribution lists.

Documents normally come to one location,
are handled and numbered. Some SDI's 'inte
grate with library operations to various de
grees. Owego uses the same numbering and
hard copy reproduction procedures. Mohansic
provides abstract sets and utilizes journals
from the library. Douglas is partially inte
grated. Some work with IR systems, e.g., Evan
dale, Owego, Washington. Document number
ing may be sequential as at Mohansic or by an
lnto't"Tl!:ll P{\rlo !:IQ !:It ()UTOO'{\ !:Inri PAllO'h lroonQlO
""a.v_a. ... IL.1r,"""'-' '-41''''' ILNV,..,. ... '"'.0'-' 1L4I """ .&. '-'\,..t..OI..Llo.'-'''''J:'''u ... ''''.

Checking for duplication and series complete
ness is a normal library problem.

There seem to be few serious operational
problems in this area. Studies are needed to
test automatic procedures to analyze user re
sponses and to vary the document source mix
to maximize value functions. Little has been
done to study the effect of frequency of mail
ings to the user.

260 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, '1963

Indexing and DeC'is'ion

The primary decision method used in SD I
has been a probability of interest estimate, i/ d,
where i is the number of words identical in the
two lists and d is the number in the document
list.* The words are normally chosen by hu
mans** from text and truncated to adjust for
endings. This particular technique came from
a programmer's misunderstanding in 1958 of
H. P. Luhn's instructions. It proved to work
and was therefore kept. The proposition is that
probability of interest increases with i/ d. The
i/ d criterion may vary by document-Mohansic
--or by user-Owego, Poughkeepsie and Chi
cago.20 A no-truncation fixed-dictionary system
with a thesaurus (Owego, ASTIA thesaurus)
has been used with i/ d. Experiments have been
run at Mohansic, but not as yet reported, on
truncation, 4-9 characters;9 and depth of in
dexing, 1-26 keywords; as well as machine in
dexing from partial text by several methods.
Conventional "Boolean" methods with key
words are used at Evandale. Chicago indexes
by machine from the abstract using KWIC
methods, i.e. dropping common words-A com
bination i/ d and "Boolean" method with varia
ble truncation is used.

A variety of indexing and decision proce
dures have been used. There needs to be work
to compare the results under varying condi
tions. Relationships between SDI and IR need
to be explored empirically in the indexing and
decision area. Are they the same or different·
if different, in what ways? More work need~
to be done on the desirable amount of direct
user control over the decision.

A bstracts and N otijications

The decision is made to notify the user of
one or more items. What should the notification
consist of? In one of the SDr tests, hard copies
were sent directly to the user. t Users preferred
a two-stage over a one-stage procedure: receive
abstract notifications and be able to order hard
copy instead of receiving the hard copy directly
without intermediate control.:I: However, their

* See5
, Page 30;3, Page 9, 10;4, Page 8, 10.

*'" Education level doesn't seem to make any differ-
ence. See16• •

t See3
; 4, Page 6.

:t: See;3 4, Page 10;15, Pages 8-9.

reading habits seem to be considerably more
effected by direct documents. *** With this
exception, SDI systems have used two-stage
procedures sending abstracts to users and al
lowing them to obtain hard copies, in some
cases providing order forms. Abstracts have
been compared to titles and the titles seem ade
quate for deciding which document to order, but
abstracts are necessary partially to substitute
for the document if the document is not availa
ble.14 Quality of abstracts has been discussed
in theory. There is no known experimentation.
SDI and IR, with appropriate response evalua
tion, would appear to be excellent vehicles for
this exploration.

A number of forms for notifications have
been discussed and tried. IBM cards have been
the most frequent vehicles. The abstract is
normally typed on a reproduction master and
reproduced onto cards. Normal card stock
works well with offset or stencil but spirit
master runs are too short. Chicago and Owego
use or will use the IBM 1403 Printer to print
on continuous-form abstract cards directly. A
machine record of the form number and the
user and document would have to be kept so
that when the card was returned the response
could be mark sensed and the number read.
Mark sense requires special pencils which de
posit an electrically conductive mark, but new
optical machines (e.g., the IBM 1418 Optical
Character Reader and IBM 1428 Alphameric
Optical Reader), allow standard No.2 and No.
3 pencil marks. Machine (1403) printing of
the form number in place of prepunches is
possible with an odd font. These have yet to
be tried for SDI but appear cheaper for high
volumes.

Single (SDI 1) vs. multiple (all other) card
systems have been under debate since 1959.
This debate no doubt will continue. The noti
fication should combine (1) the document ab
stract (preferably both 3 x 5" and IBM card
size), (2) the user's address (3 or 4 lines
for complete postal address which constantly
changes), (3) the system return address, (4)
questions regarding the document, (5) provi
sion for the user's remotely made response to
the questions, (6) the document number and
(7) the user identification. The notifications

*** See i, Table IV.

SELECTIVE DISSEMINATION OF INFORMATION (SDI): STATE OF THE ART IN MAY, 1963 261

should be in appropriate sequential order for
mailing. If 5, 6 and 7 are not machinable on
return, response handling for document hard
copy orders and operating statistics must be
manual, as in SDI 1. The abstract, 1, should
be retainable by the user. A study15 in one
organization shows 3 x 5 and IBM card sizes
were the most frequently used media for this
purpose even prior to SDI. The response, 5, is
made at many remote uncontrollable locations.

The PORT -A-PUNCH ® card has proven to
provide a machine readable response. PORT
A-PUNCH is only now (February 15, 1963)
becoming available in continuous forms, thus
making machine (1403) printing of the ab
stracts on the PORT-A-PUNCH card or an
attached form possible. Previously a bill feed
attachment was necessary which slows the
printer. Systems remain to be developed and
tested based on bill feeds, optical reading and
many other devices. When several notices go
to each user at once, placing several cards
together (or using a sheet of paper as at
Evandale) might save handling expense and
user exasperation. No existing system meets
all of these requirements; each compromises
to some extent. Considerable research is neces
sary before sufficient basic knowledge is ob
tained as to the relative worth of these various
features.

Response, Reports and Hard Copy

SDI 2-4 require the user to respond on every
notice. Other systems require responses under
certain conditions (SDI 1, no response if nega
tive) or never, i.e., just a notification. It is
not known exactly what effects this has.

Responses and other records allow reports to
the user, operators, management and research
personnel. This is a largely undeveloped area
even though some rudimentary reports are in
cluded in the SDI 2 and 3 systems. Feedback
reports could be used to assist in updating user
profiles, changing the document sources mix,
adjusting the system sizes, changing indexing
methods, and adjusting the cost vs. value bal
ance. Randomly selected notices (SD I 1-4)
allow the system selection performance to be
compared to random selection as a base. This
also allows miss items (which could have been
selected by the system but were not) to be
estimated statistically.

There have been various hard copy proce
<dures. (1) Ignore the problem (SDI 2-4). (2)
Refer the user to a library (SDI 2-4). (3)
Shelve and pull (SDI 1-4). (4) Keep vellum
and reproduce (SDI 2-4). (5) Use aperture
cards and reproduce (initially at Owego) .
(6) Use reel microfilm at multiple locations
(Poughkeepsie). Adequate analysis of cost
and value are yet to be made. Most systems
agree with the Mohansic survey~ 15 users want
to be able to obtain hard copy.

V alue-C ost

This is, in my opinion, the area with the
largest potential for development. Available
cost dataa is very limited and hard to inter
pret. Available value information15 is largely
subjective. Dichotomy scales have been used
in SDI, i.e., "of interest vs. not of interest."
It is my opinion that ordinal, and cardinal
scales are needed if we hope to move SDI
design from an art towards a science.

REFERENCES

1. "A Business Intelligence System," H. P.
LUHN, IBM Journal of R&D, 2, 4, 314-319,
October 1958.

2. "Selective Dissemination of New Scientific
Information with the Aid of Electronic
Processing Equipment," H. P. LUHN,
American Documentation, 12, 2, 131-138,
April 1961.

3. "Selective Dissemination-Report on a
Pilot Study-SDI 1 System," C. B. HENS
LEY, T. R. SAVAGE, A. J. SOWARBY, and A.
RESNICK, IBM, ASDD, Yorktown Heights,
N. Y. Report 17-039, January 1961. (Pre
sented at the 18th meeting of the Opera
tions Research Society of America-1960) ,
45pp.

4. "Selective Dissemination of Information
",A:a. New Approach to Effective Communica
tion," C. B; HENSLEY, T. R. SAVAGE, A. J.
SOWARBY, and A. RESNICK, IRE Transac
tions on Engineering Management, EM-9,
2, 55-65, June 1962, 11 pp.

5. "Selective Dissemination of Information
SDI 2 System," W. BRANDENBERG, H. C.
FALLON, C. B. HENSLEY, T. R. SAVAGE,
and A. J. SOWARBY, IBM, ASDD, York
town Heights, N. Y. Report 17-031, April
1961, 102 pp.

262 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

6. "The Selective Dissemination of Informa
tion System-Present Operations and
Future Application," A. J. SOWARBY, pp.
14-40, in "Library Seminar-October 19-
20, 1960" C. F. Balz, Editor, IBl\I, FSD,
Space Guidance Center, Owego, N. Y.,
February 28, 1961.

7. "The Merge System of Information Dis
semination, Retrieval and Indexing Using
the IBM 7090 DPS," R. H. STANWOOD,
IBM, FSD, Owego, N. Y., Report 62-825-
441, April 1962 (presented at the Septem
ber 1962 ACM meeting), 10 pp.

8. "N ew Concepts in Technical Information
Services," B. K. DENNIS in Proceedings
of The Engineering Information Sympo
sium, 19-23, NYC, January 17, 1962, avail
able at $2.00 from the Engineers Joint
Council, 345 East 47th Street, N. Y. 17,
New York.

9. "SDI 3 for the IBM 1401 Data Processing
System 10.3.004; Selective Dissemination
of Information (SDI) for the 1401 Tape
System, the 620 Tape System and FOR
TRAN II," A. J. SOWARBY, W. BRANDEN
BERG, H. C. FALLON, C. B. HENSLEY, and
T. R. SAVAGE (IBM, ASDD, Yorktown
Heights, N. Y.), 1401 General Program
Library released June 25, 1962, 157 pp.

10. "A Computer Integrated System for Cen
tralized Information Dissemination Stor
age and Retrieval," R. J. TRITSHLER, IBM,
DSD, TIC, Poughkeepsie, N. Y. (Presented
at the ASLIB Conference, Blackpool, Lan
cashire~ England~ October 4~ 1962).

11. A. J. SOWARBY, IBM, ASDD, Yorktown
Heights, N. Y., unpublished material.

12. "Mechanized Information Retrieval Sys
tem for Douglas Aircraft Company, Inc.,
Status Report," SM-39167, Missile & Space
Systems Division, Douglas Aircraft Com
pany, Inc., Santa Monica, California, J an
uary 1962.

13. "Library Information Retrieval Program,"
G. W. KORIAGIN, Missiles and Space Sys
tems Engineering, Douglas Aircraft Com
pany, Inc., Santa Monica, California, Engi
neering Paper No. 1269, March 1962
(Presented to the American Chemical So
ciety, Washington, D. C.) February 1962,
23 pp.

14. "Relative Effectiveness of Document Titles
and Abstracts for Determining Relevance
of Documents," A. RESNICK, Science, 134,
3484, 1004-1006, October 6, 1961.

15. "The Use of Diary and Interview Tech
niques in Evaluating a System for Dis
seminating Technical Information," A.
RESNICK and C, B, HENSLEY~ IBM; ASDD;
Yorktown Heights, N. Y., Report 17-055,
December 1961, 86 pp., scheduled to appear
in the April 1963 issue of American Docu
mentation.

16. "Comparative Effect of Different Educa
tion Levels on Indexing in a Selective Dis
semination System," A. RESNICK, IBM,
ASDD, Yorktown Heights, N. Y., Report
17-092, August 1, 1962, 16 pp.

17. "Keyword-in-Context Index for Technical
Literature (KWIC Index) ," H. P. LUHN,
IBM, ASDD, Yorktown Heights, N. Y.,
Report RC-127, 1959.

18. "Selective Dissemination of Information,"
an IBM 7090 Program, R. BENJAMIN, S.
D. MILLER and E. S. ROWLAND, IBM, FSD,
Owego, N. Y. December 20, 1961 (in
SHARE Library), 12 pp.

19. R. BENJAMIN, S. D. MILLER and E. Sco
. FIELD, IBM, FSD, Owego, N. Y., unpub
lished material.

20. "On Relevance, Probabilistic Indexing and
Information Retrieval," M. E. MARON and
J. L. KUHNS, Journal of the Association
for Computing Machinery 7, 3, 216-44,
1960.

COMPUTER CONTROLLED PRINTING

M. P. Barnett, D. J. Moss, D. A. Luce and K. L. Kelley
Cooperative Computing Laboratory

Massachusetts Institute of Technology

1. INTRODUCTION

This paper describes some of the character
istics "and applications of programs that have
been developed recently in the author's labora
tory, for the production of coded paper tapes
to control the Photon photocomposing machine.
Conventional typesetting machines have been
supplemented in the last two decades by a
variety of photocomposing machines that pro
duce the original copy for photolithographic
reproduction by a photographic process. In this
process, images of letters and characters are
focused by an optical system at appropriate
positions of a roll of sensitized paper. A photo
composing machine contains a matrix of trans
parent characters in an opaque background,
with a mechanism for illuminating one selected
character at a time. Several types of photo
composing machines have been designed and
manufactured. The work that is reported here
has used some Photon machines that are in
stalled in Boston, and which are equipped with
paper tape readers.

The present photocomposing programs en
able Photon paper tapes to be punched off line
from 709 output that is formed from input that
was read from Hollerith cards or Flexowriter
tape, or which was formed within the com
puter in binary-coded decimal form, by conver
sion from an internal number representation.
This makes it possible to photocompose con
ventional computer results of a numerical na
ture, and to use the computer to organize verbal
and other material in routine ways, for subse
quent photocomposition. This organization may

263

be the mechanical imposition of format require
ments that would require elaborate manual
typesetting, on material that is punched on a
simple keyboard device, such as a, Flexowriter,
with a separate description of output format,
or interspersed parenthetic comments to specify
format changes. The organization may entail
selection, extraction and sorting of items of
information, arid more elaborate operations of
verbal processing. The terms selection and ex
traction are used with specialized meanings
the selection of records which satisfy certain
criteria (such as the occurrence of certain
words) and the extraction of specified portions
of successive records (for example the extrac
tion of author names from abstracts of journal
articles) .

The features of the Photon machine that
affect the programs are described in section II.
The programs produce Photon code from the
starting material by two or more successive
string transformations. The so-called w-strings
that are punched on paper tape to drive the
Photon machine contain codes that identify let
ters, and also codes that specify the spacing
between letters, and codes tha t change the
status of various units of the machine. This
w-code may be produced from anyone of sev
eral sources-pu~hed car~s, Flexowriter tape,
internal computer conversIOn and so forth. A
large part of the construction of the w-code is
concerned with the calculation and accommo
dation of spacing requirements. It is convenient
to produce w-coded material from a representa
tion of the material to be photocomposed that
identifies characters by an enumeration which

264 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

takes account of case (i.e. capital or not) and
which contains "operation" codes at points in
the text where changes of format are to occur.
Source material may represent characters in
several different codes-the material on Hol
lerith cards is usually assumed to be in a single
case, whilst Flexowriter tapes carry case shift
indicators. It may be expedient to include for
mat codes within the text when it is punched
on an input medium. It may be prohibitively
tedious, however, for a human agent to do this,
but trivial for a computer using simple scan
ning rules. For these reasons, it is of some con
venience to use a second code, called p-code, as
an intermediate form in which material to be
photocomposed is expressed within the com
puter. The programming problems of computer
controlled photocomposition are thus divided
into two quite separate parts that have been
developed in parallel, with a simple and clearly
defined interface. The evolution of the pro
grams that effect the p-to-w conversion has
consisted largely of the provision for an ever
increasing variety of format requirements. The
programs that produce p-code. from Flexo
writer, punched card and other sources have
been concerned with a variety of specialized
problems-special input routines for binary
card images of Flexowriter and other paper
tapes, accommodation of different Flexowriter
codes, translation of mnemonic format require
ments, correction and modification of input
texts, expansion of composite format require
ments (macros), separation of case in Hollerith
texts, and cyclic insertion of format changes
in tabular and itemized material. These mat
ters give rise to numerous scanning problems,
some of which are quite difficult, particularly
for the last two of the topics just mentioned.
For this reason, the scanning systems developed
in the author's laboratory(1) now are being com
bined with the photocomposing programs, to
allow an even greater variety of scanning prob
lems, associated with the preprocessing of
input, to be handled easily.

An early photocomposing program separated
the overall problem into the preparation and
processing of p-strings, but dealt with the latter
matter by a single, relatively long F AP coded
su.broutine. This formed the basis of the so
called PC1.and PC2 systems, reported previ
ously, and which were used in some initial ex
perimental studies. (2) The programs to be re-

ported here are heavily subroutinized, in a way
that allows many special details to be accommo
dated in specific applications. It has been our
objective to develop a general purpose program
which could deal with a considerable variety of
photocomposing problems that were defined in
a suitable input language. A language and the
corresponding program have been developed
that take care of features which are common
to many typesetting situations. Application of
this program to a variety of practical problems,
however, has brought to light several special
situations that were not anticipated when the
input language was defined. The fact that such
situations might occur was recognized when
the programs were defined, and the subroutin
ized structure allows ready adaptation of the
system to these special circumstances. It is our
intention to seek generalizations and common
characteristics of these novel situations and to
define convenient ways of expressing individual
cases for inclusion in later input languages and
accommodation by later general programs. This
classification and categorization of printing
situations perhaps is the most intriguing part
of the work. The variety of matters with which
the input language and programs can deal has
already evolved through several stages of in
creasing complexity. It seems that hazarding
an approximation to a useful language, encod
ing it and trying it on real applications is the
most effective way to proceed. In this regard
the authors have been very fortunate in the
willingness of other groups at M:IT, particularly
the 'Department of Libraries, the Publications
Department, the Technology Press and the
Registrar's Office to provide test material, criti
cal comment and technical advice that has sup
plemented the photocomposing problems of our
own laboratory, and compensated for our igno
rance of printing technology.

After the description of the Photon machine
and the w-code in Section II, the idea of inter
spersed format control is developed in Section
III and is illustrated by a few examples pro
duced from Flexowriter and punched card input
that use the simpler operation codes of the con
trol language. The general structure of the
present photocomposing program is described
in Section IV. The processing of input material
in accordance with an output format that is
specified separately is introduced in Section V
by reference to some simple examples of nu-

merical and verbal tables punched on cards in
a fixed input format. Some more complicated
constructions of the control language then are
described in Section VI. Some examples of the
processing of input by reference to an output
format that is specified separately, and which
require fairly complicated scanning of the input
then are given in Section VII. Section VIn
contains some examples of photocomposed re
sults of actual computations. The photocompo
sition of built-up formulae, and problems of
page composition are discussed in Section IX.
Verbal processing, such as editing, index prepa
ration and so forth, is considered briefly in
Section X in relation to the photocomposing
work and some examples are given of photo
composed output of verbal processing programs.

It should be mentioned that the methods
described here are applicable in some degree
to other forms of tape-controlled photocompos
ing, typesetting and electronic display equip
ment, and that other groups are working on
similar problems.

II. THE PHOTON MACHINE AND THE
w~ODE •

The "optical stencils" of the Photon machine
are provided on a glass disc, etched in eight
concentric annuli of 180 characters each. Sev
eral hundred such discs are in existence, and
further discs, etched with new combinations of
letters and symbols may be produced in a simple
factory operation which involves photograph
ing cards on which the relevant characters have
been drawn. An extensive library of such cards
exists. The replacement of one disc by another
is a trivial manual operation, comparable with
the replacement of a control panel on a punched
card machine. When the Photon machine is in
operation, the disc rotates at high speed about
a fixed axis. During each revolution of the disc,
a light beam may be projected along a fixed
path, through one of the annuli on the disc that
is etched with characters. The illumination per
sists for a time interval that is very short com
pared with the period of rotation of the disc.
An almost static image of any character on the
disc thus can be produced for a very short time
interval during each rotation. The timing of
the burst of illumination, within the basic ma
chine cycle, and the choice of annulus thus con
stitute two coordinates, or components of an

-COMPUTER CONTROLLED PRINTING 265

address, that determine which character is dis
played during any rotation. The annulus is
changed whenever necessary by a mechanical
displacement of the axis of rotation. For many
applications the switching between annuli is
relatively infrequent.

The image of the character that is illumi
nated by the light beam is focused by a lens
and prism system that determines the magnifi
cation of the character and also the position
on the photosensitive material on which the
image is focused.

The Photon machine with which we work can
be driven by a paper tape that contains ctdes
of several types. These include track specifica
tions (a track is half an annulus of characters,
and is identified by an integer in the range
1-16 that is called the disc level) and lens speci
fications (in effect scaling factors-the ma
chines contain twelve different lenses that give
type sizes in the range 5 point to 28 point) that
appear on the tape only when they are to be
initialized or changed. The tape also contains,
for each of the characters to be printed, the
sequence number (i.e. position around the disc)
of that character, and the escapement (i.e. dis
tance to be allowed between the left edge of
that character and the next, measured in units
of 2-8 cms). Further codes cause prism return
(which has the same effect as a carriage return
on a typewriter) and vertical spacing of the
film. The disc level, lens size, sequence number,
escapement, carriage return and vertical space
codes constitute the w-code, that is produced by
the photocomposing programs and is written
on magnetic tape, from which punched paper
tape is produced off line, using an improvised
magnetic to paper tape converter. The further
details of the w-code are given elsewhere. (3)

It may be mentioned that Photon machines
hitherto have been operated by a keyboard
which restricts the overall speed to that of key
board operation. The work reported here allows
the production of photocomposed material in a
much faster and more economical manner.

III. THE INPUT CONTROL CODES
SOME SIMPLE EXAMPLES

The input to the photocomposing system con
sists of data-the text to be photocomposed
and what is in effect a program, written in a
special language. This is the control language

266 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

of the photocomposing system. It contains a
mixture of procedural and implicit instructions,
and it has several chaarcteristics that are remi
niscent of the more familiar programming lan
guages which are in general use. The simplest
way of using the photocomposing system, how
ever, involves a mixing of data and "program"
in a fashion that is not so common in high-speed
computing. The word "program" is used here
for the input instructions written by the user
of the system and expressed in the photocom
posing control language, just as a Fortran pro
gram is taken to mean a program written in
the Fortran language rather than the Fortran
compiler itself. Analogies can be sought for
this mixing in other fields-stage instructions
in a play, style comments and key changes in
a musical score, control codes that set selectors
in punched-card accounting-but very few in
high-speed computing. Automatic machine tool
control may provide some examples, and it may
be that this "interspersed" programming, by
parenthetic comment, will find wider use as
computer control of other machines increases.

A Flexowriter may be used to prepare the
source material for a photocomposing opera
tion in the following manner. The text is typed
on a standard Flexowriter, with the inclusion
of control codes wherever necessary, contained
within square brackets [] . This precludes
the use of square brackets as characters of the
input text, but square brackets can be obtained
in the photocomposed output by a simple device
that is described later. In the simplest instance,
it is necessary to include one collection of con
trol codes, between square brackets, at the be
ginning of the text, and a single control code
[EN], at the end of the text. The control codes
at the beginning of t4e text specify type style
(i.e. disc level-there being up to 16 different
styles of type on a single disc), type size (i.e.
lens size), page width (i.e. "measure"), page
length and any extra spacing that should occur
between lines ("added lead"). Even these codes
can be omitted, and a single initialize code
[IN] given if a certain standard format is
acceptable (unjustified 5 point Scotch with a
36 pica measure, zero added lead and 108 lines
per page).

To obtain justified 8-point Scotch italic on
a page 4 inches wide and 8 inches high, how
ever, the codes [JU, LS8, DL9, LN288, PD576]

would be given before the first word in the text.
All dimensions in control codes are specified in
points. A point is 1;72 of an inch. A detailed
explanation of these and other control codes is
given elsewhere. (4)

Further codes may be included between
square brackets anywhere in the text, to con
trol the appearance of the material which fol
lows. Most of these control individual aspects
of the text's appearance which can be changed
independently-for example type style can be
changed without changing the size, and vice
versa.

In addition, macro-control codes may be de
fined at arbitrary points in the text. Each
macro refers to an explicit set of control codes.
Later reference to this group of control codes
may be made by referring to the macro-code.
The form of these macro-codes is described in
Section VI.

Flexowriter input is treated as a continuous
stream in which line breaks are imposed by
the program, by reference to type size, page
width, and justification considerations. Para
graph breaks in the input ~ormally are pre
served in the output, and indentations (but not
trailing spaces at the end of a line) are pre
served. All input spaces can be retained if
necessary.

Material can be justified or kept unjustified
by the use of appropriate control codes, and
unjustified lines can be flushed left, centered
or flushed right by the use of further codes.
Justification is effected by expansion or com
pression of interword spaces, by reference to
criteria that are specified by appropriate con
trol codes.

New lines, new paragraphs and new pages
can be started at points in a text that follow
certain codes. Horizontal spaces and margin
settings can be specified by further codes, as
can different forms of vertical spacing.

Part of the Flexowriter input for a very
simple application, and the corresponding pho
tocomposed output of the earliest photocom
posing program are included in Appendix 1.
This used a rather unwieldy convention for
delimiting control codes (not the square
brackets) . The Flexowriter input and corre
sponding Photon output for another example
of "straight matter" composed recently is in
cluded in Appendix II. An example of verbal

punched-card input, using a dollar sign as a
case shift indicator. and corresponding Photon
output is '.included in Appendix III. A more
elaborate example of photocomposed text with
corresponding Flexowriter input is provided
in Appendix IV. -

IV. PROGRAl\1 STRUCTURE

A few aspects of the present photocomposing
programs are now described. The programs
were coded in Fortran II, with a few simple
F AP coded input subroutines to read Flexo
writer tape images from cards or magnetic
tape. As mentioned in the Introduction, the
various forms of input are processed by suit
able programs that vary from problem to prob
lem and which all produce material that is
expressed in a so called p code, which is then
converted to the w code by a set of subrou
tines that has been used with only exceptional
changes, for the applications that are reported
here.

The conversion of the input described in the
preceding Section into p-code is almost trivial.
Each letter and symbol of the input text is
represented in the p string by a positive integer
in the range 1 to 90; different integers being
used for the upper and lower case of the same
character (when it can occur in two cases).
An input space is represented by a zero in the
p string, and operation codes are represented
by negative Fortran integers. The input sub
routines for Flexowriter material deal with
backspacing and error correction codes in the
tape, both in the representation of the text and
within interspersed control information.

The conversion of p to w code is effected by
a hierarchy of subroutines that separate the
several types of action that must follow, when
control codes are encountered in the text or
when certaIn conditions are recognized by'the
various subroutines. Certain control codes set
parameters for immediate, recurrent or delayed
use as the "setting" proceeds. Such parameters
include point size, disc level, page dimensions
and su forth. Other control codes, and condi
tions detected by the program, require more
extensive action: for example adjustments of
interword spacing at the end of a line, and of
interline spacings at the end of a page.

The programs that convert p code to w code
have a structure that may be called concentric.

COMPUTER CONTROLLED PRINTING 267

A start text subroutine STTEXT is called first
to initialize page count and various parameters.
A "p to w text" subroutine RTOT is called next
and this subroutine retains overall control of
the conversion until an [EN] (Le., "end") code
is detected (by a lower level subroutine) at
which juncture an ascent is made through ~ev
eral subsidiaries of RTOT, and then out of
RTOT, to its calling program. This then calls
an end text. subroutine NDTEXT to deal with
certain bookkeeping details. If the p string is
exhausted during the operation of RTOT or its
subsidiaries, control is returned to the program
which called RTOT, to obtain further p mate
rial, and then to re-enter R TOT and descend
through its subsidiaries to the appropriate sub
routine level. The "p to w text" subroutine
RTOT first calls a "start page" subroutine
STP AGE. This then calls a "p to w page" sub
routine RTOP which retains control until an
end of page condition arises, due to an end of
page or end of text control code in the input,
or accumulation of sufficient w code to set a
page. The end page subroutine NDPAGE is
then called, and control returned to STP AGE
to start another page, unless NDPAGE had
been called as a consequence of an [EN] con
trol code, when an appropriate return to and . '
eXIt from, RTOT results. The "p to w page"
subroutine RTOP calls a "start line" subrou
tine STLINE. This calls a "p to w line" sub
routine RTOL, and an "end line" subroutine
NDLINE in turn. The action that follows ex
ecution of the NDLINE subroutine depends on
whether it was called to end a line in the body
of a page, or at the end of a page, or at the
end of a text. The "p to (I) line" subroutine
RTOL has a similar structure, calling a "start
section" subroutine STSECT, which in turn
calls a "p to w section" subroutine RTOS and
an end section subroutine NDSECT. A sec
tion is a portion of a line that has independent
margin settings, within which material may be
justified, flushed left or right, or centered. The
RTOS subroutine tests the successive integers
that form the p string, and takes app,ropriate
action depending on whether they are positive,
zero, or negative. A positive integer, in the
range 1 to 90, specifies a character to be set,
and an escapement is computed from the "rela
tive width'~ that is given to that character in
the style of type that is being used, and the

268 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

point size, (and sonletimes certain other type
setting parameters that need not be considered
here). A zero in the p string indicates an input
space, that is converted into an escapement by
reference to the point size and the relative
width that is given to an input space. A nega
tive entry corresponds to a control code, and
a further subroutine that deals with control
codes is then called by RTOS. This is switched
by the control code to a subroutine that deals
with the particular code which has been en
countered. This segregation of the effects of
individual control codes facilitates continued
expansion of the set of codes with a minimum
of recompilation.

The nested structure of the program can be
extended to include further layers, and this will
be done to deal with problems of page com
position.

It should be noted that the subroutines which
end sections, lines and pages may modify mate
rial that has been formed in the w string at an
earlier juncture. Thus the end section subrou
tine can alter interword spaces if justification
is to be performed. The end line subroutine
establishes the vertical spacing that is recorded
in the w string before the codes for the first
character of the line just set. At present, w
code is retained only for a line. Expansion of
the program to deal with larger units of text
in a coordinated manner (e.g. providing page
justification, arranging "run arounds" to leave
space for diagrams that will be visible when
the relevant portion of the text is read) will
require increased provision in the program for
retrospective modifica-tion of the w string that
has been formed. .

The status of the setting process at any
instant is recorded by some 70 parameters.
These are stored in a "status" array (actually
in common storage). Whenever a parameter is
changed, a record is kept in a "backtrack"
array of the position in the status array of
the parameter that has been changed, and
of the superseded value. If overset occurs
before an interword space is encountered, the
contents of the backtrack array may be used
to restore the status of the setting process to
that which was current when the previous
word-end was encountered. The backtrack
array is cleared wheoover the end of a word
is reached without overset occurring.

V. EXTERNAL FORM:AT
SPECIFICATION

The examples of photocomposed material that
were given earlier were produced from input
that contained interspersed control codes. Some
simple examples now are given of photocom
posed material which was produced from input
which did not contain interspersed codes, but
which was processed by the computer to form
a p string in which these codes were inserted
in accordance with appropriate specifications.

Appendix V contains photocomposed material
that was produced from a card deck by a pro
gram which specified a particular point size,
type style, and page length, started a new line
flushed left from a fixed margin, did not justify,
and treated each blank column on the card as
a space of a certain width.

Appendix VI contains photocomposed mate
rial that was produced from a bcd tape by a
similar program, each printer rec()il'd being set
on a new line.

Appendix VII contains tabular material, set
from punched cards, by a program which read
certain format tables from control cards that
preceded the data cards. The format tables con
tained a set of entries for each section of the
output (i.e., portion that was set by reference
to a given pair of margins). These entries con
sisted of a specification of the card field that
contained the data to be set in the section,
and the margin positions, vertical alignment
(flushed left or right, centered or justified)
and style and size of type for that section.
The data from each card was set on a new line,
and page length was specified on a control card
that preceded the format table.

VI. FURTHER CONTROL CODES

A few further types of control codes that are
used in input to the photocomposing program
may be mentioned here. These are "macros,"
special character codes, and delayed effect
codes.

It can be seen that in some types of applica
tion, certain combinations of control codes
would occur 'repeatedly in the input, if inter
spersed coding were employed. For this reason,
it is convenient to define macros, for an individ
ual job, by suitable statements that precede a
text in the input medium, and then to use the

names of the mac~os, between square brackets
in the text, whenever necessary. At present 25
macros may be defined f'Or concurrent use. A
macr'O definition consists 'Of the macr'O identifier
Mn(n = 1,25), followed by an = symbol and
then the list of up to 12 individual c'Ontrol
codes separated by commas that are to be in
corporated. Each definition is enclosed in
parentheses and the whole group of definitions
is enclosed in square brackets.

The chavacter set of input texts has been
limited in the preceding discussion to the ordi
nary alphabet, numeralts and punctuation
marks. These normally occur on standard posi
tions of the Photon disc. Spec,ial characters
may be etched, however, on anyone 'Of the
1440 usable posilti'Ons of a disc, and many discs
c'Ontain a considerable number of mathematical
and other symbol's. Although these symbols are
not represented 'On a Flexowriter or Hollerith
keyboard, it is possible to assign arbitrary
names to these characters and to define them in
a similar manner t'O the macros. A chM'acter
definition consi'sts 'Of a name of up to 6 lower
case letters fol:lowed by an = symbol followed
by the list of controls which give the requisite
lens size and disc level change, if any, disc
sequence number at that level and the disc level
and lens size to which the text must return.
A set of up to 12 characters may be defined in
this manner, each definition being enclosed in
parentheses. and the set of definitions enclosed
in square brackets.

When 'any special character is required in the
text, it is 'Obtained by giving the previously
assigned name of the chavacter, enclosed in
square brackets. The control code sequence for
that name will then be inserted in the rho
string automaticaHy by the program.

A further type of contr'Ol code, with which
the pr'Ogra'ms will be able to deal shortly, will
request some action tD be taken after an appro
priate delay. An example is a code which re
quests an inter-line spacing that is to take
effect after the line in which it is encountered
has been set. It would be convenient to allow
mnem'Onic arguments for control codes that
specify margin positi'Ons and other quantita
tive items of inf'Ormation, and to allow state
ments that specify progressions or cycles of
values which ,these mnemonics should be given
on the successive occasions that they are used.

COMPUTER CONTROLLED PRINTING 269

At present, control codes mostly take effect at
points in the text which can be anticipated
before the setting process is accomplished. De
layed ,action codes will make it possibl'e to
specify elaborate formats in which changes in
style and ·so fomh occur at points, such as line
endings, which cannot be anticipated until the
spacing considerations have been determined
by the p to w conversion. The use of mnemonic
arguments that are changed on use is reminis
cent of conventional indexing operations. The
use of mnemonic arguments that are to be given
values by the program which are c'Onsistent
with the realization of some preset criteria,
present further interesting possibilities of pro
gram design. The complexity of the control
code combinations that are encountered in ap
plicati'Ons of the present program has already
created a need for a higher level of input lan
guage to beconverled into existing control
codes by a sui,table processor.

VII. INPUT SCANNING FOR FORMAT
CHANGES

A few examples will now be given of mate
rial that was photocomposed from input which
did not contain interspersed codes, and which
required a nontrivi,al scan to determine where
suitable control codes should be inserted by the
program.

Appendix VIII contains part of a Union
Listing of Chinese Soientific Periodicals that
is being prepared by the MIT Libraries. The
source- material has been punched on a Flexo
writer, with special symbols representing dia
critical marks in an arbitrary correspondence.
Certain types of input item are delimited by
carriage returns, tabulations, slashes, periods
and combinations of these and a few other
simple criteria. The relevant control codes are
inserted for new lines, indentations, columnar
alignments, changes of type and diacritical
marks, by a program that is specific to this
application. Corresponding portions of Flexo
writer input and Photon output are included
in the Appendix VIII. The photocomposing
subroutines have been modified slightly, so that
when information for a title continues from
one page to the next, a comment to this effect
is set at the foot of the page and the relevant
title repeated at the top of the next page. This
required a modification of just three or four of

270 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

the subroutines and is one of the few changes
that has been made to date 'to subroutines that
are concerned with p Ito w conversion for an
individual application of the program. Decimal
classification codes are dropped, and entry num
bers introduced, by some further trivial changes
in the program.

Appendix IX contains a page of a Bibliog
raphy of North American Geology, that was
set rrom Flexowriter input with interspersed
control codes as a test, at an early stage in the
development of this work. The corresponding
Flexowriter material is included for compari
son. It can be seen that inserting the codes
manually is tedious, ,and that some simpler
input is essential for production work.

Appendix X contains a page of a Current
Serials and J oumals catalogue of the MIT
Libraries, that was set from punched cards
that contained no case shift indicators or bold
face indicators. These indicators were inserted
by a program which uses the Shadow subrou
tine! and some rules of capitalization that
were formulated by R. W. Snyder of the MIT
Department of Libraries. A definition table
corresponding to these rules was used by the
Shadow subroutine to construct a list of point
ers to capital letters in the input text and to
positions aJt which control codes were to be
inserted to produce bold facing and tabulation
in the production of the Photon tape. Similar
methods, using Shadow, can be used to process
many other examples of itemized material, such
as catalogues or bibliographies, in which suc
cessive items are to be treated in a cycle which
involveR calling Shadow, and using the output
which it produces.

VIII. COMPUTED OUTPUT

Two examples of results obtained by the com
puter, which were converted to Photon code
without intermediate recording on conventional
output media, are given in appendices XI and
XII. Both were produced by the PC1 system,
which includes a modified Fortran compiler
which can deal with COMPOSE statements.
Th~se are output statements, comparable with
PRINT and PUNCH, which contain the state
ment number of a FORMAT statement, and a
list of variable names. The FORMAT statement
may contain any conventional field specifica
tions. It also may contain K fields each of

which consists of a count of the symbols in
that K field, then a letter K, and then a sequence
of photocomposing control codes.

The output in Appendix XI was produced
from the short Fortran program vlhich is also
listed in the Appendix together with the input
data which the program used for the test.

The output in Appendix XII was produced
by a program that constructs a numerical repre
sentation of a tabl'e of algebraic formulae, that
is discussed elsewhere. 5

IX. BUILT UP FORMULAE

With the exc~ption of the example of Ap
pendix XII, relatively little has been done to
date by the 'authors 'On the setting of built up
mathematical and chemical formulae. The con
struction of a convenient and intelligible linear
representation of such formulae, that could be
punched on a keyboard machine such as a Flex
owriter, with 'a limited character set, is not
trivial. The problem of linearizing formulae is
really a special case of the more general prob
lem of Hnearizing two dimensional topologies.
A scheme is being developed by the authors,
that gives names to objects, and then com
pounds these names in expres:sions in which
connective symbols and operators are used to
indicate topological association, scaling and
alignment. N ames are given to composite ob
jects that are represented by these expressions,
and these names are then used to form further
expressions. Page composition provides a de
scriptive problem that is less serious, as the
subdivision of pages into rectangles of material
that can be set 'as units usually is simpler than
the corresponding subdivision of formulae. A
simple notation ean be used to describe a page
by an expression which uses names for items of
text, and a nested algebraic notation for the
distribution of these, in adj acent rectangles of
different sizes.

X. VERBAL PROCESSING

Verbal proeessing by digital computer is of
potential importance in many fields. Although
mechanical translation and automatic abstract
ing have attracted considerable attention, the
usefulness of the results is still being assessed.
There are numerous processes of a more rou
tine nature, however, that are certainly within

the scope of existing computer techniques. Up
dating verbal texts by reference to editorial
commands of a relatively simple type has been
discussed elsewhere.6 More elaborate editing
systems provide an interesting programming
chaJlenge. The production of indexes by the
extraction of items firom records of a reason
ably standard format, and alphabetic sorting,
is another problem of widespread interest. The
definition of convenient languages for the specifi
cations of such problems to general purpose
programs thaJt could be used for mechanized
documentation requires further consideration.

ACKNOWLEDGEMENTS

The· authors would like to thank thei'r col
leagues in the Cooperative Computing Labora
atory, Department of Libraries, Publication
Department and Technology Press at MIT for
the benefit of helpful discussion and their con
tribution to specific aspects of the work that is
described here. Thanks are due to the M'achine
Composition Company of Boston for their co
operaJtion in the processing of Photon tapes.
This work has been supported in part by a
grant RG 10430 of the U. S. Public Health
Services, National Institutes of Health.

COMPUTER CONTROLLED PRINTING 271

REFERENCES

1. M. P. BARNETT and R. P. FUTRELLE, Syn
tactic Analysis by Digi,tal Computer, Comm.
A. C. M. 5, 515, 1962.

2. M. P. BARNETT, K. L. KELLEY and M. J.
BAILEY, - Computer Generation of Photo
composing Control Tapes. Part I, The PC1
and PC2 Systems, Amer. Doc., 13, 58, 1962.

3. M. P. BARNETT, D. J. Moss and D. A. LUCE,
The Structure of the PC6 PhotocoPlPosing
p.rogram, Cooperative Computing Labora
tory Technical Note No. 29, MIT, 1963~

4. M. P. BARNETT, D. J. Moss and D. A. LUCE,
Computer Generation of Photocomposing
Control Tapes. Part II. The PC6 System,
Cooperative Computing Laboratory Tech
nical Note No. 28, MIT, 1963.

5. M. P. BARNETT, The Evaluation of Molecu
lar Integrals by the Zeta Function Method,
Chapter in Methods of Computational Phys
ics, Vol. II, Academic Press, 1963.

6. M. P. BARNETT and K. L. KELLEY, Computer
Editing of Verbal Texts. Part I. The ESI
System, Amer. Doc., April, 1963.

272 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

LL36DIL 18cEN

APPENDIX IA

Flexowrite r Input

computer Controlled Printing Devices

L 12RLJEI4

A set of programs has been developed with the cooperation of

the Machine Composition Company, and Photon Incorporated, that enable

a digital computer to produce, as output, a punched paper tape to

control·the operation of the Photon photocomposing machine.

This machine is used extensively in the printing of books and

periodicals which contain verbal texts and mathematical, chemical

and other symbolic material. The paper tape is punched with codes

that determine the choice, size and spacing of the successive symbols

that are to appear on the printed page. During anyone continuous

operation of the photocomposing machine, a total of 1440 different

letters, digits and symbols can be selected in any sequence and in

any two dimensional arrangement that is necessary. ELO

EL4 The computer can produce output to control the Photon machine

in three ways. The first is by converting the numerical results of

calculations, which the computer has effected, into Photon code.

The second is by converting, to the Photon.code, information that

has been read into the computer, in some other code, on punched

cards, paper tape, or other input media. The third is by reading

into the computer information expressed in Photon code and punched

on paper tape that has been produced by the computer in earlier

operations of these three types. ELO

COMPUTER CONTROLLED PRINTING 273

APPENDIX IB

Photocomposition

Computer Controlled Printing Devices

A s~t of programs has b~~n d~veloped with the cooperation of the Machine Composition

Company. and Photon Incorporat~d. that enable a digital computer to produce, as output, a punched

papt.·r tap~ to c(»ltrol t he op~rat ion of tilt' Phot.on photocomposing machine. This machine is used

ext~nsivel:v in tIlt' printing of books and periodicals which contain verbal texts and mathematical,

cht'mical and otlwr symbolic mat~rial. Tht' papt'r tape is punched with codes that determine the

choice. sizt' and spacing of th~ slH'c~ssiv~ symbols that ar~ t.o appear on the J?rinted page. During any

on~ continuous opt>ration of th~ photocomposing ma('hin~, a total of 1440 different letters, digits and

symbols can bt' sdt'ct~d in an~· s~qut'nc~ and in an~' two dim('nsional arrangement that is necessary.

The compllt~r can produc~ output to control tlw Photon machine in three ways. The first is by

converting th~ num~rical r~sults of calculations. which tlU' comput.er has effected, into Photon code.

The second is b~' conv~rting. to th~ Photon code. information that has been read into the computer, in

somt' otht'r code. on punched cards. pap~r tape. or ot h~r input media. The third is by reading into the
computer information ~xpressed in Photon cod~ and punched on paper tape that. has been produced by

the computer in earli~r op~rations of th~s~ thrt'~ typ~s.

The first of th~st' methods t'nabl~s the Photon to lw used essentially as a powerful output device

for a computer. Attt'ntion has bt'en dir{'('t~d during th~ past quarter to the second of these methods

using the computer to organiz~ th~ information n~t'd~d to control the Photon in the printing of verbal

text, mathematical and ch~mical ~quations. and so forth from a less readable represent.ation of such

material prepared on a flexowritt'r. At pres~nt tht' fl(>xowriter t.apt' must be converted to punched cards

in a trivial preliminary opt>ration. and the comput~r output on punched cards converted to paper tape

in another comparable operation. Th~st' stag(:.s will lw bypasst>d lat.er, using paper tape input-output

attachments on tht' 709.

Completely verbal material can be typf'fl on a flt>xowrit~r that produces a typescript similar to

that of a conventional typewriter (fixed letter-width. single letter style, no justification) and a papt>r

tape punched with a representation of this text. This can be converted by the computer to the tapt>

that controls the Photon in an operation which prints the requisite text in any selected letter style and

with justification if necessar~'. Comments may be interspersed in the text or appended to it that relate

to changes of letter style or size. format control and so forth and these used by the computer to produce

a tape which causes the Photon to print the text in the manner that the comments specify (the
comments, of course, are not printed).

274 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

APPENDIX IIA

Flexowriter Input

[IN][DL2] [LSlO] [LN500]I. Introduction[NP]This paper describes some of the
characteristics and applications of programs that have been developed
recently in the author's laboratory, for the production of coded pa

per tapes to control the Photon photocomposing machine. Conventional
typesetting machines have been supplemented in the last two decades by
a variety of photocomposing machines that produce the original copy for
photolithographic reproduction by a photographic process. In this proc
ess, images of letters and characters are focused by an optical system
at appropriate positions of a roll of sensitized paper. A photocompo
sing machine contains a matrix of transparent characters in an opaque
background, with a mechanism for illuminating one selected character
at a time. Several types of photocomposing machines have been designed
and manufactured. The work that is reported here has used some Photon
machines that are installed in Boston, and which are equipped with paper
tape readers. [NP]The present photocomposing programs enable Photon
paper tapes to be punched from 709 output that is formed from input
that was read from Hollerith cards or Flexowriter tape, or which was
formed wi thin the computer in binary coded decimal form by COl1version
from an internal number representation. This makes it possible to phot
ocompose conventional computer results of a numerical nature, and to use
the computer to organize verbal and other material in routine ways, for
subsequent photocomposition. This organization may be the mechanical im
position of format requirements that would require elaborate manual type
setting, on material that is punched on a simple keyboard device, such as
Flexowriter, with a separate description of output format, or interspersed
parenthetic comments to specify format changes. The organization may
entail selection, extraction and sortln& of items of information, and
mo~e elaborate operations of verbal processing. The terms selection and e
xtraction are used with specialized meanings--the selection of records which sa
tisfy certain criteria (such as the occurrence of certain words) and
the extraction of specified portions of successive records, (for example
the extraction of author names form abstracts of journal articles). [EN]

APPENDIX lIb

Photocomposition
I. Introduction

This paper describes some of the characteristics and applications of programs that have been
developed recently in the author's laboratory, for the production of coded paper tapes to control the
Photon photocomposing machine. Conventional typesetting machines have been supplemented in the
last two decades by a variety of photocomposing machines that produce the original copy for
photolithographic reproduction by a photographic process. In this process, images of letters and
characters are focused by an optical system at ap:vropriate positions of a roll of sensitized paper. A
photocomposing machine contains a matrix of transparent characters in an opaque background, with
a mechanism for illuminating one selected character at a time. Several types of photocomposing
machines have been designed and manufactured. The work that is reported here has used some Photon
machines that are installed in Boston, and whi('h are equipped with paper tape readers.

The present photocomposing programs ~mable Photon paper tapes to be punched from 709 output
that is formed from input that was read from Hollerith cards or Flexowriter tape, or which was formed
within the computer in binary coded decimal form by conversion from an internal number
representation. This makes it possible to photocompose conventional computer results of a numerical
nature, and to use the computer to organize verbal and other material in routine ways, for' subsequent
photocomposition. This organization may be the mechanical imposition of format requirements that
would require elaborate manual typesetting, on material that is punched on a simple keyboard device,
such as FI~xowriter, with a separate description of output format, or interspersed parenthetic
comments to specify format changes. The organization may entail selection, extraction and sorting
of items of information, and more elaborate operations of verbal processing. The terms selection and
extraction are used with specialized meanings--the selection of records which satisfy certain criteria
(such as the occurrence of certain words) and the extraction of specified portions of successive records,
(for example the extraction of author names form abstracts of journal articles).

COMPUTER CONTROLLED PRINTING 275

APPENDIX III

Hollerith Input

IN,LSIO,DL2,JU,$CHEMISTRY *NL,VL2*T$HE DEPARTMENT OF CHEMISTRY OFF
ERS A SINGLE UNDERGRADUATE COURSE, SUFFICIENTLY FLEXIBLE IN ITS ELECTI
VES SO THAT IT PROVIDES EXCELLENi PREPARATiON FOR CAREERS IN MANY DIFFER
ENT AREAS OF CHEMISTRY, AND GRADUATE PROGRAMS FOR THREE ADVANCED DEGREES
• THERE ARE EXCELLENT OPPORTUNITIES FOR STUDY AND RESEARCH IN PHYSICA
L, ORGANIC, NUCLEAR, AND ANALYTICAL CHEMISTRY. IN ADDITION, THE DEPA
RTMENT IS RESPONSIBLE FOR UNDERGRADUATE AND GRADUATE INSTRUCTION IN CHEM
ISTRY FOR STUDENTS IN MANY OTHER INSTITUTE COURSES. *VL5,EN*

Photocomposition

CHEMISTRY

The Department of Chemistry offers a single undergraduate Course. suffieiently n .. xible
in its electives so that it provides excellent preparation for careers in many different areas
of chemistry, and graduate programs for three advanced degrees. There are excellent
opportunities for study and research in physical. organic. nuclear, and analytical
chemistry. In addition. the Department is responsible for undergraduate and graduate
instruction in chemistry for students in many other Institute Courses.

276 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

APPENDIX IV

Flexowriter Input

[~nd{l77:;~,21s24s'~1, ~ 36cnxsl]
2XCK"1F'~ FHO;"! ALICZ IN ~':CI<DERLAl\D
[n11G~~S]
De(~2m-c,er 6, 1961
[sp4st2,lG,36st),11,36st4,12:36st5,13,36st6,14,35st7,15,3C
st8,16,36s~J,17,36stlO,18,3S1sl4dllxs2rlJ
[sc19sc19] I?ury said to
[xs3]a mouse, 1'at
[nlxs6]hc rnet
[xs7]in t''Je
[xs8]hOU3'2,

[xs9][sc19]Let us
[xs7]bot:-: go
[xsGl s12] to la~v:
[xs5dlS]I[~11] w~ll
[x~: 3]prosecu te
[xs2c:HS]you.
[nlxs3dll] ~Gne, I'll
[r:lxs4] take-j0
[Dlxs5]de~ii.c::·,l :
[;'ll)': 3 7 hIe [ill...: 3 t
[,-;.lxsDlsll]"\av8 a
[nlxs9]trial[sc47]
[n1xslO] ?or
[X3'T] real1:!
[X3(3] t~"1 is
[~11,] mer::. i :iC
r '."] x'~ '- I <:. -; ,,] I' -r n
~ I ' .• ~...- -.: l _ ,1 \..... 'J

LXS(~. j:'10 t;--:.ing
[x,35]to do. I

[xs4]Said t::e
[xs21mouse to
[xsl] the cur,
[nlxs3][sc19]Suc~ a
[nlxs4ls9]tr::.a1,
[xs3]dear sir,
[x s 2] ~J i t"l no
[xs2]jury or
[xslls8jjudge,
[n1xs2]would be
[xs2] wasting
[xs2] our breat1.-1 • '

[xs3ls7][sc19]I'11 be
[xs2.] judce,
[xs2] I'll be
[xs2]jt.:.ry, f

[xsl] S[;.::"c;_
[xslls6] cunning
[xsl] old Fury:
[xs2][sclS]I'll try
[xs2]the w;101e
[nlxs3lsS] cause,
[nl xs4 land
[xs3] conderrln
[xs3]you
[xs3]to
[xs 3 J deB. trl. ' , ,
[en]

Photocomposition

"Fury said to
a rriouse, That

hemet
in the

house,
'Let us

both go
tolaw:

I will
prosecute

you.
Come, I'll

take no
denial:

We must
have a

trial;
For

reallv
this .
morning

I've
nothing

to do.' -
Said the

mouse to
the cur,

'Such a
trial,

dE'ar sir,'
With no
jur~' or

judge.
would be
wasting
our breath.

Til be
judge.
I'IIIlt'

jury:
S:lid

('lll'tninL"

old Fn'n';
TlI'ln'
Ilwwholt·

mlli
~,(Hidl.'Hm
:~:UII

I ..
,11';1111,'"

COMPUTER CONTROLLED PRINTING 277

APPENDIX V

Photocomposition

u v w m n a coefficient
0 0 0 0 0 1/1
0 0 1 0 1/1
0 0 2 0 0 1/3

2 0 2/3
0 0 3 1 0 3/5

3 0 2/5
0 0 4 0 0 1/5

2 0 4/7
4 0 8/35

0 0 1 -1/1
4 ° 8/35

0 2 -1/3
3 0 -2/15
3 2 ·1/45
5 0 1/21
5 2 1/315
5 4 1/7,560
7 1 4/1,001
7 3 2/45,045

0 4 2 0 0 1/35
2 2 -1/63
4 0 -3/55
4 2 -1/231
4 4 1/9,240
6 0 2/77
6 2 4/3,465
6 4 1/41,580

0 4 3 1 0 1/35
3 0 -4/165
3 2 -1/165
5 0 -5/273
5 2 -1/1,365
5 4 1/32,760
7 ° 2/143
7 2 4/9,009
7 4 1/180,180

0 4 4 0 0 1/105
2 0 2/231
2 2 -1/231
4 0 -111/5,005
4 2 -1/455
4 4 1/40,040
6 0 -4/1,155
6 4 1/103,950
8 0 16/2,145
8 2 8/45,045
8 4 1/675,675

° ° 1 -1/1
3 -4/45
5 -8/315

278 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

APPENDIX VI

BCD Input
I I

o AT THE ANNUAL CASC (COUNCIL FOR THE ADVANCEMENT OF SMALL
COLLEGES) CONFERENCE IN AUGUST, THE THEME WAS FACILITIES. A
REPORT ON THE GASP PROJECT WAS MADE AT THAT TIME. THE IDEA
THAT COMPUTER SIMULATION TECHNIQUES COULD BE USED IN STUDYING
FACILITIES WAS INTRODUCED AND OUR SPACE UTILIZATION STUDY
REPORT (ISSUED 16 JULY WITH THE SECOND GASP PROGRESS REPORT)
WAS DISCUSSED.
I I I

o A LABORATORY COURSE IN OPERATIONS RESEARCH METHODS IS GIVEN
AT M.I.T. iN WHICH PROBLEMS WIiHIN iHE INSTITUTE AMENABLE
TO SOLUTION BY SUCH TECHNIQUES ARE CONSIDERED. THIS TERM A
PART OF THAT CLASS IS STUDYING SOME ASPECTS OF THE SCHEDULING
PROBLEM UNDER THE DIRECTION OF DR. H. P. GALLIHER. THERE
HAS BEEN, AND WILL CONTINUE TO BE, MUCH CONTACT BETWEEN
THIS GROUP AND THE GASP PROJECT.

Photocomposition

II

\T Til E A,\ '\ t' \ L C \SC (COL '\C I L FOH Til E A J)\" \'\CE\l E,\T OF S\J:\LL
COLLEGES) CO,\FEHE'\CE 1'\\l'CrST. TilE TIIE\lE WAS F\CILITIES. A
HEPOHT 0'\ TilE G.\SP PHOJECT WAS \l\DE ,\1' TII,\T TIME. TilE IDEA
Til \T CO\) PlTEH SI \ItT,A 1'10'\ TECII \ IQUES C()l:L1) BE USED 1,\ STUDY I \G
F \C!L!T!ES \\ \S !\THO!H;CED \\!) OtlH SPACE llTILlZ,\TION STlJDY
HEPOHT (lsstED 16 Jl LY \\ ITII TilE SEeo'\ J) GASP PHOGHESS HEPOHT)
W \S DlSCLSSEJ).
III

A L \ ROH \TOH Y COl'HSE 1,\ ()PEH \ TIO'\S HESEAHCH \lETIIODS IS GIVE\
,\T \1.1.'1'.1'\ \\IIICII PHOBLE\1S WITHI\ TilE I\STITOTE AME\ABLE
TO SOIXTIO,\ BY stell TECH\ IQliES .,\HE CO\SIDEHED. THIS TERM A
P\HT OF T1L\T CL \SS IS S'ITDYI\G SO\lE ASPECTS OF THE SCHEDliLl\G
PBORLE \1 L\ DEH I'll E J) I B ECTJ()'\ OF DB. II. P. G A LLlII Ell. THEBE
If \S BEE'\.\ '\ D \\ ILL CO,\TI \l:1<: TO BE. 'lUCII CO;\T,\CT BETWEE~
TillS G not" p \ \ J) 'I'll E C \SP PBOJ ECT.

II
h!
1:1
i.
];j

iii
Ii
III
1!1
-to
-tl
-tot
':!:l
'H
-t,j
-t(i
-t7
-til
-t9
:10

11
12
13
14-
15
16
17
18
19
20
21
22
23
24-
25
26
27
28
29
30

11
12
13
14
15
16
17
18
19
20
21
22
23
24-
25
26
27
28
29
30

Aslroid
B(N'ing
('on\'air
Doughls
EI"dr"
Fair('hild
(;o""'n Fal('on
H .. lio
.It·tawa,' \',,,'alion,
."·I-Po~"·rt·d
IA)('kh.·.·d
)Olainlint'r
\'on-Slop
On-Timt·
Prnp-.J .. I
(.~"nl'"
R.·d Carpt·t
Sunli",'r
Tourisl
\,i('k"rs

Astrojet
Boeing
Convair
Douglas
Electra
Fairchild
Golden Falcon
Helio
Jetaway Vacations
Jet-Powered
Lockheed
Mainli~r
Non-Stpp
On-Time
Prop-Jet
Qantas
Red Carpet
Sunliner
Tourist
Vickers

Astroiet
Boeing
Convair
D:::g!cs
Electra
Fairchild
Golden Falcon
Helio
Jetaway Vacations
Jet-Powered
Lockheed
Mainliner
Non-Stop
On-Time
Prop-Jet
Qantas
Red Carpet
Sunlin';
Tourist
Vickers

COMPUTER CONTROLLED PRINTING 279

APPENDIX VII

Photocomposition

J)a lias. Tf'xas
J)"n\'ill.·, III.
D;ln\'ill,·. \'a,
Dauphin, :\Ianiloha
Dawson Cil\,. y,'!'.
Dawson ('rI~·k. Ik('01.
D'lyton, Ohio
Da~'lona B"a('h, FI: ..
()t>('atur, ,\Ia,
Dt>('aillr, III.
()t'(>ring. Al:lska
1),,1 Monft', ('alif.
Della, Colo,
Den ison, T"xlIs
D"nn'r, Colo,
1>,. Riddt'r, I..ollisill n'l
Des :\loines. Iowa
D"sl in. Fla,
Delroil, Mi('h,
De\'ils I..akt', \" D,

Dallas, Texas
Danville, Ill.
Danville, Va.
Dauphin, Manitoba
Dawson City, Y.T.
Dawson Creek, Br.Col.
Dayton, Ohio
Daytona Beach, Fla.
Decatur, Ala.
Decatur, Ill.
Deering, Alaska
Del Monte, Calif.
Delta, Colo.
Denison, Texas
Denver, Colo.
De Ridder, Louisiana
Des Moines, Iowa
Destin, Fla.
Detroit, Mich.
Devils Lake, N.D.

Dallas, Texas
Danville, III.
Danville, Va.
DGuph.iii, Muiiiful:iu
Dawson City, Y.T.
Dawson Creek, Br.CoI.
Dayton, Ohio
Daytona Beach, Fla.
Decatur, Ala.
Decatur, III.
Deering, Alaska
Del Monte, Calif.
Delta, Colo.
Denison, Texas
Denver, Colo.
De Ridder, Louisiana
Des Moines, Iowa
Destin, Fla.
Detroit, Mich.
Devils Lake, N.D.

1),\1..
D\,\'
Ilo'V

YD~
YD,\
Yl~
IHY
DAB
D(,{ :
DEC
DIU;
)OlHY
MT.J
SWI
DE\,
DIU
J)S~I

"PS
DTW
D\,1..

DAL
DNV
DAN
YDN
YDA
YDQ
DAY
DAB
DCU
DEC
DRG
MRY
MTJ
SWI
DEN
DRI
DSM
VPS
DTW
DVL

DAL
DNV
DAN
VO'UooI . .,....
YDA
YDQ
DAY
DAB
DCU
DEC
DIG
MRY
MTJ
SWI
DEN
DRI
DSM
VPS
DM
DVL

280 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

APPENDIX VIII

Flexowriter Input
616.21

Chu-hua erh pi yen hou KJo tsa chih (Zhonghua erbiyanhouke zazhi)
[Chinese Journal of otorhinolaryngology]
Peking, People's Medical Publishers, lAug. 1953], varies, bimonthly

mLM v.2, 4, 1954 v.3-7, 1955-59
v.8, 1-3, 1960

MCM v.3-7, 1955-59
MH-HY v.2, 4, 1954 v. 3-7, 1955-59
GbBM v.4, 4, 1956

615.84
Chung-hua fang she hsUZeh tsa chih (Zhonghua fangshexue zazh1)

(Chinese Journal of Radiology]

v.8, 1-3, 1960

Peking, People's Health Press, [Sept. 1953], varies, bimonthly

DNLM v.2, 2,4, 1954 v.3-7, 1955-59
v.8, 1,2, 1960

MCM v.3, 1-3, 1955 v.4-7, 1956-59
v.8, 1,2, 1960

MH-HY v.2, 4, 1954 v.4, 1956
v.5, 1957

GbDSIR v.7, 4-6, 1959
HkURI v.4, 1956 v.5, 1-3, 1957

618
Chung-hua fu chJan ~o tsa chih (Zhonghua fuchanke zazhi)

[Chinese Journal of Obstetrics and Gynecology]
Peking, People's Medical Publishers, [Apr. 1953], varies,bimonthly

DNLM

MCM

v.2, 3,4, 1954
v.6, 1-5, 1958
v.8, 1,2, 1960

v.5, 1957
v.7, 1959

MH-HY v.2, 4, 1954
v.5, 1957
v.7, 1959

JpNDL v.6, 1958

v.3-5, 1955-57
v.7, 1959

v.3, 2-4, 1955
v.6, 1-5, 1958
__ 0 .,, ",c.,..
v.u, .L,t:., .L:;:1uu
v.4, 1956
v.6, 1-5, 1958

v.4, 1956

COMPUTER CONTROLLED PRINTING 281

APPENDIX VIII

Photocomposition

004
Chung-hua erh pi yen hou k' 0 tsa chih 'CZhonghua erbiyanhouke zazhi)

[Chinese Journal of Otorhinolaryngology]

DNLM

MCM
MH-HY
GbBM

Peking, People's Medical Publishers, [Aug. 1953], varies,bimonthly

005

v.2, 4, 1954
v.8, 1-3, 1960
v'.3-7, 1955-59
v.2, 4, 1954
v.4, 4, 1956

v .3-7, 1955-59

v.8, 1-3, 1960
v .3-7, 1955-59

Chung-hua fang she hsueh tsa chih CZhonghua fangshexue zazhi)
[Chinese Journal of Radiology]
Peking, People's Health Press, [Sept. 1953], varies,bimonthly

DNLM v.2, 2,4, 1954 v .3-7, 1955-59
v.8, 1,2, 1960

MCM v.3, 1-3, 1955 v.4-7, 1956-59
v.8, 1,2, 1960

MH-HY v.2, 4, 1954 v.4, 1956
v.5, 1957

GbDSIR v.7, 4-6, 1959
HkURI v.4, 1956 v.5, 1-3, 1957

006
Chung-hua fu ch' an k' 0 tsa chih (Zhonghua fuchanke zazhi)

[Chinese Journal of Obstetrics and Gynecology]
Peking, People's Medical Publishers, [Apr. 1953], varies, bimonthly

DNLM v.2, 3,4, 1954 v.3-5, 1955-57
v.6, 1-5, 1958 v.7, 1959
v.8, 1,2, 1960

MCM v.3, 2-4, 1955 v.4, 1956
v.5, 1957 v.6, 1-5, 1958
v.7, 1959 v.8, 1,2,'1960

MH-HY v.2, 4, 1954 v.4, 1956
v.5, 1957 v.6, 1-5, 1958
v.7, 1959

JpNDL v.6, 1958

007
Chung-hua i hsueh tsa chih (Zhonghua yixue zazhi)

[N ational Medical Journal of China}
Peking, People's Health Press, [1914J, monthly

CSt-H
DLC

DNLM

MCM

v.39, 6-12, 1953
v.37, 6-8, 1951
v .39-44, 1953-58
v.35, 1-8,10-12, 1949
v.38,1-3,7,8,10,12, 1952

v.44, 1958
v.35, 1949

v.40-44, 1954-58
v.38, 7-12, 1952

v.37, 8,11,12, 1951
v.39, 2,4-6,8-12, 1953

v.46, 1, 1960
v.36, 1950

282 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

APPENDIX IXa

Flexowriter Input

[1,4025]DAVID MOSS MITCCL 1962[4]GEOLOGICAL LISTING[19,4720,5]

280[16]BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY, 1959[20,S]Summerson,

Charles Henry. [29][30]1. Evidence of weathering at the Silurian

Devonian contact in central Ohio: Jour. Sed. Petrology, v. 29, no.

3, p. 425-429, lllus, Septe 1959~[17]2. Pre-glacial residual soil

in central Ohio: Jour. Sed. Petrology, v. 29, no. 3, p. 430-435,

illus., Sept. 1959.[18]Sun, Ming-Shan.[28][30]1. (and Weege, Ran

dall J.). Native selenium from Grants, New Mexico: Am. Mineralogist,

v. 44, nos. 11-12, p. 1309-1311, illus., Nov.-Dec. 1959.[17]2. Deter

mination of selenium by X-ray spectroscopic method [23]abs.[24],

[21]in[22] N. Mex. Geol. Soc., Guidebook, lOth Field Conf., Oct.

1959, p. 157, 1959.[18]sun, Shiou Chuan. [21]See[2] Spokes, E. M.

[31]Sund, J. Olaf. [28] [30]Origin of the New Brunswick gypsum

deposits: Canadian Min. Meta11. Bull., no. 571, p. 707-712,

illus., Nov. 1959: Canadian Inst. Mining and Metallurgy Trans.,

v. 62, p. 395-400, illus., 1959.[18]Sundelius, Harold Wesley. [28]

[30]Occurrence and origin of the Peg Claims spodumene pegmatites,

Knox County, Maine [23]abs.[24]: Dissert. Abs., v. 20, no. 2,

p. 642, Aug. 1959. [18]Sundius, Nils. [21]See[22] Vogt, T.[31]

Susuki, Takeo. [21]See[22] Crowell, J. C., 1; Valentine, J. W.,

2.[31]Suter, Max.[28][30](and others). Preliminary report on

ground-water resources of the Chicago region, Illinois: Ill.

State water Survey Cooperative Ground-Water Rept. 1, 89 p.,

il1us. incl. geo1. maps, 1959, summary, Rept. l-S, 18 p.,

ll1us., 1959.[18]

COMPUTER CONTROLLED PRINTING 283

APPENDIX IXB

Photocomposition

280 BIBLIOGRAPHY OF NORTH AMERICAN GEOLOGY, 1959

Summerson, Charles Henry.

1. Evidence of weathering at the Silurian-Devonian contact in central Ohio: Jour. Sed.
Petrology, v. 29, no. 3, p. 425-429, iIIus, Sept. 1959.

2. Pre-glacial residual soil in central Ohio: Jour. Sed. Petrology. v. 29, no. 3, p. 430-435.
inus., Sept. 1959.

Sun, Ming-Shan.

1. (and Weege, Randall J.). Native selenium from Grants, New Mexico: Am. Mineralogist.
v. 44, nos. 11-12, p. 1309-1311, iIIus., Nov.-Dec. 1959.

2. Determination of selenium by X-ray spectroscopic method [abs.], in N. Mex. Geol. Soc .•
Guidebook. 10th Field Conf., Oct. 1959, p. 157. 1959.

Sun, Shiou Chuan. &e Spokes, E. M.

Sund, J. Olaf.

Origin of the New Brunswick gypsum deposits: Canadian Min. Metall. Bull., no. 571, p.
707-712, iIIus.,]\;ov. 1959, Canadian Inst. Mining and Metallurgy Trans .• v. 62, po.
395-400, iIIus., 1959.

Sundelius, Harold Wesley.

Occurrence and origin of the Peg Claims spodumene pegmatites, Knox County. :\faine
[abs.]: Dissert. Abs., v. 20, no. 2, p. 642, Aug. 1959.

Sundius, Nils. &e Vogt, T.

Susuki, Takeo. &e Crowell, J. C., 1, Valentine, J. W., 2.

Suter, Max.

(and others). Preliminary report on ground-water resources of the Chicago region, IIIinois:
III. State Water Survey Cooperative Ground-Water Rept. 1, 89 p., iIIus. incl. geol.
maps, 1959, summary, Rept. I-S, 18 p .• iIIus., 1959.

Sutherland, Patrick Kennedy.

I. (and Amsden. Thomas William). A re-illustration of the trilobite Lonchodomas mcgeheei
Decker from the Bromide formation (Ordovician) of southern Oklahoma: Okla.
Geology Notes, v. 19, no. 10, p. 212-219, iIIus. incl. geol. sketch map, Oct. 1959.

2. (and Land, Cooper B., Jr.). Mississippian limestone boulder conglomerates in the
southernmost Sangre de Cristo ountains, New Mexico [abs.y Geol. Soc. America
Bull., v. 70, no. 12, pt. 2, p. 1683, Dec. 1959.

Sutherland, Pauline.

:\ew England's new desert [Maine]: Desert Mag .. v. 22. no. 2. p. 10-11, iIIus., Feb. 1959.

Sutterlin, Peter George.

A stratigraphic analysis of the Winterburn and Wabamun groups in southern Alberta. in
Am. Assoc. Petroleum Geologists Rocky Mtn. Sec., Geological record. Feb. 1959, p.
17-23. illus. [1959J.

Sutton, George H. &e Drake, C. L., Talwani, M., 2.

Sutton, Rohert George.

1. Use of flute casts in stratigraphic correlation [N.Y.]: Am. Assoc. Petroleum Geologists
Bull., v. 43, no. 1, p. 230-237, iIIus., Jan. 1959.

2. Structural geology of the Dryden and Harford quadrangles. New York. 15 p., iIIus.,
Albany, Univ. State N. Y., July 1959.

Swain, Frederick Morrill, .Jr. See also Dobbins, D. A.: Palacas, .J. G.

1. (and Blumentals, A .. and Millers, R.). Stratigraphic distribution of amino acids in peats
from Cedar Creek Bog. Minnesota, and Dismal Swamp, Virginia: Limnology and
Oceanography, v. 4, no. 2, p. 119-12:7, iIIus., Apr. 1959.

2. Amino acid distribution in lake deposits [abs.}: Minn. Univ. Center Continuation Study
Inst. Lake Superior Geology. 5th Ann. Mtg., Apr. 13-14, 1959, p. 13(t) [1959]

284 PROCEEDING8-SPRI-NG JOINT COM-PUTER CONFERENCE, 1963

APPENDIX Xa

Hollerith Input

A.E.G. PROGRESS
(ALLGEMEINE ELEKTRICITATSGESELLSCHAFT, BERLIN)

NO.l,APRIL 1925-1934 ENG G VAIL
1956,NO.l+
A.E.I. ENGINEERING

(ASSOCIATED ELECTRICAL INDUSTRIES, LTD.)
V.l,1961+ ENG G VAIL
A.I.B.S. BULLETIN

(AMERICAN INSTITUTE OF BIOLOGICAL SCIENCES)
V.l,1951+ SCIENCE BIOL P 570.51 A51
A.I.CH.E. JOURNAL

(AMERICAN INSTITUTE OF CHEMICAL ENGINEERS)
V.l,NO.l,MAR i955+ SCIENCE 660.51 All
A.I.P. DOCUMENTATION NEWSLETTER

(AMERICAN INSTITUTE OF PHYSICS)
V.l,NO.l,JULY 1959+ *HAYDEN P 530.51 All
A.O.P.A. PILOT

(AIRCRAFT OWNERS AND PILOTS ASSOCIATION)
V.2,NO.8,AUG 1959+ AERO
A.P.C.A. ABSTRACTS

(AIR POLLUTION CONTROL ASSOCIATION)
V.2,NO.4,SEPT, ENG G
NO.6,NOV 1956+
A.S.E.A.

(ALLMANNA SVENSKA ELEKTRISKA AKTIEBOLAGET)
SEE ASEA

A.S.H.R.A.E. JOURNAL
(AMERICAN SOCIETY OF HEATING, REFRIGERATING
AND AIR-CONDITIONING ENGINEERS)
EARLIER SEE REFRIGERATING ENGINEERING

V.l,NO.3,MAR 1959-NO.12, HAYDEN P 628.8051 All
DEC 1959
V.l,NO.~,MAR 1959+ ENG G
A.T.E. JOURNAL

(AUTOMATIC TELEPHONE AND ELECTRIC COMPANY)
V.8,1951+ ENG G VAIL

41611
0041621
004163B

41642
42011

0042021
004203B

43211
0043221
004323B

44811
0044821
0044836

45611
o 45621
004563B

51211
0051221
o 5123B

52811
0052821
o 5283B

52842
57611

0051621
51631
59211

0059221
o 59231
0059241
0059256

59262
o 5927K

60811
0060821
006083d

1
1
1
1
7
1
1
2
2
2
2
2
2
3
3
3
1
1
1
1
7
7
1

7
1
7
1
3
3
1
1
7

COMPUTER CONTROLLED PRINTING 285

APPENDIX Xb

Photocomposition

TITLE HOLDINGS

A.E.G. Progress (Allgemeine Elektricitatsgesellschaft, Berlin) no.l,April 1925-1934
1956,no.l+

A.E.I. Engineering (Associated Electrical Industries, Ltd.) v.l ,1961+

A.I.B.S. Bulletin (American Institute of Biological Sciences) v.l,l951+

A.I.Ch.E. Journal (American Institute of Chemical Engineers) v.l,no.l,Mar 1955+

A.I.P. Documentation Newsletter (American Institute of Physics) v.l,no.l,July 1959+

A.O.P .A. Pilot (Aircraft Owners and Pilots Association) v.2,no.8,Aug 1959+

A.P.C.A. Abstracts (Air Pollution Control Association) v.2,n A,Sept,
no.6,Nov 1956+

A.S.E.A. (AUmanna Svenska Elektriska Aktiebolaget) See Asea

A.S.H.R.A.E. Journal (American Society of Heating,
Refrigerating and Air-Conditioning Engineers) Earlier See
Refrigerating Engineering

A.T.E. Journal (Automatic Telephone and Electric Company)

A.W.A. Technical Review (Amalgamated Wireless, Ltd.)

Abhandlungen in Addition to the following Title See
Abhandlungen Under Names of Societies and Institutions

Abhandlungen aus der Sowjetischen Physik

Abo (Finland). Akademi. Acta. Mathematica et Physica

Abstracts Journal of Metallurgy

Abstracts of English Studies

v.l,no.3,Mar 1959-no.12,
Dec 1959

v.l,no.3,Mar 1959+

v.8,1951+

v.3,1937+

v.1,l951 +

v.4,l927, v.l2,1940+

1957,no.l+

v.1,l958+

LIBRARY CALL NUMBER

ENGG Vail

ENGG Vail

SCIENCE Bioi P 570.51 A51

SCIENCE 660.51 All

*HAYDEN P 530.51 All

AERO

ENGG

HAYDEN P 628.8051 All

ENGG

ENGG Vail

ENGG Vail

SCIENCE

SCIENCE 510.6945 A15 Aa

SCIENCE Lindgren 016.669 A16

GEN + HUM 016.8 Al6

286 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

APPENDIX XIa

Source Program and Data

* XEQ
* LIST
C MAIN PROGRAM

DIMENSION FORM(24),FORMA(12)
READ INPUT TAPE 4,9,(FORM(K),K=I,24),(FORMA(K),K=I,12)
COMPOSE FORM

5 READ INPUT TAPE 4, 2, NI, N2
IF (NI) 6, 7, 7

7 N3 = NI + N2
COMPOSE 3, NI, N2, N3

2 FORMAT (215)
3 FORMAT (2KRJ 13, 3H + 13, 5KXS3RL 3H = 14, 3KXS2)
6 COMPOSE FORMA

CALL EXIT
9 FORMAT (12A6)

END
* DATA
(21KINDL2LS18STl,,36XS1CN 50H$SIMPLE ARITHMETIC TO DEMONSTRATE PHOTOCOMP
OSITION 7KXS1AU15 15HOECEMBER 1961 29KSP3DL1LS12ST2,,18ST3,18,36XS2)
(5KXS1CN 4H$END 4KNLEN)

1 1
1 2

27 54
57 82

7 2
o 0

100 1000
26 14
-1

COMPUTER CONTROLLED PRINTING 287

APPENDIX XIb

Photocomposition

SIMPLE ARITHMETIC TO DEMONSTRATE
PHOTu~OMPOSITION

December 1961

1+1=2

1+2=3

27 + 54 = 81

57 + 82 = 139

7+2=9

0+0=0

100 + }OOO = 1100

26 + 14 = 40

END

288 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

APPENDIX XII

Photocomposition

T~t\.BI~E OF e COEFFICIENTS
u+v,w

k.j.i
u+y \\' p

U+Y.W

2 3 2(k +2)(k +3) /(2k + 1)(2k +3)(2k +5)

2 0 -3 -2k(k-l)(k-2) /(2k-l) (2k + 1)(2k-3)

2 0 -1 2k(k2-3) /(2k + 1) (2k-3) (2k +3)

2 0 2(k2 +2k-2)(k + 1) /(2k + 1) (2k-1)(2k +5)

2 0 3 -2(k+ l)(k +2)(k +3) /(2k + 1)(2k +3)(2k +5)

2 2 -:3 2(k-2) /(2k-l) (2k + 1)(2k-3)

2 2 -1 -2(k-3) /(2k + 1)(2k-3) (2k +3)

2 2 1 -2(k +4) /(2k + 1)(2k-l)(2k +5)

2 ') 3 2(k +3) /(2k + 1) (2k +3) (2k +5) .;.,

3 0 -:3 2(k -1) (k-2) /(2k -1) (2k + 1) (2k-3)

3 0 1 -1 -2(3k2_k-6) /(2k + 1) (2k-3) (2k +3)

3 0 1 2(3k2+ 7k-2) /(2k + 1)(2k-l)(2k +5)

3 0 1 :-3 -2(k +2)(k +3) /(2k + 1) (2k +3) (2k +5)

3 0 3 -3 -2/(2k-1) (2k + 1)(2k-3)

3 0 3 -1 6/(2k + 1)(2k-3)(2k +3)

3 0 3 -6/(2k + 1)(2k-1)(2k +5)

3 0 3 3 2/(2k + 1) (2k +3) (2k +5)

0 4 0 -4 2k(k-l) (k-2) (k-3) /(2k + 1)(21-1) (2k-3) (2k-5)

0 4 0 -2 4k(2k2_2k-7) (k-l) /(2k-l) (2k + 1) (2k +3) (2k-5)

0 4 0 0 6(2k4 +4k 3-6k 2-8k +3) /(2k-l)(2k-3) (2k +3) (2k +5)

0 4 0 2 4(2k2+6k-3) (k + 1) (k +2) /(2k + 1)(2k-1)(2k +3)(2k + 7)

0 4 0 4 2(k + 1) (k +2) (k +4)(k +3) /(2k + 1)(2k +3)(2k +5)(2k + 7)

1 3 1 -4 -2(k-l) (k-2) (k-3) /(2k + 1) (2k-l)(2k-3) (2k-5)

ON inE SOLUiiON OF
AN INFORMATION RETRIEVAL PROBLEM

Burnett H. Sams
Data Systems Center

Radio Corporation of America
Bethesda 14, Maryland

The problem was to formulate a system which
would be capable of digesting an input stream
of documents in such a manner as to be able to
regurgitate selected information in response to
interrogations by a number of research ana
lysts. A number of comments on the problem
are in order. Portions of such systems are com
puters and computer programs serving as in
formation processors. The documents are as
sumed to contain formatted texts on a suffici
ently restricted subject matter to permit me
chanical recognition and analysis of what for
the moment will be loosely called the informa
tional content of the document. That the sys
tem is intended to have a number of users is
significant and implies that the person who puts
information into the system and the person
who takes it out are not always the same.
Either there are very tight conventions gov
erning the storage and retrieval of information,
or there is a mechanism for associating classes
of input and output descriptions. As the num
ber of users or the scope of subject matter in
creases, it becomes increasingly necessary to
provide leeway on taking in information and
to provide alternative routes for getting at in
formation stored within the system. In larger
systems it may become necessary to accommo
date man-machine dialogue enroute to desired
information.

This paper is concerned with the design and
programming of information retrieval systems.
Typical units for measuring the capacity of

289

random-access storage and the size of computer
programs are respectively lOS characters and
105 instructions. The computer for this appli
cation is taken to be a general-purpose, stored
program, digital computer having a high-speed,
random-access memory for program storage,
working storage, and data storage of 215 - 217
words. The internal operations are geared to
manipulate strings of bits. The applications
will generally require serial magnetic tapes in
addition to random-access memories. The com
puter has programable input and output units
capable of operating in a simultaneous manner.
This simultaneous processing capability is co
ordinated with internal processing by a pro
gram interrupt subsystem which automatically
saves the machine registers on an interruption.s

The system discussed below is not an actual
development but is an extension of develop
ments leading to frontiers in information re
trieval, programming, and computer technol
ogy. The ACSI-MATIC Program under contract
with the Department of the Army, Office of the
Assistant Chief of Staff for Intelligence is de~
veloping a major information system to sup
port certain headquarters operations of the
U. S. Army.4, 6, j, lJ

RETRIEVAL SYSTEMS

A distinction is made between a document
retrieval system, an information retrieval sys
tem, and a collating information retrieval sys-

290 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

tem. In a document retrieval system, docu
ments are stored as they are received, and the
object is to retrieve documents having some
thing in common. In an information retrieval
system, docunlents are transformed and stored
so as to render their "informational content" ac
cessible to programs whose objective is to re
trieve extracts from documents having some
thing in commOTI. In a collating information re
trieval system, documents are not retained in the
principal data store; instead, composites are
formed of information extracted from many
documents. Such a system has a potential for
research on inference formation and input
validation (Fig. 1).

System Storage Retrieval

Document Documents Documents

Information Documents Extracts·

Collating Composites Extracts

Figure 1. Document retrieval, information retrieval
and collating information retrieval systems are differ
entiated by their informational units of storage and
retrieval.

In document retrieval systems generally, each
document is indexed by a set of key terms.
Likewise, each composite is indexed by a set
of key terms. For example, if one wanted to
know the current status of a particular hurri
cane, the document retrieval system would pro
duce a few dozen weather reports each having
something to say about the hurricane. The
information retrieval system would produce
extracts from the reports dealing with the hur
ricane. The collating system would have pre
viously organized the data in the weather re
ports and would produce only the current status
of the hurricane. If one asked about a tornado
that was also discussed in those same weather
reports, the document system would simply
present the reports a second time. The infor
mation retrieval system would produce those
extracts dealing with the tornado, and the col
lating system would limit itself to the status of
the tornado.:~

INDEXING

Each system requires some kind of indexing
scheme that can locate records (documents,
extracts, or composites) within a short period
of time. The sinlplest kind of indexing associ
ates an index term with a set of records each
of which contains the index term. One may
wish a more extensive association. For ex
ample, if one wants to get information about
the consumption of electricity in New Jersey,
one would not want to ignore a document con
cerning the electric consumption in Jersey City.
The interrogator knows Jersey City is in New
Jersey. He always wants related information
about Jersey City or Newark or Trenton when
he wants information about New Jersey. The
index ternl "New Jersey," therefore, should
subsume the index terms "Jersey City," "New
ark," etc. This particular subsuming is tree
structured and one can devise various tech
niques for reflecting the desired relationships
(Fig. 2). Sometimes a tree relationship of sub-

United Statl'

iI\
Trenton Newark Jer ••)' Cit, NI. Yor~ CIt, lIuffala Alban,

Figure 2. A section of a tree illustrating hierarchical
relations among political units.

suming is not adequate. Suppose, in addition
to having New Jersey subsume Jersey City, one
also wants Greater New York to subsume
Jersey City; Jersey City has now become a
lattice point in the structure (Fig. 3). Process-

United Siaies

A\l\!\~
Trlnlon Nlwarit J.rsey City N.w York Cl'Y BLiffak3 Albany

Figure 3. A section of a graph illustrating a non-tree
structured relation.

ON THE SOLUTION OF AN INFORMATION RETRIEVAL PROBLEM 291

ing over an encoding of a lattice or a general
linear graph is far more difficult and time
consuming than processing over an encoding
of a tree; thus it is inefficient to view all points
as graph points for the sake of generality. Each
problem may have its own particular kinds of
index term associations which may affect effi
ciency, and it is likely that most problems will
have more than one kind. It is concluded, there
fore, that information retrieval systems must
have the ability to identify index terms as b~
longing to a class of index terms which permits
a set of subsuming relations between elements
in the class. One might also permit a set of
subsuming relations to be defined among the
classes themselves.

As soon as one.permits classes of index terms,
there is simultaneously a need for means of
identifying the class to which a given term
belongs and a need to identify terms within a
class to see if they are legitimate and to find
subsumed index terms. When the number of
terms in a class is finite, a simple glossary will
suffice. Each entry in the glossary could indi
cate which of the remaining entries in the glos
sary are subsumed index terms. When frequent
additions to the glossary are anticipated, any
scheme should be avoided that depends on the
sequence of items in the glossary for these sub
sumed term indicators. If, however, the num
ber of items in the class is infinite, one needs a
recognition procedure. For example, suppose
a system indexes all transactions of $1000 or
more by indexing each document under the
exact amount of the transaction. Suppose fur
ther that for standard requests one subsumes
under a given amount all other amounts within
a half-dollar of the given amount. Then-for
an interrogation using $1065.00 as an index
term, all amounts greater than $1064.49 and
less than $1065.50 are subsumed.

Although the number of possible index terms
in a system may be infinite, the number of docu
ments or composities indexed and the number
of index terms which actually reference docu
ments are finite but unbounded. Each informa
tion retrieval system needs a list of active index
terms with their coupling to the records they
index. Schemes based upon searching the entire
record store for each interrogation are excluded
from these considerations of a large data store.
The combination of glossaries and an index list
is called a thesaurus. The index list is distinct

from the glossaries, and some classes having
an infinite number of index terms may not re
quire glossaries. By the very fact that index
terms may be active or inactive at a particular
time, it is necessary to have means for updat
ing the index list. If the list is long, efficiency
will dictate that a hierarchy of directories be
incorporated. The insertion and removal of
terms from the active index list and the corre
sponding maintenance of directories should be
entirely automated.

In cases where the subsumed index terms are
from an infinite set, one does not generate them,
but rather one examines the index list to see if
it contains any index terms that could have
been so generated. Clever coding and ordering
.of the index list can substantially shorten this
examination. Actually, it may be profitable to
introduce more than one index list or even one
list for each class of index terms.

In general, one does not expect to retrieve
on a single index term, but rather on combina
tions. In fact one might expect to perform
arbitrary Boolean functions on sets of index
terms. In addition, one may desire some exter
nal control over the selection of subsumed index
terms for any particular term in some pre
established way. In the example above where
one indexed all transactions of amounts larger
than. $1 000, one may want for a particular re
trieval only those transactions with amounts
greater than $100,000. Each index term, there
fore, should permit an operation with parame
ters that can control the selection of subsumed
index terms. The permissible operations must
be defined for each index list.

In many cases, one needs to relate index
terms of different classes for retrieval. If one
wants to retrieve all employees who earn $5,000
and who have 2 children, it is not sufficient to
use the two index ~erms connected by "and"
since one may get employees with two children
earning other than $5,000 or employees earning
$5,000 with other than two children if more
than one person is described in the indexed
record.

It is necessary, therefore, to group index
classes and to let the terms in the grouped
classes index portions of a record; such por
tions will be called subjects. For example, con
sider a document (Fig. 4) that mentions fac
tory # 1 and lists the names of all its employees
together with the salary each earns and the

292 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Factory #l

Employee Name Salary Children

1 Abel S 5,000 Z

Z Baker 10,000 Z

3 Carter 5,000 3

!i'igure 4. Tabular summary of a sample document.

number of children each has. Suppose in par
ticular, there are three employees Abel, Baker,
and Carter who earn $5,000, $10,000 and $5,000
and who have 2, 2, and 3 children respectively.
If the document were given the number 100,
one could index as illustrated in Fig. 5, where
the index numbers may consist of one or two
parts, the first referencing the document and
the second referencing the employee in the
document. Each person has become a subject
within the factory; a sub-subject of the subject
"Factory." Actually, if more than one factory
were mentioned, one would require three parts
for each index number, one each for document,
factory, and person. Note that the number of
persons per factory is unbounded. The group
ing of index classes, which parallels the scheme
for assigning index numbers and which paral
lels the structure of subjects in documents, is
tree-structured.

DATA STRUCTURE

An information store and its interaction with
indexing may now be described. The data
structure is concerned with the storage of in
formation collected on the various subjects of
interest for a particular information retrieval
system. The subjects, for example, may exhibit

$5,000-100,1
-100,3

$10,000-100,2
2 children-100,1

-100,2
3 children-lOO,3

Abel-100,1
Baker-l00,2
Carter-100,3

Factory #1-100

Figure 5. Example of indexing structure.

hierarchical relationships such as persons em
ployed by factories or components within
assemblies.

The informational units for processing and
for retrieval are fields. Fields may possess sub
fields or be combined to form larger fields. A
field may exhibit three kinds of variability; the
possible values of a field may not all have the
same size representation, or more important for
present considerations, a field may require a
variable length list of values which are con
sidered either as additional subfields or as alter
native values called replications. The smallest
fields are called primitive fields. Each primitive
field has a specified ordered set of values called
primitive values. Fields are defined recursively
as being either a primitive field or a list of
fields; these latter fields are then called sub
fields. A field value, or more briefly value, is
correspondingly either a primitive value or a
list of subfield values. If some subfield is repli
cated, there is not a uniquely determined value.
Accordingly, the scope of a field, or more briefly
scope, is defined as the set of all values obtained
by ranging over all combinations of subfield
replications. The set of all possible field values
is ordered in one or more ways as extensions
of the orderings defined for each subfield. For
example, the field "Personality name" may have
the three subfields, "Last name," "First name,"
and "Middle name," which are further broken
down by "Characters" to permit such retrievals
as "all electrical engineers in Detroit whose
first name is Alan," or alternatively, whose last
name ends in the letter "y." Note that a dis
tinction is drawn between the field value
"Smith" and the instance of the subject "Per
son" that is known by the name "Smith." Sub
jects are organizational entities in correspond
ence with the objects, individuals, or abstract
categories to which the descriptive information
pertains. It is convenient to also distinguish
from the fields which describe subjects-the
fields, called auxiliary fields, which describe
the relationship betw:,een other fields and the
subject. For instance, the population of a city
may be accompanied by a date and reference
source. In any implemented system there will
also be control fields to compensate for the sev
eral kinds of format variability allowed.

It is now possible to define information as the
holding, of a given set of relationships among
a set of fields with given values. The informa-

ON THE SOLUTION OF AN INFORMATION RETRIEVAL PROBLEM 293

tional content of a document is meaningful as
the totality of information resulting from an
analysis of the document in terms of field struc
ture and values. An analysis of each document
is required in a collating system since docu
ments are not retained in the main data store.

Some fields are distinguished as the genera
tors of index classes. An index class generated
by a field consists of the set of all possible field
values; these values are called index terms of
the index class-e.g. :

Index class : Manufacturer-Vehicle
Index term : Ford-Truck

The set of index terms is organized into a num
ber of directed linear graphs (not necessarily
trees or lattices) by a number of functions on
the set of index terms whose values are pairs
of sets of ancestor and descendent index terms
respectively.

Other fields are distinguished as the genera
tors of subject classes. The terms subject value
and subject scope are carried over from the
field definitions. An attribute of a subfield
which is also a generator of a subject class will
be referred to as a sub-subject attribute. The
members of a subject class are units of storage
corresponding to the subject scopes actually
retained in the information store of the system.
Subjects are the units of indexing. Each index
term points to a number of subjects, and each
subject is pointed to by at least one, and usually
more, index terms.

In the index list, besides identifying a par
ticular subject, it is necessary to identify the
class to which the subject belongs; this enables
distinguishing between the "Location" in which
a person resides and the "Factory" in which he
works. The choice of subject classes is matched
to the choice of index classes so that the set of
subjects to which a pair of index terms jointly
apply is precisely the intersection of the two
sets of subject..q to which the index terms indi
vidually apply. Consider for example, the sub
ject class "Automobile ownership" consisting
of the two subject classes "Family" and "Auto"
(Fig. 6) and an instance of "Automobile own
ership" (Fig. 7). The items with asterisks are
subject identifiers and the subject "Auto" is
replicated.

In an information retrieval system it is pos
sible that only a small fraction of the informa
tion is deducible from the index list-subject

Subject-Automobile ownership
Subject-Family

Name
Number in family
Number of drivers

Subject-Auto
Man ufacturer
Year

Figure 6. Example of subject structure.

relationship. In the design of such a system,
the statistics of processing and retrieval, the
sizes of files, and the nature of the hardware
configuration are prerequisite to making a rea
sonable determination of indexing structure
and the organization of subject storage. In
general, information will be stored in units of
records which correspond to subjects (usually
with sub-subjects) for which the statistics of
record size are well matched to the storage
media. For many applications the number of
fields per record may be rather large, so that
one would not want to reserve space in the
record for fields which may never be given
values in a particular record, and considering
value replications, one cannot know in advance
the number of field values to be stored in a given
record ..

Two elements of information storage, the
field and the record, have been introduced. The
primitive field is the smallest piece of data that
will be named and manipulated. The record is
the largest piece of data that will be manipu
lated as an entity. Records are composed of
fields. Within a record, any field or combination
of fields may be associated with other fields or

* * Automobile ownership
* Family

S:mith, John Q.
5
3

*Auto
Ford

62
*Auto

Volkswagen
59

Figure 7. Example of data structure.

294 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

combination of fields provided the association
is independent of the particular datum that
"fills" the field and provided the associations
can be arranged to represent a tree structure
for the record. A field is a form that has a
value. The value may be any of a set of terms
defined by the application or it may be the
vacuous symbol. Pl record is a tree structure
of fields independent of the values of the fields.
It is to be emphasized that the values for a
given field are not required to be tree-struc
tured. It is only the fields themselves that must
be so structured in order to provide a scheme
for assigning names to data sets stored in the
record.

Plny piece of information in the system has
a name which is factorable into:

Record identification
Subfield replicate

•
•
•

Subfield replicate
Primitive field replicate

The derivation of names follows directly from
the description of records~ subjects and fields.
It is recognized that a given term might possess
different descriptions for input, indexing, stor
age, processing, and output as demanded for
processing and storage efficiency.

RETRIEV PlL

When one submits an interrogation saying
he wants all inforrnation about a particulai'
hurricane, he is saying that he wants to restrict
himself to documents about that hurricane.
Plctually, information is retrieved. The docu
ments from whence the information derived
may be retrieved to substantiate a claim or to
furnish more detail than is formalized within
the system. Similarly, if he wants information
about all factories that have employees who
earn $10,000 and who have 2 children and that
have employees who earn $5,000 and have 3
children, he is likewise restricting himself to
certain records. The terms that do the restrict
ing, we call restrictors. Restrictors need not
alway~ be index terms. For example, one may
not choose to us~ the date of a document as an
index term, but one may still choose to restrict

by that date. This assumes that one can find
such a date in a given record and test it. This
is no problem in an information retrieval sys
tem, but it requires some special organizing in
a document retrieval system.

In an information retrieval system, one may
have many restrictors that are not index terms.
These terms must be tested after the appro
priate record is selected via the index list. This
is essentially a two-stage selection procedure.
First using the index terms, one gets all records
that are associated with the index terms and
their subsumed terms. The choice of which
restrictors to use for this purpose and the
order in which to use them is not necessarily
prespecified. This may be determined for each
retrieval by applying heuristics based on pre
vious retrieval efficiencies. The subjects ob
tained are then tested, and only those are chosen
which satisfy the remaining restrictors.

In a document retrieval system one displays
the whole document that has been retrieved and
it is up to the interrogator to find what he
wants. In an information retrieval system, one
may specify those items (the extractors) he
wants to see. In non-collating systems the ex
tracted information must be culled to remove
redundant and inconsistent information. It is
necessary that the interrogator know what
items it is possible for him to see; that is to
say, he may extract only those items that can
be recognized by the system. This, however, is
nothing new, for the same requirement is im
posed upon him in using restrictors. The ex
tractors can be expressed in the same manner
tn!:lt tnA l"t:H::tl"lr>trH'~ ~l"A AVnl"PQ~prl Tf l11f()"MYI~_
........... _ _ .A. _t..Jv _ _ "-' _ _ -"'-J::"-- _*-J _....,... -'..A., - ...

tion is not present, the extractors or groups of
extractors may be ignored.

With a little additional effort, one may ex
tract only if the sought data is subsumed by an
index term. For example, one may extract a
location only if it is subsumed by "l\1ichigan."
This is not quite the same as a round-about
restrictor. A more vivid interrogation that ex
emplifies this is: "Give me (extract) the names
and addresses of (restrict) all persons in fac
tory #1; also give their positions if (conditional
extraction) they are among the professional
staff." \Vithout the conditional extraction, one
could at best obtain two lists-one with the
names and addresses of all employees and one
with the names, addresses and positions of the

ON THE SOLUTION OF AN INFORMATION RETRIEVAL PROBLEM 295

professional staff. Of course one can permit
Boolean functions of extractors.

In collating systems, once one has a set of
records to be displayed, there is the problem
of sorting them in some specified manner. If
the field being sorted on appears at most once
in every record, there is no new problem. Sup
pose, however, each record from which we have
extracted our data has as subject a particular
apartment house in some city and suppose. that
among the data in the record are the names of
all the tenants and the address of the apart
ment house. If the interrogation reads: "In
alphabetical order, list the names and addresses
of all people who live in apartment houses in
that city," artificial records are created for
sorting with the address of the house duplicated
for each person who lives in it. Further com
plications arise if more than one level of sort
ing is specified at one time.

The retrieved information is extracted as
subsets of selected subjects. This information
therefore has subject structure and must be
printed so as to reflect that structure. That
is, replications of a particular sub-subject or
field are vertically aligned and are vertically
spaced so as not to conflict with each other.
This also applies to values and repeated fields
that exceed allotted column widths.

PROCESSING

Among the information processing programs
are three which characterize solutions of the
information retrieval problem. The first pro
gram prepares an information structure which
represents the terms and syntax of a document
or interrogation in a form convenient for ma
chine processing. The same language is used
for couching requests and for preparing inputs.
A thesaurus is used to identify terms, to resolve
some problems of synonymy and ambiguity, and
to associate general and specific meanings. The
variety of inputs renders impractical a fixed
data structure to accommodate any allowed in
put. Different classes of terms require different
sets of programs to incorporate a term into the
information structure, and individual terms
may introduce processing variations.

The second program extracts from the data
store information structures satisfying selec
tion criteria. The types of field structures and
the selection criteria will determine the sub-

programs to be used for selection and the
amount of working storage required.

The third program forms composites of in
formation structures. A number of information
structures related to a given one are selected
as candidates for merging into one or more
composites. This collating process may dis
cover conflicting information which is then
directed to programs which resolve the con
flict. There is no inconsistency in retaining
conflicting information. As additional related
information enters the system, the conflicts will
be reexamined until a decision can be made to
resolve the conflict. Many programs are re
quired to handle the many different' situations
that may arise. These programs are large and
have dissimilar storage requirements.

The computer programs are large because the
design problems do not admit easy solutions.
The data is varied; the processing is intricate,
and the programming js correspondingly com
plicated. Each option and each event considered
adds to the sizes of the programs. The computer
programs may be large and yet the result may
be only a crude approximation of the desired
intelligent behavior. More cases, more flexi
bility, and new levels of processing detail may
all be required in order to achieve a fully useful
result. Finally, the programs are large because
the problem" is large and changing; or rather,
the programs are large because there is not a
single problem but a series of problems arising
out of changes in requirements, changes in
technology, and changes in understanding the
problem-throughout, the programs must re
main responsive to change. 1o

By a large program is meant first one which
translates into such a large number of machine
instructions that the program cannot fit all at
once into the main memory of the computer.
But the size alone is not a sufficient criterion
since the program might be organized to con
sist of a number of sub-programs which may be
brought into the main memory in a simple se
quential fashion. In order for largeness to be
an inherent characteristic of the program, mere
size must be related to program complexities.

Program complexities may arise from both
the organization of the computational algorithm
and the manner in which the program is ex
ecuted. The flow of the code into the main
memory of the computer may be complicated

296 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

by requiring the programming parts to be ex
ecuted in a variety of arrangements; these
arrangements may be determined by the com
puter data being processed. The execution of
a code may be interrupted and the code removed
from the main memory in order to allow an
other program to proceed; at a subsequent time
the program is restored to memory in such a
way as to resume the execution from the point
of interruption. The program may instruct the
computer to perform an elaborate computation
or the data may possess intricate relationships;
in the latter case the literature on list organiza
tion and list processing is relevant to informa
tion processing.

This brief excursion through representative
processing was conducted to suggest:

1. That many programs are involved;
2. That the next program to be executed

is a function of the information being
processed;

3. That the programs have variable stor-
age requirements.

The storage requirements of the programs are
such that only a few of them may coexist in
the computer's memory. Accordingly, one ex
pects the proportion of input-output transmis
sion devoted to programs as opposed to data to
be high; perhaps two orders of magnitude
higher than for representative data processing
problems. The managing of program flow be
comes a major part of the information retrieval
problem.

PROGRAMMING SYSTEMS

Consider for a moment the development of
data processing. Faced with mountains of data,
first machines and later computers and com
puter programs were developed to order and
maintain the data; eventually, generalized file
control programs appeared, not to process data,
but to merely transmit data to and from data
processing programs. Now, faced with moun
tains of data and smaller mountains of pro
grams, additional programs are needed to
manage the programs which control and proc
ess the data. These second level programs con
stitute what is commonly referred to as an
executive system.

As processing becomes more complicated and
executive systems become more deeply en
meshed in the computation, the programs which

make up the computation :must adhere to more
and more conventions. Before the point is
reached at which the conventions become over
burdening to the programmer, some of the
work of following the conventions is passed over
to compilers and other automated programming
aids. N ow if a compiler is to produce programs
to be executed by a given executive system, the
compiler is constrained by the executive system
and they become part of a programming system
which encompasses the design, construction,
debugging, maintenance, and operation of
programs. 1, ;;

Returning to the management of programs
for the information retrieval problem, there is
an initial requirement for an executive system
which interprets transfers between programs
to insure that the program transferred to is
in memory and, in case it is not in memory, to
bring it into memory after saving the necessary
registers. It must be noted that programs are
not disjoint; in general, successive programs
will have considerable overlap of common code
and working areas. The definition of program
must therefore be broad enough to include por
tions of code produced by compilations of dif
ferent programs. Furthermore it is desirable
to allow assigning work areas to programs
as their requirements become known during
execution.

An example will suggest the richness of pro
gram structure that is applicable to the infor
mation retrieval problem. A program in use
occupies an interval in space-time. The spatial
entities are memory sequences, input files, out
put files, other programs which this program
might call into use, and such entities borrowed
at execution time from programs already in
use. Each entity may be further partitioned
to take advantage of hardware configurations.
For instance, a memory sequence may be par
titioned to take advantage of non-contiguous
memory locations; likewise a magnetic tape file
may be partitioned into reels by physical neces
sity or to permit faster accessing. At the pro
gram execution level, time is single valued.
Time is partitioned into execution phases dur
ing which some subset of the spatiai entities
are in use. As the execution progresses from
one phase to the next, some spatial entities drop
out of use and others come into use. The term
phase refers to the spatial entities used during
an interval of time; the spatial entities used

ON THE SOLUTION OF AN INFORMATION RETRIEVAL PROBLEM 297

during a phase may be used again during a later
time interval; phases are ordered with repeti- .
tion by the computation to form execution time.
Program execution time is organized by parallel
processing and multi-programming techniques
to form process time.~ Thus as applied to the
entire program complex, time has a multi
valued character. At any given moment of
computer time, calculation has proceeded to
some point in some phase of each process. Con
currently, computation is proceeding in one
process, input-output transmission is going on
in other processes, and the remaining processes
are waiting in various states of readiness.
These two components of time are controlled
by different mechanisms. Process time is
changed in response to hardware or external
signals; phase time is changed in response to
computation.

There is no intended implication as to how
or when spatial entities are assigned to hard
ware facilities. The above remarks apply to
those problems in which all assignments can
be made by the programmer and compiler and
to those problems in which some assignments
are postponed to the time of loading and to the
time at which they are required by the com
putation.6. Ii

* * *
The author is indebted to many persons for
conversations which have contributed to the
developing or testing of these ideas. Some
have left their imprint upon the paper and
are singled out for special acknowledgement:
Anatol Holt for the introduction of phase and
sequence into program structure, John Goodroe
for the connection with multi-programming,
and Bob Colilla for developing the sections on
indexing and retrieval.

BIBLIOGRAPHY

1. CHEATHAM, T. E., JR., COLLINS, G. 0., JR.,
and LEONARD, G. F., "CL-l, An Environ
ment for a Compiler," Com1nunications of

the Association for Computing Machinery
4, January 1961, pp. 23-28.

2. CODD, E. F., "Multiprogram Scheduling,"
Com1nunications of the Association for
Computing Machinery 3, June-July 1960,
pp. 347-50; 413-18.

3. COLILLA, R. A., and SAMS, B. H., "Infor
mation Structures for Processing and Re
trieving," Communications of the Associa
tion for COrnput·i-ng l'rlacJ-dnery 5, January
1962, pp. 11-16.

4. GURK, H., and MINKER, J., "The Design
and Simulation of an Information Process
ing System," Journal of the Association
fOT Computing MachineTY 8, April 1961,
pp.260-70.

5. HOLDIMAN, T. A., "Management Tech
niques for Real Time Computer Program
ming," Journal of the Association for Com
puting Machinery 9, July 1962, pp. 387-404.

6. .HOLT, A. W., "Program Organization and
Record Keeping for Dynamic Storage Al
location," Com.munications of the Associa
tion for Computing Machinery 4, October
1961, pp. 422-3l.

7. MILLER, L., MINKER, J., REED, W. G., and
SHINDLE, W. E., "A Multi-Level File Struc
ture for Information Processing," Proceed
ings of the Western Joint Computer Con
ference, 1960, pp. 53-60.

8. MINKER, J., "Implementation of Large In
formation Retrieval Problems," Gordon
Research Conference, New Hampton
School, New Hampton, N. H., July 1961,
9 pp.

9. SAMS, B. H., "Dynamic Storage Allocation
for an Information Retrieval System,"
Communications of the Association for
Computing Machinery 4, Oct. 1961, pp.
431-35.

10. , "Some Observations on the Devel-
opment of Large Programs," First Con
gress on the Information Sciences, Hot
Springs, Va., Nov. 1962, 28 pp.

AN OUTLINE OF THE REQUIREMENTS FOR A
COMPUTER-AIDED DESIGN SYSTEM

Steven Anson Coons
Mechanical Engineering Department

Massachusetts Institute of Technology
Cambridge 39, Massachusetts

HISTORICAL

In the early 1950's at M.LT. the Servomecha
nisms Laboratory (now the Electronic Systems
Laboratory) devised and developed the first
automatically controlled milling machine. 1 The
controlling information for the machine was
introduced in the form of punched paper tape,
on which all dimensional information and in
structions for the various feeds and cutter
speeds was contained. At first the punched
paper tape was prepared manually by some
human operator who translated, in effect, the
detail drawing of the part to be machined into
numerical form and then into appropriate pat
terns of holes in the tape. This was a tedious
and entirely mechanical chore, and it was only
natural that short cuts in the process began to
suggest themselves. The scope of such short
cuts began to spread through the fabric of the
technique, and it was not long before the com
puter was involved in implementing them.

In the late 1950's the Computer Applications
Group of the Electronic Systems Laboratory
developed in great detail a complete, automatic
system for preparing these punched paper
"director" tapes from detail drawings. To be
sure a human operator was still required, but

the process of converting a drawing into tape
was very much simplified, and the combination
of the Automatically Programmed Tool or APT
System!.!' :~. -4 with numerically controlled ma
chine tools has subsequently proven to be of
significant economic importance in many indus
tries, notably in the aircraft and missile indus
try. The APT System has gone through a
vigorous history of rapid improvement and
development, partly at M.l. T. and partly with
the active participation of industry. Currently
maintenance and development are being carried
out by the APT Long Range Program at the
Armour Research Foundation with over 25 com
panies participating.

About four years ago there was a 'meeting of
members of the Computer Applications Group
with members of the Designpivision of the
Mechanical Engineering Department to see
whether it might be possible to take another
inlportant step. Ai ihat meeting we discussed
the possibility of using the computer in a much
more direct and powerful way in the chain of
events that begins with the original concept as
envisioned by the design engineer and culmi
nates in the production of the finished device.
We outlined at that meeting a system that would

This work has been made possible through the support extended to the Massachusetts Institute of Technology,
Electronic Systems Laboratory by the Manufacturing Technology Laboratory, ASD, Wright-Patterson Air Force Base
under Contract No. AF-33 (600)-42859. It is published for technical information only and does not necessarily repre
sent the recommendations or conclusions of the sponsoring agency.

299

300 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

in effect join man and machine in an intimate
cooperative complex, a combination that would
use the creative and imaginative powers of
the man and the analytical and computational
powers of the machine each with the greatest
possible economy and efficiency.

We envisioned even then the designer seated
at a console, drawing a sketch of his proposed
device on the screen of an oscilloscope tube with
a "light pen," modifying his sketch at will, and
commanding the computer slave to refine the
sketch into a perfect drawing, to perform vari
ous numerical analyses having to do with struc
tural strength, clearances of adjacent parts,
and other analyses as well. Based on such anal
yses the designer would modify his original
design concept, and again call for an analytical
procedure by the computer. In some cases the
human operator might initiate an optimization
procedure to be carried out entirely automati
cally by the computer; at other times the human
operator might intervene, as he might do for
instance if in a certain iterative process he
observed the computer laboring fruitlessly to
satisfy mutually incompatible constraints un
wittingly imposed, or attempting to find a solu
tion to a problem in a mathematical region
which might seem to the computer a likely
place to look, but which to the man might be
obviously far afield. The different powers of
man and machine are complementary powers,
cross-fertilizing powers, mutually reinforcing
powers. It is becoming increasingly clear that
the combined intellectual potential of man and
machine is greater than the sum of its parts.

Since this meeting, a formal arrangement
was created for the combined efforts of the
Computer Applications Group and the Design
Division to work together in a broad study of
what we call Computer-Aided Design. This
activity is supported by a contract from the
same Air Force group that sponsored M.L T.
efforts in both numerical control and APT. The
investigations under the contract range over
the entire spectrum of computer technology and
of design philosophy and methodology. Qut of
the investigation will come the design for a
man-machine organism to accomplish the de
sign process in a way far easier than has ever
before been possible; but as by-products will
come new computer techniques and an enriched
understanding of the creative thought process.

THE DESIGN PROCESS

The design process begins with a graphical
description of a proposed device or system to
satisfy a human need. To say that the descrip
tion i~ graphical is to assert that at the very
inception of an idea the designer's understand
ing of his creation is almost visceral instead of
intellectual. He perceives his idea at first not
in the perfection of a well-turned English word
description, nor in the precision of a mathe
matical formula, but in some nebulous assembly
of building blocks of structure, vaguely beheld;
he "feels" his creation. The sketch forms the
natural bridge between these vague stirrings
of the imagination and the subsequent precise
statement of the refined details of the concept.

At this early stage, decisions to keep, to
modify, or to discard part or all of the original
concept are made in a qualitative way, based
upon qualitative criteria. The modified concept
leads to further qualitative decision making,
and to further modification of the concept.
While this is going on, the concept which was
at first nebulous and incomplete begins to as
sume a more concrete solid character; it be
comes better defined, until at some stage it is
well enough defined to permit more precise
analytical tools to be applied.

At first such analytical processes are very
simple; the mathematical modeling is crude,
and the actual calculations need not be carried
out in great detail, nor to very great numerical
precision. These calculations again lead to
modifications of the concept and subsequently
to more precise analysis. I t is typical of the
design process that such iterations-from con
cept, through analysis, evaluation of the anal
ysis, decision to modify the concept, and finally
to a new concept-form loops that are traversed
again and again, until eventually the designer
judges the design adequate to satisfy some scale
or scales of value judgments.

In the design process, the designer is con
cerned with a large set of variables, some con
tinuous (like the weight of a part) some
belonging to discrete "point sets" (like the
material: steel, brass, lead, plastic.) Moreover,
these variables are interrelated, or cross cou
pled, in a very cOlllplex way. Some of the cross
couplings are weak, some are strong. If the
relationships happen to be linear, the cross
couplings are constant in strength, but usually

AN OUTLINE OF THE REQUIREMENTS FOR A COMPUTER-AIDED DESIGN SYSTEM 301

the relationships are non-linear, and the mutual
influences of the various variables change with
their values.

The designer structures such relationships so
that he can thread through them, taking ad
vantage of the loose couplings where possible,
to obtain hopefully an exact, but more usually
a first, or second, or closer approximation to the
values of the variables. It is not at all unusual
for this structuring to be done graphically, in
the form of block diagrams or linear graphs or
information flow charts. Thus he uses a graphi
cal form for both the topological and geometric
description of the design, and also for its ab
stract description in terms of physical function.

At the conclusion of the design process, the
final result must be carefully defined so that it
can be built. This is the function of layout
draftsmen and detail draftsmen. If automati
cally controlled machines are involved in the
fabrication processes, programmers are also a
part of the system.

When we look at such a design sequence we
see a few engineers performing highly creative
tasks at the beginning, coupled with a very
large number of draftsmen and technicians who
perform relatively uncreative tasks over a
fairly long period of time. Some of these tasks
require high degrees of intellectual effort, such
as stress analysis or aerodynamic analysis, but
they are none-the-Iess not in themselves of a
creative nature (except in those cases where
new mathematical techniques are designed and
put to use). Other tasks are obviously of a
purely mechanical nature; for example, a detail
draftsman does nothing creative whatever. At
the worst, he merely traces the outline of a part
from the layout drawing, and adds the dimen
sions. Usually this drawing goes directly to
some machinist or patternmaker in the shop,
but sometimes it is used by a part programmer
and converted by him into symbolic informa
tion for use by a conlputer to prepare punched
tape for automatic fabricating machinery.
These are all essentially mechanical operations,
however, and it is quite clear that at least in
principle, the computer can be made to deal
with them all.

COMPUTER SYSTEM REQUIREMENTS

A computer system, to work in partnership
with a designer, must have several clearly de-

finable capabilities. It must be able to accept,
interpret, and remember shape descriptive in
formation introduced graphically. When such
a graphical input capability is properly de
signed, the man-computer combination can
manipulate the elements of a drawing in an
entirely new way, with a freedom and precision
far surpassing what is possible with pencil and
paper.

Beyond shape description~ such a graphical
facility should be an extension of language in
general. It should be possible, as has been in
dicated earlier, to use such a graphical mode
to structure abstractions. This has been brought
out with great force and clarity by Engelbart,;)
where he remarks in effect that the essentially
one-dimensional nature of symbolic language
is not wholly adequate to exhibit the intercon
nections of ideas.

Coupled to this graphical facility must be a
computational facility for unravelling and per
forming all of the mathematical analyses and
computations that pertain to the design process.
These lie in the fields of stress analysis, aero
dynamics, thermodynamics, electrical network
analysis, fluid dynamics, and many others. The
computer should also be able to furnish infor
mation about standard parts, standard mate
rials, and standard processes. This is essen
tially an operation of catalogue storage and
retrieval.

There are two quite different philosophies
of approach to the achievement of these aims.
One approach would be to imbed in the com
puter a large set of special purpose packaged
processes, each designed to perform some spe
cial task. If the assembly of such a library of
special routines could be made complete enough,
then the system would exhibit to the user on
the outside an appearance of complete flexibility
and generality. This would be satisfactory so
long as the designer never called for a capa
bility not already rigidly imbedded in the
mechanism. But the design process is unpre
dictable. Indeed part of the design process
consists in designing new ways to perform the
design function itself. This is a higher order
of design activity, a sort of meta-design (like
meta-mathematics) that clearly is outside the
scope of any rigid set of special processes that
can be anticipated at the beginning. This very
real consideration leads quite naturally to the

302 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

second philosophy, in which the large popula
tion of special purpose routines is replaced by
a few (perhaps indeed only one) routines of
the utmost generality, so designed that it per
mits of its own modification by the designer1

using his own natural language forms, includ
ing as we have said, the graphical form.

The Computer-Aided Design System should
be capable of carrying on conversations with,
and performing computations for several de
signers at several consoles substantially all at
once. In this way each designer can be immedi
ately aware of what the other designers are
doing, and thus avoid one of the truly severe
problems of intercommunication that designers
face today.

The flexibility and ease of communication
with the computer will encourage the designer
. to use more detailed and more accurate mathe
matical models of the real physical system than
he has been willing or able to use in the past.
This will result in a more rapid and a surer
approach to an optimum design and to a design
that may be relied upon, especially in those very
new areas where only meager or fragmentary
experience has been accumulated from past
designs.

It will be possible to design at an exponential
rather than a constant rate, because sub-ele
ments of a design, once constructed, will be
available on command in their entirety, and can
either be incorporated as they exist or can be
modified at will. On some far off day it may
even be possible to call up last year's automobile
on the oscilloscope, to wave the magic wand of
the light pen, and in a very short time to create
the modified new version from the old. This
will be, in a sense, a mechanization of experi
ence.

It will be possible to observe the actual mov
ing action of a mechanical device, or the vary
ing currents and voltages in an electrical de
vice, rather than the static, frozen, time sec
tions of these motions and currents and volt
ages as we must now do by present methods of
analysis.

Finally, the system will be so general that it
will be applicable to any creative activity. For
example, the general problems of the architect,
the machine designer, and the electronic de
signer are the same, but the specific details of

their problems bear scant resemblance one to
another. Yet an appropriately designed system
will be so flexible that it will enable each dis
cipline to modify the structure to fit its pur
pose.

There is considerable evidence that our in
tellectual tools influence to a very great extent
the form and scope of our intellectual works. It
is quite certain that when the computer replaces
pencil and paper in this very real way, it will
bring about a truly miraculous change in man's
intellectual potential.

PRESENT CAPABILITIES

We have already come quite a way toward
accomplishing some of the desired ends as out
lined. The writer, using Sutherland's Sketchpad
Program6 on the TX-2, has set up and solved
five separate engineering problems in the course
of a few hours. I t is an extremely flexible and
versatile means for communicating with the
computer in a graphical language.

Sitting at the console of the TX-2, the writer
constructed a geometric figure which repre
sented the cubic algebraic polynomial. The
details of this figure are not important; the
principle is quite simple and very general. It is
easy to construct such a figure for polynomials
of any degree, and for both real and complex
values of the coefficients and of the variables.
Once constructed, the x variable can be ma
nipulated with the light pen, and the resultant
value of y is automatically obtained. This hap
pens by virtue of the computer's ability to satisy
the geometrical constraints imposed by the
figure.

The second problem was the construction of
the general second degree curve based upon a
purely geometrical construction, and the third
problem was one with which Sutherland had
already experimented. A pin-jointed structure
is drawn, certain points are fixed, loads are
applied, and the deflections of the structure are
then automatically calculated, and exhibited on
the screen, along with the numerical values of
the percentages of elongation of each member.

Fourth, a kinematic linkage was drawn, the
driving link was rotated, and the motion of the
connected links could then be observed. The
linkage could then be modified to yield desired
changes in its behavior.

AN OUTLINE OF THE REQUIREMENTS FOR A COMPUTER-AIDED DESIGN SYSTEM 303

Fifth, a region was drawn in which two
dimensional flow of an ideal fluid was to take
place. By invoking the principles of graphical
field mapping, the computer adjusted the stream
lines and equipotential lines of the field so as
to give a good solution to the problem.

These problems are all substantially very
different. No special computer program written
to solve one of them is of the slightest use in
solving anyone of the otherR. But the great
range of applicability of generalized constraint
satisfaction makes it possible to solve them all.
Admittedly special purpose programs can be
devised that will solve some of them more
efficiently and rapidly than these graphical
methods. But on the other hand, the graphical
solution is in some cases the most efficient
method known. In such cases, since the compu
ter can perform graphical manipulations at
least a thousand times faster than a man, such
techniques are still highly economical.

Many parts of design are well-enough under
stood and of general enough utility to warrant
special programs. A mixture of general and
special techniques is most appropriate for full
Computer-Aided Design. Using a different com
puter, the IBM 709 at the M.LT. Cooperative
Computer Laboratory, together with a special
purpose program, it is now possible to draw a
cantilever beam on the screen, and to type in its
precise length on the flexowriter. Then the vec
tor loads are drawn, and their magnitudes are
typed in on the flexowriter. Finally, a section of
interest in the designer is drawn, and on this
section a particular point of interest is indi
cated. The computer hesitates for a moment,
and then types out on the flexowriter the bend
ing stress, the axial stress, the transverse shear
stress, the torsional shear stress, and the com
bined stress at the point of interest. This is a
special purpose program, but its general appli
cability and efficiency make it well worth while.

In addition to using the generalized con
straint satisfaction for computation, the pri
mary purpose of a system such as Sketchpad is
graphical communication. In Sketchpad III, as
reported in the paper by Johnson,' we have a
means for drawing and manipulating figures in
three-dimensional space. This is of course essen
tial to the designer of mechanical or structural
devices and objects. All of the capabilities of

the two-dimensional version of the graphical
input are implicit in the extended system.

The work on the theory of language and op
erators described in the following paper by
Ross and Rodriguez8 is directed toward making
direct communication with the computer not
only possible, but easy, while at the same time
enabling the computer to remember and ma
nipulate the many complex details implied by
general statements. Then. uRing- thp~p NlTI:lhilL _ , -------c::::;JI ------ ---r- -- ...

ties, the designer at the console can communi
cate not only the problem itself, but also the
problem solution structure, either generalized
or specialized, in whatever form and in what
ever language is appropriate, meaningful, and
most efficient.

CONCLUSION

The historical section of this paper describes
our original broad concept of the Computer
Aided Design System. This concept was even
at the beginning formed on fairly grand pro
portions, and it is encouraging that even after
the intervening time, its form has not been
substantially changed. We have not relaxed
our objectives, and as we see the details of the
broad framework filling in and taking shape,
we are encouraged to believe that however
ambitious it might have seemed in those days,
our results indicate that practical Computer
Aided Design will indeed, in some not too far
distant future be a reality.

BIBLIOGRAPHY

1. PEASE, W., "An Automatic Machine Tool,"
Scientific American, Vol. 187, No.3, pp. 101-
115, September 1952.

2. Ross, D. T., "Automatically Programmed
Tool System," pp. 59, 60. "The APT Joint
T:1.£!J! ___ .L " __ ,..,1'\ -... 'J • ... ~. • -_.

£Juurl", p. IV, lYleCnanWall!Jng'tneer'tng, VOl.

81, No.5, May 1959.

3. WARD, J. E., Automatic Programming of
Numerically Controlled Machine Tools ..
Final Report. Report 8753-FR-3, Electronic
Systems Laboratory, Massachusetts Insti
tute of Technology, January 15, 1960.

4. BATES, E. A., "Automatic Programming for
Numerically Controlled Tools-APT III,"
Proceedings of the 1961 Computer Applica-

304 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

tion Symposium, The Macmillan Company,
New York, pp. 140-156, October 1961.

5. ENGELBART, D. C., "Augmenting Human In
tellect: A Conceptual Framework," Report
SR-3223, Engineering Sciences Division,
Stanford Research Institute, October 1962.

6. SUTHERLAND, 1. E., "Sketchpad, A Man-Ma
chine Communication System," Proceedings
of the Spring Joint Computer Conference,
Detroit, Michigan, May 21-23, 1963. (This
Volume) .

7. JOHNSON, T. E., "Sketchpad III, A Compu
ter Program for Drawing in Three Dimen
sions," Proceedings of the Spring Joint Com
puter Conference, Detroit, Michigan, May
21-23, 1963. (This Volume).

8. Ross, D. T., and RODRIGUEZ, J. E., "Theo
retical Foundations for The Computer
Aided Design System," Proceedings of the
Spring Joint Computer Conference, Detroit,
Michigan, May 21-23, 1963. (This Volume).

THEORETICAL FOUNDATIONS FOR THE
COMPUTER-AIDED DESIGN SYSTEM

Douglas T. Ross and Jorge E. Rodriguez
Electronic Systems Laboratory

Massachusetts Institute of Technology
Cambridge 39, Massachusetts

1. AN APPROACH TO THE COMPUT'ER
AIDED DESIGN SYSTEM

A Computer-Aided Design System for gen
eral use must ha ve a unique and powerful
organization. Even the simplest of design
problems involves the exercise of many disci
plines and the carrying out of many types of
activity. Since the area of applicability of the
design system is to be essentially unlimited,
we know from the beginning that the system
itself must be very large and complex. Even
though only a few of its features may be exer
cised on any given design problem, there is no
way of predicting which portions of the system
will be required nor how they will be used.
Furthermore the designer or engineer who is
using the system cannot be expected to be a
computer programmer, and it must be possible
for him to carry out his design function in a
way which is natural to him, and without his
being aware that the statements and actions
that he performs are in fact constructing and
executing large numbers of highly complex
computer programs. Although to be sure the
user must learn and become facile with the
basic vocabulary and manipulations of the sys
tem, the system must be so designed that he
finds his normal thought processes aided, aug-

mented, and stimulated by the use of the system
in such a way that he is able to think almost
entirely at the concept level within his own
field of interest, while at the same time carry
ing out data processing activities of extreme
complexity.

A. Necessity for an Evolutionary Approach
The broad requirements of general applica

bility and extreme flexibility of use preclude
the possibility of constructing a Computer
Aided Design System by assembling a potpourri
of specialized languages and computing systems
under the control of a single grandiose execu
tive routine. There are a great many existing
specialized languages and programming sys
tems for many of the individual areas which
must be covered by the Computer-Aided Design
Syste~, but each of these languages and sys
tems has its own restrictions and interwoven
computational complexities so that it would be
completely impractical to attempt to integrate
such systems in a straight-forward manner.
Furthermore, such a brute force approach
would not satisfy the Computer-Aided Design
requirement in the first place, since there would
be little or no cross fertilization between the
various systems, even if the mechanics of trans
lating data and control information from one

This work has been made possible through the support extended to the Massachusetts Institute of Technology,
Electronic Systems Laboratory by the Manufacturing Technology Laboratory, ASD, Wright-Patterson Air Force
Base under Contract No. AF-33 (600) -42859. It is published for technical information only and does not necessarily
represent the recommendations or conclusions of the sponsoring agency.

305

306 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

systenl to another could be solved in a moder
ately satisfactory manner.

Instead of becoming discouraged by the im
mensity and impracticality of such an approach,
and limiting our expectations for the system
to a set of requirements which could possibly
be handled economically in that way, we seek
instead to find an approach which will attack
the problem with more finesse and provide a
system with the full desired potentiality. The
first step in this direction is to recognize once
and for all that it is completely impossible to
construct a system which will satisfy the re
quirements immediately and without modifica
tion. In fact to postulate the existence of a
closed system for Computer-Aided Design as
we mean it is completely and absolutely con
tradictory to the very sense of the concept.

Since the blatant denial of the possibility of
creating a closed system which will satisfy the
requirements is so central to the approach to
be taken, we will dwell on it a moment. The
contradiction stems primarily from the fact
that if the system has, built in, a certain way
of accomplishing a task, but the individual user
does not wish to perform the task in that man
ner, then unless it is possible for the user to
substitute his own way of doing things for the
way that is already built in, the system will not
satisfy the basic requirement of naturalness
and ease of use. Another basic source of the
contradiction, and one that may seem to some
to carry more weight than the requirement that
the system be adaptable to the arbitrary whim
of an arbitrary user, is that it is inconceivable
to build in beforehand all possible solutions to
all possible problems. Thus the very nature of
the system must be such that its area of applica
bility is continually extended by its users to
provide new capabilities as the need arises.

Thus we see that the basic thing to be pro
vided in the initial organization and structure
of the Computer-Aided Design System is a
capability for growth, expansion, and modifica
tion. Whereas it is indeed contradictory to con
sider satisfying the requirements with a closed
system, the concept of an evolutionary system
is. not only in harnlony with the requirements,
but in fact makes those requirements more
meaningful. If, in fact, the system can be so
organized that it can naturally be molded to
suit the needs and interests of individual users,
then the concept of a general Computer-Aided

Design System not only begins to seem possible,
but practicable as well.

B. Plex Structures for Problem Modelling

If the points which have been made above
concerning general applicability, naturalness
of use, and expandability are considered, it
becomes apparent that before anything else we
must provide for a completely general method
of storing and manipulating arbitrarily com
plex information from any source, and a power
ful language facility for describing data forms
and the desired manipulations of data. It al
most goes without saying that if all of the
necessary information about a problem and its
method of solution can be described then the
problem can be solved. The stringent require
ments under which we are operating merely
put an added emphasis on the need for a single
unified approach, in order that all of the many
features required for a practical Computer
Aided Design System can be cut from one cloth.

These considerations led to the concept of
"n-component elements" and "plex" structures,
which have been described elsewhere. I , 2 Stated
briefly, an n-component element is a single unit
of information about a problem, which specifies
in each of its components one attribute or prop
erty of the element. There may be any required
number of components in an element, and each
component may be considered to be a pointer
which indicates the specific property. Numer
ical or metric properties are interpreted as
pointers to an appropriate measuring scale.
Other components point to additional elements
whose components give additional properties.
The resultant structure of many elements point
ing to each other and to appropriate measuring
scales is called a plex, so that a plex is "an inter
connected set of n-component elements."

An example of a very simple plex is the
structure which specifies a line in two-dimen
sional coordinates, as shown in Figure 1. The
line element contains a type component which

t~l1NE
n II

...----~

,~ ~TI
:f 'i J I I
e I '

1
~+~ x 2

y. 4

e~
Figure 1. Example of a Modelling Plex.

THEORETICAL FOUNDATIONS FOR THE COMPUTER-AIDED DESIGN SYSTEM 307

specifies that it is a line, a name component,
and two additional components which point to
its end points. The point elements in turn have
type and na,me components, and two additional
components which specify the x and y coordi
nates of the point in some coordinate system,
and also a component which points to the line
element to indicate the endpoint relationship.

Note the precise correspondence between the
parts of the plex and the problem of "lineness."
The plex for line is in effect a model of the line,
and everything associated with the concept
"line" can be found in the plex either directly,
or through computation. Thus, for example,
the length of the line is not shown explicitly
(although it easily could be), but may be deter-
mined from the coordinates given. Another
fundamental concept of plex modelling is that
only those components need appear which are
of interest. Thus if only topological questions
are to be considered with respect to lines (as
perhaps in electronic circuit diagrams), then
the components of the elements which contain
the coordinates of the points could be omitted.
Note, however, that omission of the coordinates
shows that a different "line" concept is involved.

In general there is no ,unique set of compo
nents which represent a given concept, since it
may take on new attributes or aspects depend
ing upon how it is to be used. In any case the
method of storing whatever properties or at
tributes are required is the same, and all of the
structuring and sub-structuring of the data is
explicitly displayed in the plex structure so that
any required data is immediately available.

As was indicated above, the meaning or inter
pretation of a given component depends upon
how that component is to be used by algorithms
which perform computations or manipulations
on plex structures. Just as it is impossible to
conceive of an algorithm or program without
data, data in turn is meaningless without some
thing to use it. Therefore, the common con
ceptual framework which underlies all of the
developments toward the Computer-Aided De
sign System is the concept of appropriate plex
structures and processing algorithms for any
required task. The contents of components of
elements are obtained by writing A (B) to ob
tain component A of element B. More complex
operations requiring several layers of nested
SUb-components are obtained quite naturally by

writing an extended "referent," A (B (C (D))) ,
which is read "A of B of C of D," so that the
data acquisition aspect of all algorithms is
uniform.

C. The Role of Language

The concept of a plex is philosophically satis
fying and quite clearly is a very basic founda
tion stone leading toward the Computer-Aided
Design System. It is difficult to conceive of any
thing simpler in basic structure, and yet quite
obviously any collection of knowledge or infor
mation about something can be modelled to any
degree of detail by an appropriate plex. It is
also clear, however, that even seemingly simple
concepts will obtain a very elaborate structure
when all of the necessary inter-relations be
tween subparts are explicitly exhibited by
means of pointers and elements, and this leads
naturally to the next major topic to be con
sidered-how are plexes (which may contain
thousands of pointers with many different
meanings) to be constructed? In even simple
applications plex structures become so elaborate
and interwoven that they are almost impossible
to unravel, and it is quite apparent that al
though they are the most natural way to store
explicitly all of the details about a problem in
side the computer, they are not at all well suited
for human consumption.

The necessity for using very elaborate plex
structures inside the computer to encompass
all of the required areas of applicability, with
the recognition that they are very inappro
priate for human use, brings out forcefully the
paramount importance of language to the Com
puter-Aided Design concept. Whereas the com
puter's "understanding" of a problem takes the
form of a huge and complicated plex structure,
the human's understanding of the same problem
must be accumulated in his memory of the
meaning of all of the statements which have
been made about the problem; and which have
led to the growth of the plex structure in the
computer. In actual fact, the computer's view
of the problem must match exactly that of the
human, so that the human need not be aware
of the internal structuring which allows the
computer to understand the problem, but need
only be concerned with the linguistic interpre
tation which is natural to him. The modelling
plex must match exactly the meaning of the
statements.

308 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

The problem with which we are left, then,
is how to go from language, which is natural
for the human, into plex structures, which will
contain all of the required meaning of state
ments made in the language. If this major task
can be accomplished-if we can go from the
meaning of language statements (i.e., the hu
man's understanding of that meaning) into the
appropriate plex structure (i.e., the computer's
understanding of the same meaning) -then we
will have accomplished the first major step
toward the full Computer-Aided Design Sys
tem, since we may then begin from very ele
mentary beginnings, and use the evolutionary
expansion concept to incorporate any desired
features into the system.

In the following section we describe and
illustrate the first step in this process, namely
the transformation of an input statement in a
natural language into an appropriate plex form,
called the first-pass structure, which will ex
plicitly exhibit the syntactic and semantic con
tent of that statement in order that further
processing on the meaning of the statement
can take place. The first-pass structure models
the full concept of the statement, but not of the
problem itself, in general.

The transformation of the first-pass plex into
other plex structures representing the problem
to which the statement refers, and an indica
tion of the kinds of techniques which are ap
propriate for manipulating first-pass structures
are presented in subsequent sections, which also
illustrate the equally important converse prob
lem of transforming information from a model
ling plex into language statements.

II. OUTLINE OF THE ALGORITHMIC
THEORY OF LANGUAGE

We may now turn to the subject of language
itself. Since language (which includes graphi
cal and mathematical, as well as verbal forms),
is used to express all of our thoughts from the
most mundane to the most elaborate and ab
stract, it is quite apparent that linguistic struc
tures can become extremely large and comnlex.
Our starting place for the ~onsideration oi lan
guage--our primary contention from which all
else follows-is that large and complex linguis
tic structures, and in fact large and complex
structures of any sort, do not arise cataclys-

mically and all at once, but are instead built up
step-by-step out of simpler structures. We con
tend that this step-by-step growth process obeys
discoverable natural laws quite similar to the
physical laws of nature, and that if these laws
can be formulated mechanically, then the grand
complexity which we know without question
must be the end result will arise naturally and
of itself, as an immutable consequence of the
action of those laws. Although we are still very
much at the discovery stage concerning these
laws, especially with regard to arbitrary com
plex structures, nonetheless sufficient progress
has been made in the area of linguistic struc
tures to bring home the point forcefully and
engender considerable confidence that the basic
approach is sound.

In the linguistic area, the concrete results
which have been worked out rigorously and in
detail thus far are presented elsewhere in the
first introductory paper on the Algorithmic
Theory of Language.2 In the present paper we
present a general tutorial outline of the theory
and a somewhat popularized over-all descrip
tion of its methodology and results in an effort
to show how the Algorithmic Theory of Lan
guage supplies a fundamental foundation stone
for the development of a Computer-Aided De
sign System of significant capability. For a
full treatment of the theory the reader is re
ferred to the definitive paper.

A. Growth of Complex Structures
A language is made up out of two kinds of

things: vocabulary words and symbols. Sym
bols (which may be considered the nouns of
the language) are the finest units of meaning
and represent the atomic level beyond which
there is no further substructuring. Vocabulary
words on the other hand, have connective prop
erties and can link together other words or
symbols to make more elaborate non-atomic
structures. In terms of our previous discussion,
words and symbols are considered to be n
component elements whose components show
the various properties which each element has.
For theoretical simplicity we can without re
striction consider that vocabulary words are
binary connectors with left and right variables,
called lvar andrvar.

Figure 2 illustrates schematically our basic
viewpoint of the behavior of linguistic ele
ments. A statement in the language constitutes

THEORETICAL FOUNDATIONS FOR THE COMPUTER-AIDED DESIGN SYSTEM 309

Figure 2. Reaction Vessel Analogy.

an "input string" which we may visualize as
a pipe containing each of the word and symbol
elements in sequence. As long as the elements
are bound by the constraint of the pipe it is
impossible for them to interact, but as they are
pushed one by one out of the end of the pipe
into a reaction vessel, "chemical reactions" of
a sort take place so that elements which are
attracted to each other stick together and form
various appropriate sub-structures. In actual
fact the reaction is a complex one depending
upon the current population of the reaction
vessel, and the actual sub-structures which grow
are the net effect of all of the elements in the
vessel. If the statement contained in the input
string is meaningful, then by the time the last
element is forced into the reaction vessel, one
single structure, containing all of the elements
of the input string, will be left in the vessel,
and this structure represents the total mean
ing of the input string statement.

Note that except for the natural laws which
govern the happenings in the reaction vessel,
the entire processing is determined exclusively
by the behavioral properties of the word and
symbol elements themselves. Different words
will behave differently; various combinations
of words will cause other combinations to be
formed; but even though many types of struc
tures of many complexities may be built, the
words themselves always maintain their iden
tity and are unchanged. The. analogy with the
unchanging nature of chemical elements under
the influence of chemical (not atomic) reac
tions is strikingly valid. Just as limitless chemi
cal compounds can be made from fewer than
100 naturally occurring chemical elements, the
meaningful structures which can be built from
a limited vocabulary is also unbounded. It is
this richness that makes language so powerful
a medium.

B. General Principles

Using the reaction vessel analogy, it is the
objective of the language theory to work out
and state explicitly the behavioral laws which
govern the observed operation of language. Just
as in physical science there are very general
natural laws akin to general principles (such
as the conservation of mass-energy and the con
servation of momentum), which may actively
be used within the methodology of a physical
theory to derive the specific formulations gov
erning some particular area of study (for ex
ample the equations of motion of a gyroscope) ,
the Algorithmic Theory of Language is based
upon a few general principles and a method
ology which yield precise formulations of algo
rithms for particular aspects of language. It
is in fact this combination of principles, meth
odology, and precise formulations which cor
rectly describe observed behavior and on occa
sion predict observable behavior, which makes
the Algorithmic Theory of Language a bona
fide theory and not merely a collection of ele
gant but lucky happen stances. It is solely on
the basis of the soundness of these theoretical
beginnings that we can look forward with some
confidence to the successful achievement of a
Computer-Aided Design System of the gener
ality we seek.

In the case of the language theory, the prin
ciples are principles for algorithm construction.
Recall that the basic framework within which
we operate involves the explicit description of
all the properties of sub-parts of problems with
which we work in terms of n-component ele
ments, and that the meanings of these compo
nents and the construction of appropriate plex
structures out of the elements is to be accom
plished by the execution of algorithms. Another
way of saying the same thing is that the basic
language of the theory itself-the way that the

algorithms, rather than the static terminology
of algebraic or other mathematical formulation.
To work out a portion of the theory, then, con
sists of establishing the n-component element
definitions of the parts of the problem with
which we are to work, and then applying the
principles as general guides to the formulation
of algorithms which manipulate the components
of the elements.

310 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Although the five basic principles of the
Algorithmic Theory of Language are easy to
state, discussion of them would take more space
than is available here so we will present as
examoles only the two most important prin
ciples~ and us~ them to illustrate the beginnings
of the theory. Using the terminology of n
component elements the Immediacy Principle
states.: "Whenever sufficient information is
available for a component to be set, the setting
should be performed immediately." Since mul
tiple application of the Immediacy Principle
may lead to conflicts there is also the Stacking
Principle: "Whenever two components of the
same kind require setting, the element contain
ing the older component should be set aside on
a stack (operating on the last-in-first-out prin
ciple)." These two principles find immediate
application in the derivation of the Parsing
Algorithm, which is the most basic algorithm
of the theory, and is part of the First-Pass
Algorithm.

C. The First-Pass Algorithm

Language consists of both form and meaning
-syntax and semantics. We must develop algo
riths which will transform the input string,
which is the simplest kind of plex, into the First
Pass Structure, which is a more elaborate plex
modelling the interlocked syntactic and seman
tic structure of the statement represented by
the input string. The First-Pass Structure is
built out 6f first-pass beads. Every vocabu
lary word is represented by a five-component
element as follows: The type component tells
what kind of a thing the word represents. The
£ var and rvar components (denoted by £ and r
respectively) point to symbols or other first
pass beads and show the left and right syntactic
context of the word. The £ 1 var and r1 var com
ponents (denoted by £ 1 and r1) similarly show
the left and right semantic context of the word.
The pushing of words. out of the pipe into the
reaction vessel is accomplished by the Read
Where Routine which reads the input string
one element at a time and determines where in
the algorithm processing of that element should
begin. We begin with the consideration of
syntax alone by the derivation of the Parsing
Algorithm, which sets the £ var and rvar com
ponents of the first-pass beads.

D. The Parsing Algorithm

To block out the form of the algorithm we
consider first the applicability of the general
principles. Since the £ var component is to show
the left context of the word, and since the Read
Where Routine reads the input string from
left to right, as soon as the word itself is en
countered everything to its left will already
have been considered, so that the Immediacy
Principle applies and says that it must always
be possible to make the final setting of the £ var
component immediately. The rvar component,
on the other hand, shows the right context, and
since the right context follows the given word,
the Immediacy Principle mayor may not apply
depending upon the particular circumstances.
In the event that the right context of one word
is not yet able to be determined, and another
word occurs whose right context also needs to
be set, the older word must be set aside on a
stack, and must not be reconsidered until the
right context of the more recent word has been
completed, at which time the Immediacy Prin
ciple will call for its rvar to be set so that the
older word can seek its right context once again.
The effects of these considerations of the Gen
eral Principles become clear when we consider
the Parsing Algorithm itself.

Consider the input string APBQC, where A,
B, C are symbols and P, Q are words. As the
Read-Where Routine scans the input string
from left to right the word P obtains A as its
£ var and becomes the top-most thing on the
stack, waiting for its rvar to be set. The Read
Where Routine continues, reading the symbol
R, hut since B is a symbol and has no associated
first-pass bead, the Read-Where Routine will
next read the word Q. Now the application of
the Immediacy Principle says that if B is the
proper rvar setting for P, that setting should
be made immediately, or if B is the proper var
setting for Q, then that setting should be made
immediately. In other words the Immediacy
Principle applies simultaneously to both P and
Q-we say that P and Q "fight" over B.

As an example, consider A + B X C, i.e., let
P be the word "+", and let Q be the word "x".
Clearly A is the proper left variable for +,
but B could be either the right variable of + or
the left variable of x, i.e., + and X \-vill fight
over B.

THEORETICAL FOUNDATIONS FOR THE COMPUTER-AIDED DESIGN SYSTEM 311

We will assume for the moment the existence
of an arbitrator which will decide the winner of
the fight on the basis of the "chemical" attrac
tions between the elements involved. One or the
other of P and Q will have in effect a stronger
attraction for B, and the arbitrator, (which is
another simple algorithm derived from the Gen
eral Principles but which requires more space
than we have available here to describe), will
decide which element wins. If Q wins, then the
Stacking Principle says that Q should go on
the top of the stack covering the word P, since
both of them require rvar settings. On the other
hand, if P wins the fight, then Q must fight with
the next thing on the stack, and this fighting
continues until, (by the Immediacy Principle),
ultimately Q gets its £var set. Then the Read
Where Routine can continue the scan of the
input string.

In the example A + B x C, the multiplication
operator will be determined by the Fight Algo
rithm arbitrator to be stronger than addition,
even though both "like" the variable B. Thus B
will become the left variable of x. Then when
C and the "end-of-line" word are read in, end
of-line will loose all fights so that C becomes the
right variable of x, and the entire structure
B x C becomes the right variable of +, i.e.,
A + (B x C). Then the entire expression
A + B * C will become the left variable of end
of-line, which will wait on the stack for the
completion of whatever statement follows, as
its right variable.

Figure 3 shows the above derivation of the
Parsing Algorithm in flow-diagram language.
Note that the fight arbitrator calls for help
if neither the next word from the input string,
(pointed to by n), nor the word on the top of
the stack, (pointed to by p), is a winner. The
stacking and unstacking operations are shown
by trivial pointer manipulations with the s
component, and the CO';;;,p-ute type function sets
the appropriate type information into the type
component of the first-pass bead which will de
termine its behavior in future reactions. Given
the type information and information about the
"likes" of the left and right sides of vocabulary
words, on which the arbitrator depends, the
Parsing Algorithm will make the appropriate
£ var and r var settings to show the complete
left and right context of every word in a gram
matical input string.

x- L(n)
p-s(n}
n-p
nil-n-x
compute type (p)

Help! x-rep}
p-x
s(p)-p
compute type (x)

~I. ________ ~;~: ______________ ~+B
Figure 3. The Parsing Algorithm.

E. Meaning and The Precedence String

no

Once the left and right context of a word has
been determined in this manner, then it is
possible to consider the meaning of the word in
that context. One of the novel and most power
ful aspects of the ne'Y' Algorithmic Theory of
Language is that it explicitly includes the treat
ment of the semantics of the language by estab
lishing the precedence string which shows the
precedence or order in which words whose con..;
texts have been determined by the Parsing
Algorithm should be considered in order to
build up in a step-by-step fashion the complex
meaning of an over-all expression from the
meanings of its subparts. Although the subj ect
of precedence strings and semantics is very
deep and only its first few stages are treated
even in the definitive' language theory paper,
here we have space only to consider the most
elementary level of normal precedence, to illus
trate the methodology of the theory and the
basic concept of precedence. In general, the
precedence string shows the proper sequence
in which operations should be performed.

Since an individual symbol represents some
single physical thing or concept and has no
finer internal structure for the purposes of the
language theory, the meaning of a symbol is
known immediately. It may be proved that for
any grammatical statement, there will be at
least one vocabularly word whose left and right
context, as determined by the Parsing Algo
rithm, will consist of single atomic symbols. By
the Immediacy Principle the first such atom
atom word forms the starting place for the
determination of the meaning of the statement,
since its meaning can be determined immedi
ately. If that word constitutes the left or right
context of another word whose other side is

312 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

atomic, then that word in turn can be evaiuated,
and so the process continues. For example, in
A + (B x C), the product B x C can be formed
immediately, and the result will then permit the
+ to be evaluated next.

If a word has both sides non-atomic, then
after its ivar has been evaluated, its non-atomic
rvar must again contain at least one atom-atom
word where the evaluation of the rvar'meaning
can begin. The minor precedence component,
i 1 var, of the word will be set by the Precedence
Algorithm to point to this atom-atom starting
place of the non-atomic rvar. For example, in
(A + B) x (C + D), both of the +'s are atom

atom, and after A + B is evaluated, the result
must be set aside while C + D is formed, and
only then can the x be evaluated. The minor
precedence of x will point to the right hand +,
and says, in effect, "make a new beginning".
Every word also has a major precedence com
ponent, r1 var, which points to the next word to
be evaluated. Figure 4 shows a schematic ex
ample of a complete first-pass structure with
the minor precedence components shown by
dashed arrows, and the major precedence com
ponents shown by solid arrows.

To evaluate the meaning of the expression, a
Precedence String Follower Algorithm will
start with the first minor precedence pointer,
evaluate the atom-atom word it finds there, and
then follow the major precedence pointer to
the next word to be evaluated. Whenever a word
has a non-empty minor precedence component,
the results of the evaluation made thus far are
set aside on a stack, and a fresh evaluation be
gins at the atom-atom word indicated by the
minor precedence component. Note that once
the word which causes the stacking to take place
because of the existence of a minor precedence
component is reached again on the major pre
cedence chain, then both the left and right con
texts are known, ,so the left context is removed
from the stack and used, and the processing
continues.

F. The Precedence Algorithm
Before discussing the precedence string con

cept further, Vie will describe the derivation of
the Precedence Algorithm which establishes
the precedence string structure. The fact that
syntax and semantics cannot be separated in a
language is shown by the fact that the syntactic
parsing structure and the semantic precedence

Start

\
\

" " "

Figure 4. Example of First-Pass Structure.

structure indicated in Figure 4 are integral
components of the complete first-pass structure
and cannot be separated. Similarly we wish to
derive a single algorithm on the basis of the
General Principles which will construct the en
tire first-pass structure in one pass, step-by
step. Such a combined algorithm itself is a
complex structure, so that we arrive at it step
by-step. The completed Parsing Algorithm is
the first step, and we now will derive the Pre
cedence Algorithm independently as a second
step, and then merge the two algorithms into a
single algorithm as a third step.

The Precedence Algorithm itself is trivial, as
is indicated by Figure 5. We assume, for the
moment, the existence of an appropriate Read
Where Routine which will decide whether a
major or minor precedence component, r1 or £ 1
respectively, is to be set by the new word, nl.
After the setting has been made, we then make
the new word the next word whose precedence
components are to be set, pointed to by xl, and
continue. Notice that in this case no stacking
is required, since, as we shall see in the next
paragraph, only one component can be set at
a time, and no conflictS arise from the Im
mediacy Principle.

Examination of the first-pass structure
shown in Figure 4 discloses that a major pre-

Figure 5. The Precedence Algorithm.

THEORETICAL FOUNDATIONS FOR THE COMPUTER-AIDED DESIGN SYSTEM 313

cedence component is to be set whenever a non
atomic £ var or rvar is set in the Parsing Algo
rithm. Similarly, considering the timing of the
generation of the parsing structure by the Pars
ing Algorithm, a minor precedence component
is to be set whenever atom-atom occurs, and
this c~n in turn be interpreted to happen when
ever an atomic rvar is set into a word whose
£ var is also atomic. Thus the "input string"
for the Precedence Algorithm consists of the
sequence of £ var and rvar settings of the Pars
ing Algorithm, and we may think of the Pre
cedence Algorithm as riding "piggy back" on
the Parsing Algorithm.

These facts give rise to an appropriate Read
Where Routine for the Precedence Algorithm,
as shown in Figure 6, which obtains its input
from the labelled points in the Parsing Algo
rithm flow diagram shown in Figure 3. Note
that the flow diagram representation for the
Read-Where Routine matches exactly the verbal
description of the conditions for setting of a
major or minor precedence component. Merg
ing and condensing the three separate flow
diagrams results in the algorithm of Figure 7,
which is the lowest level algorithm of the
Algorithmic Theory of Language, since it is the
simplest algorithm which results in a complete
language including both syntax and semantics.
Figure 8 shows the major steps in growing the
complete first-pass structure for a very simple
algebraic expression to illustrate the dynamics
of the Parse-Precedence Algorithm in action.

III. TRANSFORMATION FROM LAN-
GUAGE TO PLEX MODELS

As was mentioned above, the normal preced
ence that has been considered here is only the
most elementary level of semantics in the Algo
rithmic Theory of Language. Although we do
not have space to describe the complexities of
the subsequent generation of still further algo-

Null

Figure 6. Read/Where for Precedence Algorithm.

x -ten)
p -sen) _ _ _ _1
1'_P_11 1

nil-n-x
compute type (n 1)

C

no

x- rep)
p-x-nl
.(p)-p
compute type (n 1)

Figure 7. The Merged Parse-Precedence Algorithm.

rithms for treating more and more elaborate
aspects of meaning, we close with a few re
marks about the role of the precedence string
and the fundamental nature of the 11rst-pass
structure.

By this time, after spending many hours de
scribing these ideas to many individuals of
differing backgrounds, the authors are well
aware that there is a certain subtlety to the ideas
which are being discussed here and that they
lie somehow outside or on the very fringe of our
communal experience, and are sometimes hard
to grasp. Nonetheless, it is hoped that the fol
lowing comments will serve to indicate how the
complete syntactic and semantic information
contained in the first-pass structure serves as
the initial fundamental building block toward
the establishment of the full-blown plex struc
tures required to store all of the information
about an arbitrary problem, so that the grand
design of the Computer-Aided Design System
ean eonvineingly be brought into foeus.

A. The Concept of a Modelling Plex

Recall the contention made earlier that the
human's understanding of a problem being
solved using the Computer-Aided System will
consist of his over-all integration of the mean
ings, however simple or elaborate, of all of the
statements made about the problem up to that
point. The computer's understanding of the
same problem, however, is to be contained in a

314 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

o
B

A=B

INIF

~TART ~
A~f

'@
:of

/ @
B \.*
G}~'-" ,,\

\,..

A=B+C*

INIF

STAR~@
r /- ®
I A ~

\ :r®
" B/~@
'--7 " C 0

A= B +

A=B+C*

A=B+C*O+

A =B+C* D +E£:.!lli

A=B+ A= B +

A=B+C*O+ A=B+C*O+
, I /

-0)-
INIF FINI I '

STAR~"
I /-~ CPl
I A ~+@"/
\ // -0-
" /~~ E'I'

'- 23- ..,,*,
C 0

A = B+C*,D+Ef.!.m

SELECTED VIEWS OF GROWTH OF
FIRST-PASS STRUCTURE

NOTE: TIMES BETWEEN FRAMES
--"ARE NOT EQUAL.

Figure 8. Stages of Growth of First-Pass Structure.

complete and detailed plex structure, which for
even the simplest of problems will contain a
bewildering confusion of hundreds or thousands
of pointers showing all of the various kinds of
interconnections between the various sub-ele
ments of the problem. Recall also that the Algo
rithmic Theory of Language was introduced as
the first step toward achieving this match be
tween the human's understanding and the com
puter's understanding of the same problem,
even though these understandings involve
mechanisms which appear to be so different-

the completely unknown physiology and psy
chology of the human mind and the incompre
hensible plex structure. The way in which this
vital linkage of the two understandings is to
take place is the subject of this discussion.

The crucial point to be made is that there is
a sharp and very important distinction bet.ween
statements about a problem and the problem
'itself. The situation is somewhat reminiscent
of that branch of classical philosophy which
questioned the existence of a reality without an
intellect to be aware of that reality. In fact, the

THEORETICAL FOUNDATIONS FOR THE COMPUTER-AIDED DESIGN SYSTEM 315

singular noun reality may serve our purposes
better than the word problem. Thus there is a
"distinction between statements about a reality~
and the reality itself". Problemness itself is
merely another reality superimposed on some
other, supposedly more real reality. The thing
which must be perceived clearly is that however
many things may be said about something, even
though those sayings may specify all aspects
of that something, they still remain merely
sayings.

In order to achieve our broad Computer
Aided Design objectives, we must· create within
the computer a precise representation of the
actual reality itself. This is why the concept
of modelling has been so emphasized. In fact, it
may properly be said that the modelling plex is
the, and the only, reality regarding any problem
being solved. The match between this idealized
abstract reality and the real reality depends
entirely upon the success of the intellect gener
ating the sayings in perceiving and giving
expression to all of the pertinent aspects of that
reality.

B. Operators for Plex Transformations.
So we address again the question of how the

language statements become the modelling plex.
The algorithms of the Algorithmic Theory of
Language provide the answer with regard to
the statements themselves. The first-pass struc
ture for a statement is the proper modelling
plex for the statement, showing explicitly the
syntax and semantics of the statement. The
next step is to transform the meaning of a
statement into appropriate settings of the com
ponents of elements in a modelling plex. This
important transformation is achieved by oper
ators following the precedence string.

In eifect, operators are the elements of "in
tellect" for the computer, for they generate
internal "understanding" in the form of model
ling plexes, which constitute the memQry sys
tem. There will be many operators which per
form many functions, but all operators follow
the same basic principle--they transform the
successive meanings encountered while follow
ing a precedence string into some appropriate
other form, and thereby transform one plex into
another plex. Sometimes the plexes are model
ling plexes and sometimes they are first-pass
structures, i.e., sometimes operators are con-

'cerned with problems and sometimes with de-

scriptions. The particular ways in which oper
ators are defined and the ways in which they are
used determines the over-all result, so that this
paper presents only the general idea of oper
ators and is in no way a definitive treatment
of the subject.

The basic idea of an operator may be illus
trated by a simple example. Figure 9 shows
the first-pass structure for the statement "Line
A connects point B and point C." Consider an
operator which is appropriate for topological
consideration of points and lines. It might
function as follows: The operator begins at
START in Figure 9, and when the word line is

Figure 9. Line Description.

encountered on the precedence string, an empty
4-component element is obtained from free stor
age in the computer, the code f01' "line" is
placed in the type component, and the code for
"A" is placed in the name component. The
operator then follows the precedence string to
the word connects, but finding a non-empty
minor precedence component, it proceeds to the
word point. There it obtains an empty 4-com
ponent element and places "point" and "B" in
the proper components. N ext the word and
sends the operator on to do the same for the
other 'word, point, creating an element for
"point" "C". Now the word and is encountered
for the last time, and it causes the operator to
associate the two "point" elements, either by
setting up a "pair" type of element with
pointers to the "point" elements or by som~
other mechanism. Finally, the word connects
is reached again and it causes the reruaining
components to be set, as shown in Figure 10.
The period terminates the' operator.

t LINE

n A

POINT l

n B r POINT

+ t c
e

Figure 10. Line Model.

316 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Although such an operator TIlight be con
structed quite differently in practice, the ex
ample does show how the first-pass plex of
Figure !j is transformed into the modelling plex
of Figure 10. Clearly, analogous and much
more sophisticated and elaborate operators are
possible, and the technique is completely gen
eral. Some such operators are described in the
following sections, but it should be emphasized
that the intent of this paper is to explain the
conceptual and theoretical framework for an
evolutionary Computer-Aided Design System.

There exist many techniques which can merge
and eliminate theoretical steps in some cases,
so that working systems may not exhibit the
fine structure of the theory. An example of this
is shown in the following papers on graphical
language facilities, 3, 4 which have been written
thus far with standard coding techniques which
skip over many of the theoretical stages refer
enced in this paper. Nonetheless in these special
cases the theoretical framework may be con
sidered to be present, and in order to permit the
further evolution of even more elaborate
facilities in a natural way without specifically
working out each detail, we need the theoretical
understanding, and in fact must attempt to
build in the theory into the internal workings
of the system itself. Since our long range objec
tive is not merely to provide the user with those
pieces of a system which we ourselves are able
to conceive of and construct, but instead is to
provide a system which is adaptable to each
user even though he may not be a sophisticated
computer programmer, the unifying theoretical
framework is not only of interest in and of
itself, but is essential to the proper execution
of our mandate.

The simplest form which an operator can
take is that of a Markov Normal Algorithm5 or
LISP conditional expression,6 i.e., in general an
operator is a recursive function consisting of a
list of rules each of which has a left and a right
side. For each rule, the left-hand side asks
questions about some of the arguments of the
operator, and the right-hand side describes cer
tain operations to be performed on some of the
arguments of the operator. To evaluate the
operator we start at the top with the first rule,
and if, substituting arguments, the left-hand
side of the rule is t'tue, then we execute the
right-hand side, and otherwise continue on to

the next rule. Recursiveness occurs whenever
the right-hand side of a rule references the rule
itself, and in this case there must exist some
where in the operator a right-hand side con
taining a termination signal or no recursive
reference. In general an operator may have a
more complex structure in which all left sides
are evaluated simultaneously rather than se
quentially,7 but the slightly different mathe
matical entity which this form of operator
represents has not been studied theoretically
yet, and we will not describe it here. In many
cases it is not necessary to have recursive oper
ators, since they will be used following a pre
cedence string which presents information in
precisely the correct order, so that recursive
operations are not necessary, but if a proper
precedence string is not available, then, in gen
eral, recursion is required.

Operators may obtain arguments from one of
three sources: from a modelling plex or from a
first-pass structure, (i.e., from a model of a
problem or a model of a statement about a
problem), or from another operator. The right
side of a rule may be any algorithm, and thus we
may have operators for any purpose~

C. Operator Examples

To clarify the concept of an operator and how
it works, we consider two of the simplest opera
tors: the "precedence follower" operator and
the "calculus derivative" operator. The pre
cedence follower operator is used to control the
routing of another operator through a first
pass structure. In other words, other operators
normally ride piggy back on the precedence
follower operator if they are applied to a first
pass structure. The precedence follower opera
tor takes a first-pass bead as argument and fol
lows the minor precedence component if one
exists, and otherwise follows the major preced
ence component. The result of execution of the
operator is a pointer to the next first-pass bead
which will be used as the argument of some
other operator. The rules of the precedence
follower operator may be written as follows:

prec (x) : £ 1 (x) #- nil

and x is new~£1 (x),

Terminate
otherwise

Terminate

THEORETICAL FOUNDATIONS FOR THE COMPUTER-AIDED DESIGN SYSTEM 317

I.e., if the minor precedence component, iI, of
the argument, x, is not empty and x has not
been encountered before, the value of the opera
tor prec (x) is the contents of that component,
(i.e., a pointer to the "next" thing on the pre
cedence string). Otherwise the value of prec (x)
is the contents of the major precedence com
ponent (which again is the "next" thing on the
precedence string). The precedence string
follower may be used to carry another operator,
say doer(y) , along the precedence string by
writing

doer (prec (START»

where START contains a pointer to the begin
ning of the precedence string in a first-pass
structure, such as Figure 9. Then whenever
prec terminates, doer will perform its function
on the value of prec, (i.e., the thing pointed to
as "next" on the precedence string), and then
when doer is done doing what it is supposed to,
prec will be reactivated to take another step
along the precedence string.

The output of the precedence follower is a
pointer to a first-pass bead, and to simplify
discussion we consider operators which have
first-pass beads as arguments as a special case
with a built-in "matching operator" which
compares the first-pass structure whose top is
the specified argument bead with the left side
of a rule, and the matching operator is true if,
with appropriate substitutions, the structures
are the same. Using this convention we may
consider the special symbol manipulation oper
ator which processes the first-pass structure of
an algebraic statement into the first-pass struc
ture of the calculus derivative of that expres
sion.

The algebraic derivative operator is defined
by the rules:

Rule I d(u + v)~dx + dv

RuleII d(uxv)~uxdv+vxdu

Rule III d(u = v) ~ du = dv

The simple algebraic expression
A=B+CxD

is processed into the First-pass Structure

Starting along the precedence string the struc
ture C x'D is matched by Rule II, the right
hand side of which generates d(C x D)

/

'----*~~~
/"'-. /"'-.

C dO 0 de:

Note that after this processing the remainder
First-Pass Structure can be considered to be

where X is

and dX is

/
- /=~
"A +

"--~"" B x

, /
" --* /"'. e 0

~

'--, ~+~ ..

"* "* /"'" /"'.. e dO 0 de

N ext along the precedence string is the word
+ and it is matched by Rule I provided that
the right argument of +, i.e. (C x D), is sub
stituted for v. Inasmuch as the precedence
string assures that whatever arguments + has,
they have already been processed, the rule is
still operating on an atomic level with respect
to itself and it can be fully applied.

The structure generated at this step is
/'

/+~
'-'" dB /J~~

-- -*y *
/"'" /"'" e dO D de

The unprocessed First-Pass Structure can be
viewed as

where Y is B + C x D and dY is the structure
generated above. Finally by application of Rule
III tliere results

which corresponds to

dA=dB+CxdD+DxdC

318 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

I "lT v. THE DESIGN SYSTEl'vi IN USE

The derivative operator is a description oper
ator since its output is a first-pass structure, i.e.,
the operator describes its input by making a
meaningful statement about it. We now use
this concept to outline how an actual design
problem would be solved using the Computer
Aided Design System by making statements
which trigger complex interactions of descrip
tion and construction operators. Computation
functions or subroutines may of course be
viewed as computation operators, and we as
sume that where appropriate they would be
triggered as well.

A. General Description

The designer begins conversing with the sys
tem by describing whatever features of his
problem are uppermost in his mind. The lan
guage used for this description process may be
verba" using a typewriter keyboard or push
buttons and control knobs, or graphical, using
a light pen-oscilloscope combination. Since the
light pen is used demonstratively and in con
junction with pushbuttons, keyboard state
ments, and internal program states, each sep
arate action with a pen (even though blurred
together by the smoothness of motion and by
the speed of the computer) is a separate word
with "likes" giving the effect of chemical attrac
tions, so that the result is the growth of an ap
propriate first-pass structure representing
whatever the designer says.
\ At appropriate times, perhaps at well-defined
ends of statements or perhaps on-the-fly, some
of the things wpich lHnrA hAAn Q'.lirl .,,,,ill noll .frY>'

action by the c~~~~t;~ "oth;; th~~ 'j~£~t ~:~e~;
tion of the First-Pass Algorithm and generation
of further first-pass structure. At these times
suitable operators are "turned loose" on the
precedence string of the existing first-pass
structure and perform their function as out
lined above. If an operator is a description op
erator, its effect will merely be to elaborate on
the meaning of what has explicitly been said.
Many operators will be construction operators
similar to the one described earlier for con~
structing the plex for a line with its end points
which go to free storage if necessary to set u~
connectors in a modelling plex which represents
the computer's growing understanding of the
problem. Some executable statements will turn

loose description operators on the modelling
plex itself, and these operators will follow path
ways of their own choosing, like a mouse solving
a maze, chattering away and generating de
scriptions of what they find. These descriptions
are in turn processed by the First-Pass Algo
rithm and the meaning may be processed
further by operators which elaborate the mean
ing, or construct further modelling plexes, or
modify existing plexes. The chain of effects
triggered by a simple action by the designer
may be astronomical in a well-developed Com
puter-Aided Design System.

But the common framework is there. The
entire process, however elaborate, consists of
meaningful linguistic descriptions being trans
formed into other descriptions or models. The
descriptions themselves come either from the
man or from interpretations of various model
ling plexes by appropriate description opera
tors. The triggering of operators which trans
form meanings, construct plexes, or describe
plexes to further operators or to the outside for
human consumption is all automatic, and is
similar to the bubbling activity which one ob
serves in the living cell. Since the entire process
is based ultimately upon the interactions be
tween the meanings of the many elements in
volved, and since the sorting out of what things
go together and what things do not go together
is handled automatically by the "natural laws"
of behavior which are built in, the designer on
the outside has no conception of the chaotic
activity inside the system, but sees only ex
ternal effects appropriate to his mode of under
standing.

There are many further elaborations on this
basic concept of how the Computer-Aided De
sign System should operate, and many things
which could be said about the importance of
such a proper, theoretically sound internal con
struction of the system to the prognosis for the
evolution of a full-scale system meeting our
mandate, but these comments will be reserved
for future papers as the system itself takes con
crete shape. Instead we close with an example
drawn from the field of servomechanism design
to show some of these concepts in action.

B. ServO'Inechanis'm Design Example

A typical problem in servomechanism design
is as follows:

THEORETICAL FOUNDATIONS FOR THE COMPUTER-AIDED DESIGN SYSTEM 319

Given the fixed elements of a linear feed
back control loop, design an appropriate
compensation network to meet given steady
state and dynamic specifications. The prob
lem is to be solved using frequency re
sponse techniques.

A brief review of the required techniques ap
pears in Appendix A, together with definitions
of the terminology used. The design method
is a trial and error procedure with the follow
ing steps:

1) Compute the frequency response of the
uncompensated open loop.
2) If not satisfactory select a compensation
that will hopefully introduce the desired
changes.
3) Compute a new frequency response of the
compensated open loop to show the actual
effect.
4) If this is also not satisfactory, repeat steps
2) and 3) until the specifications are met.

To solve this problem using the Computer
Aided Design System the following operators
are needed:

1) Matching, substituting and selecting op
erators
2) Signal flow interpreter
3) Transfer function operator
4) Complex number simplification operator
5) Complex number magnitude and phase
operators.

The functions and definitions of these operators
appear in Appendix B and may be defined for
the system at any time before usage. Also oper
ators may be defined as the composition of
several other operators, so that for the present
problem we may define a frequency response
operator as the composition of the complex
number simplification, magnitude, and phase
operators. With the necessary operators de
fined, we may proceed to the solution of the
problem.

The first step is to describe the topology of
the feedback loop. This is best accomplished by
means of graphical input using n-component
elements for the various picture pieces with
type, T, name, N, input from, I, and output to,
0, components.

By an appropriate sequence of light pen mo
tions the picture of Figure 11 can be drawn and
processed to produce a plex structure which we
call the modelling plex for the problem . .Notice
that the act of drawing is a linguistic process
with its own grammar rules, i.e., boxes can be
connected only by connectors, input from points
can be joined only to output to points, etc. The
resulting modelling plex for the feedback loop
is shown in Figure 12.

The modelling plex is a representation of the
topology of the loop and as such it can be in
terpreted in many different ways. In particular
we are interested in the signal flow through the
loop. On command, the Signal Flow Interpreter

Summer

INPUT o----+~~~~~ __ o ___ ~_I_c_o_m_p_e_ns_a_ti_on ________________________ ~
Conn 1

_I Fixed
Branch

0 0 0

"J
_0 OUTPUT Elements

Figure 11. A Typical Control Loop.

t t l: t + t + + +

l~
1 t

T Summer Box T Connect T Box Branch
N Sl Compens N C1 N Fix. Elmt B1

0
.... _, ---~I ,

I 0 0 0 ,-0

I INPUT 0 OUTPUT

T = Type N = Name 0= Output to , = Input from

Figure 12. The Modelling Plex for th~ Control Loop.

320 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Operator runs through the modelling plex, fol
lowing the same path an actual signal would
take, and producing a language description of
the meaningful conlponents. The resulting lan
guage description is processed by the First
Pass Algorithm to generate the First-pass
Structure which models the description of the
problem in terms of signal flow, as shown in
Figure 13.

openyoo\ "" #.21

_
. Bran~h ~ " "-

~ '-"/', \
);onn, " OUTPUT \

'" _ // F;xed ele":~~))
ST ART ::'ummer /

" /jJ. '\. ./ / _ / ""\ Compensation ./ /" ,., - --, '- -- /" /"- --:-_./
• Input '-

Figure 13. First-Pass Structure for the Loop.

U sing the Selection Operator the designer
may select any substructure that he wishes to
process further. These substructures may be
selected by pointing at them in the current
problem display, or by assigned names suitable
for typewriter reference. For this problem we
choose to isolate the open loop, defined as the
compensation and fixed elements of the servo~
mechanism.

To obtain the open loop transfer function, a
command is issued to apply the Transfer Func
tion Operator to the open loop description, sub-
stituting the mathematical multiplication op-
eration for topological connectors.

Then the designer may define the fixed ele
ment and the compensation by giving their
transfer functions by typing:

The fixed element IS 1/ (s x (s + 1));
The compensation IS 1

which causes this information to be introduced
into the open loop description. The transfer
function as we have it now is a detailed descrip
tion of one aspect of the problem. It has been
obtained by successive transformation of the
meaning of several modelling and description
plexes.

In order to obtain the frequency response
,of the open loop, further transformations of

meaning are required. The designer can now
command the system to apply the Frequency
Response Operator to the open loop structure.
This operator is the composition of four other
operators applied successively. First jw is sub
stituted for s, then the Complex Number Simpli
fication Operator sets things up so that the
Magnitude and Phase Operators can meaning
fully be applied, and the resulting description
is used to compile a calculation program. Figure
14 shows the description plex after the Simpli
fication Operator has been applied, and Figure
15 shows the result of applying the Magnitude
and Phase Operators to the plex of Figure 14.

Figure 14. The Open Loop Plex after Simplification.

The result of the Frequency Response com
mand is a program to compute numerical values
of the magnitude and phase of the open-loop
transfer function. These numerical values can
conveniently be displayed to suit the designer,
who can then decide what sort of compensation
network he would like to use. Since the struc
ture of the problem has been p:re!'\erven, changes
are very easily introduced at any level. In par
ticular to' change the compensation at the trans
fer function level the designer may type

The compensation IS (5 x s + 1) / (50 x s + 1)

A new frequency response can now be obtained
in the same way as before and so the design
process continues.

B. Concluding Remarks

In addition to the operators outlined here,
operators have been devised for simplifying
algebraic expressions and boolean expressions,
performing useful tree structure manipulations,
optimizing the evaluation of decision functions
based on probabilities or costs or both, perform-

THEORETICAL FOUNDATIONS FOR THE COMPUTER-AIDED DESIGN SYSTE!vI

(0) The Open loop Magnitude Plex

- (~ 'ta;;1 (IU I»

(b) The Open loop Phase Plex

Figure 15. The Magnitude and Phase Functions.

ing simple natural language translation, and
carrying out many functions which arise in the
efficient compilation and execution of efficient
computer programs. Many other operators use
ful in various design problems can also be en
visioned, but this area has hardly been tapped
as yet.

The future developments which can be sensed
as growing out of the elaboration of the opera
tor concept indicate that the algorithms and
methodology which will result might appro
priately be termed an Algorithmic Theory of
Meaning. In these terms it is difficult to see
the dividing line between the Algorithmic
Theory of Language and the Algorithmic
Theory of Meaning, since the features of both
become interlocked and intertwined as more
elaborate and richer modes of operation are
considered.

All of the things which have been discussed
here are presently being reduced to practice,
and the implementation of the beginning stages
of a full Computer-Aided Design System is well
under way. In addition to the language theory

paper which has been referenced, a series of
papers will shortly be forthcoming which will
elaborate on the Algorithmic Theory of Lan
guage, provide details of Operator Theory, and
describe completely the compiler and program
ming system which embodies all of these theo
retical features and forms the nucleus for the
full system.

Whatever the further development, it is quite
apparent that although it would be foolish to
claim that the full scope of the rI1andate for a
completely general Computer-Aided Design
System can be met directly using the techiques
presented here, nonetheless it is impossible to
put bounds or limitations on the potential capa
bilities of the system taking shape. It is hoped
that this brief description of the first several
steps along the way to a powerful Computer
Aided Design System will enable others to
share our confidence and enthusiasm for these
beginnings, so that they may join in the
fascinating pursuit of a generalized scheme for
problem solving.

APPENDIX A-SERVO TERMINOLOGY

T1'ansfer Function
The transfer function of an element is de

fined as the Laplace Transform of the impulse
response of the element

where:

H(s) = f: h(t)e-8tdt

h (t) is the impulse response
t is time
s is the complex variable. (J" + jw

The transfer function relates the input and out
put of an element as follows:

Output = Transfer Function x Input.

Frequency Response
The frequency response is defined as the mag

nitude and phase of the transfer function as a
function of w when s =jw.

Physically a point in the frequency response
curve means the following:

When the input to the system is a sine wave,
the magnitude is the logarithm of the ratio
of the amplitude of the output to the ampli
tude of the input, while the phase corre
sponds to the phase difference between the
output and the input.

322 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

APPENDIX B-OPERATOR DEFINITIONS

Operators Used in The Servo Design Example

Only those rules which are needed and cause
a change are given

1. Transfer function operator
Argument: A First-Pass Structure
Operation:

u connector v~substitute (u X v)

2. Complex number operators
x and yare real quantities
c is a complex quantity
E9 is the complex number symbol

j = "';-1
a) Simplification operator

jx + y ~ substitute (jx EB y)
b) Magnitude operator

jx X c ~ substitute (log (x) + I c I)
jx EB y =9 substitute (log(sqrt(x i 2 + y i 2»)

xlc =::!:> substitute (log(x) - Ie i)
x X c ~ ~ubstitute (log (x) + I c I)

c) Phase operator

jx X c ~ substitute (; + phase (C»)
jx EB y ~ substitute (tan-I(xly»

xlc ~substitute (-phase (c»
x X c~ substitute (phase (c»

BIBLIOGRAPHY

1. Ross, D. T., "A Generalized Technique for
Symbol Manipulation and Numerical Cal
culation," Conununications of the Associa-

tion for Computing Machinery, Vol. 4, No.3;
pp. 147-150, March 1961.

2. Ross, D. T., "An Algorithmic Theory of
Language," Report ESL-TM-156, Electronic
Systems Laboratory, Massachusetts Insti
tute of Technology, 67 pp. November 1962.
To be published in the Journal of the Associ
ation for Computing Machinery in 1963.

3. SUTHERLAND, 1. E., "Sketchpad; A Man
Machine Communication System," Proceed
ings of the Spring Joint Computer Confer
ence, Detroit, Michigan, May 21-23, 1963.
(This Volume).

4. JOHNSON, T. E., "Sketchpad III, A Compu
ter Program for Drawing in Three Dimen
sions," Proceedings of the Spring Joint
Com,puter Conference, Detroit, Michigan;
May 21-23, 1963. (This Volume).

5. MARKOV, A. A., Theory of Algorithms, Acad
emy of Sciences, USSR, 1954. (Translated
by Jacques T. Schorr-Kon, et aI., Office of
Technical Services, Washington), 444 pp.

6. MCCARTHY, J. "Recursive Functions of Sym
bolic Expressions and Their Computation
by Machine, Part 1," Communications of the
Association for Computing Machinery, Vol.
3, No.4, pp. 184-195, April 1960.

7. Ross, D. T., "Research on the Evaluation of
Simultaneous Logical Functions," Investi
gations in Computer-Aided Design, Interim
Repo'rt No.1, Report 8436-IR-1, Electronic
Systems Laboratory, Massachusetts Insti
tute of Technology, pp. 47-66, May 30, 1960.

MAN-MACHINE CONSOLE FACILITIES

FOR COMPUTER-AIDED DESIGN

Robert Stotz
Electronic Systems Laboratory

Massachusetts Institute of Technology
Ca'mbridge 39, lJlassachusetts

EQUIPMENT

The backbone of the man-machine communi
cation link in Computer-Aided Design is a con
sole whose principal components are the display
scope and the light pen. The display scope is
an ordinary cathode ray tube which is con
trolled by the computer by means of program
instructions. It allows the computer to output
to the man rapidly in easily interpreted graphi
cal form. The data displayed can be textual,
pictorial, or a combination of the two: The light
pen is a photosensitive device which responds
to the light generated by an intensified point
on the scope face and which amplifies, shapes
and transmits this response back to the com
puter where it can be tested by the program
and used as a branch condition. The display
scope and light pen form, so to speak, the paper
and pencil of the designer, but they possess
some extremely useful additional properties
which open a whole new expressive medium.
The following papers describe some of the fas
cinating and invaluable facilities which are pro
vided by this basically simple hardware. In
this paper we present some basic information
about the hardware itself and describe some of
the sophistications appropriate to the Com
puter-Aided Design problem.

To provide flexibility of input,particularly
regarding the control of the displays and the
interpretation of light pen actions, the console
should also contain various knobs, switches,
and buttons to complement the display while
manipulating these controls. In addition, a
typewriter is incorporated to permit input of
textual and numeric information and hard copy
output.

The Light Pen

The light pen designed at Lincoln Laboratory
is a hand-held cylinder with a photocell mounted
inside at one end and a wire leading back to
the computer at the other. In addition to the
photocell, a one transistor preamplifier is also
housed inside the tubular body of the pen. The
photocell circuit is designed to respond to only
the initial flash of the phosphor and is insensi
tive to the persistence observed by the human.
The photocell signal is a.c. coupled onto the d.c.
voltage line back to the amplifier section, so
that only a single coaxial wire is required to
carry the power to the pen and the signal back
to the computer. The light pen housing designed
and used by the Electronic Systems Laboratory
has a variable focus lens mounted in front of
the photocell. This makes the pen more sensi-

This work has been made possible through the support extended to the Massachusetts Institute of Technology,
Electronic Systems Laboratory by the Manufacturing Technology Laboratory, ASD, Wright-Patterson Air Force Base
under Cont,ract No. AF-33 (600) -42859. It is published for technical information only and does not necessarily repre
sent the recommendations or conclusions of the sponsoring agency.

323

324 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

tive and yields a variable field of view depend
ing on the focus setting. The field of view of
this pen ranges from 213 inch diameter down to
VI 6 inch diameter and for the larger settings is
almost cylindrical so that scope-to-pen distance
is not important. . Pens made from fiber optics
material with photomultipliers at their base
have recently been introduced. Their rapid re
sponse, light weight and high sensitivity make
them very promising for future work.

The preamplifier signal is boosted by a solid
state amplifier which drives a flip flop. The
computer then samples the state of this device
to determine if the point displayed was "seen."

The light pen can be used to simulate the
"drawing" ability of a real pen by having the
computer program "track" its arbitrary motion
over the scope face. The principal of the track
ing program is to detect the edge of the field
of-view of the pen at several divergent points
and compute the center of gravity of these,
which is considered the pen position. Figure 1
illustrates one of the simplest of the many
schemes for establishing these edge points. The
last previous center point is used as the start
ing point for four radially drawn lines which
are each individually terminated when no longer
"seen" by the pen. The center of gravity of
these four end points is the new pen location
and is used as the center position for the next
iteration. This process is continually repeated,
each iteration requiring from 1 to 3 millisec
onds. This is fast enough to allow normal
writing speed without "losing" the program.

The light pen also has the unique power of
being able to identify points or lines to the com
puter. When used in conjunction with special
buttons or knobs or keyboard input these "iden
tified" points or lines can be assessed in any
number of ways. Solitary points can be inter
preted as special test points by the program,
so that when these spots are "seen" by the pen,

CENTER POINT DETERMINED
ON PREVIOUS DISPLAY

• POINT "SEEN"

o POINT "NOT SEEN"

x,

PRESENT POSITION OF
FIELD-OF-VIEW CIRCLE

SCAN DIRECTION

Figure 1. Basic Light Pen Tracking Pattern.

the program branches. Such points, called Light
Buttons, can be used just as toggle switches or
they can be arbitrarily placed on the scope face,
even interspersed within the display picture
itself.

D'isplay Scope

The most common form of the display scope
today is one which intensifies a single spot at
a time. The position of a point is specified by
a computer display instruction giving horizon
tal and vertical coordinates. A typical display
scope will have 210 = 1024 unique horizontal
coordinate values and a similar number of ver
tical values for a total of over 1,000,000 discrete
points available. These are usually distributed
over an active surface of about 10 inches x 10
inches. Display times range from 3 to 140
microseconds per point depending on the scope
size and type of deflection circuitry. Pictures
are drawn by outputting a list of points by
repeated display instructions. This list is called
the "Display File."

The next generation of scopes have line and
character generation. There are a number of
such units commercially available today, and
they vary in emphasis depending on their par
ticular application. Most of the character gen
erating types come with keyboard inputs and
are used as flexible typewriters. They often
feature a light pen or cross hairs to identify
individual characters or points. Line segments
are either formed by the character generator
as special characters or are produced by a line
generator which is an additional piece of hard
ware, Depending on the particular line gen
erator, lines are specified by their incremental
components, by their slope and length, or by
their end points. In nearly all cases the start
ing point is the end point from the last display
instruction.

The advantages of these scopes are two-fold.
More data can be displayed using less computer
storage and less computer generation time.
Higher plotting speeds evolve because a char
acter or vector can generally be drawn nearly
as rapidly as a single dot in the ordinary point
for-point scope. Computer time is saved be
cause it no longer must produce the list of
points which constitute the line. The display
file is considerably reduced, too, since it now is
just a list of vectors instead of an extended

MAN-MACHINE CONSOLE FACILITIES FOR COMPUTER-AIDED DESIGN 325

file of single points. Almost all sophisticated
man-machine consoles have adopted the char
acter generator and some form of line genera
tion.

Another popular feature of display scope
systems is local buffer storage for the display
file. This reduces the main frame load im
mensely since the regeneration of the display is
completely handled by the buffer system. Only
when the picture is to be altered is the main
frame required to process the display. In most
applications this operation occupies a small per
centage of the time. The next logical extension
is to provide logic associated with the memory
to provide certain control facilities in the re
mote scope itself. These control functions can
be expanded and extended until the buffer unit
becomes a general purpose computer in its own
right.

DISPLAY REQUIREMENTS FOR
COMPUTER-AIDED DESIGN

At M.LT. the requirements for Computer
Aided Design have led to investigation of a
different type of display sophistication. Many
studies of the Computer-Aided Design Group
are concerned with three-dimensional objects
with curved surfaces. Therefore, a display
scope capable of generating three-dimensional
curvilinear figures with convenient control of
translation and rotation would be extremely
useful. The approach that has been taken is to
provide a function generator capable of gener
ating straight lines or second-order curves, and
to have special purpose computing equipment
in the display unit which can perform the three
dimensions to two-dimensional axonometric
projection computations. This frees the main
frame from the laborious task of recomputing
the entire display each time the picture is
changed in any way. If the picture is· to be
rotated, translated or magnified the computer
merely has to alter· a few key registers in the
display unit and then output the display list
as before.

The axonometric projection was chosen be
cause of its simplicity and its compatability
with most existing engineering drawings. More
complex projections such as perspective or even
stereoscopic views are feasible with added
equipment, but" at this juncture the need for

these more intricate views is not established.
It may for instance be possible to produce a
completely satisfactory three-dimensional effect
by modulating the beam intensity with a signal
which is proportional to the depth of the point
displayed. Until more experience is gained in
the manipulation of three-dimensional objects,
the added facility does not warrant the expense.
In the meantime these sophisticated display
projections can be generated by the computer
and output to the scope as a two-dimensional
picture, which the three-dimensional system is
completely capable of handling. If after fur
ther study it is decided to include the equipment
to accomplish these more general transforma
tions, the hardware can be easily added as a
modular package.

M.LT. DISPLAY SYSTEM

A system is presently being designed for the
Electronic Systems Laboratory which will dis
play on a scope a standard two-dimensional
plot or a rotated axonometric projection of a
three-dimensional line drawing. The system
will be capable of generating first- and second
order lines and will provide easy means for the
computer to translate or rotate the picture, 'or
to magnify or demagnify it. Techniques are
incorporated to prevent plotting when the limits
of the scope edge are reached.

F.igure 2 illustrates this system. It is made
up of three main parts. The first part is the
line generating unit, the second contains rota
tion matrix multipliers and the third, two ac
cumulating registers which hold the horizontal
and vertical coordinate information for the
scope deflection amplifiers.

The line generator inputs are the three
dimensional parameters of the line to be drawn
given in terms of a fixed cartesian coordinate
space x,y, z. Its outputs are three time-varying
signals representing the x, y, and z components
of the input line. This line generato~ is made
of three 10 bit Incremental Integrators (such
as a Digital Differential Analyzer) one for each
component. The time varying signals thus pro
duced are in the form of pulse trains. By estab
lishing gated feedback links between two of the
DDA's the line generator is made capable of
producing a straight line, circle, hyperbola or
parabola, selectable by computer program.

•

326 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Figure 2. Block Diagram for Display System with
Vector Generation and Rotational Capabilities.

The rotation matrix essentially applies a
matrix multiplication to the x, y, and z pulse
trains to provide proper time-varying signals
for a display of the same figure in a rotated
coordinate system. The amount of rotation
provided is preset by the computer in storage
within the rotation matrix unit. Since the x,
y, z outputs of the line generator are in the
form of pulse trains, the matrix multiplication
can be conveniently accomplished with Binary
Rate Multipliers, which multiply a pulse rate
by a binary fractional value to generate a re
duced rate. The outputs of the three BRM's
containing horizontal components of the rota
tion matrix are summed into the h accumulat
ing register while vertical components feed the
v accumulating register.

The accumulating registers are a form of
summing integrator. Their instantaneous value
represents the correct horizontal and vertical
position of the electron beam. Thus they can
be used to drive directly the digital-to-analog
converter leading to the scope deflection ampli
fiers.

The presence of a rotation matrix in the
system which can be arbitrarily loaded by the
main frame computer eases the requirements
on the line generator considerably. The Rota
tion Matrix provides the facility for a linear
transformation of the line generator output.
By using this transformation any generalized
ellipse can be formed from a circle. Similarly
any parabola can be obtained from a single
parabolic form, and any hyperbola can be pro
duced from a single hyperbolic form. Thus the
line generator is required to generate just one
form of the ellipse (the circle), the parabola
and the hyperbola. A single pair of D D A' swill
accomplish this.

To generate a rotated straight line in this
machine the input vector A is specified by its
x, y and z components (Ax, Ay, A z). The com
ponents refer to the dimensionE of the line in
the fixed coordinate space. These components
each have components of their own in the coor
dinate space of the scope (h, v, d; horizontal,
vertical and depth respectively). The multi
pliers ih, jh, and kh represent the horizontal
components of unit vectors in the x, y, and z
directions. Therefore A in scope coordinates is

r A h] r Ax' ~h + Ay • ~ h ~ Az . ~h]

L
Av = L Ax • ~v + Ay •)v -r Az • Kv

A d Ax • id + Ay . jd + Az • kd

Since only the horizontal and vertical compo
nents appear on the scope, computation of the
Ad component is not mechanized. More sophis
ticated projections would require this depth
computation.

It can be seen that the computer controls the
setting of several different registers within the
display system. Besides the line-drawing data,
it must supply the rotation numbers, the initial
setting of the h and v accumulating registers
and a magnification control register setting
which allows increase of the picture size by
powers of two by controlling the scaling of the
input values of x, y, and z (in between the scales
may be obtained through the rotation num
bers). Furthermore, the line generator itself
can have several different modes of operation.
To provide the display unit with a means of
identifying the type of data being presented,
each word contains a control field. The bits of
this field are decoded by logic in the display
unit to set up appropriate gating.

The normal display list then consists of a
heading, which loads the starting point and
magnification control and the values for the
rotation matrix components, followed by the
body containing the line information. Transla
tion and rotation of the entire picture is accom
plished by the program merely altering the ele
ments of the heading.

SIMULATION

To investigate the quality of the figures pro
duced by the display system a computer pro
gram was written to simulate the entire ma
chine. Provisions were built into it to test

MAN-MACHINE CONSOLE FACILITIES FOR COMPUTER-AIDED DESIGN 327

(a)

(b)

(c)

Figure 3. Figures Generated by Display System.

a) Orientation 1.

b) Orientation 2 showing "edging".

c) Orientation 3.

several configurations of the system in order to
determine the best compromise between equip
ment cost, plotting speed and picture quality.

Figures 3 and 4 illustrate typical figures pro
duced by the simulation routine. Figure 3
shows three orientations of a line drawing of
a block with a hole through it. Part b) of this
Figure demonstrates the technique used to pre
vent display when the edge of the scope is
reached. Figure 4 depicts three different fig
ures rotated about arbitrary axes.

The results of this simulation have shown
that the system is capable of generating satis
factory, rotated, axonometric pictures using the
Digital Differential Analyzer as the basic ele
ment of the line generator, and the cheaper
Binary Rate Multipliers to perform the multi-

plications of the rotation matrix. The unit
being built based on these results will have a
basic clock rate between .5 and 1 megacycle,
and when completed should provide an order
of magnitude improvement in plotting speed
over most present day point-plotting displays.

(a)

(b)

(c)

Figure 4. Figures Generated by Display System.

a) Generated by 7 bit DDA's.

b) Generated by 9 bit BRM's.

c) Generated by 9 bit DDA's.

DESIGN GOALS FOR M.LT. DISPL .. A,,-Y
SYSTEM

By providing straight-line and second-order
curve generation, this display system is able to
supply an order of magnitude increase in data
rate over conventional scopes. Furthermore,
sirice lines are specified by a minimum set of
parameters a proportional savings in comput
ing time and memory is achieved.

The novelty of this system, however, lies in
its attempt to provide a new balance between

328 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

special purpose computing hardware and main
frame computer load. It allows removal from
the program of those functions which are
simple, but must be done often. It also utilizes
the display unit's abilities to perform certain
operations easily (such as edge detection). The
less frequent and more difficult tasks are left
to the main frame, as for example, computation
of the new values for the rotation matrix. But
by keeping the display completely under the
control of the computer, the program can by
pass the special purpose equipment and assume
any of the generation functions desired. With
a human in the loop to act as monitor, the best
compromise can be selected based on the needs
of the operator.

Several extensions of this system are pres
ently being investigated at the Electronic Sys
tems Laboratory. The most promising of these
are automatic light pen tracking and genera
tion of an axonometric display of spaoe curves,
time consuming. undertakings for a standard
computer. Both of these should prove to be
valuable in Computer-Aided Design. Although
this display console is being built with the
design studies in mind, it shows promise of
becoming a versatile tool for research in the
entire man-machine communication problem.

BIBLIOGRAPHY

1. Investigations in Computer-Aided Design,
Interi1n Report No.1, Report 8436-IR-1,
Electronic Systems Laboratory, Massachu
setts Institute of Technology, January 1961.

2. STOTZ, R. H., "Specialized Computer Equip
ment for Generation and Display of Three
Dimensional Curvilinear Figures," Report
ESL-TM-167, Electronic Systems Labora
tory, Massachusetts Institute of Technology,
February 1963.

3. SUTHERLAND, 1. E., "Sketchpad, A Man
Machine Communication System," Proceed
ings of the Spring Joint Computer Confer
ence, Detroit, Michigan, May 21-23, 1963.
(This Volume).

4. RANDA, GLENN C., HDesign of A Remote
Display Console," Report ESL-R-132, Elec
tronic Systems Laboratory, Massachusetts
Institute of Technology, February 1962.

5. GURLEY, B. M., and WOODWARD, C. E.,
"Light-Pen Links Computer to Operator,"
Electronics, Vol. 32, No. 47, November 20,
1959.

A MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM*

I van E. Sutherland
Consultant, Lincoln Laboratory* *

Massachusetts Institute of Technology

1. INTRODUCTION

The Sketchpad system makes it possible for
a man and a computer to converse rapidly
through the medium of line drawings. Here
tofore, most interaction between man and com
puters has been slowed down by the need to
reduce all communication to written statements
that can be typed; in the past, we have been
writing letters to rather than conferring with
our computers. For many types of communica
tion, such as describing the shape of a me
chanical part or the connections of an electrical
circuit, typed statements can prove cumber
some. The Sketchpad system, by eliminating
typed statements (except for legends) in favor
of line drawings, opens up a new area of man
machine communication.

AN INTRODUCTORY EXAMPLE

To understand what is possible with the sys
tem at present let us consider using it to draw
the hexagonal pattern in Figure 4. We will
issue specific commands with a set of push but
tons, turn functions on and off with switches,
indicate position information and point to exist
ing drawing parts with the light pen, rotate
and magnify picture parts by turning knobs,
and observe the drawing on the display system.
This equipment as provided at Lincoln Labora-

tory;s TX-2 computer I is shown in Figure 1.
When our drawing is complete it may be inked
on paper, as were all the drawings in this paper,
by a PACE plotter.15

If we point the light pen at the display sys
tem and press a button called "draw," the com
puter will construct a straight line segment
which stretches like a rubber band from the

Figure 1. TX-2 operating area-Sketchpad in use. On
the display can be seen part of a bridge similar to those
of Figure 15. The Author is holding the light pen. The
push buttons "draw," "move," etc., are on the box in
front of the Author. Part of the bank of toggle switches
can be seen behind the Author. The size and position of
the part of tne total picture seen on the display are
controlled by the four black knobs just above the tables.

* This paper is based in part on a thesis submitted tothe Department of Electrical Engineering, M.LT., in
partial fulfillment of the requirements for the Degree of Doctor of Philosophy.

** Operated with the support of the U.S. Army, Navy,and Air Force ..

329

330 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

initial to the present location of the pen as
shown in Figure 2. Additional presses of the
button will produce additional lines, leaving the
closed irregular hexagon shown in Figure 3A.

To make the hexagon regular, we can inscribe
it in a circle. To draw the circle we place the
light pen where the center is to be and press the
button "circle center," leaving behind a center
point. Now, choosing a point on the circle
(which fixes the radius) we press the button
"draw" again, this time getting a circle arc
whose angular length only is controlled by light
pen position as shown in Figure 2.

"" -,
// \

\
I ,
" ,-- ----- ---,

PATH OF LIGHT PEN I

---/

I
\

" ,
LINE SEGMENT ,. ,. I

I

PATH OF LIGHT PEN '/- ------ ,. \
/-- \

(\
) \
I

START DRAWJf

CIRCLE CENTER/

TERMINATE ----I
\

'-

/

Figure 2. Steps for drawing straight Imei and circle
arcs.

N ext we move the hexagon into the circle by
pointing to a corner of the hexagon and press
ing the bu:t;ton "move" so that the corner fol
lows the light pen, stretching two rubber band
line segments behind it. By pointing to the

D D 0
A. SIX SIDED FIGURE B. TO BE INSCRIBED IN CIRCLE

0
C. BY MOVING EACH CORNER D. ON TO CIRCLE

0 0
E. MAKE SIDES EQUAL F. ERASE CIRCLE

0 0
088 @

G. CALL 7 HEXAGONS H. JOIN CORNERS

Figure 3. Illustrative example, see text.

circle and terminating, we indicate that the
corner is to lie on the circle. Each corner is in
this way moved onto the circle at roughly equal
spacing .as shown in Figure 3D,

We have indicated that the vertices of the
hexagon are to lie on the circle, and they will
remain on the circle throughout our further
manipulations. If we also insist that the sides
of the hexagon be of equal length, a regular
hexagon will be constructed.

With Sketchpad we can say, in effect, make
this line equal in length to that line, pointing
to the lines with the light pen. The computer
satisfies all existing conditions (if it is possi
ble) whenever we turn on a toggle switch. This
done, we have a complete regular hexagon in
scribed in a circle. We can erase the entire
circle by pointing to any part of it and pressing
the "delete" button. The completed hexagon is
shown in Figure 3F.

SKETCHPAD: A MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 331

To make the hexagonal pattern in Figure 4
. we wish to attach a large number of hexagons
together by their corners, and so we designate
the six corners of our hexagon as attachment
points by pointing to each and pressing a but
ton. We now file away the basic hexagon and
begin work on a fresh "sheet of paper" by
changing a switch setting. On the new sheet
we assemble, by pressing a buttqn to create
each hexagon as an "instance" or subpicture,
six hexagons around a central seventh in ap
proximate position as shown in Figure 3G. A
subpicture may be positioned with the light pen,
rotated or scaled by turning the knobs, or fixed
in position by a termination signal,but its in
ternal shape is fixed.

By pointing to the corner of one hexagon,
pressing a button, and then pointing to the
corner of another hexagon, we can fasten those
corners together, because these corners have
been designated as attachment points. If we
attach two corners· of each outer hexagon to the
appropriate corners of the inner hexagon, the
seven are uniquely related, and the computer
will reposition them as shown in Figure 3H.
An entire group of hexagons, once assembled,
can be treated as a symbol. An "instance" of
the entire group can be called up on another
"sheet of paper" as a subpicture and assembled
with other groups' or with single hexagons to
make a very large pattern.

INTERPRETATION OF INTRODUCTORY
EXAMPLE

In the introductory example above we used
the light pen both to position parts of the draw
ing and to point to existing parts. We also saw
in action the very general subpicture, con
straint, and definition copying capabilities of
the system.

Subpicture:

The original hexagon might just as well have
been anything else: a picture of a transistor,
a roller bearing, or an airplane wing. Any
number of different symbols may be drawn,
in terms of other simpler symbols if desired,
and any symbol may be used as often as
desired.

Constraint:

When we asked that the vertices of the hexa
gon lie on the circle we were making use of

a basic relationship between picture parts
that is built into the system. Basic relation
ships (atomic constraints) to make lines
vertical, horizontal, parallel, or perpendicu
lar; to make points lie on lines or circles;
to make symbols appear upright, vertically
above one another or be of equal size; and
to relate symbols to other drawing parts
such as points and lines have been included
in the system. Specialized constraint types
may be added as needed.

Definition Copying:

W emade the sides of the hexagon be equal
in length by pressing a button while pointing
to the side in question. Had we defined a
composite operation such as to make two
lines both parallel and equal in length, we
could have applied it just as easily.

IMPLICATIONS OF INTRODUCTORY
EXAMPLE

As we have seen, a Sketchpad drawing is en
tirely different from the trail of carbon left on
a piece of paper. Information about how the
drawing is tied together is stored in the com
puter as well as the information which gives
the draw"ing its particular appearance. Since
the drawing is tied together, it will keep a use
ful appearance even when parts of it are moved.
For example, when we moved the corners of the
hexagon onto the circle, the lines next to each
corner were automatically moved so that the
closed topology of the hexagon was preserved.
Again, since we indicated that the corners of
the hexagon were to lie on the circle, they re
mained on the circle throughout our further
manipulations.

As well as storing how the various parts of
the drawing are related, Sketchpad stores the
structure of the subpictures used. For example,
the storage for the hexagonal pattern of Figure
4 indicates that this pattern is made of smaller
patterns which are in turn made of smaller
patterns which are composed of single hexa
gons. If the master hexagon is changed, the
entire appearance but not the structure of the
hexagonal pattern will be changed. For ex
ample, if we change the basic hexagon into a
semicircle, the fish scale pattern shown in Fig
ure 4 instantly results.

332 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Figure 4. Hexagonal lattice with half hexagon and
semicircle as basic elements.

SKETCHPAD AND THE DESIGN
PROCESS

Construction of a drawing with Sketchpad
is itself a model of the design process. The
locations of the points and lines of the drawing
model the variables of a design, and the geo
metric constraints applied to the points and
lines of the' drawing model the design con
straints which limit the values of design varia
bles. The ability of Sketchpad to satisfy the
geometric constraints applied to the parts of a
drawing models the ability of a good designer
to satisfy all the design conditions imposed by
the limitations of his materials, cost, etc. In
fact, since designers in many fields produce
nothing themselves but a drawing of a part,
design conditions may well be thought of as
applying to the drawing of a part rather than
to the part itself. When such design conditions
are added to SketChpad's vocabulary of con
straints, the computer will be able to assist a
user not only in arriving at a nice looking
drawing, but also in arriving at a sound design.

PRESENT USEFULNESS

As more and more applications haVe been
made, it has become clear that the properties
of Sketchpad drawings make them most useful
in four broad areas:

For Storing and Updating Drawings:
Each time a drawing is made, a description
of that drawing is stored in the computer
in a form that is readily transferred to mag
netic tape. A library of drawings will thus
develop, parts of which may be used in other
drawings at only a fraction of the invest
ment of time that was put into the original
drawing.

For Gaining Scientific or Engineering Under
Standing of Operations That Can Be Described
Graphically:

A drR\ving in the Sketchpad system may con
tain explicit statements about the relations
between its parts so that as one part is
changed the implications of this change be
come evident throughout the drawing. For
instance, Sketchpad makes it easy to study
mechanical linkages, observing the path of
some parts when others are moved.

As a Topological Input Device for Circuit
Simulators, etc. :

Since the storage structure of Sketchpad re
flects the topology of any circuit or diagram,
it can serve as an input for many network
or circuit simulating programs. The addi
tional effort required to draw a circuit
completely from scratch with the Sketchpad
system may well be recorupensed if the
properties of the circuit are obtainable
through simulation of the circuit drawn.

For Highly Repetitive Drawings:
The ability of the computer to reproduce any
drawn symbol anywhere at the press of a
button, and to recursively include subpictures
within subpictures makes it easy to produce
drawings which are composed of huge num
bers of parts all similar in shape.

II. RING STRUCTURE .
The basic n-component element structure de

scribed by RosslO has been somewhat expanded
in the implementation of Sketchpad so that all
references made to a particular n-component
element or. block are collected together by a
string of pointers which originates within that
block. For example, not only may the end
points of a line segment be found by following
pointers in the line, block (n-component ele
ment) , but also all the line segments which
terminate on a particular point may be found by
following a string of pointers which starts
within the point block. This string of pointers
closes on itself; the last pointer points back to
the first, hence the name "ring." The ring
points both ways to make it easy to find both the
next and the previous member of the ring in
case, as when deleting, some change must be
made to them.

BASIC OPERATIONS

The basic ring structure operations are:
1. Inserting a new member into a ring at

SKETCHPAD: A MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 333

some specified location on it, usually first
or last.

2. Removing a member from a ring.
3. Putting all the members of one ring, in

order, into another at some specified loca
tion in it, usually first or last.

4. Performing some auxiliary operation on
each member of a ring in either forward
or reverse order.

These basic ring structure operations are im
plemented by short sections of program defined
as MACRO instructions in the compiler lan
guage. By suitable treatment of zero and one
member rings, the basic programs operate with
out making special cases.

Subroutines are used for setting up new n
component elements in free spaces in the stor
age structure. As parts of the drawing are
deleted, the registers which were used to rep
resent them become free. New components are
set up at the end of the storage area, lengthen
ing it, while free blocks are allowed to accumu
late. Garbage collection periodically compacts
the storage structure by removal of the free
blocks.

GENERIC STRUCTURE, HIERARCHIES

The main part of Sketchpad can perform
basic operations on any drawing part, calling
for help from routines specific to particular
types of parts when that is necessary. For ex
ample, the main program can show any part
on the display system by calling the appropriate
display subroutine. The big power of the clear
cut separation of the general and the specific
is that it is easy to change the details of specific
parts of the program to get quite different re
sults without any need to change the general
parts.

In the data storage structure the separation
of general and specific is accomplished by col
lecting all things of one type together in a ring
under a generic heading. The generic heading
contains all the information which makes this
type of thing different from all other types of
things. Thus the data storage structure itself
contains all the specific information. The gen
eric blocks are further gathered together under
super-generic or generic-generic blocks, as
shown in Figure 5.

~
~

Figure 5. Generic structure. The n-component ele
ments for each point or line, etc., are collected under the

generic blocks "lines," "points," etc., shown.

EXPANDING SKETCHPAD
Addition of new types of things to the Sketch

pad system's vocabulary of picture parts re
quires only the construction of a new generic
block (about 20 registers) and the writing of
appropriate subroutines for the new type. The
subroutines might be easy to write, as they
usually are for new constraints, or difficult to
write, as for adding ellipse capability, but at
least a finite, well-defined task faces one
to add a new ability to the system. Without a
generic structure it would be almost impossible
to add the instructions required to handle a
new type of element.

III. LIGHT PEN

In Sketchpad the light pen * is time shared
between the functions of coordinate input for
positioning picture parts on the drawing and
demonstrative input for pointing to existing
picture parts to make changes. Although almost
any kind of coordinate input device could be
used instead of the light pen for positioning,
the demonstrative input uses the light pen
optics as a sort of analog computer to remove
from consideration all but a very few picture
parts which happen to fall within its field of
view, saving considerable program time. Draw
ing systems using storage display devices of
the Memotron type may not be practical be
cause of the loss of this analog computation
feature.

* The reader unacquainted with light pens should
refer to the paper on Man-Machine Console Facilities
by Stotzl~ in this issue.

334 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

PEN TRACKING

To initially establish pen tracking, * the
Sketchpad user must inform the computer of an
initial pen location. This has come to be known
as "inking-up" and is done by "touching" any
existing line or spot on the display, whereupon
the tracking cross appears. If no picture has
yet been drawn, the letters INK are always
displayed for this purpose. Sketchpad uses loss
of tracking ·as a "termination signal" to stop
drawing. The user signals that he is finished
drawing by flicking the pen too fast for the
tracking program to follow.

DEMONSTRATIVE USE OF PEN

During the 90 % of the time that the light
pen and display system are free from the track
ing chore, spots are very rapidly displayed to
exhibit the drawing being built, and thus the
lines and circles of the drawing appear. The
light pen is sensitive to these spots and reports
any which fall within its field of view. Thus, a
table of the picture parts seen by the light pen
is assembled during each complete display
cycle. At the end of a display cycle this table
contains all the picture parts that could even
remotely be considered as being "aimed at."

The one-half inch diameter field of view of
the light pen, although well suited to tracking,
is relatively large for pointing. Therefore, the
Sketchpad system will reject any· seen part
which is further from the center of the light
pen than some small minimum distance; about
~/oo inch was found to hll ~nit!:l hlll H'n"t" Q'tTll"t""T

~~ ___ AV~"'A"", ~ "'~ ~"

kind of picture part some method must be pro
vided for computing its distance from the light
pen center or indicating that this computation
cannot be made.

After eliminating all parts seen by the pen
which lie outside the smaller effective field of
view, the Sketchpad system considers objects
topologically related to the ones actually seen.
End points of lines and attachment points of
instances (subpictures) are especially impor
tant. One can thus aim at the end point of a
line even though only the line is displayed.
Figure 6 outlines the various regions within
which the pen must lie to be considered aimed
at a line segment, a circle arc, their end points
or their intersection. '

PSEUDO PEN LOCATION

When the light pen is aimed at a picture part,
the exact location of the light pen is ignored in
favor of a "pseudo pen location" exactly on the
part aimed at. If no object is aimed at, the
pseudo pen location is taken to be the actual
pen location. The pseudo pen location is dis
played as a bright dot which is used as the
"point of the pencil" in all drawing operations.
As the light pen is moved into the areas out
lined in Figure 6 the dot will lock onto the
existing parts of the drawing, and any moving
picture parts will jump to their new locations
as the pseudo pen location moves to lie on the
appropriate picture part.

,.,..- ,
/', J ,," ,/

/ /" AT LINE
_~------< .4~ ~-----__ ". "- " 7 _. I'

I , \

\'~-----f/' ~------~_/
I : AT INTERSECTION

\ ~AT CIRCLE

\" \
" -.--AT POINT \ I ,_

Figure 6. Areas in which pen must lie to "aim at"
existing drawing parts (solid lines).

With just the basic drawing creation and
manipulation functions of "draw," "move," and
"delete," and the power of the pseudo pen loca
tion and demonstrative language programs, it
is possible to make fairly extensive drawings.
Most of the constructions nonnally provided by
straight edge and compass are available in
highly accurate form. Most important, how
ever, the pseudo pen location and demonstra
tive language give the means for entering the
topological properties of a drawing. into the
machine.

IV. DISPLAY GENERATION

The display system, or "scope," on the TX-2
is a ten bit per axis electrostatic deflection
system able to display spots at a maximum rate
of about 100,000 per second. The coordinates
of the spots which are to be seen on the display
are stored in a large table so that computation
and display may proceed independently. If,
instead of displaying each spot successively, the

SKETCHPAD: A MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 335

display program displays them in a random
order or with interlace, the flicker of the dis
play is reduced greatly.

MARKING OF DISPLAY FILE

Of the 36 bits available to store each display
spot in the display file, 20 give the coordinates
of that spot for the display system, and the
remaining 16 give the address of the n-compo
nent element which is responsiole for adding
that spot to the display. Thus, all the spots in
a line are tagged with the ring structure ad
dress of that line, and all the spots in an in
stance (subpicture) are tagged as belonging to
that instance. The tags are used to identify
the particular part of the drawing being aimed
at by the light pen.

If a part of the drawing is being moved by
the light pen, its display spots will be recom
puted as quickly as possible to show it in suc
cessive positions. The display spots for such
moving parts are stored at the end of the dis
play file so that the display of the many non
moving parts need not be disturbed. Moving
parts are made invisible to the light pen.

MAGNIFICATION OF PICTURES

The shaft position encoder knobs below the
scope (see Figure 1) are used to tell the pro
gram to change the display scale factor or the
portion of the page displayed. The range of
magnification of 2000 available makes it pos
sible to work, in effect, on a 7 -inch square por
tion of a drawing about 14 mile on a side.

For a magnified picture, Sketchpad computes
which portion (s) of a curve will appear on the
display and generates display spots for those
portions only. The "edge detection" problem
is the problem of finding suitable end points for
the portion of a curve which appears on the
display.

In concept the edge detection problem is
trivial. In terms of program time for lines and
circles the problem is a small fraction of the
total computational load of the system, but in
terms of program logical complexity the edge
detection problem is a difficult one. For ex
ample, the computation of the intersection of
a circle with any of the edges of the scope is
easy, but computation of the intersection of a
circle with all four edges may result in as many
as eight intersections, some pairs of which may

be identical, the scope corners. Now which of
these intersections are actually to be used as
starts of circle arcs?

LINE AND CIRCLE GENERATION

All of Sketchpad's displays are generated
from straight line segments, circle arcs, and
single points. The generation of the lines and
circles is accomplished by means of the differ-
ence equations:

Yi = Yi-l + !:J.y (1)

for lines, and

(2)

for circles, where subscripts i indicate succes
sive display spots, subscript c indicates the
circle center, and R is the radius of the circle
in Scope Units. In implementing these differ
ence equations in the program, the fullest pos
sible use is made of the coordinate arithmetic
capability of the TX-2 so that both the x and y
equation computations are performed in par
allel on 18 bit subwords. Even so, about 3,4 of
the total Sketchpad computation time is spent
in line and circle generation. A vector and
circle generating display would materially re
duce the computational load of Sketchpad.

For computers which do only one addition
at a time, the difference equations:

(3)

should be used to generate circles. Equations
(3) approximate a circle well enough and are
known to close exactly both in theory and when
implemented, because the x and y equations are
dissimilar.

DIGITS AND TEXT

Text, to put legends on a drawing, is dis
played by means of special tables which indi
cate the locations of line and circle segments
to make up the letters and numbers. Each piece
of text appears as a single line of not more

336 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

than 36 equally spaced characters which can
be changed by typing. Digits to display the
value of an indicated scalar at any position and
in any size and rotation are formed from the
same type face as text. It is possible to display
up to five decimal digits with sign; binary to
decimal conversion is provided, and leading
zeros are suppressed.

Subpictures, whose use was seen in the in
troductory example above, are each represented
in storage as a single n-component element.
A subpicture is said to be an "instance" of its
"master picture." To display an instance, all
of the lines, text, etc. of its master picture must
be shown in miniature on the display. The in
stance display program makes use of the line,
circle, number, and text display progran1s and
itself to expand the internal structure of the
instance.

DISPLAY OF ABSTRACTIONS

The usual picture for human consumption
displays only lines, circles, text, digits, and
instances. However, certain very useful ab
stractions which give the drawing the proper
ties desired by the user are represented in the
ring structure storage. For example, the fact
that the start and end points of a circle arc
should be equidistant from the circle's center
point is represented in storage by a "constraint"
block. To make it possible for a user to manip
ulate these abstractions, each abstraction must
be able to be seen on the display if desired.
Not only does displaying abstractions make it
possible for the human user to know that they
exist, but also makes it possible for him to aim at
them with the light pen and, for example, erase
them. To avoid confusion, the display for par
ticular types of objects may be turned on or
off selectively by toggle switches. Thus, for
example, one can turn on display of constraints
as well as or instead of the lines and circles
which are normally seen.

If their selection toggle switch is on, con
straints are displayed as shown in Figure 7.
The central circle and code letter are located
at the average location of the variables con
strained. The four arms of a constraint extend
from the top, right side, bottom, and left side
of the circle to the first, second, third, and
fourth variables constrained, respectively. If
fewer than four variables are constrained, ex-

®
Figure 7. Display of constraints.

cess arms are omitted. In Figure 7 the con
straints are shown applied to "dummy varia
bles," each of which shows as an X.

Another abstraction that can be displayed
if desired is the value of a set of digits. For
example, in Figure 8 are shown three sets of
digits all displaying the same scalar value,
-5978. The digits themselves may be moved,
rotated, or changed in size, without changing
the value displayed. If we wish to change the
value, we point at its abstract display, the #
seen in Figure 8. The three sets of digits in
Figure 8 alI" display the same value, as indi
cated by the lines connecting them to the #;
changing this value would make all three sets
of digits change. Constraints may be applied
independently to either the position of the digits
or their value as indicated by the two con
straints in the figure.

V. RECURSIVE FUNCTIONS

In the process of making the Sketchpad sys
tem operate, a few very general functions were
developed which make no reference at all to
the specific types of entities on which they oper-

5~-CONSTRAINT MAKES

- \ I ~ OJGETS UPRIGlfl

~: co:gr~::TVA~~E
SCALAR- /

~
~5s$e CO\!

Figure 8. Three sets of digits displaying the same
scalar value.

SKETCHPAD: A MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 337

ate. These general functions give the Sketch
pad system the ability to operate on a wide
range of problems. The motivation for making
the functions as general as possible came from
the desire to get as much result as possible
from the programming effort involved. For
example, the general function for expanding
instances makes it possible for Sketchpad to
handle any fixed geometry subpicture. The
power obtained from the small set of gener
alized functions in Sketchpad is one of the most
important results of the research.

In order of historical development, the recur
sive functions in use in the Sketchpad system
are:

1. Expansion. of instances, making it pos
sible to have subpictures within subpic
tures to as many levels as desired.

2. Recursive deletion, whereby removal of
certain picture parts will remove other
picture parts in order to maintain con
sistency in the ring structure.

3. Recursive merging, whereby combination
of two similar picture parts forces com
bination of similarly related other picture
parts, making possible application of com
plex definitions to an object picture.

RECURSIVE DELETING

If a thing upon which other things depend is
deleted, the dependent things must be deleted
also. For example, if a point is to be deleted,
all lines which terminate on the point must also
be deleted. Otherwise, since the n-component
elements for lines. contain no positional infor
mation, where would these lines end? Similarly,
deletion of a variable requires deletion of all
constraints on that variable; a constraint must
ha ve variables to act on.

RECURSIVE MERGING

If two things of the same type -which aTe fn
dependent are merged, a single thing of that
type results, and all things which depended on
either of the merged things depend on the re
sult* of the merger. For example, if two points
are merged, all lines which previously termi..:
nated on either point now terminate on the
single resulting point. In Sketchpad, if a thing
is being moved with the light pen and the ter
mination flick of the pen is given while aiming
at another thing of the same type, the two

things will merge. Thus, if one moves a point
to another point and terminates, the points will
merge, connecting all lines which formerly ter
minated on either. This makes it possible to
draw closed. polygons.

If two things of the same type which do
depend on other things are merged, the things
depended on by one will be forced to merge,
respectively, with the things depended on by
the other. The result* of merging two -depend
ent things depends, respectively, on the results*
of the mergers it forces. For example, if two
lines are merged, the resultant line must refer
to only two end points, the results of merging
the pairs of end points of the original lines.
All lines which terminated on any of the four
original end points now terminate on the ap
propriate one of the remaining pair. More im
portant and useful, all constraints which ap
plied to any of the four original end points
now apply to the appropriate one of the re
maining pair. This makes it possible to speak
of line segments as being parallel even though
(because line segments contain no numerical
information to be constrained) the parallelism
constraint must apply to their end points and
not to the line segments themselves. If we wish
to make two lines both parallel and equal in
length, the steps outlined in Figure 9 make it
possible. More obscure relationships between
dependent things may be easily defined and
applied. For example, constraint complexes can
be defined to make line segments be collinear,
to make a line be tangent to a circle, or to make
the values represented by two sets of digits be
equal.

RECURSIVE DISPLAY OF INSTANCES

The block of registers which represents an
instance is remarkably small considering that
it may generate a display of any complexity.
For the purposes of display, the instance block
makes reference to its master picture. The in
stance will appear on the display as a figure
geometrically similar to its master picture at a
location, size, and rotation indicated by the four
numbers which constitute the "value" of the
instance. The value of an instance is considered
numerically as a four dimensional vector. The

* The "result" of a merger is a single thing of the
same type as the merged things.

338 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

\
---CV;-f~ er' _-

'-, ~ ----- --, -
/ -

A. OPERATION
DEFINITION

C. DEFINITION
COPIED

E. SECOND LINE
MERGED

B. PICTURE TO
CONSTRAIN

D. FIRST LINE
MERGED

F. CONSTRAINTS
SATISFIED

"'Jf5\iPARALLELISM \~- EQUAL
~, '0 LENGTH ,. ,. ,

Figure 9. Applying a two-constraint definition to turn
a quadrilateral into a parallelogram.

components of this vector are the coordinates
of the center of the instance and its actual size
as it appears on the drawing times the sine and
cosine of the rotation angle involved.

In displaying an instance of a picture, refer
ence is made to the master picture to find out
what picture parts are to be shown. The master
picture referred to may contain instances, how
ever, requiring further reference, and so on
until a picture is found which contains no in
stances. At each stage in the recursion, any
picture parts displayed must be relocated so
that they will appear at the correct position,
size and rotation on the display. Thus, at each
stage of the recursion, some transformation is
applied to all picture parts before displaying
them. If an instance is encountered, the trans
formation represented by its value must be
adjoined to the existing transformation for dis
play of parts within it. When the expansion of
an instance within an instance is finished, the
transformation must be restored for continua
tion at the higher level.

ATTACHERS AND INSTANCES

Many symbols must be integrated into the
rest of the drawing by attaching lines to the
symbols at appropriate points, or by attaching
the symbols dire~tly to each other. For ex
ample, circuit symbols must be wired up, geo
metric patterns made by fitting shapes together,
or mechanisms composed of links tied together
appropriately. An instance may have any num
ber of attachment points, and a point may serve
as attacher for any number of instances. The
light pen has the same affinity for the attachers
of an instance that it has for the end point of
a line.

An "instance-point" constraint, shown with
code T in Figure 10C, is used to relate an in
stance to each of its attachment points. An
instance-point constraint is satisfied only when
the point bears the same relationship to the
instance that a master point in the master pic
ture for that instance bears to the master pic
ture coordinate system.

Any point may be an attacher of an instance,
but the point must be designated as an attacher
in the master drawing of the instance. For
example, when one first draws a resistor, the
ends of the resistor must be designated as at
tachers if wiring is to be attached to instances
of it. At each level of building complex pic
tures, the attachers must be designated anew.
Thus of the three attachers of a transistor it is
possible to select one or two to be the attachers
of a flip-flop.

VI. BUILDING A DRAWING,
THE COPY FUNCTION

At the start of the Sketchpad effort certain
ad hoc drawing functions were programmed
as the atomic operations of the system. Each
such operation, controlled by a push button,
creates in the ring structure a specific set of
new drawing parts. For example, the "draw"
button creates a line segment and two new end
points (unless the light pen happens to be
aimed at a point in which case only one new
point need be created). Similarly, there are
atomic operations for drawing circles, applying
a horizontal or vertical constraint to the end
points of a line aimed at, and for adding a
"point-on-line" constraint whenever a point is
moved onto a line and left there.

SKETCHPAD: A MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 339

The atomic operations described above make
it possible to create in the ring structure new
picture components and relate them topologi
cally. The atomic operations are, of course,
limited to creating points, lines, circles, and
two or three types of constraints. Since ,imple
mentation of the copy function it has become
possible to create in the ring structure any pre
defined combination of picture parts and con
straints at the press of a button. The recursive
merging function makes it possible to relate the
copied set of picture parts to any existing parts.
For example, if a line segment and its two end
points are copied into the object picture, the
action of the "draw" button may be exactly
duplicated in every respect. Along with the
copied line, however, one might copy as well a
constraint, Code H, to make the line horizontal
as shown in Figure lOA, or two constraints to
make the line both horizontal and three inches
long, or any other variation one cares to put
into the ring structure to be copied.

POINT ATTACHER 21
POIN~T ATTACHER I

+ ;,/' ------@';'

A. HORIZONTAL
LINE

LINE AmCHEi\

----~---

~;
t LIN: ATTACHER I

B. EQUAL LENGTH
LINES

POINT ATTACHER" 2
DIAMOND INSTANCE ----.. l

POINT ATTACHER I ~ .f
1 , '1 \" ,
, ~/I ~

INSTANCE-POINT CONSTRAlNT~ I ~ Q)
CONSTRAINTS ON INSTANCE -® \.E.J

C. PARTLY FLEXIBLE ARROW

INSTANCE ATTACHER 2

IN~;~
~/'(vt

D. PRE-JOINED INSTANCES

Figure 10. Definition pictures to be copied, see text.

"When one draws a definition picture to be
copied, certain portions of it to be used in relat
ing it to other object picture parts are desig
nated as "attachers." Anything at all may be
designated: for example, points, lines, circles,
text, even constraints! The rules used for com
bining points when the "draw" button is
pressed are generalized so that:

For copying a picture, the last-designated
attacher is left moving with the light pen.
The next-to-Iast-designated attacher is re
cursively merged with whatever object the
pen is aimed at when the copying occurs, if
that object is of like type. Previously desig
nated attachers are recursively merged with
previously designated object picture parts, if
of like type, until either the supply of desig
nated attachers or the supply of designated
object picture parts is exhausted. The last
designated attacher may be recursively
merged with any other object of like type
when the termination flick is given.

Normally only two designated attachers are
used because it is hard to keep track of addi
tional ones.

If the definition picture consists of two line
segments, their four end points, and a con
straint, Code M, on the points which makes the
lines equal in length, with the two lines desig
nated as attachers as shown in Figure lOB,
copying enables the user to" make any two lines
equal in length. If the pen is aimed at a line
when "copy" is pushed, the first of the two
copied lines merges with it (taking its position
and never actually being seen). The other
copied line is left moving with the light pen
and will merge with whatever other line the
pen is aimed at when termination occurs. Since
merging is recursive, the copied equal-length
constraint, Code M, will apply to the end points
of the desired pair of object picture lines.

COPYING INSTANCES

As we have seen above, the internal structure
of an instance is entirely fixed. The internal
structure of a copy, however, is entirely varia
ble. An instance always retains its identity as
a single part of the drawing; one can only delete
an entire instance. "Once a definition picture is
copied, however, the copy loses all identity as
a unit; individual parts of it may be deleted at
will.

340 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

One might expect that there was interme
diate ground between the fixed-internal-struc
ture instance and the loose-internal-structure
copy. One might wish to produce a collection
of pict.ure parts, some of which were fixed in
ternally and some of which were not. The
entire range of variation between the instance
and the copy can be constructed by copying
instances.

For example, the arrow shown in Figure 10C
can be copied into an object picture to result in
a fixed-internal-structure diamond arrowhead
with a flexible tail. As the definition in Figure
lOC is set up, drawing diamond-arrowheaded
lines is just like drawing ordinary lines. One
aims the light pen where the tail is to end,
presses "copy;" and moves off with an arrow
head following the pen. The diamond arrow
head in this case will not rotate (constraint
Code E), and will not change size (constraint
Code F).

Copying pre-joined instances can produce
vast numbers of joined instances very easily.
For example, the definition in Figure 10D, when
repetitively copied, will result in a row of
joined, equal size (constraint Code S) dia
monds. In this case the instances themselves
are attachers. Although each press of the
"copy" button copies two new instances into
the object picture, one of these is merged with
the last instance in the growing row. In the
final row, therefore, each instance carries all
constraints which are applied to either of the
instances in the definition. This is why only
one of the instances in Figure 10D carries the
erect constraint, Code E.

VII. CONSTRAINT SATISFACTION

The major feature which distinguishes a
Sketchpad drawing from a paper and pencil
drawing is the user's ability to specify to
Sketchpad mathematical conditions on already
drawn parts of his drawing which will be auto
matically satisfied by the computer to make the
drawing take the· exact shape desired. The
process of fixing up a drawing to meet new con
ditions applied to it after it is already partially
complete is very much like the process a de
signer goes through in turning a basic idea into
a finished design. As new requirements on the
various 'parts of the design are thought of, small
changes are made to the size or other properties

of parts to meet the new conditions. By Diak
ing Sketchpad able to find new values for varia
bles which satisfy the conditions imposed, it is
hoped that designers can be relieved of the need
of much mathematical detail. The effort ex
pended in making the definition of constraint
types as general as possible was aimed at
making design constraints as well as geometric
constraints equally easy to add to the system.

DEFINITION OF A CONSTRAINT TYPE

Each constraint type is entered into the sys
tem as a generic block indicating the various
properties of that particular constraint type.
The generic block tells how many variables are
constrained, which of these variables may be
changed in order to satisfy the constraint, how
many degrees of freedom are removed from the
constrained variables, and a code letter for
human reference to this constraint type.

The definition of what a constraint type does
is a subroutine which will compute, for the
existing values of the variables of a particular
constraint of that type, the error introduced
into the system by that particular constraint.
For example, the defining subroutine for mak
ing points have the same x coordinate (to make
a line between them vertical) computes the
difference in their x coordinates. What could
be simpler? The computed error is a scalar
which the constraint satisfaction routine will
attempt to reduce to zero by manipulation of
the constrained variables. The computation of
the error may be non-linear or time dependent,
or it ma~T in~lcl"';e parameters not a part of the
drawing such as the setting of toggle switches,
etc.

When the one pass method of satisfying
constraints to be described later on fails, the
Sketchpad system falls back on the reliable but
slow method of relaxation 11 to reduce the errors
indicated by various computation subroutines
to smaller and smaller values. For simple con
structions such as the hexagon illustrated in
Figure 3, the relaxation procedure is sufficiently
fast to be useful. However, for complex sys
tems of variables, especially directly connected
instances, relaxation is unacceptably slow. For
tunately it is for just such directly connected
instances that the one pass method shows the
most striking success.

SKETCHPAD: A MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 341

ONE PASS METHOD

Sketchpad can often find an order in which
the variables of a drawing may be re-evaluated
to completely satisfy all the conditions on them
in just one pass. For the cases in which the one
pass method works, it is far better than relaxa
tion: it gives correct answers at once; relaxa
tion may not give a correct solution in any
finite time. Sketchpad can find an order in
which to re-evaluate the variables of a drawing
for most of the common geometric construc
tions. Ordering is also found easily for the
mechanical linkages shown in Figures 13 and
14. Ordering cannot be found for the bridge
truss problem in Figure 15.

The way in which the one pass method works
is simple in principle and was easy to imple
ment as soon as the nuances of the ring struc
ture manipulations were understood. To visu
alize the one pass method, consider the variables
of the drawing as places and the constraints
relating variables as passages through which
one might pass from one variable to another.
Variables are adjacent to each other in the
maze formed by the constraints if there is a
single constraint which constrains them both.
Variables are totally unrelated if there is no
path through the constraints by. which to pass
from one to the other.

Suppose that some variable can be found
which has so few constraints applying to it
that it can be re-evaluated to completely satisfy
all of them. Such a variable we shall call a
"free" variable. As soon as a variable is recog
nized as free, the constraints which apply to it
are removed from further consideration, be
cause the free variable can be used to satisfy
them. Removing these constraints, however,
may make adjacent variables free. Recognition
of these new variables as free removes further
constraints from consideration and may make
other adjacent variables free, and so on through
out the maze of constraints. The nlanner in
which freedom spreads is much like the method
used in Moore's algorithmR to find the shortest
path through a maze. Having found that a col
lection of variables is free, Sketchpad will re
evaluate them in reverse order, saving the
first-found free variable until last. In re
evaluating any particular variable, Sketchpad
uses only those constraints which were present
when that variable was found to be free.

VIII. EXAMPLES AND CONCLUSIONS

The examples in this section were all taken
from the library tape and thus serve to illustrate
not only how the Sketchpad system can be used,
but also how it actually has been used so far.
We conclude from these examples that Sketch
pad drawings can bring invaluable understand
ing to a user. For drawings where motion of
the drawing, or analysis of a drawn problem
is of value to tho user, Sketchpad excels. For
highly repetitive drawings or drawings where
accuracy is required, Sketchpad is sufficiently
faster than conventional techniques to be worth
while. For drawings which merely communi
cate with shops, it is probably better to use con
ventional paper and pencil.

PATTERNS

The instance facility enables one to draw any
symbol and duplicate its appearance anywhere
on an object drawing at the push of a button.
This facility made the hexagonal pattern we
saw in Figure 4 easy to draw. It took about one
half hour to generate 900 hexagons, including
the time taken to figure out how to do it. Plot
ting them takes about 25 minutes. The drafting
department estimated it would take two days
to produce a similar pattern.

The instance facility also made it easy to
produce long lengths of the zig-zag pattern
shown in Figure 11. As the figure shows, a
single "zig" was duplicated in multiples of five
and three, etc. Five hundred zigs were gen
erated in a single row. Four such rows were
plotted one-half inch apart to be used for pro
ducing a printed circuit delay line. Total time
taken was about 45 minutes for constructing
the figure and about 15 minutes to plot it.

A somewhat less repetitive pattern to be used
for encoding the time in a digital clock is shown
in Figure 12. Each cross in the figure marks the
position of a hole. The holes are-placed so that
a binary coded decimal (BCD) number will in-

Figure 11. Zig-Zag for delay line.

342 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

+ + ..
+ + + /
.. +
t
+ + +
i-
+ .. +
+
+
+ ..
+

+

+

.. +
+

+ + ..
+ + + ~

+ + + + ..
+ + ..

+
+ +

+ .. + +
'I'

+ ..
t

.. ..

Figure 12. Binary coded decimal encoder for clock.
Encoder was plotted exactly 12 inches in diameter for

direct use as a layout.

dicate the time. Total time for placing crosses
was 20 minutes, most of which was spent try
ing to interpret a pencil sketch of their posi
tions.

LINKAGES

By far the most interesting application of
Sketchpad so far has been drawing and moving
linkages. The ability to draw and then move
linkages opens up a new field of graphical
manipulation that has never before been avail
able. It is remarkable how even a simple link
age can generate complex motions. For ex
ample, the linkage of Figure 13 has only three
moving parts. In this linkage a central .1 link
is suspended between two links of different

Figure 13. Three bar linkage. The paths of four points
on the central link are traced. This is a 15 second time

exposure of a moving Sketchpad drawing.

lengths. As the shorter link rotates, the longer
one oscillates as can be seen in the multiple
exposure. The .1 link is not shown in Figure
13 so that the motion of four points on the
upright part of the .l may be seen. These are
the four curves at the top of the figure .

To make the three bar linkage, an instance
shaped like the .1 was drawn and given 6
attachers, two at its joints with the other links
and four at the places whose paths were t<? b~
observed. Connecting the .1 shaped subpicture
onto a linkage composed of three lines with
fixed length created the picture shown. The
driving link was rotated by turning a knob be
low the scope. Total time to construct the link
age was less than 5 minutes, but over an hour
was spent playing with it.

A linkage that would be difficult to build
physically is shown in Figure 14 A. This link-

Figure 14. Conic drawing linkage. As the "driving
lever" is moved, the point shown with a box around it
(in A) traces a conic section. This conic can be seen in

the time exposure (B).

SKETCHPAD: A MAN-MACHINE GRAPHICAL COMMUNICATION SYSTEM 343

age is based on the complete quadrilateral. The
three circled points and the two lines which
extend out of the top of the picture to the right
and left are fixed. Two moving lines are drawn
from the lower circled points to the intersec
tions of the long fixed lines with the driving
lever. The intersection of these two moving
lines (one must be extended) has a box around
it. It can be shown theoretically that this link
age produces a conic section which passes
through the place labeled "point on curve" and
is tangent to the two lines marked "tangent."
Figure 14 B shows a time exposure of the mov
ing point in many positions. At first, this link
age was drawn and working in 15 minutes.
Since then we have rebuilt it time and again
until now we can produce it from scratch in
about 3 minutes.

DIMENSION LINES

To make it possible to have an absolute scale
in drawings, a constraint is provided which
forces the value displayed by a set of digits to
indicate the distance between two points on the
drawing. This distance-indicating constraint is
used to make the number in a dimension line
correspond to its length. Putting in a dimension
line is as easy as drawing any other line. One
points to where one end is to be left, copies the
definition of the dimension line by pressing the
"copy" button, and then moves the light pen to
where the other end of the dimension line is to
be. The first dimension line took about 15
minutes to construct, but that need never be
repeated since it is a part of the library.

BRIDGES

One of the largest untapped fields for appli
cation of Sketchpad is as an input program for
other computation programs. The ability to
place lines and circles graphically, when coupled
with the ability to get accurately computed re
sults pictorially displayed, should bring about a
revolution in computer application. By using
Sketchpad's relaxation procedure we were to
demonstrate analysis of the force distribution
in the members of a pin connected truss.

A bridge is first drawn with enough con
straints to make it geometrically accurate.
These constraints are then deleted and each
member is made to behave like a bridge beam.

A bridge beam is constrained to maintain
constant length, but any change in length is in
dicated by an associated number. Under the
assumption that each bridge beam has a cross
sectional area proportional to its length, the
numbers represent the forces in the beams. The
basic bridge beam definition (consisting of two
constraints and a number) may be copied and
applied to any desired line in a bridge picture
by pointing to the line and pressing the "copy"
button.

Having drawn a basic bridge shape, one can
experiment with various loading conditions and
supports to see what the effect of making minor
modifications is. For example, an arch bridge
is shown in Figure 15 supported both as a three
hinged arch (two supports) and as a cantilever
(four supports). For nearly identical loading
conditions the distribution of forces is markedly
different in these two cases.

Figure 15. Cantilever and arch bridges. The numbers
indicate the forces in the various members as computed

by Sketchpad. Central load is not exactly vertical

ARTISTIC DRAWINGS

engineering drawings. For example, the girl
"Nefertite" shown in Figure 16 can be made to
wink by changing which of the three types of
eyes is placed in position on her otherwise eye
less face. In the same way that linkages can be
made to move, a stick figure could be made to
pedal a bicycle or Nefertite's hair could be
made to swing. The ability to make moving
drawings suggests that Sketchpad might be
used for making animated cartoons.

344 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Figure 16. Winking girl, "Nefertite," and her com
ponent parts.

ELECTRICAL CIRCUIT DIAGRAMS

Unfortunately, electrical circuits require a
great many symbols which have not yet been
drawn properly with Sketchpad and therefore
are not in the library. After some time is
spent working on the basic electrical symbols
it may be easier to draw circuits. So far, how
ever, circuit drawing has proven difficult.

The circuits of Figure 17 are parts of an
analog switching scheme. You can see in the
figure that the more complicated circuits are
made up of simpler symbols and circuits. It is
very difficult, however, to plan far enough ahead
to know what compo~ite~ of circuit symbols will
be useful as su bpictures of the final circuit. The
simple circuits shown in Figure 17 were com
pounded into a big circuit involving about 40
transistors. Including much trial and error, the
time taken by a new user (for the big circuit
not shown) was ten hours. At the end of that
time the circuit was still not complete in every
detail and he decided it would be better to draw
it by hand after all.

CONCLUSIONS

The circuit experience points out the most
important fact about Sketchpad drawings. It is
only worthwhile to make drawings on the com
puter if you get something more out of the
drawing than just a drawing. In the repetitive

='= 5000

Figure 17. Circuit diagrams. These are parts of the
large circuit mentioned in the text.

patterns we saw in the first examples, precision
and ease of constructing great numbers of parts
were valuable. In the linkage examples, we
were able to gain an understanding of the
behavior of a linkage as well as it~ appearance.
In the bridge examples we got design answers
which were worth far more than the computer
time put into them. If we had had a circuit
simulation program connected to Sketchpad so
that we would have known whether the circuit
we drew worked, it would have been worth our
while to use the computer to draw it. We are
as yet a long way from being able to produce
routine drawings economically with the com
puter.

FUTURE WORK

The met~lOds outlined in this paper generalize
nicely to three dimensional drawing. In fact,
the work reported in "Sketchpad III" by
Timothy Johnson~ will let the user communicate

SKETCHPAD: A MAN~MACHINE GRAPHICAL COMMUNICATION SYSTEM 345

solid objects to the computer. Johnson is com
pletely bypassing the problem of converting
several two dimensional drawings into a three
dimensional shape. Drawing will be directly
in three dimensions from the start. No two di
mensional representation will ever be stored.

Work is also proceeding in direct conversion
of photographs into line drawings. Roberts
reports a computer program9 able to recognize
simple objects in photographs well enough to
produce three dimensional line drawings for
them. Roberts is storing his drawings in the
ring structure described here so that his results
will be compatible with the three dimensional
version of Sketchpad.

Major improvements to Sketchpad of the
same order and power as the existing definition
copying capability can be foreseen. At present
Sketchpad is able to add defined relationships
to an existing object drawing. A method should
be devised for defining and applying changes
which involve removing some parts of the ob
ject drawing as well as adding new ones. Such
a capability would permit one to define, for
example, what rounding off a corner means.
Then, one could round off any corner by point
ing to it and applying the definition.

ACKNOWLEDGEMENTS

The author is indebted to Professors Claude
E. Shannon, Marvin Minsky and Steven A.
Coons of the Massachusetts Institute of Tech
nology for their help and advice throughout the
course of this research.

The author also wishes to thank Douglas T.
Ross and Lawrence G. Roberts for their help
and answers to his many questions.

BIBLIOGRAPHY

1. CLARK, W. A., FRANKOVICH, J. M.~ PETER
SON, H. P., FORGIE, J. W., BEST, R. L.,
OLSEN, K. H., "The Lincoln TX-2 Compu
ter," Technical Report 6M-4968, Massachu
setts Institute of Technology, Lincoln Lab
oratory, Lexington, Mass., April 1, 1957,
Proceedings of the Western Joint Compu
ter Conference, Los Angeles, California,
February 1957.

2. COONS, S. A., Notes on Graphical Input
Methods, Memorandum 8436-M-17, Dy-

namic Analysis and Control Laboratory,
Massachusetts Institute of Technology, De
partment of Mechanical Engineering, Cam
bridge, Mass., May 4,1960.

3. JOHNSON, T. E., "Sketchpad III, Three
Dimensional Graphical Communication
with a Digital Computer," Proceedings of
the Spring Joint Computer Conference,
Detroit, Michigan, May 21-23, 1963, (this
issue) .

4. JOHNSTON, L. E., A Graphical Input De
vice and Shape Description Interpretation
Routines, Memorandum to Prof. Mann,
Massachusetts Institute of Technology, De
partment of Mechanical Engineering, Cam
bridge, Mass., May 4, 1960.

5. LICKLIDER, J. C. R., "Man-Computer Sym
biosis," I.R.E. Trans. on Human Factors in
Electronics, vol. HFE, pp. 4-10, March
1960.

6. LICKLIDER, J. C. R., and CLARK, W., "On
line Man-Computer Communication," Pro
ceedings of the Spring Joint Computer
Conference, San Francisco, California,
May 1-3, 1962, vol. 21, pp. 113-128.

7. LOOMIS, H. H. JR., Graphical Manipulation
Techniques Using the Lincoln TX-2 Com
puter, Group Report 51G-0017, Massachu
setts Institute of Technology, Lincoln Lab
oratory, Lexington, Mass., November ~ 0,
1960.

8. MOORE, E. F., "On the Shortest Path
Through a Maze," Proceedings of the In
ternational Symposium on the Theory of
Switching, Harvard University, Harvard
Annals, vol. 3, pp. 285-292, 1959.

9. ROBERTS, L. G., Machine Perception .of
Three Dimensional Solids, Ph.D. Thesis,
Massachusetts Institute of Technology,
Electrical Engineering Department, Cam
bridge, Mass., February 1963.

10. Ross, D. T., RODRIGUEZ, J. E., "Theoretical
Foundations for the Computer-Aided De
sign System," Proceedings of the Spring
Joint Computer Conference, Detroit, Michi
gan, May 21-23, 1963, (this issue).

11. SOUTHWELL, R. V., Relaxation Methods in
Engineering Science, Oxford University
Press, 1940.

346 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

12. STOTZ, R., "Man-Machine Console Facilities
for Computer-Aided Design," Proceedings
of the Spring Joint Computer Conference,
Detroit, Michigan, May 21-23, 1963, (this
issue) .

13. VANDERBURGH, A. JR., TX-2 Users Hand
boole, Lincoln Manual No. 45, Massachu
setts Institute of Technology, Lincoln Lab
oratory, Lexington? Mass., July 196L

14. vVALSH, J. F., and SMITH, A. F., "Conlpu
ter Utilization," Interim Engineering Re
port 6873-IR-l0 and 11, Electronic Systems
Laboratory, Massachusetts Institute of
Technology, Cambridge, Mass., pp. 57-70~
November 30, 1959.

15. Handbook for Variplotter Models 205S and
205T, P ACE, Electronic Associates In
corporated. Long Branch, New Jersey,
June 15, 1959.

A COMPUTER PROGRAM FOR

DRAWING IN THREE DIMENSIONS

Timothy E. Johnson
Mechanical Engineering Department

Massachusetts Institute oj Technology
Cambridge 39, Massachusetts

INTRODUCTION

An important area of investigation for the
M.l. T. Computer-Aided Design Project! is the
development of a facility for three-dimensional
shape description. The heavy dependence of
mechanical design upon three-dimensional ob
jects makes such a facility an indispensable
part of the full system which is envisioned. This
paper describes the unique features required
for three-dimensional graphics. Although the
Sketchpad III System described here shares
many features and routines with the Sketchpad
System described in the preceding paper by
Sutherland,2 the extension of graphical tech
niques from two to three dimensions introduces
many added requirements.

The design of a mechanical or structural
object begins with a graphical description.
Initially this description is not a precise state
ment of refined detail, but is a vague stirring
of the imagination. This concept is slowly de
veloped into the finished design through modi
fication, deletion and analysis.

Thus, if a computer system is to work in
partnership with a designer, the system must
be able to accept, interpret, modify and remem
ber shape description information introduced
graphically. Graphical communication between
man and machine need not be similar to pencil
and paper methods. The digital computer per
mits the adoption of new graphical techniques,
but these new methods must not be so far re
moved from "drawing board simplicity" so as
to render the system inconvenient.

Shape description of a structural object must
convey three-dimensional information to both
man and computer. In modifying the part, the
designer must be able to examine the structure
from any attitude in space. Sections of the ob
ject must be easily oriented to permit meaning
ful graphical manipulations.

General three-dimensional graphical com
munication, \vhich deals with arbitrary sur
faces and space curve intersections, presents
many difficult problems; the beginning has been
modest and much work remains before the
complete graphical communication problem is
solved.

This work has been made possible through the support extended to the Massachusetts Institute of Technology,
Electronic Systems Laboratory by the Manufacturing Technology Laboratory, ASD, Wright-Patterson Air Force Base
under Contract No. AF -33 (600) -42859. It is published for technical information only and does not necessarily repre
sent the recommendations or conclusions of the sponsoririg agency.

The TX-2 computation facilities of M.LT. Lincoln Laboratory were made available to the project.

347

, 348 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

SCOPE OF PRESENT ACTIVITY

A prototype graphical communications sys-
tem capable of manipulating straight line,
"wire frame," figures in three-dimensional
space is now in operation. * N either program
writing nor a knowledge of computers is re
quired to operate the system. The definition,
construction, and manipulation of three-dimen
sional surfaces are not included at present;
hence edges which are normally hidden by for-
ward surfaces are not obscured as they should
be. Since all edges are visible, one views a
"wire frame" with no covering.

MAN-COMPUTER INTERFACE

Real-time bilateral communication between
man and computer is a prerequisite for a suc
cessful system. The CRT and light-pen (de
scribed below) meet the hardware input-output
requirements of fast, two-way operation.

a. Output: Visual Presentation

Graphical images of three-dimensional ob
jects are displayed on-line on a standard cathode
ray tube. Because the screen is two-dimensional
and the objects are three-dimensional wire
frames, several viewing conventions were
adopted to aid in visualizing the object in
three-dimensional space. Stereo-optic displays
and similar methods of creating space sensa
tions were not considered because of clumsiness
and because of bilateral communication prob
lems.

Four views of the object are displayed by
program, one in each quadrant of the CRT
screen (Figure 1) *. A perspective view of the
object appears in the upper right quadrant,
and three orthogonal views in the remaining
quadrants: top view-upper left, front view
lower left, and side view-lower right.

Wire frame objects displayed in a single two
dimensional view without perspective fail to
convey depth information. Perspective gives
the illusion of three dimensions by supplying
the familiar convergence of lines as they recede
from the viewer. A single perspective view of
an unfamiliar object does not convey visually
all the correct information either; for example,

':' Programmed for the TX-2 Computer, M.LT. Lincoln
Laboratory.

Figure 1. Typical graphical presentation showing top,
front, and side views plus a "%" perspective view.

are the receding lines parallel or do they ac
tually converge? Hence at least one other com
plementary view is necessary. Three projec
tively related orthogonal views were chosen for
the complementary function. There are several
reasons for this choice: a) The three views com
pletely describe a straight line object in three
dimensions. b) Three ninety-degree rotations
of the part are simultaneously in view, rein
forcing depth perception. c) Many users of
Sketchpad III are uncomfortable sketching in
perspective and would prefer the orthogonal
system used by most draftsmen.

b. Input: Sketching

A light-pen is used to guide drawing on the
face of the CRT. The light-pen is a photo-diode
mounted in a pen-like housing which is con
nected to the computer. A lens system in the
pen housing focuses light on the photo diode
giving a field of view of approximately one-half
inch when the pen is held within three inches of
the CRT screen. The pen, which acts only as a
receiver, responds if a scope phosphor is inten
sified within its field of view and interrupts the
computer momentarily; suitable programming
determines which point caused the response.

* All figures in this paper describing 3-D objects were
drawn with Sketchpad III.

SKETCHPAD III: A COMPUTER PROGRAM FOR DRAWING IN THREE. DIMENSIONS 349

This point is associated with the name of a line
which is used as the entry point to the data
structure. The line is either contained in the
drawing or contained in a tracking cross. The
tracking cross is used to determine the position
of the pen on the scope face when the pen is
not pointing at part of the drawing. Program
ming interprets the motions of the pen as the
operator moves it across the screen. The light
pen permits the CRT screen to pass informa
tion in two directions; the CRT is simultane
ously both an input and an output device.

Pushbuttons are provided which enable the
operator to direct the computer program; for
example, to erase what the light pen is pointing
at, to move what the light pen is pointing at
according to subsequent pen motions, to start
drawing a straight line where the pen is point
ing according to subsequent pen motions, to
translate the drawing according to pen motions,
and so forth.

The program interprets the rotations of three
digital shaft encoders to mean: 1) magnify or
reduce the drawing, 2) rotate the drawing
clockwise or counterclockwise, 3) force or relax
the perspective (by changing the convergence
of the lines).

GRAPHICAL TRANSFORMATIONS
The four projections viewed on the scope are

not four independent displays of stored two
dimensional information; rather, space co
ordinates in one data structure are transformed
into two-dimensional images for display.Ro
tating, translating, magnifying, and changing
the perspective does not affect the data struc
ture (local transformations excluded). A line
being drawn in anyone view is simultaneously
seen in the three other views; lines are drawn
directly in three-dimensions and simultaneously
fed back for display.

Rotation, magnification, translation, and per
spective transformations are performed by a
single 4 x 4 matrix. * Two matrices are used
for display purposes: one for the perspective
view and the other for the three orthogonal
views-thereby enabling the perspective view
to be manipulated independently of the orthogo
nal views.

* Developed by Larry E. Roberts at the Massachusetts
Institute of Technology for use in his doctorate thesis
on assembling three-dimensional descriptions of objects
from their photographs.

The matrix can be viewed as a partitioned
matrix of four parts (Figure 2). The upper left
is a 3 x 3 rotation matrix. The lower right posi
tion is the scale factor. The row at the bottom
contains the three translation terms. The
column on the right holds the inverses of the
three viewing distances used in the perspective
transformations.

The matrix operates on homogeneous co
ordinates (a, b, c, s). A three-dimensional point
is determined by the ratio of its homogeneous
coordinates:

a:b:c:s = x:y:z:l

In other words, the s coordinate is a scale factor
and,

x = a/s
y = b/s
z = c/s

A typical transformation is shown in Figure 2.
The rotation section of the matrix is changed

by post-multiplying by a second rotation matrix.
This second 3 x 3 matrix describes relative two
dimensional rotations about one of the three
orthogonal axes of the scope screen.

To cause a rotation, the operator first selects
an axis of rotation by pointing at one of the
three orthogonal views with the light-pen. Then
the rotation shaft encoder is turned and the

I

:0 ~
3)(3 : ~

ROTATION i 0 ~

! -1"" ~

NOTE:

In this e~le, F equals

----------1-----

the I distance from the X - Y
projection pi arM! passl ng
orthogonally throt91 the origin.

TRANSLATION: SCALE
Xt, Yt, It, I S

(aJ 4x. Transformation Matrix \/lewed as Foil' Partitioned Sections

X, Y, I,' I x I T I X + ,eXt), Y +W(Yt), I + Welt), -~ + WS

Converting homogeneous coordlnatu
for display In the X' - Y' plane gives:

X' = X + W(Xt)

-~ + IS

(b) Typical Transformation of Homogeneous Coordinates Using 'T' of Fig. 2 (a) as an Example (no rotation)

Figure 2. Matrix configuration used to perform mul
tiple graphical transformations.

350 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

part rotates about an axis perpendicular to the
selected viewing quadrant. The program calcu
lates the sine and cosine of the shaft angle and
positions the results in the second matrix ac
cording to the selection of axis. Post-multipli
cation takes place and the second matrix is
cleared. The new transformation is applied
to the drawing and a new display is "painted"
on the scope screen. The program continually
samples the knob position; as long as the oper
ator continues to turn the encoder, the process
repeats. The cycle is fast enough for simple
drawings to give the illusion of a moving pic
ture. The part moves relative to two of the
three possible axes of rotation in three dimen
sions as the picture is rotated about one of the
orthogonal scope axes (Figure 3). This method
of rotating about one of the scope axes is
visualized more easily than rotation about some
axis fixed with respect to the part. Since the
part can be rotated to any attitude in space by
the twist of a knob, projectively related aux
iliary views of the object can be generated at
once.

D OICID
D

(0) Viewed orthogonally (b) Rototed about ~ quadrant axi.·

(e) Rotated about jrd quadrant ax;, (oj Rorated about 4th quadrant Qxi!.

Figure o. Additive rotation, beginning at (a), of a
"wireframe" box about axes perpendicular to the orth
ogonal viewing quadrants. The 1st quadrant in each
subfigure shows a perspective view of the 3rd quadrant,

or front view.

The remaining sections of the transformation
matrix are manipulated in similar fashion. Ap
plication of the matrix to segments of the object
singled out by the light pen gives the important
local transformation feature. Thus, graphical
modification, which is so vital in the design
process, is readily available.

DRAWING IN THREE-DIMENSIONS ON A
TWO-DIMENSIONAL SURFACE

Moving a light pen across the face of a CRT
and having the correct three-dimensional in
formation pass into computer memory requires
a simple method of specifying depth coordi
nates. Several methods were considered, such
as assigning the depth coordinate to the pen
location by positioning a shaft encoder or joy
stick. Approaches like this were dismissed be
cause of the nearly "artistic" talent an operator
had to have to visualize movements of the point.

The method finally adopted utilized the rota
tion facility. Because the part can be rotated
to any position in space, lines can be drawn
directly in three dimensions by drawing in a
plane. The part is rotated until the area in
which the line is to be drawn is parallel to a
viewing quadrant. The line is then drawn true
length; the depth coordinate remains constant
as the pen moves across the plane of the scope
screen. Specification of the single depth co
ordinate is done by program interpretation as
described below. This program, called the Pen
Space Location program is the backbone pro
gram of three-dimensional sketching. Sophisti
cated drawing is made possible by this program.
Because of its generality, rotation of the part to
bring sections into true view is not always
necessary.

PEN SPACE LOCATION PROGRAM

The Pen Space Location Program performs
two important functions: a) It defines a point
in space called the Pen Space Location (PSL),
by assigning a depth coordinate to the pen loca
tion according to the pen's previous position in
another view, and b) it permits precise posi
tioning of the PSL with coarse light-pen mo
tion. I t is the ~otion of the PSL that guides
the drawing of lines.

SKETCHPAD III: A COMPUTER PROGRAM FOR DRAWING IN THREE DIMENSIONS 351

a. Arbitrary Depth Assignment
The three orthogonal views represent three

adjacent faces of an imaginary cube surround
ing a part in space; the edges of the part are
projected onto each face. A point on any face
defines a projection line in space perpendicular
to the selected face.

When defining a three-dimensional point, the
Pen Space Location program begins the defini
tion by interpreting the projection line of a
two dimensional point positioned by the pen
as the intersection of two temporary, invisible
planes parallel to the faces of the imaginary
cube. To complete the definition of the point in
space, a second point is positioned in either of
the other two views and its projection line will
then intersect one of the two temporary planes
(Figure 4). This intersection defines the point
in space.

Figure 4. Graphical interpretation of method used in
the PSL program to define a 3-D point. The cube repre
sents the imaginary volume enclosed by the orthogonal
viewing quadrants. In this example, the heavy dashed
line indicates the projection of the first point positioned
in the top view. (Dashed lines are used for visualization
purposes only.) This line is interpreted as the inter
section of two planes. The small 'X' represents the
second point positioned in another view. The solid line
radiating from the' X' is its projection. The' +' defines
the 3-D point.

The two-dimensional position of the light-pen
on the scope face is established by a tracking
program. This program calculates the coordi
nates of the center of the pen's field of view and
remembers the pen's position when the pen is
removed from the scope face.

When the pen begins tracking in a second
view, the Pen Space Location program obtains
the appropriate coordinate from the remem-

bered point of the first view for use as the depth
coordinate of the current pen position. This is
the pen position in space called the Pen Space
Location and its project~ons are displayed as
bright dots in all the viewilng quadrants. As the
pen is moved in one view, the depth coordinate
of the PSL projected in front of the pen re
mains fixed.

Lines are drawn by locating the PSL at an
initial position, depressing a Start Draw button,
and moving the pen. As long as the pen tracks,
a line appears between the initial point and the
PSL. Renl0ving the pen from the screen with a
flick of the wrist terminates motion at the last
position of the PSL.

b. Precision Point Assignment

To begin a line on an existing line, the PSL
must be precisely positioned on the desired sec
tion of line. Since the light pen motions direct
ing the movement of the PSL through space are
quite coarse, programming must direct the pre
cision movements of the PSL.

The PSL is surrounded by an imaginary
sphere of one-eighth inch radius. The coordi
nates of the PSL and the radius of the sphere
are converted to homogenous coordinates and
transformed by the inverse of the 4 x 4 trans
formation matrix. When the pen is held over
a line, the PSL program determines which line
(or lines) is responsible for the light pen re
sponse and compares the stored line (s) with the
transformed PSL. If a line passes through the
sphere surrounding the PSL, the program

. calculates the point on the line nearest the cen
ter of the sphere and assigns the PSL this new
value. As soon as the line passes outside this
sphere (centered in front of the pen), the PSL
assumes a value that is projectively related to
the center of the pen's field of view. The new
PSL retains the depth coordinate of the point
on the line. The Pen Space Location program
also determines end points and intersections of
lines in this manner. Thus a steady hand is
not required to construct accurate drawings.

The PSL program has a second mode that can
be selected by push button. Instead of surround
ing the PSL with a sphere, the projection of the
PSL is surrounded by a cylinder. Whenever a
line intersects the imaginary cylinder, the point
on the line nearest the axis of the cylinder re
places the PSL. As in the other mode, when the

352 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

lines fall outside the detection volume, the new
PSL retains the depth coordinate of the point
on the line, and is projected in front of the pen.
The cylinder mode is generally used: a) for
selection of existing depth coordinates in one
view. That is, it is not necesary to move the
pen momentarily to a second view to establish
a depth and drawing can proceed at a faster
speed. This is particularly useful when drawing
in the perspective view; b) to determine the
location of a projected line in three dimensions.
The PSL is "locked" on the line by moving the
pen over the line in one view and the projection
of the PSL can be observed in the other views.

The section of the PSL program that per
forms nearest point calculations is flow dia
grammed in Figure 5, The eylinder mode is
merely the special case where the depth co
ordinate is ignored. The mode selection button
modifies the program so the proper third co
ordinate is ignored.

Start

Figure 5. Flow diagram of the precision point assign
ment section of the PSL program.

SUPERPOSITION

The cylinder mode fails when lines are super
imposed. Attempting to "latch" the light pen
onto a line projected on top of another line con
fuses the program and the nearest point calcu
lations are performed on the first line "seen"
by the light pen. If a cube were rotated so it
appeared as a square for example, the operator
could not predict vvhat depth the PSL would
assume when the pen is held over a line. Thus,
when the superposition oceurs, the sphere mode
must be used.

SYNOPSIS OF SKETCHPAD III PROGRAM
MING

The data structure and the utility programs
that generate the data structure used in Sketch
pad III were developed by Ivan E. Sutherland
at Massachusetts Institute of Technology for
use in his two-dimensional graphical communi
cations program, Sketchpad. A general intro
duction to the utility programs is given below,
but the reader is referred to Reference 3 for
complete details.

Graphical information is stored in an n-com
ponent list structure. The pointers connecting
the n-component elements form closed rings and
enable tracing of information in either direc
tion. Different rings thread through several
levels in an n-component element providing
several paths to the same information. Each
type of information, such as a line or a point,
is referenced by a single block. These blocks
contain pointers to the appropriate transforma
tion and display subroutines. Each of these
distribution blocks in turn are grouped accord
ing to generic type.

The program that operates on the structure is
generalized. An executive routine determines
what type of graphical manipulation must be
performed by periodically sampling knobs and
push buttons. The graphical information to be
manipUlated, indicated by the light pen or push
buttons, is located in the list structure; the pro
gram subsequently transfers to its distribution
block via the list structure. The distribution
block in turn transfers control to the subroutine
which determines how the manipulation is done.
Thus, the program is composed of many
modules which are interconnected by the list
structure itself.

Many features have been adapted from Mr.
Sutherland's program to increase the flexibility
of Sketchpad III. These include:

1. Storing several pictures in computer mem-
ory, subject to immediate recall.

2. Storing pictures on magnetic tape. *
3. Merging or combining end points of lines.
4. Merging several lines into one line.
5. Generating hard copy on an X-Y plotter.*

* Program by Leonard M. Hantman of Lincoln
Laboratory,

':,* Ibid.

SKETCHPAD III: A COMPUTER PROGRAM FOR DRAWING IN THREE DIMENSIONS 353

A program, now almost completed, inserts
one picture into another picture. This feature
accelerates the drawing of repetitive structures
and the integrating of components into assem
blies.

FUTURE" ACTIVITIES

Many difficult problems must be surmounted
before a general graphical system is operating.
Methods fast enough to satisfy real-time re
quirements must be devised that:

1. Define arbitrary surfaces.
2. Determine space-curve intersections of

two surfaces.
3. Determine edges hidden by arbitrary sur

faces.
4. Satisfy general graphical constraints.

As the system evolves, computers will be ap
plied throughout the design-to-manufacturing
spectrum. Design analysis (stress, dynamic,
etc.) capabilities will be embraced by the system
and operate directly upon and influence the
stored graphical information. Manual part
programming for numerically controlled pro
duction machines can be by-passed. The goal is
to decrease the time spent preparing a part for
production (lay-out, detail, drafting, etc.) from
months to days.

BIBLIOGRAPHY
1. COONS, S. A., "An Outline of the Require

ments for a Computer-Aided Design Sys
tem," Proceedings of the Spring Joint Com
puter Conference, Detroit, Michigan, May
21-23, 1963. (This Volume.)

2. SUTHERLAND, 1. E., "Sketchpad, A Man-Ma
chine Communication System," Proceedings
of the Spring Joint Computer Conference,
Detroit, Michigan, May 21=23, 1963. (This
Volume.)

3. SUTHERLAND, 1. E., "Sketchpad, A Man-Ma
chine Graphical Communication System,"
Ph.D. Thesis, Massachusetts Institute of
Technology, Electrical Engineering Depart
ment, Cambridge, Massachusetts, January
1963. (To be issued as a MIT Lincoln Lab
oratory Report.)

4. COONS, S. A., "Notes on Graphical Input
Methods," Memorandum 8436-M-17, Dy
namic and Control Laboratory, Massachu
setts Institute of Technology, Department of
Mechanical Engineering, Cambridge, Massa
chusetts, May 4, 1960.

5. JOHNSON, T. E., "Sketchpad III, Three-Di
mensional Graphical Communication with a
Digital Computer," S.M. Thesis, Massachu
setts Institute, of Technology, Mechanical
Engineering Department, Cambridge,
Massachusetts, June 1963. (To be issued
as a MIT Electronic Systems Laboratory
Report.)

KEY ADDRESSING OF RANDOM ACCESS MEMORIES

BY RADIX TRANSFORMATION

Andrew D. Lin
Information Storage Systems

IBM General Products Division
Development Laboratory

San Jose, California

INTRODUCTION

The addressing procedure for nonsequentially
stored data in large capacity random access
memories is the automatic allocation of storage
position to each member of a data set. Each
member, termed here as a record, is identified
by a unique description or key which is part of
the record. Key addressing then is the execution
of a mapping function which mathematically
relates the key of a record to its location in
storage. To store or to retrieve a record its
key is presented to the addressing facility which
then generates an address to which the memory
will then access.

Various addressing techniques have been
used in the past and are being used at present.
Typically, however, they have been individually
tailored to the application. The growing usage
of large capacity random access memories is
placing practical urgency on a unified annroach
to the addressing procedure. A unified approach
implies freedom from the parameters, to be
discussed later, which have governed the design
of past techniques. A further consideration
would recognize that random access bulk stor
ages will increasingly appear as the central
machine element in information storage sys
tems in contrast to its peripheral role in pres
ent data processing systems. This then calls
for a unified solution which lends itself simply
and economically to hardware implementation

355

yet permits its execution by stored program.
The subject investigation was oriented toward
that objective.

The Storage Address Set

The storage devices within the purview of
this paper are large capacity random access
bulk memories. In general, there is no differ
ence in the addressing problem of a memory
which depends on mechanical means for access
ing and of a memory which depends on elec
tronic means for accessing. In practice, how
ever, mechanical access time is several orders
of magnitude greater than electronic access
time; hence, it becomes more significant in the
former to reduce the number of seek cycles of
the actuator for the average record in the data
set.

These memories are usually organized in a
binary or decimal hierarchy to agree with the
radix of the arithmetic unit of the processor of
whose system the memory is destined to be a
member. The storage is generally divided into
qn subspaces where q is the number base of the
organization structure and n is some integer.
The latter, of course, corresponds to the number
of positions in the address register.

A subspace or group of subspaces is termed
a bucket if, once the access mechanism has
arrived, its entire contents may be scanned
without further change in the contents of the

356 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

address register. For mechanically accessed
memories, buckets tend to contain a plurality
of records. A good reason for this is that the
development of higher bit density in magnetic
recording is advancing more rapidly than that
of . improved resolution and speed of access
mechanisms. Hence, the tendency is for bucket
capacities to increase in the future since a
larger share of the burden of search will have
to be shifted to the faster. scan-time capability
within the bucket and away from the slower
access mechanism. This shift is necessary to
strike a reasonable balance between access time
and scan time.

Random access memories of the current gen-
eration are location-addressed rather than con-
tent-addressed. A bridging function is there
fore necessary to associate the keys of a data set
with memory locations. If, in the rare case, the
key happens to be directly usable as an address
or if the predetermined address is appended to
the key, then "direct addressing" is possible. If
the association is by means of arbitrary assign
ment of locations to keys, the process is called
"table look-up". Table look-up may consist of
one or more stages with the stages stored either
in internal memory or in the bulk storage or a
combination of both. In "key addressing", the
key is operated on by a mathematical routine
or algorithm to generate an address. In effect,
then, key addressing makes the random access
memory appear as if it were content-addressed,
based on a record's unique descriptor.

A machine address set has these stable char-
acteristics: It is numeric, a solid integer set in
its range; consecutively ordered, and does not
change with time. These are in sharp contrast
to those of a data key set. which will be dis
cussed next.

The Data Key Set

The data key set in typical random access
memory applications has the following charac
teristics. The length of keys, of course, varies
from data set to data set, with the maximum
ranging up to the neighborhood of 20 char
acters. Members of a given key set frequently
differ in length, with blanks often appearing
i.n various positions of the allotted field. Char
acter positions may be differently restricted as
to allowable symbols such as numeric, alpha-

betic, alphameric and special signs; i.e., keys
may very well be mixed radix representations.

A data key set is typically a small fraction of
the total allowable combinations or parent set
which the key length and the source alphabet
permit. If the parent set were arranged in
collating sequence, it may be seen that the keys,
as a subset, generally populate the range in an
irregular manner, giving the impression of un
even clusters separated by huge gaps. In part
numbers, for example, this is due to the classi
fication logic adopted by the user; in English
names, on the other hand, the phonic require
ments and the relative incidence of vowels and
consonants contribute to clustering in the spec
trum of all possible combinations.

To a user, then, which specific subset in the
parent set presents itself as the key set is
probabilistic. Furthermore, in a dynamic ap
plication, the cluster and gap configuration will
change with time because of accretions and
deletions in the data s'et. In view of the above,
probabilistic techniques must be used to provide
the association or storage mapping function of
keys to addresses.

Occupancy Distribution Considerations

In key addressing, the mapping procedure
must distribute the keys of a set over the
memory bucket addresses as evenly as possible.
Ideally, the user desires, if the need arises, to
load his memory to 100o/c of capacity without
special fitting operations requiring complex
pr.ogramming; he also wants to find a record in
exactly one access ~yc1e. In other words, he
would like to find his record always at the
address which the mapping algorithm gener
ated, i.e., in its home bucket. Both requirements
imply a perfectly even distribution, which a
probabilistic technique on a nondeterministic
key set can only approach. The proper perform
ance objective, therefore, is to achieve a map
ping that is equivalent to what a randomly
distributed set of elements would experience
if mapped into a set of buckets, each having
equal probability of being occupied. The expec
tation then would be a Poisson distribution.!
Clearly, the addressing algorithm sought should
provide the conditions which would permit a
similar expectancy. In short, the criterion of
mapping performance should be the Poisson
distribution.

KEY ADDRESSING OF RANDOM ACCESS MEMORIES BY RADIX TRANSFORMATION 357

Bucket Overflow Considerations
A key addressing technique involves two

stages: first, a mapping procedure to allocate
the records as evenly as possible among the
buckets; second, an overflow procedure to divert
the overflow into trailer buckets. Once the
occupancy distribution is made, the bucket ca
pacity, C, determines the extent of the over
flows. Obviously, the poorer the mapping per
formance, the greater the burden left for the
overflow routine. The effectiveness of the latter
lies in its added levelling effect on the distribu
tion. This implies, for the average record in
the data set, a reduced seek factor, S; i.e., the
number of seek cycles o~ the access mechanism
to trace it to its overflow location. The criterion
of merit for the composite procedure of map
ping and overflow disposition is most usefully
expressed as the percentage, R, of the data set
that is lodged into home buckets. The comple
ment of R, of course, is the overflow percentage,
F, that finds placement in trailer buckets. It
might be added here that in applications where
a high percentage of activity is confined to a
small portion of the data set, the overflow prob
lem becomes almost insignificant when the most
active records are loaded into their home
buckets and the less active ones are loaded
into trailer buckets.

Parameter Relationships
The qualitative relationship among the pa

rameters in an addressing technique are as
follows: Consider any data set of N records
occupying a fraction L (load factor) of the
total space in memory of K buckets, each having
a capacity of C records. For any memory of
given K and C, the seek factor improves (i.e.,
decreases) with a drop in the load factor. This
may be seen in a preview of Figure 5. For a
memory having product KC constant, but with
K and C inversely variable, the seek factor im
proves with higher bucket capacity. A glance
at Figure 4 also indicates the relationship be
tween the load factor L, the ratio of data
records to buckets N / K = b, and R, the per
cent of the data set lodged into home buckets.
For a given L, R improves with a higher value
of b. These are relations to be borne in mind
in subsequent pages of this paper.

Source Alphabet Considerations
A key is converted from its human-readable

form to its coded representation before it can

be machine-processed by an address transfor
mation technique. This processing is arithme
tic and, therefore, must deal with numeric
digits. With nonnumeric characters in a key,
the user faces the alternative of recognizing
only the numeric c?mponent of the coded rep
resentation (for example, in the Binary-Coded
Decimal code, stripping the two zone bits from
the 6-bit configuration) or of devising some
method of having all bits participate In the
calculation process. If, as has been done fre
quently in past techniques, the nonnumeric bits
are ignored, then the effect is to impose on the
human-readable key set a condition where cer
tain bit-coded subsequences have a one-to-many
correspondence with human language charac
ters in the key. This, of course, intensifies the
clustering effect already present in the human
readable key set. Clearly, this should be avoided
in any addressing algorithm.

System Considerations
In planning an application for a random

access bulk storage, the user has a certain lati
tude in assigning values to the critical parame
ters. If mapping performance were predictable
in relation to these parameters, planning would
become more systematic. For example, a user
having .chosen a certain load factor, L, and a
certain ratio of records to buckets, b, could with
confidence estimate the approximate percentage
of the data set that would overflow. The map
ping algorithm should, therefore, be reasonably
consistent and predictable in performance for
a given set of parameters.

Again, from the user's viewpoint, it is highly
desirable that an addressing technique be di
rectly applicable to any key set as found. In
other words, the user would be glad to be freed
of the task of preanalyzing and experimenting
with the structure of a new key set to discover
the series of procedures which will "randomize"
it. He would prefer a general-purpose scheme
which he can immediately apply to his key set
with the high expectation of getting a trans
formed, randomly distributed set.

The primary interest in this paper on hard
ware embodiment of the addressing algorithm
is based on the following system considerations.
As a self-contained addressing facility, it can
be integrated into a, variety of system environ
ments, both processor-centered and storage
centered. In the former, it would serve to over-

358 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

lap the addressing procedure with the main
processing program. Additionally, it may serve
as a time-shared device placed between one or
more processors and an array of bulk storages
(having same or different parameters). If ad
ditionally the hardware embodiment of the
addressing algorithm should permit transfor
mation of the key optionally into binary or
decimal addresses, a further system advantage
is gained. This would relieve bulk storages of
the design restriction that its address radix be
necessarily the same as the computing radix
of the processor.

Storage-centered systems will, in general,
not be equipped with as high a level of arithme
tic and logical capability as processor-centered
systems. A separate addressing facility would
make it possible for them to become truly auton
omous systems, not necessitating the associa
tion of a general-purpose processor to enable
use of bulk storage for strictly retrieval pur
poses.

Summary of Requirements

To the above considerations, others may be
added to compile a list of functional objectives.
These are proposed here as the basis for any
unified solution to the addressing problem.

1. The addressing algorithm should distribute
the records among the memory spaces as
evenly as is probabilistically possible, with
the Poisson distribution as the objective.

2. The composite procedure of mapping and
overflow tracing to store or retrieve the
average record should be fast in terms of
a low number of seek cycles.

3. The algorithm should be universal in appli
cation for all keysets. It should be inde
pendent of source alphabet, machine char
acter code and key length.

1. The algorithm should have the element of
predictability in the sense that a prospec
tive user, electing specific values for some
of the prindpal parameters (load factor and
keys-to-buckets ratio) can have high expec
tation of a certain mapping performance,
i.e., the percentage of the data set that will
overflow.

5. The algorithm should be directly applicable
to any key set, as found; i.e., without pre
analysis or pre-editing.

6. The algorithm should be implementable as
independent hardware simply and economi
cally, preferably using a systematic sequence
of elementary operations. ' Time of execution
should be a relatively low multiple of the
data- transfer rate of the using system.

7. Hardware embodiment of the algorithm
should permit the option of decimal or
binary output addresses.

Proposed Solution
The solution offered here for key addressing

is briefly as follows. The key is introduced to
the mapping process as a binary sequence, is
interpreted as 4-bit p digits and radix-trans
formed into a magnitude expressed in address
radix q, where p is relatively prime to q. Trun-
cation yields the memory address. The rationale
is given below.

As a first step in meeting the solution require
ments, a common basis of representing all keys
must be provided so that they may appear as a
standardized input to the address-generating
process. It has already been noted that human
and machine language formats contribute to
structuring in the key set. Eliminating the
character partitions and expressing the coded
form of a key as a binary sequenee, i.e" a eon
tinuous train of ones and zeros, would reflect
this eompound structuring. The key represen
tation is now an amorphous binary array with
out the attribute of magnitude. It awaits a
ehoiee of radix and of grouping to quantify it.
The rules of quantifieation and the subsequent
proeessing should transform the original key
set into a randomly distributed set of entities.
They should also permit a systematic iteration
of elementary operations to permit eeonomieal
hardware implementation as well as stored pro
gram execution.

A grouping of 4 bits was ehosen as the unit
of proeessing; i.e., as the byte size. This is
reasonable since addresses are generally nu
meric and henee require 4 bits for a decimal
digit. At the same time 4 bits is compatible
with a binary address radix, since a magnitude
expressed in a radix that is an integral power
of 2 can always be read out as a pure binary
number.

The results of processing successive bytes
should be cumulative in the hardware imple
mentation. Compression to the range of the
addresses should be progressively done, pref-

KEY ADDRESSING OF RANDOM ACCESS MEMORIES BY RADIX TRANSFORMATION 359

erably by the simple operation of truncation
by·the physical bounds of the device itself.

To evolve our transformation algorithm, we
start with the hypothesis that the principal
phenomenon of key sets is the tendency to
cluster in various ways and that this is the
only significant reason which causes key sets
to deviate from randomness.

VVe observe that a sequence of keys may
occur for which all but a few bits of its coded
representations remain constant. Such a group
we call a cluster. The allowable range of a key
set may be thought of as an n-dimensional hy
percube whose 2n vertices represent permissible
n-bit keys. A typical key set is some subset
of these vertices. As a simplified example, a
vertex in a 5-dimensional space may be written
as 10111. An immediately adjacent vertex
would differ in only one bit position and we
say it is one Hamming distance4 away. For
example, 10101 is adjacent to 10111. The vertex
11101 would be two distances away from 10111,
and so forth. A cluster in this concept would be
a collection of vertices relatively close to each
other. Keys belonging to such a cluster are
identical in most of their bit positions while
the rest are variable. The variable bits are, of
course, not necessarily in adjacent positions in
the key nor at the low-order end. Two examples
of clusters in human readable language are
shown in Figure 1.

AF 906-2 I Z-JAN- SCHMID A.H.

AF 906-23 JAN- SCHMID B. L.

AF 906-23Y-JAN-

AF 906-23Z JAN- SCHMI W.E.

AF 906-2 4Q J AN- SCHMIDT T. M.

:: :::jtr~::~~
AF 906-2rnJAN-~

SCHMI T . R.

.W.

J. E.

F. L.

Figure 1. Examples of Clusters.

VV e propose the criterion that a good address
mapping must destroy clusters. This is to say
that clustermates (members of the same clus
ter) should tend not to be bucketmates (mem
bers of the same bucket). In other words, buck
etmates should not have their inverse images
in the same cluster. VVe now offer an address
mapping using radix transformation to destroy
these clusters and to satisfy the solution re
quirements previously mentioned. The theo
retical justification is developed below.

Suppose that a given memory is addressed
with a radix q. Usually q will be either- 2 or
10. The number of buckets, K, is equal to qrtt
where m is most naturally an integer. The
amorphous binary array is now treated as a
number expressed in binary-coded p-radix
digits where p is prime to q. Radix transfor
mation is then performed on the key to convert
it from base p to base q using the familiar
formula:

where n = the number of p-radix digits in the
key array

di = value of ith digit

The result is a randomly distributed set of
transformations "in q-radix representation,
which upon truncation by modulus K, yields
the desired addresses A; i.e. :

n-l

A = ~ dipi mod K
i=O

For example, let p = 11, q = 10, m = 4, the
key be Smith and the machine language be
binary-coded decimal (bed). Suppose 3 bits
at a time ale grouped to form 11-ary digits.
Then the steps a, b, c, d, would ensue.

S MIT H
a. 010010 100100 111001 010011 111000
h. 010 010 100 100 111 001 010 011 111 000

22447 1 2 3 7 0
c. (2,244,712,370) 11 = (5,230,793,172ho
d. Address = 5,230,793,172 mod 104

= 3172

VVhen will any two keys X and Y map into the
same bucket? Only when they are congruent
qm. VVe may express this as

X _ Y mod qm

360 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

which implies X = Y ± a qm for some positive
integer, a. If this is true when X, Y, and qm are
simply magnitudes without radix representa
tion~ then the equation holds also for any radix
subsequently chosen to express it.

For example, let:

Then:

X = 11231, Y = 1231, a qm = 11001,
where II means the magnitude, regard
less of what radix is used to express it.

11231 = 1231 + 11001
(123) 10 = (23ho + (lOOho
(146)9 = (25)9 + (121)9

However, consider the difference when X and
Yare considered initially as amorphous binary
arrays which have no attribute of measure until
quantified by choosing a radix p as basis for
interpretation. Note now that two arrays
quantified in p-radix, (X) p and (Y) p (bucket
mates), which differ by a magnitude aqm are
not usually congruent when evaluated in a
radix p, where p =1= q. For example, if two
arrays are 123 and 023, it can be seen that:

Quantified in radix 10: (123ho == (23ho mod 11001
Quantified in radix 9: (123)g ~ (23)g mod 11001

'Ve choose radix p relatively prime to q be-
cause aqm, when expressed in p, has a high per
centage of nonzero, non (p-1) digits. (In con
trast, when aqm is expressed in q-radix, its
representation is (a) followed by all (m)
zeros.) This indicates that bucketmates ex
pressed in base p will differ in many digital
positions, which implies that they will differ
in many hit positions. In the n-dimensional
space concept, it follows that the inverse images
of bucketmates in the key set are relatively
distant from each other and hence do not come
from the same cluster.

To make this argument more precise, con
sider the digital configuration of two keys that
are made bucketmates by this method. Let Xi

be the it1! digit of X, Y.~ the ith digit of Y, and
Zi the ith digit of the magnitude aqm expressed
in p-radix. Then, from the addition:

Yi Yi-l ... Yi ... Y3 Y2 Yi
+ Zj Zj-l ••• Zi ••• Z3 Z2 Zl

What are the conditions under which Xi and Yi
differ? In general, they are different if Zi is
nonzero or non (p -1) . In particular, lowest

order Xl and YI would be different for all nonzero
values of Zl since no carry is possible from the
right. It may be noted further that, if value
(p-1) can never occur in Xi or Yi, an added con
dition is assured when Zi and Zi-l are consecu
tively 0 and p-1, or p-1 and O. This suggests
then that in interpreting the binary array of
the key, the relationship of p to q may advan
tageously be p = q + 1. It will be seen later
how this relationship is also of benefit in im
plementation. Examples of p-q combinations
are 3-2, 5-4, 9-8, 11-10, 17-16, and so forth.

To illustrate that aqm in p-radix does indeed
have a high percentage of nonzero, non (p-1)
digits, an investigation was made of the num
bers a210 expressed in base 3. For each value
of (a), a function d (a) was computed such that
X = a210 + Y. Then X differs from Y in at
least d (a) digital positions in their radix-3
representation. A frequency tabulation of this
function for a = 1, 2 ... 10,000 is shown in
Table 1.

Table I-Frequency Distribution of Minimal Dis
tances for a210 Expressed in Radix 3.

d(a) Freq. Cum. Freq.

3 7 100.00%
4 6 99.93
5 197 99.87
6 179 97.90
7 1046 96.11
8 782 85.65
9 2573 77.83

10 1503 57.10
11 2146 .37.07
12 911 15.61
13 510 6.50
14 123 1.40
15 17 0.17

10000

This table shows that the radix transforma
tion at least does not map into the same bucket
two keys differing only in two bit positions; i.e.,
having a "distance" of two. In generai, how
ever, pair-wise relationships of this sort gen
erally result in stronger affirmation of our
thesis for larger key sets, each pair of the set
having this relationship. For example, a set
of three bucketmates, each pair of which differs

KEY ADDRESSING OF RANDOM ACCESS M:El',{ORIES BY RADIX TRANSFORMATION

in at least two bit-positions, cannot as a set
vary only in two bit-positions.

Table 1 assumes that (a) takes on the values
1, 2 ... 10,000 with equal likelihood. It is not
presumed that every subtle condition which
contributes to Xi and Yi being different has been
reflected in the tabulation. The table, therefore,
confirms conservatively but strongly the cluster
destroying capabilities of this method of inter
preting a key in p-radix and of transforming
it from base p to base q to generate an address
for a q-radix memory.

Hardware Implementation

To incorporate the proposed algorithm into
hardware, one might elect a value for the p
radix which makes the hardware requirements
simple and light. The q-radix, obviously, will
either be 2 or 10, since random access bulk mem
ories are, and most likely will be, addressed in
either pure binary or binary-coded-decimal.

It has been noted why p must be relatively
prime to q. Additionally, if p is chosen equal
to q + 1, then conversion from p to q may be
performed by the elementary operations of
shifting and adding. For example, given a q
radix address register and a p-digit (d) p to be
converted into base q, we would multiply d by
q + 1. We would implement this in a shift
register by adding d to one regjster position,
then shifting (in effect, multiplying by q) to
the next higher-order position and. adding d
again.

We wish to standardize the input so that a
high proportion of common hardware may be
used whether the device is to be designed for
binary address output, for decimal address out
put, or for both. Partitioning the binary array
of the key into 4-bit bytes would be suitable for
reasons already explained.

Figure 2 shows a device which would imple
ment the above. It consists of a circulating
shift register of m digital positions Dm ... Dh
a single-digit load register Do, a single-digit
adder H, and associated logic. The incoming
key enters as a serialized train of standardized
4-bit bytes. A byte at a time is loaded into Do.
Between bytes, the following occurs: The con
tents of Dl and Do are added; the sum is cir
culated back to Do, and if necessary, the carry
trigger is set. . A right shift follows and another
add-shift cycle ensues. This cycle is performed

BINARY ARRAY OF KEY

L....-_.......JI.

Yi=INPUT BYTE(p-digit)
Si =SUM OUTPUT OF ADDER(q-digit)

Do= LOAD TRIGGERS

Dm ... DI-ADDRESS REGISTER,m DIGITAL POSITIONS,4 BITS EACH

H =SINGLE-DIGIT ADDER

Figure 2. Universal Address-Generating Device.

m times for each byte. The next byte then
enters Do and the sequence of operations is
repeated. The process ceases when the key
array is exhausted.

The finite length, m, of the register auto
matically truncates the cumulative sum of prod
ucts at the conclusion of the processing of
each byte. The final residue is the desired ad
dress. Truncation is valid since the following
relation holds:

[{a mod K + b} mod K + c] mod K
= (a + b + c) mod K

where a, b, c typically are successive bytes and
K = qm. It is apparent that the conversion to
any address A is expressible as:

n-l

A = ~ dipi mod K
i=O

where, for a binary array of n bytes, i equals
0, 1, 2, ... (n-1) ; and d is the digital value of
the byte.

In the device, the above formula (less mod
K) is advantageously restated in iterative form
and implemented as follows:

A = p[p{p[p{ . .. p({p(dn)} + dn-I) ... }
+ da] + d2 } + dI] + do

This nesting arrangement suggests that the
bytes, d, be processed in decreasing order of
significance as each byte comes in from the
binary array. To generate the address, the for
mula is evaluated progressively by working

362 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

from the innermost nest towards the outermost
nest. Within each nest, the following occurs:
a byte di is brought into Do and added to the
product of the radix p and the current contents
of the address register. Since p = q + 1, this
product may be generated digit-by-digit by
adding the current contents of D1 into both the
present and the next higher-order positions.
Thus, the contents of D1 participate in two suc
cessive add cycles: first when it is in D1 and
next when it is shifted to Do. For example, in
an 11-to-10·conversion, if the input byte is 3
and the current contents of the address register
are 024, this happens:

3
44

22

267

For choice of output addresses in either binary
or decimal form, logic may be provided as
shown in Figure 3. The binary form is, of
course, quite straightforward. However, the
decimal form requires that the input byte, if it
exceeds 10 in value, be decomposed into a carry
and a modulo 11 digit. Furthermore, the influ-

LEGEND
_ LOAD

00- REGISTER
_ ADDRESS

OJ - REGISTER
-LOW ORDER
DIGIT

Xi = CURRENT DIGIT

YI = INCOMING BYTE
S, = OUTPUT DIGIT
CI = CARRY TRIGGER
C2 = CARRY TRIGGER
Ts= SWITCH

IN D,

Figure 3. Block Diagram for Binary/Decimal Ad
dress-Generating Device.

ence of the carry must be sustained for the first
two add/shift cycles to correct the cumulative
results in the address register. For brevity, the
detailed logic will not ,be shown.

An example is presEkted in Table 2 to illus
trate how the binary array of a key having suc
cessive byte values of 1, 7, 1, 15 is converted
from 11-radix to 10-radix representation; i.e.,
from (1724) 11 to (2204) 10.

It may be noted that if the incoming byte
rate of the using system is J, the transforma-

tion rate per byte would be (2m ~ 1) r where

r is the ratio of the speed of the circuit family
employed in the address transformation device
and the speed of the circuit family in the using
system.

Empirical Veri/ication"

An extensive empirical testing program was
performed on a IBM 704 computer to test the
cluster hypothesis and the mapping perform
ance of the radix transformation algorithm.
Seven customer key sets were used. In addition,
three generated sets of random alphameric pat
terns were processed. Table 3 shows their char
acteristics. "Finally, a set of values were com
puted from the theoretical Poisson distribution
to serve as criteria of performance. The several
test objectives and their results are as follows:

The following notations will be used:

k - number of binary positions in
memory address register

K - number of buckets in the mem
ory = 21.:

C - bucket capacity in records
N - number of keys in key set
b - bucket occupancy level (stochas

tic variable in frequency distri
bution)

- N
b-average number of records per bucket = K

111-number of record spaces in memory
N N b

L-Ioad factor = ill = KG = C
R-percent of N lodged -in home buckets
e~underflow or overflow in ith bucket
g~net undisposed overflow at ith bucket
f-number of buckets having occupancy b

KEY ADDRESSING OF RANDOM ACCESS MEMORIES BY RADIX TRANSFORl'lIATION 9l!c)
out>

TABLE 2

Example of ll-to-l0 Conversion, Key to Decimal Address

D4 Da D2 Dl Do C2

0 0 0 0 1 I 0
0 0 0 0 1 A 0
1 0 0 0 0 S 0
1 0 0 0 0 A 0
0 1 0 0 0 S 0
0 1 0 0 0 A 0
0 0 1 0 0 S 0
0 0 1 0 0 A 0
0 0 0 1 0 S 0

0 0 0 1 7 I 0
0 0 0 1 8 A 0
8 0 0 0 1 S 0
8 0 0 0 1 A 0
1 8 0 0 0 S 0
1 8 0 0 0 A 0
0 1 8 0 0 S 0
0 1 8 0 0 A 0
0 0 1 8 0 S 0

0 0 1 8 1 I 0
0 0 1 8 9 A 0
9 0 0 1 8 S 0
9 0 0 1 9 A 0
9 9 0 0 1 S 0
9 9 0 0 1 A 0
1 9 9 0 0 S 0
1 9 9 0 0 A 0
0 1 9 9 0 S 0

0 1 9 9 4 I 0
0 1 9 9 4 A 1
4 0 1 9 9 S 1
4 0 1 9 0 A 1
0 4 0 1 9 S 1
0 4 0 1 2 A 0
2 0 4 0 1 S 0
2 0 4 0 2 A 0
2 2 0 4 0 S 0

A basic test is that the transformation maps
a typical key set into an address set essentially
as evenly as a randomly distributed key set.
rrhi<:! "IlITI"\111r1 <:lffi'l""'" +-l-.n n1.,<'1+-"'" ;J"n+ ... "'<T;~~ ~~~~~

..&. "-1 YY"""""'.I.'\,A. ~~.I.a..J.J..J. lJ.1.J.\,... \";J.uovv.l.-uv,,:,vLV~J.l1b t;ll~\'::'L

of the algorithm. The basic test is extended by
determining whether the technique results in
an efficient seek factor. This factor is the num
ber of separate access-mechanism movements
required to locate a record, averaged over the
total number of records in an application. It
measures the combined performance of the
mapping algorithm and of the overflow tech
nique, and should be closely comparable to that

C1 Binary array of key

0 1000 110 1 1 110 001111111
0
0 1 7 1 15
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

1
0
0
0
0
1
1
0
0

(1724)11 = (2204ho

I-X ew Input Byte

A-Add

S-Right Shift 1

of a randomly distributed set using the same
overflow procedure. The overflow technique is
of secondary interest here but, since one has
to be assumed to develop the values for the seek
factor, the "consecutive spill" routine was used.
If a record is not found in its home bucket,
consecutively higher-numbered locations are
searched until it is found.

To establish universality, the algorithm
should map key sets of widely divergent struc
tural characteristics into a given memory con
figuration with essentially equal effectiveness.
A given memory configuration is one in which

364 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

TABLE 3

Key Sets Used in 704 Simulation

Key Set
N umber Identi

fication
Description Code . Sym

bolism*

Records
in Test
Set

1 A Electrical Equipment ~1fr. bcd B 8192
-part numbers

2 B rdilitary Establishment bcd)J 8192
-part numbers

3 C Business 1'Iachines 11fr. bcd N 8192
-part numbers

4 D1 Electrical Controls 11fr. bcd B 8192
-part numbers

5 D2 Electrical Controls 11fr. 2/5 B 8192
-part numbers

6 E State 11otor Vehicle Dept. bcd A 8192
-drivers' names

7 F1 Farm Equipment :Mfr.
-part numhers

8 F2 Farm Equipment l\1fr.
-part numbers

9 G High School
-student names

10 HI Random Alphanumeric
Patterns

11 H2 Random Alphanumeric
Patterns

12 I Random X umeric
Patterns

*N-numeric A-alphabetic

the relevant parameters are pegged at certain
values. These parameters are average bucket
occupancy, b (i.e., N /K), and load factor, L.
"Equal effectiveness" means that essentially the
same percentage, R, of the entire key set gets
housed in home buckets. For example, for b
= 64, and L = 957c, a large data file using this
algorithm can expect to have, say, 97%, of its
members housed in home buckets. This yard
stick is meaningful and directly useful to the
application planner.

To affirm cod~ independence, the addressing
algorithm must rnap essentially the same per
centage of a key set into home buckets when
the key set is expressed in different binary-base
codes. On Table 3, three of the sets, D, F, and
H, are expressed in both binary-coded-decimal

bcd B 8192

2/5 B 8192

bcd A 4096

bcd B 8192

2/5 B 8192

Binary ~ 8192

B-alphanumeric

and 2-out-of-5 notation to test this independ-
ence.

A 17-16 radix transformation was performed
on all twelve sets. For each key set, the value
of K was assigned seven different values:

K = 2", where k = 1, 2 ... 7; i.e., K-values
of 128, 256, 512, 1024, 2048, 4096, and 8192.

A frequency distribution was tabulated re
lating f to b for each K. From this distribu
tion, R was determined for a load factor of
100o/c, by choosing C = b. Other values of R
were computed for lower load factors. The
latter were obtained by successively increasing
the value of C, since

T b
L = C.

KEY ADDRESSING OF RANDOM ACCESS MEMORIES BY RADIX TRANSFORMATION 365

The results from the IBM 704 computer simu
lation were plotted in Figure 4 as a curve with
R against L. A family of curves was thus gen
erated with the parameter b takin'g on different
values. The results for R for a given band L
were so nearly identical (root mean square
deviation less than 1%) for all nine data key
sets that only one curve representing their
average was plotted for each value of b. The
R values for b of 4, 2, and 1 were similarly
uniform for all nine sets but are not shown
in the graph because they offer only two or
fewer points in our range of interest of the
load factor; i.e., 80<X to 100%.

The results for the three originally random
key sets were also averaged and plotted as a
separate group in Figure 4. These R values
also show an rms deviation of less than 17,
related to its own group and to the entire twelve
sets.

The results for three random key sets whose
address mapping was performed by k-bit trun
cation rather than by our algorithm are also
plotted in Figure 4. Again the rms deviation,
among themselves and related to the twelve
key -set average, is less than 1 j1(•

A set of theoretical values for R were com
puted from Poisson Distribution Tables,:! using
the same values for b. and L as in the empirical
runs. The relationship"which yields R is simply:

ooI00r------------------------=~~~~~
t
W
~
U
::J
a:J

>w
~

.... 'os.tO ~
~

,4~~LEGEND
~,~~u- 9 DATA SETS. AVERAGED.

",a'~ ~ RADIX TRANSFORMATION
~ -~'~ ~ y--- 3 RANDOM SETS, AVERAGED

~
RADIX TRANSFORMATION

~ 85 w--- 3 RANDOM SETS. AVERAGED.
w _ TRUNCATION
u t b = NUMBER OF RECORDS

~ tt NUMBER OF BUCKETS
... 0 = POISSON REFERENCE POINTS

~80~~~-L~~~L-~~-L-L~~~----~
100 95 90 85 80

L. LOAD FACTOR IN PER CENT

Figure 4. Comparative Mapping Efficiency of Radix
Transformation Algorithm.

c co

~ Pb • b + C ~ Pb
R = b=~ _______ b=C+l_

b

where Pb is the Poisson probability for an
occupancy level of b records per bucket, and
G is the capacity of a bucket adjusted to get
a specific load factor L = biG.

Since all curves were quite close together, it
was decided for clarity to graph only the curves
for the empirical results without depicting their
points. For comparison purposes, the theoreti
cal Poisson points were shown but without their
curves.

The average seek factors, S, were calculated
for the nine data key sets; their arithmetic
means for a given pair of parameters (bucket
capacity and load factor) are plotted in Figure
5. The same operations were performed on the
three random key sets.

The seek factor was arrived at thus:

J(+ ~gi
S = -----

J(

'CONCLUSIONS

The empirical results and the hardware im
plementation indicate that the functional ob
jectives sought have indeed been met.

The empirical results show that for a given
set of parameters band L, the percent R of the
data set lodged into home buckets tends towards
a central value with narrow deviation. These

8r---------------------------------~

7

~6
.,.
u
~ 5
~

::l
10

K =512

LEGEND
- 9 DATA SETS. AVERAGED
--- 3 RANDOM SETS, AVERAGED
C= BUCKET CAPACITY C =5~

Ili~
10 20 30 40 50 60 70 80 90 100

L. LOAD FACTOR IN PER CENT

Figure 5. Comparative Seek Factor Efficiency of
Radix Transformation Algorithm (using consecutive
spill overflow technique).

366 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

central values were shown to be quite close to
the theoretical Poisson values. This suggests
then that a comprehensive table of theoretical
values of R as related to band L may be set up
for the use of the application planner. Using
this table to make reasonable predictions for
the mapping performance of the radix trans
formation algorithm, he could attempt sys
tematic trade-offs between the parameters and
the performance until he is satisfied with the
combination.

The simulation effort with widely differing
key sets shows this algorithm to be a directly
usable method that is independent of key length,
source language and machine code.

Key addressing by radix transformation meets
its optimal fulfillment when implemented as
independent hardware with a binary address
output. Augmented to provide the added option
of decimal address output, it is slightly less
simple but offers wider flexibility in system
applications.

ACKNOWLEDGEMENTS

The author is indebted to the· following indi
viduals for auxiliary participation in the work
covered by this paper: Mr. R. F. Arnold for
major contributions in the early evolution of

the transformation algorithm; Mr. F. Magness
for assistance in the detailed logical design; and
Mr. R. Togosaki and Mr. J. Barnes for prepar
ing the several 704 programs for computer
simulation and verification with customer key
sets. The latter were Tnade available through
the courtesy of several IBM Sales and Service
Bureau offices.

REFERENCES

1. FELLER, W., "An Introduction to Proba
bility Theory and Its Applications, Vol. 1."
John Wiley & Sons, Inc., New York, 1950.

2. MOLINA, E. C., "Poisson Exponential Bi
nomial Limit." Van Nostrand Co., Inc.,
New York, 1942.

3. VINOGRADOV, I. M., "An Introduction to the
Theory of Numbers." Pergamon Press,
London and New York, 1955.

4. HAMMING, R. W., "Error Detecting and
Error Correcting Codes." Bell System Tech
nical Journal, 29, 147-160, April 1950.

5. PETERSEN, W. W., "Addressing for Random
Access Storage." IBM Journal of Research
and Development, Vol. 1, No.2, April 1957.

6. GRIFFIN, H., "Elementary Theory of Num
bers." McGraw-Hill Book Co., New York,
1954.

ADAM - A PROBLEM-ORIENTED SYMBOL PROCESSOR

A. P. Mullery and R. F. Schauer
Thomas J. Watson Research Center

International Business Machines Corporation
Yorktown Heights, New York

R. Rice
International Business Machines Corporation

Poughkeepsie, New York

INTRODUCTION

Digital computers have evolved in their own
technical environment, and to a large degree
independently of the problem environment.
Thus it was necessary to have computing cen
ters with staffs of programmers as intermedi
aries between machines and users. As the in
adequacy of the arrangement became apparent,
problem-oriented languages were written, with
compiler programs to allow the machines them
selves to do the conversion to their own (ma
chine) language. Accommodating to the nature
of the computer in this way still was not the
answer from the scientist's or experimenter's
point of view, for there remained an enormous
commitment of processing (compiling) and de
bugging prior to the first feedback of results.
Furthermore, it proved necessary to write com
pilers for many problem fields, which gave this
mode of solution a patchwork look. For these
reasons~ we decided to attack the nrohlem at it~
roots by changing the fundament~l n~t~-;e-,- -i.-~.~
the organization of the computer itself. We
took it as the aim of our work to allow the
experimenter to use the computer as directly
as possible as an experimental tool.

We reasoned that "data" upon which ma
chines operated have certain similar character-

istics even though problems in which the data
are used vary. We therefore began by making
a study of the nature of data. In general, data
is not just of the form acceptable by most pres
ent day computers-a contiguous string of fixed
length, fixed point data, but is variable field
length, variable format, structured, and not
necessarily contiguous. For example, a three
by-three matrix is a string of nine data sym
bols. But more than just a string of symbols,
a hierarchy or grouping is usually imposed on
the string. In this matrix example, the group
ing consists of symbols which are contained in
rows in a matrix. This is a simple grouping.
The English language, considered as data, is
grouped as words in phrases, in sentences, in
paragraphs, in chapters7 in books, and in li
braries. No matter what one calls these group
ings, the structure they indicate does exist in
data. Clearly each symbol in a string of data
could contain any number of characters.

Further, a string of data need not be con
tiguous. In text, for example, a footnote is part
of a string, linked (by a symbol) but physically
removed. It is necessary to have a way of
storing non-contiguous data in the computer
and of providing linkages. Where such data
applies to many strings, it should be stored once

The research reported in this paper was sponsored in part by the Air Force Cambridge Research Laboratories
Office of Aerospace Research, under Contract AF 19(628)-1621. '

367

368 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

and linked as necessary. An analogy is a refer
ence in text cited frequently though given only
once. Insert procedures involving the move
ment of entire strings of data are inefficient and
should be unnecessary.

If the data to be processed has variable field
length, variable format, structure, and is not
necessarily contiguous, any language or nota
tion to describe the data or operations on it
must not restrict but take advantage of this
form. This leads to the following implications
concerning the language and the system:

1. That it be able to handle variable field
length data and instructions.

2. That it b,e able to maintain the structure
of the data internally.

3. That it be able to use and operate on this
structure.

4. That it be able to handle symbolic ad
dressing of the data.

5. That it be able to interpret links in the
data correctly.

6. That it be able to insert links in the data
when necessary.

In addition, in order to be as general as pos
sible, the machine system should not impose
limits on the number of levels of links, the
number of names in the data, the size of the
data or instruction fields, etc.

The language must include operators to per
mit the three basic data operations-creation,
movement, and destruction. The methods by
which data can be created are limitless. Some,
however, are more commonly used than others.
These include: Add, Subtract, Multiply, Divide,
AND, OR, NOT, and Reproduce. Basic data
movement operations include Insert, Separate,
and Join. Data destruction is accomplished
with a Delete operation. All of these operators
must be defined for sets or strings of data as
well as single fields. Probably the most impor
tant feature of such a high-level language is
the ability to easily define new operators. This
ability to define operators must be simple and
flexible, and the execution of the resulting sl)b
routines must be fast and efficient. There should
be no limit on the number of levels or subrou
tines; that is, subroutines must be able to con
tain other subroutines which can contain other
subroutines, etc.

The use of the language should reduce the
need of a program controlled housekeeping to
a minimum. As examples, the -assignment of
storage space should be completely automatic,
and data operations should be independent of
data format; that is, if the data is not in the
proper format for any given operation, machine
control will do the necessary conversion from
any permissible format to the desired one.

In order to implement this language effici- .
ently, a completely new machine organization
has been evolved. This organization has. been
determined only by the above goals. This has
meant new concepts in the organization of the
storage, of the process unit, of the input-output,
of instruction and data flow paths, of controls,
etc.

The following sections describe the charac
teristics of the data, of the language, and of the
resultant machine organization.

DATA

It was indicated in the introduction that data
has structure. It may be a simple structure
such as rows and symbols for a matrix or it
may be the complex structure such as that in
the English language. In any case the symbol
is the lowest meaningful grouping-e.g., the
character "b" has no meaning, but the char
acters "ball" do represent something and, there
fore, make up a symbol. The four characters
b-a-l-l are a symbol for the physical object, a
ball.

No matter what these groupings may be
called, they do exist within the data and are
indicated by identifiers. These identifiers are
usually special symbols which indicate the end
of a group and the start of a new group. For
example, a record mark indicates a boundary
between two records. Many different such
marks have been used, depending upon the
names which have been given to the grouping.
In order to avoid unnecessary confusion, the
groups

Character
Symbol
Phrase
Sentence

Paragraph
Chapter
Book
Library

shall be used throughout. The identifiers asso
ciated with each group shall be as follows:

ADAM-A PROBLEl'v:L-ORIENTED SYMBOL PROCESSOR 369

Group Identifier
Use Mention

Character (Implied) ~
Symbol CD C]
Phrase ® ®
Sentence ® ®
Paragraph CD @
Chapter ® @
Book ® @
T .1hrc;yr"IT f,;\ A
~.L""'''''-N'''J \V ~

When the structure of a string of data or
instructions is to be identified, then the "USE"
identifiers are used. If some group of data is
being referred to in the instructions, then the
"MENTION" identifiers are used. The CD iden
tifier will indicate the end of a symbol and the
start of a new symbol. These identifiers form
a hierarchy in that a ® also implies a CD, a ®
implies a ®, and a CD, etc. If more than one
identifier ever appear together with no other
characters separating them, all but the highest
identifier will be neglected and dropped. Each
symbol many contain any number of any char
acters. Each phrase may contain any number
of symbols, etc.

The names of data will appear with the data
itself. A name can be given to any string of
data at any level from Symbol to Library. This
string may also contain named groups of data.
Thus, named groups within named groups are
allowed. The name character n will surround
the name when it appears with the data. The
first character following the second n will be a
"MENTION" identifier which will indicate the
level of the data being named. If this mention
identifier does not appear with the name, then
the name is assumed to name data at a level
indicated by the first following "USE" identi
fier. For example, a data string will appear in
the data storage as

s
n ADAM n @ ABEL n @ EVE pIn @ CD

s
- - - - nEVE p II n ® - - - - ® - - - - ® - - - - CD

Here ADAM will name the complete para
graph; ABEL will name the first sentence in

s
that paragraph; EVE p I will name the first

s
phrase in the first sentence; EVE p II will name
the second phrase in the first sentence. The

names themselves may be formed from any
combination of any number of the general char
acters A - Z, a - z, 0 - 9, 0 _ !), etc.

Certain operations require numeric data.
Numeric data may contain any number of the
digits 0 through 9 and may contain at most one
of each of the characters +, -, . (decimal
point), and exponent. Together these represent
a unique number. However, such a number
can be expressed in many ways. Examples of
permissible data format -external to the ma
chine are as follows:

CD 19 CD
CD -19.76 CD
CD ex + 02 + .1976 CD

In such numeric data, the decimal point is
assumed to be at the right unless it is written
elsewhere. A decimal point can occur any place
in a number if the number does not also have
an exponent. If the number is written with an
exponent, then it must be expressed so that the
mantissa is greater than or equals 0.1 and less
than 1.0-the decimal point must be at the left.
The number is assumed to be positive unless
otherwise indicated. If, however, the number
is written in exponential form with the expo
nent preceding the mantissa, the sign of the
number must be written.

Some operations require binary data. Such
data may contain any number of the characters
o and 1. Each symbol of binary data should
begin with the base 2 indicator L.

A data string may be linked to another data
string by means of a ® link character. When
ever a ® is met in a string of data, the data
indicated by the name following the ® will, in
effect, be considered to be part of the original
string. A given string of data can be so linked
to many data strings. For example, in the data
strings

nAn CD Brown CD is CD a ® Des CD school
CD with CD many ® Des CD students CD
n Des n ® very CD good ®

the fourth and ninth symbols of A are both
"very." Thus, the data string called A is, in
effect,

nAn CD Brown CD is CD a ® very CD good ®
school CD with CD many ® very CD good ®
students CD

370 PROCEEDINGS-SPRING JOINT COMPUTER CONFEREN<?E, 1963

PROPERTIES OF THE LANGUAGE

The language will consist of verbs, nouns,
and modifiers, and rules for their use. TheJe
rules are the syntax of the language. Much of
the power of the language depends on the syn=
tax. This syntax should be simple and direct
but should allow a great flexibility of use. These
rules for use should be generally applicable.

An English-like structure is used. The oper
ators are classified as nouns, verbs, adverbs,
and adjectives. A noun with any number of
adjectives modifying it will make up a noun
phrase. The noun phrase must always indicate
data contained within the extent of the name
used. A verb and any number of adverbs modi
fying it will make up a verb phrase. An opera
tion is a c0111bination of at least one verb phrase
and one noun phrase which accomplishes some
process (for example, A + B is an operation).
A sentence will consist of at least one operation.
All operations in the sentence are dependent
on the result of other operations in the sentence
and are syntactically independent of operations
in other sentences. In general, the process to
be performed and where to place the result, if
any, must be specified in a sentence.

Some verbs require only an object. Other
verbs require both a subject and an object. Still
others require any number of objects. A subject
or object can be a noun phrase, an operation,
or a group of operations. The subject of a verb
is assumed to be the result of all operations
which preceded the verb in the sentence. If a
parenthetical phrase precedes the verb, then
only this phrase is the subject of the verb. Ex
ceptions to this are verbs such as *, /, and
AND. Here normal rules of precedence apply.
Any number of parenthetical phrases may be
used, both with algebraic and non-algebraic
operations.

The object of a verb phrase is the following
noun phrase only. Again, if a parenthetical
phrase follows the verb, then this parenthetical
phrase is the object. If several objects are re
quired, each object should be separated by a
comma (separator). Each of these objects may
be a noun phrase, an operation, or a group of
operations.

All adjectives will fol1ow the modified noun.
A given noun, however, may have any number
of adjectives modifying it. An adjective is con
sidered to modify not just the noun, but the

noun as modified by any adjective preceding
the particular adjective. An adverb will precede
the modified verb. Again, a verb can have any
number of adverbs modifying it.

A name may be given to a sentence or group
of sentences at any level. A name may not be
given to a part of a sentence in instructions.
Named sentences or groups of sentences may
be contained within other, larger, named groups
of sentences. A name of an instruction or group
of instructions must be defined as a verb. For
example, an instruction might be written as
follows:

v Start v ® A + B ~ c ®

A named verb contained within another verb
is considered to extend to the end of the highest
named verb in which it is contained.

NAMES AND SYMBOLIC ADDRESSING

N ames of data and instructions may contain
any combination of any number of the general
characters. In the machine language all data
and instructions are referenced by their names.
A character combination in the instructions
can be operated upon only if it is interpreted
as a literal. An absolute address, direct or in
direct, will never appear in a program. The
machine itself will assign locations in storage
to named sequences of data and instructions.
In order to accomplish this, a fixed length table
with two characters (16 bits) per entry is pro
vided. The address of a location in this table
is derived from a name. This mapping may be
simple. For example, if 4096 locations are pro
vided~ then the middle six bits of each of the
first two characters of a name .may be used to
obtain a location in the table. Of course, any
other mapping technique may be used; a hash
address scheme using every character of a
name, for example, may be more efficient. All
names that are being used and which map to
the same location in the table will be contained
in a closed, linked loop in the main m~mory.
The address in a location in the map table will
be that of the name last used in the correspond
ing loop. Fig. 1 demonstrates the construction
of such a loop. In this example, the first two
characters are used to derive a location in the
table. Thus, all nam~s starting with a particu
lar pair of characters will be contained within
a loop. The "MA" loop containing the names

iU)AM=A PROBLEM-ORIENTED SYMBOL PROCESSOR 371

Izz

I /,.-------,
.!!. MAD !! @ X X CA OS

'1'1

!!. MATRIX!! @ 1Z CA OS

xx

'--_______ !!. MAUD!!. @ Y'f CA OS

zz

Figure 1. Symbolic Addressing Map and Name Loop.

MAD, MATRIX, and MAUD is shown. The
name MAD is stored at location yy. With the
name MAD, is a link address to-the next name
in the loop, MATRIX. Two addresses follow
the name 'MAD to indicate the location of the
"current" item and beginning of the data spec
ified by MAD. Similarly, at location xx, the
name MATRIX is followed by the link zz which
is the location of the next item in the loop,
MA UD. Following MAUD is a link yy, which
closes the loop. In the table location is the
address zz, of MAUD, which happened to be the
last name used of this loop. In the example, the
noun MATRIX is to be found. This name maps
to the "MA" location in the table which gives
the address xx. At zz, the name MAUD and
MATRIX are compared. These are not equal.
The name at yy is' next compared with
MATRIX. Since the comparison again fails,
xx is accessed and the names compared. The
successful comparison locates data whose name
is MATRIX. If a name which is not contained
in' the loop~ MATE, for example, is defined,
every name in the loop will be compared with

MATE. After going completely through the
loop with no successful name comparison, the
new name is placed in some available location,
say ww, and a new string created. The link
address associated with the first item in the
loop--here zz with MATRIX-is placed with
MA TE and the address ww stored with
MATRIX. The resulting name loop is shown
in Fig. 2. Similarly, when a name is being
deleted, the link addresses of the preceding and
fo!!ovling names are adj listed to again form a
closed loop. The novel feature of this symbolic
addressing system is that the size and number
of names is limited only by the capacity of main
storage. There may be any number of names
of any size in a loop. The number of loops is
limited by the size of the table and determined
by the names in use.

SPECIFICATION OF DATA WITHIN
STRUCTURED STRINGS

Particular items within a named data se
quence are indicated by means of the (]) i j,
CY t j, and ([) 4 j adjectives. In the data string

nAn®---CD---@---CD---®

~ MAD ~ ® xx CA OS

'1'1

n MATRIX n ® ww CA OS
IX - -

I\! MAUD ~ @"
I i.

1 I

~ MATE!!. ® zz CA OS

ww

CA OS

Figure 2. Modified Name Loop,

372 PROCEEDINGS-SPRING JOINT COMPU~ER CONFERENCE, 1963

A names the whole sentence. The first phrase
in this sentence is indicated by the noun phrase
A ® i O. The second symbol of the second
phrase is indicated by A ® i 1 CD i 1. In a
similar manner, every part of a na~ed string
of data can be indicated. Thus, an adjective
CD i j will indicate the jth item at level <D
from the point previously specified. The CD ~
j adjective has the same effect except that it
will also set a "current" indicator at the item
referenced. Thus, the noun phrase A ® i 1 CD
f 0 will specify the first symbol of the second
phrase of A and mark this symbol current item
of the data sequence named A. The adjective
CD ~ j will find the jth item at the CD th level
following the "current" item and set this new
item as the "current" item. If, for example,
succeeding symbols in a string are required,
these may be indicated by the noun phrase A
Q) ~ 1. Each time this noun is interpreted, the
next item in A will be indicated without any
indexing or other change to the program. In
order to perform this type of addressing, the
general form of memory organization shown in
Fig. 3 will be used.

. I I. , I II', ouTpun~. IJ I
I • 1

MACHINE INP\JT INPUT
WORKiNG CCIIli'l"ROt,.
STORAGE

Figure 3. Special Memory Organization.

As data or program is input into the machine,
it will pass through the input control. The input
control will break up the information into ma
chine words for storage in the machine. The
beginning of each new classification of data,
or every data identifier, will always begin a new
machine word. The input control will scan the
input for data identifiers and form the variable
length block into machine words for storage.
The input control will also have partial con:"
trol over the special control planes associated
with the memory. There will be one control
plane associated with each data identifier to be
used in the system. Whenever an identifier is
detected in the input information, a core will
be set in the plane identified with this character
in a position equivalent to the address in which
the machine word containing this character is
being stored. Similarly, a core will be set in
the same position in all lower levels of identi
fiers explicitly stating what is implied in the
data. If an identifier is detected before the
storage buffer register is filled, null characters
will be inserted to fill out the machine word
and then the word is stored. The identifier wili
be held by the input control until the storage
buffer register is again ready to accept data
and will. be inserted as the first character of
the machine word being formed. When this
word is ready for storage, the appropriate re
lated cores will be set in the special ·control
planes. All information will be input in this
manner.

The name symbol, verb symbol, and key sym
bol v ill also start new machine words when
detec;ed by the input control, and marks are
set ir to a special core plane. The use of this
mark will be discussed later.

Normally data will be stored in 8-bits and
parity outside of the machine whenever possi
ble. This same representation will carryover
to internal storage for all alpha-"numeric sym
bols. Certain symbols-those marked as nu
meric or logic-will be packed for more efficient
operation. The input control must detect a
numeric field as defined in a previous section
and set up the normalization operation. Packing
will occur during this latter operation. Logic
data will be indicated by a special character.
An operation similar'to·the normalization pro
cedure will be initiated by the detection of this
special character by the input control.

With this structure of data stored in the
memory, it is possible to find any particular
item in a string rela~ively quickly. Let us say
we are looking for

A®i2®il®i2-

The machine will first find the beginning of
the string named A in the manner described
previously. Before attempting to describe the
search for the speGified part of A, consider the
organization of the special core planes. There
will be one core plane for each data identifier
indicating one level of classification. Each core
in this plane will represent one machine word
in the main store. The special core planes will
be used in a 2-D memory organization so that
it will be possible to gate out the contents of
128 cores in one read-write cycle. If a core has
been set to a "1," this implies that that level
identifier or one higher occurs in the associated
machine word. Therefore, by using appropriate
circuitry, one is able to scan the contents of a
row of one of the special planes from either
right or left to determine which of the 128 ma
chine words contain the identifier in question.

The above discussion has assumed that the
extra core planes were a separate entity. It is
also possible to select a portion of the main
store for assembling this information. Even
though the main store has a 3-D organization,
it is possible to organize it such that the loca
tion of identifiers in blocks of machine words
(probably 64 at a time) is available in one read
write cycle. This is the organization proposed
for the system being designed.

The search for the location of the data of the
above example would proceed as follows:

1. Locate the beginning address of the block
called "A."

2. In the ® level plane read out the row in
which a location corresponds to this
address"

3. Begin the search for @ marks at this
address. As a @ mark is encountered,
count this mark and compare the total
with that obtained from the adjecti~.~0
evaluation. Continue the search if the
two numbers do not agree.

4. If three @ marks (magnitude of number
in adjective incremented by 1) have not
been located and counted by the> end of

the row, increment the appropriate rings
and read out the next row.

5. When three @ marks have been counted,
store the address associated with the last
one located. Then read out the ® level
row containing this address.

6. Begin searching in the above manner for
the second ® mark starting at the address
of the third ® mark. When this is located,
store its address and proceed at· the ®
level.

7. When the address is finally located, the
machine will look to the instruction con
trol to determine what to do next. It is
possible to operate on any information
which can be located in the described
manner from this newly located point in
the data.

The absolute address of the current item in
a data string is sJored with the name of the
string. Thus, when the adjective is CD c j, the
scan is begun at this address; and when the
described point is located, the current address
will be changed.

In order to perform the input procedure
described in this section and also to perform
some operations such as insert and delete which
will be described, the memory organization
must be capable of determining and remember
ing blank memory locations. A special core
plane is included to perform this function.
The extent of a blank sequence is determined
before the location of the sequence is placed
in the blank plane.

The special plane will be accessed in exact!)
the same manner as the other special core
planes. In this case a core associated with the
address of the beginning of the sequence will
be set and one associated with the address im
mediately following the last address of the se
quence will also be set. This technique permits
one to combine adjacent blank sequences. This
___ ! 11 1_ _ _ _ _ _ _ 1·, " . . . ,. .. .
W 111 ue accumpnsnea oy settlng an actctressect
core in the special plane to a "I" if it previously
was a "0" and vice versa.
Consider the following example:

x x x x
A B

C D
x x x x

AC BD

374 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Two blank sequences exist in memory and are
labeled A and B. Two additional sequences, C
and D, are to be added. When the initial ad
dress of C is to be set, the control will set the
equivalent core to a "0" because it was previ
ouslya "1," indicating the end of A. When the
end of C is set, the sequence now contains both
A and C. In a like manner, when D is put into
the special plane, the end of D removes the
beginning of B and gives a single sequence.

A blank sequence will be available to mem
ory control at all times. Information relating
to the address of the next blank word and the
address of the last word of the sequence is kept
by the memory control. When a blank sequence
has been filled, the memory control will initiate
a search of the special plane starting at the
address of the end of the last sequence. The
address of the next mark in the special plane
will be the address of the beginning of the next
blank sequence. The second mark will be the
end of the sequence. These addresses will be
stored in the memory control. Thus the mem
ory will be loaded in cyclic manner in order to
reduce the length of time necessary to locate
the next blank sequence.

SEARCH AND STORAGE OF
VARIABLE LENGTH DATA

All data has been considered to be of variable
length. In addition, the programmer, through
such instructions as insert, join, delete, define
can change the length of a particular string.
It is not desirable, when the length of the string
is changed, to move any portion of the string
in order to make it continuous. Therefore, a
means of linking disjoint parts of a string will
be provided.

This link will be composed of three char
acters, a special "go to" character indicating a
link and a two character address locating the
next word in the sequence. This group of char
acters will be placed at the end of the machine
word which would normally precede the linked
data. If this machine word contains informa
tion other than nulls in any of these three char
acter positions, the characters are extracted
and stored in an available word. The data to
be linked is either stored in the following blank
locations or another link is provided between
the Hprelink" word and the linked string. A

link is placed at the end of this linked data back
to the original string.

A special link symbol, ®, permits the pro
grammer to insert common data, which is
stored once, into several strings. When this
character is recognized by input control, this
special character will be interpreted as an iden
tifier in the sense that it forces a new machine
word to be started with this character. In this
case the character is stored in the first and sixth
character positions of the new word, and the
nulls are stored in the rest of the word. The
name following the ® character will be stored
beginning in the next word. The first time that
this data is used and the symbol interpreted
as a link, the name identifying the common
insert will be used to determine the address of
the beginning and end of the data. These ad
dresses will then be stored with the ® link.
The name will not have to be referred to in sub
sequent uses of the original data. At the end
of the inserted string, will be placed a variable
link. When this string is being used, the ad
dress of the next location in the calling sequence
is placed in this variable link. Consequently,
the link back to the calling sequence is provided
at the time of reference.

Since a link indicates a discontinuity in a
string of data, the location of a discontinuity
must be available when the contents of an identi
fier plane are being searched and counted as de
scribed previously. Another special core plane
-the Forward Discontinuity Plane-is pro
vided. This will be accessed and searched in
parallel with any of the identifier planes when
a forward search is underway. A bit in this
plane set to "1" indicates that a special circum
stance applies to the corresponding machine
word, and the machine word must be accessed
before any search can continue. In general, a
discontinuity will be indicated in that machine
word and the search will be continued at the
place indicated by the link address.

It is also possible to search backward from
any point within a named string of data. How
ever, only forward links are provided in the
data. A push down store called the Reverse
Push Down Store (RPDS) is used to store the
reverse links generated as a forward search is
conducted. Since one cannot access any piece
of data beyond the extent of the name indicated,
it is normally true that a forward search must

ADAM-A PROBLEM-ORIENTED SYMBOL PROCESSOR 375

precede any backward search and thus the re
verse links are always provided in the RPDS.
A Reverse Discontinuity Plane will also be pro
vided to indicate the special circumstances that
are pertinent to a backward search.

Let us say we are given the string A stored
in memory as shown in Fig. 4. In this string
there is a discontinuity at location (yy - 1).
This is indicated in the forward and reverse
discontinuity planes. The beginnings of the
strings are indicated in the reverse plane. The
ends of the strings are indicated in the forward
plane. It is required to find

A@j3Q)j-2

Once A has been found, the ® and the forward
discontinuity plane are accessed and the count
begun. At yy - 1 a discontinuity mark is
reached. The machine word is accessed for the
link address xx and the address (yy - 1) placed
in the RPDS. The ® and forward discontinuity
plane are accessed at xx and the search con
tinued. At the end of the linked string, the
same situation is indicated. The address zz is

0·
®.
0·

RD •

FD----------+------.....

'IY

~A~ @ __ G_CD_-,,--_ru0_8_®..L0

Q)--------------
®-~-----------

0--+-----------

RD •

FD------------+-----

xx ww zz
®-c-CD ru

Figure 4. String of Data Stored in Memory.

placed in the RPDS and the search is resumed
at location yy. The second ® mark beyond but
including this point is the one indicated by A
® j 3 (or determined by a count of the ®
marks as we have been searching). The search
is then continued at the one level and in a
reverse direction as indicated by the next ad
jective CD j - 2. At this time, the address zz
is at the-top of the RPDS and the address (yy
- 1) below it. The CD and Reverse Discontinuity
Plane are accessed and the search and count
are continued backwards. Again at yy - 1, a
discontinuity is searched, but this time" the link
address is obtained from the RPD"S. Thus, the
search is continued at zz. The next CD is the
one desired so the search stops at· this point
and the RPDS is cleared since there are no
further adjectives modifying the noun A.

If the noun phrase had been,

A~c0<J2j - 2

and the current address was ww, a slightly
different situation exists. After the name is
located, the first adjective indicates the current
symbol. This address is determined. The next
adjective specifies a backward search from this
point. The CD and Reverse Discontinuity planes
are accessed and the search initiated. How
ever, the search will stop at xx, and the word
accessed. In this case, the controls will deter
mine that this word is the beginning of a linked
string of data but that the RPDS is empty.
Consequently, a forward search out to this
point must be accomplished so as to build up
the RPDS. The backward search can continue
as soon as this operation is complete.

ARITHMETIC OPERATIONS

One of the considerations used in the specifi
cation of this system was that all data must he
considered to be variable field length. In this
situation, numeric processing becomes more
difficult when considered in the conventional
manner.

A number of numeric operations are basi
cally high to low order operations. These in
clude input, output, division, comparison, and
normalization. Considering the problems of
implementing these operations together with
those of the arithmetic operations, it was de
cided to process all data high order to low
order. The effect of the extra complexity that

376 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

may result in the process unit is hopefully off
set by the increased efficiency of the system.

Basically, the addition of two numbers serial
by character is quite similar when done either
high order to low order or vice versa. In the
latter case, two digits are added producing a
sum and a carry or no-carry. The carry, no
carry information is stored for use in the next
cycle-the addition of the next higher order
pair of digits. In high to low order operation,
the results of an addition are still a sum digit
and a carry, no-carry indication. In this case,
however, the sum. digit is stored until the next
cycle so that it can be modified by the carry,
no-carry result of that operation.

However, there is a complication in high to
low order processing. It can best be illustrated
by an example. Consider the addition of the
following pair of numbers:

24444 n
+35555 m

where nand m are any digits. Proceeding from
left to right, the first sum is 5 with no carry.
The 5 is placed in a buffer and the next pair of
digits added. The result is a 9 with no carry.
The 5 is now gated to a temporary store and
the 9 into the buffer. The following cycle also
produces a 9 and no carry. The previous sum
is put into the temporary store and the nine
into the buffer. This procedure continues until
the last cycle. If m + n produces a carry, this
carry will not propagate through the string of
nines formed and modify the first non-nine
digit to the left of sequence in the result. Thus,
the string of nines and the next higher order
digit must be available to be changed by the
carry as it is propagated.

One technique which accomplishes this is to
avoid outputting any nine or digit which is in
the next higher order position above a nine until
it is known whether or not there is a carry to
be propagated. This involves storing the next
higher order digit (NHOD) and the ensuing
consecutive nines until a non-nine digit is pro
duced. At this point, the carry, no-carry infor
mation is consulted, and the NHOD and the
nines are outputted after being incremented by
one or zero.

When the first nine in a string is produced,
the NHOD is already in a one digit temporary
store awaiting carry, no-carry information

from that cycle. To avoid outputting anything
until a possible carry propagation can occur,
the nine output is counted, and the NHOD out
put is inhibited. Since only nines need to be
stored in this manner, a simple counter is suffi
cient to keep track of consecutive nines.

Finally when the output of the process unit
is a non-nine digit, the NHOD is outputted
after being modified by the carry, no-carry in
formation of this cycle. The counter is then
decremented by one and a nine outputted. This
digit is also modified by the carry, no-carry
information. This procedure is continued until
the counter is cleared. The non-nine digit is
placed in the temporary storage, and the proc
essing continues on the next pair of digits.

Basically; then, the procedure is to count the
nines as they are produced to inhibit all process
unit output until a non-nine is detected, and
then to correct for the carry as the digits are
outputted.

High to low order subtraction offers no ad
ditional c9IDplexity over that present with ad
dition. Subtraction may be accomplished by
complementing the subtrahend and adding the
result to the minuend. If the nines complement
is used, the addition proceeds with exactly the
same rules for nines handling and carry, no
carry modification as was used for addition. If
the difference is in non-complement form, a 1
must be added to the lowest order digit to take
care of the end around carry. If the 10's com
plement is taken, zeros must be counted in the
same manner as the nines were in addition, and
the output !llust be decremented by zero or one
to effect the carry, no-carry propagation.

Complemented answers will be avoided by
always subtracting the smaller magnitude num
ber from the larger. If this condition does not
exist initially, the roles of the minuend and the
subtrahend can be interchanged by changing
the true-complement sense of both operands
and changing the sign of the result.

The need for a reversal can be established
only after determining which operand is larger,
which in turn depends upon the magnitudes of
the highest order not equal pair of digits in the
operands. The relative magnitude of the first
pair of unequal digits sent to the process unit
will determine if a reversal is necessary when
using high to low order processing. The results
obtained from higher order pairs 'of equal digits

ADAM-A PROBLEM-ORIENTED SYMBOL PROCESSOR 377

(if any) will be the same whether a reversal
occurs or not. Thus, if a reversal is necessary,
only the digit cycle in which the need for
reversal is detected must be re-run. With or
without reversal, the remainder of the subtrac
tion is completely normal. In either case, only
one pass through the process unit is necessary.
This is a distinct advantage of high to low
order processing.

Multiplication and division offer no additional
proble~s. Multiplication may be done either by
repetitive addition or by multiplication of mul
tiplier and multiplicand digits in an N -tupler
and by addition of the result to the partial prod
uct. In either case, the addition will be per
formed as described above. If N -tupling is
used, the multiplication itself is insensitive to
the direction of processing. Similarly, division
may be done by repeated subtraction, accom
plished as described above, or by the estimation
of a quotient digit, multiplication by the divisor
digits, and subtraction of the result from the
dividend. The subtractions may be performed
as previously described, and the multiplication
is insensitive to the direction of operation.

The numeric fields to be processed normally
are in normal form for an arithmetic opera
tion. Normal form in the system is considered
to be

exp + - - + - - - - - -
or exponent character, sign, two digit exponent,
sign, implied radix point and mantissa. Usually
numeric fields will be normalized during the
input operation. A numeric field is a field con
taining only numeric characters (this includes
exponent character, radix point and signs).
However, a radix point must occur if the field
is to be stored in normal form.

Addition and subtraction can be done on in
tegers without forcing the operands to be in
normal form. This ability is included in the
systeIH to nlake indexing as efficient as possible.
However, both operands must be in this form,
or both will be normalized before the operation
begins. The operands must be normalized for
multiplication and division.

A two accumulator system is used with the
process unit. High to low order multiplication
and division are such that the additional con
trols necessary for use with a single accumula
tor require enough extra hardware and slow
the operation enough that a second accumulator

is justified. (This second accumulator also
speeds up some of the other automatic house
keeping and data handling chores in the system
and could be justified nearly on this account
alone.)

EXTENSION OF THE LANGUAGE

The most important property of the machine
language is its ability to be expanded. This
ability is accomplished through a means similar
to the method used to construct subroutines in
present day computers. However, once an op
eration is defined, it can be used in the same
way any other operation in the language is
used. There are no special rules for the use of
these defined operations.

In the language some verbs, modifiers, and
certain nouns have been defined and each as
signed a special symbol. However, any combi
nation of general characters may be used not
only as a name for some data but also for some
sequence of instructions. The only requirement
for a particular combination of letters to be
used as the name of an operation is that this
combination not be used with any other mean
ing either as an operation or as a noun; that is,
it must have a unique definition.

New operations may be defined using the pre
viously defined· operations and nouns. In addi
tion, the noun "op n" is available for use in
communication between the definition and the
use. This noun will indicate the nouns included
in the calling sequence. If anyone noun in the
calling sequence is required-the nth noun, for
example-then this is indicated by writing op
n. As an example, let us define some verb
"triple add" as follows:

v triple add v ® op 1 + op 2 + op 3 ®
The instruction

® (triple add, A, B, C)~D ®

will place the sum of A, B, and C into loca
tion D.

The simple rule for the formation of a defined
operation is that the last sentence of its defini
tion must be able to replace the calling expres
sion without violating any syntactic rules. In
this replacement, the first and last identifiers
in the last sentence of the definition are neg
lected. In the example al,>ove, the rule was
obeyed since ® (A + B + 'C)~D ® is a com
plete sentence.

378 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

In defining a new operation, it is permissible
to use other defined operations. An operand
noun may, in turn, refer to another operand
noun. For example, let us define the operation

s
sq p rt as follows:

s
v sq p rt v @ op I~Xi

® (Xi~Xj
® .5 * (Xi + op I/Xi)~it)

until (it - Xj) abs<€
®Xi
@

s
Further, we can define the operation sq p root

s
using sq p rt as follows:

s s
v sq p root v ® (sq p rt, op 1) ~op 2 ®

s
Thus, the instruction ® (sq p root, A, B) ®
will obtain the square root of A and place this
in B.

There is no limit to the number of operands
nor to the number of levels in a defined opera
tion.

A Subroutine Push Down Store (SPDS) will
be used to store the addresses to which subrou
tines must return when they are completed.
Whenever a name in an instruction is found
to be a defined operation (surrounded by v
marks), the address of the name location in the
instruction is placed in the SPDS and control
is transferred to the indicated subroutine. When
the subroutine is finished, control is returned
to the point indicated by the top address in the
SPDS. Because there is no limit on the size
of the SPDS (other than the size of main mem
ory) , there is no limit on the number of levels
of subroutines. A defined operation may use a
defined operation, may use a defined operation,
etc. These addresses in the SPDS may also be
used to obtain the appropriate parameter when
ever an "operand" noun is mentioned. A spe
cial table, however, will be used for this pur
pose in order to make the interpretation of sub
routines more efficient. Whenever a defined
operation is found, the absolute addresses of its
parameters are placed in a table. When a sub
routine is first encountered in the original pro
gram, the first parameter is placed in location
11 (corresponding to the first parameter, first
level), the second in 21, etc. If another subrou
tine is reached within the first subroutine, the

absolute address of its parameters are placed
in locations 12, 22, 32, etc. If an operand noun,
say op m, is reached in subroutines at level n,
then the absolute address corresponding to this
noun can immediately be found at location TI1,

n in the table. The 0, n location at each level
is the absolute address of a temporary result
string used at the particular level and addressed
at each level by the noun temp. The size of this
special table will lhnit the number of parame
ters and number of levels at which this inter
pretation can be efficiently performed. The
table used in this system will allow 32 levels
and 9 parameters at each level to be evaluated
effici en tly.

INSTRUCTION SEQUENCING

As discussed in previous sections, instruc
tions in the system language are sentences
within some defined operation. If the defined
operation is at level 0 (the main program in
the usual sense), the system will step through
this operation, sentence by sentence. Each sen
tence in this case must be syntactically inde
pendent and complete. The execution of the
sentences will continue to the end of the
sequence in which it is started unless a pro
grammed transfer to another defined or named
operation is encountered. This is the usual
transfer encountered in a branch instruction
in a conventional system. If another defined
operation is used in a noun phrase in a sentence,
control will be transferred to that operation
and returned to the sentence as soon as the
operation has been completed and the resultant
noun phrase evaluated. In this case, the detec
tion of the completion of the execution of the
operation and the return are automatically de
termined and need not be programmed explicitly.

The proper sequence of the operations is ac
complished through the use of a push down
store. This store will serve as a means of re
versing the sequence of any part of an instruc
tion when this is necessary for proper evalua
tion. This storage will also save the starting
point of any recursive loop in the program.
The effect of each operator and operand on its
sequencing depends on the verb itself and its
context. The store, itself, will consist of a fixed
sequence of memory locations. Since these will
be sequential, no linkage is necessary. How
ever, if at any time more storage is required,

ADAM-A PROBLEM-ORIENTED SYMBOL PROCESSOR 379

as many available machine words as necessary
will be automatically added to the push down
store. At the beginning of each overflow word,
will be a link to the location of the previous
machine word in the push down store.

This push down store will have the usual
purpose of a "last in-first out" storage which,
in eifect, reverses the sequence of items from
the order in which they are read in.

As an instruction is being interpreted, sev
eral quantities are accumulated and may need
to be retained. As an example, the extent of
an operand (beginning and end addresses of its
location in the storage) is determined when
that operand is mentioned in the instruction.
This information is normally stored in address
registers associated with the subject and object
register storage. If the operation using this
operand cannot be executed at this time, the
operator and operand specifications must be
placed in the push down store. Some special
characters such as "(" or "®" must have their
machine word and character addresses stored
as well as the characters themselves. Conse
quently, each machine word in the push down
store will contain only one entry; that is, oper
and, operator, or special character.

As the instruction is executed, temporary or
partial results occur and must be stored. These
results will be placed in a temporary store
which is constructed similarly to the push down
store. The words of this store are sequential
and can be added to from main memory. This
store is useful in that it eliminates machine
map, search, and delete operations for these
resultant operands. The extent of the operand
is noted and retained when the items are placed
in this store. The items are removed from the
store and the space made available automati
cally as the sentence execution. proceeds.

At the end of a level 0 sentence, both the in
struction push down store and the temporary
store are cleared.

AUTOMATIC INPUT AND OUTPUT
Since the programmer has no control over

where data is stored in a proposed system and
how much of the store a given block of data
occupies, the machine must have control over
some input and output operations. Part of this
control is accomplished through a register in
which is stored the current size of the availa
bility list. This availability list is a linked list

containing all the available locations in the
store. The contents of the register are used to
determine when additional space is needed in
storage or when there is sufficient space to
allow another block of data or instructions to
be loaded into memory. Thus, when the main
store is approaching some fraction of full ca
pacity, it will output data. When the memory
is relatively empty, it will input data. Once
data has been in the machine, the link address
associated with the names will always permit
the machine to find it and return it to the main
store if necessary. The programmer need only
provide the machine with an input list indicat
ing where named blocks are located and a pri
ority, and a "scratch paper" list indicating
where data should go temporarily and a pri
ority. The final output of results will occur as
programmed.

The input Jist will have a structure similar
to the data itself. It will be a sentence whose
symbols contain the name of the string of data
to be inputted and the indication of where in
external storage the data is located. Those
strings of data that have the same priority are
grouped into phrases. Thus, if two strings of
data will be required at a given time, they are
given equal priorities by placing them in the
same phrase. The priority of the phrase is
indicated by the order in which it occurs in the
input sentence. Each symbol in the input sen
tence is of the form:

Alpha ® unit 1

where Alpha is the name of some data string
and unit 1 is the name of the external storage.
The identifier mention is used to indicate the
level of the named block to be input if the whole
block is not to be moved at one time. A typical
input sentence might be:

® Alpha ® unit 1
t.\ '0,,+.-. f.\ ",,,,,';-/- 1
~ .LIc;va \.!) fA,IHv .1.

® Gamma ® unit 2
® Matrix A ® unit 2
CD Matrix B ® unit 1

® Dictionary ® unit 1

®
The input list will be used when the memory

load is some fraction of full capacity. The auto
matic input will continue until the memory
reaches some fraction of capacity above which

380 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

the input will cease at the next permissible
point. The particular values have been chosen
to be .2 and .6, respectively.

Data can also be inputted into the machine
by instruction. First, if a narned string is de
fined as being the contents of an external store,
the input of the contents must occur. Next, if
the operand specified in an instruction is not
in the machine but can be located by the system,
enough data must be scanned and sufficient data
inputted to locate the operand. During auto
matic input, the normal program execution con
tinues and is interrupted only by the priorities
assigned to machine operations for use of the
memory. The define instruction which causes
an input also includes the point beyond which
the normal program cannot proceed until the
input is completed. This permits simultaneous
input and compute, with as little wasted ma
chine time as possible. Compute must stop
while an operand is being located.

If part of a string of data is inputted, a link
will be placed at the end of the stored data to
the external storage where the rest of the data
is located. The exact form of the. address will
depend upon the organization of the data in the
external store.

The input list always has a current address
associated with it. This address indicates the
data which is to be inputted next. When the
data indicated in an input phrase has been com
pletely· inputted, the "current" indication is
moved to the next phrase on the list. Thus,
when an input is called for, the current phrase
will contain the names and locations of one or
more data strings. These strings may be:

1. Completely in the external storage and
none yet inputted into the main internal
store.

2. All partly inputted into the main store.
3. Some completely inputted into the main

store but some only partly inputted.

The scratchpad list is used to specify tempo
rary external storage for data and intermediate

results during a computation. This list has the
same characteristics as the input list with the
exception that entries are placed on the list by
programmed statements. This list is used in
much the same way as the input list in that
there is some fraction of full memory capacity
above which output will occur and some frac
tion of full capacity below which this output
will cease. Provisions are made to include the
proper linking so that all parts of the data,
whether in internal or external stores, are
available to the system.

The final output of data must be programmed.
When an external store is used as the object
of a define verb, a point in the program beyond
which the program execution cannot proceed
is also included to permit simultaneous output
and compute. If both programmed input and
output are happening at any given time, the
machine will stop at the first specified "wait"
point until both operations have been com
pleted.

CONCLUSION

The sections of this report have described a
machine language and organization for an ex
perimental digital data system. This system
has been developed and designed in an attempt
to provide the advanced or experimental pro
grammer with a tool which can be used to solve
many of his problems more easily and effici
ently. It is expected that experience with this
system will point out areas in which more work
needs to be done and others in which the prob
lem has been overestimated. It is anticipated
that from such experience more sophisticated
and perhaps simpler ways of solving the same
problems that have been tackled here will be
found. However, it is felt that the first step
had to be taken no matter how faltering or
short it may be. The actual evaluation of this
step now awaits the finish of the logical design
and the subsequent construction of this system.

ASSOCIATIVE TECHNIQUES

WITH COMPLEMENTING FLIP-FLOPS

Edwin S. Lee
Burroug hs Corporation
ElectroData Division
Pasadena, California

INTRODUCTION

An associative memory is one in which a
word is found by specifying some of, or all of,
its contents rather than its storage location.
For instance assume that the words 000, 101
and 111 are stored in an associative memory
with their storage locations unknown. Specify
ing 101 to the associative "address register"
causes the 10catioIl- containing 101 to respond.
Any additional information stored in that loca
tion may also be read out.

The associative memory is attractive from
the logician's point of view. It can perform
logical operations such as table look up and
sorting in far fewer steps than are required
by normal techniques. I , 5, 14-17 In fact for large
word arrays, operating steps may be reduced
by several orders of magnitude.

The main roadblock to the acceptance of
associative memories has been the high cost of
the basic building block: the associative cell.
Apparently only magnetic or cryogenic cells
might be produced at attractive prices. 1-IO This
hasn't been done yet and there is little indica
tion that a large associative memory can be
built in the near future with either technology.
Both approaches contain engineering difficulties
still to be overcome.

An unfortunate by-product of this techno
logical problem has been an overemphasis on
the engineering aspects of the associative mem
ory. Only recently have significant suggestions

381

been made with regards to computer applica
tions. 13 , 17 Even these suggestions are only a
good beginning. .

This paper deals with semiconductor aSSOCIa
tive cells. There are two reasons it does so.
First to demonstrate that there is a techno-, .
logical tool with which any conceivable aSSOCIa-
tive memory, large or small, can be built today.
Second, to show that this technology is a pos
sible source of economically practical cells.
Every characteristic of solid state associative
cells from component tolerances to potential
quantities lends itself to low cost integrated
circuits.

This report is divided into two sections. In
the first section, the associative cell is investi
gated in detail. Its theoretical properties are
outlined and circuits which implement these
properties are analyzed. The circuits dealt
with are complementing flip-flops. They are by
no means the only circuits or even the simplest
£>lV£>111tc! Tho C!ocond section described the or
;~~i;£~tion'" ~;d ~;peration of associative matrices
in detail. Operating difficulties and their solu
tion are illustrated with several examples.

THE BINARY ASSOCIATIVE CELL

The binary associative cell is a circuit which
combines memory and logic. Its output signal
is a function of its own information content
and of the information stored in a second cir
cuit called a compare cell.

382 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

The binary associative cell can store either a
o or a 1. The compare cell can store a 0, a 1, or a
o ("Don't Care"). When the compare cell stores
a 0 or a 1, the output of the associative cell is
true only if it stores the same information and
false if it doesn't. \Vhen the compare cell stores
a 0 the output of the associative cell is true
regardless of its information content. The truth
table of Figure 1 summarizes this logical rela
tionship.

CONTENTS OF CONTENTS OF ASSOCIATIVE
COMPARE CELL ASSOCIATIVE CELL OUTPUT

0 0 TRUE
0 1 FALSE

0 FALSE
TRUE

4> 0 TRUE
4> TRUE

Figure 1. Binary Associative Cell's Output Truth
Table.

The associative cells considered here are
basically complementing flip-flops like the one
shown in Figure 2. \Vhen the flip-flop of Fig
ure 2 is in the 1 state, Q1 is in saturation and
Q2 is off. \Vhen it is in the 0 state Q2 is in
saturation and Ql is off. The collector voltage
of the transistor which is off is several volts
negative. The collector voltage of the transistor
in saturation is near ground.

The write terminal can be used to set the flip
flop to either stable state. It is normally at
ground potential. A negative voltage pulse ap
plied to the terminal forces Q2 on and sets the
the flip-flop to the 1 state.

A positive or negative voltage pulse of proper
amplitude and duration applied to the input

RIA RI

INPUT
~------------~.----------~O

Figure 2. The Basic Cell.

terminal complements the flip-flop. If the cell is
in the 1 state prior to an input pulse, it is in the
o state after the pulse and vice-versa. The input
terminal is normally at ground potential.

The output of the cell is taken at the collector
of Q1. It is defined as true when Q1 is cutoff
(when the cell is in the 0 state) and false when
Ql is in saturation (when the cell is in the 1
state) .

The logical output response described for an
associative cell is produced with the comple
menting flip-flop in a two phase system. In
phase I, a flip-flop cell is in a state determined
purely by its information content. In phase II,
its state is determined both by its information
content and by the information to which it is
being compared. That is, it is in the state which
produces the appropriate associative output.

The transition from phase I to phase II in
volves an operation on the cell which produces
the correct logical output. The transition from
phase II back to phase I -involves an operation
which restores the information content of the.
cell. These operations are determined solely
by the information to which the cell is com
pared and they are enabled through the input
terminal.

Figure 3 shows the basic arrangement be
tween the associative cell of Figure 2, the com
paring circuit,. and a clock. The associative cell
produces the "match" or "mismatch" indica
tion, the comparing circuit contains the infor
mation being compared to that of the associa
tive cell and the clock produces pulses to drive
the system from one phase to the other.

The clock pulse generator produces two nega
tive going voltage pulses. These pulses are
suitably separated timewise and are of proper
amplitude and duration to cause the associative
cell to complement when and if they reach its
input.

Prior to the first clock pulse, the system is in
phase I and the state of the associative cell is
determined solely by its information content.
If it is in the 0 state, its output is true, if in
the 1 state its output is false. The compare
flip-flop is likewise in a state determined by
its information content. If it contains a 0 its
1 output (the one going to the "AND" gate)
is false. If it contains a 1 then its 1 output is
true. The compare flip-flop remains in its initial
state throughout the sequence.

ASSOCIATIVE TECHNIQUES WITH COMPLEMENTING FLIP-FLOPS 383

WRITE

COMPARE

CLOCK PULSE

GENERATOR

OUTPUT

CELL

OF

FIG. 2

INPUT

OUTPUT

COMPARE

FLIP-FLOP

Figure 3. Associative Cell with Compare Controls.

The first clock pulse complements the asso
ciative cell only if the compare flip-flop is in
the 1 state, since both inputs of the "AND"
gate must be true. If the compare flip-flop is
in the 0 state, the output of the "AND" gate
is never true and the associative cell remains
in its initial state. Figure 4A shows what the
clock pulses accomplish. In phase II, after the
first clock pulse, an associative cell is in the 0
state if in phase I it contained the same infor
mation as the compare flip-flop.

After the phase II output has been sensed
the second clock pulse occurs. Since the state
of the compare flip-flop has not changed, the

0

INITIAL STATE INITIAL STATE
Of COMPARE OF ASSOCIATIVE
FLIP -FLOP CELL

COMPARE 0 0
CYCLE 0 f

0

[!]
WRITE 0 0
CYCLE 0 1

0

ASSOCIATIVE CELL fiNAL STATE
OUTPUT OF ASSOCIATIVE

PHASE I-PHASE n-PHASE I CELL

T T T 0
F F F I
T F T 0
F T F

T T T 0
T T 0

F

T

Figure 4. Logical Output Signals of the Associative
Cell in Phase I and Phase II for Compare and Write

Cycles.

associative cell complements again if it comple
mented before, and does not complement if it
didn't. Since an associative cell has either com
plemented twice or not at all during the two
clock pulses, it is in its phase I state after the
second pulse.

At this point one method for writing into an
associative cell will be described. In this writ
ing mode, the information contained in a com
pare flip-flop is reproduced in a selected asso
ciative cell. The cell is selected by pulsing its
write line during phase II.

The information to be transferred is stored
in the compare flip-flop. The first clock pulse
is generated. After this clock pulse the write
line of the selected associative cell is pulsed
so as to set the cell to O. The second clock pulse
occurs. After the second clock, the cell contains
the same information as the compare flip-flop.
This sequence is shown in Figure 4B along with
the initial and final states of the associative cell.

As far as the compare flip-flop and the clock
are concerned, there is no difference between
the compare cycle of Figure 4A and the write
cycle of Figure 4B. As an example consider
the situation of Figure 5, wherein the compare
flip-flop is connected to two cells, A and B. If,
after the first clock pulse of a cycle one cell
receives a write signal then when the system
returns to phase I, it has the same information
as is stored in the compare flip-flop. The other
cell sees only a compare cycle and returns to
its initial state.

OUTPUT OUTPUT

WRITE WRITE
CELL A CELL B

INPUT INPUT

COMPARE

CLOCK PULSE

GENERATOR

COMPARE

FLIP-FLOP

Figure 5. Two Associative Cells with a Common
Compare Flip-Flop and Clock.

384 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Although this is not the only method of
writing into associative cells, other techniques
will not be discussed here.

The "Don't Care" Comparison

As mentioned above, a cell should be able to
respond to a "don't care" comparison so as to
yield a true output in phase II regardless of its
information content in phase I. In doing so, it
must not lose its information.

For the cell shown in Figure 2, additional
output circuitry is required to provide this fea
ture. One circuit which may be added is shown
in Figure 6. The output terminal of the circuit
of Figure 2 is connected to point 1 of Figure 6.

Figure 6. Cell Output Circuitry which Implements
the "Don't Care" Logic.

The new output of the cell is the output of this
network. The "don't care" feature is enabled
through control of the voltage V.4..

When the output signal of the associative
cell is a function of the state of the cell, V A is
at a negative voltage (say -2.0 volts). When
01 lQ In 'l~tllr~tif)n (). i'l ,..If)'lA tf) crrf)l1T1rl !lTlrl !lTl """1.1--.6. __ v_ _ ' 1.Lo..J _.a. f,."J_ v'V" e&"-.4 &A.I '\A. '-"I

emitter current flows in Q3. Current is availa
ble at the collector of Q3 if required. If the
current is sufficient to supply that required by
Rl then Q3 can saturate and eollt is about -2.0
volts. This is a false output. When Q1 is cut
off, el is more negative than -2.0 volts so that
Q3 is cutoff and no current is available at- the
output. This is a true output. The "Don't Care"
comparison is made when VA is at ground in
stead of -2.0 volts. Since Q3 is cutoff regard
less of the condition of Q1, enll t is always true.

If the "don't care" control is separate from
the 1 or 0 search control, it is possible to oper
ate on the flip-flop as though searching for a 0
or 1 vvhile masking this operation v:ith "don't
care."

The interconnection between a cell with the
"don't care" feature and the full compare cell
controlling it is shown in Figure 7. A full com
pare cell consists of both the input and the V A

controls, Each of these controls contains a
memory element and output logic.

The associative cell's input controls, those
determining whether or not the associative cell
complements on the generation of a compare
clock pulse, are the "AND" gate and the com
pare flip-flop shown previously.

The V.4. controls are a switching amplifier
and a memory element. The amplifier holds
VA either at ground or at the appropriate nega
tive voltage.' V.4. is at the negative voltage when
the V A flip-flop contains a 0, and V A is at ground
when it contains a 1.

To summarize: A compare cell may be in any
one of four different states. The compare flip
flop may either permit or inhibit complement
ing of the flip-flop by the clock and the V A flip
flop may cause V A to be at ground or a nega
tive voltage. Each of these four states of the
compare cell is designated by one of the follow
ing four symbols; 0, 0, 1 and I. These symbols
are defined as follows:

0: "Zero" or "Zero Compare." The compare
flip-flop is set so as to inhibit a compare
clock pulse. The V A control flip-flop con
tains a 0 (allowing a normal readout from
the associative cell).

COMPARE

CLOCK

ASSOCIATIVE I----O~~ OUTPUT.

CELL

INPUT

,-
I

-------.,

LEVEL

CONTROL

I

V
I COMPARE
I CELL I

I

I
~--~l~ 1 I

COMPARE VA I
I FLIP-FLOP FLtP-FLOP I
! . R S. . R S.

L -f--f----f--j--J
'-----r--' '-----r---'

C V

Figure 7. Associative Cell, Compare Cell and Clock
with Logical Interconnections.

ASSOCIATIVE TECHNIQUES WITH COMPLEMENTING FLIP-FLOPS 385

0: "Masked zero." The compare flip-flop is
set so as to inhibit a compare clock pulse.
The V A control flip-flop contains a 1
(causing V A to be at ground).

1: "One" or "One Compare." The compare
flip-flop is set so as to permit a compare
clock pulse to complement the associative
cell. The V A control flip-flop contains a O.

1:: "Masked One." The compare flip-flop is
set so as to permit a compare clock pulse
to complement the associative cell. The
V A control flip-flop contains a 1.

Figure 8 is a Truth Table representation of
the associative cell's output as a function of the
state of the compare cell and its own informa
tion content.

There are times when a second gated output
of the type shown in Figure 6 is added to an
associative cell. The second output is "gated"
(as the first one is by the voltage V A) by a
separate set of controls. For instance, in a
group of associative cells storing a word of
information, the second output of these cells
might be used for word addressed readout. The
control voltage of the second output, which is
called V B to distinguish it from control voltage
of the associative output, would be common for
all bits in a given' word. The outputs would be
individually connected to appropriate bit posi
tions of a readout register.

A flip-flop with the two separately controlled
outputs is shown in Figure 9. The output tran
sistor Q3 is connected to the voltage V A which
is controlled by the compare cell. The output
transistor Q4 is connected to VB' Q3 conducts
when it is enabled and when the flip-flop is in
the 1 state. Q4 conducts when it is enabled and
the flip-flop is in the 0 state.

INITIAL STATE OUTPUT OF
STATE OF OF ASSOCIATIVE ASSOCIATIVE CELL

COMPARE CELL CELL PHASE I PHASE n:

0 0 T T
0 I F F

~ 0 T T
~ I T T

0 T F

I F T
1 0 T T
1 T T

Figure 8. An Associative Cell's Output Signal for All
States of a Compare Cell.

(J)
INPUT <r-----+-------'

Figure 9. A Cell with Two Controlled Outputs.

Figure 10 is a black box which represents
the circuit shown in Figure 9. The various
input and output labels have the following
significance:

I: Complementing input. A pulse applied
here complements the flip-flop.

W: Write line. A negative signal on this
line sets the cell to the 0 state, a posi
tive pulse sets it to 1.

CO: Compare output. Produces the appro
priate associative output signal when
the system is in phase II.

CC: Compare control. VA is connected to
this point. A true CC input enables
the 1 or 0 comparison from CO.

RO: The read output. This output is true if
the RC input is false or if the RC input
is true and the flip-flop is in the 1 state.,

RC: The read control input. V B is connected
to this point. A true RC input enables
reading.

A n Associative Word

The arrangement of a three-bit associative
word, a three cell compare register and other
circuitry is shown in Figure 11. The compare

coil--~.

W t---.-
RC I CC

Figure 10. Black Box Representation of the Two
Output Cell.

386 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

BIT 2 BIT 1

Figure 11. A Three Bit Associative Word with a
Compare Register.

outputs of the associative word are commoned
and have a single load resistor at the common
point. The voltage eollt of the common point is
at one of two values. If all the compare outputs
of the word are true, then eout is at about -V
volts (say -6 volts). If, however, one or more
CO's are false then eout is at around -2.0 volts
(the value of V A).

In the light of the preceding remarks, we can
say that the CO's of the word are "ANDED."
All CO's must be true for eout to be true; eout

is the signal produced by the "Word Match
Detector." If it is true during phase II then
the associative word matches the word in the
compare register. A mismatch in any bit posi
tion will cause eollt to be false.

The compare register may cause a word to
match under· several sets of conditions. To
clarify this point consider the following ex
ample: An associative word contains the infor
mation 101 (read from bit 3 to bit 1). If the
word 101 is loaded into the compare register
and the system goes into phase II, then a match
is indicated. However, since the "masking"
operation causes an associative cell's output to
be true regardless of its state, then the follow
ing words in the compare register also cause
the associative word 101 to match: A) 100, B)
000, C) fJ00, D) lIZ, E) 111, and 21 other
combinations.

Comparisons made with compare words such
as A, B, and E are called partial field compari
sons. In such comparisons certain bits in the
associative word must match those in the com
pare register, but in other bit positions, the
associative cell may have either value. For an
associative word to match, compare word A,

for example, it must have a 1 in bit position 3,
and a 0 in bit position 2 but may have either a
o or a 1 in bit position 1. Associative words
storing 101, 100, 000, or 001 would match com
pare word B. Compare words C or D cause
any associative word to indica' ~ a match re
gardless of its information content. Further
more any word matches with the system in
phase I as well as in phase II.

The read and write controls in Figure 11
are common to all bits in the associative word.
The whole word may be written into or read
out in a single cycle. When triggered, the write
control sets all cells to o. The read control, when
triggered, enables the RO signal on all bits in
the word. Interpreting the ROsignal is not
always a straightforward operation. vVhile the
system is in phase I, the RO signal is deter
mined by the information content of the cell,
true when the cell stores a 1, false when it stores
a O. However, in phase II the RO signal is a
function of both the cell information and the
contents of the related compare cell. If the
compare cell stores a 0 then the RO signal is
correct in phase II, but if the compare cell
stores a 1, then the RO signal must be inverted.

AN ASSOGIA TIVE MATRIX

A typical associative matrix is shown in Fig
ure 12. It is made up of 3 associative words.
Each word has 4 bits. It has a compare reg
ister, and a readout register. There is a word
match detector (WMD), a read control and a
write' control for each word.

The one point shown in this matrix, which
was not fully demonstrated in Figure 11, is the
connection of the RO outputs to the readout
register. The RO's of a given bit position make
up a logical "AND" just as the CO's of a word
do. All RO's must be true to produce a true
signal at the readout register. If anyone (or
more) is false, the readout register will receive
a false signal. Since a false signal can only be
produced by a selected word, then the state of
each bit in a selected word will be duplicated
in the readout register.

The read control circuits are gated amplifiers.
Figure 13A shows typical gating to one of these
circuits. Either of two input gates may enable
the circuit. The first gate has two "ANDED"
inputs, one from an address register, the other
from the 0 side of an address control flip-flop.

ASSOCIATIVE TECHNIQUES "tITTmTT
H.L.J..l".J. C01,fPLE:rvfENTING FLIP-FLOPS 387

Figure 12. A Three Word Associative Matrix with a Compare Register.

The second gate also has two "ANDED" inputs,
one from the word's own WMD and the other
from the 1 side of address control flip-flop. The
address control flip-flop state determines
whether the read operation is to be performed
on a matching word or on a word whose physi
cal address is contained in the address register.

The word write control circuits are also gated
amplifiers. As shown in Figure 13B, they have
an input from the address register which is
"ANDED" with a "write" clock.

R eading Words from the Matrix

As indicated above there are two addressing
means for reading from an assoeiative matrix.
One is to read from a selected physical IOL.ltion,
the other is to read from a word containing
specified information in certain of its bit posi
tions.

Reading from a particular physical location
is called "location addressed reading." The
other form of reading is called "content ad
dressed reading." Content addressed reading
may produce multiple responses. Then it is

ADDRESS N FROM
ADDRESS REGISTER

"READ MATCHING
TO "RC"

WORD N WORDS"
TERMINALS

READ
OF CELLS

DRIVER
OF WORD N

LINE N "WMD"

"READ MATCHING
WORDS"

A

TO "w·
WORD N ADDRESS N FROM

TERMINALS ADDRESS REGISTER

OF CELLS
WRITE
DRIVER WRITE

OF WORD N

B

Figure 13. A Read and a Write DrIver and Their
Input Controls.

necessary to have a scheme whereby matching
words may be accessed sequentially. A solution
to this problem is described in the section on
multiple matches. At this point we assume that
only one word responds to either form of
addressing.

The operating sequences necessary to per
form each type of reading are described below
step by step:

388 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Locatio'n Addressed Read (LAR)

A. Load the address register with the physi
cal address of the location to be read.

B. Set the address control flip-flop so as to
enable word selection from the address
register.

C. Strobe the readout register.

Content Addressed Read (CAR)

A. Enter identifying bits into the compare
register. Enter 0 into all other bit posi
tions of the compare register. Set the
address control flip-flop to enable read
out of a matching word.

B. Generate a compare clock pulse so as to
put system into phase II.

C. Strobe the readout register.
D. Generate compare clock pulse so as to

return system to phase 1.

An; Example of CAR

Assume that the associative matrix of Figure
12 contains the information 1100 in word 1,
1001 in word 2 and 0101 in word 3. When the
problem Is to find what other information is
contained in any word which has a 0 in bit
position 4 and a 1 in bit position 3, the follow
ing occurs:

A. Enter 0 1 " " in the compare register.
B. Enter phase II.

At this point the states of the cells
in the words and their associative
output signals are these:

Cell States
Word 1: 1000
Word 2: 1101
Word 3: 0001

CO Signals
FTTT
FFTT
TTTT

Only word 3's WMD will be true and its
read control circuit will enable the RO's
of word 3.

C. Strobe readout register.
The readout register will see 0001, but
since the third bit of the compare word
is known to be 1, then the word readout
is modified to 0101.

D. Return system to phase 1. The initial
information content of all associative
words is restored.

Writing Words into the Matrix

Writing may occur under one of three sets
of conditions. A word may be written into a
specified physical location. A word may be
written into any convenient position which
doesn't already contain information. A word
may be written into whatever position a second,
specified word occupies at the beginning of the
write cycle. The first operation is called Loca
tion Addressed Writing (LAW), the second
Loading, and the third Content Addressed
Writing (CAW).

All three operations involve location ad
dressed writing, but in Loading and CAW it
is also necessary to find the location which
meets the specified requirements. The latter
two require a compare cycle previous to or eon-
current with the location addressed writing
operation.

Location Addresed Writing (LAW)

A. Enter into the compare register the in
formation to be written. Enter into the
address register the address of the loca
tion to be written in.

B. Generate the first compare clock pulse
so as to send the system into phase II.

C. Generate a write pulse at the address
selected by the address register.

D. Generate the second compare clock pulse
so as to return the system to phase 1.

Loading

Loading may follow one of two possible se
quences depending on the manner in which an
unused word location is identified. It can be
identified by an extra bit in each word. This
bit might be a 0 when no information is stored
in the related word location and a 1 when in
formation is stored. An unused word location
can also be Identified by the fact that it contains
a 0 in every bit position during phase 1. This
of course means that the code word of all O's
cannot be used as an information word.

The second approach is more efficient in that
for N bit positions 2}.· -1 code words are usable.
The first approach can only accommodate 2(K-l)

code words.
If the additional bit position is used then

it must have a corresponding cell in the com
pare register. This cell will contain a 0 or a 1

ASSOCiATiVE TECHNIQUES WITH COMPLEMENTING FLIP-FLOPS 389

when searching for a word. It will contain a
o when looking for an empty word.

Load Sequence 1

(Wherein an extra bit identifies an empty
word location)

A. Enter the word which is to be written
in the matrix, into the compare register,
but mask all bits. That is for l's enter
I and for'O's enter ff.
Sei; the extra bit compare cell to O.

B. Sense the' WMD's and enter address of
true WMD into the address register.

C. Generate first compare clock pulse so as
to send the system into phase II.

D. Generate a write pulse at the address
selected by the address register.

E. Return the system to phase I with a
compare clock pulse.

Load Sequence 2

(Wherein an empty word location contains
all O's)

A. Enter the word which is to be written
in the matrix, into the compare register.

B. Sense WMD and enter address of true
WMD into the address register.

C. Generate the first compare clock pulse.
D. Generate a write pulse at the address

determined by the address register.
E. Return the system to phase I.

In both of the above sequences, the WMD is
sensed while the system is in phase I. As long
as no 1's are being used in a comparison, it is
not necessary ro go to phase II for sensing. In
sequence 1, only the extra bit value counts and
a 0 is compared there while all other bits in the
compare register are I or 0. In sequence 2, all
O's are to be compared when searching for an
empty word location. A word storing all O's
will always have a true WMD in phase I.

Content Addressed Writing (CAW)

A. Enter the identifying bits of the word
which is to be altered into the compare
register.

B. Send the system into phase II.
C. Sense the true WMD and enter its ad

dress into the address register
D. Return system to phase I.

E. Put in the compare register the word
to be written in place of the old word.

F. Send system into phase II.
G. Generate write pulse at address desig

nated by the address register.
H. Return system to phase I.

An Example 0/ CA W

Assume that the associative matrix of Figure
12 contains 0101 in word 1, 0110 in word 2 and
1111 in word 3. The word 0001 is to be written
in the location in which 0101 is stored.

A. 0101 is entered into the compare register.
B. The system enters phase II so that word

1 goes to 0000.
C. The WMD of word 1 is true so that a

"1" is stored in the address register.
D. The system returns to phase I. The

information content of the word is
unaltered.

E. 0001 is entered into the compare register.
F. The system is sent to phase II.
G. A write pulse is generated on word 1.

H. The system returns to phase I. Word 1
contains 0001, word 2 contains 0110 and
word 3 contains 111l.

A Special Case of CA W

There may well occur in associative matrices
the situation in which only a portion of a word
would be altered and the fixed portion of the
word would be used to address the system.
Then this sequence could be used:

A. Enter full word into the compare reg
ister, but mask those bits not used for
addres~ing .

B. Send the system into phase II.
C. Sense the WMD and enter the address

of the matching word into the address
register.

D. Generate a write pulse on the word
designated by the address register.

E. Return the system to phase I.

An Example of the Special Case of CAW

Assume that the associative matrix of Figure
12 contains 0101 in word 1, 1001 in word 2 and
1111 in word 3. The word with 01 in bits_ 4: and
3 is to have its last two bits altered to 10.

390 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

A. Enter 01 r 0 into the compare register.
B. Send system to phase II. Only the WMD

of word 1 will be true since the other
words will have at least one associative
mismatch in bit positions 3 and 4,

C. Since the WMD of word 1 is true, the
address "I" is entered into the address
register.

D. A write pulse is generated on word 1.
E. The system returns to phase 1. Word 1

contains 0110, word 2 contains 1001,
word 3 contains 1111.

Multiple Matches-in Two Dimer,~sions

In discussing the reading and writing se
quences we have assumed that any compare
operation results in a unique associative re
sponse. This is not always the case, especially
when the load operation is performed. It is
necessary to be able to choose one address at
a time when many respond to a content com
parison. This problem is simply solved in a
two dimensional system by introducing priority
gating. When two or more responses are gen
erated, they are equally valid. That is, if the
locations which respond are to be read sequen
tially or written into sequentially, it doesn't
matter which location is chosen first. If it did
matter, then the operator must have failed to
label his word adequately prior to comparison
since it must be some additional information
contained in one word which makes it prefera
ble to others. Since the matching words have
equal validity, we may sequentially output re
sponding words in an arbitrary order. A pri
ority network which makes the selection on the
basis of the relative physical locations of the
words is described below. This priority net
work is shown in Figure 14. It consists of mem
ory elements and gating. Each memory element
is associated with a specific word location.

Assume that all three WMD's are true when
the "Sense WMD" command occurs. Then, all
three flip-flops are set, their S outputs are true
and their S outputs false. Then only the "AND"
gate 203 (of the group 203, 204 and 205) is
true. Since gate 203 controls the word 1 read
and write circuits (See Figure 13A and 13B)
then they alone may be true. If, after the ap
propriate read or write operations have oc
curred, a clock pulse occurs on line 301, then

Figure 14. Priority Gating.

TC~~
.t£AD/ T[
CONT~LS

10 WOMl#Z
It£AD/WRlTE
CONT~S

TO WOItD #3
MAD/WItITE
CONTROLS

the "word 1 match memory" will be cleared by
gate 208. With this cell cleared gate 203 will
be false and gate 204 will be true. Word 2 may
be operated on. Similarly, after operating on
word 2, line 301 may be pulsed again, clearing
the word 2 match memory. Gate 204 will then
be false and 205 will be true allowing operation
on word 3. Again, if WMD 1 and 3 are true,
so that only memories 1 and 3 are set, word 1
will be operated on first followed by word 3.

The memory elements are not strictly neces
sary in the priority networks. We could simply
produce the "not" function of each WMD, and
make up gate 203, 204 and 205 directly. How
ever, this technique leaves the problem of how
to read out more than the highest priority vvord.

Solving this problem requires a method
whereby a word, once it has been operated on,
will be caused to mismatch-without changing
the information content of the word. This can
be accomplished by adding an extra associative
bit to every word. This bit is not the same one
used for load sequence 1. This extra bit con
tains a 0 at the beginning of every operation.
When a word is operated on, read or write, the
extra bit is set to 1. The compare register al
vlays searches for 0 in this bit. position so that
setting the bit to 1 induces a mismatch in the
word. The additional bit in every word some
what offsets the elimination of the memory
cells in Figure 14.

ASSOCIATIVE TECHNIQUES WITH COMPLEMENTING FLIP-FLOPS 391

Three Dimensional Associative Matrices

The. usual arrangement of associative mat
rices with over 100 words will probably be
three dimensional. That is, a word's physical
location will be designated by, and arranged
in, two coordinates and its bits in a third co
ordinate. This is identical to the arrangement
of cores in a random access memory. The word
will be addressed by its x, y coordinates. The
bits of a word will lie along the z axis, (see
Figure 15).

The reason for this address organization is
similar to that for the normal memory. It
results in a reduction of addressing and sensing
equipment. However, in the associative matrix
the reduction may not be comparable to that
in a core memory since, for some operations,
coincident addressing is not adequate.

X READI WRITE
DRIVERS

X "WMD'S"

- Figure 15. Three Dimensional Organization of an
Associative Memory.

Figures 12, 13, and 14 display some circuitry
common to the three dimensional matrices as
well as to the two dimensional ones. The com
pare register is connected to all words as it is
in Figure 12. The WMD's are arranged in a
different manner.

The connections from the x and y word match
detectors to the word outputs is shown in Fig
ure 16. Each word output goes to two WMD's,
one which represents its x address and one
which represents its y address. When a word
matches both WMD's to which it is connected
go true. The outputs of all words on an x or y
plane are "OR'd" to the plane's WMD so that
if one or more words on a plane match, the
WMD goes true.

The output of a WMD is logically connected
to the read and write drivers of its planes.
In order to read from or write into a particular

word both the X and the Y read or write driver
associated with it must be on.

All the basic read and write sequences are the
same for the three dimensional arrangement
as for the two dimensional case. The only addi
tional consideration is that addresses are now
given, and selected, in terms of an X and a Y
location. The usual coincident access techniques
must be employed to implement this.

Multiple Matches in a Three Dimensional
Matrix

The problem of resolving multiple matches
is more complicated in the three dimensional
case. It is not always possible to solve the prob-

-v

X

WMO'S

Figure 16. Organization of the WMD's in the Three
Dimensional Matrix.

lem with priority gating. Two examples will
illustrate this.

In the following two examples, there is a 9
word associative matrix arranged in 3 X planes,
labeled Xt, X 2 , and X3 and 3 Y planes labeled
Yt, Y 2 , and Y 3• Any word in the matrix has
a unique XY location.

Case 1: A CAR sequence is started. At com
pare time four locations match,
X I Y 3, X 2Yt, X 2Y 2 and X 3Y 2• Con
sequently, WMD's Xb X 2, X 3 , Yh

Y 2 and Y 3 are true. It is not pos
sible to select any pair of true X
and Y WMD's and wind up address
ing one of the matching words. That
is, WMD's Xl and Y 1 are both true,
but address Xl Y I is not one which

392 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

corresponds to a word which
matched. All that is known is that
there is at least one word in the Xl
plane which matches. The Y ad
dress (es) of the word or words is
unknown.

Case 2: A CAR sequence is started. At com
pare time three word locations
match: X 1 Yh X1Y:!, and X 1Y3 so
that WMD's Xl, Yb Y:! and Ya are
true. It is possible to resolve this
multiple match by simple priority
gating on the Y WMD outputs. This
is so because only one X WMD
responded.

The two cases both illustrate the problem
and indicate a solution to it. (Another method
for resolving the problem has been suggested
by Frei and Goldberg in reference 15.) Any
set of multiple matches involving only one X
or Y plane can be resolved by priority gating
on the other plane. Therefore, when a set of
matches involves multiple X and multiple Y
planes, an operation must be performed which
will prevent matching signals from all words
but those on one of the responding X or Y
planes. Then, the match or matches produced
by the words on this plane can be sequentially
operated on through priority gating on the
WMD outputs of the other plane. We will cover
one method of implementing this operation.

Two additional bits are required in each as
sociative word, these bits, and their drivers
are shown in Figure 17. The bits in column A
are in the 0 st.at.e at the beginning of a cycle.
They are set to 1 by a coincidence of a true
read control line on the word, and a "Read
Mark" clock. They are identical to the extra
bits suggested in the preceding section. The
compare register cell for column A normally
contains O. The bits in column A simply cause
a word to mismatch once it has been read. The
bits in column B are in the 1 state at the
beginning of a cycle. They are set to 0 when
the appropriate "X plane column B" control is
triggered. The compare cell B normally con
tains 0. When the X plane control is triggered
the column B bits in words X1Yh X 1Y 2 and
X 1Y 3 are all set to O.

Reconsider Case 1 for a system which in
cludes the A and B bit planes shown in Figure

I :~~~ I
~

r-tl
; II XI YI

: ,

I I
'READ BUS

I
I
I

X2
Y

'
I
I
I

tREAD BUS

I
I
I

X3 Y,
I
I
I

tREAD BUS

TO Y2 AND Y3
ON X3 PLANE

~

Figure 17. Control and Organization of Special Bits.

IF NO X-Wl1D TRUE
AND IF ClH'ARE CELL
B - 0

IF SINGLE X
IXt SINGLE Y
Wl1D TRUE

READOOT A MATCHIMG
WIXtD AND

GENERATE I'IISIIATCH IN
THE COLU~ A CELL

OF THAT WORD

IF ~TIPLE X
ND IIJLTIPLE Y
II)'S TRUE

SET L~EST NUlIBERED
MATCHING X PLANE

COLUMN B BITS TO 0
SET COtI'ARE CELL B

TO 0

Figure 18. CAR Operation in which Multiple Matches
are Readout Sequentially.

ASSOCIATIVE TECHNIQUES WITH COMPLEMENTING FLIP-FLOPS 393

17 and priority gating on the WMD outputs
of the Y planes. There is no need for flip-flops
on these outputs. The generalized timing dia
gram for resolving multiple matches in a CAR
sequence is shown in Figure 18.

After the first compare clock pulse, words
Xl Y:h X:!Yj, X:!Y:! and X:{Y:! match. Since there
are multiple X and Y responses, the Xl plane
is isolated so that only Xl Y:~ matches. It is
readout and caused to mismatch. Then the X:! .
plane is allowed to match and X:!Y1 and X:!Y:!
are readout in that order based on the Y pri
ority gating. Finally X 3Y 2 is readout.

For other operations CAW, Loading and
the like, the sequence for resolving multiple
matches is similar to that shown in Figure 18.
However, another operation or series of opera
tions would be substituted for step E.

To implement the content addressed write
(CAW) sequence, memory cells are added to
the word match detectors. When step E is
reached, instead of operating on the location
indicated by the WMD's, the address of location
is stored in the WMD memory cells. The system
returns to phase I at which time the word to
be written is entered in the compare register.
The system goes into phase II and the new
word is written in the location indicated by the
WMD memory cells.

CONCLUSIONS

The investigation of solid state circuits used
as associative cells should be started in earnest.
The cells described are far from being the
simplest cells, either logically or circuit-wise.
We have designed and built solid state cells
less than half as complex as those described.

The solid state cell offers several technically
attractive features. Its output signal to noise
ratio is on the order of 106 • This is several
orders of magnitude greater than that provided
by magnetic cells, such as bi-cores or trans
fluxors. The signal to noise ratio is a principle
factor in the possible length of associative
words.

The solid state cell has input and output
signal energy levels which are roughly equiva
lent. Thus cross talk problems, a real headache
in large arrays, are minimized.

The input energy requirement of a solid state
cell can be made many orders of magnitude
lower than for magnetic cells. The input re
quirements are the principle limiting factor
for the possible number of words in an associa
tive memory.

The output signals of the solid-state cell are
compatible with the external logic. This elimi
nates the need for buffer circuitry such as sense
amplifiers. Also these signals can be maintained
for as long as they are needed.

The component tolerances in the solid state
cell are very loose. Transistors require hFE'8 of
as low as 15, low breakdown voltages, etc.
Resistors may have tolerances of ± 30 %, ca
pacitors may have tolerances of ± 50%. Loose
tolerance requirements are a boon to integrated
circuits.

The solid state circuit can be fabricated today
from standard components and used in a nor
mal environment. For a price, large memory
arrays could be built today with standard com
ponents. If the 2N 404 were used along with
loose tolerance capacitors and resistors, the
component cost of the cells described here is
less than $2.00 in every case. We have designed
cells performing the most complex function out
lined here whose component cost, today, ap
proaches $1.00.

We have constructed and operated at a 2.5
mc clock rate a 9 word (8 bits per word) Asso
ciative Memory. This memory performs all
operations described here and in addition can
sort· information using a routine not yet de
scribed in the literature.

As pronlising as word organized associative
matrices look, thinking should not be confined
to applying associative cells in· this manner.
For instance, the associative cell seems to be
a natural in iterative logical operations. To
properly investigate these possibilities, more
logicians should be brought into the picture.

BIBLIOGRAPHY

1. A. E. SLADE and H. O. McMAHON, "A
Cryotron Catalog Memory System," Pro
ceedings of the Eastern J oint Computer
Conference, December 1956.

2. A. E. SLADE and C. R. SMALLMAN, "Thin
Film Cryotron Catalog Memory," Sympo-

394 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

sium on Superconductive Techniques for
Computing Systems, May 1960.

3. R. R. SEEBER, "Cryogenic Associative Mem
ory," National Conference of the Associa-
tion for Computing :Machinery, August
1960.

4. P. DAVIES, "A Superconductive Associa
tive Memory," Proceedings Spring Joint
Computer Conference, 1962, p. 79.

5. V. NEWHOUSE, "A Cryogenic Data Ad
dressed Memory," Proceedings Spring
Joint Computer Conference, 1962, p. 89.

6. R. ROSIN, "An Organization of an Asso
ciative Cryogenic Computer," Proceedings
Spring Joint Computer Conference, 1962,
p.203.

7. M. ASHER, "G. E. Cryogenic Associative
Memory Circuit Developed," Electronic
News, March 19, 1962, p. 59.

8. R. C. MINNICK, "Magnetic Comparators
and Code Converters," Symposium on the
Application of Switching Theory in Space
Technology, February. 1962.

9. J. R. KISEDA, H. E. PETERSON, W. C. SEEL
BACH and M. TEIG, "A Magnetic Associa
tive Memory," IBM Journal, Vol. 5, #2,
p. 106, 1961.

10. W. McDERMID, "A Magnetic Associative
Memory System," IBM Journal, Vol. 5,
#1, January 1961, p. 59.

lL R. J. KOERNER) "Memory Array Searching
System," U. S. Patent #3,031,650.

12. ALAN CORNERETTO, "3-K Bit Associative
Memory Works at Room Temperature,"
Electronic Desip-n, July 5, 1962, p. 8.

13. W. K. ORR, "Look Ahead Logic Simplified,"
to be published.

14. R. R. SEEBER, "Associative Self-Sorting
Memory," Eastern Joint Computer Con
ference, December 1960.

15. E. H. FREI and J. GOLDBERG, "A Method for
Resolving Multiple Responses in a Parallel
Search File," IRE Transactions on Elec
tronic Computers, December 1961, p. 718.

16. R. R. SEEBER and A. B. LINDQUIST, "Associa
tive Memory with Ordered Retrieval," IBM
Journal, January 1962, Vol. 6, #1, p. 126.

17. MORTON H. LEWIN, "Retrieval of Ordered
Lists from a Content Addressed Memory,"
R.C.A. Review, June 1962, p. 215.

18. J. ATKIN and N. B. MARPLE, "Information
Processing by Data Interrogation," IRE
Transactions on Electronic Computers,
Vol. EC-11, #2, April 1962.

ACKNOWLEDGEMENTS

Many thanks to Arnold Jorgensen and Larry
Bewley who provided the opportunities and the
encouragement this work required; also to Jean
Holtman who typed it in its many forms, and
Maurine Yenglin for her fine illustrations.

PROGRAMMING AND DESIGN CONSIDERATIONS OF A

HIGHLY PARALLEL COMPUTER*

Jon S. Squire
Sandra M. Palais

Information Systems Laboratory
University of Michigan
Ann Arbor, Michigan

A number of automata and automatic com
puting devices have been proposed whose op
erations could be considered highly parallel.
These include von Neumann's tesselation model
for self-reproducing automata,tl the ENIAC
computer,l John Holland's iterative circuit com
puter,;~ S. H. Unger's spatially oriented com
puter,lO and the SOLOMON computer.H The
literature available on these machines indicates
programming facility played a subordinate role
to design. Cf. Newell,:; Schwartz,7 Garner and
Squire.:!

The purpose of this paper is to present a
machine organization where the emphasis is
on the programmability of highly parallel nu
merical computation. Ease, convenience, and
economy of design are secondary considerations.

A highly parallel computer is defined as a
machine that is capable of simultaneous execu
tion of instructions where computation time is
limited by numerical analysis rather than lack
of hardware. Since the execution of an instruc
tion depends on data, over which the pro
grammer has no control, the hardware provides
the necessary synchronization. There is no re
striction on the location of data or instructions
because algorithms can require an array of
instructions to execute simultaneously on scat-

tered groups of data (for example, the test for
convergence of a number of independent pro
cedures) .

Some specific examples will show how pro
grams can be written where many of the in
structions can be executed simultaneously dur
ing an execution cycle. Moreover, the number
of execution cycles is far less than would be
req!lired on a single processor computer. Con
sider first the simple task of summing N num
bers. On a conventional computer this requires
N-l execution cycles, while on a highly parallel
computer only 1 +Zog:!N execution cycles are
required, e.g. given 1000 numbers perform 500
additions (on disjoint pairs) during the first
execution cycle, then perform 250 additions on
pairs of these results during the second execu
tion cycle, etc. Thus, there is a ratio of 999 to
11 in the number of execution cycles. Next,
consider multiplying a 20 element vector, B, by
a 20 x 20 matrix, A. On a single processor
computer, 780 additions and multiplications ar~

:!o

required to compute Cj = 2: aijb j for j=1,20.
J 0·.= I

On a highly parallel computer, the 400 multi
plications are performed during the first ex
ecution cycle, and only six more execution cycles

* Under contract with the United States Air Force, Aeronautical Systems Division, Contract No. AF 33(657)-
7391. Wright-Patterson Air Force Base, Ohio.

395

396 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

are needed to produce the 20 sums of 20 num
bers each. Thus, a ratio of 780 to 7 in the
number of execution cycles is obtained. Other
computations studied in detail include matrix
inversion where several matrices of instruc
tions are used to obtain a ratio of 40,000 to 61
in the number of execution cycles. The algo
rithm used is given in,4 and the highly parallel
computer program is given in Appendix A.
And finally, in demonstrating programmability,
a ratio of over 50 to 1 is obtained in the number
of execution cycles on the numerical solution of
20 second-order differential equations using the
fourth-order Runge-Kutta method.

A formal procedure was also devised for
detecting the degree of parallel computation
obtainable from a given algorithm. This work
is presently being prepared for publication.

The following computer organization is pre
sented to show that the design of a highly
parallel computer is technically feasible. The
computer is constructed from a number of iden
tical modules. Each module contains: 1) one
word of storage which may contain either an
instruction or data, 2) arithmetic and opera
tion decoding circuits, and 3) path-connecting
circuitry. See Fig. 1. There are 2n modules
(words of storage) each directly connected to
n other modules. In particular, each module is
placed at the vertex of an n-dimensional cube,
and the edges of the n-cube are wires. See Fig.
2 for the two-dimensional layout of the ma-

I

I

I
I

II

II

t
I STORAGE REGiSTER I

I
d,

dz. PATH , cOt#£CTlNG
ORCUITRY G BASIC ARITHMEnc.

LOGICAl, AND SHIFT CIRCUITS

I
OTHER MISC.

MOOJLE CONTROL
CIRCUITRY

1~11 : OPERATION •
i REGISTER

t

CENTRAL TIMING AND
SYNCHRONIZATION

II

P
s

} r
R ' .

LAYER I

LAYER 3

NOTE: For a 4096-module
machine (n-12) there would
be 6 masks each with 2048
lines formed trom 64 copies
01 a 32-lIne pattern.

LAYER 2

LAYER 4

E3 B B B
EJ EJ E1 EJ
E1 8 El 8
B E3 E1 E1
MODULE REPRESENTATIONS

AS BINARY NUMBERS

(ADDRESSES)

chine. Execution proceeds as follows: (a) Each
module containing an instruction to be executed
becomes active. (b) Paths are formed from
active modules to modules designated by the
three addresses of each instruction. A path
may enter a module, pass through a gate in the
path-connecting circuitry, and leave a module
without affecting the storage or arithmetic of
the module. (c) Operands are routed alopg
paths to the modules where arithmetic opera
tions are performed. (d) The operations are
performed. (e) When all operations are com
pleted and paths removed, the next execution
cycle begins .

The motivation in choosing this organization
for obtaining the desired programming ability
stems from the following ideas about realizing
a highly parallel computer. 1) The only way
to be sure there are enough operation decoders
and arithmetic units available is to have one
for each word of storage. This also avoids all
priority problems associated with assigning in
structions to processors. Further, with more
than one word of storage per module, there

PHYSICAL AND LOGICAL DESIGN OF A HIGHLY PARALLAL COMPUTER 397

would be insufficient path connecting to give
simultaneous random access. 2) The modules
could be identical, thus interchangeable for
servicing, and adaptable to mass production
techniques. 3) The n-cube is the geometric con
figuration providing maximum interconnection
while retaining one-half the vertices isolated
from each other. Without such isolation there
is the unsolvable priority problem of two iden
tical modules attempting to connect to each
other simultaneously. In this case, either both
connect and computation errors occur, or
neither connect and the machine hangs up. The
isolation is accomplished by having all modules
with an even number of ones in their address
extend paths one unit. Then, the remaining
modules extend their paths one unit, etc. The
logic for determining which of a module's n
neighbors a path should connect to is performed
by a simple logical circuit. The address of the
path's destination is ring-summed with the
module's address. Each bit position where a
one results designates a module that is one unit
of Hamming distance closer to the destination.
The only remaining priority problem is when
two paths emanating from the same module
require the same path segment. Since this is
not a function of the state of any other module,
a simple logical matrix can be used to allow
one path to extend and reroute the other path.
Further details about operation codes, pro-

gramming and logical design are given in the
Information Systems Laboratory Report.9

The number of simple logical components
required by a 4096-module machine as described
above is approximately 5 million. A partial
breakdown would include 1.1 million compo
nents for storage, programmable and internally
used; 1.6 million components, each, for path
connecting and arithmetic circuitry; and an
other .5 :million components for miscellaneous
control, including central timing and synchro
nization. The building of a 4096-module ma
chine would require about 20 times as many
components as STRETCH and, as such, is
within engineering feasibility. The economics
would then depend on an application needing
a speed advantage of 100 to 1 or more, and
finally on the abilities of logical and circuit
designers and component manufacturers.

The organization of a highly parallel com
puter has been proposed from the programming
point of view. As such, it fulfills the implica
tions of its name by being easily utilized for
parallel computation. It has been shown that
hundreds of processors are needed to decode
and perform hundreds of operations simultane
ously. It has also been shown that simultaneous
random access is required in order for the
arithmetic circuits to fetch their operands. In
these ways, no lesser organization could· accom
plish the same task.

398 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

APPENDIX .A

MATRIX INVERSION PROGRAM FOR THE DESCRIBED MACHINE

*
*

*
*
*
*

INSTRUCTION
IDCATION

ENTRY
*
*
*

*

I I I OPERATION

PROCEED=

SET1'(1) ••• SET1'(N) INDADR
SET11(N+1) INDADR

*
E(1) ••• E(N)
*
LA' (1) ••. LA' (N)
L(1,1) .•. L(1,N)
L(N,l) L(N,N)
B I (1) ••• B r (N)

*
Q I (1) Q' (N)

U(1, 1) U(1,N)
U(N,l) U(N,N)
*

*
*
F(1) F(N)

*
M(l,l) .•• M(l,N)
M(N.,l) •.• M(N,N)
C' (1) C ' (N)
*
T(1) T(N)
VI (1) VI (N)

LOAD

INDADR
LOAD

INDADR

INDADR
ETC
DIVIDE

DIVIDE

MULTIPLY

INDADR

LOAD
INDADR
ETC

ADDRESSES

THE NXN MATRIX IN THE 'A I REGION IS
INVERTED BY A GAUSS-JORDAN METHOD.
THE INVERTED MATRIX REPLACES THE
ORIGINAL CONTENTS OF THE I AI REGION

0,0, SET1 ' (1)

FIRST EXECUTION STEP OF A THREE-EXECUTION
STEP LOOP THAT WILL BE PERFORMED N TIMES.

LA I (1)) E(1) ,Q' (1) LA' (N) ,E(N) ,Q I (N)
EXIT

ftKK,A(l,l),F(l) ••• AKK,A(N,N),F(N)

L(1,1) L(N, 1) , , L(1,N) L(N,N)
B' (1) ,A(1,1) ,M(1,1) B I (1) ,A(1, N) ,Me N, 1)
B' (N) ,A(N,l) ,M(l,N) ••• B' (N) ,A(N,N) ,M(N,N)
AT(l,l) ••• AT(l,N), ••. ,AT(N,l) ••. AT(N,N)

U(1,2) •.• U(1,N)"U(I,1)o •• U(I,I-1),U(I,I+1)
U(I,N)"U(N,1) .•. U(N,N-1)
A(1,1) ,A(1,1) A(1,N) ,A(1,1) ,T(1)
A(N,l),A(N,N) ••• A(N,N),A(N,N),T(N)

SECOND EXECUTION STEP
/

A(l,l) ,AKK,G(l) A(N,N) ,AKK,G(N)

C'(l),A(l,l),S(l,l) ••• C' (N),A(l,N),S(l,N)
C'(l),A(N,l),S(N,l) ••• C'(N),A(N,N),S(N,N)
AT(1, 1) AT(N, 1) , , AT(1,N) 0 ... AT(N,N)

V'(l),ZERO,Y(l) ••• V'(N),ZERO,Y(N)
A(2,1) A(N,l) "A(l,I) .. . A(I-1,I) ,A(I+l,I) ...
A(N,I)"A(1,N) .•• A(N-1,N)

*
*

*
*

INSTRUCTION
IDCATION

G(1) ••. G(N)

*
S(1, 1) •.. S(1,N)
S(N,l) •.. S(N,N)

*
*
*
*
*
Y(1) .•• yeN)
*
Z I (1) ••• Z' (N)
*

*
*
*
*

PHYSICAL AND LOGICAL DESIGN OF A HIGHLY PARALLAL COMPUTER QOO
UoJoJ

OPERATION

DIVIDE

SUBTRACT

INHIBIT

INDADR

ADDRESSES

THIRD EXECUTION STEP

A(1,1),AKK,SET1'(1+1) ... A(N,N),AKK,SET1'(N+1)

A(l,l),AT(l,l) ... A(N,l),AT(N,l)
A(N,l),AT(N,l) ... A(N,N),AT(N,N)

ON THE ITH PASS THROUGH THE LOOP
THE ITH ROW OF SUBTRACT INSTRUCTIONS
IS INHIBITED.

- , - , Z' (1) ••. - , - , Z' (N)

S(l,l) ..• S(l,N), •.. ,S(N,l) ••• S(N,N)

END OF COMPUTATION LOOP

STORAGE ASSIGNMENT

A(l,l) ••• A(l,N) DATA
A(N, 1) A(N, N)
*
AT(l,l) ••• AT(l,N)
AT(N,l) ••• AT(N,N)
*
AKK
*
ZERO

*

TMPSTR

TMPSTR

DEC o

END

400 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

A few comments should allow the interested
reader to understand the details of the matrix
inversion program. 2+ 1 addressing is used
where the first address is one operand and the
location of the result. The second address is
the other operand, and the third address desig
nates the location of the next instruction. A
prime indicates indirect addressing, and the
pseudo operation INDADR sets up a tree of
indirect addresses.

The sequence of instructions which form the
"loop" is :

ENTRY - SET l' (l) ~ E(l) ~ F(l) ~ G(l)
- SET I' (2) ~ E(2) ~ F(2) ... E(n) ~ G(n)
- SET l' (N + 1) ~EXIT.

REFERENCES

1. "ENIAC, The Electronic Numerical In
tegrator," GOLDSTINE, A. and GOLDSTINE,
H. H., Math Tables and Other Aids to Com
putation, Vol. I, pp. 97-110, July, 1946.

2. GARNER, H. L. and SQUIRE, J. S., "Itera
tive Circuit Computers," USAF -W esting
house Workshop on Parallel Computers,
Baltimore, Md., October 3-4, 1962. (Papers
to be published in book form by the Per
magon Press.)

3. HOLLAND, J. H., "Iterative Circuit Com
puters," Proceedings of the 1960 W JCC,
pp. 259~265.

4. INGERMAN, P. Z., "Algorithm 140, Matrix
Inversion," Communications of the ACM,
p. 556, November, 1962.

5. NEWELL, A., "On Programming a Highly
Parallel Machine to be an Intelligent Tech
nician," Proceedings of the W JCC, p. 267,
May, 1960.

6. "Notes on John von Neumann's Cellular
Self-Reproducing Automaton," edited by
A. W. Burks.

7. SCHWARTZ, E. S., "An Automatic Sequenc-
ing Procedure with Application to Parallel
Programming," Journal of the ACM, p.
153, October, 1961.

8. SLOTNICK, D. L., et al., "SOLOMON Com
puter," Proceedings of the 1962 EJCC, p.
97.

9. SQUIRE, J. S. and PALAIS, S. M., "Physical
and Logical Design of a Highly Parallel
Computer," Information Systems Labora
tory Technical Report 04794-2-T, Univer
sity of Michigan, October, 1962.

10. UNGER, S. H., "Computer Oriented Toward
Spatial Problems/' Proceedings of the
I.R.E., p. 1744, October, 1958.

AAAt...It...II:n ~pArCrDAcT ellAlli ATlnN
•• ,"', #iii ~'-' .. '-'" •• -.. •• y.~ .. ~ •• ~

An Introduction to a Panel Discussion organized and moderated by

John McLeod
General Dynamics/Astronautics

San Diego, California

Computer simulation of electro/mechanical
systems has become so important in our world
of technical complexity that to many of us the
very word "Simulation" has come to suggest
first-if not exclusively-just that; the com
puter simulation of complex physical systems.

Would that a definition of simulation could
be that concise! Or that there were a different
word for each of the several major kinds of
simulation.

A recent survey, in which the author re
quested workers in various areas of simulation
to give a one-paragraph definition of the mean
ing of "simulation" -to them-documented a
situation which has bothered many of us for
some time: SiIpJ}lation can mean most anything,
depending on- to whom you are speaking.

And Webster's Unabridged is no great help!
Among the definitions given therein are: Simu
lation-profession meant to deceive-a coun
terfeit-a fraud-

Now are any of us, as practitioners of the
fine art (or science!) of Simulation going to
hold still for that?

Less misleading, but still illustrative of the
breadth of the field, are the two main and here
tofore fairly discrete branches of simulation
which our panel will discuss under the combin
ing title "Manned Spacecraft Simulation."

Today's Aerospace (nee Aircraft/ Automo
tive/ Appliance) industry, has long been the
leading proponent of computer simulation as
a technique for the design and evaluation of
their complex electro-mechanical systems.

401

To a lesser extent, and more recently, the
areospace industry has come to rely on simu
lators involving computers for pilot and crew
training. These are generally referred to as
Operational Flight Trainers, or simply OFTs.
However for some obscure reason these two
methods of simulation which have so much in
common have, to a large extent, gone their
separate ways. But now with man's venture
into space this can no longer be. Circumstances
are forcing a shotgun marriage which is long
overdue!

It is this union that the panel will discuss;
its raison d'etre, what it is, its value, its short
comings, and our hopes for its future.

To better understand the union and its
promise let us look at the partners.

Simulation for the design and evaluation of
electro-mechanical systems has usually been
accomplished by programming the computers
to solve the mathematical equations describing
the dynamics of the system under study. Sys
tems could then be "exercised" under various
synthesized conditions and parameters changed
to improve or optimize the system according
to some preconceived criteria. The computers
used were usually general-purpose analog or
digital (or combined analog-digital systems)
and the optimization was done either manually
(by dial-twiddling or parameter-juggling) or
automatically (by programmed iterative tech
niques) .

To minimize errors caused by discrepancies
between the mathematical description of com-

402 PROCEEDINGS SPRING JOINT COMPUTER CONFER~NCE, 1963

ponents and their actual performance provi
~ions were often made for inserting real "hard
ware" into the simulation. But man as a system
component was seldom included.

Contrasted to this were the Flight Trainers
in which man is of primary concern. These
usually consist of special-purpose "c~ckpi~"
and special-purpose computers. The Inter~or
of the cockpit is often a faithful reproductIOn
of that of a specific craft, complete with "live"
instruments. Visual, kinesthetic, auditory, and
other "cues" are generated and used to syn
thesize the expected environment-with vary
ing degrees of reality. The consequences of the
crew's manipulation of the controls are com
puted and used to control the cockpit instru
ments and displays, and to appropriately alter
the various environmental cues.

In the past the steps from one kind of air
craft to a more advanced one were small enough
to allow extrapolation from what a man could
do in one to what he could be expected to accom
plish successfully in the other. The danger
inherent in flight testing was tolerable, the cost
bearable, and failures were seldom of interna
tional import.

Not so today! Our step into space is a
whopper. We cannot extrapolate. And we
cannot afford flight tests: The danger to human
life is too great; the dollar cost well-nigh un
bearable; and failures are far too damaging to
our national prestige. Our testing must be done
on the ground where the man will be safe, and
in a laboratory where "failures" can be care
fully analyzed without the world looking over
our shoulder. In short, the "flight" part of
"flight test" must be simulated. We have called
this kind of simulation Manned Spacecraft
Simulation. And it requires a combination of
the best that the other kinds of simulation have
to offer.

In Manned Spacecraft Simulation the gen
eral-purpose computers and the design and
evaluation aspects of physical system simula
tion are combined with the man-centered simu
lation techniques of the OFT's to accomplish
what neither could do alone. Figure 1 is a
photograph of one of the offsprings of this
union. While Figures 2 and 3 show other kinds
of spacecraft "simulators."

To discuss Manned Space Simulation, how
they became involved in it, what they think

about it-good and bad-and to take part in
that most dangerous armchair sport, predicting
the future, we have engineers who de.sign and
operate such simulators, psychologIsts and
human-factors people who design and conduct
experiments using them, and test-pilots who
"fly" them.

I will introduce the panelists by quoting some
written material which they have furnished
for the purpose.

Dr. Stanley Deutsch is Chief of Systems Re
search and Analysis for NASA's Man-System
Integration Division. As a Psychologist con
cerned with Systems Analyses and Human
Factors he should be able to speak with author
ity of the requirements for manned spacecraft
simulation in the U.S. Space program.

Before joining NASA Dr. Deutsch was Vice
President and Chairman of the Scientific Panel,
CONSAD Corporation; Head of Technical Staff
for Human Factors, Missile and Space Systems
Division, Douglas Aircraft Company; a Re
search Psychologist, Air Force Ballistic Mis
siles Division, Headquarters, Inglewood and
Vandenberg Air Force Base; Head, Human
Factors Support, Titan Program, the Martin
Company; and a Research Psychologist and
Project Director, U.S. Navy Electronics Labo
ratory, San Diego.

The greatest value of Manned Spacecraft
Simulation, Dr. Deutsch says, is that "it pro
vides an excellent system tool for the entire
design, development, production, training and
operation of space systems. It can be used for
both ground support and manned space flight
analysis and evaluation. When properly
planned and implemented, simulation can be
used to provide an analog of major aspects of
space system development, evaluation, and op
eration. It provides an effective means for
predicting design requirements, testing ap
proaches, evaluating alternate configurations,
and providing training equipment design and
training program criteria."

Concerning the shortcomings of MSS, Dr.
Deutsch states "The more the simulation be
comes like the real world, the greater the cost.
In many cases simulators may actually exceed
the cost of the operational equipment. A better
comprehension of the purposes of simulators
would help reduce these CGsts. Simulators fre
quently lag the critical design and system in
tegration phases and thus end up more as tools

MANNED SPACECRAFT SIMULATION 403

Figure 1. One example of Manned Spacecraft Simula tion, showing the "gondola" and external visual cues
in this case a starfield and horizontal independently proj ected on the inside of a 20' sphere. By manipulating the
gondola controls the operator can duplicate any maneuver of the simulated vehicle in a real time/space condition. The
impression of movement is given by the actual physical su rge of the gondola along the path it would naturally take.
The movement of the visual field in the opposite direction completes the psychophysiological pattern of the desired
flight mode. An analog computer generates the commands to cause the proper motion of the gondola and the correct
relative motion of the stars and horizon This is the Chance Vought Astronautics Division Manned Aerospace Flight
Simulator in their Grand Prairie, Texas, plant.

for the evaluation of a completed design than
as a concurrent adjunct to all phases of design.
By the time simulation is used, many design
decisions are frozen. In general, the full powers
of simulation are not exploited to their great-

"However," Dr. Deutsch concludes "I feel
that the many advantages of manned space
simulation are commanding greater attention
and consideration in all aspects of planning and
research on advanced aerospace systems."

Dr. W. R. Laidlaw is a representative of
industry who has had wide experience with
simulation devices. He is Vice President, Ad
vanced Systems, North American Aviation,
Incorporated, Space and Information Systems

Division. He has a BS in Aeronautical Engi
neering from the University of Toronto and an
MS and ScD in Aeronautical Engineering from
the Massachusetts Institute of Technology.

Dr. Laidlaw was associated with the De
Haviland Aircraft Company of Canada and the
Massachusetts Institute of Technology, Aero
elastic and Structures Research Laboratory
before joining North American Aviation, In
corporated in 1954. After some time with the
Columbus, Ohio Division, he transferred to the
Company's General Office in Los Angeles where
his responsibilities included the operation of
the Division's digital and analog computing
facilities in which considerable effort was ex
pended in the development of fixed and moving

404 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

Figure 2. Another kind of Manned Spacecraft Simu
lator. In contrast to the kind shown in Figure 1, which
is in general use to determine if and how well a man can
"fly" the simulated spacecraft, this kind of simulator is
used to determine if and how well a spacecraft crew can
survive in space with various types of life-support
equipment. Volunteer crews have spent many days in
such simulators while aerospace medicine personnel
use biomonitoring equipment to observe their psycho
logical and physiological functions and human factors
personnel use closed-circuit T-V to watch their every
action as they perform space-type tasks, exercise, re
lax, and sleep. This is the 'Manned' Static Space Simu
lator at General DJt"'namicsl Astronautics in Sun Diego.

base simulators for engineering research and
development.

In 1961 he came to his present position where
he is responsible for the study of future manned
and unmanned space systems and launch vehi
cles for both scientific and military applications.

"Manned Space Simulation," says Dr. Laid
law "has two major values. The first of these
is in the vital role that it plays in· the develop
ment process of complex systems by providing
an environment within which the engineer can
formulate the solutions to problems which
would otherwise await the availability of flight
test hardware. The second value of space simu
lation is the role which it plays in. the training

of flight and ground crews for the eventual
operational problems which they will face.

"The combined engineering development and
training features of space simulators enable
significant gains from the point of view of pro
gram timing, economics, and ultimate program
success.

"Perhaps the greatest shortcomings attribu
table to manned simulators" Dr. Laidlaw says,
"is their inability to reproduce the psychologi
cal environment associated with a complex and
dangerous space operation. This shortcoming
can be circumvented in many instances by ap
propriate and careful attention to experimental
design. Obviously, there remain many addi
tional "mechanical" limitations associated with
motion, optics, local environment, etc. To a
high degree however, these exist because of
design, hardware, or financial limitations; and,
accordingly, can frequently be minimized in
specific programs or applications."

The next Panelist, Mr. William B. Luton, is
an engineer who has been responsible for the
design, construction, and operation of one of
this country's better-known Manned Spacecraft
Simulators. He is Supervisor, Manned Aero
space Flight Simulator, at the Chance Vought
Corporation, Dal~~s, Texas.

Mr. Luton is a graduate of the Univeristy of
Houston, with a B.S. degree in :Mechanical En
gineering and of the V-5 Naval Aviation Cadet
Program. He has served as a Naval Aviator
and been employed as a design engineer for a
scientific instrument manufacturing firm. He
joined Chance Vought Corporation in 1950. He
was made Project engineer in 1958 for the de
sign and development of a Cockpit Character
istics Simulator for investigating the orbital,
re-entry and hypersonic glide phases of the
Dyna Soar mission. He was project engineer
for a study forecasting the Air Force space
crew training requirements for the next 15
years, and originated the concept for, and
served as project engineer for the development
of Chance Vought's Manned Aerospace Flight
Simulator. He is currently supervisor of' that
facility.

Among Mr. Luton's writings are "Selection
and Training of Space Flight\ Personnel" (co
author); "Manual Flight Teclihniques for At
mospheric Re-entries" ; "The Role of Simulators
for Research and Training"; "Manual Control

MANNED SPACECRAFT SIMULATION 405

Figure 3. As indicated by the completely different configurations and functions of the simulators of Figures 1 and
2, it is often necessary to conduct "part-task" simulations. Even if it were possible to simulate everything at once the
experiment--and the equipment--would be so complex as to make it impractical. This part-task simulator at NASA's
Ames Research Center in California is basically a centrifu ge with a man-carrying cab mounted on the arm. Although
capable of creating up to 6 g. in continuous rotation, it is more often used as a five-degrees-of-freedom motion simu
lator. The gimballs allow three degrees of angular freedom; the vertical rails allow vertical motion; and small angu
lar movements of the arm approximate pure lateral motion at the cab.

Underlying the basic question "Is your information valid ?" is this one of part-task simulation: "Can interaction be
ignored-or the results be predicted adequately?"

of Launch Vehicle Systems" ; and "Space Simu
lators-Prelude to Manned Space Flight" (co
author) .

"The greatest value of MSS," Mr. Luton
writes, "lies in Human Capability Studies to
provide trade-off data for use in Man-Machine
Toolr A 11,("\no.+;n,.." " "TL"'\A "rV\n~'I'''' nnC'n' ~+~n. n no,...",
.L Uo)..:J.I.1 • .4.L.&..I.V,",,"\.!.l.V.I..I.. .L. vv .1~.1a.1.l'y aQQU.l.l.lPlI.lVl.lC a.1.'::;

being made" he says "regarding a pilot's capa
bility and what he requires to accomplish space
missions. Of almost as much value as task
allocation is the use of MSS for spacecraft de
sign, cockpit procedure and flight technique
development; and crew training."

Mr. Luton considers the greatest shortcom
ing of MSS today to be the low fidelity of the
visual and physical cues as well as stressors.
This shortcoming and the absence of the "fear

factor" prevents the test subject or trainee from
achieving a realistic psychological and physio~
logical behavior such as would' occur in the
actual case. "Quantitatively" he says, "all simu
lation shortcomings are perhaps no more than
10% of the total job to be done. However, a
1 () Cfr n~fi(>i~n(>v in ~n~(>~fli(Tht. i~ v~rv (>J)~t1v_"
-..., /" -_ _ ... _ _J -r------o--- _..... . --J -_ _-,,-

Anyone for arguing Mr. Luton's last point?
The next Panelist is John M. Stroud. Mr.

Stroud neither designs, uses, nor flies simula
tors, but he has designed many experiments
with "homo sap" in the loop. And John has
some very definite ideas about man-and man
kind-in space.

Mr. Stroud is a member of the Operations
Research Group, Command Staff, Pacific Mis
sile Range~ Point Mugu, California. His Aca-

406 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

demic training was in Economics and Psychol
ogy, but he considers himself a General Scien
tist.

According to his own testimony Mr. Stroud
"has waged a life long battle against the pres
sures which are brought to bear on all men
who enter the world of science to become a
member of one of the species of socially ap
proved and desired scientific specialists, a man
who necessarily can act like a scientist only
about some things, at some times, and hope
fully will do so only as directed and when ap
proved by proper authority." "He hopes to live
long enough", he says "to see the current grow
ing interest in the utterly imaginary creature
the 'interdiciplinary specialist' (for all scien
tists must be specialists of some sort, at least
by fiat) give rise to an acceptable profession,
the General Scientist, who can attempt to act
like a scientist about all things at all times, in
spite of his complete incapacity to replace his
specialized fellows (who can always be found
vastly more competent with respect to any spe
cific thing at any specific time)."

Mr. Stroud's interest in Manned Spacecraft
Simulation grows out of his basic interest as a
general scientist; the answer to the very gen
eral question of "whither mankind." "It was
apparent to him, in his youth", he says, "that in
the latter part of this century and the first part
of the next mankind would begin to explode off
the earth and would have established the first
self-sustaining colony off of this earth by the
middle of the twenty first century." Much of
Mr. Stroud's own work in the area has been an
effort "to separate the myth and social wishful
thinking in these dreams of mankind from the
solid scientific dreaming-which will be
realized. "

Mr. Stroud is of the opinion that "we still
suffer from considerable lunacy in our lunar
program, and from astrology in astronautics
generally. The lunacy lies less in what we do
than why we believe it worth doing. The astrol
?gy lies not in our developing technology, but
In our almost fanatic preoccupation with major
planets which are extremely difficult to colo
nize. " "We are only very slowly and painfully
learning" he says, "that Space itself is the real
domain of interest."

. Mr. Stroud's regularly repeated prediction
IS that within a thousand years there will be a

thousand times the earth's present population
living in the solar system, although not ten per
cent of this population will live on any planet
or moon. And with slight provocation he will
attempt to show how the earth could be disas
sembled and reassembled in a technically more
useable design; one that would provide ade
quately for a million fold increase in popula
tion. But, he will argue, there are still more
efficent methods of building in space-"the
earth should be kept relatively untouched as a
monument to the origins of mankind!"

"In this context manned spacecraft simula
tIOn-is an essential technique. It 'is the only
way we can afford to fail often enough to learn
enough to accomplish what man envisions. Suc
cess never contributes to our wis·dom. vVhen we
succeed, we merely demonstrate that we knew
what we thought we knew and are none the
wiser.

"All of the specific virtues of Manned Space
craft Simulation follow from the fact that this
technique can give us many failures-and they
can be minutely measured and studied at low
cost."

Mr. Stroud does wish to point out, however,
that although "in general simulation affords the
most useful failures at the least cost, it is valua
ble only so long as this is true-and it is not
true without limit. As the art of space flight
progresses, earth-bound simulation of the space
environment beco;mes more difficult; it must be
more precise and more detailed, and it must be
carried out for longer periods. The cost of the
simulators will rise as some large power of the
dimensions of the device, and \vith time. And
productivity will fall with time. Each test will
require more time to set up, more time to
execute.

"At the same time, the cost of a pound of
freight to space will be declining. Probably
before the end of the decade simulating the
space environment will come to a halt in area
after area as it becomes easier to take the test
into space than to simulate space in an earth
bound test.

"Today is not too soon to demand simulation
facilities in space for delivery before 1970."
Mr. Stroud thinks, "In the long haul, it will
matter far more which contender in the space
:ace m~nages to get the first good laboratory
Into orbIt than which first manages to get moon
dust on its astronauts' face plates."

Professor Paul M. Fitts is the next Panelist.
Dr. Fitts is Professor of Psychology at the Uni
versity of Michigan, where he also serves as
Chairman of the Committee of Adaptive Sys
tems of the Institute of Science and Technology.
He is a past-president of the Society of Engi
neering Psychologists, currently the President
of the Human Factors Society, and a member
of the Board of Directors of the American Psy
chological Association, and of 'the American
Institute for Research. Dr. Fitts was in the
Air Force during World War II, and has served
on many Government scientific advisory groups
including the National Research Council Com
mittee on Aviation Psychology, the NACA
Panel on Crash Injury, the Defense Science
Board, the Air Force Scientific Advisory Board,
and as a consultant to the President's Science
Advisory Committee. He also has been consult
ing psychologist on numerous assignments for
industry.

Dr. Fitts observes that "simulation for use
in research to determine man-machine system
design characteristics poses somewhat different
requirements than does simulation for crew
training. However, both applications require
quantitative, reliable, and valid performance
measures. There is no point in simulation with
out the quantification of system performance.

"The issue of realism or completeness of
simUlation, from a psychological viewpoint
(Le., from the standpoint of developing human
skills and measuring human and system per
formance), can only be answered on the basis
of adequate theory regarding human perform
ance characteristics. To what extent can a man
time-share, or multiplex? (This relates to the
question of completeness of mission simulation.)
To what extent will extensive training, say up
to one hundred hours, in a specific subroutine,
improve overall performance that involves con
current performance of several subroutines?

"For both research and training purposes it
is necessary that simulation equipment permit
the controlled variation of system parameters
over a range of values. Training demands that
immediate feedback to the human operator of
augmented information regarding system per
formance be given; extensive training under
such conditions is also necessary before per
formance data are of much value in system
design.

MANNED SPACECRAFT SIMULATION 407

"The greatest shortcoming of MSS today"
Dr. Fitts says, "is the same as that which has
plagued the simulation area for the past twenty
years-lack of versatile and reliable simulation
equipment in sufficient quantity to permit. sci
entific (general) answers to be obtained to the
basic issues regarding the capabilities and
limitations of manual operation. It is conserva
tively estimated that as much as five hundred
hours of quantitative data (fifty hours of train
ing data for each of ten hUTI1an (operators) are
often needed in order to obtain such answers
to each question that is worth answering about
simulation. No amount of expert opinion from
psychologists, engineers or astronauts can sub
stitute for such data."

The next Panelist is Dr. John M. Hunt, Senior
Vice President and Technical Director, Simula
tion and Control Group, General Precision, In
corporated, Binghamton, New York. He holds
the degrees of B.S. in Engineering Physics from
the University of Kansas, M.S. in Electrical
Engineering from the Massachusetts Institute
of Technology, and Ph.D. in Electrical Engi
neering from Stanford University.

Dr. Hunt served as an Electronics Officer in
the United States Navy during World War II
and since 1949 has been affiliated with the Link
Division of General Precision, Incorporated.

At GPI where Dr. Hunt's principal activities
have been in the development and application
of large-scale special-purpose analog and digital
computers for vehicle dynamic simulation. He
holds 20 patents in this field and has a number
of other patent applications pending.

Dr. Hunt became actively associated with
manned spacecraft simulation as the result of
the extension of the activities of Link, now
actively engaged in the manufacture of large
scale manned space vehicle simulators for
NASA and the Department of Defense.

Although it is difficult to single out a specific
nrill('in~l ~(h7~l1t~CYP of M~~ n1" U"l1nt- -faal", r- - _ ... r-..... -- T - -b- 'J'...L. ,..&."'-.J"-', ..&J.I...L ~~'"' ...L'-''''' u

"the strongest justification for simulation might
lie in the areas of over-all systems integration
and training. In an inherently costly and dan
gerous mission necessarily involving integrated
activity of many people scattered throughout
the world, the opportunity for repeated and
meaningful dress rehearsal before actual launch
is of enormous importance. This feeling is sup
ported by the fact that substitute procedures
could be employed if necessary in most other

408 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1963

phases of engineering and planning underlining
manned space flight if simulation techniques
were not available. I find it almost inconceiva
ble, however, Dr. Hunt says, "that the incredi
bly complex interrelationships of human and
equipment tasks which characterize an actual
mission could be effectively integrated without
recourse to full-scale systems simulation.

"There is little doubt that the present state
of-the-art in generation of realistic visual and
motion cues for MSS equipment seriously lags
behind the state-of-the-art in simulator compu
tation. Nevertheless, as a . professional devotee
of large-scale simulator computer systems and
techniques, I would like to raise a small voice
toward provision of highly faithful dynamic
computation in MSS equipment. There is con
siderable justification for the belief that dy
namic computation anomalies in existing simu
lators have contributed in part to complaints
directed towards the realism of visual and
motion cues. In recent years, progress in com
puter design is such that there is no longer
significant economic justification for tolerance
of inadequacies in MSS simulation computa
tion."

The next Panelist is Mr. Wesley E. Woodson,
an Engineering Psychologist (Human Engi
neer). He is a member of the Life Science Sec
tion at GD/ A and is active in manned space
vehicle and station research development
especially with reference to the human operator
link and dynamic man/machine interface prob
lems.

Mr. Woodson is author of the widely used
Human Engineering Guide for Equipment De
signers, published in 1954 by the University of
California Press, and a contributing author for
Industrial Electronics Handbook, published in
1959 by the McGraw-Hill Company.

Speaking of our topic in general, Mr. Wood
son observed "one of the most serious problems
we face in full integrated man-machine simu
lation (regardless of whether we are concerned
with design, testing or training) is the fact that
we are not clear in our own minds just what it is
we need to simulate." Certainly we can list a
number of items which appear to be obvious.
However, when we begin to consider the inputs
to the human which are dependent on his per
sonal perceptual characteristics, it is a tough
question to identify these in explicit, quantita-

tive terms. A typical example is the oft-quoted
"fear" effect. Is this something which is neces
sary? And is it ever possible to know if we have
created it as it might actually exist in the
expected operational environment?

"Another example of an area of uncertainty
is the term 'realism.' Is a mirage on the desert
'real'? After all, it appears to have all of the
perceived attributes of the real thing. Another
factor which is poorly understood involves
human imagination. A pilot 'under the hood'
can imagine all sorts of things because of his
instrument readings and 'seat-of-the-pants'
feel. But how much of this imagination is
related to the flying problem in the air as com
pared to the flying problem in a simulator?

"It ha..~ been demonstrated that the worst
thing that can happen in simulation is to intro
duce something which is obviously out of char
acter with the 'realistic environment' you are
trying to create. On the other hand there is
precious little evidence to date on the effect of
lack of realism in the synthesized environment.
In other words, is it necessary to try to accu
rately include all of these so-called environ
mental cues-with the attendant possibility of
introducing artificialities?"

Asked about the Greatest Value of MSS Mr.
Woodson replied: "I see two most important
values: (1) we can devise and test a proposed
system (including man in the loop) before we
are committed to any specific design concept,
(2) we can flight-test the final system without
its ever "leaving the ground" (which is not only
safer, but also cheaper)."

Concerning the grp.ateRt shortcomings he
said: "I belive there are two primary problems
today-particularly from the human engineer's
point of view, i.e., (1) lack of flexibility (too
long to set up new programs), and (2) too ex
pensive to run a given exercise (in order to
study a given configuration objectively, it is
often necessary to run a simulator many
hours) ."

As the final speaker on our panel we have a
test pilot, or more accurately a Research Pilot,
to give us some background information about
himself and some opinions on the value and
shortcomings of MSS. Then perhaps in the dis
cussion period to follow he will tell us how
"flying" one of these gadgets compares with
flying the real article.

Robert S. Buchanan, Major, USAF, is Chief,
Research Pilot Division, Aerospace Research
Pilot School, Edwards Air Force Base, Cali
fornia. He obtained his Ph.D. in Aeronautical
and Astronautical Engineering, from the Uni
versity of Michigan. He is also a graduate of
the USAF Experimental Test Pilot School and
Aerospace Research Pilot School. He has been
a USAF Test Pilot and R&D Officer for the
past ten years, and involved with Manned
Spacecraft Simulation since establishment of
the USAF, Aerospace Research Pilot training
program in 1961. He is concerned with all gen
eral areas of simulation not connected with spe
cific vehicles (i.e., boost and ascent, rendezvous,
re-entry, landing).

"The greatest value of Manned Spacecraft
Simulation as I envision it" Major Buchanan
states, "is in the areas of training and overall
system integration. In the training phase, use
should be made of special purpose trainers to
simulate specific areas of operation such as
orbital rendezvous and docking; also dynamic
simulators such as the centrifuge to expose crew

MANNED SPACECRAFT SIMULATION 409

members to G-Ioadings at and above levels ex
pected in flight, and under the same conditions
expected in flight (i.e., eye balls in, out, down).
Finally, overall system integration can be en
hanced by use of the results of the part-task
simulators, such as hand controller design for
use under G-Ioads, instrument display, and
cockpit or crew compartment requirements."

"The greatest shortcoming of Manned Space
craft Simulation as I see it" he says, "is in the
area of motion cues. Part-task and general
purpose fixed-base simulators provide excellent
training in procedures and controlling tech
niques; however, the motion cues as presently
employed by most moving base simulators are
unrealistic and of questionable value to the
experienced test pilot; The centrifuge appears
to be the best available method of providing
experience in varying load factor and should be
used in conjunction with special purpose simu
lation devices."

Having set the tenor of the meeting with the
foregoing, the points raised are open to dis
cussion by Panelists and Audience-and the
Moderator!

REVIEWERS, PANELISTS, SESSION CHAIRMEN AND PANEL MODERATORS

AFIPS and the 1963 Spring Joint Computer Conference
Co'mmittee would like to express their sincere appreciation to
those listed below for their contribution toward the formu
lation and execution of the technical program.

REVIEWERS

C. W. ADAMS G. B. HERZOG

J. BELZER W. S. HINES

R. W. BEMER K. E. IVERSON

R. F. CLIPPINGER V. L. LARROWE

D. DAHM R. lVL LEE

L. DRESCHER F. N. MARZOCCO

F. A. ENGEL v "Ii" II./T ~~~~"T~Tr
.1..:1 • .l.VJ.. • .l.VJ..\...VV./:UV.l.l\...h

A. EVANS 1"1. IVhNSKY

R. A. HENLE T. H. SUMNER

L. M. WARSHAWSKY

PANELISTS

C. W. ADAMS A. W. Lo

M. J. A. ARNOW W. B. LUTON

J. BELZER E. IV1. MCCORMICK

R. W. BEMER J. MCCARTHY

R. S. BUCHANAN H. F. MEISSINGER

H. H. CAMPAIGNE A. NEWELL

R. F. CLIPPINGER A.OPLER

S. DEUTSCH L. H. PETERSON

D. C. ENGELBART O. H. SCHMITT

F. A. ENGEL P.J.SEHNERT

D. C. EVANS N. R. SCOTT

R. R. FAVREAU O. G. SELFRIDGE

P. M. FITTS J. N. SMITH

IVI. C. GILLILAND T. D. STERLING

R. T. HARNETT J. STROUD

A. D. HESTENES J. W. SWEENEY

W. HOFFMAN L. L. V AN OOSTEN

R. M. HOWE L. M. WARSHAWSKY

J. M. HUNT W. H. W ATTENBURG

W. R. LAIDLAW B. WAXMAN

J. C. R. LICKLIDER M. V. WILKES

W. E. WOODSON

SESSION CHAIRMEN

H. BROMBERG J. H. McLEOD

D. C. EVANS N. R. SCOTT

E. L. GLASER N. H. TAYLOR

R. M. HOWE K. M. UGLOW, .JR.

J. A. JACQUEZ L. M. WARSHAWSKY

'V. B. KEHL J. WEIZENBAUM

410

1963 SPRING JOINT COMPUTER CONFERENCE COMMITTEES

Chairman
E. CALVIN JOHNSON; Bendix Research Laboratories

V ice Chairman
DONALD E. HART; General ::VIotors Research Labora

tories

Secretary
ROBERT C. SIMS; Bendix Research Laboratories; Secre

tary
\V ALTER E. CHAPELLE; Bendix Research Laboratories;

Asst. Secretary

Treasurer
DAVID V. BURCHFIELD; Touche, Ross, Bailey and

Smart; Treasurer

FRANK H. TRANZOW; Touche, Ross, Bailey and Smart;
Asst. Treasurer

Technical Program Committee
BRIAN W. POLLARD; Burroughs Corporation; Chairman

BERNARD A. GALLER; University of Michigan, Associate
Chairman

GEORGE B. 'WOLFE; Burroughs Corporation; Secretary

WALTER HOFFMAN; Wayne State University

NORMAN R. SCOTT; University of :\1ichigan

ROBERT L. SINK; Burroughs Corporation

Local Arrangements Committee
WILLIAM R. FORSYTHE; IBM Corporation; Chairman

~IICHAEL A. SIEGMAN; IB:M Corporation; Vice Chair-
man

ROBERT ::\1. FRANKLIN; Chrysler Corporation

BftlAN E. HUL.\U';:S; IBYl Corporation

ROBERT E. ~IANION: IB:\I Corporation

MARTIN P. ~IORTENSEN: Chrysler Corporation

Exhibits Committee
ALAN D. :\iEACHAM: American Data Processing, Inc.;

Chairman

PAUL H. PARIdSENTI; Burroughs Corporation: Vice
Chairman

Printing and JJ ailing Committee
GWYN WILLIAMS: Michiga.n Bell Telephone Compa.ny:

Chairman

JOHN F. PASSIFELD; ::vIichigan Bell Telephone Company;
Vice Chairman

Proceedings Committee
BARRETT HARGREAVES; General ::V[otors Research

Laboratories; Chairman

BURT E. SMITH; General Motors Research Laboratories:
Vice Chairman

Registration Committee
ROBERT K. LOUDEN; IBM Corporation; Chairman

JAMES H. HUNTER; Chrysler Corporation; Vice Chair
man

NORMAN H. ::VIILLER; Ford ::vIotor Company; Vice Chair
man

Public Relations Committee
SAMUEL N. IRWIN; Data Systems Incorporated; Chair

man

JOHN L. ROSE; Burroughs Corporation; Vice Chairman

JOHN L. McKELVIE; Bendix Industrial Controls
Division

Special Events Committee
GERALD LICHT; General Motors Research Laboratories;

Chairman

ROBERT R. BURNS; Control Data Corporation

JERRY E. KELLEHER; General ~Iotors Parts Division

\VILLIAM T. SWEENEY; Sperry Rand Corporation

Legal Advisor
JOHN H. FILDEW. Fildew, DeGree, Fleming & Gilbride.

Exhibits :.11 anagement
JOHN L. \V HITLOCK

Public Relations Consultant
LEWIS \VINNER

Program Booklet
Campbell-Ewald Company

411

A"MERICAN FEDERATION OF INFORMATION
PROCESSING SOCIETIES (AFIPS)

P.O. Box 1996, Santa :\Ironica, California

Executive Committee Chairman, Board of Governors
DR. WILLIS H. 'V ARE

The RAND Corporation
1700 Main Street

Santa Monica, Calif.

DR. ARNOLD A. COHEN-IRE*
DR. HARRY D. HUSKEy-ACM
DR. MORRIS RUBINOFF-AIEE*

Secretary Treasurer
MIss MARGARET R. Fox

National Bureau of Standards
Data Processing Systems Div.

MR. FRANK E. HEART
Lincoln Laboratory

P. O. Box 73
Lexington 73, Mass. "Washington 25, D. C.

A.IEE Directors
MR. G. L. HOLLANDER
Hollander Associates

P. O. Box 2276
Fullerton, California

MR. H. T. MARCY
IBM Corporation

112 East Post Road
vYhite Plains, N. Y.

MR. C. A. R. KAGAN "r estern Electric Co.
P. O. Box 900

Princeton, N. J.

DR. MORRIS RUBINOFF
Moore School of

Electrical Engineering
200 South 33rd St.
Philadelphia 4, Pa.

Chairman-Elect
MR. J. D. MADDEN

Associate Director of Research
System Development Corporation

2500 Colorado Ave.
Santa Monica, Calif.

A C ~~ Directors
:\IR. VY. 1\1. CARLSON

Director Technical Information
Office DDR&E

Office Secretary of Defense
Washington 25, D. C.

DR. ALAN J. PERLIS
Computation Center

Carnegie Inst. of Technology
Pittsburgh 13, Pa.

DR. H. D. HUSKEY
Acting Director

Computer Center
University of California

201 Campbell Hall
Berkeley 4, Calif.

MR. J. D. MADDEN
System Development Corp.

2500 Colorado A venue
Santa Monica, Calif.

IRE Directors
DR. 'VERNER BUCHHOLZ
IBM Development Lab.

P. O. Box 390
Poughkeepsie, N. Y.

DR. ARNOLD A. COHEN
Remington Rand Univac

Univac Park
St. Paul 16, Minn.

MR. FRANK E. HEART
Lincoln Laboratory

T\ r\ T\ ___ ... n
r.v . .DUx'':>

Lexington, Mass.

Mr. W. L. ANDERSON
General Kinetics, Inc.
2611 Shirlington Road
Arlington 6, Virginia

AFIPS Representative to IFIP
MR. r. L. AUERBACH

Auerbach Corporation
1634 Arch St.

Simulation Councils, Inc. Observer
MR. JOHN E. SHERMAN

D-5915-102
Lockheed Missiles and Space Co.

Philadelphia 3, Pa.

*IEEE as of 1/1/63

Ai '>
'%.L""

P. O. Box 504
Sunnyvale, California

·Society Heads
::\lr. "'l. L. Anderson

Chairman, PGEC
General Kinetics, Inc.
2611 Shirlington Road
Arlington 6, Virginia

DR. ALAN J. PERLIS
President, ACM

Computation Center
Carnegie Institute of Technology

Pittsburgh 13, Pa.

MR. C. A. R. KAGAN
Chairman, Computing Devices

Committee, AlEE
Western Electric Co.

P. O. Box 900
Princeton, N. J.

Society Reps. to AFIPS
M. I. S. COGGESHALL, MGR.

Technical Operations Services
American Inst. of Elec. Engineers

245 E. 47th St.
New York 17, N. Y.

MR. H. S. BRIGHT
Secretary, ACM

Phil co Corporation
Director of Programming
Computation Division

3900 Welsh Road
Willow Grove, Pa.

DR. RICHARD M. EMBERSON,
Secretary

Professional Technical Groups
Institute of Electrical and
Electronics Engineers, Inc.
Box A, Lenox Hill Station

New York 21, N. Y.

Admissions
DR. BRUCE GILCHRIST

IBM Corporation
590 Madison Ave.

New York 22, N. Y.

Awards
MR. C. A. R. KAGAN
\tV estern Electric Co.

P. O. Box 900
Princeton, N. J.

Bylaws & Constitution
MR. W. M. CARLSON

Director Technical Information
Office DDR&E

Office Secretary of Defense
Washington 25, D. C.

Conference Committee
MR. KEITH W. UNCAPHER
The RAND Corporation

1700 Main Street
Santa Monica, Calif.

Education (Provisional)
MR. GEORGE G. HELLER

IBM Corporation
7220 \Visconsin A venue
Bethesda 14, Maryland

Finance
RR. ROBERT R. JOHNSON

General Electric Company
P. O. Drawer 270
Phoenix, Arizona

Planning
DR. MORRIS RUBINOFF

Moore School of Elec. Engineering
200 South 33rd Street
Philadelphia 4, Pa.

Publications
MR. JOSEPH D. CHAPLINE

Computer Division
Philco Corporation
3900 Welsh Road

·Willow Grove, Pa.

413

Harry Goode
klemorial Award Committee

MR. I. L. AUERBACH
Auerbach Electronics

1634 Arch St.
Philadelphia 3, Pa.

Public Relations

MR. J. D. ::\tIADDEN
System Sevelopment Corporation

2500 Colorado Blvd.
Santa Monica, Calif.

Public Information Director

MRS. PHYLLIS R. HUGGINS
P. O. Box 55

Malibu, Calif.

Social Implications of Information
Processing Technology

::VIR. HARRY T. LARSON
Aeronutronic

Division of Ford Motor Co.
P. O. Box 486

Newport Beach, Calif.

Ad Hoc Headquarters Committee

DR. BRUCE GILCHRIST
IBM Corporation
590 Madison Ave.

New York 22, N. Y.

Ad Hoc Policy Committee

DR. JACK MOSHMAN
CEIR, Inc.

1200 Jefferson Davis Highway
Arlington 2, Va.

LIST OF EXHIBITORS

1963 SPRING JOINT COMPUTER CONFERENCE
ADDRESSOGRAPH-MULTIGRAPH

CORP.
Cleveland 14, Ohio
AMERICAN DATA PROCESSING,

INC.
Detroit 26, Mich.
AMERICAN TELEPHONE & TELE-

GRAPH CO.
New York 13, N. Y.
AMPEX CORP.
Redwood City, Calif.
ANELEX CORP.
Boston 14, Mass.
APPLIED DYNAMICS, INC.
Ann Arbor, Mich.
ASSOCIATION FOR COMPUTING

MACHINERY
New York 21, N. Y.
AULT MAGNETICS, INC.
Minneapolis 29, Minn.
BELL & HOWELL CO., MICRO-

DATA DIV.
Chicago 45, Ill.
BENSON-LEHNER CORP.
Van Nuys, Calif.
BRYANT COMPUTER PRODUCTS
Walled Lake, Mich.
BURROUGHS CORP.
Detroit 32, Mich.
CALIFORNIA COMPUTER PROD

UCTS, INC.
Anaheim, Calif.
CAMBRIDGE COMMUNICATIONS

CORP.
Cambridge 42, Mass.
COLLINS RADIO CO.
Dallas, Texas
COMCOR, INC.
Denver 23, Colo.
COMPUTER CONTROL CO., INC.
Framingham, Mass.
COMPUTER DESIGN
Boston 16, Mass.
COMPUTER SYSTEMS, INC.
Fort Washington, Pa.
COMPUTERS & AUTOMATION
Newtonville 60, Mass.
CONSOLIDATED ELECTRO-

DYNAMICS CORP.
Pasadena, Calif.
CONTROL DATA CORP.
Minneapolis 20, Minn.
DI/ AN CONTROLS, INC.
Boston 25, Mass.
DATAMATION MAGAZINE
New York 17, N. Y.
DATAMEC CORP.
Mountain View, Calif.
DATA PRODUCTS CORP.
Culver City, Calif.
DATA SYSTEMS, INC.
Grosse Pointe Woods 36, Mich.
DATATROL CORP.
Silver Spring, Md.
DIGITAL EQUIPMENT CORP.
Maynard, Mass.

DIGITRONICS CORP.
Albertson, L. I., N. Y.
DYMEC DIV., HEWLETT-PACK

ARD CO.
Palo Alto, Calif.
EDP WEEKLY INDUSTRY RE-

PORTS, INC.
Washington, D. C.
ELECTRONIC ASSOCIATES INC.
Long Branch, N. J.
ENGINEERED ELECTRONICS CO.
Santa Ana, Calif.
FABRI-TEK, INC.
Amery, Wisc.
FERRANTI ELECTRIC, INC.
Plainview1 L. I., N. Y.
FLOA TING FLOORS, INC.
New York 17, N. Y.
FORD :MOTOR CO.
Aeronutronic Div.
Newport Beach, Calif.

GPS INSTRUMENT CO., INC.
Newton 64, Mass.

GENERAL DYNAMICS/ELEC
TRONICS

San Diego 12, Calif.

GENERAL ELECTRIC COMPUTER
DEPT.

Phoenix, Ariz.

THE GERBER· SCIENTIFIC IN-
STRUMENT CO.

Hartford, Conn.

E-W ELECTRONICS, INC.
Natick, Mass.

HOLLEY COMPUTER PRODUCTS
CO.

Warren, Mich.

INDIANA GENERAL CORP.
Keasbey, N. J.

INFORMATION SYSTEMS GROUP
GENERAL PRECISION, INC.

Glendale, Calif.

THE INSTITUTE OF ELECTRICAL
& ELECTRONICS ENGINEERS

New York, N. Y.
INTERCONTINENTAL INSTRU-

MENTS, INC.
Farmingdale, L. I., N. Y.

INTERNATIONAL BUSINESS MA-
CHINES CORP.

New York 22, N. Y.

JOHN WILEY & SONS, INC.
New York 16, N. Y.

LFE ELECTRONICS, DIV. OF LAB
ORATORY FOR ELECTRONICS,
INC.

Boston .15, Mass.
LISKEY ALUMINUM, INC.
Glen Burnie, Md.

LITTON SYSTEMS, INC.
Beverly Hills, Calif.

LOCKHEED ELECTRONICS CO.
AVIONICS & INDUSTRIAL
PRODUCTS DIV.

Los Angeles 22, Calif.

McGRAW-HILL BOOK CO., INC.
New York 36, N. Y.
MEMOREX CORP.
Santa Clara, Calif.
MICHIGAN STATE UNIVERSITY
East Lansing, Mich.
THE NATIONAL CASH REGISTER

CO.
Dayton 9, Ohio
NAVIGATION COMPUTER CORP.
Norristown, Pa.
OMNITRONICS, INC.
Sub. of Borg-Warner Corp.
Philadelphia 23, Pa.
PACKARD BELL COMPUTER

CORP.
Los Angeles 25, Calif.
PHILCO COMPUTER DIV.
Willow Grove, Pa.
PHOTOCIRCUITS CORP.
Glen Cove, N. Y.
POTTER INSTRUMENT CO., INC.
Plainview, L. I., N. Y.
PRENTICE-HALL, INC.
Englewood Cliffs, N. J.
RADIO CORP. OF AMERICA SEMI

CONDUCTOR & MATERIALS
DIV.

Somerville, N. J.
RAYTHEON CO.
Waltham 54, Mass.
RECORDAK CORP.
New York 3, N. Y.
RHEEM ELECTRONICS CORP.
Los Angeles 45, Calif.
RIDGEWAY ASSOCIATES, INC.
Chicago 34, Ill.

ROYAL MCBEE CORP.
New York, N. Y.
THE SERVICE BUREAU CORP.
New York, N. Y.
SIMULATION COUNCILS, INC.
SOROBAN ENGINEERING, INC.
Melbourne, Fla.

SP ARTAN BOOKS, INC.
Baltimore 1, Md.
SPRAGUE ELECTRIC CO.
North Adams, Mass.

TALLY REGISTER CORP.
Seattle 9, Wash.

TELETYPE CORP.
Skokie, Ill.
US INDUSTRIES, INC.

EDUCATIONAL SCIENCE DIV.
New York, N. Y.
UNIVERSITY OF MICHIGAN
Ann Arbor, Mich.
WARNER ELECTRIC BRAKE &

CLUTCH CO.
Beloit, Wisc.
WAYNE STATE UNIVERSITY
Detroit, Mich.

WESTINGHOUSE ELECTRIC
CORP.

Pittsburgh 30, Pa.

ARCAND, A., 127

BARNETT, M. P., 263

BARTON, R. S., 169

BERTRAM, S., 105

BLUMBERG, D. F., 179

BOlLEN; S., 51

BUCKINGHAM, W. D., 113

CHAPELLE, W. E., 213

COONS, S. A., 299

COOPER, H. W., 141

FERRIS, A. G., 141

Fox, J. C., 91

FREDKIN, E., 51

GASKILL, R. A., 83

GILBERT, E. G., 197

GOSDEN, J. A., 9

HABIB, E. J., 141

HAMMING, R. W., 163

HARRIS, J. W., 83

HAUSNER, A., 205

HEDETNIEMI, S., 1

HENSLEY, C. B., 257

AUTHOR INDEX

HOOVER, W., 127

HOWARTH, D. J., 59

HOWELL, M., 191

HUNT, E. B., 241

HURLEY, J. R., 69

JOHNSON, J., 17

JOHNSON, T. E., 347

KELLY, K. L., 263

KERSEY, B. K., 117

LARSON, M., 17

LEE, E. S., 381

LEFKOVITZ, D., 229

LEVIN, B. M., 1

LICKLIDER, J. C. R., 51

LIN, A. D., 355

LoNGSTAFF, F. M., 29

LUCE, D. A., 263

MCCARTHY, J., 51

MCCONAUGHY, R. L., 141

MCKNIGHT, A. L., 83

McLEOD, J. H., 401

MARCOTTY, F. :LVI., 29

MILLER, T. B., 127

MOSHMAN, J., 17

Moss, D. J., 263

MULLERY, A. P., 367

P ALAIS, S. M., 395

PRYWES, N. S., 229

RICE, R., 367

RODRIGUEZ, J. E., 305

Ross, D. T., 305

SAMS, B. H., 289

SCHAUER, R. F., 367

SKILES, J. J., 69

SPITLER, R. H., 117

SQUIRE, J. S., 395

STEENECK, R., 155

STONE, P. J., 241

STOTZ, R., 323

SUTHERLAND, 1. E., 32

THOMPSON, R. N., 41

WILKINSON, J. A., 41

WILLIAMS, A. P. M., ~

WINDERKNECHT, T. G.,

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415

