
Proceedings of the 

EASTERN JOINT _COMPUTER CONFERENCE 

December 13-15, 1960 New York, New York 

Sponsors: 

Vol. 18 

THE INSTITUTE OF RADIO' ENGINEERS 

PrQfessional Group on Electronic Computers 

THE AMERICAN INSTITUTE OF ELECTRICAL ENGINEERS 

Committee on Computing Devices 

THE ASSOCIATION FOR COMPUTING MACHINERY 

Price $300 



PRIOR NJCC CONFERENCES 

NUInber Conference Location Date 

1 Eastern Philadelphia Dec. 10-12, 1951 
2 Eastern New York City Dec. 10-12, 1952 
3 Western Los Angeles Dec. 4-6, 1953 
4 Eastern Washington Dec. 8-10, 1953 
5 Western Los Angeles Feb. 11-12, 1954 
6 Eastern Philadelphia Dec. 8-10, 1954 
7 Western Los Angeles Mar. 1-3, 1955 
8 Eastern Boston Nov. 7-9, 1955 
9 Western San Francisco Feb. 7-9, 1956 

10 Eastern New York City Dec. 10-12, 1956 
11 Western Los Angeles Feb. 26-28, 1957 
12 Eastern Washington Dec. 9-13, 1957 
13 Western Los Angeles May 6-8, 1958 
14 Eastern Philadelphia Dec. 3-5, 1958 
15 Western San Francisco Mar. 3-5, 1959 
16 Eastern Boston Dec. 1-3, 1959 
17 Western San Francisco M~y 3-5, 1960 



PROCEEDINGS OF THE 
EASTERN JOINT COMPUTER CONFERENCE 

PAPERS PRESENTED AT 

THE JOINT IRE-AIEE-ACM COMPUTER CONFERENCE 

NEW YORK, N. Y., DECEMBER 13-15, 1960 

Sponsors 

THE INSTITUTE OF RADIO ENGINEERS 
Professional Group on Electronic Computers 

THE AMERICAN INSTITUTE OF ELECTRICAL ENGINEERS 
Committee on Computing Devices 

THE ASSOCIATION FOR COMPUTING MACHINERY 

Published by 

EASTERN JOINT COMPUTER CONFERENCE 

© 1960 by National Joint Computer Committee 



ADDITIONAL COPIES 

Additional copies may be purchased from the following sponsoring 
societies at $3.00 per copy. Checks should be made payable to anyone 
of the following societies: 

INSTITUTE OF RADIO ENGINEERS 

1 East 79th Street, New York 21, N. Y. 

AMERICAN INSTITUTE OF ELECTRICAL ENGINEERS 

33 West 39th Street, New York 18, N. Y. 

ASSOCIATION FOR COMPUTING MACHINERY 

14 East 69th Street, New York 21, N. Y. 

The ideas and opinions expressed herein are solely those of the authors, and are 
not necessarily representative of, or endorsed by, the EJCC Committee or the 

National Joint Computer Committee. 

Manufactured in the U.S.A. by the Fifth Avenue Lithographic Associates, Inc., New York, N. Y. 



Harry H. Goode 
July 1, 1909-0ctober 30, 1960 

Harry H. Goode, Professor of Electrical Engineering at the Uni­
versity of Michigan and a prominent leader in the activities of the 
National Joint Computer Committee and several societies active in the 
computer field, died in an automobile accident on the morning of Octo­
ber 30, 1960. His loss will be deeply felt by all who knew him through 
his teaching, his frequent lecture appearances, &is- many publications, 
his work in professional societies, his consulting activities, his stimulat­
ing participation in conferences, or directly through his warm friendship. 

Professor Goode was born in New York City on July 1, 1909. He 
received the B.S. degree in history from New York University in 1931, 

and later earned the Bachelor of Chemical Engineering degree from Cooper Union in 1940 
and the M.A. in Mathematics from Columbia University in 1945. His early professional work 
was in statistics, and in 1941 he became Statistician-in-Charge for the New York City Depart­
ment of Health. During the war years he was a research associate at Tufts College and worked 
on applications of probability to war problems and also on the acoustic torpedo problem. From 
1946 through 1949 he was on the staff of the Office of Naval Research at the Special Devices 
Center, Sands Point, Long Island. Here he progressed through successive responsibilities to be 
head of the Special Projects Branch. His work during this period was on flight control simula­
tion and training, aircraft instrumentation, anti-submarine warfare, weapon system design, and 
computer research. Through his O.N.R. work he was actively associated with such pioneering 
computer projects as the Whirlwind computer at M.LT., the Cyclone computer built by Reeves 
Instrument Company in New York, and the Typhoon computer built by R.C.A. Laboratories 
for the Navy. 

In 1950 he joined the Willow Run Research Center of the University of Michigan, serving 
first as head of the Systems Analysis and Simulation Group, next as Chief Project Engineer, 
and then as Director of the Center. Under his direction the Research Center carried forward 
a broad program of research, including system design, computers, radar, infra-red, and acoustics, 
and in the process doubled its size to 600 people. He guided the efforts of the Center through 
problems in air defense and battle area surveillance, and was instrumental in establishing the 
basis for the ground system for the Bomarc missile. 

In 1954 he was appointed Professor of Electrical Engineering at the University of Michigan, 
and in 1956 his wide range of interests brought a dual appointment as Professor of Electrical 
Engineering and as Professor of Industrial Engineering. In 1958 he served for a year as Tech­
nical Director of the Systems Division of' the Bendix Corporation, maintaining a fractional 
appointment in the University so that he could continue to teach his newly introduced course 
on System Design. A little over a year ago he returned to full-time teaching and research 
activities in the Department of Electrical Engineering. 
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In addition to his wide range of services to the University of Michigan, Professor Goode 
served as a consultant to industry and government, and was active in professional society affairs. 
He brought to problems a keen insight and a rare ability for stripping away the non-essentials. 
His advice was highly valued and widely sought. Among the firms for which he consulted 
were the United Aircraft Corporation, the Bendix Corporation, the Auerbach Electronics Cor­
poration, the DuPont Corporation, the Ford Motor Company, the Burroughs Corporation, the 
Texas Company, and the Franklin Institute. He served the government on projects of the 
National Bureau of Standards, the Post Office Department, the Air Force, and the House of 
Representatives Appropriations Committee. For the Air Force, he was chairman of the W-117L 
Committee on Advanced Reconnaisance; and for the House Committee, he served as a member 
of the Study Group on Missile Reliability. 

He served his profession as a member of the Administrative Committee of the IR.E. Pro­
fessional Group on Electronic Computers from 1953 to 1956, as a member of the Computer 
Advisory Committee of the Society of Automotive Engineers, and as a member of a subcom­
mittee of the A.I.E.E. Committee on Feedback Controls. His most important service in this 
area was as chairman of the National Joint Computer Committee of LR.E., A.I.E.E., and 
A.C.M. In this latter role, he played an important part in the formation and formulation of 
the charter of the International Federation of Information Processing Societies. 

Professor Goode was a member of many societies - The Association for Computing 
Machinery, the American Mathematical Society, the Mathematical Association of America, 
and the Institute for Mathematical Statistics. He was a Fellow of the American Association 
for the Advancement of Science and a senior member of the Institute of Radio Engineers. He 
was also a member of Sigma Xi, Eta Kappa Nu, and Mu Alpha Omicron. 

His many published papers touched upon statistics, simulation and modeling, vehicular 
traffic control, and system design. His major published work is the book "System Engineering," 
of which he was senior author with R. E. Macho!. The book was an outgrowth of the very 
successful and valuable course which he introduced at the University of Michigan under the 
title, "Large Scale System Design." 

Professor Goode's broad experience with computers and his participation in national com­
puter functions led to his participation as one of the group of eight Americans who visited 
Soviet computer establishments in 1959. 

Our profession has lost one of its most outstanding members-a man of rare versatility, 
talent, vigor, and vision. 
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FOREWORD 

This volume contains the paper s presented 
at the 1960 Eastern Joint Computer Conference 
(the 'eighteenth Joint Computer Conference). In 
order to make the Proceedings available at the 
conference these pages were reproduced directly 
from the authors' manuscripts by photo offset. 

The papers which are presented here were 
selected from among 130 that were submitted. 
On the basis of 1, OOO .. word summaries Elmer 
Kubie and his Program Committee selected 
those which seemed of exceptional significance, 
originality, timeliness and interest. 

A study of the records indicates that when 
judged by the box office, the programs of the 
EJCC seem to fill a need. The following graph 
shows the attendance at recent meetings and 
predicts the 1960 attendance from the known 
growth in Boston, assuming that the growth in 
New York would be at the same rate. The graph 
also shows an alternate interpretation of the data 
according to which there is no geographical effect 
and really the situation is deteriorating. If the 
first interpretation is correct, there is no hotel 
in New York that can hold the EJCC. This is the 
reason for the choice of the combination of the 
Hotel New Yorker and the Manhattan Center 
Auditorium. However, there is hope for a better 
future since the projected Americana West Hotel 
will be lar ge enough. 

When the Joint Computer Conferences are 
judged by the critics' notices rather than by the 
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box office a diffe~ent picture emerges. Many of 
these critics think that the primary benefit of 
such a conference is the opportunity to meet ones 
friends (or competitor s) in the halls and lobbie s 
to exchange views and to pass on the latest in­
side information. At this conference we heeded 
their advice and made an effort to assist this kind 
of communication. 

After each session there was a discussion 
period of a new kind. There was some space 
available at the rear of the auditorium, and in 
this space each speaker was stationed at a parti­
cular spot so that people could ask him questions. 
These spots were to serve also as focal points 
for the gathering of groups of people whose 
interests were aroused by the paper s. Not only 
could they talk to each other and to the speaker 
but also they had the opportunity to form lunch­
eon and dinner groups of people with congenial 
interests. 

For nearly a year the committee member s 
have worked with me on preparations for the 
conference. I take this opportunity to thank them 
for the many hour s of hard work and the lar ge 
contribution they have made. 

Philadelphia -- .... -
(Alternate 
Pr edic tion) 

Nathaniel Rochester 
General Chairman 

--

Washington 
(Records Incomplete) 

1,000 
1955 1956 1957 1958 
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A LOGICAL MACHINE FOR MEASURING 
PROBLEM SOLVING ABILITY 

Charles R. Langmuir 
The Psychological Corporation 

Summary 

The magnitude of costs incurred by assign­
ing unsuccessful or even marginal personnel to 
tasks involving EDP systems design and program­
ming justifies a much greater effort in the se­
lection of personnel than the use of convention­
al aptitude tests implies. A small desk-top 
machine named the Logical Analysis Device is de­
scribed, its logical organization is explained, 
and its operation as a method of observing and 
testing an individual's problem solving abili­
ties is illustrated. Some comment describing 
the wide variation of performance among several 
hundred college graduates employed in various 
professions is included but the principal em­
phasis is given to data pertaining to the per­
formance characteristics of persons in computer 
and data processing activities. The application 
of the device is clearly indicated at the point 
of evaluating final candidates for assignment to 
tasks requiring a high order of logical and ana­
lytical talent. 

***** 
The talents, interests and aptitudes of in­

dividuals who become effective computer program­
mers are probably basically similar in all the 
many varieties of EDP installations. In making 
this statement, I do not mean to suggest that 
all persons who are happy, successful, contrib­
uting workers in the computer profession are all 
alike. Any such notion is patently absurd. I 
do mean to indicate that there are certain es­
sential characteristics which are common among 
persons who are able to live peacefully, in com­
fort, and perhaps in joy, with modern computing 
ma9hinery and the extraordinary variety of prob­
lems in which the machinery becomes involved. A 
principal purpose of this paper will be the am­
plification of the idea in the opening sentence 
including a statement of what the fundamental 
characteristics of successful computer program­
ming personnel are, and a description of a 
method of observing, indeed, even measuring, an 
individual's status with respect to these char­
acteristic abilities. 

When a computer installation is established 
in a univerSity environment, individuals who 
like this kind of thing seem to gather around it. 
They simply gravitate to their center of attrac­
tion. After a time, and often quite a long time, 
they either weed themselves out or they get into 
a suitable orbit. To a less obvious degree, the 
same kind of self-selection of computer person-

nel takes place in a scientific computing center, 
including perhaps computer installations in in­
dustrial organizations which are primarily con­
cerned with computing and data processing in the 
so-called scientific categories. 

In the business-type organization where the 
computer installation is primarily concerned 
with the processing of commercial paper work and 
reports,the development of the personnel situa­
tion is somewhat different. There may be an in­
itial surge of enthusiastic interest when the de­
cision to install a computer is first announced, 
but this is only superficially comparable with 
the gravitation of personnel characteristic of 
scientific institutions. 

The difference between the university or 
scientific-type installation and the commercial 
or business-type installation becomes apparent 
in examining the effects of the weeding-out pro­
cess. In the business data processing operation, 
weeding out of ineffective personnel is accompa­
nied by much difficulty and all the pain that ab­
normal personnel readjustments call forth in busi­
ness organizations. In addition to the organiza­
tional disruptions that occur, there are very 
large dollar costs involved. These costs quickly 
become great enough to justify the attention I 
will suggest should be given to the initial se­
lection of personnel. 

When the personnel department calls you, 
the supervisor, to announce that another candi­
date has appeared for the opening in the pro­
grammi,ng department, an important and costly de­
cision is implied. When you hire your man for 
training in this activity, you commit the organ­
ization to an investment not less than $5,000, 
more likely $20,000 and perhaps a good deal more. 
If, at the end of six, nine or twelve months, 
you find your candidate is not going to make it, 
the investment is a loss. If the man is mar­
ginal, a yet larger investment is required before 
you will find out what the return may be. 

Obviously then, if it is possible to iden­
tify the characteristics that are required for 
successful accomplishment of the tasks involved 
in utilizing a computer, it is economically im­
portant to employing organizations to know what 
procedures ~an be effectively used. I shall fo­
cus my attention upon the characteristics I be­
lieve to be essential and shall present these 
generally with an emphasis upon data proceSSing 
rather than scientific computing. The abilities 
I shall discuss are not those that involve spe-
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cialized educational background and knowledge of 
particular subjects such as college mathematics 
or physical sciences. The academic background I 
postulate as necessary is only that which we ac­
cept as the common heritage of the educated per­
son in the modern world. On the basis of experi­
mentally observed facts, we may have to recon­
sider the question whether certain intellectual 
elements of importance in computer work are as 
much a part of the common heritage as we would 
like to believe. 

What are these characteristics? First, 
there is certainly some minimum ability to read. 
Or to be more abstract, the ability to cope with 
verbal notation. A second requisite is ability 
to deal effectively with quantitative concepts 
and numerical notation. It is certainly no det­
riment to a person to be able to handle literal 
notation, but facility with algebraic manipula­
tion is not included as essential. There is, 
third, the ability to see relations, to see or­
der in sequences, and perhaps the ability to en­
rich the understanding of details by seeing an­
alogies and abstract classifications involving 
order, symmetry and the permeation of common 
characteristics in a background of seemingly in­
dependent elements. 

During the last thirty or forty years, psy­
chologists have developed efficient ways of test­
ing individuals for their ability in these dimen­
sions, particularly the first two, the ability 
to read and the ability to handle numerical prob­
lems. It is, therefore, no problem to evaluate 
applicants for computer programming opportunities 
with respect to these abilities. We can cer­
tainly find out whether they can read well enough 
to handle the language in a machine manual, and 
we can find out if they are able to handle num­
bers in Simple arithmetic problems. The third 
element, namely, the ability to see abstract re­
lations, is not so well understood, but there 
are tests available. The tests I speak of are 
conventional paper and pencil instruments quite 
widely available on the professional market and 
well known in schools, colleges and employment 
offices. One such test has been specifically 
prepared by a computer manufacturer for use in 
testing applicants for training as programmers. 

Such tests have proved adequate for the in­
itial elimination of candidates. They can be 
economically used for screening among many appli­
cants to eliminate those who are inadequate in 
verbal or numerical reasoning abilities, and 
probably to identify individuals whose verbal 
ability reaches a high level but who have diffi­
culty dealing with the abstract kind of content 
or representations of a non-verbal character. 
There is, however, abundant evidence that such 
screening tests are not sufficient. Many indi­
viduals score above whatever cutting point we 
may choose but still lack some crucial abilities 
required for successful work in programming. 
What are these crucial elements? 

Certainly one is an acceptance of the idea 

that systematic, logical, analytical processes 
can converge on a solution to problems involving 
complex logical relations especially in those 
problems contaiping elements of dependent serial 
order. A second crucial characteristic goes be­
yond the simple acceptance of analytical process­
es as a mode of problem solving but involves some 
minimum power in utilizing analytical procedures. 
Sufficient power is necessary to cope with a 
multiplicity of elements and an ability not only 
to analyze a problem into its elementary compo­
nents but to synthesize the bits of information; 
an ability to put the bits and pieces together 
into a whole and to do so not by accident and not 
by chance but with full understanding of the ul­
timately closed system. 

There are, of course, other desirable abili­
ties and traits of personality -- some that we 
notice after the fact and that we have no success 
whatever in forecasting. There are the individ­
uals who simply get ideas. Things occur to them. 
We do not see the mental machinery in operation 
and we cannot find out much about it afterwards. 
We call it intuitive creativity, and we are very 
grateful for it when it occurs. But this rare 
characteristic is out of reach, and I do not in­
clude it now within the domain of practical hu­
man engineering and certainly not in the inces­
sant and mundane activity of routine personnel 
selection. 

It is possible, however, to obtain a quite 
objective, very reliable estimate of a person's 
ability to use logical methods in solving logi­
cal problems. The procedure involved presents 
an individual with a logical problem, fully de­
fined with respect to the rules of its logic; 
one which is simple enough to comprehend in a 
brief time interval, yet is complex enough to 
represent a real challenge, and presented in a 
form which makes observation of the performance 
not only objective, but detailed in its step by 
step development. By the simple device of pre­
senting an individual with a sequence of several 
problems graded in a series of increaSing com­
plexity, we are able to observe both his char­
acteristic preferences as shown by his choice of 
problem solving procedures and his power in syn­
thesizing final solutions to problems. 

The Logical Analysis Device is a simple log­
ical machine which can be used to observe objec­
tively the performance of a person in'manipulat­
ing logical concepts and solving logical prob­
lems. The portion of the equipment of interest 
is the operators display panel shown in Figure 1. 
The operator is the person whose problem solv­
ing prowess is being tested. The examiner, who 
must be a person qualified by experience and 
training, presents an opening explanation with 
demonstration. The full explanation requires 
ten to fifteen minutes and incorporates a care­
fully organized demonstration with a practice ex­
ercise as part of the familiarization program. 



The ~ic elements of a demonstration with 
working equipment in real time cannot be simu­
lated in any written material, but the follow­
ing description does define the logical nature 
of the problems and suggests, at least by impli­
cation, some of the dynamic elements that are re­
vealed in individual performance records. 

In the upper left corner of the display 
panel, therel is an indicator light labeled TIME. 
It is a cloci which shows the passage of time in 
alternating intervals like day and night. The 
light is on for three seconds and off for,three 
seconds and then on again and so on continuously. 
There are nine numbered lights arranged in a cir­
cle and one 'light in the center. 

Next to each light in the circle, there is 
a push button switch. ~Be switches are manual 
inputs. Each switch has the effect of turning 
on its associated light subject to an important 
restriction. Each light is either a, day worker 
or a night worker; it can be turned on at any 
time during one or the other, but not both time 
phases. When it is turned on, it will stay on 
until the end of its active time phase. At the 
end of its active phase, it will extinguiSh and 
remain extinguished until it receives another 
input signal. 

The target light in the center has no asso­
ciated manual input switch. It can be turned on 
only as the consequence of some configuration of 
the signal lights in the circle being on. Cer­
tain crucial information about the possibilities 
is supplied by an information diagram. The ar­
rows on the diagram link pairs of ·lights. The 
existence of an arrow, as the one from light 3 
to X, the target light, is information that 
light 3 bas some effect on X. The relation is 
not reversible,. i.e., in the example illustrated 
the arrow from 1 to 8 states that 1 has an ef­
fect on 8 but 8 has no effect upon 1. 

Any effect will occur at the end of the ac­
tive time interval of the activated light and 
will continue to hold through the following time 
interval. For example, if the logical relation 
is simple cause-effect, then turning on number 1 
in its active period will cause number 8 to come 
on in the following time interval. It is log­
ically necessary that the lights at opposite 
ends of any arrow be active in opposite time in­
tervals. 

There are three different logical relations 
that may exist. The first is mentioned above-­
simple cause-effect - namely, turn this light on 
and after a while the other light will come on, 
and this one will go off. Obviously, any arrow 
can be tested by experiment to find out if it 
represents this effector relation. 

A second relation is the combinor. If two 
arrows converge on one light as 9 and 2 converge 
on 1, neither one may be sufficient to turn on 
1 but in combination they may. The existence of 
this combining relation can be tested experi-
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mentally, but the experimentation requires _ a li t­
tle more planning and a little more logical so­
phistication-to be analytically complete than 
does the simple try it and see experiment to 
prove the simplest effector relation. 

The third and last relation is the preven­
tor. A light which has a preventor relation to 
another negates the effects of any effector or 
combinor relations upon the same light. The 
fact that an arrow represents the preventor re­
lation can be experimentally demonstrated but 
planning and correctly executing the experiment 
requires a greater logical precision than the 
tests for the other relations. In the example 
illustrated in Figure 1, lights 3 and 8 combine 
to turn on the target but 3 and 8 and 7 do not 
turn on the target. By such a sequence of 
trials, we ascertain that 7 is a preventor and 
the complete configuration necessary for turn­
ing on the target is 3 and 8 and not 7. 

All the arrow relations can be investigated 
and their specific nature, i.e., which one of 
three, can be determined by experimental obser­
vation. In many cases the facts about a rela­
tion can be determined by logical deduction. 
Hypotheses may be formulated on the basis of 
partial information and tested. 

Additional rules of the system are clari­
fied, e.g., the existence of every relation in 
a problem is represented by an arrow in its dia­
gram; an arrow represents one and only one rela­
tion; when a light goes out the machine reverts 
to its prior state and remembers nothing; and, 
all problems are soluble. Thus, the logical 
system is closed and completely defined. The 
only facts the operator does not have expli­
citly defined in advance are the specific rela­
tions represented by the arrows. 

After the system has been tully defined and 
demonstrated, the7problem solving task is speci­
fied in three steps. First, find out what com­
bination of lights turns on the target, i.e., 
investigate t~ arrows to the center. Second, 
investigate the other arrows and thusdetermtDe 
what relation each represents. Third, using the 
information derived by logical deduction and ex­
periment, synthesize a way of turning on the cen­
ter light by some operations limited to the three 
red buttons, numbered 4, 5, and 6 at the bottom 
segment of the circle. Success on this last 
step is the solution of' the problem. The oper­
ator, however, has complete freedom to choose 
his method of procedure. He may skip over the 
first steps as outlined if he wishes. 

The operator works on the task in isolation 
but he has immediate access to the examiner for 
consultation; paper and pencil are supplied for 
notetakingJ and he has a written summary of the 
rules of the system for reference. 

When the solution has been attained or af­
ter a suitable time if the problem is not 
solved, the examiner interrupts the work and by 
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questioning ascertains the individual's compre­
hension of the logical structure of the problem. 
In this quizzing process, the problem is re­
viewed in detail, and the effectiveness of the 
back solution as a general method is demon­
strated again. 

If the problem was solved with explicit 
clarity of understanding of the logical rela­
tions, the examiner presents a new problem of 
greater complexity. If the problem was not 
solved or was solved without evidence that the 
logical structure was understood, a new problem 
at the same level of complexity is presented. 

This elaborate procedure is carried through 
consistently and in as standardized a manner as 
possible. The fUnction of the examiner is, in 
fact, that of a non-directive instructo~ or dem­
onstrator. The purpose of the carefUl and re­
-petitive instruction is to minimize and, if pos­
Sible, eliminate any bias in the evaluation of 
the ultimate performance that might be caused by 
accidental "sets" or rigidity in persisting with 
an inappropriate initial choice of method. For 
example, an individual who is interested in prob­
ability concepts may decide that an effective ap­
proach could ignore any analysiS of the informa­
tion diagram as suggested by the examiner. The 
solution involves only three switches, and he may 
conclude that the possibilities are exhaustively 
covered by a small number of experimental trials. 
In such an instance, it is the task of the ex­
aminer to provide the operator with an easy op­
portunity to adopt a new approach. If an indi­
vidual persists in using ineffective methods, we 
are at least able to say that his rigidity is 
no~ a consequence of lack of exposure to more ef­
fective procedures. 

The whole process is demonstrated with the 
problem represented in Figure 2. By experimen­
tal trial, the operator can discover that 9 and not 
3 gives X. Light 3 is a preventor. In any order 
that he chooses the operator can ascertain that 

1 gives 3 
2 gives 3 and 9 
3 prevents X 
4 gives 8 
5 gives 3 and 9 
6 gives 7 
7 gives null result 
8 gives null result 
7 and 8 combine to give 9 
9 gives X 

Note the expreSSion "can ascertain." The oper­
ator has been shown effective methods, but this 
fact does not mean that he will choose to use 
them. 

With this information which represents the 
total logical structure of the problem, it is 
easy to determine that the combination 4 and 6 
will initiate a sequence of events that will 
turn on the target light. Any attempt to use 
light number 5 to activate 9 directly will set 
up the preventor. Note also that the arrows from 
lights 1 and 2 represent irrelevant elements in 

Figure .2 

the logical structure. They are analogous to 
noise in a circuit. They are indeed logical re­
lations, they obey all the rules, but they are 
irrelevant because they have no inputs other 
than the manual switches. Thus, if an operator 
makes a careful study of the information given 
and applies the rules of the system, he will be 
able to deduce that these three arrows can be 
ignored. 

Now look at Figure 3. 

Figure 3 

The arrow diagram in this illustration is 
the same as the one illustrated on the Display 
Panel in Figure 1. The arrows in this diagram 
are coded so that a Single solid line repre­
sents an effector, paired lines represent a com­
binor and crossed lines represent a preventor. 
(This information is not supplied to the opera­
tor in actual practice. It represents the in-



formation he would be able to get by experiment 
or deduction, or both.) The condition for the 
target is clearly 8 and 3 and not 7. Byexamin­
ing the other information, it is readily seen 
that light number 6 cannot be a part of the fi­
nal sOlution. It provides a way of turning on 
3 but it also turns on the preventor 7. Light 
number 4 turns on 3 directly. We now ba'\l'e half 
the solution, we need only to find out how to 
turn on light number 8. By tracing the arrows 
back, 8 to 1, and from 1 to the combinors 2 and 
9, and from these lights back to light 5, we 
see that the solution will involve the opera­
tion: turn on 5, wait, and turn on 4 at the 
time 1 comes on. 

In actual experience with this problem, the 
most usual first attempt at a solution involves 
pressing buttons 4 and 5 simultaneously. The 
result is not successful. The operator has to 
become aware of the problem of phasing his op­
erations on the lights. In the more complex 
problems in the series, the operator has to get 
similar, but more sophisticated insights. The 
rules of the system are invariant, but the com­
plexity of specific problems varies widely. 

There are five levels of complexity in the 
complete series of problems: the two demonstra­
ted above which are used as learning exercises 
and three levels beyond these. 

It is an interesting demonstrable fact that 
with such a simple logical structure it is pos­
sible to develop complexities sufficient to dif­
ferentiate among college educated adults on an 
ordered scale of 15 categories. The most diffi­
cult problem contains sufficient complexity to 
provide ample opportunity to observe the methods 
of work and the effective power of persons as 
skilled in logical performance as top-notch pro­
grammers, logical designers, and systems an­
alysts. 

Almost every operator takes notes of some 
kind. It is conceivable that some effects as­
sociated with the kind of notation system adopted 
might introduce chance variation in the perform­
ance. The procedure~minimizes evaluation er­
rors from this source by presenting a very power­
ful notation system to the operator after he has 
had the experience of working the first two prob­
lems. The standardized system is shown as in 
Figure 4. When in~tially written out, the ar­
rows are undifferentiated. As information is 
verified by experiment or deduction, the arrows 
are coded. By logical analysis applied to this 
convenient reorganization of the information dia­
gram, it is possible to derive optimum sequences 
of experiments that will converge on a solution. 

Much repeated experience with the presenta­
tion of the notation system reveals a significant 
finding. A large proportion of operators do not 
make effective use of the recommended or any 
other notation. Examiners get a strong impres­
sion that taking notes is some form of academic 
"doodling," a kind of behavior that is approved 

Figure 4 

Z-4 Z-3 Z-2 Z-1 ZERO 
TIME 
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in the circumstances, whether effectively func­
tional or not. 

Evaluation of Performance 

The LAD procedure incorporates a number of 
elements of interest in psychometric technique. 
The presentation is uniform, almost rigorously 
standardized without being formally "canned." 
The system strives to minimize the variability 
of performance attributable to the examiner's 
presentation. The individual's step by step per­
formance is recorded by a remote printer. As a 
consequence of this technique, the operator works 
in isolation without any anxiety-inducing inter­
actions resulting from the presence of an ob­
server. The problems are real, logical struc­
tures and do not contain the tricky elements 
characteristic of puzzles. The increasing com­
plexity of the series of problems is achieved 
without any change in the initially established 
logical rules of the system. Parallel forms of 
the problems at each level of complexity are 
available. It is an interesting and important 
fact that individual operators do not recognize 
parallel form problems as logically identical, 
even when they work them in succession. The 
problems are specific configurations of a com­
pletely defined logical system. Successful so­
lution of the problems is not dependent in any 
way on substantive knowledge not within the ex­
perience of every educated adult. 

The scoring of a completed problem-solving 
session on LAD leads to a rating assigned on a 
15 point scale from A+, A, A-, etc., down to E+, 
E, and E-. This scale covers a range of perform­
ance from extremely powerful and efficient solu­
tions to performances so ineffective that we are 
unable to conceive of a performance that could be 
demonstrably worse. The E rating indicates that 
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the operator was not able to achieve any success 
with the least complex problem after 90 minutes 
of repeated instruction and experience with paral­
lel forms. The E- rating is reserved for opera­
tors who never catch on to the idea that one 
light may be related to another. Such a record 
occurs less than once in a thousand trials. The 
entire E category, including E and E+ ratings, 
represents very poor performance. About 4% of 
our sample of employed adults fall in this cate­
gory. 

The first phase of the scoring procedure is 
largely clerical. A count is made of the total 
number of operations performed on each problem. 
The total time worked on each problem is com­
puted from the calibrated printed record. The 
individual elements of the performance are seri­
ally numbered in the order in which they ap­
peared in time. This standardized information ab­
stracted from the original serial record is tabu­
lated in an organized form that enables the ex­
aminer to see at a glance the basic elements of 
the operator's record on each problem. 

These clerical procedures reduce consider­
ably the amount of information a rater must con­
sider, but the amount retained has proved to be 
too formidable for any mathematical or mechanical 
computation of a final score. The rater still 
must consider the abstracted record and decide 
on the basis of all the factors present which 
point on the rating scale best describes the to­
tal performance. In addition to the highest 
level of complexity successfully handled, and 
the speed and the economy of effort in terms of 
numbers of operations, the rater will consider 
the approach to a major area. He will consider 
whether the operator's approach is logically 
sound. He will seek evidence that the operator 
grasped the import of the results of his opera­
tions. Were all the major problem areas ex­
plored? Was the order in which they were ex­
plored logical? Were many repetitions required 
before the operator planned his next experiment? 
The possibility of answering such questions 
about a person's problem solving efforts is a 
unique aspect of the LAD performance record. 

The ability of the rater is central to the 
succesS of the system. The rater must be trained, 
must be fairly logical himself, and must have had 
enough experience with LAD procedure to apply the 
generalizations about problem solving which are 
contained in the ratings. It is an important, 
experimentally observed, fact that the subjective 
elements of the evaluation procedure are easily 
maintained in statistical control. Different 
examiners working independently in evaluating a 
single series of performance records will, of 
course, report different scores at least occa­
sionally. The magnitude and variability of tneir 
differences describes the reliability of the scor­
ing process. In many hundreds of records, accumu­
lated over a period of three years, the differ­
ences between raters exhibit a mean of zero and 
a small variance. The correlation between pairs 
of raters evaluating the same records will be .95 

or better. The same statistical results describe 
the comparison of ratings arrived at independ­
ently over an interval of a year or more. These 
findings are important in considering the valid­
ity of the LAD procedure as a method of describ­
ing individuals. The examiners are able to reach 
a scale of some kind of absolute judgment which 
does not include individual bias and does not 
drift with temporal effects over long or short 
intervals. This happy result is not the normal 
expectation in tasks that involve elements of 
subjective judgment. 

Experimental Results 

Table 1 shows the results of scoring the per­
formance records of 1109 adults employed in a 
variety of occupations and 175 college students. 
For simplicity, the subdivisions of the literal 
categories have been grouped. 

Table 1 
Distribution of LAD Ratings 

N=1284 

x 

A 
B 
C 
D 
E 

f 

211 
285 
518 
220 

50 

16 
22 
40 
17 
4 

The typical or median value in the sample 
is 8, equivalent to the letter category, C. The 
variation within and between the sub groups that 
comprise the total is large. The highest scor­
ing group, a programming staff in an industrial 
scientific computer department, obtained a median 
score of 2, equivalent to an A rating. The low­
est scoring groups obtain median scores of 11, 
equivalent to a D rating. 

These data provide background information 
and nothing more. They describe the variation 
we can expect to observe when we test people 
with problems of this kind. They do not con­
tain any evidence that performance in the minis­
cule problem solving situation is related to any 
characteristics of people working in real life 
situations. The possibility that important cor­
relates may exist between behavior observed in 
the test situation and behavior in the real 
world is strongly suggested by the apparent sim­
ilarities between reactions to difficulties in 
LAD problems and behavior in the more complex 
problems met in such real tasks as control en­
gineering, designing logical circuitry, labora­
tory trouble shooting and computer programming. 

In the LAD problems we-frequently observe 
individuals who get "stuck in a rut." They ex­
hibit a lack of flexibility that makes it very 
difficult for them to abandon an ineffective ap­
proach. Other very typical difficulties include 
overlooking side effects, miSinterpreting data, 
abandoning systematic procedure under stress of 
frustration, ignoring the outcome of experiments 



which yield null results, jumping to conctusions 
and assuming hypotheses are true, disregarding 
alternate possibilities, forgetting or distorting 
objectives, adopting a superficially logical but 
actually absurd appr-oach, unnecessary or point­
less repetition and preoccupation with redundant 
or even random busy work. We have all observed 
some of these characteristic barriers to optimum 
performance in ourselves occaSionally and quite 
frequently in others. These and other elements 
in problem solving behavior frequently observed 
in LAD testing are obvious analogies to actual 
vocational tasks. Their existence provides a 
rational basis for the hypothesis that behavior 
exhibited by an operator's work with LAD exer­
cises is an expression of stable, individual, 
personal characteristics and that these charact­
eristics which can be observed systematically in 
the LAD procedure will also be characteristic 
elements in the individual's working environment. 
If the hypothesis is true, it should be possible 
to find differences in LAD performance for groups 
of people employed in real work which requires 
dramatically different abilities even though it 
is impossible to obtain reliable observation of 
the important component elements in the individ­
ual's performance in the job. 

Experimental data which meet the requirements 
of dramatic difference in required abilities are 
presented in Table 2. 

Table 2 
Comparison of Programmers 

and Insurance Salesmen 

X Salesmen Programmers 

A 0 51 
B 4 56 
C 19 51 
D 22 29 
E .B --1 

N 57 190 

Both groups are of comparable age. The 
median programmer scores well up in the upper 
half of the LAD scale (Md.n=B). The typical man 
in the sales group scores in the lower half 
(Md.n=DI- ) • Some individuals in each group have 
certainly made a mistake in their commitment to 
their vocational choice. If we were able to 
identify them with assurance, the difference be­
tween the groups would be larger. 

The difference between the groups is not a 
Simple difference in problem solving power. A 
detailed review of the records shows a striking 
qualitative distinction in the procedures used 
by most members of the sales group. There is a 
popular conception that workers in tasks that 
depend heavily upon inter-personal relations 
utilize some special kin~ of logic--a people­
oriented as contrasted with a problem-oriented 
thinking proceSs--sometimes thought of as intui-
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tive and divergent as contrasted with objective, 
logical and convergent. On LAD this different 
mode of planning or decision-making procedure is 
observed with great frequency among people­
oriented people as exemplified by sales repre­
sentatives, including engineering sales, coun­
seling psychologists and administrators in per­
sonnel management. 

The typical performance of individuals in 
this group is broadly described as non-analytic. 
Almost everyone begins work on a LAD problem by 
seeking, more or less systematically, the con­
figuration of circle lights that activate the 
target. We interpret the sequence of operations 
involved in this phase of the task as an analyti­
cal informat.ion-seeking mode of attack. After 
this basic elementary step has been accomplished, 
the order of operations mayor may not be clearly 
seen to be an orderly systematic extraction or 
information which progressively reduces the num­
ber of unknown elements in the problem structure. 
When this kind of logical sequence is observed, 
we say the o~ator persisted in the analytic 
mode _. However, such an obvious pattern may not 
appear. In this case, we cannot classify the 
mode of attack simply from knowled8e of the seq­
uential order of the experimental operatiOns per­
formed. The decision whether the mode is ana­
lytical or non-analytical depends upon the sub­
sequent utilization of whatever information is 
retrieved, and the operator's understanding of 
the logical structure of the exercise at the end 
of the working time. Non-analytical methods of 
working LAD problems are accompanied by lack of 
precision in identifying the structural elements 
in the simpler problems and failure to achieve 
solution at the more complex levels. 

If the analogues between elements or LAD 
performance and characteristic attributes seen 
in programming skill are closely similar to ap­
titudes that are critical for c~ter work, 
there should be an observable relation between 
ratings of LAD performance and supervisor's rat­
ings of the merit of individuals who have pro­
gramming responsibility. The direct experimental 
verification of the fact of such a relation is 
not as simple a matter as it would seem at first 
glance. Computer installations are young in­
stitutions. They differ widely in function, 
type of data processed, administrative ~ganiza­
tion, equipment, and experience with personnel. 
There are no standards for evaluation of merit 
on the job that are comparable from grOup to 
group, and the typical group is too small to pro­
vide within itself evidence that is reliable in 
the statistical sampling sense. Nevertheless, 
it has proved possible to obtain some correla­
tions between LAD ratings and supervisor's rank ... 
ings of individuals. 

In five groups numbering 15 to 25 individ­
uals in each, the correlation between the LAD 
examiI1er's ranking and the supervisor's ranking 
varied from .45 to .81. In two of these groups 
the individuals were ranked a second time after 
an interval of two years on the Job. In one of 
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these organizations, the correlation between the 
supervisor's original ranking and his ranks as­
signed two years later was Rho=.50. The orig­
inal and the follow-up correlations with LAD 
ranks were .70 and .74. In the other group, the 
original rankings supplied by a manufacturer's 
instructor at the end of an extended training 
program correlated .81 with LAD. The on-the­
job ranking two years later correlated .80. 

In four groups of smaller size varying from 
6 to 8 members, similar correlations appear. 
The typical values vary around Rho=.7. Higher 
values may be expected in groups that range 
widely from excellent to inferior. Lower values 
are expected in homogeneous groups where the sub­
marginal workmen have been eliminated. It has 
also been found that correlations are higher in 
groups where the ranking has been supplied by 
supervisors who are themselves experienced work­
ing programmers. 

The fact that the rank order evaluations of 
performance on the job are not comparable across 
groups makes any attempt to use the correlation 
statistics in a practical regression equation 
rather hazardous. On the other hand, correla­
tion findings strongly support the view that the 
LAD procedure could be used effectively in the 
practical business of selecting the most promiS­
ing among applicants and also for ascertaining 
what proportion of an applicant group is likely 
to meet some minimum standards of job performance 
after training. 

The first step in accomplishing this objec­
tive has been taken by establishing quite arbi­
trary, subjectively arrived at, specifications 
of minimum acceptable LAD performance. After 
analysis of the LAD record with special atten­
tion to the analytical elements characteristic 
of the performance, we classify the individual 
into one of four categories: 1. Highly recom­
mended; 2. Recommended; 3. Marginal; and 4. 
Not recommended. Stated in more elaborate lan­
guage, the category Highly Recommended means 
"This man will learn the computer rapidly. He 
will not have difficulty or be confused by the 
rigorous logical elements in understanding and 
utilizing machine language and machine commands. 
After formal instruction he will continue to 
learn on the job from his senior colleagues and 
from the day to day experience in office routine. 
He will advance rapidly to assume independent re­
sponsibility for substantial programming tasks. 
Most of the individuals who ultimately become 
'creative programmers' will develop from this 
category." The Recommended category means about 
the same but with less rapid development, less 
efficient de-bugging, less assurance of attaining 
status of independent responsibility and less 
likelihood of becoming an outstanding contribu­
tor to the organization. 

Statements in this non-quantitative job­
oriented language are, of course, ambiguous to 
some extent, but they seem to be meaningful to 
supervisors responsible for computer operation. 
However, it is extremely important to keep in 

mind that such statements are forecasts of things 
to come if appropriate training and opportunities 
are made available. Since they are predictions, 
they may be in error. Before the classification 
of applicants can b~ acted upon automatically, 
it is necessary to determine the truth value of 
the statements. 

It would be ideal to identify 1,000 persons 
in each category, provide the programming oppor­
tunities, and then two or three years later count 
heads and evaluate the work of the supervisors. 
Real life circumstances do not make this experi­
ment possible and the best approximation we ha~e 
been able to achieve so far are less than defini­
tive. 
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SUMMARY QE ~-UP RESULTS 

LAD 

HR 

R 

NR 

HR 

R 

M 

NR 

R 

BR 
R 

M 

R 
M 

NR 

HR 

R 
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NR 

Installation A 

Supervisor'~ Report 

1 disappointment, 5 achieved 
independent responsibility 
All good but surely not so good 
as BR's 
Do not get the idea 

Installation B 

1) slow but capable; 2) very 
effective; 3) high powered; 
4) top man in charge; 5) can't 
get to know him 
1) effective programmer, chief 
debugger; 2) effective, flexible 
Effective within limits and 
under supervision 
All comments negative or evasive 

Installation C 

All satisfactory. We decided 
to take no chances. 

Installation D 

All very effective 
All good but not as good as 
the lIR's 
Not much imagination and slow 
to learn new developments 

Installation E 

Estimates correct 
1) marginal; 2) outstandingly 
effective 
Estimate correct 

Installation F 

3 outstanding, creative; 
2 very good 
2 outstanding, excellent; 7 
good but not the best; 1 ade­
quate; 1 mediocre 
2 solidly good; 1 mediocre 
2 mediocre; 3 poor programmer 



The informality and non-comparability of 
these supervisor's evaluations precludes the pos­
sibility of combining the results in a single 
table of probabilities. The data do, neverthe­
less, suggest the magnitude of errors of two 
kinds. Errors of the first kind occur when a 
person who is predicted as Highly Recommended 
proves to be a disappointment. This kind of 
error for the Highly Recommended and Recommended 
groups has occurred with small relative frequency. 
Errors of the second kind, namely, discovering 
excellent performance on the part of marginal 
and not recommended candidates are less well 
defined in the data possibly because there is 
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greater ambiguity and greater difference of 
opinion and much reluctance connected with de­
claring disparaging evaluations. 

Errors of the second kind, which reject a 
candidate erroneously, are of much less economic 
consequence to the employing organization, 
whereas errors of the first kind involve losses 
of important magnitude. 

The writer concludes from the evidence so 
far accumulated that the effort involved in us­
ing the LAD procedure results in a significant 
economic pay-off. 

Fig. 1. The Logical Analysis Device Operator's Display Panel 
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A METHOD OF VOIOE OOMMUNIOATION WITH A DIGITAL OOMPUTER 

S. R. Petrick and H. M. Willett 

Air Force Cambridge Research Laboratories, AFRD 
Bedford, Massaohusetts 

Summary 

A pattern recognition procedure for achieving 
automatio identification of spoken words has been 
developed and instrumented using an eighteen 
channel voooder and a general purpose medium 
soale oomputer, the AFCRL Cambridge Computer. 
The process depends upon the representation of a 
spoken word by a sequenoe of ootal digits whioh 
describe the amount of instantaneous power in 
eaoh of eighteen frequenoy bands at time intervals 
of 1/50 second. Essentially, recognition is 
aohieved by matohing suoh a digital representation 
of a spoken word asainst a set of stored word 
"masks", one for each wo-rd to be reoognized. 

To develop such a set of masks (giving the 
oomputer a particular vocabulary) the speaker 
repeats a word several times. A mask is then 
oomputed whioh optimizes a certain reoognition 
parameter. The speaker must then type into the 
oomputer the printed word he wishes associated 
with his spoken word. This process oan then be 
repeated to add other desired arbitrary words to 
the oomputer's vooabulary. At present, using the 
Cambridge Computer whioh has only 1600 magnetio 
drum storage registers, this vooabulary is limited 
for most purposes to 83 spoken words and requires 
about one and one half seoonds per vooabulary 
word for reoognition. 

If the speaker's own voioe is used to 
prepare masks of the words he wishes to be 
reoognized, correct identifications are made 
with almost 100 peroent aoouraoy. In other 
oases the degree of success is highly dependent 
upon the partioular individuals involved. 

Other programs and prooedures which have 
been tested, all dependent upon the basic word 
reoognition faoility, inolude: 

1. The voioing of a word in one 
language followed by its typewriter assooiation 
in a seoond language, resulting in a orude word 
for word maohine translator. 

2. A routine whioh enables a speaker 
to say a sequenoe of words (from the set zero, 
one, ••• , nine. plus, minus, times, braoket, 
equals) whioh are followed by a print out of 
the words spoken and the value of the expression 
defined. 

3. A speaker reoognition program 
whioh identifies the talker with appropriate 

oomments as well as the word he spoke. 

4. An adaptive program whioh enables 
the oomputer to automatically reorient itself to 
a new speaker's voice. 

Introduotion 

The reoognition of digitalized speeoh 
signals has reoeived oonsiderable attention in 
recent years l,2,3,4,fi,6,7,8,9 for two good 
reasons. First, many data processing problems 
would be most oonveniently supplied with input 
of a vocal nature. Examples are plentiful if 
the vooal input-is sufficiently aocurate, 
economioal, and general in application,1e., free 
from limitations suoh as individual speaker 
differences or i~bility to aooept oontinuous, 
unsegmented speech. Applioation is, of oourse, 
limited, if the vooal input does not meet the 
previously specified qualifioations, but is not 
necessarily precluded. This paper will present 
the oapabilities and limitations of one possible 
procedure for vocal oommunioation with a general 
purpose digital oomputer, and it will be left for 
the reader to supply the applioations, if any, of 
interest to him which seem feasible. 

A second explanation of the reoent interest 
in speech pattern reoognition is that the 
ourrent vogue fOr researoh in th& pattern 
recognition area of artifioial intelligence 
requires researoh vehioles. The ability to sort 
unknown events or objects, eaoh described by a 
set of numbers, into olasses or oategories defined 
only by samples of their known members is basio 
to maohine learning. Spoken word reoognition is 
a partioularly good researoh vehiole in this field 
beoause it can provide a wealth of useful data 
for analysis and testing, because equipment exists 
for producing digitalized speeoh, and because 
there is a large relevant fund of knowledge in 
the speeoh field whioh is of value. 

Description of "EqUipment Used 

On the Ohoioe of Input Data 

Reoognition of any pattern by means of a 
digital computer, whether arising from a speech 
souroe, a printed page, or elsewhere, depends 
upon finding a digital representation of eaoh 
event whioh is to be considered. The digital 
representation may oontain enough information 
to synthesize an approximation of the original 
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event or objeot, or it may merely oonsist of 
enough information to insure separation from 
other members of the population with whioh we 
are dealing. If we are interested in doing the 
best possible job in a particular pattern 
recognition applioation, the latter case is to 
be preferred. Indeed, if we know or can 
determine which charaoteristics to measure as 
basic input data, the subsequent pattern 
recognition prooedure can be made extremely 
simple. In this case a short truth table is all 
that is neoessary. This approaoh has been 
applied, apparently very suooessfully, to 
printed character recognitionlO , and it is also 
being considered by several groups [or 
application to speech reoognition. The truth 
table approach, however, requires that the 
pattern recognition be essentially done by 
measuring equipment, carefully oonstructed to 
solve & particular problem by ingenious human 
designers. This approach is, therefore, not of 
primary interest to researohers in pattern 
recognition. However, for many praotical 
applioations the best available measurements of 
an object we wish ~o reco~ize will still 
require truth tables of prohibitive size and 
thus depend upon application of more sophisticated 
pattern reoognition procedures. Speeoh 
recognition seems to be one of these problems. 

The data used in this study were of the 
previously .entioned, highly redundant variety. 
This is known because the digit stream of 
numbers supplied to the computer have been 
reassembled by a speech synthesizer into 
intelligible speeoh. In faot, this equipment 
about to be desoribed was oonstruoted as & 
means of reduoed bandwidth voioe oommunication 
with a human listener. The primary reason 
these data were chosen is that they were 
readily available. The degree of suooess of 
the rather simple pattern reoognition method 
of this paper on suoh redundant data would seem 
to indioate a great promise tor rapid advanoe­
ment in oral communication with a digital 
computer in the near future. 

Speeoh Digitalizing Equipment 

The first voooder was developed about 
twenty years ago at Bell Telephone Laboratories 
to investi~te improved methods of speech 
transmission. In recent years, the military 
servioes have sponsored oonsiderable reasearch 
in speeoh bandwidth oOIllPresl.iOn..- in order to 
squeeze more channels into the radi~ __ spectrtlDl. 
The voooder is basically a device which 
converts spoken utteranoes to time - frequency 
patterns of speotral energy. The particular 
voooder used in this studl de~~~poses sound 
energy into eighteen se~ents of the audiO 
speotrum using a like number of bandpass 
filters. 11,12 The output from eaoh of these 
filters passes to a corresponding speotrum 
analyzer whioh measures the power density of 
the sound in its assigned frequenoy range. 
The output from each speotrum analyzer is then 

fed to an eleotronic time multiplexer whioh 
samples the analyzer outputs at the rate of fifty 
times per second. Eaoh of these magnitudes is 
then converted into a three bit binary number. 
It is thus seen that speech is converted to a 
sequence of eighteen digit octal numbers at the 
rate of fifty such numbers or speeoh "patterns" 
per seoond. Figure 1 shows a block diagram of 
this digitalizing equipment and ~igure 2 shows 
a typical analog speech spectrograph and the 
corresponding-digitalized speeoh patterns. 

Digital Computer Usage 

The patterns from the vocoder are read 
directly into the AFCRL Cambridge Computer 
through a real time data register. Each 1,"itty­
four bit patterh is deoomposed into 8ix nine 
bit units whioh sequentially enter this ten bit 
real time input register. The Cambridge 
Computer is a 1600 word magnetio drum maohine, 
a prototype of the Univao Solid State cromputer, 
and its serial nature barely allow8 it to store 
the input data as they arrive with no time 
remaining for any simultaneous computation. It 
is only possible to discard initial null patterns 
and to count the number of patterns to be aooepted. 
The limited storage of the Cambridge Computer 
permits taking about fourteen seconds of speeoh 
if storage is to be completely filled with data 
or a lesser amount if data is to be processed 
immediately. 

In real time word recognition the speeob 
input has been neoessarily limited to two seoonds 
of speech during which an isolated word is to be 
spoken. Upon storage of this data the oomputer 
uses a set of empirioal" rules to determine the 
boundaries of the digitalized spoken word, 
eliminating extraneous baokground noise and 
a~lowing for possible periods of silence within 
a word. The data are next ~ime normlized so 
that eaoh spoken,word is represented by a fixed 
number of equally spaoed patterns. and the ootal 
digits of these patterns are unpaoked and 
oonverted to BOD d~gits. At this point the 
computer is ready to use this digitalized version 
of a spoken word tor either learning or 
recognition. 

Ope~ting Cha~cteristics Of The System 

The word recognition prooedure of this 
paper oonsists of two modes, learning and 
recognition. In the learning mode the speaker 
pushes a button, initiating speech intake by the 
computer, and speaks a word into tbe microphone. 
After this procedure is repeated a predetermined 
number of times, usually only onoe more, the 
computer requests a type-in of the word which 
has just been spoken. Following this labelling, 
a mask or template is computed whioh cba~oterizes 
this typed word. When this mask isaored in the 
computer memory, the word it denotes is added to 
the vooabulary of words which can be recognized. 
After each mask is computed, the system is ready 
for the next new word to be spoken. 



When operating in the recognition mode with 
a vocabulary comprised of previously computed 
word masks, the talker asain pushes a button 
and speaks his word. The computer identifies 
and types this word, and the system is ready 
to accept another spoken word. This recognition 
is a~co~plished b~ selecting (us~ng the lis~_o£ 
stored masks) that word whose mask most closely 
resembles the unknown word for which identifioation 
is desired. 

Word Recognition Yethod Employed 

The previous section used several phrases 
including "which oharaoterizes this typed word" 
and "most closely resembles" which must be 
precisely explained. A number of ohoices could 
be made as to how masks should be determined and 
how they should be matched, and one cannot know 
a priori which choices are best for the 
application in question, digitalized word 
recognition. The particular method used by the 
authors which will be detailed below is only one 
of many plausible alternatives. It would 
admittedly not suffice for many pattern 
recognition applications, but it has proved 
useful in dealing with speech. 

If we denote by Xij the i ~ speotral 
comj)onent of the J th repetition of some word. 

and if we denote by Yi the i th speotral 
component of a stored word mask, the criterion 
ohosen for measurin~ the agreement_between 

Xij and Yi is given by 
N N 

C = (L Xl Y i) / L ( Xi - Y i) Z 
1 = 1 i = 1 

If we sum over the various repetitions of that 
word which are available for mask determining 
purposes, and if we ask that the function 

N M N M 

Q = ( I L Y i Xi j ) / L L ( Y i-Xi j ) Z 
1=1j=1 1=1j=1 

be maximized, we can find those mask oomponents 
Yi which do this. The details of this 
maximization will not be exhibited here, but 
the desired components are given by 

M N M 
Yf = (. I Xij ) 2 (L L Xij 2) / 

~J = 1 M- i = 1 j = 1 

Ml.,(LX)2 
i = 1 j = 1 ij 

This mask is the desired optimal template in 
the previously defined sense for use with 
criterion C in effeoting a deoision procedure. 

There are several reasonable decision 
prooedures which could be used. In dealing 
with a fixed vocabulary one oould oompute C 
for each mask using an unknown word and then 
ohoose the mask whioh produoed the largest C. 

Alternatively, one could employ individual 
thresholds for each mask, or a single 
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threshold for all masks, or perhaps a 
combination of the above procedures. All of 
these have been investigated, and some suffice 
in one application but have disadvantages in 
others. The procedure used in each application 
will be inoluded in the discussion of that 
a pplica tion. 

Word Recognition Conclusions 

Results. Having specified the recognition 
procedure to be used, the next question is, how 
well does it work? Yore specifically, how well 
does it work as a function of those parameters 
at our disposal? These results were presented 
orally13 at the Ootober meeting of the Acoustical 
Society of America and they are currently being 

assembled for written Qublication L _ so merely the 
highlights will be given here. Figure 3 shows 

the effect of vary~ng the time normalization to 
18, 9, 5, and 3 patterns per word. The restricted 

vocabulary here consists of the -decimal digits 
zero through ten, four samples were used in 
computing each mask, the same speaker's voice 
was used for both learning and recognition but 
no utterance was so used for both, nine male 
speakers are represented, all eighteen frequ~ncy 
channels were retained, and the decision prooedure 
was merely to select the decimal digit whose mask 
produced the largest value of the previously 
defined criterion C. The ratio of selection 
indicated in figure 3 is the average ratio of the 
vaiues of C for the best and next best words. 

Figure 4 shows the effect of ohannel merging 
on word recognition. Adjacent channels were 
averaged to give nine, six, and three frequency 
channels for each of the time normalizations of 
nine, five, and three patterns per word. The 
other~pecifications as to vocabulary, etc. are 
the same as already given for figure 3. 

Figure 5 shows four typical oonfusion matrices 
illustrating recognition of phonetically similar 
words. The number n in a particular row and 
column implies that the word in that column _s 
s~oken and identified as the word in tha~ row 
n times. One speaker was used throughout and 

otherwise the specifications of the previous two 
figures apply. Similar matrices exist ~or a 
number of other frequency-time normalization 
combinations and their principal results are 
displayed in figure 6. 

Summarizing briefly, very few recognition 
errors are made if enough bits are retained and 
if a single speaker is used both for mask making 
and for subsequent recognition. If, however, 
different individuals are used for learning and 
recognition, the results are highly dependent 
upon the individuals in question. Perro~rnanoe 

varies from nearly perfect to consistently in 
error for certain people and words. One solution 
to this difficulty is to make up composite masks 
from several good speakers. This has been found 
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to inorease performanoe but is not easily 
meohanioally aooomplished sinoe a speaker may say 
oertain words fine for the purpose of universal 
recognition but say others quite ambiguously for 
this purpose. Another solution is the adaptive 
program to be described in the next section. It 
will be seen, however, that this prooedure has 
oertain limitations, and in these cases the 
fastest way to insure good performanoe for a 
partioular speaker's voioe is to make masks from 
his voioe. Fortunately, this is easily acoomplished 
for an arbitrary vocabulary by speaking directly 
those words whose recognition is wanted. 

Limitations. In addition to the previously 
enumerated accuracy limitations there are other 
restrictions of the method of this paper which 
should be carefully stated. One of these 
concerns storage requirements. Using five 
patterns per word and nine frequency channels, 
six Cambridge Computer words of storage were 
reserved for every desired vocabulary word. 
Because of the Computer's limited storage, only 
500 storage registers are available for mask 
storage, limiting the computer vooabulary to 83 
such vocabulary entries. The remaining Cambridge 
Computer storage is used as follows: 200 registers 
for the recognition program, 200 words of 
temporary storage for the unknown input word and 
100 registers for its time and tre~u~~c~ normaliza­
tion, 200 storage registers for the real time data 
input program, 200 registers for decoding the 
scrambled input bits and converting them to BCD 
characters, 100 registers for elimination of 
coughs and background noise, and 100 registers 
for storage of alphabetic responses. 

Of course, if more storage were available, 
input durations of more than two seconds would be 
feasible, assuming real time recognition were not 
possible on a word at a time basis. Words must 
still, however, be spoken in isolation or else 
continuous speech must be segmented into words. 
Work on the segmentation problem is presently 
under consideration by various groups.14 

A final limitation that will be mentioned is 
computation time required. This depends, of 
course, upon the number of masks in storage. 
Using the rather slow drum oomputer of this study 
about one and one half seconds per stored 
vocabulary word (5 patterns - 9 channels) are 
required. This figure would be cut by a faotor 
of about 100 if a computer of IBM 704 speed were 
used. If we are satisfied with successive words 
oocurring no faster than every n seconds, we 
could then aohieve real time recognition on a 
word at a time oontinuous basis for a vooabulary 
of about 66n words. 

Demonstration Programs 

Basic Word Recogni 1t>n Program. It has been 
seen that the basic recognition computer program 
previously described allows one or more speakers 
to build up a working arbitrary vooabulary with 
a minimum of time and effort merely by speaking 
each word into a microphone several times. 

Initially, the oomputer requests the user to 
type the number of patterns per word he wants 
for time normalization and to also ~ype the 
number of word repetitions to be used for the 
computation of eaoh mask. When this information 
has been supplied, the first word may be spoken. 
Prooessing of each repetition of a word takes 
about three seconds. Following the computer's 
request for alphabetic labelling of a spoken 
word, the mask and oorresponding alphabetics 
are punched out on paper tape. The system is 
then ready for the next word to be spoken. When 
masks have been made for all desired vooabulary 
words, recognition can proceed for those words. 
The limited storage of the Cambridge Computer 
necessitated separate programs for mask making 
and subsequent reoognition. Aooordingly, to 
proceed, the recognition program and desired 
vooabulary must be read into the oomputer. 
Channel merging, if desired, can be aooomplished 
while the data are being entered into storage. 

The deoision procedure used for this 
demonstration program seleots a word immediately 
provided the value of C i~masks produoes is 
higher than a given absolute threshold. If no 
decision is mad~ in this manner, the word whose 
mask produced the highest C is seleoted 
providing this value is greater than a lower 
threshold. If the best choice is below this 
minimal threshold, the computer requests that 
the word be repeated asain. The thresholds 
were empirically selected, and values were found 
which produo~d very tew requests for word 
repetitions and virtually no false identifications. 

Language Translation Program. In order to 
effeot a orude word tor word translator from some 
spoken language to a different written language 
it is obviously only necessary to ohange the 
alp~betics used for displaying_words reoognized. 
This was done as a demonstration for the authors' 
Laboratory Chief using the German decimal digits 
null through zehn as spoken input and English 
numerals for printed response. Suffioient 
similarity was found between the German 
pronunciation of the demonstratee and demonstrator, 
whose voioe was used to produoe the masks, to 
permit translation for both without error. This 
exeroise was, of oourse, limited to a relatively 
small sample Size, and while it may not prove 
muoh about the effeotiveness of the word 
reoognition prooedure of this paper, it would 
seem at least to indicate that the author in 
question's German pronunciation couldn't be too 
bad. 

Speaker Recognition Program. It was observed 
that the indices C obtained were oonsiderably 
higher when the same individual was used for both 
mask computation and subsequent recognizing. This 
was exploited to effect speaker reoognition of 
individuals speaking from a restricted vocabulary. 
In one exercise nine male and seven female voioes 
were used to produce masks for the words "one", 
"two", and "three". Nine frequency channels, 
five time samples per word, and four word 
repetitions were used for each of the forty-eight 



masks. Different word repetitions were utilized 
for the recognition phase. ~ch of the sixteen 
speakers spoke, "one", "two", and "three" several 
times, and the choice of speaker and digit spoken 
was made solely by selecting the largest value of 
the index C. Figure 7 shows the results of this 
study. The numbers in each box indicate the 
sample size and percent of successful 
identification. 

Encouraged by these results, a speaker 
recognition program was written for demonstration 
purposes, using the previous forty-eight word 
masks. With this program an unknown speaker says 
his word into the computer and obtains one of the 
following types of responses: "That was John 
Jones speaking the digit three; I don't know who 
you are, stranger, but you spoke the digit two' 
I don't have the slightest idea. who you are or' 
what you said; speak more distinctly and repeat 
your word again, please." The remaining 
possibility, "I don't know what you said, John 
JOnes, but I recognize you", is not currently 
allowable but is under active consideration and 
it appears to be feasible with at least a f~ir 
degree of success. 

The decision procedure used for the above 
program is the following. Each of the 
categories involving both a specific speaker 
and spoken word are selected only if their 
associated value of the criterion C exceeds a 
threshold of the form A + BQ where A and B a;re 
constants and Q is a number associated with each 
mask and computed at the same time as the mask. 
This is actually the same maximal Q whioh was 
previously defined. It can be shown that the 
maximal value of Q is given by 

Q = II 2.( K.J"M -1 ) 
M 

where K2.= f f X/, / ~ 
i::.1j=1 j i=l 

( I X
ij 

) 2. 

j = 1 
and this expression is the one which was used to 
compute Q. The primary reason for using Q is 
empirical, but it was suggested by the fol£owing 
qualitative thinking: ,Q is of the form 

(n1 + n2. + ••• + nM ) / ('\ + d2. + ••• + ~) 
and if each of the M word repetitions in 
sample are sufficiently similar, each nj 
dj will not differ excessively from 

n = (M- nj )/M 
j~ 1 

and 

Under these assumptions we can approximate 

by n MI d M or""lf I d. 

the 
and 

Q 

If we now compute a value of the criterion C 
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= n/d from the mask whioh maximizes Q, we 
should find that C approximates Q beoause 
n/d =-= 11' / d _ if nand dare clOSG 
in value to nand d. This reasoning prompts 
us to consider BQ, 0 < B < 1 as a 
threshold against which C may be compared. The 
other constant A was added to BQ strictly for 
empirical reasons. 

If index C does not exceed any threshold 
A + BQ. the best ohoioe of one, two, or three 
is made for each speaker, and if at least p of 
the speakers agree on the same choice, this digit 
is seleoted and the speaker is assumed to be 
someone not represented by a stored mask. If 
less than p speakers agree upon the digit 
spoken it is assumed that a word other than one, 
two, or three was spoken. Finally, word repetition 
is requested only when some probable source of 
trouble is detected in the input program such as 
improbable length of the spoken word. 

Scope Display Program. One of the 
distinctive output features of the Cambridge 
Computer is a large 19 inoh three color (red, 
blue, green, and combinations thereof) scope 
display unit. This was used to allow easy visual 
scanning of spectral word representations. The 
horizontal axis is the time axis and the vertioal 
axis is used for frequency. At any interseotion 
the color of the point denotes magnitude of 
spectral energy with several color ooding ohoioes 
available. Input may be either from punohed 
paper tape or real time from the microphone. This 
program was ~ound to be of value not only for 
quickly insuring that all equipment involved is 
working all right initially, but also for 
diagnosing exoessive noise and obtaining useful 
information about the structure of oertain digital 
word representations. For example, in examining 
the similar words bit and beat for one speaker it 
was discovered that he inserted a prominant period 
of silence before the final stop oonsonant in the 
word beat but did not do so for the word bit. This 
indicates machine separation of those two words 
for that speaker was based on more than the phonetic 
vowel difference between -e- and i 

Arithmetic Expression Evaluation Program. 
This program utilizes a vocabulary 

consisting of the decimal digits zero through 
nine and the operation symbols plus, minus, 
times, bracket,and equals. The decision 
procedure used is the same as that for the 
previously described basio word reoognition 
demonstration program. 

In using this program the speaker makes up 
a meaningful arithmetio expression from the 
allowable input words. Each word is sequentially 
recognized and symbolically stored until the word 
"equals" is enoountered. At this point the 
expression is evaluated, multiplioation first 
and then addition and subtraction in cases not 
speoified with brackets. The entire expression 
understood by the oomputer is then typed followed 
by its computed value. Examples run on the 
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computer include: 

2+2 - 4 

[13-5]*6 - 48 

123+456*3-2*[26-23]+35*[165-166]-4 
1446 -

314*[1327-64*21]*[129*4+62*72*2-89*43] 
+[43*2196]-17-[26-24*3+4]*[7-9] -

-29889219 

Adaptive Reorientation Program. While the 
method of this paper was found to be very 
successful when the same speaker's voice was 
used for both mask computation and word 
recognition, results are less consistently 
successful when different voices are involved. 
To eliminate this difficulty, two adaptive 
programs were written, both designed to convert 
a set of masks made from one speaker's voice to 
a set corresponding more closely to a new speaker. 
One of these programs requires the use of an 
operator to make certain decisions and the other 
program operates independently of an~ human 
intervention. In both cases the masks of words 
taken from one or a group of speakers constitute 
the computer's vocabulary. An unknown speaker 
then says a word which mayor may not be 
represented in the vocabulary. 

In the first case, the ratio of the highest 
value of the agreement index C for this word to 
the next highest C is taken, and this value, 
R, is compared against a set of thresholds. If 
R exceeds the hi2hest th~eshold. the comDuter 
prints the recognized word and awaits the next 
word. If R fails the highest but exceeds the 
next lower threshold, the computer prints its 
choice and asks the operator to indicate if this 
choice is right or wrong. If the correct choice 
is made, a fraction fl of the word is averaged 
into the mask for that word. If, however, the 
wrong choice is made, the operator types the 
actual word spoken into the machine. The 
computer then scans its vocabulary to see if that 
word is represented. If the word is already on 
the vocabulary list, a larger fraction f2' is 
averaged into the mask. If, however, the word is 
not found. it is added to the end of the 
vocabulary, thus becoming the mask representation 
of that word. 

If neither threshold is exceeded, the 
computer asks the operator to identify the word. 
Again the vocabulary list is scanned and the 
proper mask, jf' found, is adJus ted by a still 
larger fraction f 3 • Also, if the word is not 
found, it is added to the vocabulary. 

If the mask has been adjusted (i.e.,in any 
case except the first where the highest threshold 
has been exceeded), the computer asks that the 

word be repeated. If a word is missed more than 
once, the fraction of the word which is averaged 
into the mask is increased. After n misses, 
the computer either stops or, at the option of 
the user, discards its earlier attempts and 
replaces the mask by the last repetition of that 
word. 

The second learning program, as mentioned, 
operates without human intervention. Again the 
ratio R is computed from the two highest values 
of the agreement index C. Similarly, if R 
exceeds this program's highest threshold, no 
adjustment is made. However~f R fails to 
exceed the lower threshold, the word is rejected 
and no adjustment is made. In any other case, 
the fraction of the word to be averaged into the 
masks is determined from the value of R obtained. 
This fraction is taken to be 3/4 when R equals 
the lower threshold and decreases linearly as a 
function of R to zero when R equals the 
higher threshold. 

The results obtained from running both 
adaptive programs seem to indicate that the 
programs are of practical value as a means of 
obtaining new masks only when the initial 
agreement is substantial. With operator 
intervention, of course, successful conversion 
is always achieved. but if a minimum of human 
participation is required, the making of new 
masks from scratch is to be preferred. The 
other adaptive program mayor may not converge 
successfully to the new speaker's voice. One 
approach which might improve the performance of 
both programs involves the previously mentioned 
use of composite masks made from several good 
speakers. 

As an example of a typical attempt to 
convert from one speaker's (WO) voice to 
another's (AP) and back without operator 
assistance the following run is presented. A 
mask for the single word "one", "two", and 
"three" spoken by WO. The procedure here being 
followed using taped input words is to repeat 
the identical utterance if R lies between the 
two thresholds. The two values chosen as 
thresholds here were two and ten. 

Step Speaker utterance R 
1 AP 5 1.63 
2 AP 6 1.84 
3 AP 7 2.31 
4 AP 7 ) 10 
5 AP 8 3.21 
6 AP 8 ) 10 
7 WD 6 1.8 
8 WD 7 1.65 
9 WD 8 1.5 

10 WD 9 1.99 
11 WD 10 1.54 
12 AP 5 6.0 
13 AP 5 )10 
14 AP 6 5.72 
15 AP 6 )10 
16 AP 7 )10 
17 AP 8 )10 



In steps 1 and 2 AP's utterances did not 
produoe enough agreement with WO's "one" to 
exoeed the threshold two. Accordingly no action 
was taken. The next utterance (utterance seven 
in step three), however, gave R = 2.31 causing 
the first mask modification to be effected. 
Repeating this same utterance now gave a value 
of R in excess of the upper threshold (step 4). 
Step 5 again modifies the mask. In steps 7 
through 11 WO is speaking "one", but recognition 
is too poor to oause any mask modification. in his 
favor. In steps 12 through 17 AP's utterances 
are again repeated until no more modification is 
made. 

Conclusions 

The method of this paper seems feasible 
for those applications where words are spoken 
in isolation by a speaker whose voice was used 
to prepare msks. These masks may be made 
rather easily and retained for each talker who 
wishes to be able to communicate orally with 
the computer. The limited storage capacity of 
the Cambridge Computer restricted the size of 
the vooabulary possible at anyone time. 
However, the observed discrimination between 
phonetically similar words seems to indicate 
that words could be recognized from a larger 
vocabulary. Use of a large scale computer and 
a 500 word vocabulary is presently under 
consideration. 
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WORD RECOGNITION OF 
DECIMAL DIGITS 

EFFECT OF TIME NORMALI·ZATION 

NUMBER OF SAMPLE 0/0 R AT 10 
PATTERNS 

S I%E SUCCESS OF SE LECTION 
PER WORD 

18 218 99.5 6.4 

9 97 100 6.9 

5 104 99.2 10.3 

3 43 95 4.5 

Fig. 3. 



WORD RICOINITION 0' DlcaMAL DIIITI 

EFFECT OF CHANNEL MERGING 

ON WORD RECOGNITION 

NUMBER OF NUMBER OF SAMPLE 0/0 
PATTERNS FREQUENCY S I Z E SUCCESS 

PER WORD CHANNELS 

9 9 77 98.7 

9 6 77 96 

9 3 76 96.1 

5 9 77 100 

5 6 77 94.8 

5 3 75 93.5 

3 9 77 94.7 

3 6 77 93.5 

3 3 78 86 

Fig. 4. 
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RECOGNITION OF PHONETICALLY SIMILAR WORDS AS A 

FUNCTION OF THE NUMBER OF FREQUENCY CHANNELS 

AND TIME SAMPLES. 

NUMBER OF NUMBER OF TIME TOTAL NUMBER SUCCESS 

FREQ. CHANNELS SAMPLES PER WORD OF DIGITS Of. 

18 3 54 95.5 
9 3 27 86.7 
6 3 18 68.3 
3 3 9 27.3 

18 5 90 100 

9- 5 45 86.5 
6 5 30 77.8 
3 5 15 54.6 

18 9 162 100 
9 9 81 100 
6 9 54 95.5 

3 9 27 80 
18 18 324 100 
9 18 162 100 
6 18 108 93.2 

3 18 54 78 

Fig. 6 
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FILTER - A TOPOLOGICAL PATTERN SEPARATION COMPUTER PROGRAM 

Daphne J. Innes 
Lawrence Radiation Laboratory 

Berkeley, California 

Summary. The advent of high energy particle 
accelerators and liquid bubble chamber detectors 
has added the demands of high speed data reduc­
tion t9 the many problems of modern nuclear 
physics research. For example, one six-month 
experiment on the University of California 72-
inch Hydrogen Bubble Chamber yields photographic 
records of millions of nuclear events. This 
paper discusses one of the new measuring and 
topological identification devices which has been 
developed to analyze these great volumes of 
research data. 

Dr. Bruce McCormick has proposed a scanning 
technique which allows rapid recognition, separa­
tion and measurement of the photographic records 
of star type nuclear events. A device known as 
the Spiral Reader measures background and star 
type event features impartially, discriminating 
against non-radial patterns by the geometry of 
its rotating scanning element. The event measure­
ments are separated from the background measure­
ments by an IBM 704 computer under the direction 
of a program called FILTER. The separated 
nuclear event measurements are subsequently re­
constructed in space for physics analysis. 

FILTER exploits the observation that if a 
segment of a circular arc is rotated about a 
point on that arc, intercepts occur at regular 
intervals along a radius to the point at constant 
angular intervals of the rotation azimuth. The 
Spiral Reader, by placing the burden of event 
discrimination on a high speed digital computer, 
minimizes the need for either special analysis 
equipment or for a human operator to make the 
topological separation. Simulation, calibration 
and cathode ray tube display routines have been 
included in the filter system. 

This paper describes the computer program 
FILTER whic~ separates the topological star-type 
event configurations from undesired background 
features. 

Many modern high energy nuclear physics 
experiments are performed by observing the inter­
actions of elementary particles in a liquid 
Bubble Chamber. Tracks of tiny bubbles in the 
liquid define the paths of ionized particles, 
much as do the fog droplets in the familiar 
Wilson Cloud Chamber. Stereo photographs of the 
chamber preserve these tracks so that the nuclear 
interactions may be analyzed. A typical 72-inch 
Hydrogen Bubble Chamber exPeriment at the 
Lawrence Radiation Laboratory produces six stereo 
triad photographs every minute. As almost every 
triad includes a nuclear interaction, several 
million events are available for analysis each 
year. 

A stereo triad of the 72-inch chamber 

comprises three views, each 33mm by 125 mrn. An 
average bubble image diameter is 40 microns on 
the film. The track images are opaque against 
a clear background, the film being a negative of 
the dark field illuminated chamber. Figure 1 is 
a typical photograph of the chamber. 

Human operators search the films for inter­
esting nuclear interactions, designating those 
track combinations which are to be measured. 
Rectangular coordinate point measurements along 
the participating event tracks define the track 
locations with respect to reference marks in the 
chamber. The measuring technician must select 
the event tracks from the numerous background 
features as he directs the operation of the 
currently used semi-automatic measuring pro­
jector. An IBM 704 computer program, PANG, 
makes a spatial geometrical reconstruction of 
the 2v~nt from the measured two-di~ensional 
data ,j. 

The topologically reconstructed event is 
kinematically fitted to phYSics5hypotheses by 
a second computer program, KICK. The physicist 
makes experimental conclusions and evaluations 
from these analyses. 

One of the most numerous to~ological event 
types is the single vertex interaction. Figure 
2. The currently available measuring tech­
niques, being completely saturated by processing 
the rarer interactions, must neglect the impor­
tant research information of these events. 
Dr. Bruce McCormick has pro~osed a scanning 
method especially suited for measuring such 
star-type events. A~magnified image of the 
event is projected on a rotating disk. The 
event vertex image and the center of the rota­
ting disk are superimposed. This disk is opaque 
except for one segmented radial slit. The slit 
is about one-third as wide as is the image of 
a typical track projected upon it. Each of the 
radial segments scans an annular path of ten 
average track widths long. Figure 3 indicates 
the annular areas scanned around a vertex. This 
scanning technique discriminates geometrically 
against tracks which do not emanate from the 
event vertex. A photomultiplier collects light 
passing through the scanning slit. As the disk 
rotates over the image, the electrical signal 
from this photomultiplier displays the film 
density variations. Radial tracks appear as 
pulses. A rotary analog-t9-digital shaft 
encoder attached to the scanning disk permits 
azimuthal measurement to be made of the track 
or feature pulses. 

Track pulses Which exceed a preset ampli­
tude are squared b,\r a discriminator. The angles 
at which the leading and trailing edges of these 
squared pulses occur are the azimuthal pulse­
pair measurements of the tracks. A magnetic 
core buffer memory temporarily stores these 
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azimuths along with the relative pulse amplitude 
number and the slit radius. These measurements, 
a rectangular coordinate vertex location and 
event descriptive information, are recorded on 
IBM compatable magnetic tape.·- This tape is the 
input data for the event separation program, 
FILTER. 

Bubble chamber photographs are cluttered by 
non-interacting beam tracks, frost on the optical 
surfaces, gas bubbles, electron spirals and other 
irrelevant features. The Spiral ~eader makes 
only a partial attempt to discriminate against 
these ~ features by favoring radially dis­
posed tracks. The burden of separating the event 
measurements from the background information is 
placed upon a digital computer program rather 
than upon human judgement or special complicated 
equipment. 

An effective event separation program must 
detect all valid tracks in each view. It is 
permissable for an occasional extraneous track 
to be mistaken as valid in one of the three 
views. An erroneous labeling of a background 
feature can be corrected by comparison with the 
other two views. 

In addition to removing noise measurements 
from the data, the event separation program must 
solve several topoligical conditions: 

1. Tracks passing through obscuring fea­
tures are not to be lost. 

2. Tracks which branch into two or more 
tracks are to be separated and identified. 

3. Tracks which cross over one another are 
to be individually defined. 

4. Missing data from an occasional gap in 
the track image is not to stop track separation. 

5. The program is to tolerate data distor­
tions from small misalignments of the scanning 
disk center and the event image.vertex. 

The radial scanning technique affords advan­
tages other than the obvious discrimination 
against non-radial tracks. As the rotating 
scanning disk is centered over the event vertex, 
all tracks in the event are in principle scanned 
by the first three inner slits. Actually many 
event tracks appear in only two of the first 
three slits b~cause of centering errors and 
track gaps. The tracks near the vertex appear 
as straight lines. Therefore all tracking of 
event tracks may be initiated by finding all 
pulse combinations in the first three slits which 
form radial lines. As the area scanned by the 
first three slits is small, only a few track 
pulses must be considered for the track initia­
tion part of the program. Typically, ten to 
t~enty pulses are found in the third slit data. 
Very little time is spent by the computer while 
making an exhaustive search of the data to form 
straight line groups. Some of these initial 
straight line combinations do not represent 
tracks but are formed by dirt and isolated bubble 
images. Subsequent program operations remove 
these anomalies. 

No feature which obscures less than one­
fifth of the area of a scanning slit is measur~d. 
This discrimination often avoids recognizing 
small particles of dirt and individual bubbles. 

Tracks which cross a scanning slit at an angle 
greater than thirty degrees are usually not 
measured. Unfortunately, short radius tracks 
are lost by the outer disk slits. 

The FILTER program flow diagram is shown 
in Figure 4. The polar coordinate measurements 
made bV the Spiral Reader are read from magnetic 
tape into the computer memory. The Gray coded 
azimuth numbers are converted into binary numbe~ 
Possible malfunctions of the Spiral Reader 
azimuth digitizing system are detected by veri­
fying that the successive angle measurements 
from each slit are in ascending order. The 
measurements must be arranged in sequence from 
the innermost to the outermost slit. 

The azimuth data from each slit are 
separated into leading and trailing edge pulse­
pair combinations, these pulses being stored in 
memory sections called slit banks. The relative 
pulse height designating num~are also stored 
in the slit banks to be used in a subsequent 
track ambiguity resolving operation. The pulse­
pair words in the slit banks can be regarded as 
forming a digital pulse train in which each word 
defines one pulse. 

After data storage and verification, the 
program searches slits 1, 2, and 3 for pulses 
which form straight radial lines. The straight 
line fit used to initiate event tracks is not 
sufficient~v good for track interpolation beyond 
the third slit. We have found that, for the most 
curved tracks which can be seen by the Spiral 
Scanning Disk, a lineaar spiral approximates the 
actual curve with sufficient accuracy to make 
prediction of a track pulse azimuth as far as 
two slits beyond the last established pulse on 
the track to wi thin 50 microns of its true 
position. 

Tracks are reconstructed from the measured 
data slit-by-slit from the vertex outward. An 
azimuth is predicted for the next outward slit 
track pulse by extrapolating a least-squares 
fit of the already established track pulses. A 
search zone 100 microns wide is established 
~the predicted azimuth. The slit bank is 
entered and a search made for track pulses­
lying completely or partly within the search 
zone. The search is effected by comparing the 
predicted azimuth range with the smallest angle 
pulse-pair in the bank. If these azimuth 
ranges do not overlap and the predicted azimuth 
is greater than this smallest angle pulse, a 
comparison of the predicted azimuth with the 
largest pulse-pair angle is made. If again 
the azimuth zones do not overlap, but the pre­
dicted angle lies within the range of the 
smallest and largest angle pulse-pairs, the 
predicted azimuth is compared to the azimuth 
of a pulse-pair at the middle of the list of 
pulse-pairs for that slit. If again there is 
no coincidence of azimuths, the number of pulse­
pairs to be searched has been reduced-to one­
half because the predicted azimuth is either 
greater than or less than that of the miadle 
pulse-pair. This comparison and subsequent 
halving of the azimuth ranges is continued until 
either a pulse-pair is found containing the 



predicted azimuth zone or the search is aban­
doned. The maximum number of searches made in 
one slit bank is equal to the logarithm to the 
base 2 of the number of pulse-pairs in the bank. 
Even a slit bank containing 100 pulse-pairs, 
such as has been found on the 15th slit of the 
Spiral Reader while measuring noisy film, needs 
only 7 or 8 searches to define a track. 

Since tracks may branch or cross over one 
another, it is probable that more than one track 
pulse will be discovered within a search zone. 
The pulse-pair with the lowest azimuth is ten­
tatively selected as the valid track pulse, the 
higher azimuth pulses being stored for later 
investigation. 

Figure 5 is a schematic of the pulse trains 
of the innermost 5 slits in the neighborhood of 
the branching track shown in Figure 2. Only 
one pulse appears in each of the search zones 
for slits 1 and 2, but there are two pulses, A 
and B, within the slit 3 search zone. The 
search zone for the slit 4 pulses-IS predicted 
by extrapolating the pulses on slits 1 and 2 
and 3A. Pulse C is found in the slit 4 ~ 
zone. 
-- The search zone for slit 5 is now predicted 
by fitting the pulses l-2-3A-4c to a linear 
spiral. A pulse is discovered within the slit 5 
search zone and the tracking is continued to the 
outermost slits. 

When the track of this exa~ple terminates, 
the program returns to slit 3 to test the alter­
native track established by the presence of 
pulse-pair 3B. A new search zone is predicted in 
slit 4 by the linear spiral fit to the points 
l-2-3B. In this way, the program finds the two 
prongs of a branching track. This method of 
tracking in addition to detecting branching 
tracks can also generate false tracks-pseudo­
prongs. 

It is interesting to consider the effects 
of increasing the search zone from 2 track 
widths to 4 track widths. See Figure 6. As 
before, pulse A and B are found in slit 3 but 
when l-2-3A is extrapolated, the new search 
zone on slit 4 includes C and D. Similiarly 
the search zone predicted by fitting l-2-3B 
also includes C and D. We find that the search 
zones in slit 5 are predicted by 4 pseudo-prongs: 
l-2-3A-4c; l-2-3A-4D; l-2-3B-4c; l-2-3B-4D. 
Clearly, if the size of the search zone is not 
limited, the number of speudo-prongs generated 
will rapidly become excessive. The zones must 
be sufficiently wide to avoid losing true tracks. 
A search zone 100 microns wide appears to be a 
good compromise for the 72-inch chamber film. 

Figure 7 is employed to describe the effect 
of dirt or an isolated bubble feature near a 
true track image. The figure represents the 
pulse trains on the inner 5 slits of track 3 in 
the event shown in Figure 2. With a search zone 
of 100 microns, pulse 3A is separated-rrom-pulse 
3B and the predicted slit 4 search zone includes 
no pulse. Neither will any pulses be found in 
the slit 5 search zone predicted from l-2-3A; 
hence the search is abandoned. A noise pulse 
4c is so close to 4D that the search zone pre­
dicted from 1-2-3B-4c in slit 5 includes a pulse 
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which actually belongs to the track l-2-3B-4D. 
The two track candidates generated by the pre­
sence of the noise pulse 4c ard the real pulse 
4D are stored in track banks for ultimate sepa­
ration by the progra:m:--

The FILTER program is capable of following 
tracks through large obscuring noise features. 
Figure 2 shows a thermocouple partially obs­
curing a track. The thermocouple measurements 
appear as very wide pulses -- these the program 
neglects. The extrapolation is continued 
through the noise, for as many slits as is nec~ 
sary. During the extrapolation through gaps or 
noise, a constant angular sector search zone is 
searched from slit to slit; the search zone is 
therefore widened as the radius increases. 

Often track candidates share pulses with 
other track candidates. Whether this sharing 
is an indication that real tracks are branching 
or crossing or whether the tracks have been 
created by noise must be determined. Any 
track containing four or more pulses is tenta­
tively assumed valid. A chi-square test is 
computed on the geometric fit of the pulse-pairs 
to a linear spiral for each track candidate. An 
ionization consistency rating is based upon the 
fact that the product of the pulse amplitude 
and pulse width should remain constant along 
the length of the track. A quality criterion 
of the track, the weighted sum of these two 
designators, is stored in the track bank with 
the pulse measurements. --- --

It is convenient to group the track candi­
dates into sub-sets. A sub-set contains track 
candidates which intersect any other track 
candidates in that sub-set. No track candidate 
in one sub-set intersects any track candidate in 
another sub-set. The track candidate with the 
lowest-best quality criterion in each sub-set 
is selected as a real track. Each other track 
candidate in the sub-set, in order of increasing 
quality function, is then compared to the real 
track. The assumption is made that if any track 
candidate has two or more consecutive pulses 
independent from those of any real track and 
if it has a quality criterion better than a pre­
determined limit, it too is a real track. Once 
a track candidate is classified as real, sub­
sequent prong comparisons are made to it as well 
as to the original track. 

This operation has proved adequate to 
insure that all real tracks are discovered. 
Noise features close to real pulses on two or 
more consecutive slits create pseudo-prongs 
which are difficult to distinguish from close 
crossing tracks. More stringent criteria would 
cause the loss of real tracks. After the 
searching and testing on an individual view 
basis, a stereo reconstruction of the event is 
attempted. Since the three stereo views are 
available for comparison, it has been usually 
possible to resolve these ambiguities by elimi­
nating tracks which do not appear in at least 
two of the three views. 

For each track, measurements from two views 
are selected which give the best stereo recon­
struction. These measurements constitute the 
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input data for the sub~equent geometric recon­
struction program PANG. One view of a single 
vertex event is typically separated from the 
background in 3 to 5 seconds of IBM 704 opera­
tion. 

The ability of the program to separate an 
event from the irrelevant features on the film 
is demonstrated by a comparison of the plot of 
input data to a plot of the reconstructed event 
data. Figures 8 and 9 are on-line plots of the 
data made by an IB11 709 from the event shown in 
Figure 2. These on-line plots are made by the 
IBM cathode-ray oscilloscope as the input data 
is processed. This part of the FILTER program, 
while most useful for the equipment and program 
deVelopment, will not necessarily be used for 
the production program. 

Now that the engineering parameters have 
been defined by a prototype Spiral Reader and 
the effectiveness of the FILTER program proved, 
the Lawrence Radiation Laboratory is construc­
ting a fast scanning and measuring Spiral Reader. 
This measuring system is expected to process 
200,000 single vertex events each year4. It is 
believed that the tracking techniques developed 
for FILTER can be employed in the realization 
of a fully automatic bubble chamber data pro­
cessing system. 

Work on this project has been performed 
in the Lawrence Radiation Laboratory Hydrogen 
Bubble Chamber Physics Group under the direction 
of Dr. Luis W. Alvarez. The Spiral Reader pro­
ject was originated by Dr. Bruce McCormick, now 
at the University of Illinois. 

This work has been supported by the United 
States Atomic Energy Commission. 
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Fig. 2. An enlarg~ment of the Single Vertex Event appearing in Fig.!. 



Fig. 3. Annuli seen by Spiral Reader scanning disc. 
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BLOCK DIAGRAM OF FILTER PROGRAM 
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Fig. 5. Btanching track pulse trains from first 5 slits. 
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Fig. 6. Effect of doubling search zone width. 
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Fig •. 8. Cathode-ray .. tube display of unfiltered data from Fig. 2 event. 



Fig. 9. Cathode-ray-tube display of reconstructed event of Fig. 2. 
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REDUNDANCY EXPLOITATION IN THE COMPUTER SOLUTION OF 

DOUBLE-CROSTICS 

Edwin S. Spiegelthal, Consultant 
Flushing, New York . 

Double-Crostics, as I suspect many of you 
know, constitute a species of habit-forming 
puzzles. There are two varieties of these brain­
teasers - - those that appear weekly in the 
Saturday Review and every two weeks in the Maga­
zine Section of the New York Sund~ Times, and a 
somewhat watered-down version which I have been 
pitting against an I.B.M. 704 computer. I shall 
describe both the wild and the domesticated 
variants in just a moment. First, though, I 
should like to exercise the air of frivolity 
which might seem to inhere in my topic. There is, 
of course, a long and respectable history of 
fruitful alliances between idle pastimes, on the 
one hand, and mathematical achievements, on the 
other. To mention just a few, there are Euler 
and the Konigsberg bridges, Pascal and his 
gambler' friends, Von Neumann and his poker and, 
to~, Dr. Samuel and his checkers. Still, such 
is the force of the suspicion that whatever is 
fun just can't be work, each tentative of this 
nature must be justified anew on its own merits. 

There are at least two good reasons for 
using a game or a puzzle as an intermediate prob­
lem area before one tackles the more mundane 
problem which one really desires to solve. 
First, the puzzle or game exhibits the SaLient 
features of the honest-to-goodness problem with­
out being encumbered by the inconsistencies and 
extraneous factors which invariably clutter up 
the real problem. Second, the puzzle or game has 
clear-cut rules and, in particular, an unequivo­
cal indication that the puzzle has been solved, 
or that the game has been won. One question 
which I shall eventually have to answer in con­
nection with other work I'm doing is: has the 
machine produced a good translation of this 
foreign-language text? The mildest thing that 
can be said about such a question in general is 
that it does not admit of an unequivocal answer. 
I do think that the results of my efforts to 
solve Double-Crostics will aid in producing good 
machine translations. I don't know if I could 
have obtained any results had I (and the com­
puter) not been able to say, "thispuzzle has 
indeed been solved." 

A third reason for using a well-known game 
or puzzle rather than a completely neutral mathe­
matical model is that familiarity, contempt­
breeder though it may be, does provide the in­
vestigator with a corpus of tested problem­
solving techniques. These techniques may exist 
on an intuitive level of cognition only, they 
may be crudely formulated, they may even be 
highly inefficient. They do, however, provide 
a welcome point of departure. 

So much for general considerations. It re­
mains to justify the specific choice of Double­
Crostics. The relevant factor here is that this 
type of puzzle does exhibit the salient features 
of the problem to which I have been addressing 
myself. This, briefly stated, is the problem of 
explOiting, by non-algorithmic means, the redun­
dancy iDherent in structured-data problems, 
particularly those problems in which the source 
data is some natural language or another. Each 
individual solves this problem for himself more 
or less instinctively. Computers, unfortunately, 
do not appear to have this instinct. In certain 
applications, to be sure, no such instinct is 
necessary. In a p~ll program, for example, 
the machine knows in advance the kind of informa­
tion it will receive and the explicit form that 
this information will take. In machine transla­
tion, on the other hand, the machine must extract 
information of unknown character from running 
text in which this information is, in general; 
contained only implicitly. Moreover, to borrow 
an analogy fram electrical engineering, this 
information usually eames, not in the form of 
lumped parameters, but as a distributed quantity. 
The elementary information-bearing particles -­
words, in this example -- are generally ambigu­
ous when considered individually, and this 
ambiguity can be removed, if at all, only by con­
sidering the particles "in context." Here again, 
we all "know" what context explOitation means. 
In fact, we know it so well, and learned it so 
young, that we are almost incapable of dredging 
it ~ to the conscious level where it must be 
analyzed before being restated in machine terms, 
i. e., a program. Let us see now what Double­
Crostics are, and how they may help in this 
dredging operation. 

The first slide (Figure 1) is a pretty poor 
excuse for a Double-Crostic, but it will serve 
as an illustration. As in crossword puzzles, 
there is a list of definitions which are supposed 
to provide adequate clues to. the words which are 
to be filled in. Unlike crossword puzzles, these 
words are not filled in directly in the nice geo­
metrical pattern. off to the right. Instead, they 
are first filled in next to the verbal definitions 
and then, character by character, are filled in 
the so-called TeXt portion in accordance with 
the ordinal numbers underneath each character in 
the Defin! tion portion. The Text portion is so 
called because, when properly and completely 
filled in, it spells out a portion of normal 
English text. The next slide (Figure 2) shows 
the final state of the Double-Crostic just dis­
pl~ed. The text portion is a fragment from 
Whittier's poem "Barbara Freitchie". In the 
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standard variety of Double-Crostic, the first 
letters of the Definitions, when read from top 
to bottom, would spell out the author's name 
and the work quoted, rather than the highly im­
probable '~. Grisly" which you see. 

Let me introduce just a little nomencla­
ture at this pOint. A verbal definition, "in 
style" for example, is called a definiens; any 
of the six-letter words matched with that 
definiens is called a definiendum, and the 
plural of definiendum is definienda. We're going 
to need that plural because, in general, there 
are several definienda, perhaps many, which a 
priori match up with a given definiens. Some­
times, however, the puzzle-solver can think of 
no definiendum for a given definiens. To solve 
a Double-Crostic, one is always constrained to 
guess, and to eschew pencils without erasers. 
The same might be said of crossword puzzles, but 
the opportunities for sophisticated guessing in 
Double-Crostics far exceed those in crossword 
puzzles, where the only correlation between the 
words filled in is an occasional common character 
at a point of intersection. In Double-Crostics, 
let us remember, the Text portion is indeed in 
English, with all the syntactical and semantic 
correlations of a natural language fragment. 
This means that guessing can be applied, not 
only to the definienda, but to the Text words as 
well. For example, if the fourth word of the 
example on the slide had had three of its letters 
filled in, giving the pattern M S T, and the 
preceding word YOU had alre~been filled in, 
the puzzle-solver would prObably feel compeLled 
to guess MUS T, rather than the o~her conten­
der, M 0 S T. Frequently, the compulsions are 
not as strong as this. Still, the fact that a 
meaningful fragment is to be unearthed, rather 
than an inchoate collection of unrelated words, 
does impose a valuable bias on the guesses made. 
If we turn back to our guess of the letter U to 
fill out the word MUS T, we note that this 
guess is not a dead end, but rather the beginning 
of a chain of decisions. Being a verb for;m, the 
word MUS T, if correct, imposes a whole host of 
constraints, syntactic and semantic, on the re­
mainder of the text fragment. In addition, the 
letter U is filled in twice, once in the word 
MUS T, once in the associated definiendum, 
since it is the third character in the 
definiendum associated with definiens G, "happy 
time. Ii This single letter IDB.:Y allow the puzzle­
solver to choose a unique definiendum from among 
the possible definienda. If not, it will at 
least, in general, shorten the list of possible 
contenders. 

There is another side to the coin of 
sive guessability, if you will per;mit the neolo­
gism. Due to the inherent redundancy of the data, 
bad guesses, or bad choices which were not felt 
to be guesses, will manifest themselves sooner or 
later. Either a concatenation of implausible or 

inadmissible characters will appear in a Text 
word, or a word which is valid in itself turns 
out to be syntactically or semantically jarring, 
if not downright wrong. An important point here 
is that relatively few error indications s~ 
categorically that something is definitely in­
correct; the typical error is found because it 
has given rise to a number of sore pOints, each 
innocuous in itself but, in their totality, 
leading one to feel that something is amiss. 

Another, and operationally more useful, way of 
stating this is that a correct deCision will be 
maximally consistent with all the other correct 
decisions to which it relates. Thus, a decision 
which, while creating no real friction, generates 
an insufficient quantity of warmth, is thereby 
suspect. 

Although I am speaking about Double-
Crostic solution, I believe that much of what I 
have said applies unaltered to the processes we 
actually use in understanding natural language 
texts. I believe that we make the same sort of 
informed guesses, that we skip back and forth be­
tween semantics and syntactic~ in the same goal­
seeking way, that we, consciously or otherwise, 
apply the same sort of maximal consistency criter­
ion. Thus, I feel that an efficient heuristic 
technique for solving Double-Crostics will find 
immediate application to the problems of auto­
mating natural text processing, be the process 
one of translation, indexing or abstracting. Let 
me then describe the program which does, in fact, 
sometimes solve Double-Crostics. 

Before describing the program, I should say 
a few words about the kind of Double-Crostic 
which is presented to the program for solution. 
It seemed viciously circular to ask the program 
to "understand" the verbal definiens, since such 
an epistemological feat would be a pleasant by­
product of my endeavors to sol¥e Double-Crostics, 
but could hardly be a necessary prerequisite for 
such solution processes. I therefore adopted the 
alternative of supplying a list of definienda for 
each definiens of a target Double Crostic as part 
of the input to the program. Each such list may 
be vacuous, and the program does not assume that 
the correct definiendum is necessarily contained 
on a non-vacuous defienda list. To put it 
anthropomorphically, the program merely hopes 
that it will be supplied with enough good informa­
tion to per;mit it to achieve the correct solution. 
Thus, for each Double-Crostic to be solved, the 
program receives, as input, a description of the 
physical appearance of the puzzle, i.e., number 
of text words, number of characters in each word, 
the correlations of text characters with defini­
enda characters, etc. It also receives tre­
def1nienda list for each definiens. A few other 
input parameters are used to limit the time and 
the storage space used by the solution process. 



The program itself consists of two physi­
cally, logically, and functionally disparate por­
tions. The first of these remained more-or-less 
constant during the year or so I devoted to this 
work. This portion combined the functions of 
dictionary, grammar book, recording secretary, 
pencil and eraser, file clerk -- in short, it 
was the executive organ, the enforcer, of the 
program. The second portion was the policy­
making organ, the brains of the mob, to continue 
the metaphor. And, like its underworld counter­
part, it could easily be replaced if a more 
likely candidate showed up. Indeed, the present 
occupant of this spot in the program is the 
seventh in a series. It is also sufficiently 
successful for me to consider it as definitive, 
allowing me to move on to less recondite 
research tasks. 

What resources were available to this policy­
making organ? To answer thi'S, we have to take a 
closer look at the permanent portion of the pro­
gram. Since it was hoped that the program would 
be a successful puzzle-solver even though supplied 
with inadequate and sometimes incorrect informa­
tion, no attempt w8$ made to provide it with any­
thing like the lexical, grammatical and semantic 
sophistication of even the dullest human being. 
Specifically, the text dictionary of the program 
contains 8551 words, none longer than eight 
letters. This is supplemented to a certain extent 
by a subroutine which can decide that a word like 
"untidily", for example, is probably a valid 
word, although not in the dictiOnary, since it 
consists of a standard prefix "un", a standard 
suffix "ily" and a dictionary entry "tidy" as a 
properly modified root. This is the only 
grammatical "knowledge" in the program's arsenal. 
Four tables constitute the remainder of the pro­
grams familiarity with the English language. 
The first of these is a list of the hundred most 
frequently used English words, in the order of 
their relative frequency. The second is a list 
of the letters of the alphabet, again in the 
order of their relative frequency of use. A 
third table contains the most frequent two-letter 
combinations into which a letter enters, again 
ordered by frequency. The fourth table is not an 
ordered one, but simply consists of a not quite 
exhaustive listing of the permissible three­
letter combinations of English text. What is not 
explicit in the tabular data, although the pro­
gram assumes it, is that the dictionary is vir­
tually exhaustive for words not longer than three 
characters. 

In addition to this limited information con­
tent, the program possesses the rudimentary 
pattern recognition facility of perceiving that, 
as in our earlier example, both MUS T and 
M 0 S T provide partial matches with the pattern 
M ST. It might be suspected that , with this 
restricted intellectual equipment, the program 
would have only a tiny repertoire of actions 
open to it. This suspicion is eminently well-
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founded. BaSically, there are only three cate­
gories of acts which the program can perform in 
filling characters in a target Double-Crostic. 
The next slide (Figure 3) summarizes the situa­
tion. There are three essential parameters; 
whether the word in question is a Text word or a 
definiendum; whether the word is blank, partially 
filled or completely filled; whether the word's 
possibility list is vacuous, contains one entry 
or contains more than one entry. One possibility 
list is made up for each word. Initially, the 
possibility lists for the definiens consist of 
the definienda lists included in the input, while 
the lists for the Text words are all vacuous. 
After a sufficient number of characters have 
been filled in a Text word, due to actions on the 
Definition side of the puzzle, its possibility 
list is filled with all those dictionary entries 
which give partial matches to the character 
pattern in the word. As subsequent characters 
are filled in the same Text word, those possi­
bilities which no longer give partial matches 
are expunged from the list. Conversely, if any 
characters are erased from a Text word, its 
possibility list is augmented by any new partial 
matches which might thereby be revealed. On the­
Definition side, the possibility lists can only 
be decreased, never augmented. 

With the foregoing in mind, let us look at 
the slide. We see that no action can be taken 
when a word is completely filled, which seems 
only reasonable, or when the possibility list 
for the word is vacuous which, I must admit, also 
seems reasonable. Further, since blank Text 
words are not permitted to have non-vacuous possi­
bility lists, nothing can be done with them. As 
for the remaining cases, it does not seem un­
toward, when there is a single possibility for a 
given word, two kinds of action are open to the 
program. It can fill in those characters, if 
any, which are common to all the possibilities. 
Thus, for example, there are two five-letter 
words which begin with W E and which have C for 
their fourth letter, namely, WEN CHand 
W E L C H. Both these words have the letter H 
for their fifth character. Filling in of such 
common characters is on a par with filling in a 
full word which is a unique possibility list 
entry. Sooner or later, however, the supply of 
such seemingly warranted actions dries' up, and 
the program must begin to guess. The program 
makes its guesses on the basis of two assumptions: 
both the Text words and the definienda are good 
English words, and the Text portion of the puzzle 
is a reasonable English sentence. The program 
will thus tend to guess a high-frequency word, on 
the Text side of the puzzle or, failing that, the 
possibility on a given list which has, in some 
sense, the most frequent letters. Specifically, 
the letters of the alphabet are ranked, with E, 
the most frequent, being scored 26 and Z, the 
least frequent, being scored 1. The scores for 
each possibility are added, character by charac­
ter, and the highest scorer is guessed. 
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So ends the catalog of positive actions open 
to the program. On the negative side, when the 
eraser must be wielded, two kinds of criteria 
are first brought to bear. The first kind is 
close to what we mean when we speak of error de­
tection, since it is applied to manifestations 
that are patently, or probably, wrong. Using 
this criterion, the program can decide to erase 
a definiendum because it gave rise, on the Text 
side of the puzzle, to too ~ unacceptable 
three-letter combinations and/or too many invalid 
words of three characters or less. As to what 
constitutes "too many", this is an empirically 
determined parameter whose variation, during the 
testing of the program, provided interesting but, 
unfortunately, inconclusive results. Let me 
therefore move rapidly to the second species of 
criterion. Here we have to do with the concept 
of maximal consistency which I mentioned earlier. 
This criterion comes into play when the solution 
process is ready to call a halt, either because 
all the characters have been filled in, so that 
the puzzle is apparently solved, or when no 
further positive actions are open to the program 
even though some characters remain blank. In 
both cases, though with perhaps greater urgency 
in the second case, the program asks i tsel! if 
each word it had filled in were sufficiently 
productive, in terms of good two-and three­
letter combinations and valid full words on the 
other side of the puzzle. ·If any words are 
found which did not give at least some minimum 
of consistency with the remainder of the puzzle, 
the least "fruitful" of these is erased. Here 
again, the relevant threshold values are para­
meters at the researcher's disposal. 

In the previous section, dealing with nega­
tive actions, and when and why they are taken, I 
moved from the discussion of the permanent pro­
gram into the realm of the policy-making program, 
which alone decides what and when. Since the 
efficiency, if not the efficacy itself, of a 
heuristic process depends heavily on both the 
decisions taken and their timing, I have called 
these policy-making programs "Decision Sequencers!' 
It is the seventh, and last, of these Decision 
Sequencers which I am discussing now. 

After the input describing the next target 
Double-Crostic has been read into the computer 
and ingested by the program, Decision Sequencer 
7 begins operation. It first takes all the 
obvious actions, i.e., it scans each definienda 
list in turn. If there is but one definiendum 
on a given list, it is filled in. If there are 
any common characters on a multi-possibility 
list, they are filled in. After this first pass, 
the DeciSion Sequencer enters a decision-making 
loop around which it continues to iterate until 
it c1aims to have found a solwtion or until it 
admits defeat. As noted earlier, the entire 
solution process can be also cut off abruptly 
if time and/or space run out, but such a halt is, 
at least logically, in4ependent of the decision-

making scheme. 

The decision-making loop has such a simple 
structure that I don't think I'll frighten any­
one if I show its flow chart (Figure 4). There 
are many more lines and boxes I could have 
included, but I have learned that cute program­
ming is not really a fit subject for public 
exultation. There is another sense, however, 
in which I could have included many more lines 
and boxes without any reference to the underly­
ing programming. I could, that is, have chosen 
a far more complex logical structure for the 
Decision-Sequencer. For example, I m.ght have 
followed the break-through-exploitation philoso­
phy. This would have entailed a tree-like struc­
ture wherein each success~ul, or apparently 
successful, move would suggest one or more fur­
ther moves, each of which might in turn suggest 
a family of moves, etc. Here, the program would 
have to swoop up and down the tree until a1l the 
branches had been exhausted, or until the 
appearance of a major error would cause the 
program to retravel some, o:u all, of the tree in 
the reverse sense. This may indeed be a better 
processing scheme. There may be many schemes as 
good as, or better than, the one I chose. 
Nonetheless, I had to choose some scheme, I 
chose a simple one, and it is seemingly a good 
one. Let me then discuss it. 

The sill\Plifying idea underlying the scheme 
is due to Richard Bellman's book, "Dynamic 
Programming." The idea, as I have used it, may 
be stated as follows: the best way to imple­
ment a multi-stage decision-making process is, 
at each stage, to make the decision which is 
optimal for that stage. In terms of the flow 
chart, a new stage in the solution process is 
reached after the previous fill or erase decision 
has been implemented. At this new stage, only 
certain positive actions are possible. Each of 
these possible actions is scored, and the high; 
est-scoring action is fetched so that the attempt 
to execute it may be made. To clear up confUSion, 
let me hasten to remark that a possible action 
may not be implementable. For example, if ~ 
given definiens has several definienda on its 
possibility list and no prior attempt to fil1 in 
cammon characters has been made, the present 
attempt to fill in cammon characters is a possi­
ble action. If there are in fact no common 
characters, then this possible action cannot be 
implemented. If an i.m.Plementable action is 
eventually found, I consider it to be the opti­
mal action at the present stage. 

Once the optimal action is 1Dq>lemented, the 
new status of the puzzle is verified. What this 
rather poorly chosen word connotes is a check of 
each word in the puzz1e, wherein poor three­
letter combinations and invalid short words are 
noted disapprovingly, and good two-and three­
letter combinations and full words receive due 
reward, "gold stars" being marked down for theJl' 



in a special record. I will have more to sfq 
about these gold stars when I discuss the key 
process of action scoring. After the gold stars 
have been handed out. the program glances over 
the puzzle to see if, perchance, all the charac-
ters have been filled in. If they have not, the 
next stage of the decision process is initiated 
by the re-entry of the program to the uppermost 
box on the fLOW chart. The little boxes lying 
off the path I have just beaten were discussed 
earlier when I spoke of the negative actions open 
to the program. 

It is almost time to discuss ~he heart of 
the Decision-Sequencer, namely, the scorlng 
process and its associated verification process. 
First, though, I should like to answer an objec­
tion which might be raised at about this pOint. 
I am presumably claiming that my consistency 
criterion allows me to rank finished Double­
Crostics as to their acceptability. This is 
certainly implied by my use of a numerical score 
which I compare with a threshold to determine 
if a finished puzzle is acceptable. Why then, it 
might be asked, do I not simply try all the com­
binations of the given definienda, and accept the 
best scoring configuration as the solution, thus 
rendering all this scoring and verification 
folderoi nugatory? In fact, the objector might 
add, if you would only guarantee that the correct 
definiendum is included in every definienda list 
then you could also dQ away with all your guess­
work. Dropping now my role of Devil' s Advocate, 
let me answer the second point by noting that, 
in the bread and butter type problems which I'm 
working towards, the analog of the correct 
definiendum. is not, and cannot, always be in­
cluded in the relevant list. As to the exhaus­
tive approach suggested in the first part of the 
objection, I have the law of exponential growth 
on my side. For example, I shall presently show 
you the solution process for a Double-Crostic 
somewhat more challenging than the example I first 
,showed.. There are only 18 definiens for this 
puzzle, one of which had three definienda on its 
list, the other 17 having only two definienda 
each. This is a total of only 37 definienda, 
but the number of combinations which I would have 
to try in accordance with my critic's suggestion 
is something over 393,000. In the particular 
solution process I shall sketch later, 33 positive 
actions were taken, four of which were incorrect 
and were subsequently cancelled by four negative 
actions. The total machine time for this solu­
tion process, including a detailed tape printout 
at each stage, was about 30 seconds. There seem.q 
then to be some point in employing to folderol 
which we are about to discuss. 

In the scoring process, an essentially quali­
tative value judgment is given quantitative 
form. This is by no means equivaJ.ent to a trans­
ition from subjectivity to objectivity. The best 
one can do is to minimize the area in which sub­
jectivity operates and to limit the scope of its 
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activities in that area. In the concrete case 
of Double-Crostic solution, subjectivity impinges 
in two WfrJ'S on the scoring process: it affects 
the choice of the factors deemed to be relevant, 
and it enters into the assignment of relative 
weights to those factors. In setting up the 
earlier Decision-Sequencers, I allowed my intui­
tion free plfq in both these directions. I 
"felt" that the relevant factors, in scoring some 
action for a given word, were the total length 
of that word, the number of characters, already 
f{lled in that word and the number of gold stars 
already accumulated by that word. I then mul­
tiplied these numbers by seemingly "reasonable" 
coefficients, as a function of the particular 
type of action being scored, and then added a 
fudging factor, again as a function of the type 
of action. Oddly enough, I still managed to 
solve some Double-Crostics this way. However, 

having no coherent rationale for this scoring 
scheme, I certainly had no clues as to how it 
might be generalized so that I might apply it to 
the problems in which I was really interested. 
Furthermore, while I could applaud my intuition 
when the program solved a Double-Crostic, I could 
not explain the cases where the program failed. 
I could, of course, blame my intuition, but 
this would hardly have been constructive criti­
cism. In the seventh, definitive, Decision­
Sequencer, the choice of relevant factors is 
dictated by a coherent underlying philosophy, 
and the assignment of weighting coefficients, 
while still arbitrary to a certain extent, is 
nonetheless constrained by considerations stem­
ming from this same philosophy. I use the term 
"philosophy" because the concepts are general 
ones, and must be properly specialized so as to 
apply to the given concrete case. I cannot pre­
tend to you that the general philosophy has 
been worked out fully. I shall therefore 
restrict myself here to its specific application 
to Double-Crostic Solution. 

Viewed cold-bloodedly, a Double-Crostic is 
seen to consist of two sets of hypothesis sets, 
each Text word and each definiendum being con­
sidered a hypothesis. Initially, some of these 
hypothesis sets may be vacuous, and the non­
vacuous ones need not contain the correct entry. 
It is assumed, rather vaguely, that an "adequate" 
number of hypothesiS sets do contain the proper 
entry. An acceptable final state will be one 
where exactly one hypothesis will have been 
chosen for each hypothesis set, where some rea­
sonable proportion of the final hypotneses will 
have occurred as initial hypotheses in their 
respective hypothesis sets, and where each final 
hypothesis will be a good English word. The 
first reqUirement, of course, simply restates the 
obvious fact that no "puzzle is conmlete that 
does not have all its characters filled in. The 
second requirement imposes the need for one of 
the threshold values which I have previously 
discussed. The third requirement can be phrased 
somewhat more discursively as follows: only 
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some tiny percentage of Text words less than four 
characters in length may not match up with dic­
tionary entries; no definiendum may give rise to 
too few good two-letter or too many poor three­
letter combinations on the Text side of the 
puzzle, while a similar constraint is imposed on 
the Text words concerning their effect on.the 
Definition side of the puzzle. A human puzzle­
solver certainly imposes more constraints on 
the final solution than those I have enumerated. 
For instance, he would presumably reject a four­
letter combination such as D E X C since no 
English word contains this particular sequence 
of letters. The Decision-Sequencer, however, 
does not check for four-letter combinations, and 
would find the two triples D E X and E X C to be 
perfectly legitimate. Similarly, the machine 
would not take exception to the phrase YOU 
I S, although most Double-Crosticians might. 
The point here is that what is redundancy for 
the goose can be startling news to the gander. 
It is in the verification portion of the Decision 
Sequencer that redundancy factors are checked. 
It is in the scoring portion that the decisions 
are made which will tend to give the greatest­
field of action to the verification process at 
each step. That is, all other things being equal, 
the scoring process will, or at any rate should, 
present the verification process with the most new 
two-and three-letter combinations, short words 
and full words as possible. Sheer numbers alone 
cannot be used. Two pairs of letters, for 
instance, are not nearly as potent as two 
triples. On the other hand, two triples are not 
fifty times as potent as two pairs. Thus, while 
the relative weights of these two factors can 
be chosen somewhat arbitrarily, the range of 
variation is not particularly great. 

It should be clear that any scoring process 
will automatically tend to fulfill the first 
two requirements on the solution, since the 
actions which are scored are all positive actions, 
entailing the filling in of more characters, and 
are all based on the use of hypotheses which 
lie in the original hypothesis sets. The bur-
den of meeting the third requirement, the one 
specifying that the final result will be "good" 
English, falls on the verification process 
primarily. Apart from the final glance at the 
puzzle in which the progrgm reassures itself that 
the chosen hypotheses have been sufficiently 
"fruitful", it is the verification section which 
does the lion's share of "error" detecting. Thus, 
if efficiency were not an operational require­
ment, the entire scoring pro.cess could be 
replaced by a random number generator for the 
selection of the next action to be implemented. 
Efficiency, however, is a major requirement, 
perhaps the major requirement. How, then, do we 
construct an efficient scoring procedure? First, 
as noted, earlier, we try to present the verifi­
cation process with that action which, when 
implemented, will provide the greatest sum of 
weighted redundancy factors, everything else 

being equal. Second, we analyze these other 
things which may or may not be equal. One of 
these things is the gold star count already 
compiled by the relevant hypotheses. For 
example, if several cammon characters of a given 
definienda set had already been filled in, 
leading to all sorts of nice two-and three­
letter combinations on the Text side of the 
puzzle, it would presumably be safer to guess one 
of the definiendum of this set than to guess a 
definiendum of another set which had thus far 
been unproductive. Another cogent factor is the 
length of the possibility list of each of the 
contending hypothesis sets. The contention here 
is that, all other things again being equal. 
the shorter possibility list should be attacked 
first. The reasoning here, as you will see, is 
somewhat tenuous. Given two hypotheSiS sets, 
one with two entries on its possibility list, 
the other with three entries, we might argue as 
follows. We do not know whether either list 
contains the correct entry. Therefore, we might 
just as well assume, for the sake of argument, 
that the correct entry is contained on each list. 
If we are fortunate enough to choose the correct 
entry from the list we select, then it will have 
made no difference which list we chose. If our 
choice of entry is not correct, however, we can 
hope that the verification process will cause 
its erasure sooner or later. If we erase one 
possibility from the two-entry list, we are 
presumably left with the unique correct entry. 
If, on the other hand, we erase one possibility 
from the three-entry list, ve still have to 
make a choice between the remaining entries. 
To this argument we must add the consideration 
that each positive action on one side of the 
puzzle will entail a corresponding reduction in 
the possibilities open to the hypotheSis sets on 
the other side, since the numbers of partial 
matches will, in general, be decreased. Thus, 
the sooner a correct choice is made on the 
Definition Side, the sooner will correct choices 
be possible on the Text side, leading to more 
correct choices on the Definition side, etc. 

One final factor must be taken into account 
in the scoring process. It is natural, and 
probably correct, to assume that some kinds of 
actions are inherently preferable to others. 
Specifically, choosing a unique possibility, or 
filling in common characters, would be preferred 
to guessing a definiendum, no matter how JDBJlY 
high-frequency characters it contained. Since 
the correct definiendum is not necessarily 
included in the original definienda list and 
since, on the other side of the fence, the Text 
dictionary is not complete, the first category of 
actions can certainly not be considered as sure 
things. This same uncertainty, of course, attaches 
to the hypothesis set from which any guessed entry 
is selected. It still seems reasonable, there­
fore, to give higher score to the relatively more 
warranted actions. 



The scoring process for a given action and 
a given hypothesis set can now be summarized. 
The puzzle is scanned t'o see what new redundancy 
factors would be engendered by the action, and 
each such factor is properly weighted. The sum 
of all these weighted redundancy factors is then 
suitably modified by the number of gold stars 
already accumulated by the given hypothesis set, 
the length of the set's possibility list, and a 
warranty factor, which is a function of the type 
of action being scored. In the case of the 
action to seek common characters one slight addi­
tional modification is necessary. If an action 
to guess a word of n unfilled characters is 
made, then all n of-these characters will be 
filled in by the action. On the other hand, an 
action to seek common characters in a word with 
n unfilled characters will lead to at most n-l 
characters being filled in, and may result in no 
characters at all being added. It is therefore 
necessary to multiply the raw score for a common 
character action by the expected proportion of 
characters that will result. This proportion 
can be determined empirically if intuition fails. 

If I were to apply the philosophy underlying 
Decision Sequencer 7 to some other problem area, 
I would proceed about as follows. I would first 
determine the hypothesis sets relevant to the 
problem, together with the available means for 
changing these hypothesis sets during the solu­
tion process. I would next decide on the actions 
that could be ~aken in selecting one hypothesis 
from a given set, and on the criteria for determ-
ining the a priori impossibility of a given 
action at a given stage of the solution process. 
Third, I would determine what redundancy factors 
relating the hypotheses I would or could use, 
and what relative importance I should attach 
to each such factor. Finally, I would have to 
decide on the stop rules, i.e., I would have 
to specify when the solution process was to be 
considered either successfully completed or 
impossible to complete. I cannot, at tHis date, 
report on whether this prescription has cured, 
or killed, any patients, I hope to report the 
former at some later date. 

As a sort of appendix, I should like to 
present a few selected moments from t~ree actual 
solution processes. The first could not be 
completed by the program. The second and 
third could, which is the reason why I conclude 
the paper with them. The next slide (Figure 5) 
shows the puzzle status at a point when any 
red-blooded American could finish it with his 
left hand tied behind his back. Prior to this 
point, the program had made four different bad 
guesses which it was subsequently able to catch 
and erase due to the exorbitant number of poor 
three-letter combinations that had ensued. At 
the point which now concerns us, the program 
suffered from the paucity of lexical information 
with which I provided it. The program was aware 
of only one six-letter word which matched with 

45 
1.4 

T R H and was just unaware that the sixth 
letter coUld have been, let alone should have 
been, the letter S. It therefore completed 
this word with its unique possibility, 
T R ° P H Y. The program was unable to rectify 
this particular error so that, after some thrash­
ing about in which some earlier correct choices 
were despairingly erased, the program ground 
to a halt with the solution carried to the point 
shown on the next slide (Figure 6). The Text 
does have a certain piquancy, but it is undeni­
ably incorrect. Two points are to be noted in 
connection with this failure. This first is 
that it could have been avoided had I taken 
slightly greater pains in providing the program 
with its basic lexical and grammatical lore. 
The second point is that the solution process, 
before being stalled, had proceeded extremely 
rapidly. The definienda lists provided for 
this solution process contained over 145,000 
combinations. The correct status shown on the 
previous slide had been arrived at after 
seventeen positive decisions had been made, 
including the four erroneous ones which had been 
corrected prior to the point in question. I am 
therefore not too discouraged by this particular 
failure. 

still, I find success particularly encour­
aging. The next slide (Figure 7) shows the 
status of the target Double-Crostic just before 
erasure of the fourth, and final, error made by 
the program. As in the previous case, the 
dictionary was inadequate, allowing the incorrect 
unique partial match CON SUM E R to be filled 
in, rather than the correct word 
CON SID E R which was not included in the 
dictionary. Fortunately, CON SUM E R gave 
enough poor three-letter combinations on the 
Definition side of the puzzle to warrant its 
erasure. Since the erasure of any character 
automatically leads to the erasure of all 
characters to whose filling in the erroneous 
character made some contribution, the erasure 
of CON SUM E R led to the Significantly 
stripped-down status shown in the next slide 
(Figure 8). It was clear sailing from this 
point on, however, so that fifteen decisions 
later the final, and correct, puzzle status was 
reached, as shown on the next slide (Figure 9). 
Although the program remains oblivious to the 
extra redundancy involved, the first letters of 
the correct definienda here do spell out the 
name of the author of the Text fragment and the 
title of the source, to wit, the Memoirs of 
Harry Truman (Volume I, page 189 to be exact). 
If I may be forgiven for repeating myself, this 
puzzle was solved by means of 29 correct decisions 
and 4 incorrect ones which were subsequently 
rectified. 

In this particular solution process, the 
verification section was particularly stern, in 
that a definiendum would be erased if it 
engendered only two poor three-letter cambina-
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tions or just one inadmissible short text word. 
Out of curiosity to see what, would happen if I 
went to the other extreme, I disabled this 
portion of the verification section completely, 
thus allowing all triples and short words to be 
considered admissible. This left the program, 
as its sole error-detecting capability, its 
facility for rejecting final configurations which 
were not minimal.ly consistent. The next slide 
(Figure 10) shows the final configurations which 

were presented for inspection When the previous 
Double-Crostic was used as a target. The fifth 
time around the correct configuration was 
presented and was accepted. As in the previous 
case, four incorrect decisions had been made 
here, but only 20 correct decisions had to be 
made. I would not like to generalize on the 
relative merits of the two forms of error­
detection on the basis of such a minuscule 
sample. I think it fair though to conclude, on 
the basis of all the testing I have performed, 
that the combination of redundancy factor 
checking ~d cons:is tency inspection, taken in 
conjunction with scoring by weighted sums of 
redundancy factors, as modified by list length, 
gold star count, warranty factor and expec­
tancy factor, will provide effective deCision 
sequencers in more urgent, if less entertaining, 
problem areas than Double-Crostics. Time will 
tell. 

BorE: PermisSion to refer to Double-Crostics 
granted by saturday~; permission to quote 
from the Memoirs of Harry Truman granted by 
Time, Incorporate~ -----



FIGURE 1 -- Double-Crostic 1 (Original Status) 

Definitions 

A. In style 
11 9 21 b 1 26 

B. Common ailment 
22 ~ 10 15 

C. Concerning 
23 27 

D. Personal 
17 29 

E. Weakling 
IS "3 "7 14 -S 

F. Asian spot 
20 2 28 13 ~ 

G. Happy time 
25 19 12 5 16 

Text 
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FIGURE 2 -- Double-Crostic 1 (Final status) 

Definitions 

A. In style M 0 D I S H 
11 9 21 b "1 25 

B. Common ailment G 0 U T 
22 ""4 10 15 

C. Concerning R E 
23 27 

D. Personal I D 
17 29 

E. Weakling S 0 F T Y 
IS 3 7 14 -g 

F. Asian spot L H A S A 
20 2 2B 13 ~ 

G. Happy time y 0 U T H 
25 19 12 "5 IT> 

Text 

S H 0 0 T I F Y 0 U M U 
1A 2F 3E 4B 5G OK 7E BE 9A lOB 1lA 12G 

T H I S 0 L D G R A Y 
15B IbG 17D l8E 19G 20F 2lA. 22B 23C 24F 25G 

H E A D 
2bA 27C 28F 29D 

S T 
1314' 14E 



FIGURE 3 -- Possible Positive Actions as a Function 

of Word Parameters 

Status of Word Blank Partially Filled Completely Filled 

Number of Entries Text Def. Text Def. Text Der. 

on Possibility 

List 

Zero X X X X X X 

One X Fill Fill Fill X X 
Unique Unique Unique 
Entry Entry Entry 

More Than One X Seek Seek Seek X X 
Common Common Common 
Char- Char- Char-
acters; acters; acters; 

Guess Guess (h-f Guess 
Word or 
h-f char-
acters). 
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FIGURE 4 -- Decision Sequencer '7, Simplified Flow Chart 

1 From Initial Pass 

~ 

Score possible 
actions; sort I I by score. - 1 Erase 

~~ 

... Fetch highest no more Are erasures , 
scoring action. called for? 

" 

Try to implement 
Can It do action. 

! \If 

I Erase 1 'roo many Verify puzzle 
errors status. 

Is puzzle 
completely 

No filled? Yes 

Yes 

No HALT .... , 

~CJ1 
~o 



FIGURE 5 -- Double Crostic 2, Intermediate status 

Definitions 

A. N 

B. COWBELL 

C. HALVES 

D. FODDER 

E. T H I R D 

F. TEETHE 

G. HELMET 

H. TRUANT 

I. A E 

J. S - - --

Text 

WE HOLD H E S TR H T 0 B E SELF 

EVIDENT THAT L MEN ARE C R TED 

U A L. 
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FIGURE 6 -- Double Crostic 2, Final Status 

Definitions 

A. S 0 0 N T 

B. COWBELL 

C. HALVES 

D. FODDER 

E. T H I R D 

F. TEETHE 

G. HELMET 

'H. TRUANT 

I. EAYE 

J. S D UP 

Text 

WE HOLD THESE TROPHY T 0 B E SELF 

EVIDENT THAT OLD MEN ARE C R TED 

USUAL 



FIGURE 7 -- Double Crostic 3, First intermediate Status 

Definitions 

A. HEGEMONY J. ANATHEMA 

B. ABACUS K. E 

C. RETCH L. M D I 

D. R A BID M. ETHICS 

E. N. MO - - - --
F. TON I C o. - - - --
G. R SIN P. INITIATE 

H. UTMOST Q. REVISIT 

I. MNEMONIC R. U E 

Text 

I CONSUMER THE METHODS U S B THE 

S E o MIT E ON N MERICAN 

AC IVITIE o B T E M T UNAM RICA 

TH NG I AMERICA I N ITS DAY. 
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FIGURE 8 -- Double Crostic 3, Second Intermediate 

Status 

Definitions 

A. HEGEMONY J. ANATHEMA 

B. ABACUS K. - - --
C. RET C H L. D 

D. M. S - - - -- - - - --
E. N. 0 - - - -- - --
F. O. ------ ------
G. R SIN P. I N T - - --
H. M Q. REVISIT 

I. MNEMONIC R. E - --
Text 

I N S E THE M HOD S s 

THE E OM E N - - -- - ---
MER CAN A C V I o B T E - --

M T UNAM RIC NG I - --
R A I N S A Y. - --



FIGURE 9 -- Double Crostic 3, Final Status 

Definitions 

A. HEGEMONY J. ANATHEMA 

B. ABACUS K. NEED 

C. RETCH L. MIDDIES 

D. RABID M. ETHICS 

E. YOUTH N. MOUTH 

F. TONIC O. OCEAN 

G. RESIN P. INITIATE 

H. UTMOST Q. REVISIT 

I. MNEMONIC R. SITE 

Text 

I CONSIDER THE METHODS USED BY THE HOUSE COMMITTEE ON 

UNAMERICAN ACTIVITIES TO BE THE MOST UNAMERICAN THING IN 

AMERICA IN ITS DAY. 

(Memoirs of Harry S. Truman, Volume I, ,page 189.) 
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FIGURE 10 -- Double Crostic 3. Four Final Configurations Successively Rejected 

by the Consistency - Checking Section 

1. I CONSIDIS TDE METHIDS USED EY THE HOISE CONMRTl'EE 

ON UNAMORISAN ACTIVITIES CO RE TEE MOST EOAMERICAN 

THINM IN TVERICA IN ITR NEN. 

2. I CONSIDES THE MErr'HODS USED EY THE HOISE COMMR'Iil'EE 

ON UNAMERISAN ACTIVITIES CO RE TEE MOST ENAMERICAN 

THING IN TVERICA IN ITR NEY. 

3. I CONSIDES THE METHODS USED EY THE HOISE COMMRIiI'EE 

ON UNAMERICAN ACTIVITIES CO BE TEE MOST UNAMERICAN 

THING IN TVERICA IN ITS NAY. 

4. I CONSIDES THE METHODS USED EY THE HOUSE COMMRTTEE 

ON UNAMERICAN ACTIVITIES TO BE THE MOST UNAMERICAN 

THING IN TMERICA IN ITS NAY. 
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A COMPUTER FOR WEATHER DATA ACQUISITION 

Paul Meissner, National Bureau of Standards, Washington, D. C. 
James A. Cunningham, National Bureau of Standards, Washington, D. C. 
Claude A. Kettering, U. S. Weather Bureau, Washington, D. C. 

Summary 

A need for improved reporting of weather 
data has been brought about by the requirements 
of modern, high-performance aircraft, together 
with the advent of high-speed computers for use 
in weather forecasting. Manual methods of 
recording meteorological observations introduce 
an undesirable time delay, increase the chance 
of error, and limit the frequency of observa­
tions. A solution to this problem lies in the 
use of automatic data processing equipment for 
the recording, pre-processing, and transmission 
of the information. Under the sponsorship of 
the U. S. Weather Bureau, the National Bureau of 
Standards has developed a specialized computer for 
use as a research tool in exploring this concept. 

Introduction 

The National Bureau of Standards in cooper­
ation with the U. S. Weather Bureau has developed 
a specialized digital computer for use by the 
Weather Bureau as a prototype in the development 
of automatic weather stations. This computer 
receives data from weather-sensing instruments 
and processes these data through such functions 
as sampling, comparing, selecting a maximum, and 
arithmetic operations. The results operate local 
and remote displays, and are transmitted via 
teletypewriter to a central forecasting station 
and to other airport weather stations. Values 
of two quantities recently developed as aids to 
air safety--runway visual range and approach 
light contact height--are given by the machine 
through automatic table look-up. 

Increased use of weather reports by the 
general public and the aviation industry, and 
others, has placed a demand on the Government 
to provide more frequent and more accurate 
weather data from active airports and remote 
locations. It has been obvious that this demand 
could best be met by the development of automatic 
meteorological equipment rather than by increasing 
the number of observers. One can readily appre­
ciate the advantages of having automatic weather 
stations capable of operating unattended for long 
periods. Such stations could be established in 
regions not normally habitable, but which might 
nevertheless be important from a meteorological 
standpoint. Even at _naed s,taticas, the use of 
automatic equipment offers many advantages. 
Station personnel are freed from routine-obser­
vations, yet readings can be taken more fre­
quently, with less chance for error, and 
transmitted with less delay. A single eight-hour 
shift might suffice for the personnel, at locations 
now requiring continuous attendance. The United 
States Weather Bureau has, therefore, supported 
the development of automatic weather stations 
since the end of World War II. 

The first of these stations to be developed 
and operated in service was used in the British 
West Indies and transmitted a limited amount of 
meteorological information to Miami, Florida, by 
radio, during the hurricane season. As tele­
metering techniques were developed, it was 
possible to increase the amount of data trans­
mitted. Further development has provided 
stations now in use, which transmit weather 
observations on demand into the National Weather 
Network. 

These stations demonstrated the practica­
bi11ty of automation in collecting meteorological 
data, but provided no computing capability and 
insufficient versatility to meet changing 
requirements of the meteorologist. In order to 
provide a complete report automatically, certain 
computing and decision-making capabilities are 
required. These requirements, and those from 
other Government Agencies, have led to a joint 
project between the United States Weather Bureau 
and the Data ProceSSing Systems Division of the 
National Bureau of Standards, in which meteoro­
logists and engineers have worked together to 
develop an Automatic Meteorological Observing 
System with both operational and research 
capabilities. The present equipment, designated 
AMOS IV, is built around a small, specially 
designed general-purpose computer, to which have 
been added the required input-output facilities. 

Requirements of the Automatic Station 

Consider the tasks which must be performed 
by an automatic weather station. The station is 
equipped with a number of weather-sensing instru­
ments which furnish weather data, in a variety of 
forms. Data from the instruments must be suitably 
processed to obtain the desired information, and 
this must be made available in the correct form 
for display and transmission. It is necessary to 
assemble the information, together with any 
additional material, such as the station code 
and remarks, in the correct format for several 
different output messages. These messages, are 
to be available for the teletypewriter trans­
mission upon receipt of command signals. 

In a few cases, instrument readings could be 
sampled directly, converted to teletypewriter code, 
and transmitted. However, in many cases, the 
desired quantities are not suitably represented 
by the instantaneous instrument readings. Hence, 
varying amounts of processing are required. In 
previous AMOS prototypes, the required intermediate 
proceSSing has been achieved through the use of a 
variety of separate devices. In some cases, 
requirements have developed to the point where 
computer-type equipment is required, although 
individually the various instruments do not fully 
utilize the circuit capabilities. 
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It became apparent that the overall hardware 
could be reduced through the use of a central data 
processor which could be t~e-shared by the various 
instruments. The use of an internally-programmed 
machine for this purpose greatly increases the 
versatility of the automatic station, permitting 
more sophisticated processing of data from all 
instruments. The meteorologist is afforded the 
opportunity to arrive at optimum data-processing 
routines, comparing different procedures simul­
taneously, if desired. Changing requirements may 
be met simply by preparing new programs; thus, 
there is an inherent guard against obsolescence. 

For illustrative purposes, a number of quanti­
ties of interest and the associated instruments 
will be described, together with the form of out­
put obtained and the processing required. 

Transmissivity 

Transmissivity of the atmosphere is measured 
by a transmissometer. A horizontal beam of light 
of known intensity is directed at a detector 
several hundred feet away. The amount of light 
received controls the pulse rate of an oscillator. 
The pulse rate varies from nearly zero, for heavy 
obscuration, to about 4000 pulses per minute with 
a very clear atmosphere. A small background count 
may be obtained with no light at all; by periodi­
cally turning off the source this background count 
may be obtained and subtracted as a correction 
factor. The transmissivity data is used in two 
forms. For some uses it is expressed as a per­
centage of the maximum obtainable value. Thus, a 
pulse rate of 3000 ppm would indicate a trans­
missivity of 3/4, or 75%. On the other hand, the 
corresponding visibility in miles is not a linear 
function and is different in the daytime than at 
night. A pulse rate of 3000, for example, repre­
sents a visibility of 1.5 miles in the daytime 
and 2.4 miles at night. 

Wind Speed 

Wind speed data is received from an 
anemometer in the form of a pulse rate. The 
anemometer produces 5 pulses per second for 
each knot of wind speed. There are three quan­
tities which we wish to derive from the pulse 
rate; these are: 

(1) the peak one-second gust occurring 
over the past ten minutes, 

(2) the one-minute average wind speed, 
(3) the ten-minute average wind speed, 

These quantities are to be updated each 
minute. 

Temperature 

Temperature is measured by a bridge circuit 
which is kept in balance by means of a servo­
operated slide wire. The servomechanism also 
operates contacts, to furnish a read-out of three 
decimal digits and sign. Each digit is repre­
sented by a contact closure on one of ten wires. 
Temperature data is transmitted as read, and in 
addition is used as a correction factor for certain 
other data. 

Pressure 

Pressure is sensed by a mercurial barometer 
which has a small magnetic float riding on the 
top of the mercury column. A servomechanism 
maintains the position of a sensing coil with 
respect to the float, and operates contacts 
s~ilar to those of the thermometer. A read-
out of four decimal digits is obtained. Several 
quantities are of interest in addition to the 
current pressure. For aviation use an alt~eter 
setting must be obtained. This can be obtained 
electrically, by means of additional contacts, 
but can also be handled by the computer via table 
look-up or calculation. The pressure must be 
converted to an equivalent sea-level value, and 
this requires a temperature correction using two 
temperature values spaced 12 hours apart. 
Pressure tendency is another calculation and 
consists of examining three values taken at hourly 
intervals. From these a coded value for the trend 
is obtained. 

Cloud Height 

Cloud height data is obtained from a ceilo­
meter. A beam of light from a rotating search­
light is projected on the clouds and the amount 
reflected is measured by a photocell. Cloud 
height is obtained by triangulation, using the 
distance between the searchlight and the detector, 
together with the angle of the searchl ight when a 
cloud signal is received. In order to obtain 
cloud height automatically, it is necessary to use 
two circuits, one which watches for peaks in the 
photocell signal, while the other keeps track of 
the searchlight angle. Whenever a cloud signal is 
indicated by the photocell, the corresponding 
angle is stored in a buffer register. Height can 
be obtained from the angle by table look-up or 
calculation. It is desirable to store a number 
of cloud observations and scan the stored data to 
answer such questions as the following: 

(1) At what height was the predominant 
cloud activity observed over the 
past ten minutes? (This interval 
should be programmable.) 

(2) What were the lowest and highest 
levels at which a significant number 
of cloud occurrences were observed? 
(The number should be programmable.) 

(3) How many cloud observations occurred 
below a specified critical height? 
(This height should be programmable.) 



Additional Instruments 

Other instruments which may be included are 
the following: 

(1) Sky cover detector, for the fraction 
of sky obscured by clouds; 

(2) Photoswitch, for indicating back­
ground light level; 

(3) Weather vane, for wind direction; 
(4) Weather element detectors, for snow, 

rain, hail, etc. 

In addition, some quantities are set in as 
manually operated switches, such as obscuration 
type, whether snow or homogeneous fog; and, in 
the case of airports, runway and approach light 
settings. 

ALCH and RVR 

Two quantities which have not been covered in 
the discussion of individual instruments are 
Approach Light Contact Height (ALCH) and Runway 
Visual Range (RVR). These quantities are of 
importance in landing aircraft under conditions 
of reduced visibility, either because of ceiling 
conditions, or ground obscuration. ALCH is the 
height at which the approach lights will be 
visible to the pilot. Actually, a high and low 
value are displayed for ALCH, since there is a 
statistical uncertainty to this kind of data. 
The higher value is the height at which there is 
a 20% probability of seeing the lights; the lower 
value corresponds to a 90% probability. Since 
the lights may be obscured either by clouds or by 
the presence of fog or snow, a variety of inputs 

, are required for the ALCH determination. The 
inputs are; 

(1) cloud height data from the c'eilometer, 
(2) transmissivity, as indicated by the 

transmissometer, 
(3) snow or homogeneous fog, as indicated 

by an observer, 
(4) background illumination (day or night 

conditions) from the photoswitch, 
(5) approach light intensity from the 

approach light switch setting. 

If either the transmissometer or the ceilo­
meter indicate that limiting conditions may be 
present, a determination of ALCH is made. If both 
conditions are present, the results are compared 
and the lowest value is displayed. The actual 
determination can be mad~ either by table look-up 
or by calculation. The equation, however, is based 
on Allard's Law, which takes into account the 
complex manner in which the human eye responds to 
different light levels. 
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l~is is a transcendental equation, and a 
very fast computing speed is required because of 
the iterative nature of the solution. The ALCH 
value should be updated once· per minute. The 
use of table look-up requires about 18 tables, 
each having about 90 three-digit numbers. The 
tables are determined more or less empirically, 
and vary from one location to another. It was 
concluded in the present case that table look-up 
would be preferable, using magnetic drum storage 
for these and other look-up tables. The RVR 
determination is similar to that for ALCH, but 
not quite so complex, in that only ground 
conditions need be considered, and only a single 
number need be prepared, rather than the two 
probability levels required for ALCH. The RVR 
determination uses the following inputs: 

(1) transmissivity, 
(2) background illumination (day or 

night conditions), 
(3) runway light setting. 

The expression for RVR, in terms of Allard's 
Law is given below, for purposes of illustration: 

V 

C = 2! Log TR - Log Va 

C is a constant based upon prevailing 
conditions, 

VR is the desired RVR va1~e, and ranges 
from 1000 feet to .6500 feet or greater, 

~ is the transmissometer reading, 

R is the transmissometer baseline 
(generally 500 feet). 

It can be seen that the above equation 
cannot be solved explicitly for VR; hence, a 
lengthy calculating procedure would be required. 
For this reason, table look-up was chosen. About 
9 tables are required for the RVR determination. 

From a consideration of the various input 
devices, it is possible to compile a list of 
capabilities which are desirable in the input 
portion of the automatic station. These would 
include the following: 

(1) sampling, 
(2) counting, 
(3) averaging, 
(4) timing, 
(5) comparing, 
(6) analog-digital conversion, 
(7) peak-value detection, 
(8) contact senSing, 
(9) code conversion. 
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Many of these operations could be done either 
by the input circuitry or by the data processor. 
The choice is determined by the relative conven­
ience, and the time available. It is desirable, 
wherever possible, to receive data from the 
instruments in the simplest possible form. This 
simplifies the instrument and leaves the data 
processing to be performed within the computer, 
capitalizing on the advantages of digital operation. 
It has been demonstrated repeatedly that the central 
data processor portion of a computer complex is 
much more reliable than the associated peripheral 
equipment. Furthermore, the computer can be moni­
tored, and repairs facilitated, through the use of 
test and diagnostic routines, whereas the instru­
ments are often difficult to check and to repair. 

Description of the AMOS IV System 

It can be seen that the machine needed for 
the automatic weather station is highly special­
ized, with a number of unusual characteristics. 
The salient features are listed below: 

(1) The machi~e must accommodate a number 
of input devices, all furnishing data 
continuously. 

(2) Extensive stored tables are needed for 
empirically determined data which 
varies from station to station. 

(3) A short word length is sufficient, 
sinee the data comes primarily from 
physical instruments; three digits and 
sign appear sufficient, relying on 
double-precision methods for those few 
cases where needed. 

(4) A comparatively slow circuit speed is 
acceptable, working in conjunction with 
the magnetic drum, which rotates at a 
moderate speed for long life ,and 
reduced cost. 

(5) The machine needs only a limited 
arithmetic capability, in view of the 
extensive stored tables; it can perform 
addition and subtraction, with other 
operations available through programming. 

(6) The machine must transmit teletypewriter 
messages at high and low speeds, inde­
pendently of each other and of the data 
processor. 

(7) Provision must be included for operating 
local and remote displays. 

(8) The machine must concurrently process 
input data, transmit teletypewriter 
messages, and perform data processing. 

For purposes of discussion the machine may be 
analyzed in two sections: The 'input-output portion, 
and the central processor. The input-output cir­
cuitry is concerned with collecting the instrument 
outputs, pre-processing them where necessary, and 
making the data available to the processor. This 
portion also rec~ives data which the processor has 
assembled in special output tracks and prepares the 
appropriate teletypewriter messages. The input-

output circuitry is wired for specific tasks 
although considerable latitude has been left 
for modifications and additions. The central 
processor is internally programmed and is con­
trolled by an automatic typewriter which also 
can be used as a form of display. A block 
diagram of the AMOS IV system appears in Fig. 1. 

Input from Instruments 

The method of receiving input data from the 
weather-sensing instruments is a compromise 
between the use of separate pre-processing devices 
and use of the central processor. In order to 
avoid excessive interruption of the central 
processor, varying amounts of circuitry have been 
assembled, depending on the form of the input 
data, to pre-digest the instrument signals for 
most efficient use by the processor. Once the 
data has been prepared in suitable form, generally 
as contact closures or storage in flip-flop 
registers, it is entered into the computer via an 
input-data track on the magnetic drum. This track 
is equipped with two heads~ one addressable by the 
central processor and the other wired to the input 
circuitry. Since the track can store 100 words, 
there is an input capacity of 100 instrument read­
ings, a quantity considerably in excess of present 
requirements. The address of each word identifies 
the reading, and the addresses therefore, are used 
to callout the appropriate subroutines when new 
data appears in the various word locations. The 
input devices are sampled sequentially by means of 
commutating pulses obtained from a decoding net­
work attached to an address counter. It is 
possible with this scheme to sample any instru­
ment within 1/30 second of the time that a desired 
reading is obtained. If readings were obtained 
at the rate of 30 per second, however, the central 
processor would quickly be overloaded; actually, 
it is sufficient to sample most instruments a~ 
intervals of once per minute or longer. The ceilo­
meter is the most frequent with readings at 6 
second intervals. ' 

In addition to an address counter and de­
coding network for obtaining commutating pulses, 
the input circuit has a one-word shift register 
which serves as a buffer be~een the inst~uments 
and the input recording circuit. Data words from 
sampled instruments are inserted in the register 
by means of a parallel transfer, up to 13 bits at 
a time (three decimal digits and sign). The 
number representation need not be binary-coded 
decimal, since the computer can perform code 
conversion, if required. 

Among the quantities requiring more 
extensive pre-processing, the transmissometer is 
illustrative. Here, a pulse rate of 0 to 4000 
ppm is to be counted and expressed as a 3 digit 
number. New values should be available once per 
minute, so a one-minute time base 1s used. The 
incoming pulses are shaped and passed through a 
two-stage binary counter which reduces the rate 



by a factor of four. Thus, the maximum (clear 
atmosphere) pulse rate will yield a one-minute 
count of 999, which can be expressed with one 
data lvord. (A gating circuit inhibits counts 
beyond 999 to prevent overflow, should a higher 
counting rate inadvertently occur). 

The end of a one-minute sampling interval 
is indicated by a pulse from a timer which counts 
drum revolutions, since the drum is driven by a 
synchronous motor. Thus, the drum is always in 
a known position, and there is a minimum of delay 
in sampling the desired reading and transferring 
it to the drum. The counter is inhibited during 
the sampling and resetting interval. (One-third 
millisecond is required for sampling, 20 micro­
seconds for settling time after reset. No 
significant information would be lost during 
this short time). 

Utilization of Input Data 

Utilization of input data by the central 
processor is handled by a "watchdog" routine. 
Whenever a subroutine is completed, 'the processor 
proceeds to scan the input channel, starting at 
the beginning. Wilen an instrument~eading is 
noted it is read into a register and the address 
is noted. The address is keyed to a subroutine 
which directs the handling of the new reading. 
It may simply be placed in memory for future use, 
or inserted into an output message channel. More 
generally, however, there are several operations 
including perhaps a few calculations. A key step 
in the subroutine is the insertion of a nonsense 
word which could never be a valid instrument 
reading, and will be disregarded during the next 
"watchdog" scan. This will permit the "watchdog" 
routine to pick up the next succeeding instrument 
reading in the input channel. 

Teletypewriter Output 

The teletypewriter out~uts involve the 
buffering of data, which comes from the drum at 
a high rate, dOlVU to the desired message speed. 
In addition, data words must be reorganized into 
teletypel~iter characters, ·including the addition 
of start and stop pulses, and the generation of 
space 'and sign characters. Two independent tele­
typewriter outputs are required, 'with different 
codes and message formats. The low-speed output 
is nominally 100 words per minute, while the high­
speed output is in the range of 750 to 1500 'tvords 
per minute. Several different message lengths are 
required at the higher speed, requiring that the 
circuitry be capable of skipping unwanted portions 
of the message. Since the messages are to be 
combinations of data prepared by the computer and 
alphanumeric remarks and text inserted by hand, 
several tracks have been allowed on the drum 

for this information. Certain tracks, 
addressable by the computer, contain the 
numerical data. Other tracks may be written 
into only from the automatic typewriter, and 
are used for the remarks. These are all dual­
head tracks, with one set of heads being used 
to insert data, either from the processor or 
the typewriter, while the other set is used to 
read out the information. 
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The low speed circuitry is fairly straight­
foruard, since there are several drum revolutions 
in the time required to transmit the contents of 
one machine word. Thus, it is only necessary to 
provide a one-word buffer register, which in turn 
transfers its contents through an encoding matrix 
to an output shift register. As soon as the 
buffer register is empty, an address circuit 
proceeds to watch for the next consecutive word 
from the drum, which is then read into the buffer. 
Each machine word, consisting of three decimal 
digits and Sign, is transmitted as five characters: 
sign, three digits, and space. Remarks are stored 
as five-bit teletypewriter characters, two per 
machine word. 

The high-speed circuitry is complicated by 
the fact that the contents of several machine 
words are transmitted during a single drum 
revolution. This was handled by spacing the 
data around the drum so that the next word would 
be available just as the last one was transmitted. 
To assure synchronism between the teletypewriter 
and the drum, a clock track on the drum is used 
to furnish the teletypewriter pulses. 

It can be seen that the various dual-head 
tracks are the means by which simultaneous input, 
output and data processing functions are per­
formed. In order that these various heads may 
handle data in a manner c9mpatible with the 
central processor, it is necessary that each 
pair of heads be equally spaced. A second set of 
sync pulses, delayed by an amount equal to the 
spacing bet~een heads, has been provided. 

Data Processor Section 

The data processor portion of the AMOS IV 
system is constructed as a separate enti~y which 
can be replaced at a later date, should a more 
powerful computer be required. The processor is 
built around a magnetic storage drum having 100 
general storage channels and a number of dual head 
registers. The general storage channels contain 
stored instructions, subroutines, diagnos~ic 
routines, and look-up tables. The dual-head 
registers are used for the handling of input data 
from instruments and for output information to the 
displays and to the teletypewriter lines. 
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The processor uses a binary-coded decimal 
number representation with a word length of three 
decimal digits and sign. A parity bit is added 
for a memory check, giving a word length of 14 
bits. There are 100 words per channel, making 
a total of 10,000 words, and this number can be 
expanded to 20,000 through the use of additional 
heads. The drum operates at a conservative rate 
of 1800 RPM; non-return-to-zero recording is used, 
with a recording density of 120 bits per inch. 
Thus, the machine operates at a bit rate of 50 kc. 

The computer is an internally programmed, 
single-address machine with about 21 operations. 
The operations are listed in Table I. The 
operations have been grouped together and coded 
according to function for convenience in pro­
gramming. The operations are generally quite 
similar to other small machines. The memory scan 
operations (60, 64, 69) are specifically desiged 
to optimize table look-up. Thus, table look-up 
may be performed with fewer instructions and with 
only one drum revolution. The index register 
should be called an alternative addressing 
method. When an address is placed in the index 
register by one of the memory scan operations, it 
will be transferred to the instruction register 
only when a non-decimal combination of bits 
appears in the word-select portion of the instruc­
tion register. 

An instruction utilizes two consecutive 
words from memory, providing six decimal digits 
and two signs. This is shown in Fig. 2. Two 
digits are required for channel identification 
and two for the word location within a channel. 
In order to allow for ease in the programming of 
address modification, the word address uses 
the first two digits of the first w'ord, while the 
channel location uses the second t,~ digits of 
the second word. The operation code is divided 
between the two words, using the remaining two 
digits and the included sign. 

The processor has three basic modes of 
operation. The normal mode allows the machine 
to automatically sequence through the instructions 
until a halt code is encountered in the instruc­
tion register. The machine halts on any take-in 
or print-out operation for which the sign of the 
instruction is negative. A breakpoint mode is 
used for program debugging or machine maintenance. 
In this mode, the machine will halt for any 
instruction having a negative sign. A single­
step mode of operation is included, and is used 
primarily for machine diagnosis or program 
debugging. In single-step operation the machine 
performs a single operation and halts. A complete 
operation consists of executing an instruction 
and bringing the next instruction from memory. 
All the registers and major portions of the machine 
are displayed on an indicating panel. 

An automatic typewriter with punched paper 
tape is used as the primary input-output means 
for the processor. In addition to its use with 
the processor, the typewriter may be used off­
line, for the preparation and verification of 
punched paper tapes. 

Construct;lon 

The machine is constructed from a series of 
transistorized building blocks previously 
developed at the National Bureau of Standards. 
Three factors were emphasized as the main 
considerations in designing these packages: 
reliability, cost, and versatility. 

Reliability 

(1) The circuits are designed to permit 
wide variations from the nominal 
values of the characteristics and 
parameters of the components. 

(2) The electrical outputs from most 
of the packages can be short­
circuited to ground or to the negative 
voltage supply without damage to any 
of the components. 

(3) Pin-type connectors with high-pressure 
contacts are used rather than printed­
circuit edge-type connectors. 

(4) Signal swings are at least 6 volts, 
with a collector supply of -12 volts. 

(5) All connectors have gold-plated pins. 

(6) All back panel wiring is by taper pins 
for ease and convenience in making 
external connections. Taper pins also 
eliminate solder joints. 

Economy 

(1) "Entertainment"-type germanium 
transistors are used throughout the 
circuitry. 

(2) The wide tolerances permit using 
unselected "off-the-shelf" components. 
However, transistors and diodes are' 
tested for open or short circuits before 
assembly into the packages. 

(3) All connections, including those to the 
connector, are made by dip-soldering the 
board. 



Versatility 

(1) Two triggering gates are included ,~ith 
each flip-flop circuit to permit 
connecting the package as either a 
counter or a register ~lithout having 
to use additional gates from some 
other package. 

(2) The bases of the transistors on flip­
flop circuits are accessible at the 
connector so that an unlimited number 
of additional input gates can be 
connected. 

These packages have been in use over a 
period of several years in a number of units of 
laboratory equipment. The high reliability 
which they have demonstrated has been very 
gratifying. 

Approximately 500 of these packages, 
with an average of three transistors each, are 
contained in the central processor portion, 
with about 400 additional packages in the 
input-output portion. The packages are con­
tained in drawers which in turn are mounted on 
slides, permitting practically all maintenance 
to be accomplished from the front. 

Conclusion 

It should be emphasized that the Al10S IV 
System is intended as a research tool for 
exploring the use of automatic data processing 
in the handling of weather data. Emphasis has 
been placed on versatility, in view of constantly 
changing meteorological requirements. It is 
felt that the experience gained from the use of 
a limited number of AMOS IV systems should permit 
the formulation of much more realistic designs 
and specifications for future automatic weather 
stations based on the use of automatic data 
processors. 
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T.ABL~ 1 

b}10S IV Data Processor Instructions 

Code Operation 

00 Take in ten words from type\«iter starting with memory location a ~. 
02 Take in two words from typevlt'iter starting "lith memory location a ~. 
09 Take in full channel of words from typewriter into memory channel ~. 

10 Print or punch out ten words from memory starting \yith a ~. 

12 Print or punch o~t tvl0 words from memory starting ,.:ith a ~. 

19 Print or punch out full channel of ''lords from memory channel ~. 

21 Read one word from memory location a ~ and place into A register. 

22 Read one word from memory location a ~ and place into 13 register. 

31 Take word from A register and place into memory location a ~. 
32 Take word from 13 register and place into memory location a ~. 

41 Add contents of A register to contents of memory location a ~ and place 
answer into 13 register. 

42 Subtract the contents of memory location a ~ from A register and place 
answer into 13 register. 

45 Shift contents of A register right 4 bits. 

50 If 13 = O~ jump to contents of a ~ for next instruction. 

51 If overflow occurs, jump to contents of a ~ for next instruction. 

59 If 13 < 0, jump to contents of a ~ for next instruction. 

Memory scan instructions. Contents of A register are compared '-lith vlords 
in channel ~. 

60 When (aA~) = (A), place aA in I register; stop at first occurrence. 

64 When (a~) > (A), placeaA in I register; stop at first occurence. 

69 Seek largest word in channel ~j place a portion of address in I register. 

73 Transfer bits described in ~ from register 13 to register A. 

93 Read out three words from memory starting with location a ~ into output 
display registers. 
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DATA WORD 

14 BITS 

-------------~-~--------~ 

-------- ----------~ 
PARITY 102 10' 10° SIGN 

INSTRUCTION 

WORD 
CL 

TWO CONSECUTIVE DATA WORDS 

OPERATION --------------- -----....... _---'---_.--------...--..... + 

CHA~NEL 

~~------~-~--~-----------------~--~-------------DATA WORD DATA WORD 
AT ODD ADDRESS AT EVEN ADDRESS 

Figure 2. Word Format of the AMOS IV Computer. 
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A SURVEY OF DIGITAL METHODS FOR RADAR DATA PROCESSING 

F. H. Krantz and W. D. Murray 

Burroughs Laboratories 
Paoli. Penna. 

Summary 

This paper reviews the growing number of 
declassified techniques for automatic process­
ing of radar data by digital means. Emphasis 
is placed upon signal time-sampling and quanti­
zation. integration methods. rejection of sta­
tionary targets. radar trigger manipulation. 
and treatment of radar beacon code data. These 
techniques are discussed individually and are 
also shown combined in a hypothetical radar 
data processor design. 

Introduction 

Radar. a new technology of World War II. 
has become an almost common part of our mod­
ern life but continues to be the subject of new 
applications. new methodology and new techni­
ques. In its first decade. the radar system 
consisted of the radar itself. a cathode ray tube 
display and a human operator. As the techno­
logy matured and radar targets gained new cap­
ability. the need for extracting more informa­
tion from the radar signal at a more rapid rate 
grew. Thus. in the past decade. the increased 
performance of the radar has been accompanied 
by the growth of the associated field of radar 
data processing. 

The first radar data processors used analog 
techniques in an attempt to automatically repro­
duce those operations performed by the human. 
More recently. the pressure for increased auto­
mation. coupled with the requirement for auto­
matic communication of radar information over 
long distances. has resulted in the introduction 
of digital techniques for radar data processing. 
It is the purpose of this paper to outline the 
principles of digital radar data processing and 
to demonstrate examples of application of digital 
techniques to this field. 

The expert in digital computer technology 
will immediately recognize most of the digital 
mechanizations and will observe that in radar 

data processing these usual digital techniques 
are applied. sometimes in completely different 
form. to this new problem area. It should be 
noted that most of the applications described 
herein. while shown for the radar problem. are 
equally applicable to other problems in extract­
ion of information from a signal in presence of 
noise. Typical are the fields of SONAR. infra­
red detection. magnetic detection and communi­
cations. 

The Basic Radar Problem 

In general terms. the radar data process­
ing problem is one of information extraction; 
that is. it is desired to extract from the radar 
signal the maximum amount of real information 
and at the same time to exclude extraneous in­
formation introduced by noise and other target­
like phenomena. For the purpose of the present 
discussion. the Simplified pulse radar system 
of figure 1 wilt be the vehicle to which radar 
data processing is applied. 

The pulse radar consists of a transmitter 
which periodically transmits a burst of energy 
of prescribed pulse duration at a prescribed 
carrier frequency. This burst of energy will 
strike targets and some portion will be returned 
in the direction of the radar equipment. The 
character of the returning signal will have been 
modified by the addition of a doppler frequency 
component proportional to target velocity. 

The amplitude of the returned signal is a 
function of effective cross sectional area of the 
target. On successive radar returns this ampli­
tude might vary due to changes in cross section­
al area. 

In addition to target returns there will be 
returns due to clutter caused by precipitation. 
by objects on the ground. and by such effects 
as aurora. Each of these clutter-reproducing 
objects will impose its own effective doppler 
frequency on the signal and. in general. these 
doppler frequencies are lower than those for 
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the usual real target. The real target is further 
obliterated by effects of noise in the radar re­
ceiver or by interference generated by some 
other electronic equipment, either hostile or 
friendly. The noise and many of the interfering 
signals have random frequency and amplitude 
distributions, a characteristic frequently used 
in radar data proceSSing for their elimination. 

In the radar receiver the frequency of the 
signal is reduced from that of the basic carrier 
to some intermediate frequency by comparison 
with a reference oscillator. Information on 
amplitude of the returning signal (the envelope 
of the IF signal) is presented at the output of an 
amplitude detector as "normal" video. Range 
of the target is represented as the time of oc­
currence of the pulse. Although much of the 
radar data processing is applied to the normal 
video signal, the phase information contained 
in the IF is also useful in evaluation of target 
velocity. We will not be concerned here with 
the high frequency characteristics of the re­
turning pulse which are used for more sophisti­
cated forms of discrimination based on target 
signature. 

From the information received from the 
radar equipment, it is necessary to extract 
information on real targets. The general ob­
jective is to obtain through radar data process­
ing the maximum sensitivity to weak targets 
while maintaining a minimum rate of generation 
of false targets. The characteristics of a real 
target which are different from those of noise 
and clutter are used in the processing of the 
radar data. Among these are that a real target 
will correlate in range pOSition and in radial 
velocity from pulse to pulse during the time that 
the radar illuminates the target, and that real 
targets will, in general, have a greater doppler 
velocity than will signals due to clutter. 

Analog Detection Based on Signal Amplitude 

In the early pulsed radar systems informa­
tion was processed by presentation on a cathode 
ray tube display to a human observer. The typi­
cal display will sweep an electron beam from 
the center of the display at an angle equal to that 
of the radar antenna at a uniform speed and at a 
sweep repetition rate coincident with the radar 
prf. The beam is intensity modulated so that 
the light output on the surface of the display will 
be proportional to amplitude of the raw video 
signaL 

A real target will appear at the same range 
position for several successive radar pulses, 
and thus, will appear as a short arc on the dis­
play. Random noise, which does not correlate 
in range, will generally appear as isolated spots 
randomly distributed over the surface of the 
display. These separate characteristics of tar­
gets and noise are used to discriminate between 
the two. In the simple radar system, the inte­
gration is performed in the memory of the hu­
man operator assisted by the relatively long 
perSistence of the display phosphor. This 
method is quite sufficient for the separation of 
strong targets and weak noise, particularly 
when the observers attention need only be de­
voted to one or two targets on the face of the 
display. 

Electronic techniques are sometimes used 
to augment the integration process in a device 
known as the video integrator. This device 
consists of one or more delay lines, each ad­
justed to the radar pulse period. The outputs 
of delay lines, each modified by a suitable 
decay factor, are added and their sum is used 
to intensity-modulate the PPI display. A typi­
cal video integrator is shown in figure 2. Al­
though the video integrator increases the cap­
ability to discriminate between targets and 
noise, its characteristics of essentially expo­
nential decay are not completely matched to the 
energy distribution across a radar beam width. 
Thus, the optimum discrimination between tar­
get and noise signals is not obtained. 

A typical display from a simple radar sys­
tem is shown in figure 3. The problems of 
extracting information on a large number of 
targets to high accuracy in the presence of 
noise are readily apparent, and the need for 
more advanced processing techniques is demon­
strated. 

Digital Detection Based on Signal Amplitude 

Digital methods for radar data proceSSing 
start by quantizing the analog raw video Signal 
in amplitude and range. As will be demonstrated 
later, it is possible to quantize in amplitude to 
as many as a-bits, but for Simplicity in demon­
stration of digital detection techniques, simple 
I-bit encoding will be considered here. The 
inputs to the quantizer (figure 4) are the raw 
video from the radar receiver and a range tim­
ing reference generated by a digital clock. An 
output pulse is transmitted whenever the input 
signal is of amplitude larger than a fixed or 
automatically adjusted threshold (clip level) at 



the time of occurrence of a range reference 
pulse. 

The clip level is established by considera­
tion of sensitivity required and false alarm rate 
reduction pos sible through later statistical inte­
gration processes. For the typical ground­
based~ long-range radar equipment~ the clip 
level is established at an amplitude such that at 
100/0 of the range timing pulses an output pulse 
will be generated. This very low clip level~ 
permits detection of targets of very small radar 
cross section at extremely long ranges. The 
automatic adjustment of clip level based on long 
time sampling of the quantizer output is used to 
compensate for variations in gain of amplifiers 
in the radar equipment and in the quantizer. 

The range reference clock frequency select­
ion is based on requirements for range accuracy 
and range resolution in the radar. In order to 
provide maximum sensitivity and maximum re­
solution consistent with duration of the radar 
pulse, a range reference period equal to the 
pulse duration is typical. Thus~ range resolu­
tion and accuracy of from 1/4 mile to several 
miles are found in the usual systems. 

Following the quantizing process statistical 
detection is performed to eliminate signals due 
to noise while retaining those caused by targets. 
The simplest digital integrator, the exponential 
detector shown in figure 5, operates exactly as 
does the video integrator described above. In 
each range increment a target history is main­
tained by adding the new signal (either 1 or 0) 
to the sum of the previous signals multiplied by 
a constant less than unity. The size of the con­
stant is determined by azimuth reaolution and 
target sensitivity objectives. When the sum 
contained in a register exceeds a preselected 
threshold~ detection criteria have been met and 
an output indicates presence of a real target at 
that range. This indication is maintained until 
the "end target" threshold is greater than the 
register sum. The growth of the signal output 
of the exponential detector and the decay of 
such output after the radar beam has passed 
through the target for the case of a radar output 
of square characteristics are also shown in fig­
ure 5. The non- symmetry of the output signal 
and the mismatch with the radar beam make 
this type automatic detector less than>optimum 
in detection probability, noise rejection and 
azimuth determination. 

The more advanced sliding window detector 
increases detection sensitivity and azimuth de­
termining accuracy. In this detector demonstra­
ted in figure 6, a record of target return is 
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maintained for each radar pulse through the 
radar beam width. The outputs of each pulse 
position of the record are summed and com­
pared with a detection threshold and when this 
threshold is exceeded, start of target is called. 
At a later time when the sum of target histor­
ies in the radar beam width is less than the de­
tection threshold, end of target is called. The 
symmetry of the output of this device and the 
match with the ideal radar beam are shown in 
figure 6. 

Although the sliding window detector offers 
improved performance over the exponential de­
tector. the equipment required in its implemen­
tation for a radar with many transmitted pulses 
per beam width is Significantly larger. 

In order to obtain performance approaching 
that of the sliding window detector, with equip­
ment more closely apprOximating the exponen­
tial detector, a new statistical detector known 
as the moving sum detector has been deve loped. 
In this detector ~ (figure 7) a feedback loop is 
used to add the latest target amplitude to those 
of previous targets as in the exponential detec­
tor but the decrement is taken as the average 
amplitude over N main bangs. N may be as 
long as the integrating period or may be less 
in order to achieve maximum azimuth accur­
acy. 

All of these automatic detectors require 
the use of memory in order that target history 
can be maintained. These memories are us­
ually range-organized. That is, each range 
interval is represented by a prescribed me m­
ory word and at completion of proce ssing of a 
detect ed target, the position in memory of such 
detected target establishes its range. Although 
ferrite core memories are also used~ the range 
organized memory can be most easily demon­
strated as implemented on a drum surface as 
shown in figure 8. Here a number of individual 
drum channels (or bits in each memory word) 
are used for the data proceSSing function. The 
drum rotation rate is automatically coupled to 
the radar pulse repetition frequency; thus any 
radar range is represented by one position (or 
one word location) on the drum surface. A re­
circulating drum system with a positive erase 
bar is usually used in this application. 

History of target signals is maintained by 
reading information from memory heads spaced 
by one pulse period from the write heads by 
writing back the previous history continuously 
as new target signals are introduced. In the 
sliding window detector~ for example, informa­
tion read from detector channel No. 1 is written 



70 
2.2 

back into detector channel No.2, from No. 2 
into No.3, etc. Thus, at any instant of time, 
information appearing under the read heads is 
a target history for that range interval over the 
prescribed number of previous radar pulses. 

Azimuth Determination 

To determine azimuth of detected targets a bi­
nary representation of antenna direction must be 
maintained. Although this can be done using a 
binary code wheel device in the antenna pedes­
tal, it is more usual to have a pulse transducer, 
with each pulse representing an increment of 
antenna rotation, feed an azimuth counter which 
is cleared to zero at the time the antenna passes 
through a north reference position. Thus, the 
azimuth counter maintains a continuous record 
of antenna orientation. The detector operating 
curves of figures 5, 6, 7 show that the center 
of a target is represented by the average of the 
azimuth at start of target and end of target cor­
rected for some offset introduced by the detec­
tor. 

A typical method for accomplishing azimuth 
determination is to add one to a sum maintained 
in the azimuth channels of the memory (figure 
8) whenever the statistical detector output is 
greater than the detection threshold in each 
range increment. At "end of target" 1/2 of this 
sum is subtracted from the number in the azi­
muth counter. The azimuth offset correction, 
which is fixed for the statistical detector used, 
is then applied to obtain an accurate digital re­
presentation of target azimuth. It is in this 
process that the symmetry of the detector out­
put is important in obtaining azimuth accuracy. 

In the computation of target azimuth by the 
method described above, information on target 
strength or azimuthal extent is automatically 
available. This target characteristic, known 
also as "run length, " is of importance in sep­
arating real targets from targets produced by 
clutter. 

Target Buffer Memory 

In cases where automatic communication of 
target information is required, problems may 
be imposed by bandwidth limitations of communi­
cations equipment. Since the data processor de­
scribed thus far operates in real radar time, it 
is possible for targets to be detected at a rate 
much greater than the average rate over a radar 

rotation. It is not economically practical to 
build a communications system de signed to oper­
ate at the maximum rate and a queuing problem 
is introduced. If a target buffer memory is in­
cluded in the radar data processor, it is possible 
to design the communications system with an in­
formation rate equivalent to the average target 
detection rate and still minimize the los s of tar­
get information due to communication line sat­
uration. This memory may be provided as a 
part of the statistical detector memory wherein 
target storage locations are included in each 
range interval or through a separate buffer mem­
ory where targets are inserted as they are de­
tected and are removed as space is available in 
the communication facility. Although the first 
method is wasteful of memory space in that a 
large number of unneeded memory locations are 
provided, it is efficient in a drum memory where 
separate drum tracks are relatively inexpensive 
when added to the basic drum required for the 
detection and azimuth calculation process. In 
the case of a ferrite core detector memory, 
however, memory cost goes up more rapidly 
with an increase in memory location requirements 
and it is often more economical to add a small 
independent random access buffer memory. For 
a typical ground radar environment, where prob­
ability of loss of targets due to saturation must 
be minimized, the radar data processor will in­
clude buffer memory for two targets per range 
interval in the case of the first type of buffer or 
will include 25 or 50 memory locations in the 
case of the independent buffe r memory. 

PRF Control 

In many applications, devices are required 
to selectively adjust the period between radar 
triggers in order to achieve certain desirable 
performance characteristics. Among the advan­
tages obtained are interference rejection, exten­
sion of the basic radar range, and elimination of 
loss in sensitivity in proceSSing of the target 
doppler frequency shift. Each of these is brief­
ly discussed below. 

When a radar operates in the vicinity of 
other similar radars, as frequently occurs in 
military zones, it may happen that pulses from 
a neighboring radar are received in one's own 
radar and appear as point targets. When this 
situation is particularly aggravated, dense 
spirals are formed on the radar presentation 
and considerable excess data is created. Per­
iodic or random variation in the radar trigger 
of one's own radar, when followed by range re­
alignment and integration of the video, will 



effectively eliminate this form of interference. 

In a constant PRF radar the basic range of 
the radar is limited by the distance whieh a 
pulse can travel and return in the time between 
radar triggers. By coding or otherwise mani­
pulating the interpulse pe riods so as to achieve 
various pulse separations. echoes from beyond 
the basic range of the radar can be recognized 
and detected without range ambiguity. 

Various techniques for the elimination of 
stationary objects while retaining mOving tar­
gets are totally dependent upon the doppler shift 
in the echo from the moving object to carry out 
the required discrimination. In a pulsed system 
such as radar. however. targets traveling at a 
speed such as to move one r-f wave length be­
tween pulses will be indistinguishable from sta­
tionary objects. Controlled variation of the 
radar intra-pulse period will permit recognition 
of moving targets under all conditions without 
sacrifice in the ability to reject stationary ob­
jects and clutter. 

In practice. the equipment needed for PRF 
control and the subsequent manipulation of tar­
get data is particularly simple and straightfor­
ward when carried out with digital methods. 
The Simplest technique for control of the intra­
pulse period is to make use of a feedback coun­
ter. Using this logical configuration to select 
various delay lines to be inserted in the trigger 
generation circuitry. a number of values of de­
lay are readily obtained. A complete system is 
shown in figure 9. 

Methods for realignment of the radar echoes 
in range for integration and other purposes de­
pend upon the type of mem.ory employed. In 
systems utilizing a magnetic core memory, no 
special provisions need be made other than syn­
chronizing the flow of data through the memory 
to the radar trigger. Where the memory is a 
magnetic drum. servoed to the average PRF. 
the drum inertia prohibits rapid adjustment of 
the drum speed to follow the changes in inter­
pulse period so that complementary delay lines 
in the receiver chain are needed to realign the 
receiver video. The conversion of video to digi­
tal form prior to range realignment achieves a 
number of desirable economies in the engineer­
ing of the complementary delays. 

Clutter Rejection 

In many radar installations the presence of 
large distributed reflectors such as land masses 
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and cloud banks will give rise to a very large 
number of returns which obscure the radar pic­
ture for the manual observer and create very 
objectional quantities of excess data in automatic 
data processing systems. (See figure 3.) A 
variety of techniques have been studied which 
have as their objective the elimination of these 
clutter returns without degradation to the system 
sensitivity for moving targets. Many of these 
solutions have been only partially successful. 

An early technique having as its primary 
objective the control of excess data utilized an 
operator to manually map out the clutter areas. 
One equipment for this purpose (shown in figure 
10) consisted of a Plan-Position Indicator (PPI) 
display over which was suspended a photomulti­
plier tube sensitive to the ultra-violet layer of 
the PPI phosphor. Mapping is accomplished by 
the application of an opaque inking fluid to the 
clutter areas to be removed. Although this sys­
tem was particularly simple to implement using 
digital techniques, all true targets within the 
map area were eliminated with the clutter. 

A second fairly straightforward technique 
eliminates clutter on the basis of its lower relative 
strength. One approach uses as a measure of 
strength the instantaneous amplitude of the video 
return and, by comparison with a preset refer­
ence level. rejects all signals of less than the 
reference strength. The reference level is se­
lected on the basis of empirical data to permit 
strong point targets to be passed by the com­
parator circuit. 

A second approach determines target strength 
on the basis of number of returns received from 
the target as the radar beam sweeps across it. 
The returns are counted and on the basis of prior 
statistical data, targets exhibiting too few or too 
many hits are rejected, leaving only those targets 
which have been previously shown to be point tar­
gets. This method requires the implementation 
of counters in each range element. but this is par­
ticularly simple when implemented in conjunction 
with the circuitry for azimuth estimation. 

A third technique is essentially a refinement 
of the one just previously mentioned in that total 
number of hits received from a unit area are 
counted and used to set the system sensitivity 
level. By this means the detection level can be 
made just slightly greater than the instantaneous 
background so that all clutter is effectively elim­
inated. Targets in the clear or targets stronger 
than the clutter background are accepted by the 
system. This technique can be most easily im­
plemented digitally as a part of any of the digital 
sweep integrators previously described. 
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A fourth approach to clutter rejection and 
the only one giving detection capability for tar­
gets weaker than the clutter utilizes the differ­
ence in velocity between clutter and targets to 
achieve the required discrimination. This sys­
tem. frequently called MOving Target Indication 
or MTI, makes use of the doppler shift in the 
reflected energy created by the moving target 
and was until recently implemented by analog 
techniques. Digital methods, however, have 
been applied to this problem, resulting in elim­
ination of bulky delay lines and achieving high 
reliability, freedom from field adjustment, and 
greater flexibility, while preserving equivalent 
performance. Modifications of the digital tech­
nique can be made to measure radial velocity 
on each detected target. 

The digital approach to MTI is shown in 
figure 11. This Simplified diagram shows a 
system for sensing either the x or y component 
of the target vector, means for encoding this 
quantity to a number of binary digits, a small 
memory to delay this data one inter-pulse period, 
and a digital subtractor; the purpose of the sys­
tem is to compare successive values of the tar­
get amplitude or its components. MOving targets 
will exhibit a periodic variation in their ampli­
tude components at a frequency given by the 
equation for doppler shift. These targets will, 
therefore, produce a non-zero difference be­
tween successive echo amplitudes and in subse­
quent circuitry will produce a detectable data 
processor output. Stationary targets having no 
periodic variation in amplitude will produce a 
theoretically zero output from the subtractor 
and will, therefore, be eliminated from further 
data processing. Systems of this general form 
have the ability to detect moving targets whose 
return echo strength is over 40 db weaker than 
the surrounding clutter. 

Video Amplitude Encoding 

Several special situations may occur in 
radar data processing where high speed encod­
ing of video amplitude to high accuracy is re­
quired. The digital MTI system previously des­
cribed is one such case; other cases arise in 
conjunction with stacked-beam radars which 
measure range, azimuth and height on each de­
tected target. The height output is convention­
ally an analog voltage which must be encoded 
with great accuracy and high speed for further 
data processing. Encoding may also be required 
in those cases where only a few hits are avail­
able on each target, dictating maximum retention 
of all amplitude information in the integration 
process. 

Encoders for these purposes can be design­
ed to achieve an encoding capability of eight bits 
in three to four microseconds. One encoder im­
plementation which has proven successful depends 
upon comparison of the analog video signal with 
sixteen reference levels, subtraction of the larg­
est number of integral levels possible from the 
signal while maintaining a net positive balance 
and a second comparison of the residue with a 
second set of sixteen reference levels. This en­
coder has demonstrated the capability cited above 
and is free from short and long term drifts and 
environmental limitations. 

Beacon Code Detection 

Air Defense and more recently air traffic 
control are both heavily dependent upon means 
auxiliary to the radar for the precise identifica­
tion of targets. Toward this end there has been 
very considerable development of cooperative 
devices carried in aircraft which, when interro­
gated by a special transmitter associated with 
the primary radar, respond with a distinctive 
identifying code. Detection, verification and 
interpretation of the received code train is most 
successfully carried out through digital techni­
ques. 

The principle digital components of this sys­
tem, (called beacon or secondary radar), are 
timing circuits to generate various special pulse 
patterns for interrogation, and code-train pro­
cessing circuits which a) eliminate spurious 
replies; b) achieve correlation of the beacon data 
with the radar echo from the same target; and 
c) interpret the code train for parity errors and 
for special codes used to indicate emergency, 
special aircraft, etc. The beacon data process­
ing system is typically composed of high fidelity 
delay lines having a multiplicity of taps and con­
ventional computer elements operating at rela­
tively high speeds. (See figure 12.) Equipment 
currently under development to meet the exacting 
identification requirements of air traffic control 
may have as many as one hundred thousand elec­
tronic components. 

Complete System DeSign 

A hypothetical radar and its data processing 
system can be constructed to show the application 
of digital techniques in a fairly standard applica­
tion. The radar transmitter chain is shown in 
figure 13. In this figure, the basic transmitter 
pulse repetition frequency is determined in the 



trigger pulse generator on the left. Delays 
under the control of the PRF jitter network pro­
duce variations in radar inter-pulse period 
which are predictable but which will not repeat 
for an arbitrarily large number of radar trigger 
periods. The jitter pulses are then applied to 
a modulator which fires the final stage of the 
radar transmitter producing pulses of high fre­
quencyenergy. A beacon transmitter chain pro­
duces coded interrogation pulses for transmiss­
ion by a second antenna mounted upon the pri­
mary radar. 

The receiving and data processing systems 
are shown in figures 14 and 15. At the upper 
left the incoming radar information is divided 
between two channels - one the so-called normal 
channel and the other the MTI channeL In the 
normal channel the radio frequency signal is 
first converted to an intermediate frequency. 
then to video. and then quantized to produce 
standardized ONES or ZEROS depending upon 
whether the target return is greater or less 
than a reference level automatically set in the 
digital quantizer. In the MTI channel the RF 
information is converted to an intermediate 
frequency. then applied to a phase detector 
which has an an output either the x or y compo­
nent of the target vector. This component is 
encoded. delayed and applied to a digital sub­
traction network as previously described for 
a digital MTI. The subtractor output is reduced 
to a one-bit code and is then in all respects 
identical to the output of the Normal quantizer. 

Simultaneously with the reception of target 
information from the prime radar. the response 
of the target to beacon interrogation is also re­
ceived. After suitable demodulation from radio 
frequency through intermediate frequency to 
video. the code train is standardized in ampli­
tude and timing. integrated to remove spurious 
replies, checked for parity, and caused to pro­
duce a signal which is additively mixed with the 
radar video to achieve a high detection probability 
at the integrator output. Suitable timing of the 
beacon trigger with respect to the radar trigger 
insures registration of the radar return and 
beacon response from the same target. 

As shown in figure 15, the Normal and MTI 
signals are then gated on a range basis so that 
the MTI signal is selected for short ranges where 
clutter is prevalent and the normal video, ex­
hibiting a slightly higher sensitivity, is selected 
for the longer radar ranges. The resulting sig­
nal is then passed to the binary sweep integrator 
which effectively eliminates false alarms pro­
duced by receiver noise and enhances system 
sensitivity. The integrator output actuates a 

73 
2.2 

beam-splitting logic which finds the center of the 
set of returns received from a point target as it is 
swept by the radar beam. The center is encoded 
by gating an azimuth counter to achieve a digital 
word for target azimuth. Range information on 
the target is readily obtained from the memory 
by gating a range counter on the basis of the pOSi­
tion of the target in the range-organized memory. 

Information on target range and azimuth 
taken from the prime radar and target identity taken 
from the beacon response are passed with other 
information on special target characteristics to 
a buffer memory to await transmission to the 
next user. The transmission media may be any 
low bandwidth system of which ordfnary telephone 
lines are typical. Digital words. one per target. 
may be transmitted at rates in the order of 25 to 
50 targets per second. Word-forming logic be­
tween the buffer store and the output section of 
the data processor arranges the range. azimuth. 
identity, and other information in prescribed 
order, carries out parity checks and generates 
the timing waveforms for actuation of the output 
function. 

Summary 

In summary. a variety of digital techniques 
have been very briefly described to indicate the 
breadth of the application of digital methods to 
radar data processing. While many specific 

. techniques remain under military classification. 
the general principles of digital implementation 
of data proceSSing functions are well understood 
and have in a number of instances given dramatic 
proof of their high reliability. ease of maintenance. 
and adaptability to modification and evolution. and 
in many cases provide functions and performance 
which have no counterpart in analog circuit tech­
nology. It is anticipated that with an increase in 
dependence on radar by both military and civil 
aviation. the number of installations of digital 
data processors will increase many fold and that 
the art of digital processing of radar data will 
steadily advance toward the solution of many of 
the complex problems still confronting the radar 
designer. 
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ORGANIZATION AND PROGRAM 
OF THE 

BMEWS CHECKOUT DATA PROCESSOR 

A. Eugene Miller 
Senior Member, Technical Staff 
Auerbach Electronics Corporation 

Introduction 

The Ballistic Missile Early Warning System 
(BMEWS) Checkout Data Processor (CDP) is pro­
bably the first medium-size digital processor 
to perform the real-time, on-line checkout of 
an entire operational radar detection. and 
processing system. This paper is the first to 
describe the unique organization of the BMEWS 
CDP and the unusual structure of its program. 
It also states many of the detailed character­
istics of the CDP. The Checkout Data Processor 
has several modes of operation. As a point of 
reference, the mode which inserts a "realistic" 
sequence of events into BMEWS is focused upon 
in the following discussion. 

The CDP has two functional memories; one 
for storing constants and instructions and one 
for storing data. The means for jointly using 
these two memories and still maintaining the 
flexibility associated with single memory 
machines is brought out. The features tailored 
in the CDP for efficiently handling its problem 
are emphasized. They include real-time program 
interrupt signals and a complex Input-Output 
System. This Input-Output System, as well as 
communicating with over a dozen other digital 
data handling devices, has more than 250 
separate addresses. 

The structure of the CDP program is the 
other area focused upon by this paper. The 
material covered describes the three separate 
programs which run in an interwoven fashion. 
This interweaving and the effect of the real­
time program interrupts are brought out. 

This paper is the first comprehensive 
public description of this major subsystem of 
the Ballistic Missile Early Warning System. 

Role of the CDP in the BMEWS 

The BMEWS Checkout Data Processor has the 
primary purpose of determining the operability 
of BMEWS by inserting either test patterns or 
a "realistic" sequence of events into the 
system, and then evaluating the BMEWS on the 
basis of its response. 

Figure 1 illustrates the way the CDP fits 
into the BMEWS. In the normal or real situa­
tion, a radar data take-off collects radar 
returns on a target and assembles these to 

Max Goldman 
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and Electrical Integration, BMEWS 
Radio Corporation of America 

produce a report. Each report is transferred 
to the missile impact predictor which stores 
and correlates the various radar dat, take-off 
reports. On the basis of these reports, the 
missile impact predictor prepares various 
reports such as a report containing the values 
of the parameters associated with an observed 
missile trajectory. 

The CDP controls the insertion of a 
simulated sequence of returns into the front 
end of BMEWS. At the same time, the test tag 
is issued to the appropriate radar data take­
off to indicate that the return is simulated. 
The test tag remains with the data throughout 
the system to differentiate test information 
from real information. As the radar data 
take-off correlates the simulated returns, 
the report that is produced and sent to the 
missile impact predictor, is also sent to the 
CDP. 

The missile impact predictor uses the 
data take-off reports to produce reports of 
its own. These reports are also sent to the 
CDP. 

Organization of the CDP 

It is convenient to consider the CDP as 
being composed of five major subsystems; 
Wired-Core Memory, Coincident-Current Memory, 
Arithmetic and Logic Unit, Input-Output 
System, and Control System. A block diagram 
of the CDP subsystems and their interrelation 
is illustrated in figure 2. 

Wired-Core Memory 

The Wired-Core Memory, which is a form of 
the Dimond ring translator, stores the program 
and constants used by the CDP. It contains 
4,096 storage locations. A Wired-Core Memory 
was chosen for two reasons; namely, speed and 
reliability. Figure 3 illustrates the in­
struction word format as it appears in Wired­
Core Memory. Since the CDP has two diverse 
types of memories, the locations of each of the 
types of memory are called by different names. 
The Wired-Core Memory locations are called 
"locations" and the Coincident-Current Memory 
and input-output locations are referred to 
as "addresses". 
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Bits XQ, X1t and X2 are used to specify the 
operation modification. Four configurations of 
XO, and Xl, and X2 are interpreted as follows: 
when XQ is zero the operation is specified by 
X3 through X7 with Xs through X19 specifying 
the accompanying address or location. Bit X2 
is the parity bit associated with X3 to X7. 
Three other configurations of XQ, and Xl and 
X2 when Xo is one specify an operation to be 
performed with a constant. In these cases X4 
to X21 are used to specify the constant. These 
bits are actually transferred into the arith­
metic unit as data. 

In the normal operations, i.e., when the 
operation modifier indicates that X3 through X7 
is to be interpreted as the operation and not 
part of a constant, X20 through X22 are used l to 
indicate which of the index registers are to 
be used with the instruction. There are three 
independently used index registers. There is 
one exception to the above statement in which 
X20 through X22 indicates a specific bit in the 
accumulator which is to be tested. 

One of the tailored features of the CDP is 
concerned with performing table lookups of 
constants stored in the Wired-Core Memory. The 
sequence of instructions is initiated by a 
normal instruction which performs two functions. 
The first function is to store the location of 
the next instruction in a fixed address of the 
Coincident-Current Memory. The second function 
is to jump to the address specified in the in­
struction itself. This address may be modified 
by the various index registers. The jump leads 
to an instruction which contains an operation 
modification. This operation modification adds 
the constant specified in the instruction into 
the arithmetic unit and then control is trans­
ferred to the location specified by the fixed 
address in Coincident-Current Memory. This 
same technique can also be used to enter and 
leave sub-routines as well as perform table 
lookups. 

Another feature added to the instruction 
repertoire to give desired flexibility in using 
the Wired-Core Memory is an indirect jump. This 
instruction, in Wired-Core Memory, specifies an 
address in the Coincident-Current Memory which 
contains the location in the Wired-Core Memory 
to which control should be transferred. Thus, 
variable linking can be accomplished by changing 
the contents of the Coincident-Current Memory 
address involved. 

Arithmetic and Logic Unit 

The Arithmetic and Logic Unit contains an 
accumulator and associated registers and control 
circuits for carrying out addition, multiplica­
tion, subtraction, division, shifting, masking, 
and so forth. This unit obtains input data by 
directly addressing the Input System or via the 

Coincident-Current Memory. The Arithmetic and 
togic Unit also directly sends information to 
the Output System. The data derived from the 
addressable inputs or sent to the addressable 
outputs are used in essentially the same way 
as data sent to and from the Coincident-Current 
Memory. For example, one input address con­
tains the azimuth position of one of the radars. 
The contents of this address can be read into 
the accumulator as though it were data from 
the Coincident-Current Memory. 

Coincident-Current Memory 

The Coincident-Current Memory of the CDP 
is composed of 1,024 addresses. This memory 
has several functions. One of these functions 
is to act as an input buffer for various real­
time asynchronous input sources. There are 
buffers for data reports from the radar data 
take-offs and reports from the missile impact 
predictor as well as information from an 
input magnetic tape. Also, there is an output 
buffer which is used to store information re­
quired in simulating RF returns. When a data 
word is required by or available from an out­
side source, the program is interrupted for a 
memory cycle during which time this data word 
is removed from or stored in an allocated 
address in the Coincident-Current Memory. The 
interruption occurs without the knowledge of 
the program. 

Other functions of the Coincident-Current 
Memory include storing intermediate results 
and control information developed and used 
within the program. Also, the indirect address 
feature and standard address feature previously 
mentioned are facilitated by the use of 
Coincident-Current Memory. 

Input System 

The Input System can be considered as com­
posed of two diverse parts. There are demand 
inputs which supply information such as the 
radar position vector and console commands, and 
asynchronous inputs which supply magnetic tape 
information and system reports. Each separate 
demand input is associated with a particular 
address. As was stated previously, these 
addresses can be read or acted upon in a normal 
fashion. There are over lS0 addressable in­
puts which fall into 36 different classes of 
information. The Input System has the facility 
for communicating with well over a dozen other 
digital data handling devices including a pair 
of IBM 7090's. 

The asynchronous inputs are stored in the 
Coincident-Current Memory by interrupting the 
program control over the memory for single 
read-write cycles. Beside information from 
the input magnetic tape, the CDP receives, by 
means of this Coincident-Current Memory 



interrupt feature, 12 different types of mes­
ages from other processors in the system with an 
average of six to seven items per message type. 

Output System 

The Output System has the same dicotomy as 
the Input System. There are over 75 addressable 
outputs which fall into about 15 classes. A 
major portion of the Output System is associa­
ted with a target simulator which actually pro­
duces the simulated returns and accompanying 
test tags. Figure 4 shows one of the target 
generators of the target simulator. An output 
address is associated with a digital-to-analog 
converter (DACON) which is used to control the 
amplitude of the desired output signal. An­
other DACON, which is loaded by the program, 
controls a variable frequency oscillator (VFO). 
The modulator controls the amplitude of the 
output signals generated by the VFO. The range 
value is placed into a counter by the program at 
some time prior to the initiation of the radar 
main bangle At the beginning (leading edge) of 
the main bang, an oscillator is connected to 
this counter providing an output at an appro­
priate time to simulate a return at the range 
desired. This counter output lasts for the 
duration of the desired return. As a result, 
the output of the target generator is a pulse of 
the correct amplitude and frequency at the de­
sired time to simulate the return from a target 
at the corresponding range. It is worth noting 
at this point that the CDP acts as the con­
trolling element in a feedback loop for the 
variable frequency oscillator. The output of 
the VFO is fed into a counter for a fixed period 
of time. This average frequency is sampled by 
the program to produce a new value to obtain the 
desired frequency. The new value is placed into 
the digital to analog converter which controls 
the VFO. This subject will be discussed in a 
later paragraph. 

A summarizing fact which further indicates 
the unusual complexity of the Input-Output 
System is that there are more than 1,300 con­
nections for the addressable inputs and outputs 
alone. 

Control Unit 

The Control Unit, besides containing the 
facilities usually associated with control 
functions of internally stored program digital 
computers, has five features used in interesting 
ways. The first of these features, which was 
mentioned previously, is the ability to recog­
nize signals from the Input-Output System. 
These signals indicate to the Control Unit that 
a memory cycle is to be usurped for asynchronous 
input-output reasons. The Control Unit has a 

1. Reference to a radar main bang is confined 
to the leading edge. Reference to an inter­
pulse period is defined as the time between 
successive main bangs. 

built-in priority system to handle simul­
taneous input-output requests as well as the 
address control for storing the data. 
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Another feature, also previously mentioned, 
is the incorporation of a timer in the Control 
Unit to establish the sampling period for 
measuring the variable frequency oscillator 
outputs. This is a two-phase timer that 
allows the sampling of the VFO output to take 
place for a fixed period of time followed by a 
period of time during which no sampling takes 
place. This dead period is used by the program 
to compute the necessary corrections and also 
to apply new inputs to the VFO's. 

One of the more highly tailored features 
of the CDP is the three index registers and 
their use. The discussion of these index reg­
isters is included in the Detailed Characteris­
tic Section. Other features associated with 
the Control Unit are the inclusion of a 
special tag register and the presence of pro­
gram interrupt signals which relate to the 
occurrance of the radar main bang. These 
features are discussed in the Programming 
Section. 

Detailed Characteristics 

A binary numbering system is used in the 
BMEWS CDP with a data word length of 18 bits 
plus one bit for parity. Accessing an in­
struction from the Wired-Core Memory and 
modifying the address by index registers re­
quires four microseconds. There are two 
memory accesses per instruction: one memory 
access of the Wired-Core Memory for the in­
struction itself and another access from the 
Coincident-Current Memory or input-output 
address. In either case, 8.8 microseconds is 
involved in the access and manipulation of 
data for basic instructions. Therefore, an 
instruction such as an addition requires 12.8, 
microseconds to complete; including the in­
struction access and modification of the 
address by index registers. 

The CDP uses 27 out of the 32 possible 
instructions facilitated by the five bits 
of the operation code. There are also the 
three operation modifications for use with 
constants. 

The.Wired-Core Memory contains 4,096 -
23-bit words. The Coincident-Current Memory 
contains 1,024 - 19-bit words. Both memories 
use a binary addressing system and all data 
and instructions are addressable by words. 

The CDP contains three index registers - a 
three-bit register, a four-bit register and a 
five-bit register. The contents of each of 
these registers are logically added to the 
address contained within the instruction. 
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There is no time penalty associated with the 
use of the index registers. The index registers 
mix into an address in the following fashion: 

3 Bit Reg. 5 Bi~ Reg. 

Xs X9~~X14 X~5 X~IX17 XiS X19' 

4 Bit Reg. 

There are specific operations which use 
indirect addressing only. There ~s no time 
penalty associated with such operations, that is, 
they require 12.8 microseconds to carry out. 

The BMEWS CDP is capable of simultaneously 
carrying out input operations while performing 
arithmetic computations. For example, the 
program performs a single instruction which is 
a start-tape command. The program then ignores 
the tape input operation, while performing 
arithmetic operations, until an appropriate 
time when an inspection of the tape input buffer 
reveals the required information. 

Information is stored on the input magnetic 
tape as 6-bit characters plus a parity bit 
(character parity is odd). There are 120 
characters to a tape record: .IThree 6-bit char­
acters are assembled by the Input System to 
form one 18-bit CDP word. Thus, the input 
magnetic tape buffer size (in Coincident-Current 
Memory) is 40-CDP words. The Input System 
supplies an entire word to Coincident-Current 
Memory during each transfer operation. The 
nominal tape reading speed is 15,000 characters 
per second. 

The output console printer is controlled 
by a 40-bit buffer which is addressable by the 
CDP. These 40-bits are composed of ten 4-bit 
characters. The printer operates at twenty 
10-character lines per second. 

The clock rate of the CDP is 1.25 mega~ 
cycles. It contains about 8,000 transistors 
and between 40,000 and 50,000 diodes. The 
CDP is mechanized by NOR type transistor-diode 
logic. 

Structure of the CDP Program 

The CDP program must carry out the func~ 
tions associated with several checkout modes. 
Each of the modes is designed to evaluate the 
BMEWS from a slightly different point-of-view. 
Some modes insert "realistic" raids into the 
BMEWS while other modes insert test patterns 
into the BMEWS. The CDP program is composed 
of three parts; the simulation program, the 
evaluation program, and the executive program. 
These programs are used in all of the check­
out modes. 

Each of the programs is composed ~f rou­
tines. The mode determines which routines of 
each program are to be used for the processing. 

Figure 5 illustrates the organization of the 
CDP program. The processing proceeds from 
the executive program to the simulation pro­
gram and back to the executive progra~. From 
the executive program the processing then 
proceeds to the evaluation program. The 
soli~'lines are used to indicate a programmed 
connection between separate programs. The 
dotted lines connecting the evaluation program 
to ~he executive program signifies an automatic 
transfer caused by the program interrupt 
feature. 

The program interrupt feature is best 
explained in relation to figure 6 which illus­
trates the CDP program timing. At each radar 
main bang the CDP program is interrupted and 
control is transferred to the executive pro­
gram. This interrupt should only occur during 
the evaluation program. A special tag regis­
ter, previously mentioned under the Control 
Unit, carries an identification of the program 
which is in proces~. The executive program 
after the transfer of control has taken place, 
caused by the program interrupt, inspects the 
contents of the tag register to insure that 
the interrupt occurred during the evaluation 
program. The executive program stores the 
interrupted state of the CDP when the interrupt 
occurred, and then interprets the mode and sets 
up various linkages required for the mode if a 
mode change has occurred. Control is then 
transferred to the appropriate simulation 
routine. 

When the scheduled simulation routines 
have been completed, control is transferred 
in a programmed fashion back to the executive 
program. The executive program determines 
where in the evaluation program to resume 
processing and sets up the state of the CDP 
for the resumption. The evaluation program 
is then resumed. As will be seen shortly, the 
evaluation program is essentially a non-ending 
program so that it continues processing until 
the next program interrupt signal. 

The executive program coordinates the in­
formation flow between the simulation and 
evaluation programs. The executive program 
accomplishes this task by having its routines 
perform such functions as determining the mode 
and inspecting to see that the program in­
terrupt signals are in the proper sequence, 
connecting the proper simulation and evaluation 
routines used in a given mode, and determining 
the malfunction of the CDP by inspecting the 
contents of error registers, etc. 

The simulation program is composed of 
routines which generate information defining 
the signals to be injected into the system. 
This information is used to control the 
checkout target simulator which actually 
creates the signals and sends them into the 
front end of the BMEWS. The routines of the 



simulation program are of such nature that they 
must be completed by specified times in order to 
be of use. Therefore, these routines are syn­
chronized by the program interrupt signals. 

The simulation program performs three 
major functions. These are: 

(1) Determines the system status (con­
nections between BMEWS major sub­
systems) , 

(2) Controls the target simulator. 

(3) Prepares the values for the parameters 
of anticipated messages for use by the 
evaluation program. 

The evaluation program processes the in­
formation received by the CDP from the BMEWS 
in order to evaluate the operability of BMEWS. 
There are also evaluation routines used to 
organize information to be printed, out; this 
infbrmation is pertinent to the evaluation of 
the operability of BMEWS. Likewise, there is a 
routine in the evaluation program for deter­
mining CDP failures. Evaluation routines, un­
like the simulation routines, do not have to 
be kept in step with events of each main bang 
period, but must only meet time requirements 
in the large. The evaluation program, once 
started, continues from evaluation routine to 
evaluation routine until interrupted by a 
program interrupt signal. 

The evaluation program is divided into 
three priority classes of routines; routines 
corresponding to a given mode of operation of 
the first class precede those of the second 
class which in turn precede those of the third 
class within a main bang period. The highest 
priority classes are always initiated in each 
main bang period (or continued if it has been 
interrupted, see below). This highest priority 
class is initiated by the executive program 
after program interrupt 1 (see figure 6). The 
three sets of evaluation routines are called 
Class I, Class II, and Class III with the 
highest priority being Class I, the next prior­
ity Class II, and the lowest priority Class III. 
Thus, the uninterrupted processing sequence 
would have the Class I routines processing 
all their applicable data, followed by the 
Class II routines processing all their appli­
cable data followed by the Class III routine. 
The Class III routine (error detection routine) 
is a non-ending routine, Le., the "end" of 
the routine leads back to the beginning. 

The CDP program is organized to begin the 
processing of a given class of evaluation 
routines at the point of interruption of the 
interrupted routine of that class. If a given 
evaluation process was not interrupted then 
processing begins at the first routine of that 
class. 

Figure 5 illustrates the organization of 
the three classes of the evaluation routines 
in the CDP program. The possible returns to 
the evaluation program are shown inside the 
executive program. Note that there is a path 
from each interrupt to the starting of the 
Class I routines each main bang. 

The evaluation program performs three 
major functions. They are: 

(1) Process messages received from the 
rest of BMEWS - using anticipated 
values from the simulation program. 

(2) On the basis of (1) - turn on 
appropriate console lamps and 
pr!ntout appropriate information. 

(3) Check the operation of the CDP 
itself. 

The evaluation of system reports is 
illustrated in figure 7. The evaluation 
routine picks up the value for each of the 
parameters in the received report and sub­
tracts the corresponding anticipated value. 
A new message is composed which contains the 
message type, the target tag, the anticipated 
value for each of the parameters and the 
calculated difference between the received 
value and this anticipated value. This new 
message is a candidate for printout. The 
criterion for printing the message is that 
the deviation of the value for at least one 
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of the parameters is larger than the specified 
tolerance. If all of the deviations are 
within the specified bounds, normally, the 
message is discarded. However, subject to a 
switch setting on the console, all such print­
out candidates can be printed-out for the 
purpose of data collection. An out of 
tolerance deviation is marked appropriately 
to identify this situation to the operator. 

Summary 

A program interrupt occurs at the begin­
ning of the radar main bang (figure 8). This 
interrupt causes the executive program to 
store the state of the CDP and proceed into 
the simulation program. The simulation 
routines, which are carried out at this time, 
control the variable frequency oscillators 
of the target simulator and check to see that 
the BMEWS status has remained stable. That 
is, there has been no change in the way the 
major subsystems of BMEWS have been linked 
together. The completion of these two 
routines returns the program to the evaluation 
program by way of the executive program. 

The evaluation program inspects the 
Coincident-Current Memory for information 
coming into the area reserved as system 
report input buffers and, if information has 
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been received, compares these reports with 
anticipated reports also stored in the Coinci­
dent-Current Memory by the simulation program. 
The evaluation program is eventually interrupted 
by program interrupt 1. Console switches are 
inspected to see that the CDP is still to remain 
in the present mode or change modes. The 
simulation program is then initiated. 

The simulation routine which is carried out 
at this time calculates the inputs required by 
the target simulator at the end of this main 
bang to simulate returns following the subse­
quent main bang. This calculation is based 
upon the system status, the particular position 
of the various beams, and target data which had 
~reviously been stored in the Coincident­
Current Memory by the magnetic tape portion of 
the Input System. 'The simulation routine, 
prior to start~ng its calculation, initiates 
the reading of a record from the input magnetic 
tape for use during the next inter-pulse period. 
Data used in this inter-pulse peri04 had been 
read in during the previous inter-pulse period. 
The results of the calculation of this simula­
tion routine are stored in Coincident-Current 
Memory ready for transfer to the target simu­
lator at an appropriate time. 

The evaluation program is then re-entered 
via the executive program. Here the executive 
program restarts the Class I routines if they 
had not just been interrupted. If they had 
just been interrupted by program interrupt 1, 
the interrupted situation is resumed. Again 
the evaluation program continues until the 
next program interrupt occurs. At this point, 
the executive program leads to the simulation 
routine that transfers the information pre­
viously calculated for the target simulator 
into the target simulator. 

The target simulator must be quies~ent 
during the period of time that the program 
transfers new parameter values into the range 
counter. Therefore, the maximum range that 
can be simulated is limited by the period of 
time associated with this transfer. In 
actuality, program interrupt 2 marks the end 
of time when the target simulator is capable 
of producing a simulated return during the 
ma~b~. 

Thus, each main bang, data taken from the 
input magnetic tape during the previous main 
bang and stored in Coincident-Current Memory 
is used together with system information to 
produce control information for the target 
simulator. This information is transferred 
into the target simulator at the end of the 
main bang. During the next main bang, while 
this same calculation prpcess is being repeated, 
the target simulator inserts into the system, 
if required, simulated RF returns and corres­
ponding test tags. This process dontinues 
main bang interval after main bang interval. 

The radar data take off correlates the in­
serted signals and issues reports to the 
missile impact predictor. These same reports 
are shipped to the CDP and stored in the 
appropriate area of the Coincident-Current 
Memory. The evaluation program continues 
to inspect this portion of the Coincident­
Current Memory sensing for such reports. 
When a report is received, it is evaluated 
by using the anticipated report produced by 
the simulation program. If an out of tolerance 
situation is discovered, information is shipped 
out to the operator by means of the printer. 

Radar data take off reports are collected 
by the missile impact predictor and used to 
produce various other reports. These reports 
are shipped to the CDP and stored in the 
Coinc~dent-Current Memory. In a similar 
fashion, the Checkout Data Processor compares 
these reports with anticipated reports 
and indicates to the operator the result 
of such processing. In this way, the Checkout 
Data Processor using its equipment and its 
program in an interwoven fashion, generates 
simulated RF returns, injects these returns 
into the front end of BMEWS, receives the 
effect that these signals have on BMEWS, 
and on the basis of these effects, evaluates 
the operability of the overall system. 
Finally, the checkout device, being a major 
part of BMEWS, evaluates its own operability. 
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HIGH-SPEED DATA TRANSMISSION SYSTEMS 

R. G. Matteson 
Stromberg-Carlson 

a Division of General Dynamics Corporation 
Rochester, New York 

Introduction 

For many years data and messages 
have been transmitted from point to 
point over slow speed data communica­
tion systems by telegraph. There is a 
rapidly growing increase in the use of 
centralized data processing equipment 
in large corporations however, making 
increasing demands upon existing data 
communication systems. Development has 
been carried out at Stromberg-Carlson 
during the past few years toward in­
creasing the capabilities. of the 
standard telephone facility for the 
transmission of data at higher speeds 
and with greater reliability. It, is 
felt that this equipment will have 
widespread use in the business data 
field, the scientific field, the auto­
matic control field, and for military 
data communication systems. Typical 
components required for the transmission 
of data ove~ tetephone lines at high 
speed include input/output eqUipment, 
buffer converters, modulatorldemodula­
tors, and of course a transmission path. 
Stromberg-Carlson has developed a 
modulator/demodulator unit using a 
unique modulation prinCiple specifically 
designed for minimizing the effects of 
the various types of distortion and 
interference associated with wireline 
systems. In addition, an installation 
has been completed for the Convair 
Division of General Dynamics Corpora­
tion which transmits data in the form 
of punched card information over a 
telephone line more than 200 miles long, 
and records the information on magnetic 
tape in a format compatable with IBM 
704 programming. 

Applications 

Since the processing of data by 
digital computers is becoming common 
practice throughout many types of 
endeavors, the applications for the 
transmission of data at high speed 
over standard telephone facilities 

appears to be very wide spread. Some 
of these areas will be discussed in the 
following paragraphs. 

Many corporations are facing a 
decision today between large computers 
at a central location in the corporation 
or many small computers geographically 
separated at the various divisions. If 
a centralized computer facility is re­
quired for performing all the various 
operations and data processing for a 
corporation, the data must be transmit­
ted from remote divisions of the corp­
oration into the central data processing 
center. For a moderate size corporation 
this data can reach significant propor­
tions and can only be transmitted by 
air mail or many slow speed data trans­
mission systems operating in parallel 
at the present time. The availability 
of equipment to transmit data at higher 
speeds over telephone facilities which 
are normally available for telephone 
communications will assist in solving 
the data handling problem. For the 
cO,rporation which decides to use indivi­
dual smaller computers at each division, 
data transmission can still be of con­
siderable benefit. For these corpora­
tions, high speed transmission of data 
can mean faster reporting between divi­
sions and the possibility of using re­
mote computers if theJocal computer 
becomes overloaded during peak operations. 

Many corporations are looking to­
wards automatic data collection, data 
acquisition and transaction recording 
systems to accelerate the over-all data 
proce'ssing and reporting cycle. These 
systems will be used for such things as 
the compiling and accumulation of data 
concerning job moves, stockroom trans­
actions, job change~, inspection results 
and attendance recording. This data may 
be recorded for several manual input 
units at an intermediate collection 
point. The data must then be transmit­
ted from this intermediate collection 
point to a central collection agency 
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(Figure 1). For a sizeable corporation, 
the amount of data transmitted into the 
central recording facility will be con­
siderable. Transmission must therefore 
occupy a minimum of t~me in order to be, 
able to submit all da~a from each of the 
intermediate collection facilities, re­
quiring high-speed transmission of data 
over standard wireline facilities. 

Some types of businesses such as 
banks and insurance companies have 
requirements for large data retrieval 
systems. In this case, a central file 
of information, upon receiving an 
inquiry from a remote station, will 
transmit the data requested in the in­
quiry. In this example, the amount of 
data transmitted during the inquiry is 
small, but the amount of data trans­
mitted during the reply by the data 
file may be large indeed depending upon 
the particular application. In order to 
satisfy a number Qf independent inquir­
ies in a reasonable amount of time, data 
will have to be transmitted at high 
speed over wireline facilities. 

For the solving of scientific pro­
blems, large scale computer facilities 
are required in order to handle the more 
complicated problems expected. For some 
of the large computer facilities requir­
ed, it is economically impossible to 
duplicate a facility at remote corpora­
tion installations. In this case, 
remote facilities can use a large scale 
computer facility for the solution of 
scientific problems by transmitting the 
program and input data by high-speed 
data transmission systems to the central 
computer facility (Figure 2). The pro­
blem solution can then be transmitted 
back to the originating site. 

It is also occasionally possible to 
break down a large problem into sub­
problems which can be worked independ­
ently by separate computer facilities. 
In this case, various computers through­
out a wide-spread corporation can be used 
for solving parts of the same problem 
by means of high-speed transmission of 
data over telephone facilities. 

The solutions to scientific pro­
blems transmitted over the high-speed 
data transmission system can be tabu­
lated, reported or plotted by the use of 
direct on-line high-speed printing equip­
ment. 

For applications where digital 
computers are useQ in the automatic 
control of process or operating condi­
tions, much data is transmitted between 
the operating system and the computer 
control system. In the case of process 
control computers, the requirement is 
for the transmission of measured values 
of the operating system, the transmis­
sion of control signals to change the 
operation of the system and the trans­
mission of data to various indicators 
allowing manual supervision of the 
operation of the system. 

Operation of organizations such as 
gas and pipe lines, and railroads re­
quires the transmission of operating 
data over long distances. This data 
can be economically transmitted at 
high-speed over the same wire-line fac­
ilities normally used for voice com­
munication. 

Many requirements exist for the 
transmission of considerable amounts 
of data for military systems. Mili­
tarysystems such as the SAGE (semi­
automatic ground environment) system for 
the detection, tracking and interception 
of enemy aircraft requires data to be 
transmitted between acquisition sites, 
control centers, and intercepter centers. 

With the military striving for 
higher speeds under tactical conditions, 
automatid displays and even the computer 
analysis of tactical situations provides 
a requirement for the transmission of 
digital data. 

Logistic Systems such as the Air 
Force COMLOGNET System will be used to 
transmit a tremendous amount of data 
concerning logistic information through­
out the Air Force. 

EqUipment ReqUirements 

Any generalized Data Communication 
System can be broken down into input/ 
output components, buffer converter com­
ponents, modulator/demodulator compon­
ents, and the transmission path (Fig­
ure 3). 

The input/output eqUipment may 
consist of punched tape, punched card, 
or magnetiC tape readers, manual input 



keyboards, FLEXOWRITER, or electric type­
writer equipment. The input/output equip­
ment can also consist of the buffer 
storage portions of general purpose com­
puter installations. 

The buffer converter unit at the 
transmitting terminal of a data trans­
mission system must accept the data from 
an input device, and transform this data 
into the proper format for application 
to the modulator unit. This may require 
parallel to serial conversion, tempor­
ary storage, and level changing. The 
buffer converter may also change the lan­
guage of the data as in the case of card 
to tape transmission. Also, it may be 
required to add checking information to 
the transmitted signals. At the receiv­
ing terminal of the Data Transmission 
System the buffer converter must accept 
the data from the demodulation unit and 
convert it into the proper format for 
recording on the output device used. 
This operation may mean serial to paral­
lel conversion, temporary storage, and 
the generation of additional format in­
formation such as inter-record and inter­
file gaps normally required for preparing 
magnetic tape for IBM computers. 

Error circuitry is required at the 
receiving terminal improving or at least 
indicating the reliability of data trans­
mission. Errors can be detected by check­
ing vertical and horizontal parity bits 
in the transmitted data, and indicating 
these to the operator at the receiving 
terminal. This gives a measure of trans­
mission reliability but does nothing to 
correct the matter. In the event of an 
error circuitry can also be included to 
cause automatic retransmission of the 
previous block of data. Using this 
techniq~e, the final received and record­
ed data will be more reliable by several 
orders of magnitude than if automatic 
retransmission were not used. Another 
technique can be used which would correct 
certain types of errors in the transmit­
ted data at the receiving terminal with­
out requiring retransmission. By storing 
a complete block of data and checking 
horizontal and vertical parity signals, 
single bit errors in the transmitted 
message can be corrected automatically. 
Alternatively, if the information is de­
stined for computer data processing, a 
program can be incorporated into the 
data processing routine to perform the 
same function, thereby simplifying the 
data transmission system. 
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The telephone line which wi~l trans­
mit voice information satisfactorily will 
not necessarily transmit data reliably; 
for example, impulse noise of very short 
duration may cause bits of information to 
be changed, added or deleted in the data 
being transmitted which could have serious 
consequences in the business data appli­
cations. Similarl y, a frequency trans­
lation will have serious effects on some 
types of data modulation techniques, 
but will hardly be apparent during voice 
transmission. Certain minimum require­
ments for line characteristics must be 
satisfied depending on the type of modu­
lation/demodulation equipment used in 
the system. 

Equipment Description 

Data transmission equipment 'which 
has been developed at Stromberg-Carlson 
will be described as examples of the com­
ponents mentioned in the preceeding sec­
tions. 

A tape transmission terminal suit­
able for tape to card, card to t~pe, and 
tape to tape systems is shown in Figure 
4. A tape transport has been selected 
for low cost, reliable operation. The 
buffer converter is designed to accept 
data from the tape transport, convert it 
to a serial form, and provide control and 
synchronization signals to the receiving 
terminal. These and oth'er functions of 
the buffer converter are shown in Figure 
5. The end of the file is automatically 
recognized by the buffer converter and the 
tape transport is turned off. In the event 
of an error recognized at the receiving 
terminal, the retransmission signal is 
recognized by the buffer converter and 
the data record in error will be retrans­
mitted by reversing the tape transport 
and transmitting that record over again. 

The receiving portion of the buffer 
converter converts serial input data to 
parallel data for recording on the re­
ceiver tape transport. The data is syn­
chronized to the incoming data by resetting 
the character bit counter with a start of 
record character. End of record gaps 
occurring on the transmitted tape will 
also be placed on the receiving tape. At 
the end of a file of data, the receiving 
tape transport will be stopped. 

A modulator/demodulator model SC-
301 is used to modulate the serial 
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train of data in a form for reliable 
transmission on telephone facilities at 
2400 bits per second. The SC-30l con­
verts the input binary information to a 
trinary form which then amplitude-modu­
lates a subcarrier signal.' Advantages 
of using a trinary, rather than binarY. 
baseband signal in~lude the following~·2 

(a) Elimination of low frequency 
components, reducing noise 
bandwith and easing require­
ments for transmission cir­
cuit characteristics. 

(b) Constant average power level 
in transmitted signal. 

(c) Permits use of bistable de­
tector, rejecting noise im­
pulses of one polarity. 

At the receiving terminal, the 
signal is demodulated and regenerated 
to form the original binary information. 
A free-running multivibrator is syn­
chronized to the incoming data to pro­
vide a clock signal at the synchronous 
rate of data transmission. A photograph 
of th~ SC-301 in a separate cabinet is 
SROwn in Figure 6. 

A telephone handset is sunplied on 
the front panel of the data 
communication terminal for intercommuni­
cation capability. This enables the 
operators to coordinate the transmission 
of data at the beginning and the end of 
the transmission. A self-test capability 
allows the operators to check out the 
transmission link before the start of 
transmission. Amplitude and time delay 
equalizers are also provided with the 
terminal as required to compensate for 
characteristics of. the telephone facility. 

A card data transmission terminal 
is shown in Figure 7. This unit can be 
used to transmit data between itself and 
another card terminal, a tape terminal, 
or a computer input terminal. This ter­
minal has been designed to read punched 
cards at the rate of 100 cards per min­
ute. The terminal is similar to the 
tape transmission terminal described 
above except for the addition of a card 
buffer module. The card buffer will 
store all of the data on one card as 
received on a row by row basis. The 
buffer will then feed the data charact­
er by character into the buffer convert­
er, which then performs functions similar 
to that performed by the tape terminal 
buffer converter. 

The third type of data transmission 
terminal developed at Stromberg-Carlson 
is for transmitting data from computer 
to computer. This type terminal is 
shown in Figure 8 and is exactly the 
same as the card transmission terminal 
except that the card reader and the 
card buffer are not required. The 
buffer converter accepts data from the 
buffer storage unit of a computer ex­
actly as it would from the card buffer 
unit. At the receiving terminal, the 
data is provided to the buffer storage 
unit of the receiving computer. 

Since the tape, card, and computer 
data transmission terminals all have 
standard outputs, they can be used in­
terchangeably with each other to form 
tape to tape, card to card, card to tape, 
computer to computer, tape to computer, 
etc. systems. A card to tape system 
has been installed at the Convair Divis­
ion of General Dynamics Corporation to 
transmit data over a 200 mile telephone 
line between Pomona, California and San 
Diego, California. This system enables 
Convair personnel in Pomona to utilize 
an IBM 7043Camputer facility located in 
San Diego.. In addition, an SC-3000 
high speed communications printer can 
be used directly on line at the receiv­
ing terminal to print out data. 

A new type of tape transport is 
being developed for use in specific 
applications for data transmission and 
data collection systems. This tape 
transpor~ will operate in two modes, a 
stepping, asynchronous mode or a con­
tinuous, synchronous mode. In the step­
ping mode, the transport can be used 
with a FLEXOWR1TER, manual keyboard, slow 
speed punched card device or other equip­
ment operating asynchronously. In this 
mode the unit can be used to record or 
reproduce data character by character 
for data recording, collection, and 
acquisition applications. In the con­
tinuous mode, the transport can be used 
as a substitute for the tape transport 
discussed previously in connection with 
the tape transmission terminal. 

The transport can therefore be used 
to store data asynchronously and accumu­
late it over a period of time. The 
unit can then be rewound and used to 
supply the data at high speeds into a 
data transmission system. In this 
application a telephone facility can be 
used for voice communications most of 
the time, since data can be transmitted 
at high speed during a small portion of 



the day. A block diagram of the tape 
transport is shown in Figure 9. 

Conclusion 

The applications for data communi­
cation systems have been discussed. 
Equipment requirements have been dis­
cussed and examples of equipment meeting. 
those requirements which have been deve­
loped by Stromberg-Carlson have been des­
cribed. A special tape transport has 
been described which has been developed 
to meet a particular requirement in data 
transmission systems, where it is desired 
to accumulate data at a slow asynchronous 
rate and deliver it at a rapid, synchron­
out rate so as to obtain full time usage 
of a telephone facility. 

The general approach being taken at 
Stromberg-Carlson in the development of 
card to tape, tape to tape, and card 
to card systems 1s to arrive at a com­
plete line of components which can be 
interconnected in flexible fashion to 
meet a variety of requirements for 
specific data transmission applications. 
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Fig. 8. Computer Transmission Terminal' 
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PARALLEL COMPUTING WITH VERI'ICAL DATA 

William Shooman 
System Development Corporation 

Santa Monica, California 

Summary 

A novel technique called Vertical Data Proces­
sing (VDP) for the manipulation of data in digital 
computers is presented. Multiple data are proces­
sed simultaneously one bit at a time using Boolean 
operations. Many classes of problems appear adapt­
able to this technique. 

A hypothetical VDP computer which embodies 
both VDP and conventional techniques is proposed 
and its advantages discussed. 

Introduction 

In the continuous quest for increasing the 
speed of Electronic Data Processing Machines, two 
distinct procedures are available. One is to 
improve the hardware technology; the other is to 
improve computer organization. This paper is con­
cerned with the latter. 

A novel technique for the simultaneous manip­
ulation of multiple data in digital computers is 
presented. This technique is called Vertical Data 
Processing (VDP), in contrast to conventional 
methods which will be referred to as Horizontal 
Data Processing (HOP). Data organization for VDP 
is described and a VDP machine defined. It is 
shown that the time taken to perform VDP operations 
is not a function of the number of numbers being 
processed. 

A VDP machine which processes vertical data 
is shown to have certain limitations which are 
eliminated by a hypothetical computer design. 
General specifications for the hypothetical 
mchine (called the Orthogonal Computer) are 
given. Descriptions and algorithms for several 
VDP instructions (one of which is an add instruc­
tion) are given. 

VDP logic is shown to be strikingly different 
from that of HOP. Masks play the role of decision 
functions with the result that there is virtually 
no branching in VDP. VDP is applied to the fol­
lOWing specific problems; 1) an FICA computation, 
2) finding the rank of a number in a sequence of 
numbers, and 3) the translation of mnemonic oper­
ation codes to their mchine language represent­
ation. Time comparisons for VDP and HOP are made. 
For these problems VDP ranges from 32 to 660 times 
as fast as HOP. Finally a cost estimate for the 
Orthogonal Computer is presented and some possible 
input/output limitations are noted. 

Data Organization for VDP 

Suppose that we are given r numbers in 

memory. These numbers are expressed in the com­
puter by a mtrix of bits. In the usual matrix 
(UM) each of the r numbers resides in one com­
puter word, or row of the matrix. We have 
investigated the advantages of expressing the 
numbers by a matrix other than the UM; that is, 
by the transpose of the UM (UM!'). In the UM!' 
each number resides in a column of the matrix; 
consequently, each of its bits is in a different 
computer word. Since the computer has direct 
access to computer words only, it is not possible 
to obtain directly one of the r numbers. Instead 
all r numbers are simultaneously processed one 
bit at a time by means of the logical operations, 
'and', 'not'} 'inclusive or', and 'exclusive or'. 
It is clear that Boolean functions can be devel­
oped to perform the usual operations of conven­
tional computers (a~ for example, has been done 
for serial computers). 

The VDP Machine 

A VDP machine will now be defined as a 
machine which has the hardware to perform com­
putations directly by addressing the data ortho­
gonally. A program simulating a VDP machine 
which processes data in UM!' form was checked out 
on the 709. The set of simulated instructions 
included the arithmetic and logical operations 
usual to HOP machines.~ The algorithm used for 
the simulated add instruction is now shown. 

Add Algorithm and Timing 

Given two sequences of numbers (A.) and (B.) 
J J 

(1 S; j ~ r), we want to compute the r sums S. = 
J 

A. + B.. For the sake of simplicity we will as-
J J 

surne that each number consists of precisely n 
bits and is non-negative. Let (al j a 2 .••• a j)' 

, ,J n, 
(bl . b2 .••• b .), and (s . sl .' •• s .) be 

, J , J n, J 0, J , J n, J 
the binary representation of (A.), (B.), and (S.) 

J J J 
respectively. To compute Sj' we give an algo-

rithm to compute si . (i = n, n-l, ••• l). 
,J 

Let 

s. . = a. ·0 (bi j e C i .); 1,J 1,J , ,J c . = o· n,J J 

1 
See Instruction List in Appendix. 
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Where CD stands for exclusive or and y. for ~­
sive or. 

It is clear that all r sums can be simulta­
neously computed using this algorithm, if r is 
equal to or less than the bit length of the 
computer word. In a VDP machine such an add is 
executed in 3~ + 1 memory accesses. The number of 
memory accesses is a function of n (bit length of 
the numbers being processed) only; in particular, 
it is not a function of r (the number of numbers). 
This important property is inherent in all ~P ins­
tructions and will be the basis for a hypothetical 
computer design. 

Limitations of Data in UMT Form 

One limitation of the simulated VDP machine 
is that the number of numbers that can be simul­
taneously processed is restricted to the bit 
length of the computer word. Another limitation 
is that data must be input in either the UMT form 
(that is, vertically) which creates some difficul­
ty; or in UM form and then transposed. Also, data 
undergoing VDP is not suitable for HOP be9ause of 
the data organization, although it is clear that 
some ope~tions can be more efficiently performed 
in BDP (for example, suming two numbers). These 
lim tations can be eliminated by a new computer 
design. 

The Orthogonal Computer 

Consider a hypothetical machine consisting of 
a conventional (BDP) ,machine of wor(l length L, 
with the added capability of being vertically 
addressable in some limited region of memory; 
specifically in K nonoverlapping blocks, each 
block consisting of R consecutive memory registers. 
The vertical addtessing is to be restricted so 
that an addreasable column consists of precisely 
R bits and is contained in one of the blocks. Con­
sequently there are exactly~times L addressable 
columns. The central processor is to contain a 
number of vertical registers (each register con­
taining R flip-flops) and VDP hardware relating 
these registers to the K blocks. While a comput­
ation is being performed in some of the K blocks, 
input-output (I/O) may be going on in other blo.cks. 
If data are input to a subset of the K blocks in 
UM form, processJ.ng in parallel by means of verti­
cal addressing satisfies the definition for a VDP 
machine. This machine will be referred to as the 
Orthogonal Computer. 

Timing for an Add in the Orthogonal Computer 

Suppose we have two sequences of numbers (Ai) 

and (Bi ) (l S i ~ R), each number of bit length n 

and non-negative, and we want to compute the'R 
sums Si = ~i + Bi • Let (Ai) and (Bi ) be in one 
or more of the K blocks (depending on the ratio 
of n to L) in UM form. Let (ai,l ai,2 ••• ai,n)' 

(bi,l bi ,2·.·bi,n)' and (si,O si,l· •• si,n) be the 
binary representation of (Ai)' (Bi ), and (Si) 

~espectively. Using vertical addressing and the 
indicated change in subscript notation, it is 
clear that the simulated add algorithm presented 
above can generate the R sums (S.) in a subset of 
the K blocks. The number of mem5ry accesses is 
still 3n + 1. In HOp, 8 times R memory accesses 
are generally required to obtain the Si' Con­
sequently, for this type of add instruction, ,with 
R equal to (on the order of) 1000, the Orthogonal 
Computer r~ges from 55 (n = 48) to 500 (n = 5) 
times as fast as HDP. It is to be noted that both 
the VDP and. HDP mode may be used on the same data 
in the Orthogonal Computer since data are input 
in UM form. 

VDP Logic 

VDP and HOP differ strikingly in their over­
all logical flow. THERE IS ESSENTIALLY NO BRANCH­
ING IN VDP. Let us consider· a,'branch point in an 
HDP program. Suppose that r numbers (A ) 1 ~ i ~ r 
are being processed. Let the branch point part­
ition the r numbers into two classes Cl ~nd C2, 

(k numbers in Cl and therefore r - k in C~ such 

that if Ai is in Cl , then Ai is to be processed 

by computation Tl , and similarly if Ai is in C2, 

then Ai by T2• Figure 1 shows the branch in HDP. 

In HOP the question must be asked for each Ai and 

correspondingly one of the computations Tl or T2 

performed. Assuming that as many as r numbers can 
be simultaneously processed by VDP, a method is 
now described whereby only the results of computa­
tion Tl on the numbers in Cl and of T2 on the 

numbers in C2 are obtained. 

Masking 

Whenever a bit is written in memory during 
any VDP operation, the bit must pass through a 
gate. A gate is represented by a zero or one. 
A gate is open (allowing pass through) if its 
representative is a one. If its representative 
is a zero, the corresponding bit location in 
memory is left undisturbed. A string of repre­
sentatives (bi ) 1 ~ i ~ r is called a mask. At 

that point in VDP corresponding to the branch 
point in HDP, a mask is generated such that bi 
is a one, if and only if the answer to the ques­
tion for Ai is yes. Tl is now performed on all 

r numbers USing the mask, which represents r 
gates (k of which are open). Consequently, only 
results of Tl on numbers in C1 are written in 

memory. The mask is then complemented, result­
ing in a mask of.r gates (r - k of which are 
open) • This mask is used similarly in the T2 

computation on all r numbers, so that only results 
of T2 on numbers- in C2 are written. Figure 2 

shows the sequence of VDP operations. 



'Compare' Description and Algorithm 

A set of instructions called 'compare' plays 
a significant role in VDP on various levels. A 
description of 'compare >' and its algorithm is 
now given. 

We are given r + 1 numbers consisting of a 
sequence (Ai)l ~ i ~ r, and a cons:tant C. We 

again suppose that each number is non-negative and 
Qf bit length n. Let C and the (Ai) be represented 

in binary form. Let C = Cl C2··.Cn' and Ai = ai,l 

ai,2 ••• ai,n(1 ~ i ~ r). Let C' = Cl C2 •••. ct (t'Sn), 
where Ct is the least significant zero bit of C. 

'Compare >' is to generate r bits (bi ), such that 

bi is a one, if and only if Ai > C. To compute 

the r bits, we give the algorithm to compute the 
th i bit. Let bi = 

ai,l *1 {a1 ,2 *2 [ ••• (ai,t_l *t-l ai,t)···]}' 

using C' as follows. If the j th bit of C' is a 
zero (1 S; j ::. t-l), *. is interpreted as inclu-

..Jl --
sive or; if it is a one, *j is interpreted as and. 

Since the data is address;d orthogonally, it is 
clear that all bi (l ~ i ~ r) can be generated 

simultaneously, provided that r is not too large. 
The .number of memory accesses needed to execute 
'compare >' in a VDP machine is t + 1 (t is the 
bit length of C'). 

'Compare>' Used as Mask Generator 

The following example shows how 'compare >' 
is used efficiently in generating masks to be used 
as decision functions. Suppose that we are com­
puting the FICA deductions in a payroll program. 
For each payroll period, 3% of total income is 
deducted and accumulated for FICA until the ac­
cumulated total is equal to $144. Let r accumu­
lated totals and $143.99 play the respective 
roles of the (Ai)l ~ i ~ rand C in the 'compare>' 

algorithm above. A sequence of r bits is genera-
th ted such that the i bit is a one if and only if 

th the i accumulated total is greater than $143.99. 
This sequence of bits is complemented and then 
used as the mask in the incrementing computation. 
Consequently, only those totals that are less 
than $144 are incremented. $143.99 is represent­
ed by 14 bits, the least significant six of which 
are ones. Therefore t = 8 for this 'compare >' 
and we need 9 memory accesses in order to execute 
the instruction. For this problem, each time 
'compare >' is performed in VDP, r comparisons 
would be necessary in HDP. About 6 memory acces­
ses are generally needed to perform a comparison. 
For this function, the Orthogonal Computer is 
approximately 660 times as fast as HDP for 
r = R = 1000. 

'Compare 2:.' Used to Compute Rank 
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Another interesting use for 'compare' is 
given by the following example. We are given a 
sequence of r numbers (Ai)l ~ i ~ r, non­
negative and of bit length n. We want to find 
the number (k) of numbers in (Ai) that are less 

than a particular number A j in the sequence. 

This number k is frequently referred to as the 
rank of A j in the sequence (Ai). To obtain the 

rank of A ., we let the (A.) and A. play the res-
J 1 J 

pective roles of the (Ai) and C in the 'compare >' 

algorithm, with an exception. Let al a 2 ••• an be 

the binary representation of A.. Let A! = 
< J J 

al a 2 ••• at (t - n), where at is the least Sig-

nificant one2 bit of A.. This change results in 
J 

a 'compare:?' rather than 'compare > ' . The 
generated r bits are then complemented obtaining 

r bits such that the ith bit is a one, if and 
only if Ai < Aj • These r bits therefore consist 

of exactly k one bits and r, - k zero bits. The 
execution time for an instruction giving the 
count of the number of one bits in a given re­
gister should be equivalent to about two memory 
accesses. Consequently, the time to compute rank 
in the hypothetical machine should be approximately 
equivalent to t + 3 memory accesses. In HDP, if 
the (Ai) are not sorted, r - i comparisons are 

necessary to compute rank. Assuming that r = R = 
1000, the Orthogonal Computer ranges from more 
than 115 (t = 48) to about 635 (t = 5) times as, 
fast as HDP in computing rank in an unsorted 
sequence. 

VDP Applied to Compilers 

Every compiler has within it an assembly 
process. Let us suppose that a given machine has 
N operation (op) codes. Let R mnemonic instruc­
tions be in one of the K blocks of the Orthogonal 
Computer. The assembler must translate the ins­
truction list from the menemonic to machine lan­
guage. The result should be R machine language 
instructions in another of the K blocks. Let 
O. (1 ~ j ~ N) be the binary representation of 

J 

the jth mnemonic op code. For each j, we perform 

'compare =', comparing OJ against all R op codes. 

The j th 'compare =' generates a mask (b.) 1 ~ i ~ R , 
1 

such that b
i 

is a one, if and only if the op code 

of the i th mnemonic instruction is equal to 0 .• 
J 

Using the machine language representation of OJ 

as a constant, we perform 'constant ins~rt' on 

2In the 'compare >' algorithm, Ct of C' is the 
least significant ~ bit of C. 
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all R op codes using the mask. The' constant 
insert' instruction duplicates a constant, R 
times in a given block. Consequently, because 
of the masFo, only those op codes that are equal 
to O. are translated to the machine language 

J 
representation of 0.. After N 'compare ::;:' and 

J 
N 'constant insert' are performed, each of the 
R mnemonic op codes will have been translated into 
its corresponding machine language repr~sentation. 

If the mnemonic op code consists of three 
6-bit characters, and the corresponding machine 
language representation requires twelve bits (for 
example, the 7090), then the number of memory 
accesses required in VDP for the op code trans­
lation is 32N. In HDP, a search j s performed in 
a table of N op codes, with an approximate average 
of log2N comparisons for each op code. Approxi-

mately 8(10g2N) +15 memory accesses are needed to 

find and translate each op code. For N = 60, and 
R = .1000, the Orthogonal Computer is about 32 
times as fast as HDP. 

storage Econornoc by Packing Data 

We" order the K blocks of the Orthogonal Com­
puter, and also the L columns in each block from 
most to least significant bit. We now linearly 
order all KL addressable columns by demanding that 
the last column in any block (excepting the last 
block) directly precede the first column of the 
next block. We can now think of these KL columns 
as a matrix of R rows and KL columns. Suppose 
that we have t sequences of data to process 

(Ar) (1 $ i ~ R; 1 S j ~ t). For each j, let nj 

be the bit length of the data in (Ar)' Let N = 

t 
E n

j
. It is clear that no generality is lost 

j=l 

in VDP, if the t sequences are packed into any 
consecutive N of the KL columns, provided that N 
is not too large. 

Cost of Orthogonal Computer 

Preliminary investigation has begun in esti­
mating the cost of the additional capabilities of 
the Orthogonal Computer. The results are now 
presented. 

A memory consisting of 215 core locations, 
each of bit length 48, was arbitrarily assigned 
to the HDP computer whicp was used as a base for 
the Orthogonal Computer. The estimate is that an 
additional 35% to 45% of the cost of the HDP com­
puter would be incurred for R = 512 and K = 16. 

I/O LimitationSS 

Computing is so fast using VDP, that input/ 
output limitations may be an acute problem for the 

Orthogonal Computer. If K were as small as 3 
(with a reasopable R), there would be few problems 
for which the machine would ~ be severe1y I/O 
limited. Flexibility with which ~o combat the I/O 
problem increases with increasing K, for fixed R; 
so does the cost of the machine. As R increases, 
VDP computing time remains constant, but 'I/O time 
per block and the cost of the machine increases. 
These are some of the considerations involved in 
choosing R and K. 
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Appendix 

The Orthogonal Computer Instruction 

A typical instruction consists of an op code, 
three addresses (Ai)' and three parameters (Pi)' 

Pi specifies the bit length of the corresponding 
operand at Ai' Each Ai refers to one of the KL 

addressable columns, to one of several vertical 
flip-flop registers, or to a specified horizontal 
register of flip-flops, say, the HDP accumulator4. 
Some of the instructions do not use all the fields. 

Instruction List 

Arithmetic 

Add 
Add magnitude 
Substract 
Substract magnitude 

Timing5 

SA computer is said to be I/O limited, if a sig­
nificant portion of machine time is spent wait­
ing (i.e., not computing), while input/output is 
being performed. 

4 
The HDP accumulator holds the constant used in the 
'compare' instructions; it also permits adding, 
substracting, mUltiplying, and dividing the num­
bers of a block by a constant. 

5The approximate number of memory accesses exclus­
ive of those necessary to fetch the instruction. 



Instruction List (continued) 

Multiply 
Multiply magnitude 
Multiply and accumulate 
Divide 
Divide magnitude 

Compare 

Compare greater than ? 
Compare equal 
Compare equal to or greater 

than 

Move column 
Constant insert 

Logical 

And 
Inclusive or 
Exclusive or 
One's complement 
Count ones 

HDP 

The larger of 
P

l 
and P

2 

2 
2 
2 
2 
1 

C QUESTION 
YES NO 

1 , '. 
COMPUTATION COMPUTATION 

Tl T2 

FIGURE 1 

VDP 

GENERATE 
MASK FOR YES 

PERFORM Tl 
USING MASK 

COMPLEMENT 
MASK 

PERFORM T2 
USING NEW MASK 

FIGURE 2 
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TABSOL 
A FUNDAMENTAL CONCEPT FOR SYSTEMS-ORIENTED LANGUAGES 

T. F. Kavanagh 

Manufacturing Service s 
General Electric Company 

New York, New York 

Summary 

Lack of efficient methods for thinking 
-through and recording the logic of complex in­
formation systems has been a major obstacle 
to the effective use of computers in manufac­
turing businesses. To supply this need, this 
paper introduces and describes "decision 
structure tables, " the essential element in 
T ABSOL, a tabular systems -oriente.d language 
developed in the General Electric Company. 
Decision structure tables can be used to de­
scribe complicated, multi-variable, mu1ti­
result decision systems. Various approaches 
to the automatic computer soiution of structure 
tables are presented. Some benefits which 
have been observed in applying this language 
concept are also discussed. Decision struc­
ture tables appear broadly applicable in infor­
mation systems design~ 

In addition, they are of intere st be­
cause they revise many earlier notions on 
problem formulation and systems analysis 
technique. Decision structure tables will be 
an available feature in GECOM, General 
Electric's new General Compiler, which will 
be first implemented on the GE 225. 

Introduction 

Progress in computers can be broad­
ly divided into two categories. First there is 
the work that essentially accepts computers 
for what they are, and directs its energies to­
ward further refinement of the original hard­
ware, and operating technique. Research to 
improve recording density on magnetic tape 
would certainly fit this description. In the 
second category are the efforts to advance by 
developing new areas of application. This lat­
ter work is directed toward generalizing the 
concepts and hardware, so that they apply to 
an ever -increasing span of problems and situa­
tions. Obviously, both groups are vital; but 

it was this second stimulus -- the desire to 

expand the area of economic application -­
which motivated the research reported in this 
paper. While the earliest beginnings can be 
traced as far back as June, 1955, the primary 
research effort started in November, 1957, 
under the title of the Integrated Systems Pro­
ject. Leadership was assigned to Production 
Control Service, a component in General Elec­
tric's Manufacturing Services. The basic pur­
pose of the Project was to probe the potential 
for automating the flow of information and 
material in an integrated business system. 

Then, as now, computers were making 
significant contributions in many areas. Unfor­
tunately, one of these areas was not, as some 
would have it, in the operation and control of 
manufacturing businesses. Important advances 
were made in specific applications such as ord­
er processing payroll, and inventory record­
keeping; but these represented only a smeU1 per­
centage of the total information processing and 
decision-making in even the smallest manufac­
turing firm. Still these early successes were 
very important. They developed confidence in 
computer performance and reliability; but even 
more, they encouraged systems engineers and 
procedures perf!lonne1 to continue computer ap­
plications research. Similarly, management, 
under growing foreign and domestic competition, 
rising costs, and a seeming explosion in paper­
work requirements, saw intuitively -- or perhaps 
hopefully -- that computers offered a possible 
approach to improved productivity, lower costs 
and sharply reduced cycle times. It was in this 
environment that the Integrated Systems Project 
began a compreh.ensive study of the decision­
making and the information and material pro­
cessing required to transform customer orders 
into finished products - - a major part of the 
total business system for a manufacturing firm. 

The Decision-Making Pr.ob1em 

Once underway, it was soon apparent 
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that there was an enormous aInount of decision­
making required to operate a business. Indeed, 
the number and complexity of these decisions is 
perhaps the most widely underestimated and Illis­
understood characteristic of industrial informa­
tion systems today. Tens-of-thousands of ele­
mentary decisions are made in the typical manu­
facturing business each working day. All are 
necessary to guide and control the many function­
al activities required to design products, pur­
chase raw material, manufacture parts, assem­
ble products, ship and bill orders, and so on. 
The typical factory is a veritable beehive of de­
cisions and decision-makers; for eXaInple: 

"What size fuses shall we use on 
this order for XY Z Company?" -­
a product engineer's decision. 

"What is the time standard for 
winding this armature coil? "­
a manufacturing engineer's 
decision. 

"What test voltages shall be 
applied? 11 - - a quality control 
planner's decision. 

"What should be the delivery 
promise on this customer IS 

order? II - - a production control 
planner I s decision. 

"How much will this model cost. "_­
an accountant's decision. 

This list of elementary day-to-day 
decisions could be expanded to cover all busi­
ness activities. If this were done, the list 
would cover hundreds of sheets of paper before 
each activity listed all the decisions for which 
it was responsible. Moreover, some of these 
decisions are repeated Inany tiInes each day for 
various sets of conditions. In the end result, 
one cannot help but be iInpressed with the multi­
plicity of these detailed choices and selections. 
But more importantly, making these decisions 
costs money, in many cases more money than 
the direct labor required to make the product. 
In addition, business performance is greatly 
affected by the speed and accuracy with which 
this decision-making is carried out. 

Composing a detailed list of these 
elementary business decisions is more than an 
academic exercise. For one thing, such an 
analysis of an actual operating business will 
demonstrate conclusively that these elementary 
decisions are handled quite rationally (which is 
somewhat contrary to popular opinion.) One 

must be careful not to be wsled by quick, super­
ficial explanations which gloss over fundaInental 
reasoning. In our present-day manual systems 
which emphasize files of quick answers, the 
logic behind the decision is often left unrecord­
ed. As a result it is easy to lose contact with 
their rational nature, and frequently we tend to 
feel these decisions are substantially more intui­
tive than is actually the case. At times, some 
persistent as well as penetrating analysis (often 
through extensive interviewing of the operating 
personnel presently on pte job) is required to 
uncover the true paraIneters and relationships 
on which operating decisions are really based. 
This arduous work is more than justified, for it 
e$'tablishes a sound conceptual foundation for 
automation, and hence the practical application 
of the concepts and techniques developed in this 
paper. Thus, once it is established that these 
operating decisions are rational, it should follow 
that they can be structured in a consistent logi­
cal fraInework. Such a structure is presented 
in this paper. 

Operating vs. Planning Decisions 

At this point let us define terIllinology 
a little more precisely, and stress that we are 
speaking about the detailed, elementary decisions 
required to "operate" a business as opposed to 
"planning" one. First, a decision in its simp­
lest form consists of selecting o}1.e unique alter­
native froIn an allowed set of possible actions. 
Operating decisions are defined in the context 
of this paper as selecting the appropriate CO\lrse 
of action in accordance with given problem con­
ditions to operate the business successfully. 
Operating decisions may be assumed to be made 
under "conditions of certainty. II The solution 
for a specific set of problem conditions will al­
ways be the same. Under these preIllises, the 
action or outcome decided on can always be pre­
dicted. In a pragmatic sense, the decision-mak­
ing process may be classed as "causal"; that is, 
B may be said to follow from A. For eXaInple, 
an engineerls decision to install fuses might 
follow from a customer's requirement for inde­
pendent circuit protection. 

The relevant factors or parameters 
affecting the decision can also be determined. 
The relationship values are known. For ex­
ample, in most homes, the current carrying 
capacity of the house wiring is the only para­
meter value one needs to know to select an 
appropria.te fuse. In an industrial application, 
however, the values of at least three additional 
parameter s a.re usualLy required: voltage, time 
and type of fuse mounting. The strategy and the 
alternate outcomes are known; that is, the per-



missible fuses are known. To continue the illus­
tration' the fuse selection may be li:mited to 
tho se carried in the stockroom; otherwise the 
bounds of the operating decision system are ex­
ceeded and the decision-maker would appeal to 
a higher authority. 

To approach the analysis of operating 
decisions from another viewpoint, it might be 
compared to a linear progra:m:ming problem, 
and as will become evident, a linear program.­
:ming solution might be considered as somewhat 
of a mathematical bound for the class of deci­
sion-making systems under discussion. 

These operating decisions are quite 
apart from the planning decisions of a business. 
The "planning", "ad:ministrative" , or "policy" 
decisions in a business are basically those 
prior commitments which per:mitted all the as­
sumptions about operating decision systems in 
the preceding paragraphs (1. e. certainty, caus­
ality, known relationships, etc.) Some exa:mp­
les of planning decisions are: 

"Shall fuses, circuit breakers, or 
both be used on the product line?" - -
a product engineer's planning 
decision. 

"Should this group of parts be 
made on the screw machine or 
from die casting s ? 'I - - a manu­
facturing engineer I s planning 
decision. 

"Should this component be inspected 
before or after the milling opera­
tion? "- - a quality control planning 
decision. 

"What rule shall be used to deter­
mine the correct order quantity?" - -
a production control planner IS 

decision. 

"What is an appropriate cost -of­
money? "- - an accountant's plan­
ning decision. 

The se are typical planning decisions 
made in designing an operating decision system. 
To make the distinction clear, consider the de­
sign engineer who is motivated by cost consider­
ations to put fuses on the economy part of the 
product line, while specifying circuit breakers 
on more deluxe models. Or consider the pro­
duction control planner who selects one of the 
co:m:mon square root formulas for deter:mining 
a11 order quantities. Once he puts this decision 
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rule in the operating system, order quantities 
for every part will be deter:mined using this 
square root formula with specific value s for 
cost, lead ti:me, usage shelf life, etc., appro­
priate to the specific item being ordered. 
Assu:ming the operating decision system is auto­
matic, and this is the intention, the production 
control planner need not make any order quanti­
ty deter:minations himself. Rather he will be 
watching the measures of operating system per­
formance (inventory level, number of shortages, 
ordering costs, etc.) to see how well his deci­
sion rule is working. Incidentally, it1s worth 
noting that the production control systems de­
signer will be using a "cost-of-money" figure 
supplied by accountants and an annual require­
ments figure projected by salesmen. Of course, 
the objective of this fundam.ental decision analy­
sis is to suggest a conceptual scheme which will 
per:mit automating all the routine operating de­
cision-ma.kir1.g required to direct a business, 
thus permitting the engineers, planners, and 
other technical advisors, to concentrate on do­
ing a better job in design. 

Specifying Decision Systems 

But great difficulties still remain. As 
already pointed out, operating decision systems 
are invariably large and complex, containing 
multi-variable, multi-result decision problems 
with sequence of solution difficulties thrown in 
on the side. One serious problem. which arises 
qu.ickly is the actual developm.ent of the decision 
logic itself. Num.erous techniques have been 
proposed ranging from. precise, legalistic ver­
bal statem.ents to com.plex m.athem.atical equa­
tions. Among the se however, it appear s that 
m.atrix-type displays and flow charts are the 
most common. The matrix-type displays 
appear under a variety of nam.es: collation 
charts, tabulated drawings,. standard time data 
sheets, etc. For exam.ple, engineers have fre­
quently used collation charts to show direct re­
lationships between end-product catalog numbers 
and component identification numbers. Typical­
ly, however, co11ation charts are a tabulation 
of past decisions rather than a description of 
the logic used to derive them.. Matrix-type dis­
plays often suffer from. redundancy and frequent­
ly become large and unwieldy as operating tools. 
Similarly, they m.ake no allowance to sequential 
decision-m.aking. 

Flow charts handle this sequence prob­
lem. very nicely. This graphic m.ethod describes 
a decision system. by the extensive use of sym.­
boIs for "m.apping" the various operations. A 
variety of flow chart techniques are used in 

factory methods and office procedures work. 
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They are particularly effective in relatively 
straightforward, sequential decision chains but 
run into difficulty when describing multi-vari­
able, multi-result decision processes. As an 
illustration, ·£low charts have been used exten­
sively to docum.ent the detailed logic of compu­
ter programs; but some harried computer pro­
gramming supervisor s still maintain that the 
best way to transfer program knowledge is to 
reprogram the job. The difficulty of interpret­
ing someone else's flow charts is certainly one 
of the major trials in today's computer technol­
ogy. 

In addition to these more popular tools 
numerous other diagramm.ing or charting techni­
ques have been useful in limited problem areas. 
However, the basic problem remained: there 
was really no effective, uniform method for 
thinking about and specifying decision systems 
as complex as those required to operate a busi­
ness •. To help solve this problem, the Integrat­
ed Systems Project developed a new technique 
which combines key characteristics of earlier 
methods and adds some new features of its own. 
This new technique is called the decision struc­
ture table. The balance of this paper will des­
cribe what decision structure tables are, how 
they work, and the results of their use in 
General Electric. 

Structure Table Fundamentals 

Structure tables provide a standard 
method for unambiguously describing complex, 
multi-variable, multi-result decision systems. 
Thus, each structure table becomes a precise 
statement of both the logical and quantitative 
relationships supporting that particular elemen­
tary decision. It is written by the functional 
specialist in terms of the criteria or parameters 
affecting the decision and the various outcomes 
which may result. 

A structure table consists of a rectan­
gular array of terms, or blocks, which is further 
subdivided into four quadrants, as shown in 
Figure 1. The vertical double line separates the 
decision logic on the left from the result functions 
or actions which appear on the right. The hori­
zontal double line separates the structure table 
column headings or parameters above from the 
table values recorded in the horizontal rows be­
low. Thus, the upper left quadrant becomes 
decision logic column headings, and is used to 
record, on a one per column basis, the names 
of the parameters (POj ) effecting the decisions. 
The lower left quadrant records test values (Pij) 
on a one per row basis, which the decision para-

meter identified in the column heading may have 
in a given problem situation. The upper right 
hand quadrant records the names' of result func­
tions or actions to be performed (R.Oj ) as a re­
sult of making the decision, once agiln on a one 
per column basis. Similarly the lower right 
quadrant shows the specific result values (rij) 
which pertain, directly opposite the approprfate 
set of decision parameter values. Thus, one 
horizontal row completely and independently 
describes all the values for one decision situa­
tion. 

There is, of course, no limit to the 
number of columns (decision parameters and 
result functions) in any given structure table. 
Even the degenerate case where the number of 
de'cision parameters goes to zero is permiss­
ible. Also there is no limit on the number of 
decision situations (rows). Thus, the dimen­
sions (columns by rows) of any specific struc­
ture table are completely flexible, and are a 
natural outgrowth of the specific decision being 
described. A series of these structure tables 
taken in combination is said to describe a de­
cision system. 

Rather than become further involved in 
abstract notation, let's consider some actual 
illustrations to develop an insight into the nature 
of structure tables. For example, the over­
simplified illustrative structure table in Figure 
Z. states that an elementary decision on transpor­
tation from New York to Boston in the afternoon 
is (according to the person'who developed the 
decision logic) a function of three decision para­
meters: Weather, Plane Space, and Hotel Room. 
Weather has only two value states, Fair or Foul; 
Place Space is either OK or Sorry; and Hote-l-­
Room can be Open or Filled. In terms of re­
suIts, ~ or Traina;e-the only permissible 
means of Transportation. Following the illus­
trative problem, we see by inspection that the 
solution appear s in the second row. Therefore, 
'Train is the correct value for Transportation, 
Other Instructions are Cancel Plane, and this 
is the End of the decision problem. 

The intent of this simple structure 
table is to provide a general solution to this 
particular decision situation, and if the problem 
of afternoon trips to Boston ever arises (and one 
assumes that it frequently does), then an opera­
ting decision can quickly be made by supplying 
the current value of Weather, Plane Space, and 
Hotel Room, and, of cour se, sol Ying the struc­
ture table. Solving a structure table consists 
of examining the specific values assigned the 
decision parameters in the problem statement 
and comparing or "testing" these values against 



the sets of decision parameter values recorded 
in the structure table rows. Testing proceeds 
cohunn by column froIn the first decision para­
Ineter to the last (left to right) and thence row 
by row (top to bottoIn). If all tests in a row are 
satisfied, then the solution is said to be in that 
row and the correct result values appear in the 
same horizontal row directly opposite to the 
right of the double line. When a test is not sat­
isfied, the next condition row is examined. 

When a particular structure table' has 
been solved, it is often necessary to Inake Inore 
decisions. To specify what decision is to be 
Inade next. the last result colUInn of the struc­
ture table tnay be assigned as a director to pro­
vide a link. to the next structure table. Notice 
the last row in the illustrative structure table 
whlch specifies that-for any value of Weather, 
with no Plane Space, and no Hotel ROOIn, the 
decision-Inaker is directed to solve the next 
structure table, Transportation, New York-Bos­
ton, a. In. - - which is another structure table 
describing how to select a Ineans of transporta­
tion in the Inorning. 

In a sitnilar fashion, the systeIns de­
signer would use a whole systeIn of structure 
tables to describe a Inore realistic operating 
decision probleIn. He cOInpletely controls the 
contents of each table, as well as its position in 
the seque'nce of total probleIn solution. He Inay 
decide to skip tables, or, if desired, he Inay re­
solve tables to achieve the effect of iteration. 
In any event, the entire systeIn of tables, just 
as each individual structure table, will be solv­
ed using specific decision parameter values ap­
pearing in the probleIn stateInent. In other 
words, solving a set of structure tables consists 
essentially in re-3.:pplying the systeIns designer's 
operating decision logic. 

Having cOInpleted this quick and very 
siInpUfied introduction to structure tables, let 
us now return to consider each structure table 
eleInent in greater detail. This will provide a 
deeper insight into the power of the structure 
table technique, as well as a better understand­
ing of how they are used to describe operating 
decision systeIns. The illustrations are drawn 
froIn actual operating decision probleIns. 

Structure Table Tests 

COInparisons· or tests between prob­
leIn paraIneter values (pv) and decision para­
Ineter test values (tv) need not be siInple identi­
ties, such as those used in the previous illustra­
tion. Actually the prob1eIn parameter values 
Inay be cOInpared to the decision test values in 
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anyone of the following ways in any structure 
table block: 

EQ pv = tv prob1eIn value is equal to 
test value. 

GR pv:> tv probleIn value is greater 
than te st value. 

LS pv < tv proble.IXl value is less 
than test value. 

NEQ pv f. tv probleIn value is not 
equal to test value. 

GREQ pv .) tv problem value is greater 
than or equal to test value. 

LSEQ pv $. tv problem value is less than 
or equal to test value. 

This broad selection of test types (or 
relational operators as they are known techni­
cally) greatly increases the power of individual 
structure tables and sharply reduces size. It 
perIDits testing li.tnits or ranges of values -rather 
than only discrete nUInbers. In Figure 3, TABLE 
1000 uses several difference test types to brack­
et continuous and discontinuous intervals. Also 
note in Figure 3, that the relational operator 
may be placed in the test block immediately pre­
ceding the test value, or in the column heading 
imm.ediately following the decision parameter 
name. When this latter notation is used, the 
relational operator in the column heading applies 
to all test values appearing immediately below. 

Test values are not li.tnited to spe<;i£ic 
nUInbers on alphanumeric cOD;stants (indicated 
by quotation tnarks); a test block may also refer 
to the contents of any name. In this case of 
cour se, the current contents of that named field 
are compared to the problem parameter value 
in accordance with the test type. For example, 
TABLE 1005 in Figure 3 tests the current value 
of INSUL~ TEMP against MAX- TEMP to Inake 
certain that insulation temperature ratings are 
satisfactory. 

In addition to the se simple cOInparisons 
it is also possible to formulate compound struc­
ture table blocks involving two decision parame­
ters or test values using a relational or logical 
operator. 

used: 

OR 

The following logical operators tnay be 

first test value or the 
second test value. 
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AND pV I AND pV2 fir st problem value and 
second problem value. 

NOT fir st test value and not 
second test value. 

Also the truth or falseness of a com­
pound decision parameter or test value state­
ment can be te sted with the symbols: 

T true 

F false 

Lastly, any arithr.netic expression 
may be used in place of a parameter name, and 
complicated blocks involving several names and 
operators are also permitted. Although in this 
latter case, it is worth noting that the language 
capability far surpasses any requirements ex­
perienced to date in formulating operating deci­
sion systems. 

In writing structure tables, the situa­
tion often arises where, except for one or two 
special situations, one course of action is ade­
quate for all input values. The concept of an 
"all other" row was introduced to avoid enum­
erating all possible logical combinations of the 
decision parameter values. The "all other" con­
cept can be verbalized as follows: "if no solution 
has been found in the table th.us far, the solution 
is in this last row regardless of the problem 
values." While this greatly reduces table size, 
it also implies that the problem was stated cor­
rectly and does indeed lie within the boundaries 
of the decision system. The related concept of 
"all" which appears in the Transportation: New 
York-Boston, p. m. can be similarly verbalized: 
Ilregardiess of the problem value proceed to the 
next column." It was introduced so that a given 
table need not contain all permissible states of 
any given decision parameter and also to handle 
the case where a test in a given column had no 
significance. In all the above situations the ap­
propriate structure table blocks are left blank 
signifying no test. 

Structure Table Results 

Similarly structure table results are 
not limited to assigning alphabetic constants or 
numeric values to the result functions or actions 
named in column heading s to the right of the 
double line. Actually there are four result func­
tions: 

IIASSIGN" - which is implied when a 
named field appears as a 
result function. This'indi-

cates that the result value 
appearing in (or named by) 
the solution row is to be 
assigned or placed in the 
field named in the column 
heading. 

I I CALCULATE II - which is implied by the use 

PERFORM -

GO -

of an equal sign after a name 
appearing as a result value. 
This indicates that the results 
of the formula evaluation nam­
ed in the structure table block 
should be assigned to the field 
named as the re sult function 
in the column heading. 
Actually this is not the only 
way to perform calculations 
as any arithmetic expression 
may be used as a result value. 

which performs the data pro­
cessing or arithmetic opera­
tions referred to in the label 
appearing in the result value 
block. When this is complet­
ed, the next result function 
is executed. 

links the structure table to 
the label appearing in the 
re sult value block. There 
is no implied return in a 
GO function. 

Most of these result functions are il­
lustrated in Figure 3 and Figure 4. In Figure 4, 
for example, TABLE 2000 assigns the alphabetic 
constant IIFLAT-STRIP" to ASSEMBLE. In the 
first and third result columns, arithmetic expres­
sions appear as result values. In TABLE 2005 
the implied CALCULATE is used for formula 
evaluation. TABLE 2005 also uses the PER­
FORM function to solve TABLE 2008 or carry 
out some other data processing operations de­
pending on the particular solution row. TABLE 
2005 is linked by the GO operation to TABLE 
2010, 2015, 2020. 

TABLE 1005 in Figure 3 shows an 
interesting use of the GO function. After the 
winding has been specified in TABLE 1000, 
assumedly on a lowest cost basis, the product 
engineer evidently wants to check the insulation 
temperature rating with the maximum expected 
operating temperature. If the insulation temp­
erature rating should turn out to be greater 
everything is fine and the decision-maker pro­
ceeds to TABLE 1007. If not, first TYPE-N 
and then TYPE-T insulation are specified to 



supercede TYPE-F, thus getting progressively 
higher insulation temperature rating s by redir­
ecting the structure table to solve itself. 

Frequently, a result function-or action 
will not have a value for all rows. This is com­
mon when several result functions are determin­
ed by the same structure table. In this situation 
the phrase "not exist" has been used in verbaliz­
ing and the structure table block is left blank. 

The use of formulas as structure 
table results can greatly reduce the size of the 
table. As an illustration, suppose that a given 
result function has twenty-six values (10, 12, 
14 16, ... 60). Ostensibly, the structure table 
to select the appropriate result value would have 
twenty-six rows. This decision could be reduced 
to one row by calculating the re sult value as 
some function of the decision parameter as 
shown in Figure 6. Obviously, all result rela­
tionships are not so conveniently proportional 
but a surprising number of result functions can 
be described with simple linear ~nd exponential 
expressions. The curve fitting problem can be 
greatly simplified by using structure table rows 
to break the curve into convenient intervals that 
can be represented by such simple mathematical 
expressions. 

Preambles and Postscripts 

Each structure table is preceded by a 
heading which identifies the table by number and 
indicate s its dimensions in terms of decision 
parameter columns, result function or action 
columns, and value rows. Tables may be num­
bered from TABLE I to TABLE 9999999 and 
allowance is made for up to 999 decision para­
meter or result functions. Provision is also 
made for 999 condition rows. 

Following the heading is a NOTE which 
may contain any combination of alphabetic or 
numeric characters. The NOTE may be used to 
give the structure table an English name and 
provide a verbal description of the decision be­
ing made. Subsequent to this any labels naming 
expressions or arithmetic calculations referred 
to by "CALCULATE" or PERFORM operators in 
the body of the structure table may be defined. 
For example, note the definition of TIME ,v 1 and 
TIME I\" 2 in TABLE 2005 of Figure 4. The struc­
ture table proper follows BEGIN. 

If no solution row is found in the struc­
ture table proper, or if the structure table has 
executed all results or taken all actions without 
reaching a GO function then control is passed 
to the area directly below the structure table. 
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Here are recorded any special instructions per­
taining to that particular decision. Of particular 
note is the situation where no solution row has 
been found. Such a failure is regarded as an 
"error." In certain types of decision systems, 
this may be exactly what the systems designer 
intended. However, error conditions most often 
indicate a failure of the decision logic to c;ope 
with a certain combination of input values. The 
systems designer should set up to notify himself 
whenever such an error occurs by designing an 
error routine which will provide him with a 
source language printout identifying the table 
that failed and the problem being solved at the 
time. With this problem printout and the source 
language structure tables, the systems designer 
has all the data he needs to trouble shoot the 
system in his own terminology. Thus, each 
structure table should be followed by the state­
ment: IF NOT SOLVED GO 

~--~~-------~~ In this way any structure table failures will al-
ways be uncovered. Frequently, the situation 
arises, as mentioned earlier, that regardless of 
the solution row, the next structure table solved 
is the same. In this case the statement: 
GO . may be written after or 
below the preceding error statement, to serve 
as a wUversallink to the next structure table. 

The areas immediately preceding and 
suc ceeding the structure table proper may also 
be used for input-output, data movement, and 
other data processing operations. 

The Dictionary 

The precise name and definition of 
each decision parameter and result function are 
recorded in a "dictionary. II This dictionary be­
comes an important planning document in the 
systems engineerls work for it provides the 
basic vocabulary for communicating throughout 
the entire decision system. The dictionary 
should note a parameterls minimum and maxi­
mum values, as well as describe how it behaves. 
If the parameter is non -numeric in nature, the 
dictionary should record and define its permis­
sible states. Significantly, the systems engin­
eer formulates both the structure table and the 
dictionary using his own professional terminol­
ogy. 

The dictionary will also prove useful 
in compiling and editing structure tables for 
computer solution. It also follows that problems 
presented to the resulting operating decision 
system must also be stated in precisely the 
same terms as the structure tables. To those 
as yet uninitiated to the perversity of computers, 

this may seem a simple matter; unfortunately, 
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it is not. Interestingly however, one of the 
more promising application areas for structure 
tables appears to be in stating the logic for com­
pilers and edit programs. 

Summary 

The foregoing description of decision 
structure tables is not meant to be a fully defini­
tive language specification. The intention is to 
introduce the reader to the decision structure 
table concept and to discuss their characteris­
tic s in sufficient detail to provide the reader with 
enough understanding to evaluate their inherent 
flexibility and application potential. Many addi­
tional features are available which aid in formu­
lating concise, complete decision structure 
table systems and also to facilitate input-output 
operations, but the reader will find that the 
fundamentals already described are adequate 
for structuring most operating decision logic. 

Automatic Solution of Structure 
Table Systems 

Decision structure tables have proven 
to be an excellent method for analyzing or formu­
lating the logic of complex industrial information 
systems, but after taking such great care to pre­
cisely record each elementary decision in this 
highly structured format, it is only natural to 
speculate on the possibility of solving structure 
tables automatically with an electronic computer. 
Before plunging into the computer world, how­
ever, it is worth noting that some systems en­
gineers have had very favorable experience us­
ing structure tables on a manual basis -- especi­
ally as a problem analysis technique, and also 
in limited applications in manual clerical sys­
tems. 

Numerous methods for solving struc­
ture tables automatically suggest themselves. 
First, the tables could be coded by hand. Such 
an approach would use structure table s as a di­
rect substitute for flow charts. Actually this 
really isn't as bad as it initially sounds. Many 
benefits would accrue from making this precise 
readable format the standard method for stating 
decision logic. It also offers the possibility that 
a series of macro -instructions could be develop­
ed, thereby permitting untrained personnel to 
code tables without detailed knowledge of compu­
ters or programming. However, this approach 
suffers some distinct disadvantages in compari­
son with the other alternatives outlined below. 

Second, a generalized interpretive 
program could be written to solve any structure 

table. This offers the possibility of using a 
translator to work directly from keypunched 
structure tables without any manual detail cod­
ing. This approach makes economical use of 
memory since the basic programming to solve 
any table appears only once and the structure 
table itself offers a compact statement of deci­
sion logic. This reduces the amount of reading 
time required to bring the problem logic into the 
computer. File maintenance via recompiling 
structure table tapes also appears quick and 
simple. However, interpretive programs usu­
ally run more slOWly; and this implies some 
penalty in total machine running time. 

A third approach would be to create a 
structure table program generator in which an 
object computer program would be generated 
from the source structure tables. This approach 
would provide faster computer running time s 
for :maxi:mu:m efficiency. A generator progra:m 
would probably require :more co:mplicated coding 
than an interpretive translator. In addition, the 
generated object program would not be as con­
cise as the structure tables themselves. How­
ever, where co:mputer running tiIne is of para­
mount concern, this approach has considerable 
appeal. 

Because of the available ti:me and 
:money, all the early efforts of the Integrated 
Systems Project toward auto:matic structure 
table solution were essentially interpretive. It 
is interesting that a si:mple, yet adequate, tabu­
lar systems-oriented language could be provid­
ed in this way for so:mewhat less than a man 
year's effort. Si:milarly work to date in the 
area of formula calculations indicates that a 
comprehensive syste:m of mathematical notation 
like that required for scientific work is probably 
not necessary in :many operating business deci­
sion systems. Initial efforts on the IBM 702. 
were followed with experimental TABSOL langu­
ages for the IBM 305, IBM 650 and the IBM 704. 
The se applications to different computer s repre­
sented more than simple extrapolations to differ­
ent pieces of hardware. In each an effort was 
:made to expand capabilities of the language. In 
addition, the peculiarities of the equipment were 
explored, since one great concern was to free 
the user fro:m a programming syste:m usable on 
one and only one computer. As you :might sus­
pect' this wasn't always completely possible on 
the smaller computers, lacking tape or core 
:memories. Nevertheless, the most recent 
Manufacturing Service effort on the IBM 650 
produced a language with named fields, index­
ing, a two-address arithmetic, co:mpletely 
generalized structure table for:mats, and con-

sidering the alphabetic restrictions of the 



equipment, remarkably flexible output formats. 

Although "these experimental languages 
proved quite adequate, one could not help but 
look toward the tremendous power of one of the 
more conventional languages. For one thing. 
the prospects for structure table application in 
other problem areas brightened. and it seemed 
reasonable that this power would be desirable in 
future work. Further our own tabular systems 
language development had brought us to the point 
of direct competition with the major language 
efforts already underway. Here General Elec­
tric's Computer Department entered on the 
scene. The Computer Department was develop­
ing a new concept in compiler building for use 
with General Electric computers. The first 
version of this new General Compiler, called 
GECOM, will be available to GE 225 users in 
May, 1961. It is designed primarily around 
COBOL, with some of the basic elements of 
ALGOL. and is now to contain all of TABSOL. 
To state the results of joining TABSOL with 
GECOM simply, it places the power of a full­
fledged language at the command of every struc­
ture table block. Within General Electric, we 
obviously have a very high regard for the contri­
bution of decision structure tables in information 
systems design. Significantly, the same com­
mittees who developed COBOL are now actively 
investigating tabular systems-oriented languages 
as the language of the future. By drawing on the 
CODASYL work and utilizing the extensive re­
search and development experience already 
available within General Electric, the Computer 
Department expects that GECOM will provide 
users with a system compatible with both the 
present-day common business language, COBOL. 
and also the tabular systems-oriented language, 
TABSOL. Incidentally, the decision structure 
tables appearing in Figures 3, 4 and 5 are writ­
ten in conformance with GECOM specifications. 

Applications of Structure Tables 

As somewhat implied in the illustra­
tions a substantial amount of experience has 
been gained in applying structure tables to a 
wide variety of operating decision-making prob­
lems over the past three years. But perhaps the 
most interesting experience, at least from the 
researcher's point of view, was the very re­
search work which spawned decision structure 
tables themselves. Earlier, it was mentioned 
that the Integrated Systems Project undertook a 
careful study of the essential information and 
material processing required to directly trans­
form customer order s into finished products. 

For example, the product must be engineered 
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prior to shipment, but the payroll, though rever­
ed by all of us can well be done at some qther 
time, out of the main flow of events. Using this 
rough rule of thumb, the following activities 
were studied (Figure 7): order editing, product 
engineering, drafting, manufacturing methods, 
and time standards, quality control. co st ac­
counting, and production control. These activi­
ties account for a fairly substantial portion of 
the business system. Normally, they would in­
clude 100% of the direct labor and 100% of the 
direct material as well as about 50% of the over­
head. All the production inventory investment 
lies within the scope of this system and obvious-
1y most of the plant and equipment investment. 
Fortunately, the inputs and outputs to this sys­
tem are simple and well-defined: the customer 
order comes in and the finished product goes out. 
With this in mind, it was possible to treat all 
activities within these bounds as one integrated, 
goal-oriented operating decision system and 
develop decision structure tables accordingly. 
Working with a small product section in one of 
the Company's Operating Components, a signifi­
cant portion of the functional decision logic was 
successfully structured. Further the resulting 
structure tables were directly incorporated into 
a computer-automated operating decision system 
which transformed customer orders for a wide 
variety of finished products directly into factory 
operator instructions and punched paper tape to 
instruct a numerically programmed machine 
tool. This prototype system was demonstrated 
to General Electric management in November. 
1958. Starting at the beginning, (Figure 8) the 
computer system edited the customer order and 
using the product engineer's design strU'cture 
tables, developed the product's component char-­
acteristics and dimensional details. These in 
turn were used in the manufacturing engineer's 
operation structure tables to develop manufac­
turing methods and determine time standards. 
And so the flow of information cascaded down 
through the various business functions comput­
ing the quality control procedures, the product 
costs and the manufacturing schedules; eventu­
ally issuing shop paperwork and machine pro­
gram tapes. 

Since the completion of this work 
further research and development of the struc­
ture table concept was conducted in a variety of 
functional areas for different kinds of businesses 
in General Electric: defense, industrial appara­
tus, and consumer-type products. In addition. 
structure tables have been used in entirely dif­
ferent applications such as compilers. They 
also appear to hold great promise in complex 
computer simulation prog rams. 
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Benefits of Structure Tables 

As a result of these efforts, we have 
COllle to believe that the decision structure table 
is a fundalllental language concept which is 
broadly applicable to lllany classes of informa­
tion processing and decision-lllaking problellls. 
They offer many benefits in learning, analyzing, 
£orlllulating and recording the decision logic: 

1. Structure tables force a logical, 
step-by-step analysis of the decision. 
First the parallleters affecting the 
decision lllUSt be specified; then suit­
able results lllUSt be formulated. The 
nature of the structure table array is 
such that it forces consideration of 
all logical alternatives, even though 
all need not appear in the final table. 
Similarly, the precise structure table 
forlllat highlights illogical statements. 
This simplifie s manual checking of 
decision logic. The decision logic 
emphasizes causal relationships and 
constantly directs attention to the 
reasons why results are different. 
Personal design preferences can be 
resolved and intelligent standardiza­
tion can be fostered. 

This is no lllean capability. Indeed, 
it was very instructive to witness the 
developlllent of methods and tillle 
standards logic in parallel with the 
development of the engineering logic 
during the initial Integrated Systellls 
Project study. Through analysis of 
the decision structure tables written 
by the various functional specialists, 
everyone was able to achieve an in­
sight into the product and the business 
rarely obtained in so short a period 
of tiIne. The facts of life in product 
design, factory methods, and standar­
dization were brought into the open 
very rapidly. 

2. Structure tables are ea$i1y understood 
by hUlllans regardless of their func­
tional background. This does not 
iInply that anyone can design or create 
new structure tables to describe a 
particular decision-making activity; 
but it does mean that the average 
person, with the aid of a dictionary, 
can readily understand someone 
else's structure tables. Thus, struc­
ture tables form an excellent basis for 
communication between functional 

specialists and systems engineers. 
Structure tables also go a long way 
toward solving the difficult systems 
documentation pro blelll. 

3. Structure table format is So simple 
and straightforward that engineers, 
planners, and other functional spe­
cialists can write structure tables 
for their own decision-making prob­
lems with very little training and 
practically no knowledge of compu­
ters or progralllm.ing. Given a few 
ground rules, regarding formats and 
dictionaries, the structure tables 
written by these functional people 
can be keypunched and used directly 
in operating decision systems with­
out ever being seen by a computer 
programmer. This cuts computer 
application costs as well as cycle 
tiInes. 

4. Structure table errors are reported 
at the source language level, thus 
permitting the £uD.ctional specialist 
to debug without a knowledge of com­
puter coding. 

5. Structure tables solved automatically 
in an electronic computer offer levels 
of accuracy unequalled in manual 
systellls. Note, however, that any 
such mechanistic systellls lose that 
tremendous ability of humans to 
compensate for errors or discrepan­
cies. 

6. Structure tables are easy to main­
tain. Instead of changing all the 
precalculated answers in all the 
files, it is often only necessary to 
change a single value in a single 
table. For example, when changing 
the material specified for a COlllpO­
nent part under current file refer­
ence systems, it would be necessary 
to extract, modify and refile all 
drawings and parts lists calling for 
any variation of the component part. 
U sing structure tables, it would only 
be necessary to alter those structure 
tables which specified the component 
material. 

SU1ll1llary 

In closing, we recommend that the 
reader demonstrate the effectiveness of decision 



structure tables to himself by "structuring" a 
few simple decisions. For example, write a 
structure table which will enable your wife to 
decide how to pack your suitcase of any business 
trip. Perhaps a simple business decision such 
as those mentioned earlier would provide a more 
instructive example. The first structure tables 
are usually difficult to write, because most of 
us do not, as a general rule, probe deeply into 
the logic supporting our decisions. However, 
once this mental obstacle is overcome, "struc­
turing" facility develops rapidly. If the reader 
will take the time to "structure" a few decisions 
and actually experience the deeper insight and 
clarity which this technique provides, then deci­
sion structure tables need no apologist, they 
will speak for themselves. 
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some fifteen different Operating Components 
within General Electric have contributed toward 
bringing these ideas to their present state of 
development and application. Acknowledgement 
is also due Mr. Charles Katz of General Elec­
tric's Computer Department who was instrumen­
tal in joining T ABSOL and GECOM. 
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Decision 
Structure Table 

.•. a re ctangular 
array of terms, 
or blocks •.. 

. . • vertical 
dou ble line .... 

... horizontal 
double line ••• 

.... structure 
table 
values ••• 

Decision 
Logic 

Results or 
Functions 

Column headings 

Table Values 

POI POZ P
03 ROI ROZ R03 

Pll P12 P13 r 1l r lZ r 13 

PZl P2Z PZ3 r2l r22 rZ3 

P 31 P 32 P33 r 31 r 32 r33 

P41 P42 P43 r41 r42 r43 

Figure 1 

R04 

r 14 

r24 
r 34 

r44 



Problem Statement: Select Transportation, New York - Boston, p. m. 

Weather: Foul 

Plane Space: OK 

Hotel Room: Open 

Decision Structure Table: Transportation, New York - Boston, p. m. 

Weather Plane Hotel Trans- Other In- Next 
Space Room portation structions Decision 

Fair OK Open Plane End 

Cancel 
Foul OK Open Train Plane End 

Sorry Open Train End 

Cancel NY -Bost. 
OK Filled Plane a.m. 

Sorry Filled 
NY-Bost. 

a. m. 

Solution: 

If the value of Weather is Foul, and 

the value of Plane Space is OK, 'and 

the value of Hotel Room is Open, 

Then 

the value of Transportation is Train, and 

the value of Other Instructions is Cancel Plane, and 

the value of Next Decision is End. 

Figure 2 
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TABLE 1000. DIMENSION C4 A5 RIO. 
NOTE TABLE FOR DETERMINING DETAIL VARIABLE PART CHARACTERISTICS FOR A 

LINE OF SENSING COILS IN ACCORDANCE WITH CUSTOMER END PRODUCT 
SPECIFICA TIONS. 

BEGIN. INSUL 
SERVICE E UNITS EQ VALUE VALUE TURNS RESIST INSUL 

"DC" "MAMP" GR 180 LS 450 O. ~/I 2.6*TURNS "TYPE-F" . 

"DC" "MVLT" GREQ 45 LSEQ 150 26 .008 1.84 "TYPE-F" 150 
"DC" "MVLT" GR 150 LSEQ 330 13 .002 0.46 "TYPE-F" 150 
"DC" "VOLT" GREQ 0.9 LSEQ 300 60 .002 39.0 "TYPE-F" 150 
"DC" "VOLT" GR 300 LSEQII00 120 .. 002 137.0 "TYPE-F" 150 .. 

"AC" "WATT" 230 • 002 150.0 "TYPE-N" 200 

IF NOT SOLVED GO ERROR"'COIL. 
MOVE "COPPER" TO MATERIAL. 
GO TABLE 1005. 
END TABLE 1000. 

TABLE 1005. DIMENSION C2 A3 R3. 
NOTE TABLE TO MAKE CERTAIN THAT INSULATION TEMPERATURE RATING EXCEEDS 

MAXIMUM OPERATING TEMPERATURE. 
BEGIN. 

MAX"" TEMP 

LSEQ INSUL"-'TEMP 
GR INSUlJvTEMP 

INSUL 

"TYPE-F" 
GR INSUL-vTEMP I "TYPE-N" 

IF NOT SOLVED GO ERROR'VCOIL. 
END TABLE 1005. 

INSUL 

"TYPE-N" 
"TYPE-T" 

Figure 3 

INSU·L"'-' TEMP 

200 
250 

GO 

TABLE 1007 
TABLE 1005 
TABLE 1005 

w~ 
• W 
r-Jo 



TABLE 2000. DIMENSION C3 A3 R4. 
NOTE TABLE TO SPECIFY VARIABLE FACTORY OPERATION CHARACTERISTICS FOR THE 

INITIAL SENSING COIL WINDING FROM PART CHARACTERISTICS. 
BEGIN. 

SUPPOR TN TYPE EQ MATERIAL EQI TURNS tlSTARTkW I ASSEMBLE I FINISH..vW 

" TABED-HOLE" "COPPER" TURNS 
" FLAT-STRIP" "COPPER" LS 100 2 "FLAT-STRIP" I TURNS-2 
" FLAT-STRIP" "COPPER" GREQ 100 TURNS/2 "FLAT-STRIP" TURNS/2 
" FLAT-STRIP'I "ALUMNM" TURNS '12 FLT-STRP'I 
IF NOT SOLVED GO ERROR"'-"COIL. GO TABLE 2005. 
END TABLE 2000. 

TABLE 2005. DIMENSION C2 A3 R3. 
NOTE TABLE TO CALCULATE TIME STANDARD FOR PREVIOUS OPERATION. 
TIME~l = 125*DIA*TURNS. 
TIME"'2 =' 1000*DIA/SQR T (TURNS). 
BEGIN 
TURNS 
LS 15 
GREQ 15 
GREQ 100 

TURNS 

LS 100 

nME 
TURNS + 0.88 
TIME~l = 
TIME-v2 = 

IF NOT SOLVED GO ERROR4ICOIL. 
GO TABLE 2005. 

PERFORM 
SETUP 
SETUP 
TABLE 2008 

Figure 4 

__ ~_GO 
TABLE 2010 
TABLE 2015 
TABLE 2020 
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TABLE 1010. DIMENSION C2 Al R3. 
NOTE COIL QUANTITY DETERMINATION. 
BEGIN. 

SERVICE EQ UNITS NEQ "WATTS" COII.rvQUAN 

"AC" 0 
"DC" OR flAC" T QUAN 

"DC" F 2*QUAN 
IF NOT SOLVED GO ERROR~COIL. GO TABLE 1100. 
END TABLE 1010. 

TABLE 1500. DIMENSION C4 A3 RIO. 
NOTE COIL LOAD DATA AND CYCLE TIMES. 
BEGIN. 

~ERVICE EQ UNIT EQ ~CY EQ IINSP EQ 
"AC" 

"AC" 

"AMPt)" UR "MAMPI' 

"WATT" 

1 In C-O MLTT 

"DC" "AMPS" OR "MAMP" 
"DC" 'I "VOLT" OR "MVLT" 
"DC" "AMPS" OR "MAMP" 

IF NOT SOLVED GO ERROR-vCOIL. 

1 

2 
2 
1 

MIN ..... DATE = TODAY + MIN..vCYCLE. 
NORMNDATE = TODAY + NORM~CYCLE. 
GO TABLE 1510. 
END TABLE 1500. 

'COML" 

"COML" 
IIICOML" 
"GOVT" 

Figure 5 

NORM-"'CYCLE IMIN4-CYCLEI COIL.-vLOAD 

15 11 QUAN 
15 11 2. 2*. QUAN 

15 
15 
20 

9 
9 

16 

o. 9~c QUAN 
0.9* QUAN 
1.4* QUAN 

w~ 
• W 
t-.Jt-.J 



TABLE 1510. DIMENSION C2 A2 R3. 
NOTE COIL PROMISE DATE DETERMINATION. 
BEGIN. 

COIL~LOAD LSEQ CUST DATE 
CUM-vCAP (NORM.vDATE)1 GREQ NORM-1.IDATE 
CUM.-vCAP (MIN"-'DATE) GREQ MIN-vDATE 
CUM""CAP (CUSTNDATE) 
IF NOT SOLVED GO OVERLOAD. 
END TABLE 1510. 

Figure Sa 

PRO:MISE 
CUST"",DATE 
CUST.iV DATE 
CUST""DATE 

GO 
NORM""LOAD 
RUSH....,LOAD 
EMER~LOAD 

W ...... 
• W 
[\.JW 
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- -

-

P R 

0 10 
1 12 P P R 
2 14 
3 16 

· · . 0 25 (2*p) + 10 

· · . 
0 · . 
· o • 

25 60 

o .0. The use of form.ulas as structure table results can 
greatly reduce structure table size, as shown by the si:mple 
straight line expres sion above. Structure tables :may also be 
used to partition cOIIlplicated curves into convenient seg:ments 
as shown below. 0 0 •• 

/ p P R 
I- -- 1--= 

- ---I----i V 
,1 0 PI Ix + a 

!J PI P2 m.x + b 

P2 P3 nx + c 
~ 1----- --

~ ~ -- . --r- I 
I 

I 

0 
, 

PI Pz 1>3 

Figure 6 



PRESENT MAIN LINE SYSTEM 

~ CUSTOMER ORDER 
--------

A REFERENCE ~.MO EDIT 
~ INFORMATION ____ 

~ PLANNING 
~ CARDS 

~ PRODUCT COST 
fB FILES 

~ ~INVENTORY 
/~~ CARDS 

tm W////////~ ~ORDER 
/"/'l FI LES 
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Figure 7 
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INTEGRATED MAIN LINE SYSTEM 

;z == ~ CUSTOMER ORDER 
~------------~ 

ORDER TRANSLATION 

ORDER EDIT 
PRODUCT DETAILS 

METHODS AND 
TIME STANDARDS 

QUALITY 
PROCEDURES 

PRODUCT COSTS 

MAN, MACHINE AND 
MATERIAL TIMING 

VENDORS 
SUPPLY 

MATERIALS 

I I 

TRANSLATION LOGIC 

PRODUCT DESIGN 
STRUCTURE 

MANUFACTURING 
OPERATION 
STRUCTURE 

QUALITY CONTROL 
STRUCTURE 

COST STRUCTURE 

MANUFACTURING 
CONTROL STRUCTURE 

MACHINES: 
AUTOMATIC 
OPERATOR RUN 

• PARTS. SHIPMENT 
• ASSEMBLIES • AUDIT 

Figure 8 
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THEORY OJ' !'ILES 

Lionello Lombardi 

University of California at Los Angeles 

SUlJIDI8ry 

The theor,r of files is a tool for the 
logico-mathematical treatment of automatic non­
numerical data processing problems, such as 
machine accounting, information retrieval and 
mechanical translation of languages. The main 
result which has been obtained sofar from the 
application of the theory of files is the for­
mulation of a Simple pattern to which the data 
flow of any information processing procedure 
conforms, regardless of how many files are in­
volved. The flow of each file can be controlled 
and coordinated with the flow of the other files 
by means of five boolean parameters, called 
'indicators' • 

A specially designed Algebraic Business 
Language exploits this result for the purpose 
of programming digital data processing systems. 
This paper also probes into the impact of the 
theory of files upon the logical design of di­
gital information processing systems. 

Introduction 

The first step of any initiative yielding 
to the scientific knowledge of a new field con­
sists of the definition and development of a 
language and of a notation able to describe the 
phenomena which characterize such a field. In 
particular, the adaptation and the adoption of 
one specific language - the mathematical lan­
guage - has been successfUl in several areas 
where the need for a scientific investigation 
existed. 

That aspect of human activity which seems 
to be growing the fastest (in such a way that 
it sometimes threatens to minimize the impor­
tance of all the others) is the control of 
paperwork. Paperwork is one of the most impres­
sive products of civilized society; its rele­
vance with respect to the other activities 
swells with the progress of our econo.my and 
technology in a way which is liable to jeopard­
ize this progress itself. Paperwork is general­
ly carried out by machines; however, the work 
of organizing, coordinating, defining and de­
scribing it is still performed by humans. '!'he 
proportion of the total available manpower that 
it absorbs grows dangerously with the wealth 
and sophistication of our SOCiety, '!'he phe­
nomenon of paperwork control has reached the 
stage where it should be investigated scientif- . 
iCally, hope~ to repeat the success that 
c~arable scientific approaches yielded when 
they were applied to other fields, in terms of 
promoting the knowledge, suggesting the de-

velopment of suitable techniques, allowing the 
adoption of reliable procedures and collapsing 
the amount of work necessary for carrying 
them out. We believe that this can be done, 
and that the appropriate language for analy'ziDg 
coordinated papervork can only be mathematics. 
The purpose of the theor,y of files is to sup­
port this belief. 

Today the theor,y of files, whose basic 
definitions are stated inl, has been applied 
only to investigation of a specific area of 
paperwork control: the area of systems analysis, 
namely of the analySis and definition of those 
procedures which can be carried out by auto­
matic data processing systems. The specific 
problem of non-numerical data processing has 
been emphasized, the main reason for this being 
the Widely spread prejudice that this field 
cannot possibly be approached scientifically. 

Available Computer Languages 

A wide selection of computer languages 
designed with the aim of providing tools for 
automatizing the programmer's work is available 
today; however, it seems that none of these 
languages can help the systems analyst. We 
think that the main shortcoming of such lan­
guages (which range from Simple assemblers to 
autocoders able to handle macros, and to such 
languages as the IBM Commercial Translator, 
COBOL,J'ACT, now-Matic or AIMACO), are all de­
Signed according to the ~attern that we called 
'v. Nf!1llDIUlll Language' in : a v. Neumann lan­
guage4 is a language in which a phenomenon is 
described by means of a sequence of statements 
divided in two categories - 'executable' state­
ments and 'descriptive' statements - in such 
a way that the statements of the first catego­
ry can be put into a one-to-one correspondence 
with a f'lowchart5 of the procedure involved by 
the phenomenon represented. 

SUch a language can be used successfUlly 
for describing l~outs of information supports 
and sequences of actions, namely procedures G• 

Unfortunately such l.a.ngua.gEB cannot possibly 
provide for a synthetical and compact defini­
tion of the compound of logical conditions to 
which ~ action is subjected, nor for the 
synthesis of a coordinated flow of information. 
lor instance, if we consider a language such as 
COBOL and we try to use it for representing 
integrated data proceSSing procedures, the fol­
lOwing shortComings come to light: 
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(1) Each statement has the form "IF condition 
THEN action", vhere the action denotes a 
sequence of steps and the condition denotes 
a boolean expression. Nevertheless the 
execution of the action is only apparently 
fullY controlled by the condition, in the 
sense that the value 'true t of the con­
dition is necessar,y but not sutficient tor 
the execution ot the action. Such execution 
depends also upon the path ot the control 
through the procedure description, i.e, on 
the result ot several tests, same ot which 
may have preceded by far the action in 

. question. Since the possible path ot the 
control are m;yriad.l then .. for determining the 
circumstances under which a certain action 
is to be executed, one should carefully 
trace through all ot the procedure descrip­
tion. It is usually not practicallY teasi­
ble even to identify such circumstances, 
nor to correlate an action to the original 
input information. What is needed is a 
language by which all of the conditions 
affecting an action are compounded into a 
unique statement: such a language aould not 
possibly contain any control statements, 
and consequentlY could not possibly be a 
v. Neumann language. 

(2) Most documents are selt-explaining, as tar 
as their patA between different procedures 
is concerned. However, one ot the big 
problems in systems analYsiS is the de­
termination of when and under which circum­
stances a document is entered into or issued 
trom a procedure. This Yell known problem 
of efficientlY coordinating the data flow 
becomes one of the main issues ot systems 
a.nalysis whenever one vants to save com­
puter time by increasing the degree of pro­
cedural parallelism. In COBOL, li~e in any 
other v. Neumann language, the f'low of in­
formation can only be controlled by means 
ot input-output statements, and by a proper 
organization of the control statements, i. e, 
by caretuJ..ly planning the flow of the ma­
chine control through the procedUre de­
scription. In such easy applications as 
payroll, where the degree ot parallelism 
cann6t possiblY be high, COBOL can be used 
successfully. On the contrary, consider 
applicatiOns in which, for the sake ot 
saving computer time, several fUnctionally 
independent procedures that relate only by 
the tact that they operate on sets ot tiles 
which are sorted with respect to the same 
key- (1.e., they are equiordered), are run 
in parallel: then the use ot such a lan­
guage leads to long and exceedingly in­
volved descriptions. Even in same conwa­
ratively simple applications, where tor 
example J billing and accounts receivable (or 
ordering and accounts payable) are run in 
parallel, together with the updating of a 
master tile and with the preparation ot 
data to be used later by the management 
(such as notes tor exceptional cases, re-

quested reports, or totals), COBOL can com­
pare favorably to some of the available 
autocoders as a programming language. How­
ever, it does not seem to be an appropriate 
analysis language for such applications. 
In cases vhere the degree of parallelism is 
high and the data floy is complex, slich a 
language should be discarded. 

(3) Last and least, it appears that the use of 
same type of kindergarten English, vhose 
adoption seems to be due to the objection­
able assumption that it is more readily 
understood by top executives than any more 
appropriate technical notation, is an obsta­
cle to the use ot COBOL even as a program­
ming language, because it yields comparati­
velY long procedure descriptions. However, 
this last shortcoming is really irrelevant, 
primarilY because it atfects COBOL onlY as 
a programming language. Further this short­
coming can be removed easily tr0lll the lan­
guage without a:ny major change in the logic 
ot its translators. It has also been a 
cammon experience ot individuals program­
ming with COBOL that after a fey statements 
one drops the English of the language and 
uses abbreviations, especially for such 
phrases as "IS GREATER THAN". 

BaSic Ideas 

In addition to the trend which finallY led 
to COBOL, two independent ideas vere developed 
in the past tew years. Both aimed at the crea­
tion of a system language suitable for describ­
ing non-arithmetic data processing procedures. 
The first philosophy can be summarized as tol­
lows: t We must algebrize the non-numerical pro­
cedures, in order to be able to applY to them 6 
successful algebraic languages such as Fortran t 

The other can be expressed in this vs:r: 'The 
major problem in non-arithmetic data processing 
is the one ot detining and COOrdinating the 
data flow: betore ve can design a system lan­
guage, we should discover and tormulate the 
laws ot the data flow'. 

The theory of f'iles is but a syntheSiS of 
these two ideas: from a methodological stand­
point the theory of files consists of expressing 
and a.nalyzing algebraicallY the lays ot the data 
flow. 

'rhe starting point in the t'heory of :tiles 
was the remark that if ve consider the merger 
between two files ot records as a sum, while the 
merger ot them with selection of all those re­
cords whose key is not present at least once in 
both files as a product, then, under certain 
circumstances, sets of equiordered files can be 
reduced to boolean algebrae of files. In such 
an algebra the most common file handling oper­
ations can be defined by simple algorithms: for 
exampleJa k-~ sorting-by-merging procedure 
(either tixed or variable length-sequence) is 
represented as a recurrent summation of k files. 



From a file-theoretical standpoint, a pro­
cedure is broken down into a sequence of PULSES, 
at whose beginning new records are (logically) 
entered, during which calculations are per­
formed, and at whose end all the compl.etely 
processed records are (logically) filed. Only 
records whose keys all have the same value are 
considered in a pulse. A sequence of pulses 
during which all the records of all the files 
involved in a procedure, whose keys equal a 
certain constant, are processed, is called a 
PHASE of the procedure. 

!he language that we propose for de­
scribing procedures is the Algebraii BuSiness 
LaDguage (ABL). It is described in , where the 
basic concepts of the theory of files are de­
fined mathematica.lly. In its siq>lest version, 
an .A:BL procedure description consists of a 
sequence of 'conditional. expressions', namely of 
sets of executive orders ('actiOns') subject to 
boolean expressions ( , conditions' ). 1'!lere are 
no control statements, and the conditional ex­
pressions are to be considered sequentiaJJ.y8, 
1. e., from the first to the last. 

Optimization. 

Simplification. In each procedure, a LO­
GICAL ORDER ot the files involved must be given 
by the anaJ..yst. 

Definition 1: "Let us denote by DD the data 
description of a given problem; then two proce­
dures are 'DD - equivalent' if they both trans­
form arty input organized according to DD into 
the same output". 

Definition 2: "A procedure P is called 
DD - optimized' if, i1n the space {DD, p} of 
all the procedures which are DD - equivalent to 
P, P both 

a) Max1:m:izes the parallelism of logical 
input-output 

b) Minimizes the amount of internal proces­
sing". 

From an applicati ve standpoint, only' DD -
optimized procedures should be considered: 
notice that the maximization of the parallelism 
ot the physical input-output flow can be ob­
tained only on the basis of a logical one whose 
parallelism is maximized. 

l(ow two pulses are alw~s independent as 
far as internal processing is concerned, and 
two phases are alw~s independent as far as 
input-output is concerned: consequently, in 
order to DD - optimize a procedure, it is suf­
ficient to 

I) Ma.x1m1ze the parallelism of the logical 
input-output within the pulse. 

II) 1I1n1m1ze the amount of internal proces­
sing wi thin the phase. 

Since ABL is a sequential language, point 
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II can be accomplished si~ly by performing a 
precedence analysis and a simplification of the 
procedure deSCription. (Notice that this would 
not be easy in a v. Neumann language). 

In order to discuss point I, let us con­
sider separately input-output. 

Input. The pattern which maximizes the 
input-parallelism is unique for arr:r phenomenon 
of the kind we are considering. More preCisely, 
it consists of the following: 

1) No more than one record per each file 
is entered during any: pulse. 

2) Consistently vi th 1), a record belongi~ 
to any file 7 is entered as soon as it 
is both logically available and all the 
records pertaining to the current phase, 
belonging to any one of the files which 
precede 7 in the logical order, have 
been entered. 

3) A phase is over at the end of its pulse 
during which the last record pertaining 
to it is entered. 

4) Logical input is only performed at the 
beginning of the pulses. 

Since the input pattern is unique tor any 
procedure of the type we consider, the analyst 
is not burdened with the control of the input: 
he can just forget about it. The only' ~ in 
which the analyst using ABL can control input 
is by designing the logical order of the files 
properly. 

ouput. Unlike input, which is :f'ulJ.:y 
standardized and automatiC, output is entirely 
and directly controlled by the analyst. In 
fact, the conditions under which documents are 
to be issued al~s depend upon the particular 
phenomenon considered. Furthermore, the de­
termination of these conditions can otten be 
considered as the major single factor in the 
representation of this phenomenon. Since it 
is important to have these conditions com­
pounded in a single synthetic expression tor 
each output file, the output of each file is 
controlled by a J'LOW CONTROL EXPRESSION, con­
Sisting of the name of the file in question 
followed by a boolean expression denoting the 
condition under which a record of this file 
is to be issued. 

Indicators. The boolean variables used for 
writing a procedure description (which are 
compounded into boolean expressions in ABL, 
while they consists of sets of parts of differ­
ent statements in any v. Keumann language) may 
have three origins: 

a) They may be generated by comparison 
between numeric, alphameric or boolean 
entities. 
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b) They may be determinations of condi­
tional variables. 

c) They may be references to the current 
configuration of the data now. 

While no need arises for a special discus­
sion of the conditions of the first two catego­
ries, we may point out that vhen any v. Neumann 
language representation of a procedure is used, 
such references are generated by means ot care­
ful constructions and comparisons of keys. The 
theory of files suggests that the layouts of the 
keys of the files are given as part of the data 
deSCriptiOns, and that the keys of the records 
are constructed and related automatically to 
each other as part of the I-~ operations: con­
sequently, these operations are not under the 
control ot the analyst. Since references to the 
current status of the data flow are otten neces­
sary for making decisions which condition the 
phenomenon considere~'ABL must have a provision 
for giving to the analyst complete information 
about it. The configuration of the data flow 
never changes during any pulse, and from a file­
theoretical standpoint it can be fully characte­
rized by stating the occurrence or omission of 
five conditions for each one of the files in­
volved. This can be done by means of INDICATORS, 
five boolean variables per each file, whose value 
never varies during any pulse. 

Let us explain intuitively what each in­
dicator of a file F stands for: 

1) the 'EXISTENCE INDICATOR' of F denotes 
the logical presence of a record of F. 

2) The 'LEFT DERIVATIVE' and the 'RIGH'l' 
DERIVATIVE' of F characterize those 
records of F whose key has a value 
which is dif:f'erent from the value of 
the keys of all the preceding [foll~, 
respectively] records of !'. 

3) The 'INPtJ'lI - OUTPUT INDICATOR' of l' 
by being "on" denotes those pulses 
where a record of F is entered or is­
sued. 

4) The 'NON CONFOIOO:n INDICATOR' of F 
characterizes those records of F which 
are incomplete or non-conforming. 

Four further indicators, which are CODDD.on 
to all files, are available in each representa­
tion of a phenomenon for denoting its initia­
tion and closure. No other information re­
garding the data flow is needed in any DD -
optimized procedure/in whose description the 
indicators can be used without any distinction 
from the other boolean variables. 

The setting and resetting of the indica­
tors (i.e., the 'indicator logic') is per-
formed automatiCally according to the rules 
stated inl (section 3), where the laws of the 
automatic data flow control-in particular of 
the input mechanism - are stated in terms of 
relations between the indicators. The set of 
values of the indicators in each pulse is a 
synthesis of the data flow'control related to it, 

and is obtained as a subproduct of the logical 
operations involved by the input and output. 

Though the analyst can neither set nor 
-.reset any indicator, an indicator can be used 
anywhere in the procedure description: in par­
ticular in the nov Control ExpreSSions. 

Hardware and ~lementation 

Se~ential Languages 

Like a mathematical synthesisot a physical 
phenomenon can be stated by means of a sequence 
of equations, so the theory of files allows one 
to express a mathematical synthesis of a data 
processing phenomenon in ABL by means ot a se­
quence ot condi tional expressions. In both 
cases the sequence is considered fram the first 
e~ation (or conditional expreSSion, respective­
ly) to the last one. '.rhe flow control expres­
sions are conditional expressions where the 
action consists of issuing a record. Neither 
the equations of an algorithm nor the condition­
al expressions of a non-arithmetic procedure 
description are in a one-to-one correspondence 
Wi th the steps of any path that a machine 
con.trol would follow in order to carry them 
out. Unlike any v. Neumann language, ABL is 
'se~ntial' and. asynchronous Wi th respect 
to the ~ the procedures described are imple­
mented. 0l1r study shows that languages having 
this structure are generally more suitable than 
v. Neumann languages for approaching data procES­
sing phenomena scientifically. 

It one vants to utilize the theory of files 
not just as a method of investigation but also 
as a tool for the automation of systems analYs1s, 
he must be able to develop mechanically sequen­
tial outlines into flow chart~ 1. e., into pro­
cedures. More precisely, one should be able to 
transform the sequential representation of any 
data processing phenomenon into a DD optimized 
flow chart. Apparently this transformation 
can quite easily be made because of the stan­
dard input scheme, and of the fact that each 
conditional expression completely determines 
one specific issue of the procedure, like the 
presence of a record in an output file or the 
value of a certain field of an output record, 
etc. A difficulty arises when we consider the 
interrelationship between the indicators of the 
various files; for exampl~, the condition-part 
of a certain conditional ~xpression, say EA., 
may depend upon the setting ot an indicator of 
an output file whose records are filed under . 
the control ot another :now Control ExpreSSion, 
say EB, which comes af'ter EA in the sequential 
description. Conse~ently, the sequence ot 
operatiOns must be properly arranged in order 
to avoid unnecessary look-aheads. Such rear­
rangements should not be performed by the 
analYst, ·who should only be concerned With the 
statement of the information processing effect 
of the phenomenon, rather than With procedural 
considerations or with any simplification of 



the correlation among expressions. This simpli­
fication should be carried out by the machine, 
together with the entry and removal of auxiliary 
conditional expressions and with the optimiza­
tion of the arithmetic for.mulae. This last 
operation should not be bounded to the optimiza­
tion of each single for.mula within itself, but 
should consist of analyzing the relations bet­
ween different expreSSions in order to avoid 
unneeded repetitions. The study of Semapraxis 
codifies the eflorts of analysists toward the 
intelligent utilization of computers for such 
machine simplifications. In particularlO by 
Feldstein enunciates such details. 

The ABL representation of a phenomenon can 
also be mechanically checked against tautologies 
and contradictions which may depend on an er­
roneous analysis of the phenomenon itself; for 
instance, in the above example, if the phenome­
non is coherently stated, EB should depend 
neither directly nor indirectly on EA. 

Special Devices. 

Most stored program data processors are 
provided with an operating system which in­
cludes efficient buffered input-output sub­
routines. Same data processors-the IBM 7070-74, 
for example - have specific features (scatter­
read-gather-wri te, highly parallel memory bus, 
block transmission with rearrangement, etc.) 
which allow the programming of very efficient 
I-¢ routines, including the necessary key logic. 
In accordance with the adoption of same new 
ideas in the design of machinery, (consider for 
instance the non-arithmetic processor of the 
IBM Harvest, Or the systems with a Fixed+Varia­
ble structure9) it is sometimes convenient to 
wire such routines.l which become parts o;r modules 
of the hardware. 

When a system bas to carry out procedures 
represented in ABL a similar alternative arises 
for the indicator logic,which will be program­
med for standard systems and built for more ad­
vanced and specialized ones. 

A third case where the issue of a compa­
rison between wired and programmed t giant com­
mands' varies with the modernity and specializa­
tion of design of the basic hardware is related 
to the handling of the compact and flexible 
t table operations t with whose use ABL provides 
the analyst (seel , section 2). 

'rhe implementation of ABL is significantly 
conditioned by the hardware considered: it 
appears more difficult to carry it out for stand­
ard, strictly stored-program computers than for 
more advanced ones. The generation of a prog­
ram on the basis of an ABL representation is 
more direct in the last case; we think that this 
is due to the great deal of overlap among the 
ideas which l~d the engineers to such advances 
in systems design and those which yielded the 
theory of files. 
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However, the indicator logic is new only 
as a method. Most control statements and logi­
cal operations written by programmers using 
COBOL or symbolic machine languages should be 
considered as a clumsy, approximative and only 
partially satisfactory replacement for a clean, 
universal and fully automatic indicator logiC. 

Let us conclude by pointing out that the 
advantages of adopting sequential languages 
does not seem to be bounded to the use of large 
scale data processing systems. On the contraryl 

such languages appear to be intimately related 
to the nature of non-numerical data processing 
phenomena, regardless of their implementation; 
for example, a sequential language quite similar 
to ABL proved to be well suited for representing 
procedures to be carried out by very simple, 
externally programmed data processors3. 

'* The preparation of this paper was spon-
sored by the Office of Naval Research. Repro­
duction in whole or in part is per.mitted for any 
purpose of the United States Government. The 
author also wishes to express his gratitude to 
M. Alan Feldstein for his help in the prepara-
tion of this paper. 
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POLYPHASE MERGE SORTING -- AN ADVANCED TECHNIQUE 

R. L. Gilstad 
Minneapolis-Honeywell Regulator Company 

Electronic Data Processing Division 
Wellesley Hills, Massachusetts 

The Challenge 

Designers of generalized library sort 
packages for the current and future generations 
of computers are faced With the challenge of 
developing new techniques that provide more 
effective use of these computers. The major 
concern in developing efficient sorting routines 
in the past has been the internal sorting tech­
niques, that is, the methods of manipulating the 
data wi thin the memory of the computer. Precise 
methods must, of course, be devised for each new 
computer design but, due to the extensive effort 
in this area in the past, few new internal sort­
ing techniques have been introduced for, what 
are in computer terms, generations. 

Emphasis is now being given toward more 
effective use of the tape drives used by a sort 
routine. Progress toward this end was reported 
in the paper "New Merge Sorting Techniques It , 
presented by B. K. Betz at the September 1959, 
ACM Conference. The paper then presented 
described in theory an advanced merging tech­
nique, originally called the !tN-lIt technique, 
now a proven method better known as the Cascade 
sorting technique. 

The intention of this paper is to introduce 
a new merging technique, polyphase sorting. The 
following section describing the application of 
the Cascade sorting technique is included to aid 
in the understanding of the evolution of the 
polyphase sorting technique and to prepare for 
certain comparisons later in this paper between 
the various sorting techniques. A complete study 
of the changes in merge sorting would, of course, 
include a description of the process that is 
referred to in this paper as normal merge sort­
ing and that has such names as two-w~ merge 
sorting and three-w~ merge sorting. Because of 
the extensive use of normal merge sorting tech­
niques, this paper assumes a general understand­
ing of them by those interested in this subject. 

Cascade Sorting 

The Cascade Merge Sort, available exclu~ 
sively in the Honeywell 800 automatic program­
ming packages, is a two-segment program, the 
first part of which is an internal sort that 
creates strings of ordered items. The internal 
sorting method that has proven to be most advan­
tageous to Honeywell for generalized sort gener­
ators uses the "tag bin It concept which transfers 
internally only a tag representing each item 
stored in memory, instead of transferring the 
entire item. Further, the "replacement" sorting 

method is added, which creates strings of 
ordered items substantially longer than the num­
ber of items stored in memory. This method, in 
fact, provides strings averaging twice the num­
ber of items stored in memory for randomly 
ordered input data and longer strings if any 
pre-ordering exists in the input file. 

The only real difference between the inter­
nal sort, hereafter called the pre-sort, for 
Cascade sorting and normal sorting is the manner 
of distributing the strings onto the work tapes 
used by the sort. Normal merge sorts require 
that the strings be distributed alternately on 
two work tapes for a two-w~ merge sort, or on 
three tapes for a three-way merge sort. The pre­
sort for a Cascade sort distributes the strings 
of sorted records onto all but one of the work 
tapes available to the sort. The ideal distribu­
tion at the completion of the pre-sort is such 
that there are fewer strings on each succeeding 
tape. The exact distribution is based on one of 
several sequences, depending on the number of 
tape drives being used. The sequence for the 
three-tape sort is the Fibonacci sequence: 

1,1,2,3,5,8,13,21 •••••••• , 

while the sequence for a four-tape Cascade sort 
is the sequence: 

1,1,1,2,3,5,6,11,14,25,31 •••••••• 

If the pre-sort for a four-tape Cascade sort 
creates 14 strings, the distribution of strings 
on the three work tapes would be six strings, 
five strings, and three strings. 

The determination of the distribution of 
strings by the pre-sort can be in the form of a 
pair of counters for each tape being used as an 
output tape. One counter for each of the tapes 
contains the ideal distribution for one merge 
pass, while the second counter contains the total 
number of actual strings written on each tape. 
Strings are written onto each tape until the pair 
of counters for that tape are equal. When all of 
the counters are equal for one ideal distribution, 
the ideal distribution counters are updated to the 
values for an additional merge pass. The flow of 
the distribution process and the use of the 
counters is shown for the pre-sort for a four­
tape Cascade sort in Figure I. 

The second segment of the Cascade sort is a 
merge sort, during which each pass over the file 
begins with an N-1 ~ merge (where N is the 
number of tapes available to the sort) that con­
tinues until the work tape with the least number 
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of strings is depleted. As each tape is depleted, 
the way-merge is decreased by one until the pass 
is concluded by a one-way merge (copying), 
depleting what was the longest work tape. 

Many methods for demonstrating the flow of 
information through a merge sort have been devel­
oped and used, none of them to the satisfaction 
of this writer. A picture does, however, replace 
a thousand words, so a Cascade sort is pictured 
in Figure II using numbers representing the num­
ber of strings on each tape at each step of the 
sort. 

The power of this sort technique is derived 
from the fact that a larger percentage of the 
file is merged during the most powerful way­
merge than is merged during the later phases of 
the pass; more specifically, for a four-tape 
sort, 52% of the file is merged during the three­
way merge, 36% is merged during the two-way merge 
and only 12% of the file is involved in the copy 
portion of the pass. A normal four-tape merge 
sort is continually performing a two-way merge, 
giving it a merging power of 2. The Cascade sort 
for a like number of tape drives has a merging 
power of 2.3. That is, it reduces the number of 
total strings by a factor of 2.3 each pass. 

A further advantage of the Cascade sort, 
which is implied above, is that an odd as well as 
an even number of tape drives, and as few as 
three, can be used to full advantage. 

The sort routines described above assume a 
read-backward merge sort, which eliminates the 
need for rewinding during the sort, but which 
requires the copy portion of each pass in order 
to reverse the order of the remaining strings on 
the long work tape. (A read-backward sort must 
switch the strings from ascending order to de­
scending order on successive passes.) The same 
Cascade method is available for a read-forward 
merge, which must, of course, rewind certain 
tapes during and between passes. This allows the 
elimination of the copy portion of each pass, as 
all of the strings are always in ascending 
order. In order for a read-forward Cascade sort 
to retain a time advantage over normal read­
forward merging, tape rewinding must be a faster 
process than the tape reading process. All of 
the comparisons between normal merging and 
Cascade sorting involving rewinding are based on 
the Honeywell 400, which has a 3 to 1 ratio of 
rewind speed over reading speed. 

Polyphase Sorting 

Further advancement in the efficient use of 
the tape drives used by a sort has developed 
from the Cascade sort. This new sorting tech­
nique is called the polyphase sorting. 

The polyphase sort, like most merge sorting 
methods, is a two-segment program, a pre-sort 
segment and a merge segment. Again the pre-sort 
distributes the ordered strings onto all but one 

of the available tapes, based upon one of several 
sequences. The sequences for the various tape 
drive configurations are as follows: 

3-tape 1,i,2,3,5,8,13,21 ••.•••• (It is noted that 
this is the same sequence as for a 3-tape 
Cascade sort. Indeed, a .3-tape read­
forward Cascade sort is the same as a 3-
tape polyphase sort.) 

4-tape 1,1,1,2,2,3,4,6,7,11,13,20,24 ••••••• 

5-tape 1,1,1,1,2,2,2,3,4,4,6,7,8,12,14,15 ••••••• 

6-tape 1,1,1,1,1,2,2,2,2,3,4,4,4,6,7,8,8,12,14, 
15,16 •••••••• 

During the merge segment of a polyphase sort, 
a continuous N-l way merge is performed. At the 
beginning of the polyphase merge segment, the N-l 
way merge is performed until the tape with the 
least number of strings is depleted. At this 
point, instead of switching to an N-2 way merge 
as in the Cascade sort, an N-l way merge is con­
tinued, merging additional strings from the tapes 
not yet depleted, with strings from the tape just 
created. Because this process is continued 
throughout the merge, there is no point that can 
be called a complete pass over the file. Instead, 
there are a series of phases, wherein some strings 
from a number of previous phases are merged 
together. 

The four-tape polyphase sort example in 
Figure III shows the effect of this technique 
through an entire sort. The numbers given in the 
example represent the number of strings at each 
of the various phases of the sort. 

Comparing the Merges 

The power of a polyphase sort is not easily 
discernible or readily comparable to other sort­
ing techniques, due to the fact that the phases 
described above cannot be compared directly with 
the passes of the other techniques. A normal 
two-way merge sort, for example, processes the 
entire file being sorted during each merge pass 
and in so doing, reduces the number of strings 
by one-half. Another way of stating this is that 
during each merge pass the length of each string 
is doubled. This is abbreviated by stating that 
a two-way merge pass has a power of two. Each 
step shown in the polyphase sort example processes 
only a portion of the file. Therefore, while it 
can be determined from the tables in Figure IV 
that a four-tape polyphase sort has a power of 
1.88 per step as compared with a power of 2.0 for 
a normal sort using four tape drives, the poly­
phase is significantly faster because it proc­
esses only 62% of the file during each step as 
compared to the 100% processed during each step 
of a normal sort. 

Figure I contains two tables which show the 
total number of strings that are merged together 
for the given number of steps of the merge sort 



for four- and six-tape normal, Casoade, and poly­
phase sorting. The tables also give the peroent­
age of file prooessed for eaoh step (phase). 
This peroentage is the average for a number of 
phases in the case of polyphase sorting, the 
speoifio values varying slightly from phase to 
phase. 

Further oomp1ications in the oomparison of 
the power of the several sort teohniques include 
the internal maohine speeds, the amount of simul­
taneous operation, whether the sort must ino1ude 
tape rewinding, and if so, the relative rewinding 
speed of the tape meohanism. Figure V relates 
normal, Casoade, and polyphase sorting as per­
formed on a oomputer capable of reading baokwards 
and performing all prooessing at full tape speed. 
The figures for the polyphase sort have been 
equivalenoed to the same peroentage of file proc­
essed as for the normal and Casoade sorts. 

Figure VI desoribes graphioally the rela­
tionship of the power of the three sorting teoh­
niques. The graph shows the number of passes 
over the file required to merge a given number of 
strings together into one string with four tape 
drives. 

No attempt has ~en made to date to imple­
ment a read-backward polyphase sort. The delay 
in doing so is caused by the neoessity to alter­
nate asoending and descending strings on eaoh of 
the work tapes during the pre-sort. This alter­
nation of strings destroys the advantage of a 
variable length string pre-sort whenever some 
degree of pre-ordering exists in the input to the 
sort routine. Pure random input data would be 
sorted faster with a polyphase sort, but expe­
rienoe indicates pre-ordering to some extent 
exists on the majority of files to be sorted. 

Read-Forward Merging 

Merge sort routines for oomputers that allow 
only read-forward tape operations must rewind a 
oertain percentage of the file between suoceeding 
steps of the merge. A normal two-way merge, for 
example, rewinds the entire file after each pass 
of the merge, but, because the file is distributed 
evenly on two tapes that can be rewound simul­
taneously, the rewind time for eaoh pass is one­
half of the time to rewind the entire file. 

A read-forward Cascade sort rewinds a larger 
percentage of the file eaoh pass than does a nor­
mal sort, but retains a time advantage beoause it 
does not process the entire file eaoh pass. A 
four-tape, read-baokwards Cascade sort performs a 
three-way merge over 56% of the file, then must 
rewind the newly created output tape and the 
input tape that was depleted. The rewind of the 
depleted input tape, which del~s the operation, 
is over 19% of the file during the first pass. 
The Cascade sort then performs a two-way merge of 
34% of the file and rewinds the same percentage 
of the file. The remaining 10% of the file on 
the third tape becomes input to the next pass and 
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is not prooessed during the our rent pass. After 
the three-way merge on the seoond and all suoceed­
ing passes, the input tape to be rewound ino1udes 
information used during the three-w~ merge and 
two-way merge of the previous pass as well as 
during the three-way merge of the ourrent pass. 
This amounts to 56% of the file. Normally, there­
fore, the Cascade sort processes 90% of the file 
and rewinds 90% of the file during eaoh merge 
pass. 

A read-forward polyphase sort rewinds the 
same percentage of the file that it prooesses 
each phase. A four-tape read-forward polyphase 
sort processes and rewinds 62% of the file during 
eaoh phase. As did the Casoade sort, the poly­
phase sort depends upon a faster rewinding proc­
ess than merging process to maintain its full 
advantage over normal sorting. 

Conclusion 

The two new merge sorting techniques pre- . 
sented here are now working programs, proven to 
be the tools for a more effioient computer opera­
tion. Cascade sorting provides the effioiency 
for read-baokward operations. Polyphase sorting 
provides the effioiency for read-forward opera­
tions and in the future oan provide the effi­
cienoy for read-baokward operations in cases 
where the file to be sorted has been determined 
to be in random order. 

There is one hardware prerequisite which 
should be mentioned, whioh is neoessary to obtain 
the full advantage of Casoade and polyphase sort­
ing. If reading and writing are to be simul­
taneous, the sort must be able to read from one 
tape and write on another in aQY oombination 
involving the tapes used by the sort. 

It is worth noting that improved approaohes 
to the common, everyday oomputer problems are 
still being found in an era where the emphasis is 
on new uses for computers and new designs for 
computer hardware. 
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One merge pass 

Two merge passes 

Three merge passes 

Four merge passes 

Tape A 

14 

8 

3 

o 

2 

1 

o 

1 

Tape B 

11 

o 

o 

2 

(2) 

1 

o 

1 

o 

Ideal Distribution Counters 
(Total Number of Strings) 

Distribution of Strings 
(Successive String Numbers) 

Tape A Tape B Tape C 

1 1 1 

3 2 1 

6 5 3 

14 11 6 

Tape A 

1 

4,5 

7,8,9 

15-22 

Tape B 

2 

6 

10,11,12 

23-28 

Tape C 

3 

13,14 

29-31 

Fig. 1. String Distribution for a Cascade Sort 

Tape C 

6 

o 

2-
(5) 

2 

o 

1 

o 

1 

(1) 

o 

Tape D 

o 

6 

(6) 

(6) 

3 

1 

o 

1 

(1) 

(1) 

o 

Output from pre-sort 

After three-way merge of 6 strings 

After two-way merge of 5 strings 

After copy of 3 strings 

End of first pass 

After three-w~ merge of 3 strings 

After two-way merge of 2 strings 

After copy of 1 string 

End of second pass 

After three-way merge of 1 string 

After two-way merge of 1 string 

After copy of 1 string 

End of third pass 

After three-way merge of 1 string 

End of sort 

Note: All numbers represent the number of strings on each tape at each 
step_ The underlined numbers are the output at each step_ 

Fig. 2. Cascade Sorting. 



Tape A Tape" B Tape C Tape D 

13 20 24 Output of pre-sort 

7 11 13 After three-way merge of 13 5 trings 

7 4 6 After three-way merge of 7 strings 

3 

1 

l± 
2 

1 

2 

2 

1 1 

After three-way merge of 4 strings 

After three-way merge of 2 strings 

After three-way merge of 1 string 

1 After three-way merge of 1 string 

Fig. 3. Polyphase Sorting. 

Table A -- Four-tape Sorts Table B -- Six-tape Sorts 

Steps Normal Cascade Polyphase Steps Normal Cascade Polyphase 

1 2 3 3 1 3 , 5 
2 4 6 5 2 9 15 9 
3 8 14 9 3 27 ,5 17 
4 16 31 17 4 81 190 33 
5 32 70 31 S 243 671 65 
6 64 157 57 b 729 2353 129 
7 128 353 10, 7 2187 8272 2,3 
8 256 793 193 8 6561 29,056 497 
9 ,12 1782 3,5 

10 1024 4004 653 % of file 100% 100% 55% 
11 2048 8997 1201 processed 
12 4096 20,216 2209 per step 

% of file 100% 100% 62% 
processed 
per step 

Fig. 4. Number of Strings Merged. 

Table of power of read-backward sorts with a tape limited operation. 

Number of Tapes Power of Power of Power of 
Used by Merge Normal Sorting Cascade Sorting Polyphase Sorting 

3 tapes 1.5 1.61 1.80 

4 tapes 2 2.30 2.79 

5 tapes 2.5 2.94 3.44 

6 tapes 3 3.62 3.86 

Note: The power of a sort, as used here, is the factor by whiCh 
the number of strings decreases for each full read time 
of the file being sorted. 

Fig. S. Power of Three Sorting Techniques. 
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Fig. 6. Comparison of Three Sorting Techniques. 
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THE USE OF A BINARY COMPtJrER FOR DATA PROCESSING 

By: Gomer H. Redmond, Manager, Corporate Systems and 
Procedures Department, Chrysler Corporation 

Dennis E. Mulvihill, PH.D, Senior Consultant, 
Touche, Ross, Bailey & Smart 

Summary 

Considerable discussion has been generated 
concerning the use of binary computers for purely 
data processing functions rather than decimally 
oriented machines. The purpose of this paper is 
to present a case for the use of binary machines 
for data processing based on our experience at 
Chrysler. 

Based on experience gained by the Chrysler 
Corporation, the paper discusses the need for 
the establishment of a consistency of concept 
for all phases of problem organization and 
solution. 

Specific advantages inherent in binary 
machines are pointed out, along with some of the 
pitfalls which would result if the consistency 
of concept is not maintained. 

In their treatment of this subject, the 
authors also sound a warning to those concerned 
with the development and use of generalized busi­
ness oriented languages that certain abilities of 
binary machines have not been exploited in these 
programs. 

In ~eir·conclusion, the authors state that 
the abilities of binary-type machines will become 
more indispensable as management techniques, 
extant to~, become more sophisticated and 
acceptable. 

* * * 
There is an unresolved controversy as aired 

in past issues of the A.C.M. Communications, 
journals, sympoSiums, conclaves, and sundry other 
learned gatherings as to the superiority or infer­
iori ty of binary or decimal mode computers in a 
data processing situation. Both have enjoyed 
sufficient success in the field to warrant a fur­
ther look at the controversy. 

Let ~s examine some of the arguments offered 
for each type of computer. The binary mode ma­
chine is said to have the following attributes: 

1. Scaling ability allowing information 
representation to be in any format; 

2. Arithmetic circuitry is more efficient 
in design and speed; 

3. Compactness of data in memory; 

4. Tape compression factor. 

On the other hand, the decimal mode machine 
arguments center around the following: 

1. No transformation required between 
internal and external representation; 

2. Machine language is readily understood 
by people; 

3. Variable length fields are more advan­
tageous to business-type problems. 

The above points, from both sides, can be 
well taken; however, the arguments have been 
abstracted from the environment in which busi­
ness data processing is being used, that is, the 
productive use of data processing as a means to 
efficient business management. This is the 
arena where efficiencies and deficiencies of data 
processing machines can be appraised. 

The virtues (and vices) of decimal and 
binary mode machines have been discussed since 
man first im,plemented computer hardware, and the 
argument will continue until the perfect machine, 
whatever that might be, is developed and marketed. 

I do not intend to discuss the theoretical 
virtues of either type of computer. I will dis­
cuss the controversy in terms of Chrysler's ex­
periences with both types. In the automobile 
industry, Chrysler has pioneered in the use of 
EDP. One of the first IBM 702' s was installed 
in our Service Parts Center in 1954. Since then, 
we have added seven IBM 650's, one UNIVAC I, one 
UNIVAC File I, and two IBM 709's, one of which 
has recently been replaced by an IBM 7090. In 
addition, an H-Boo will be installed next spring 
and four IBM 1401' s will be installed in the next 
few months. 

At Chrysler, data processing equipment is 
selected on the basis of providing the best equip­
ment for the systems in which it will perform. 
And so it is with all practitioners in the field 
of data processing. At some point in the game, 
users must choose between the two modes, binary 
or decimal. The success:f'u.1 outcome of their ven­
ture will depend on their effective use of the 
equipment regardless of the mode inherent in the 
selected hardware. It is to this effective use 
that this paper is aimed, and, by our experience 
at Chrysler, to prove that more effective use can 
be made of' a binary-type computer for data pro­
cessing applications of the magnitude of those on 
the computer in Chrysler's Corporate Information 
ProceSSing Center (C.I.P.C.). 
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Chrysler's 7090 installation, C.I.P.C., is 
used primarily for business data processing, as 
was its predecessor, the 709. Included in the 
list of applications are the following major jobs: 

Vendor Releasing 
17,000 Item, Bi-Monthly; 

Hourly Payroll 
65,000 Employees, Weekly; 

Production Reporting 
20,000 Orders Daily; 

Warranty Claims & Payments 
100,000 Monthly. 

We have operated C.I.P.C. for the past year and 
one-half with the binary mode computer and will 
continue to rely on this type of machine indefi­
nitely. 

Since our frame of reference is the 709/90, 
our specific examples are in terms of these two 
computers, but I believe much of what will be 
said will apply to any binary-type machine of 
this magnitude commercially available now or in 
the future. 

The earlier binary-type machines, of the 
701/704 Vintage, could not be used efficiently as 
data processors. There was a problem in the 
translation of decimal data to biliary for intern­
al processing and vice versa for output opera­
tions. Coupled with this, and really quite sig­
nificant, is the fact that serially-organized 
machines could not perform data transfer opera­
tions without interlocking the central processing 
units. The desire for business-oriented systems 
to share computers with their Engineering counter­
parts, along with other pressures, finally led 
the various equipment manufacturers to equip 
their newer binary machines with the ability to 
perform I/O functions in parallel with internal 
processing. It is, therefore, the binary-type 
machine with the ability to perform I/O in paral­
lel with internal processing that will be con­
sidered here. 

In planning to use any large-scale computer 
for data processing, it is important that suffi­
cient study be performed in all phases of the 
system design, programming and installation. In 
planning the use of a large-scale binary machine 
for data processing, it is very important, let 
me say it again: very important, that a consist­
ency of concept be formed early in the system­
design phase and maintained throughout all phases 
to problem solution. 

This consistency of concept, if you will, is 
to think in binary for a binary-mode computer. To 
exploit the logical power of the binary-type 
machines, binary techniques must be used. There 
is a great danger in utilizing a binary-mode 
computer by applying data processing problems 
conceived in the decimal mode. Al though with 

their flexibility, binary machines can be used 
in this manner, it is inconsistent with the organ­
ization and logiC inherent in the computer and 
carries a penalty of more involved programming 
and, in many cases, longer running times. 

There is a natural tendency to use decimal 
representation in record formats; if a binary­
type computer is to be used the consistency of 
concept should dictate that "abbreviated binary" 
representation be established wherever possible. 
For straight numeric representation this should 
afford a thirty per cent improvement over decimal 
representation. 

Although the 709 and 7090 can perform data 
conversion much more efficiently than earlier 
binary machines, the time required to convert 
from decimal to binary and back to decimal can 
be significant in a large data processing appli­
cation. Our payroll, in the next few months will 
increase to over 100,000. An evaluation of the 
desirable mode of representation for our payroll 
master file indicated that there was a saving of 
34 minutes on the 709 in each payroll run, if the 
master file were binary rather than decimal. . 

The representation of information in binary 
not only applies to magnetic tape and internal 
operations but to other I/O media. The use of 
binary-type data, external to the computer, can 
be quite significant, where portions or all of a 
standard tab card can be utilized in "Chinese 
binary" type codings expanding the information 
content of the card upwards to 12 times its nor­
mal alphameric capacity. At Chrysler, this char­
acteristic of the binary mode machine has been 
most significant in our production scheduling and 
reporting system. As you may realize, there is 
considerable amount of information that must be 
coded for each automobile for production report­
ing. The many accessories and option combina­
tions must be reported in order to accurately 
record production. It would be a gross under­
statement to say that this information could not 
be represented in Hollerith in a single punched 
card. Using a binary representation we are able 
to obtain a maximum of 340 option and accessory 
codes in 34 columns of a single card. The balance 
of the card in Hollerith gives us a total of 386 
segments of information in a single card. This 
ability of card stretching is not limited to 
binary machines--but only recently has this abil­
ity been adapted to the decimal machines and then 
at some added cost of hardware and programming 
effort. 

In many, if not all, data processing problems 
conditional tests must be made prior to processing 
input or output data. Binary coding techniques 
allow single bits to operate as flags or indica­
tors, and single words or strings of bits to 
contain all of the necessary conditional flags to 
efficiently operate on the problem at hand. In 
the decimal machine this ability has been restric­
ted to using individual characters which require 
several bit positions f~~ a single flag. Quite 



recently some decimal machines have allowed ac­
cess to bits, but even now there is considerable 
processing and programming effort involved. Bit 
manipulation inherent in binary machines affords 
the programmer with the ability to perform 
Boolean algebra techniques which become signifi­
cant in terms of economical use of memory, pro­
gram simplification and job running times. 

The bit manipulation ability of binary 
machines permits the programmer and in effect the 
program, to perform subtle logical tricks of 
character, instruction and operation modification 
in a minimum of time. This ability is particu­
larly useful in housekeeping operations, table 
construction, address modification and decision­
making functions. Very significant gains have 
been obtained in table construction in our Vendor 
releasing and production reporting systems. The 
original system for vendor releasing called for 
a two dimens ional master file. One dimens ion in 
parts number sequence and the "other" which was 
part within major assembly sequence. Originally, 
it was necessarY to sort one file to the order of 
the other and then sort the extended output for 
summarization and publication of the requirements. 

At the present time, the forecast for all 
assemblies is placed in memory in a variable 
length table. This variable length table is con­
trolled by a bit coded basic finder table. The 
advantage in this case is the effective use of 
memory in the binary mode machine. We know 9f no 
decimal oriented memory that could handle this 
table. The resultant saving on the 709 from this 
change was a reduction of processing time from 7 
hours to 65 minutes. 

Related to the comparison of bJnary and 
decimal modes of information representation is 
the variable and fixed word length characteris­
tics. The binary is typically fixed word oriented. 
The decimal mode computer on the other hand has 
been both variable and fixed word length. One 
argument frequently offered for the decimal mode 
computers has been in terms of those with a vari­
able word length. Yet, the use of the term 
"variable word length" with most of these machines 
may be a misnomer. Many so-called variable word 
length machines, operating character by character, 
examined closely are nothing more than fixed word­
length machines operating with short "six-bit" 
words. As a result, the argument on this point 
is reduced to size-of-word not variable-versus­
fixed-word length. 

The fixed word binary machine at first glance 
does not have the address flexibility possessed by 
variable word length machine. But our experience 
with the 709 and 7090 proves otherwise, there are 
in the 709/90 word four addressable segments; the 
decrement, tag, address and prefix which facili­
tate packing and unpacking with a minimum cost in 
instruction time. Most other binary mode machines, 
I believe, have similiar abilities, along with 
semi-automatic or automatic masking operations 
and half-word logic. 

151 
3.5 

There is no question that variability is a 
desirable attribute in a computer, but only in 
terms of bits not characters. Tbis value of 
considering infor.mation in terms of bits is most 
significant in dealing with indicative informa­
tion. 

I would agree that for the representation 
of quantitative and indicative information in 
most data processing applications 36 bits is too 
large a word, but as stated above a "six-bit" 
word is also too large. 

Another powerful ability of the binary ma­
chine is its ease of accepting varying formats of 
coded information. Anything which can be repre­
sented by bits can be handled by a binary machine. 
Thus far, this has been limited because the input/ 
output devices attached to computers were oriented 
toward the decimal type machine. This ability 
becomes quite significant when communications 
schemes link remote operating locations with a 
variety of equipment to centralized data process­
ors. Format restrictions, in the centralized 
machines, would require that all equipment be 
compatible as far as information structure. But 
with the flexibility of bit coding, a binary 
machine can be programmed to handle all forms of 
bit coding. In some of the newer super-scale 
systems this ability has been further developed 
to allow the hardware to perform operatiOns in 
the more popular coding formats, including binary, 
octal, bcd, bch, telegraph 5, 6, 7 and 8 level 
coding. The next generation machines will partake 
of the flexibility now existent in present day 
binary machines. 

The measure of effectiveness for any computer 
is to a large extent dependent upon the program­
mer, the program, the compiler and operational 
system. 

In the case of programmers , it is frequently 
alleged that there is an aptitude difference be­
tween those operating on binary mode and those 
on decimal mode machines. This allegation is 
carried to the point that the type machine rather 
than the type of problem is the major determinant 
in the selection of programmers. Programmers, in 
the Chrysler context, are those individuals re­
sponsible for translating business systems, which 
are frequently lacking exact definition, to com­
puter systems. At Chrysler, the work performed 
in C.l.P.C. is business data processing, and 
therefore, most of our programmers are business 
systems oriented.' The presence or absence of 
mathematical backgrounds in our programming staff 
offers no correlation to the effectiveness of 
resulting programs. One conclusion we have drawn 
is that programmers first-machine-training has a 
great deal of bearing on their success as pro­
grammers of binary-type machines. Programmers 
originally trained on binary equipment tend to be 
better able to adapt to any machine, whereas the 
converse does not necessarily hold. 

In the case of programming, much has been 
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said with regards to the increased effort requir­
ed for binary-type machines over decimal machines. 
Granted that instruction repetoires for the former 
are usually more extensive than those of compara­
ble decimal machines. The restrictiveness of the 
instruction lists in decimal machines may neces­
sitate more involved programming for large complex 
business systems. On the other hand, micro­
programming ability inherent in binary machines 
allows a more precise ~pproach to the solution of 
complex functions. We realize that subtleties in 
binary techniques are not readily discernible to 
the neophyte programmer, thus the learning curve 
may be some'What longer, but the results are more 
significant in terms of programming efficiency. 

Significant gains have been made in the 
field of generalized compilers, both in the 
scientific and commercial areas. We are heart­
ened by the progress that has been made in the 
compiler area to date, but are not placing our 
programming effort "on-the-line" with these until 
the specifications call for, where pOSSible, a 
binary approach to problem solution. The user 
must be wary of sacrificing program effectiveness 
for programming efficiency. 

In the specific area of generalized business 
compilers, we "WOuld like to sound a warning to 
those of you with binary machines who hope to 
utilize these to great advantage over your present 
programming methods. It is apparent to us that, 
to date, little effort has been expended in the 
generalized compilers to sufficiently utilize 
binary techniques which will provide efficient 
programs such as we have conceived and implemented 
in lower-level coding systems. 

Included in Chrysler's programming standards, 
are general rules which inhibit the use of gen­
eralized sub-routines where tailored routines 
would better serve to improve program efficiency. 
The use of true macro-generators which produce 
effective routines is preferred over the library 
call and copy type sub-routines. 

It is apparent to us that the role of scien­
tific computation in operations research projects 
is dependent upon an inexpensive, well-structured, 
data collection system, where data collection is 
not the major objective but a planned by-product 
of routine, clerical data processing applications. 

Many companies have moved head-long into the 
field of OperatiOns Research only to find that 
specific information was not available or could 
only be obtained at great cost. With the Corpor­
ate Information ProceSSing Center at Chrysler we 
have centralized the flow of information on sev­
eral major systems. Data is now available on the 
personnel, production, sales and inventory system 
in the same format and collected automatically 
from the routine data processing operatiOns now 
on the computer. In this respect the utilization 
of these centrally located files for operation 
research type analysis along with the proven 
scientific capabllities of a binary type machine 

puts at Chrysler's disposal the means to a vastly 
improved business management system. 

Specifically, in the analytical area, Chrys­
ler is currently supplying the Industrial Rela­
tions Dept • with personnel and payroll data on 
the characteristics of the total hourly-rated 
work force. This information was formerly col­
lected on the basis of a 5i sample. Even with 
lO~ of the data, with less time and effort neces­
sary to prepare and compile the needed data for 
our negotiatiOns it will be more efficient and 
factual. The ease of retention and accessibility 
of historical data also makes the application of 
other OR projects in the personnel area feasible. 

In the Sales area, dealer order and retail 
sales information which serves as input to our 
Production Reporting and Scheduling application 
will be edited, and condensed to serve as further 
input to a sales forecasting system, which is now 
in the simulation stage. 

It is interesting to note that the data is 
collected as a by-product of the Produetion 
Reporting application and the resultant forecasts 
will be utilized as input to our Production 
Programming system, tying together two of the 
major applications now in our centralized opera­
tions. 

other OR projects currently under stud;y are 
in the manufacturing area, concerned with man 
assignment and assembly line balanCing, and in 
the financial area where Cash budgeting and 
Finance Company simulations are in the otting. 
Both of these studies require extensive data 
which has been extrapolated from current data 
processing applications. 

Although we have all played lip service to 
the concepts of management by exception tech­
niques, there is every reason to believe that the 
data processing function will assume greater re­
sponsibilities in the area of management decision 
and the requirement for large volumes of data out­
put will decline. Furthermore, as data processing 
applications move from the performance of routine 
clerical functions to the integration of opera­
tions research type solutions of management prob­
lems, the computational and logical abilities of 
binary machines will become more indispensable. 
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HIGH SPEED PRINTER AND PLOTTER 

Frank T. Innes 
Briggs Associates, Inc. 
Norristown, Pennsylvania 

Summary 

The Model 1063 High Speed Printer 
and Plotter is a magnetic tape fed de­
vice for high speed plotting up to 6000 
points per second in ten simultaneous 
plots, at the same time it prints anno­
tations for grid lines and draws the 
grid lines, all with the output paper 
moving at 10 inches per second. 

The machine may also be used 
simply as a high speed printer. In 
this mode, it can print 4000 lines per 
minute with 100 characters per line. 

Design Philosophy 

General 

The general design philosophy 
for this machine was to produce a 
highly flexible off-line device which 
would minimize programming require­
ments and machine time for the 
IBM 7090 computer which generally pre­
pares the input tapes. Since it was 
early recognized that the required 
generality would require the machine 
to have quite substantial high speed 
printing capabilities, it was speci­
fied that the machine be capable of 
operating simply as a printer. The 
success with which this philosophy 
has been implemented is indicated by 
the fact that soon after delivery 
the customer modified the machine to 
accept tapes produced directly by 
his analog-to-digital format conver­
sion equipment without any computer 
processing; thus it operates valu­
ably as a semi-quick look recorder. 
Likewise as a printer, it is used 
on a routine basis to print tapes pre­
pared for conventional IBM printing 
equipment. The customer is now making 
minor additions so that the machine 
will perform binary to octal conver­
sions; in general this will completely 
eliminate such operations on the com­
puter. 

Detailed Design 

The detailed design naturally 
stressed reliability and ease of main­
tenance using readily available com­
ponents. Since this machine was built 
on a limited budget, cost was a very 
important object also. Commercially-

available digital modules are used in 
the control logic areas. In the other 
parts of the machine where circuits 
are used by the hundreds special pur­
pose modules were built. Worst case 
design with extreme derating of com­
ponents was employed in combination 
with rather eclectic logic. 

Each circuit area was examined 
from the point of view of least cost. 
As a consequence, the machine is a 
mixture of diode logic, diode-tran­
sistor logic, and resistor-transistor 
logic. 

Overall Logic 

A very general block diagram of 
the machine is shown in Figure 1. 
There, it is apparent that the machine 
is really two machines, having a 
common input and output. When print­
ing only is to be accomplished, only 
the print section is used. When anno­
tated plotting is to be done, the 
machine starts off as a printer, allow­
ing the title block to be composed at 
the programmer's discretion. When the 
first record containing data points 
occurs, then the machine switches con­
trol of printing to the plot section 
where it remains until the graph in 
question is complete. With this mode 
of control, it is a simple matter to 
coordinate the annotation data with 
the grid lines_ If it is desired to 
establish a time reference with a grid 
line, the necessary command is placed 
on the tape next to the appropriate 
data point; if it is desired also to 
annotate this line, then the alpha­
meric data with a print command are 
placed there also. The machine then 
operates to route the data in such 
fashion that the required alphameric 
data is waiting for the print command 
when it occurs. Subject to minor 
programming restrictions, all these 
operations are done without interfer­
ing with the steady flow of data re­
quired for a time history plot. 

Output Device 

The output device for this 
machine is a Hogan Laboratories Model 
HPP-110 multiple stylus recorder. 
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This unit is a facsimile type recorder 
wherein a mark can be made on moist 
electrolytically-treated paper by 
application of an appropriate current. 
The HPP-IIO has 1024 writing styli 
which press II-inch wide paper against 
a reciprocating steel strip with paper 
moving at five or ten inches/second. 
In the process of plotting or printing 
currents are applied through the styli 
to the bar; the electrolytic process 
involved removes metal from the bar 
and leaves it in the paper; the dura­
tion and magnitude of this current are 
such as to produce highly uniform. 
elementary dots approximately one one­
hundredth inch in diameter. Wear on 
the stylus assembly is abrasive only; 
currently, about 30,000 feet of paper 
have been proces~ed without degrada­
tion of marking capabilities. 

Output Circuits 

Requirements 

The HPP-110 is provided with its 
own direct-coupled power amplifiers 
one each for the 1024 styli. It is 
readily apparent that some means must 
be supplied to provide signals of the 
proper magnitude and duration for the 
power amplifiers. Plotting require­
ments call for 1000 such circuits; de­
tailed consideration of the logic re­
vealed that separate printing circuits 
must be supplied also in addition to 
auxiliary inputs for drawing of grid 
lines. 

The specification of two paper 
speeds also leads to two signal dura­
tion requi~ements. Since the same 
elementary dot must be produced at 
either speed, provision had to be made 
for inexpensive variable duration con­
trol, explicitly for 0.5 milliseconds 
and for 1.0 milliseconds. 

Circuits 

The actual output circuit card is 
shown in Figure 2. The basic element 
is the NOR flip-flop with a 2-input 
diode gate on-the set input. The 
upper row of five units provides for 
five out of the 1000 possible plot 
points with the diode gate forming the 
second level of a 1000 point binary 
decoder. 

The lower four units correspond 
to the first four elements in the 
seven styli that are used for a column 
of printing: three corresponding units 
on the next card provide a total of 
seven, which gives the space dimension 

to the 7xll space time matrix used to 
form alphameric characters. The diode 
gates on these flip-flops are used for 
column selection in conjunction with a 
column counter. 

In the general case, the outputs 
of two flip-flops are buffered to­
gether' to drive the power amplifier. 
Other innuts to the diode buffer pro­
vide grid line drawing capabilities 
under either tape or patchboard con­
trol. 

Signals to energize particular 
styli are of nominal ten-microsecond 
duration, ~ither from the print 
section character generator or from 
the plot decoder. Signals to de-ener­
gize are applied to the reset inputs. 
In the case of printing, the column 
counter selects a particular column 
whose styli are energized depending 
upon the state of the character gener­
ator. The flip-flops correspond1ng to 
this column are then turned off by an 
unconditional output from the column 
counter fifty columns later; since the 
column counter operates at either 50 
or 100 kc, the required 0.5 or 1.0 
millisecond durations are automatic­
ally generated. 

A similar operation determines 
the duration of the point to be plot­
ted; however, this is done under 
patchboard cont~ol since it may be 
necessary to plot line segments rather 
than elementary dots, particularly 
when the plotting rate is low. 

Plot Section 

Plot data and associated control 
characters are stored in small coin­
cident current memory buffers from 
whence information is transferred to 
the plot section under control of the 
plotting rate clock. Ten bits out of 
the twelve possible in two IBM tape 
frames are used to specify a point to 
be plotted. The occurrence of a plot­
ting rate clock pulse triggers the 
readout of data from the memory, a 
read cycle being required for each 
tape frame. If the two frames are 
recognized as a data point, then the 
ten bits are assembled in the plot 
register from whence they are decoded 
and used to set the appropriate output 
flip-flop. If a control character is 
recognized, it is decoded and the 
appropriate action taken; at the same 
time another pair of memory read 
cycles is initiated until a data point 
is found. If more than one plot is 
programmed, the above process is re-



peated until the preset number o£ simul­
taneous data points has been extracted; 
although "simultaneous" data points are 
actually plotted at 20 microsecond in­
tervals, the distance between such 
points on the output graph (0.2 mils) 
is naturally not distinguishable to the 
naked eye. 

As noted above, provision is made 
so that various mark lengths can be 
selected by the operator. Likewise, 
the operator must speci£y number o£ 
simultaneous plots and plotting rate. 
Plotting rate capabilities vary £rom 
1000 to about 16 points per second per 
curve, allowing great latitude in ex­
panding or contracting the time scale 
with the same input tape and paper 
speed. 

Print Section 

A block diagram o£ the print 
section is shown in Figure 3: its 
essential parts are the recirculating 
bu£fer, the character generator, the 
column counter and the trace counter. 
The heart o£ this section is the 
character generator which stores, in 
wired £orm, the particular selection 
o£ dots in the 7xll dot matrix corres­
ponding to each o£ the 56 characters. 
The character generator is divided 
into eleven sections corresponding to 
the eleven rows in the matrix; the 
rows are selected by the trace counter 
which advances one step £or each scan 
o£ the column counter across all 100 
columns. The recirculating bu££er is 
synchronized with the column counter 
to select, on the basis o£ the IBM 
BCD codes stored therein, the proper 
group o£ dots £rom the character gener­
ator £or each character on each trace. 
Thus, during the £irst trace, the top­
most portion o£ each character in each 
column is placed on the paper with the 
process repeating until the £ull char­
acter is printed. 

Character generator outputs drive 
all columns simultaneously with the 
column counter being used to determine 
the proper column. Normally characters 
are printed in succeeding columns 
starting with the £irst, in the order 
in which they appear on tape. Column 
counter outputs are, however, also 
brought out to a patchboard where 
characters may be rearranged in any 
desired manner and where provision is 
also made to repeat any character once. 
This £acility makes it possible to 
minimize BCD data on tape during plot­
ting, space codes in e££ect being 
supplied by the patchboard. 
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A special feature o£ the print 
section lies in the brute £orce design 
o£ the character generator, there being 
one speci£ic diode corresponding to a 
given dot in a given character. This 
approach to the character generator 
was the cheapest under the circum­
stances, but in combination with great 
redundancy in the 7xll matrix character, 
it has the merit that the loss o£ a 
diode is scarcely noticeable even to 
the close observer. 

Input and Tape Organization 

The tape is organized generally 
in records, either straight BCD £or 
printing only or combined BCD and 
Binary £or annotated plotting. The 
IBM 36-bit binary word is divided into 
three l2-bit groups with 10 each re­
quired to speci£y a data point. Con­
trol characters are provided on the 
tape and indicate how data is to be 
interpreted and control its routing 
either to plot or print input bu££ers. 
A record may include up to 71 data 
points and up to 100 BCD characters. 
Tape operates at 150 inches per second 
with 200 bits per inch. 

Plot Section 

Since the tape operates start­
stop in order to provide £lexibility 
in the machine as regards paper speed 
and plotting rate, then two bu££ers 
must be supplied in the plot section 
to guarantee the required steady flow 
o£ data; in general, one is being 
£illed while the other is being emptied. 
Circuitry and logic would allow the 
processing o£ 10,000 data points per 
second; however, tape characteristics 
and bu££er size limit the maximum to 
about 6000. 

Print Section 

Two bu££eTs are also provided in 
the print section in addition to the 
recirculating bu££er discussed above. 
1£ the machine were to operate simply 
as a printer, these bu££ers would be 
unnecessary. Operation o£ the machine 
as a printer-plotter with generality 
and ease o£ programming appears to de­
mand the presence o£ the two print in­
put bu££ers: other arrangements were 
considered and £ound to place severe 
limitations either on the program or 
on the per£ormance o£ the machine. 



Reliability and Performance 

Reliability of the machine has 
been excellent. Precise statistics 
are available only for a period of 300 
hours. During this period, there has 
been but one component failure, a 
transistor. \Vhen the number of com­
ponents is considered - 9000 tran­
sistors, 12,000 diodes, about 40,000 
other components - this is quite a 
good record. 

Likewise, the performance has 
been excellent; except for the tran­
sistor failure noted above, mainten­
ance has been limited to the routine 
care necessary to the proper perform­
ance of the tape transport and occa­
sional adjustment of the recorder 
mechanism. 
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A DESCRIPTION OF THE IBM 7074 SYSTEM 

R. R. Bender, D. T. Doody, P. N. Stoughton 
Product Development Laboratory, Data Systems Division 

International Business Machines Corporation, Poughkeepsie, New York 

Summary 

A new data processing system, the IBM 
7070 1, was described at the 1958 Eastern Joint 
Computer Conference. Recent progress has 
resulted in the creation of an expanded family 
of 7070 systems, exemplified by the announce­
ment of the IBM 7074 system. 

The 7074 represents a dramatic new ap­
proach to data processing system growth, and 
is the second major step in the 7070 data system 
family. It is not an entirely new system, but 
rather an improvement within the 7070 frame­
work. It enables a customer whose workload 
has outgrown his 7070 equipment to upgrade his 
system over a weekend, thus achieving multi­
plied performance without reprogramming and 
without excessive disruption of his operation. 

Specifically, the increased performance 
is achieved by use of: 

1. A new, high-performance arithmetic 
and program unit called the 7104 high-speed 
processor. 

2. Improved-performance storage units, 
the 7301 models 3 and 4, which operate on a 
four-J.Lsec cycle instead of the six-J.Lsec cycle 
used with the basic 7070. 

These units are substituted for their coun­
terparts in the 7070 system. 

Compared to a two -channel 7070 system 
using 729 IV tape drives, a 7074 of the same 
configuration has the following performance 
characteristics: 

Internal performance on 
commercial work 

Thruput or job performance 
on commercial work 

Floating point performance 
on scientific work 

6 x 7070 

2 x 7070 

10 x 7070 

Internal performance is a mea.-sure of in­
struction-execution time. It is measured on the 
basis of the mix of instructions executed in a 
group of programs considered typical of com­
mercial applications. 

Thruput or job performance considers, in 
addition to instruction-execution time, the time 
expended in magnetic-tape input/output oper­
ations. A typical mix of commercial jobs--in­
eluding sorting, merging, high and low activity­
file maintenance, and editing- -provides the 
basis for this comparison. 

Floating point performance is measured 
on the basis of a typical group of arithmetic and 
logical instructiohS encountered in many scien­
tific problems. It is essentially a measure of 
internal speed. 

Functional Units 

Physically, the 7070 family is made up of 
the following functional units which are packaged 
in IBM standard modular system (SMS) frames: 

7070 7074 

Arithmetic & 7601 
processing unit (2 modules) 

High-speed 7104 
processor 

Storage, 6 -J.Lsec 7301, 1 & 2 

Storage, 4-J.Lsec 7301, 3 & 4 

Core control and 7602 7602 
power distribution 

Basic timing & 7600 7600 
control 

T ape control unit 7604 7604 

Tape transports 729 II or IV 729 II or IV 

The 7601 arithmetic and processing unit 
and the 7104 high-speed processor perform arith­
metic, logical, and other stored-program opera­
tions under the control of a single -address type 
of instruction. Some other features are: ninety­
nine indexing words; variable field length by the 
use of field definition; automatic block trans­
mission of data within core storage; automatic 
priority processing; extensive checking; and 
simultaneous read, write, and compute. 
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The 7301 storage units are available in 
models of 5000 or 9990 words. They provide 
parallel access to ten digits (one computer word) 
at each storage reference. 

The 1604 tape -control units provide for 
transmission of data between tape storage units 
and core storage. Two independent data chan­
nels can be provided by each 7604 unit. 

The 729 tape transports are available in 
two models. Model II can operate at data rates 
of 15, 000 and 41,000 six-bit characters per 
second. Model IV can operate at data rates of 
22,000 and 62,500 six-bit characters per second. 
Up to forty tape transports, in any combination 
of models, are available on the system. 

The above listing is by no means exhaustive. 
Many other devices -- including punched-card 
devices, printers, and manual inquiry stations -­
are also available. 

These units are the building blocks of the 
IBM 7070 family. Proper selection of processor, 
memory, and tape drives provides the ability to 
tailor a data processing system to a wider variety 
of customer requirements (both commercial and 
scientific) than ever before possible. 

System Growth 

The IBM 7074 system may be ordered di­
rectly from the factory, or it may be "grown" 
from a 7070 in the customer's office. The nec­
essary changes can be made by a team of field 
engineers over a weekend. 

Referring to Figure 1, the 7104 high-speed 
processor is substituted for the two 7601 modules 
which are removed and returned to the factory. 

The 7301 storage unit is converted from a 
six-J.Lsec cycle to a four-J.Lsec cycle by a change 
to high-speed circuitry. 

One slide, containing storage controls, is 
removed from the 7602 core control unit and re­
turned to the factory. New storage-control cir­
cuits are provided in the high-speed processor. 

Program Compatibility 

The 7104 high-speed processor uses the 
same instruction set as the 7601, although it 
processes individual instructions three to twenty 
times faster. 

Some example s are: 

7070 7074 

One -digit true add 48 J.Lsec 10 J.Lsec 

Ten-digit true add 72 J.Lsec 10 J.Lsec 

Multiply (IO-digit 
multiplier) 924 J.Lsec 56 J.Lsec 

Conditional branch 36 J.Lsec 6 J.Lsec 

Unconditional branch 24 J.Lsec 4 J.Lsec 

Floating add 212 J.Lsec 16 J.Lsec 

Floating multiply 1019 J.Lsec 60 J.Lsec 

Since the instruction formats are identical, 
programs written for the 7070 may be used on 
the 7074 without change. Furthermore, they 
will operate at full efficiency on the 7074. 

This compatibility is important for rapid 
and simple change -over from 7070 to 7~74. In 
addition, all 7074 customers -- newcomers as 
well as those changing over from the 7070 -­
have at their disposal the entire 7070 program 
library of the GUIDE organization, and IBM 
applied programs for the 7070. 

Processor Organization 

The 7104 high-speed processor, like the 
7601 'arithmetic and processing unit, operates 
on the basis of a word of ten decimal digits and 
sign. Coding is 2 of 5, so that a word consists 
of 53 bits. Sign is plus, minus, or alpha and is 
represented by three bits in 2 of 3 code. Alpha­
numeric information is represented by two deci­
mal digits, so that an alphanumeric word contains 
five characters, while a numeric word contains 
ten digits. 

When written on magnetic tape, an alpha­
numeric word fills five six-bit characters. Nu­
meric words are written as ten six-bit characters 
except that up to five high-order zeros are elimi­
nated. This makes for very high tape efficiency. 

The 7104 high-speed processor differs 
from the 7601 arithmetic and processing unit in 
that the 7601 performs arithmetic operations in 
a serial-by-decimal-digit manner while the 7104 
performs full-word parallel arithmetic. 



In the 7601 (see Figure 2) each digit is 
moved through the adder in one four-fJ.sec, cycle 
and is stored back in the arithmetic register on 
the following cycle, during which the next digit 
is moved through the adder. A full ten-digit add 
requires eleven cycles or 44 fJ.sec for completion 
(assuming that recomplementing is not required). 
To this must be added instruction and operand 
access time as well as indexing time if required. 
Total time for a ten-digit true add (not indexed) 
is 72 fJ.Sec. 

In the 7104 (see Figure 3) the full-word 
adder cycle requires two fJ.sec for completion. 
Instruction and operand access time results in 
a total time of ten fJ.sec for the nonindexed add 
instruction. This time is valid for any field 
size up to ten digits. Thus, add speed has been 
improved from three to seven times, depending 
upon field size. 

Items of interest are: 

1. Skew registers which provide the func­
tions of field control and shift. 

2. Three accumulators which provide speed 
in floating point operations. 

3. Validity checking on all buses. 
4. Complete program compatibility with 

7070 (uses 7070 instruction set). 

The information bl,ls is one computer -word 
wide (ten decimal digits and sign = 53 bits). The 
address bus is four digits (20 bits) wide, and the 
arithmetio buses are eleven decimal digits wide. 

Circuits and Packaging 

The high arithmetic speeds are made pos­
sible by the use of saturating -drift -transistor 
NOR circuits. Packaging is accomplished. in a 
new package known as the SMS twin card, which 
provides over three times the density of logical 
elements achieved in the 7601 processor of the 
IBM 7070. This density permits the 7104 to 
contain in one module all of the logic previously 
packaged in two and one-half modules. 

Figure 4 compares the new SMS twin card 
with the SMS single card used in the 7601. Up 
to .44 transistors may be packaged on one twin 
card as compared to a maximum of eleven on the 
single card. The use of NOR circuits further 
increases the logical density in the SMS twin­
card system. Vertically mounted components 
of the twin cards provide more efficient cooling. 
The component tips are welded to the bronze 

163 
4.2 

support clips at the upper end, and are soldered 
to the printed wiring of the card at the lower end. 
The bronze support clips contribute to cooling by 
providing a heat -sink effect; these clips also pro­
vide an additional dimension of modularity for 
automated production and for field repair of cards. 
Support-clip sections can be stocked and card 
repairs made in the field by replacement of clips, 
thus contributing to more economical maintenance. 

Figure 5 shows additional details of the SMS 
twin card. 

Cards are mounted in an IBM standard 
modular system (SMS) frame, which contains 
two slides, each composed of two pages. Each 
page contains four chassis, each of which in turn 
can contain 100 SMS twin cards. 

Figure 6 shows an SMS sliding-gate module, 
covered. One such module contains the 7104 
high-speed processing unit, and measures 29 1/2 
in. wide by 56 in. deep by 69 in. tall. 

The sliding gates pullout toward the front 
as shown in Figure 7. 

Each gate opens into two pages in which 
are mounted the SMS single or double cards. The 
pages or gates are accessible for service from 
both sides. Covers over the cards contain the 
flow of cooling air. 

Figure 8 depicts the organization of a page 
or gate of the module. The four chassis, each 
of which can contain 100 SMS double or 200 SMS 
single cards and a number of edge connectors, 
are shown from the rear or panel-wiring side. 

It is the SMS system which makes possible 
the modular growth from the 7070 to the 7074. 
Replacement of one or more of these frames with 
functionally similar units of higher performance 
is possible without re -engineering every unit of 
the system. 

References 

1. For a description of the IBM 7070, 
see lIThe IBM 7070 Data Processing 
System It presented by Robert W. 
Avery, Stephen H. Blackford, and 
James A. McDonnell at the Eastern 
Joint Computer Conference, Decem­
ber 1958. 
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Fig. S. SMS twin card detail. 



Fig. 6. SMS functional module. 

169 
4.2 



170 
4.2 

Fig. 7. SMS module with slide out. 



Fig. 8. SMS module page - rear view. 
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THE RCA 601 SYSTEM DESIGN 

A. T. Ling and K. Kozarsky 

Electronic Data Processing Division 

Radio Corporation of America 

Camden, New Jersey 

One of the differences found among computer sys­
tems is whether emphasis is on word orientation or on 
character orientation. Pertinent design considerations 
not only include memory depth, but also capability for 
handling symbol-controlled operations and relative 
speeds of word and character operations. Emphasis 
placed on either word or character orientation tends 
to dictate a principal area of effective application. An 
important objective of the RCA 601 System is to per­
form efficiently over a very wide application base and 
economically combine the speed of parallel word proc­
essing with the logical flexibility of variable character 
operations. 

The RCA 601 System is a generiC name which, 
properly speaking, refers to a Class of systems. This 
is due to a very generalized design approach which will 
be illustrated by the system logic design description 
of the RCA 601 System in the following discussion. 
Specific elements have been selected from numerous 
possibilities to constitute the presently offered product 
line. The objective here is far from academic in that 
this approach provides, first, an exceptional ability 
for custom fitting of system elements for a specific 
user. Second, it tends to delay the inevitable onset of 
obsolescence by permitting rev lsion of systems ele­
ments to increase performance or modify the orienta­
tion of the system according to the contemporaryfash­
ion in data processing. 

These, of course, are supplementary to the com­
mon objective of commercially available systems, a 
cost-to-performance ratio in conformity with the vint­
age of the hardware. The host of sagacious decisions 
required in the selection of such appropriate compo­
nents as tranSistors, packaging, and memory at opti­
mum points of their cost vs. speed considerations, 
will not be elaborated but can be assumed by the 
reader. 

A. THE RCA 601 SYSTEM 

The RCA 601 System stresses a generalized sys­
tem logic design in the computer. The main frame is 
a fast processing unit which includes a 1. 5-micro­
second memory. Its design features provisions for 
uniting other system elements into an integrated sys­
tem by means of standard interfaces. A unique modu­
lar packaging concept is used for these system elements 
to allow efficient and flexible system combinations. A 
system diagram is shown in Figure 1. The all-solid­
state elements of the computer system include a main 
frame processing llnit, memory units, an arithmetic 
unit, and transfer channels. The main frame process­
ing unit includes a 56-bit word memory module, a fast 
basic arithmetic unit, an input-output control, and a 
console transfer channel. Facilities for operating any 

combination of other elements comprising a single sys­
tem are provided by three channels - the memory 
channel, the control channel, and the input-output 
channel. 

CONTROL 
CHANNEL 

I 

ARITHMETIC 
UNIT 

MEMORY BASIC 
CONTROL 

MODULE UNIT 

INPUT 
OUTPUT 

CONTROL 
I 
1..,-----
MAIN FRAME 

FIGURE 1. RCA 601 SYSTj:M DIAGRAM 
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ARITHMETIC 

UNIT 

-----------, 

CONSOLE 
TRANSFER 
CHANNEL 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I ________ J 

Additional memory modules via the memory chan­
nel are available to operate as asynchronous, inde­
pendent units. In the RCA 601 System, asynchronism 
means that the occurrence of an event begins upon ful­
fillment of a set of machine status requirements, and 
terminates as soon as its own requirements are ful­
filled. A high-speed arithmetic unit can be added via 
the control channel to comprise an expanded computer. 
This unit operates at higher speeds than the main frame 
arithmetic unit and performs full-word-binary and dec­
imal-floating-point arithmetic. 

Remaining elements consist of transfer channels 
which are links to peripheral devices via the input­
output channel. Peripheral devices are available in 
card readers and punches, high-speed printers, paper 
tape readers and punches, and magnetic tapes. Flexi­
ble combinations of these devices within very broad 
constraints may be selected to operate on-line with the 
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system. Two sets of tape stations are native to the 
RCA 601 System - providing the choice of 100-kc. or 
180-kc. decimal digit nominal transfer rates. 

B. HARDWARE FEATURES 

The generalized system logic design includes 
unique features such as elementary operation mechan­
ization, an asynchronous control system, a generalized 
arithmetic unit transfer channel input-output control, 
and an asynchronous memory system. 

A unique feature of the 601 system is the manner 
in which its instructions are implemented.. Instructions 
are broken down into small component parts called 
"elementary operations". A sequence of elementary 
operations comstitutes the logical steps comprising a 
machine instruction; thus, the elementary operation 
corresponds to an instruction in much the same manner 
as an instruction corresponds to a routine. Instructions 
are performed by evoking these elementary operation 
sequences and executing them one at a time. Thus, by 
simply changing or adding elementary operation sequences, 
the instruction complement may be added to or changed. 
This open-ended design of instruction complement en­
ables the customer to adopt new techniques in his com­
puter operation as they are needed. 

Asynchronism in operation timing is a convenient 
tool for modular variability in which a configuration of 
system elements is not fixed. The control system, 
arithmetic unit, and data transmission employ this teclr­
nique. To illustrate this feature, let the succ'essive 
elementary operations, "transfer" and "set", be con­
sidered. The "transfer" elementary operation calls 
for the transfer of the information from one specified 
register to another within the computer. The "set" 
elementary operation transfers data from a memory 
location into a specified register. As shown in an ex­
aggerated form in Figure 2, the "transfer" operation 
involves steps 1, 2, 3, and 4. The asynchronous as­
pect of the control system is illustrated between steps 
1 and 2 and the occurrence of step 4. The "transfer" 
elementary operation terminates just after the data 
transmission (step 3) has started so that the next opera­
tion may begin. Thus, steps 5 and 6, which are the 
set up and memory addressing for the next "set" opera­
tion, ~)Ver1ap with the relatively long transmission. The 
asynchronous aspect of data transmission via the data 
busses is indicated by steps 3, 6, and 8. There is a 
unique detection circuit on the busses to detect echoes 
from the receiver register and terminate the transfer 
by the generation of a terminate pulse, T. In this way, 
data transmission time depends on the physical config­
uration of the source and sinks involved. Note that 
steps 6 and 3 overlap in time because separate busses 
are involved; if the same bus is used then step 6 should 
be interlocked to prevent its initiation until the T signal 
is generated. 

The RCA 601 System memory storage employs a 
word format, even though the data format is extremely 
flexible. The majority of data manipulation involves 
logic with certain arithmetic properties. An efficient 
and compact design is made by generalizing the basic 
arithmetic unit to include data handling functions as 
well as arithmetic operations. Operands that can be 

ELEMENTARY OPERATION "TRANSFER" 

St.p I Sot Up (SI) 
TIME~ 

St.p 2 Control Bus (C,) 

St.p 3 Data Transmission (01, Tt) 

ELEMENTARY OPERATION "SET" 

StopS Sot Up (S:zl 

St.p 6 Add,. .. Memory (A2, T'; 

St.p 8 Doto Transmission (0], 13> 

Stop 9 End(E2) 

FIGURE 2. ILLUSTRATION OF ASYNCHRONOUS OPERATION ANO OVERLAP 

manipulated may be in character, half-word, or word 
format. Wired-in arithmetic operations include the 
full range of add ,subtract ,multiply , multiply and ac­
cumulate, and divide, for fixed-point decimal operands 
and for the majority of fixed-point binary operands. 
By the addition of a high-speed arithmetic unit, basic 
system speeds of certain operations are increased and 
floating-point arithmetic is added to the instruction 
complement. A further feature of the basic arithmetic 
unit design is its built-in ability to accommodate var­
iable size characters. Four different character sizes, 
namely lengths of 3, 4, 6, and 8 bits, may be directly 
addressed and manipulated. A character length reg­
ister is used to deSignate the size of character in all 
character operations. This register can be loaded 
and re-Ioaded with appropriate deSignators during a 
program by half-word set-register instructions. Op­
erations other than character handling operations are 
not affected by this register. The variable size char­
acter handling ability together with the general symbol 
reoognition feature allows the RCA 601 System to han­
dle a large variety of codes. A block diagram of the 
basic arithmetic unit is shown in Figure 3. The adder 
operation is an asynchronous circuit with respect to 
carry propagation. That is, as soon as the carry 
propagation subsides, the adder operation is terminated. 

Peripheral devices in the RCA 601 System are 
handled by control buffer packages called transfer 
channels. These transfer channels work on-line with 
the input-output control of the main frame by an. auto­
matic instruction interrupt technique. The input­
output channel is a general, standardized interface. 
Thus, looking out from the input-output control, prop­
er operation is maintained, regardless of the number 
or the complement of the transfer channels in opera­
tion. This allows a generous flexibility in the make­
up as well as the size of the input-output system. This 
transfer channel concept, coupled with a general, all­
purpose input-output instruction complement, makes 
an efficient and economical way of coping with future 
development of peripheral and custom devices. The 
transfer channels are logically complete for independ­
ent and simultaneous operation with the main frame. 
Additions of transfer channels mean potential additiqns 
in amounts of simultaneity. The amount of simultan­
eity is automatically regulated by a built-in artificial, 
simple calculation called speed-weight. The transfer 



FIGURf 3. BASIC ARITHMETIC UNIT BLOCK DIAGRAM 

channel concept also makes it possible for the operat­
ing console to operate interpretively, and communi-. 
cate with the computer without having to stop operatIOn. 

A key feature in the RCA 601 System is the high­
speed memory. Each 56-bit word is accessed in 0.9 
microseconds and the complete address-read-write 
cycle is l.5 microseconds. The memory operation is 
logically controlled and asynchronous. Separate com­
mands to operate the three memory logical steps (ad­
dress, read-out, and write-in) are directed from the 
control system. Thus, its operation is integrated 
with the control system. Overlapped operation is pos­
sible when more than one module is present. Gen­
erally three modes of operation can be accomplished: 

1. Address and read-out. 

2. Address and write-in. 

3. Address, read-out and write-in. 

The design approach here is basically conserva­
tive. The application of commercially existing com­
ponents and proven techniques to solve the problem of 
this advanced equipment design have been used rather 
than depending on the development of new compon~n~s. 
The design objective was to make the cost competitive 
with presently available memory systems that are up 
to eight times slower. The design stresses were on 
cost, reliability, and simplicity, taking into account 
the expected maintenance problem. The storage ele­
ments used are magnetic cores. The core size chosen 
has an I. D. of 18 mils; an O. D. of 30 mils, and a 
thickness of 10 mils. This small size is chosen for 
performance as well as for compactness of mechani­
cal packaging. The circuit design simplifies the wir­
ing complexity that is required in most magnetic core 
memories. 

The product design of high-speed computers 
must deal with problems arising from multitudes of 
short pulses with extremely fast rise times. In order 
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not to affect proper performance of these high-speed 
circuits, wiring techniques become complex. Wire 
lengths must be kept to a minimum. This is particu­
larly true in the main frame processing unit. High 
transistor packing density is specified in step with the 
contemporary state of mechanical component packaging. 

Despite preventative maintenance, computers oc­
casionally become inoperative due to component or mech­
anical failure. Ready access directly to the internal con­
struction means easier servicing with a minimum loss of 
costly computer time. A basic requirement achieved in 
the RCA 601 System package is that both the wiring side 
and the plug-in side may be opened for serviCing without 
affecting the operating status of the computer. Means 
have been designed to make it easy to tap any point on 
this wiring for observation. 

Transfer channels, additional memory units, and 
future expansion units are packaged in modules which 
are installed in universal racks. A unique channel­
jumper technique is used. These channel-jumper ca­
bles thread through the entire system in a manner il­
lustrated in Figure 1. 

c. PROGRAMMING FEATURES 

One vogue in the majority of recently-announced 
computing systems is the relative brevity of program 
statement contrasted to systems currently in common 
use. Factors contributing to these concise programs 
include powerful, well-integrated order codes, com­
plex address-modification capability, flexible address­
ing schemes and variable instruction length. 

Provision for variable length data has been made 
in early electronic machines and the similar motiva­
tions of efficient memory utilization and the elimina­
tion of "filler" material have extended this to include, 
also, those bits, in memory, which direct the control 
unit of the machine. In the RCA 601 System, "vari­
able instruction length" means that instructions may 
be either 1, 2, 3, or 4 half-words in length. 1 A unit 
data length in the RCA 601 System is either a word 
(or half-word) or a character. One of these, the half­
word of 24 information bits, is the unit length for 
instructions. 

Generally an instruction half-word is an opera­
tion half-word that may have as many as three address 
half-words appended to it. A distinction has to be 
made between the number of addresses contained in an 
instruction and the number of addresses utilized as an 
integral part of the execution of an instruction. Each 
instruction type utilizes a fixed number of these ad­
dress registers, e. g., a MOVE will utilize two address 
registers, MULTIPLY utilizes three, a DO instruction 
utilizes none at all, etc., and frequently those are the 
number of addresses written in that instruction. How­
ever, the address registers utilized by an instruction 
have their contents augmented by one data-length unit. 
This value of the address register is often the appro­
priate value of the register for the operation of the 
next instruction. In particular, this occurs when the 

1Input-output instructions are the exception to this 
statement. 
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data of interest is stored in contiguous arrays in mem­
ory. In such a case, when an address register con­
tains the desired value, then that address need not be 
written in the program statement. Three bits termed 
"assumed bits" in the operation half-word of an in­
struction specify whether or not address half-words 
for each of three address registers are written follow­
ing the operation half-word. Thus, a lesser or a 
greater number of addresses than used by the instruc­
tion may be written. When fewer addresses are used, 
the remaining addresses are said to be "assumed"; 
when additional addresses are used, they merelycause 
the address registers to become loaded. The stepping 
of the address registers in conjunction with assumed 
addressing is really equivalent to automatic address 
modification by unity, with, however, several advant­
ages over address modifiers: no address modifiers 
are used up for this purpose; no time is lost to accom­
plish the address modification; no space is required in 
the program for the address; and no time is required 
to access the address. 

Another place in which explicit addresses are not 
written occurs when the accumulator is being used in 
arithmetic operations. Again three bits in the opera­
tion half-word specify whether any or all ofthe operands 
refer to the contents of the accumulator. Thus, a sin­
gle half-word suffices to instruct the accumulator to 
double itself, an ADD instruction with all three ad­
dresses assumed, and the accumulator specified as 
each of the operands. Figure 4 illustrates some of 
these features. 

A unique and substantial addressing flexibility is 
incorporated in the address half-word. The 24-bits of 
this half-word, shown in Figure 5, are divided as fol­
lows: an address part of 19 bits; 15 for addressing 
215 words; a 16th to address half-words; and three 
additional bits to address characters within the half­
word. The 20th bit is used to designate indirect ad­
dressing. The four remaining bits are used to address 
any of eight address modifiers. 

EX. h 1;-' Of 

IN CONSECUTIVE WORDS 

DO n B. ASSUME!) 

C' ASSUMED 

ADD A. ASSUMED 

C ACCUMULATOR 

TOTAL PROGRAM> THREE HALF·WORDS 

DO n C' ASSUMED 

MULTI ACC Ju ASSUMED 

B, ASSUMED 

C' ACCUMULATOR 

TDT AL PROGRAM> FOUR HALF·WORDS 

DO n A: ASSUMED 

B' ASSUMED 

C. ASSUMED 

MUL TIPLV B' ACCUMULATOR 
c: ACCUMULATOR 

TOTAL PROGRAM> THREE HALF·WORDS 

Go 

Go 

FIGURE 4. ASSUMED ADDRESSING AND STEPPING OF ADDRESS REGISTERS 

m 

Increment 

Address 
Modifier 

mrnm 
xxx 

Address 
Modifier 

24 BITS 

ill m························~ 
x ........................ X 

(15) 
Word Address 

Indlrftl 

Address 

FIGURE 5. ADDRESS HALF·WORD 

mJ 

Haff·Word 
Address 

xxx 

Choracter 
Address 

or 
Control 

Sits 
of 

Indirect 
Addressmg 

or 
Address 

Modlflcahon 

Seven of the address modifiers are a full word in 
length, where the left half-word is the value part ap­
plied to an address when selected, and the right half­
word is an increment part selectively added to the 
value part. This selectivity is gained by providing two 
addresses for each address modifier, one of which 
causes an automatic incrementing to take place. This 
accounts for the generous use of four bits to select 
eight address modifiers. 

Applying both address modification and indirect 
addressing to an address would normally require an 
arbitrary order of precedence. However, in the RCA 
601 System whenever an indirect address is specified, 
it selects another half-word in which is contained 
another address. Therefore, the three bits used for 
character addressing in this case, might be super­
fluous, but are used instead for the following: 

1. To defer application of the address modifier 
with the indirect address to the direct address. 
This can permit dual address modification 
on the direct address. 

2. To inhibit address modification on the direct 
level. 

3. To inhibit subsequent indirect addressing. 

Figure 6 illustrates the possibilities with this 
octal digit for the case of only a single level of indirect 
addressing. 

Indirect addressing and the flexible application 
of address modifiers provide considerable facility in 
working with address lists. Lists of addresses can 
be generated by magnetic tape read instructions which 
list the addresses of special symbols (designated by 
the programmer) in memory, as well as the informa­
tion itself. It is then possible to eliminate much data 
movement by utilizing the address lists. 

Efficient data encoding is carried a step further 
in the character handling capability ,of the RCA 601 
System. It has been mentioned that four different 
character sizes (lengths of 3,4, 6 and 8 bits) may be 
directly addressed and manipulated. Thus, sequences 
of decimal digits are normally handled in four-bit 
characters, alphanumeric data in six bit characters, 
etc., providing efficient tape and memory storage. 



BITS OF ADDRESS HALF·WORD _4_ -.!.. J! 1-
ADDRESS k 

ADDRESS B: 

ADDRESS B+(AMI): 

d PERMITS: 

INDIRECT ADDRESS TO BE 

DIRECT ADDRESS TO BE 

AMI B 

NJ.2 C 

AM3 D 

1)B 

OR 2) B+ (AMI) 

I) C+ (AM2) 

2) C+ (AM1) 

3) C+ (NJ.I) + (AM2) 

OR 1) D+ (AM3) 

2) D+ (AMI) 

3) D+ (AMI) + (AM3) 

FIGURE 6. CONTROL OF INDIRECT ADDRESSING AND ADDRESS MODIFICATION 

The RCA 601 System features sets of indicators 
to provide a parallel decision making ability concur­
rently with the running program. Conditions sensed 
include: arithmetic underflow and overflow; error 
conditions; unsuccessful scanning operation; result 
positive, negative or zero; and a binary indicator spec­
ifying such information as whether a logical connective 
yielded zero. A programmer-set mask is associated 
with each indicator to permit or inhibit an automatic 
branch whenever the condition is encountered. This 
feature permits minimizing the length of repetitive 
loops by eliminating, each time, expllcit senSing for 
rare conditions. 

When one of these automatic jumps does occur, 
storing of relevant registers takes place automatically, 
assuring ability to restore the status of the machine 
whenever control is returned to the interrupted point. 
In particular, one of the conditions which will cause 
an automatic jump to occur is the termination of an 
input-output operation. The format of an input-output 
instruction differs from the rest of the order code, in­
cluding up to 5 address half-words. One of these ad­
dress half-words contains an address to which control 
is to be transferred when the operation is complete. 
This permits an effective multi-programming scheme, 
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where linkages between programs occur such as to 
permit maintenance of input-output rates. 

Figures 7 and 8 present a brief description of the 
characteristics and representative times of the current 
RCA 603 Computer in the RCA 601 System. 

MEMORY MODULE SIZE 8192 WORDS, 56 BITS EACH 
UP TO 4 MODULES 

OPERATION TIMES· 

A + B-C, l·WORD 

ACCl'MULATOR + B-ACCUMULATOR, I-WORD DECIMAL 

A x B-C, l·WORD DECIMAL (NO ZEROS) 

A -B, 10 WORDS 

A-B,6 6-BIT CHARACTERS 

A-B,6 4-BIT CHARACTERS 

BRANCH 

DO 

INSTRUCTION ACCESS AND INTERPRETATION TIMES 

ACCESS 

INDIRECT ADDRESSING 

INDEXING 

INPUT·OUTPUT CONTROLS 

UP TO 16 SIMULTANEOUS INPUT-OUTPUT OPERATIONS 

* DEPENDS ON PROGRAM SEQUENCE 

FIGURE 7. MAIN FRAME COMPUTER 

MICROSECONDS 

6.6 

3,2 

69.4 

32.0 

15.1 

11.3 

0.5 

1.5 to 3.0* 

2.5 to 7.0* 

1.7 

2.9 to 3.5* 

CARD­

READ 

PUNCH 

600 CARDS PER MINUTE 

100 CARDS PER MINUTE 

PAPER TAPE 

READ 

PUNCH 

PRINTER 

1000 CHARACTERS PER SECOND 

300 CHARACTERS PER SECOND 

120 CHARACURS PER LINE 600 LINES PER MINUTE 

MAGNETIC TAPE 

lS0-KC DECIMAL DIGIT RATE 

100-KC DECIMAL DIGIT RATE 

SO-KC DECIMAL DIGIT RATE 

FIGURE S. PERIPHERAL DEVICES 
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ASSOCIATIVE SELF-SORTING MEMORY 

Robert R. Seeber, Jr. 

Product Development Laboratory, Data Systems Division 
International Business Machines Corporation 

Poughkeepsie, New York 

Summary 

A cryogenic associative memory is proposed 
in which the status of a memory word is deter­
mined, with respect to an interrogating word, 
on a high, low or equal basis. Thus the brack­
eting pair of words is determined, allowing the 
interrogating word to be inserted between them, 
a "dummy" register holding it temporarily. A 
double-shuffle operation moves the other words 
to make room for the new word in proper se­
quence. 

Introduction 

One of the major problems that occurs in the 
use of a computer, particularly in business 
uses, lies in the sorting of data. The impor­
tance of this problem can be judged on the 
basis of the hundre~s of pages of description 
of sorting routines that have been written. 
Programs are in some cases many thousands 
of instructions in length. Heretofore, the 
attack on the sorting problem has been almost 
entirely on the programming level. In this 
paper is proposed a memory system organi­
zation to achieve sorting within the memory. 
By the use of associative memory principles, 
extended to facilitate sorting, a new approach 
to sorting is developed. Words to be sorted 
enter memory in random order but each is 
placed within memory in its proper relation­
ship to previously sorted words. 

Associative Memory 

Associative memory may be defined as mem­
ory in which a word of data is retrieved on the 
basis of part or all of the data content of the 
word. Words are stored in vacant registers 
and subsequently are recovered not by naming 
the location of a register but rather by naming 
a portion of the word as an identifier. This 
identifier or tag may in some cases be a por­
tion added to the data word for the identifica­
tion purpose. However, in the more general 
case, which we call a fully associative mem­
ory, the data word can be retrieved by using 
selected portions of the word itself as its iden­
tifier; in this case, the remaining portions are 
masked out. Thus the knowledge of the exact 

storage location in the physical sense may be 
completely immaterial to the operation. A 
more detailed explanation of a simple associ­
ative memory was given in an earlier paper. 1 

Sorting with an Associative Memory 

The use of an associative memory reduces 
somewhat the need for sorting, particularly 
in the case where sorting is used to provide 
means for locating particular words by their 
ordered identifier or argument, as is usual 
in table look-up operations. Since an associ­
ative memory allows direct access by these 
identifiers, sorting for these purposes is not 
necessary. But for other purposes, partic­
ularly for sorting output lists, sorting is re­
quired. This may be done by an associative 
memory by arranging to retrieve in order all 
possible combinations of the given identifier. 
For example, if we have a 3-decimal digit 
identifier and want to retrieve 965 different 
data words identified by this 3-digit code, we 
can set up a counter to provide us with all 
combinations running from 000 through 999 
to act as identifiers for the 965 words. The 
efficiency will be quite high, requiring 1000 
retrieval tries to produce the actual 965 re­
trievals in order. However, this system 
breaks down in the more frequent case of the 
identifier not so densely. coded. For example, 
a 10-decimal digit part number code may have 
only a few thousand different parts which would 
require 1010 retrieval tries to recover in order. 
Since sparsely populated codes seem to be the 
more general rule, particularly in business 
problems, a means for actually sorting the 
words would be very desirable. 

Proposed System 

In a general associative memory a simultane­
ous comparison is made between an entry word 
and all of the word registers in the memory to 
determine the match or non-match status of 
each word. This is done by providing compar­
ison circuits between the entry register and 
each of the word registers such that an equal 
or unequal status is determined. This has 
previously been done for the purpose of re­
trieving a matched word from memory. For 
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writing into memory in order, we now add the 
requirement that these comparison circuits 
be extended to provide a comparison indica­
tion on high, low or equal for each of the word 
registers. This then will supply us with enough 
information so that we can determine where 
within a previously sorted sequence a newword 
should be inserted. Additional registers called 
dummy registers are supplied between each of 
the word registers. This allows an incoming 
word to be placed between the proper two words 
in memory; then, by a double-shuffle transfer 
cycle, the words in memory are shuffled to 
ente r the new wo rd in to its prope r plac e. 

Figure 1 is a block diagram showing this 
arrangement. At the top there is an entry 
register where data words are coming infrom 
some other portion of the computing system. 
Comparison circuits from this entry register 
extend through all of the word registers and 
each of the word registers supplies indication 
as to whether it is low, high or equal to the 
word in the entry register. From this infor­
mation, the dummy register lying between 
the two word registers which bracket the word 
in the entry register can be selected and the 
word then can be transferred from the entry 
register to that dummy register. On this 
same half cycle, all the words in word regis­
ters above the selected dummy register move 

up to the respective dummy registers imme­
diately above each of those word registers. 
On the next half cycle, while a new word is 
entering the entry register, the words in dum­
my registers move up to word registers imme­
diately above those dummy registers, thus 
leaving the words in memory again in word 
registers in proper order including that word 
just entered. 

Means are provided for exiting one word from 
dummy register 1, that is, the forward exit 
register, as the memory fills up. That is, as 
the memory fills up, earlier words are pushed 
out the top. In this case, the echo register 
retains the information of the word just exited. 

Another mode of operation is provided so that 
words coming in through the entry register 
may be accepted in inversely sorted order. 
In this case, as the registers fill up, words 
are pushed out the bottom through the back­
ward exit register; this inverse function may 
be useful in handling partly sorted blocks of 
words read backwards from a tape on which 
data has first been stored in the normal for­
ward order. This operation may reduce the 
need for re-winding operations when tapes are 
used in conjunction with this sorting memory. 

Sorting Example 

The chart of Figure 2 shows the successive 
cycles of the operation of sorting 21 different 
words of which the sorting identifiers are 
shown on the entry line. It is assumed that 
the memory for this example has 5 word regis­
ters, WI through W5, and 6 dummy registers, 
Dl through D6. The two-digit identifier has a 
bar over it when the word has just arrived at 
the location so indicated. A code with no bar 
indicates that the word is still present at that 
location but has been moved elsewhere, i. e. , 
this is a "shadow" word. Where a bar appears 
under an identifier, this indicates that the word 
has not been moved on that cycle but has been 
previously moved to that location. 

Thus, it maybe seen in Figure 2 that the num­
ber 29 is placed in the entry register during 
the A portion of cycle 1. During the B portion 
of cycle 1, the number 29 is transferred to 
dummy register W + 1. During the A part of 
cycle 2, the number 1 is placed in the entry 
register and the number 29 is transferred 
from dummy register W + 1 into word register 
W, where in this instance of illustration, W 
equals 5. During the B part of the second 
cycle, the 1 is transferred into dummy regis­
ter W where W is equal to 5 in tJ:1is instance, 
and the number 29 is transferred from dummy 
register 6 into word register 5. Since the num­
ber 1 in the entry register was less than the 
number 29, it will be observed that the number 
1 was placed nearer the top of the column of 
registers. During the A portion of cycle 3, 
the number 44 is placed in the entry register, 
the number 1 is transferred from dummy 
register 5 to word register 4, and the number 
29 remains in word register 5, the image be-
ing in dummy register 6. During the B portion 
of cycle 3, the number 44 is moved into dummy 
register 6 replacing the image 29, the number 
29 is moved into dummy register 5 and the 
number 1 is moved from word register 4 into 
dummy register 4. The first three cycles have 
illustrated the cases where the number in the 
entry register was less than the numbers stored 
in memory and the other instance where the word 
in the entry register was greater than those 
stored in memory. The next example of cycle 
4 concerns merging a number among those pre­
viously stored. 

In the A part of cycle 4, the number 10 is 

placed in the entry register, 1 is moved to 
word register 3, 29 is moved to word register 
4, and 44 is moved to word register 5, thus 



making available the vacated dummy registers. 
During the B part of cycle 4, the number 10 is 
inserted in dummy register 4 and the number 
1 is moved from word register 3 into dummy 
register 3. In this manner, a word is merged 
with those in memory. 

Cycle 7 illustrates the overflow of a word to 
the output bus; cycle 11 illustrates the start of 
another block of words at the end of memory. 

Cryotron Circuits 

When cryotron circuits are available, they 

would appear to have ideal properties for such 
a memory. It should be noted that in the self­
sorting memory, as in other associative mem­
ories, there is a great deal of distributed logic. 
The cryotron is a single element which can be 
used for both storage and logical purposes. 
An implementation of the self-sorting memory 
in single-crossing, thin-film cryotrons is pro­
posed. Cryotron circuits have previously been 
described by Dudley Buck. 2 Here we use a 
simplified symbolism, a gate being shown by a 
semi-circle with its diameter lying along the 
gate line and the corresponding control wire at 
right angles to the gate wire and bisecting the 
semi-circle. Figure 3 is the configuration 
for a flip-flop with read-in and read-out cir­
cuits employing this symbol. 

The top current source (denoted by a "+") 
splits into two paths, only one of which is 
superconductive at a time. If the left path is 
conducting, the flip-flop is said to be "on" or 
contain a "1 "; if the right path is conducting, 
the flip-flop is "off" or contains a "0." The 
feedback action of the flip-flop is accomplished 
by the top or bottom c ryotron, depending on 
whether the flip-flop contains a "0" or a "1." 
If it contains a "Ill the left path of the flip­
flop is conducting. This current through the 
lower cryotron control makes the right path 
resistive and keeps the current flowing in the 
left path. Similar action takes place at the 
top cryotron when the right-hand path is con­
ducting. 

Assume that we have a 110" in the flip-flop, 
and we want to change its state, that is, read 
in a "1." We cause a current flow through 
the control path of the "read-in 1" cryotron, 
making that cryotron resistive. Since both 
the right and left paths of the flip-flop are 
now resistive, the current divides in half. 
When the current through each path falls near 
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the half point, neither the upper nor the lower 
feedback cryotron is resistive. This leaves 
the "read-in 1" cryotron as the only resis­
tive element, forcing all the current to flow 
through the left-hand path and making the 
lower cryotron resistive. The flip-flop has 
now reached a stable state in the "111 or "on" 
condition, and the "read-in 1" current can be 
removed. Similarly, we can change back to 
an "offll condition by applying a current 
through the "read-in 011 cryotron. 

The read-out is accomplished by completing 
a circuit from the read-out current source 
through one of the read-out cryotrons and to 
the output device. If we assume that the flip­
flop is in the 110" state, current will be flow­
ing through the right path and through the 
control path of the "read-out 111 cryotron, 
making that cryotron resistive. Current then 
flows through the superconducting "read-outO" 
cryotron gate to the output device, where a "0" 
will be sensed. The circuit is similar through 
the "read-out 1" cryotron when the flip-flop 
contains a "1. 11 

C ryotron Bit Po si tion 

The heart of the memory system lies in the 
data bIt position shown in Figure 4. In this 
figure a portion of a data bit for word register 
W -lis shown near the top of the figure and the 
complementary portion for word register W is 
shown near the bottom of the figure. In be­
tween is the flip-flop for the dummy register 
lying between these two word registers. At 
the top of the drawing there are provided read­
out and read-in circuits for going from or to 
that word register to or from the dummy regis­
ter immediately below. In the dummy register 
flip-flops, there are shown corresponding read­
in and read-out circuits for transfer between 
the dummy register and the word register above 
or below it. There is also shown the select 
circuit which provides for the storing in this 
dummy register of a data word coming from the 
entry register. 

For word register W there are shown entry and 

exit transfer circuits for coming from or going 
to the dummy register above it. Next is amatch 
circuit which controls the exit of data from this 
word register when it is a matched register for 
the read-out of data in the normal associative 
manner. The last lines on the figure show the 
equal, low and high matching circuit for deter­
mining the selection of the proper dummy regis­
ter. 
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The vertical lines extending through m.em.ory 
are the entry and exit busses for the "0" (on 
the left of the bit) and for the "1" (on the right 
of the bit)jalso the "0" and "1" com.pare lines 
(on either side of the storage loops), carrying 
the information from. the entry register to be 
com.pared with the bit status. The no com.pare 
line will carry current instead of either the 
"0" of "1" line if this bit position is to be 
m.asked out, thus forcing an equal com.parison 
as far as this bit is concerned. 

As an exam.ple of operation. assume that the 

bit shown is the right-hand bit of the interro­
gating tag in a forward sorting operation. 
Bits to the left have shown an equal status. 
This bit is a "I" com.pared with a "0" in the 
entry register. Current flowing into the com.­
paring circuit of this bit on the equal line, 

frOID the left, will be blocked from. the three 
upper com.paring lines and perm.itted to flow 
through the bottom. line, thus onto the high line 
into the control section of this word, as shown 
in Figure 5. Assuming that this word, W, is 
the first word in m.em.ory having the "high" 
status, the control circuits will operate the 
dum.m.y out line during the "A" half of cycle, 
thus m.oving the word from. dumm.y register W 
up to word register (W -1) com.pleting the pre .. 
vious sort operation. During the second hall 
cycle, "B," the word from. the entry register 
\!ill be entered in dum.m.y register W prepar­
atory to being m.oved into word register (W-1) 

on the "A" half cycle of the next sort operation. 

Figure 5 shows the circuits for operating the 
entry and transfe!' circuits as controlled by 
the high, low, and equal signals. 

Conclusions 

By extending the properties of an associative 
m.em.ory, it is possible to secure a self-sorting 
m.em.ory. The work thus far done is of a purely 
system.s nature since the proper com.ponents are 
not yet available. With a self-sorting m.em.ory, 
program.m.ing can be m.aterially sim.plified and 
the internal sorting procedure im.proved. 
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ENTRY REGISTER 

ECHO EXIT REGISTER 

DUMMY REGISTER I 
(FORWARD EXIT REGISTER) 

WORD REGISTER I 

REGISTER 2 

REGISTER 2 

REGISTER 3 

REGISTER 3 

REGISTER 4 

REGISTER 4 

WORD REGISTER 

ECHO EXIT REGISTER 

Fig. 1. Memory System. 
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CYCLE I 2 3 4 5 6 7 8 9 10 II 12 

PART A B A B A B A B A B A B A B A B A B A B A B A B 

- - - -
ENTRY 29 29 I I 44 44 10 10 II II 51 51 39 39 36 36 12 12 50 50 23 23 55 55 

- - -ECHO I I 10 10 II " 12 12 29 29 36 36 

- - - -EXIT (01) I I 10 10 II " 12 12 29 29 36 36 39 

- - - - - -WI I I 10 10 " II 29 29 29 29 36 36 39 39 - -- - - - -02 I I 10 10 II " 29 29 29 29 36 36 39 39 44 

- - - - - - -W2 I I 10 10 II II 29 29 36 36 36 36 39 39 44 44 

- -03 I I 10 10 II II 29 29 36 36 36 36 39 39 44 44 50 

- - -W3 I I 10 10 I I II 29 29 39 39 39 39 39 39 44 44 50 50 

- - - -
~9 

-04 I I 10 10 II II 29 29 39 39 39 39 39 44 44 50 50 51 

-W4 I I 29 29 29 29 29 29 44 44 44 44 44 44 44 44 50 50 51 51 

- - - - - -05 I I 29 29 29 29 29 29 44 44 44 44 44 44 44 44 50 50 51 51 55 

- - - -W5 29 29 29 29 44 44 44 44 44 44 51 51 51 51 51 51 51 51 51 51 23 23 -
06 29 29 29 29 44 44 44 44 44 44 51 51 51 51 51 51 51 51 51 51 23 23 23 

Fig. 2. Sorting Example. 

13 14 15 16 

A B A B A B A B 

- - - -
22 22 58 58 42 42 64 64 

- - - -
39 39 44 44 50 50 51 51 

39 44 44 50 50 51 51 55 

- - - -44 44 50 50 51 51 55 55 

44 50 50 51 51 55 55 58 

- - - -
50 50 51 51 55 55 58 58 

50 51 51 55 55 58 58 64 

51 51 55 55 58 58 22 22 

51 55 55 58 58 22 22 22 

55 55 22 22 22 22 23 23 

55 22 22 22 22 23 23 23 

23 23 23 23 23 23 42 42 - - - - - -
23 23 23 23 23 42 42 42 

17 18 19 

A B A B A B 

-
82 82 25 25 98 98 

- - -
55 55 58 58 64 64 

-55 58 58 64 64 82 

-58 58 64 64 82 82 

58 64 64 82 82 98 

- - -
64 64 82 82 22 22 

64 82 82 22 22 22 

22 22 22 22 23 23 

22 22 22 23 23 23 

23 23 23 23 25 25 --23 23 23 25 25 25 

42 42 42 42 42 42 -
42 42 42 42 42 42 

20 

A B 

31 31 

-82 82 

82 98 

98 98 

98 22 

22 22 

22 23 

23 23 

23 25 

25 25 - -25 31 

42 42 -
42 42 

21 

A B 

38 38 

- I 

98 98 

98 22 

22 22' 

22 23 

-
23 23 

23 25 

25 25 

25 31 

31 31 

-
31 38 

42 42 -
42 42 

,p.. I-' 
• 00 
,p.."", 



+ 

J 1 J + READ IN CURRENT SOURCE 

READ IN 0- - READ IN I 

~ 1 I + READ OUT CURRENT SOURCE 

READ OUT 0- - READ OUT I 

Fig. 3. Cryotron Flip-Flop. 

""' ..... • CX) 
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Fig. 4. Data Bit. 
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UNIVAC· - RANDEX*II 
RANDOM ~CESS DATA STORAGE SYSTEM 

G. J. Axel 
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Philadelphia. Pa. 

SUMMARY 

A random access drum file. having 198.6 
million bits total storage capacity. a bit den­
sity of 650 pulses per inch, and 385 millisec­
onds average data access time. is described in 
this paper. 

Two flying-magnetic-recording-heads trans­
fer data to and from the drum file unit. They 
are self-supported. by a hydrodynamically gener­
ated air film. over two magnetically plated 
drums (24 inches diameter and 44 inches long). 
The heads. drums. and head-positioning servo are 
enclosed in a sealed and pressurized chamber to 
prevent their contamination by foreign material 
normally found in the atmospheric air. 

The text describes in detail: 

(1) The logic of operation and description 
of the overall drum file. 

(2) Construction of the flying-heads. 

(3) Descriptions of the servo and mechan­
ical adder, which position the flying­
heads over selected addresses on the 
drums. 

INTRODUCTION 

RANDEX*II, developed by Remington-Rand 
Univac: is a mass storage. random access drum 
file (See Figure 1), capable of being used with 
anyone of a number of UNIVAC computing systems, 
both present and future. It is presently de­
signed for use with a biquinary (5, 4. 2. 1) 
computing code. however. other codes can be 
readily incorporated. Initial use of this drum 
file will be on the UNIVAC·- Solid State Com­
puter; ten drum files can be used on this com­
puter in conjunction with a single drum control 
unit. 

The drum control: 1) decodes computer in­
structions for the drum file systems and issues 
the commands to the drum file(s) to process 
these instructions; 2) supplies d-c voltages to 
the drum file system circuits; 3) provides the 
data transfer medium between drum file(s) and 
computer; and 4) functions as an off-line con­
trol for the mass storage drum file system. 

* Trademark of the Sperry-Rand Corporation. 

Historically. the RANDEX II drum file fol­
lows the development of the UNIVAC - LARCI and 
RANDEX I drum files. All three units use the 
hydrodynamically supported flying-magnetic­
recording-head principle, and magnetic plated 
drums 24 inches in diameter. Whereas the LARC 
drum file contains a drum 28 inches long. one 
sequential head-positioning mechanism and a sin­
gle flying-head, the RANDEX drum file contains 
two drums 44 inches long, one random access head­
positioning mechanism and an individually flying­
head for each drum. 

The RANDEX I drum file was designed using 
very conservative bit and track densities to 
assure reliability of the initial design. Sub­
sequent improvements in the head-positioning 
mechanism, finishing and magnetic plating of the 
large drums, magnetic recording elements of the 
flying-heads, and recording techniques brought 
about the development of the larger capacity 
RANDEX II. Specifications for RANDEX II are 
listed in the table of Figure 2. 

DETAILED DESCRIPTION 

The central element of the RANDEX drum file 
is a pressurized dust free enclosure (See Figure 
3), which contains the following; two individ­
ually driven magnetic plated drums mounted on 
self-aligning roller bearings. and on which in­
formation is stored; the flying-heads used for 
reading and writing; and a head-positioning 
servo. A mechanical lever adder (discussed in 
detail below). located on the lower right sec­
tion of the drum file, is used for additional 
head positioning. and is connected to the servo 
by a mechanical linkage. Above the dust free 
enclosure is an electronic deck on which the 
RANDEX control panel is mounted. and within 
which are located plug-in chassis and a transis­
tor circuit card library (See Figure 4). 

The dust free enclosure acts to keep for­
eign material away from the drums, flying-heads. 
and servo components. The enclosure is pres­
surized by blower action with incoming air. 
which is first filtered through a low-cost com­
merical filter to remove the largest percentage 
of foreign m~terial, and then sent through a 
special filter which removes particles as small 
as 0.3 micron (approximately 0.00001 inches) 
with 99.97 per cent efficiency. Air is contin­
uously circulated within the enclosure. passed 
over the servo motor for cooling. and then 
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re-circulated back through the above mentioned 
special filter by another blower 1_ to assure per­
manent cleanliness. A window, which is part of 
the sealed enclosure, allows the operation of the 
drums, flying-heads, and servo to be observed 
from the front of the drum file. Doors in the 
rear section of the enclosure (See Figure 4) are 
located behind each of the drums to permit access 
to the drums recording surface for cleaning and 
inspection purposes. Easily removable end-bells 
on both sides 'of the enclosure (See Figures 3 and 
5) permit access to the servo components and 
flying-heads. Contamination of the clean air 
within the enclosure is practically eliminated 
by permitting only small access areas to exist 
when inspection or maintenance of servo compon­
ents and the flying-heads is desired. Clean 
areas are not required for these functions. A 
further guarantee of cleanliness when the end­
bells are removed is assured by the fact that air 
flow is always out from the enclosure, due to in­
ternal pressurization. 

Each drum consists of cast bronze end sup­
ports and a center support, upon which a 3/16 
inch thick brass tube is shrunk. This assembly 
is fixed to one end of a supporting steel shaft 
and is permitted to float on the other end, 
thereby allowing for differential expansion res­
ulting from temperature changes during assembly 
and operation. The drum is then machined on a 
lathe to provide a concentric, smooth, and uni­
form surface over which the flying-head will 
operate. Final steps in drum manufacture are Ni­
Co magnetic plating, balancing, and testing for 
both head flying characteristics and plating 
quality. 

Reading and writing of information on each 
of these drums is performed by an individual 
flying-head, which is supported over the drum 
surface by a hydrodynamically generated air film 
created by the rotating recording surface of the 
drum. No external means are used to provide an 
air film between the head and drum thereby avoid­
ing unnecessary biasing of the head and possible 
localized contamination effects of the head and 
recording surfaces. Each head is gimbal-mounted 
and has three degrees of freedom, so that it can 
follow the drum surface and maintain a uniform 
head-to-recording surface spacing. Upon command 
a head lowering and raising mechanism lowers the 
head into flying position over the drum recording 
surface, without physical contact between head 
and drum surfaces. An area is set aside on one 
end of the drum for this function. Should it be 
desired to raise the head or stop the drums, or 
should some malfunction occur which may cause 
the head to touch or approach the drum recording 
surface closer than its established design spac­
ing, the head raising mechanism will automati­
cally lift the head away from the drum, regard­
less of location along the drum axis. 

The two flying-heads are mounted on a com­
mon carriage (See Figures 5 and 6) that moves 
along a rail (located between the two drums) 

parallel to the recording surfaces. The carriage 
is driven by a cable that passes over a capstan 
on the shaft of a servomotor located in the left 
end-bell (Figure 5). A servo-potentiometer, 
located in the right end-bell (Figure 3) is con­
nected to the carriage by a thin steel band. 
The potentiometer is a part of a bridge network 
in the servo pOSitioning logic and is the car­
riage position indicator. Mounted parallel to 
the carriage rail is a movable notched rack (See 
Figure 6), connected to the lever adder on the 
right and biased against the lever adder by a 
spring on the left. Anyone of its 20 pGai~ions 
is determined by the output of the lever adder. 
There are 100 accurately machined and uniformly 
spaced teeth on the rack, whose shape can be 
seen in Figure 6. When the carriage is in posi­
tion, over a preselected notch of the rack, as 
determined by the servo-potentiometer, a pawl is 
extended from the carriage and moved against the 
selected tooth. Therefore, by means of the 
servo and the lever adder. the carriage can be 
driven to anyone of 2000 discrete positions. 
called tracks, along the drum's recording sur­
faces. The combination of two drums and two 
heads then provides 4000 tracks of data per drum 
file. 

Servo and lever adder movements are performed 
in parallel. Going to a new address may involve 
servo and/or lever adder changes. When a servo 
change is indicated, the carriage is withdrawn 
from the tooth, the pawl is retracted from the 
notch, and the carriage is moved to the newly 
selected track where the pOSitioning cycle is 
repeated. The lever adder moves the notched 
rack to a new position, independent of the servo 
change. However, servo positioning circuitry 
must compensate for a lever adder movement. The 
repositioning of either or both of these mechan­
isms results in a new track address. 

The electronic deck assembly contains a 
hinged transistor card library and four plug-in 
chassis; namely, servo-amplifier, servo-ampli­
fier power supply. address register, and control 
chassis (See Figure 4). The transistor card 
library houses plug-in cards, which contain 
transistor circuits that are associated with 
flying-head pOSitioning logic, read-write logic. 
and malfunction logic. The servo amplifier 
drives the control field of the servomotor; the 
servo-amplifier power supply supplies the d-c 
voltage required for the operation of the servo­
amplifier. 

The address register contains a relay net­
work. which functions as a combined digital to 
analog converter and memory. It is used to de­
code and store the track address as it is re­
ceived from the drum control unit. The control 
chassis contains relays associated with flying­
head malfunction circuits, alarm circuits and 
other logic circuits. 

The RANDEX control panel, mounted on the 
electronic deck assembly (See Figure 3), has 



two sets of controls and indicators; one is for 
the use of the operator, and the other for use in 
maintenance. The operator's controls and indic­
ators are located on the left front side of the 
panel; while special maintenance controls and in­
dicators are located on the right front side of 
the panel, behind a normally closed access door 
in the casework (See Figures 1 and 3). All con­
trols to manually operate the drum file off-line 
are provided on the operator's and maintenance 
panels, although specific changes in track ad­
dressing, supply voltages and read-write instruc­
tions must be obtained from the drum control. 
The carriage may be moved over the length of the 
drum, to approximate track positions, by use of 
a sweep control on the maintenance panel. A 
break-in plug is provided on the electronic deck 
to set new address selections in the address reg­
ister relays from an external "black-box", if so 
desired, although this is not considered standard 
equipment. 

Access doors are provided at strategic loca­
tions in the casework to permit easy access to 
the transistor card library, plug-in chassis, 
drum access doors, main power control box, and 
maintenance panel, without having to remove en­
tire panels. 

LOGIC OF OPERATION 

The starting of a multiple number of drum 
files, associated with a particular drum control 
unit, is sequenced, so that only one drum file 
draws starting current at a time. The start com­
mand is sent to the first drum file through the 
drum control unit. When that unit has started, 
it supplies a start command to the next drum file. 
This starting sequence continues until all drum 
files have been started. Should any of the drum 
files be turned off at its control panel or 
switched to local operation by one of the main­
tenance controls, the start command is automat­
ically bypassed to the next drum file. A drum 
file set in this condition is labeled as off­
normal and will not accept commands issued from 
the drum control unit or computer. 

As the drums in a file reach operating 
speed, voltages are supplied, in a preselected 
order, to the various control circuits and logic 
elements. Automatic clearing of all circuits 
and setting of logic elements as required pre­
pares the machine for operation. The flying­
heads carriage is automatically positioned over 
a prescribed area, toward the left end of the 
drums, where the heads are lowered to the flying 
position. Once heads are in the flying state, 
the carriage automatically moves to the address 
stored in the address register; if no address ex­
ists in the register, the carriage moves to track 
address 0000. 

If all of the maintenance switches are in 
the normal position, and if no other off-normal 
condition exist, the control lines from the drum 
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control unit are automatically connected to the 
drum file, and the file is then under command of 
the control unit. 

Instructions from the computer can now be 
processed by the drum file system, or the drum 
control unit can be operated from its control 
panel for off-line operation of the drum file 
system. Since each drum file has its own memory 
for track address storage, it is possible to read 
or write on one drum file, while the others, con­
nected to the system, are executing address in­
structions set in their respective track address 
memory. It is possible to issue a new track ad­
dress instruction to successive drum files every 
15 milliseconds. When the drum file completes 
its positioning instruction, a unit-ready signal 
is returned to the drum control unit, whereupon 
the read or write circuits of the flying-magnet­
ic-recording-head may be activated. A select 
line determines whether information will be 
transferred to or from either the bottom or top 
drum. 

ENGINEERING INTERESTS 

A few of the components which might be of 
further interest are: 1) the flying magnetic re­
cording head construction; 2) the lever adder; 
and 3) the servo circuits. 

FLYING MAGNETIC RECORDING HEADS 

Components and an assembly of the RANDEX II 
flying head are shown in Figure 7. The head 
body consists of two pieces of aluminum, fabri­
cated to exacting dimensions. The surface of 
each of these pieces, which after assembly be­
come the flying face of the head. are faced with 
tungsten-carbide. After the read-write coil, 
erase coil and common I-piece are secured in 
their respective cavities in the two aluminum 
sections, these sections are bolted together, 
with the joint located at the read-write coil 
gap-line. The gap-lines on the read-write and 
erase heads are spaced 0.020 inches apart. 
Since the pivot axis location is very critical 
to flying-head performance, bearing holes are 
accurately machined at a prescribed location on 
the sides of the head. 

Using the bearing bores as a locating re­
ference, the assembled head is then mounted in 
a lapping fixture and the tungsten-carbide face 
is lapped on a wheel, which gives the flying 
face of the head a radius of curvature somewhat 
larger than that of the drum. The lapped curva­
ture on the head lies in the same plane as the 
drum recording surface, and must be parallel to 
the bearing axis. 

After thorough cleaning and inspection, 
terminal boards are added; wiring of the coils 
is completed; caging cams, which retain the 
head when in the non-flying position, are added; 
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and, finally, bearings are installed. 

A complete inspection to check flying and 
recording characteristics is then performed on 
the head. 

LEVER ADDER 

A lever adder, removed from its container, 
is shown in Figure 8. It is a mechanism which 
provides, through linkages, additional head posi­
tioning by moving the servo-rack incremental dis­
tances within adjacent teeth. Throughout this 
discussion it should be kept in mind that the bi­
quinary (5, 4, 2, 1) computer code is used. In 
addition, a 10 has been added to the lever adder 
logic. 

The lever adder used on RANDEX II is a mech­
anical adder which can position its output link 
to anyone of 23 equally spaced positi~ns, desig­
nated here as 0 through 22. The output motion is 
generated by strokes of five individual solenoids, 
which drive through an arrangement of levers and 
interconnecting links, as shown in Figure 9. All 
solenoid links have identical stroke lengths, 
however, the weighting introduced by the levers 
and interconnecting links is such that each sole­
noid produces a different displacement in the 
output. Specifically, in terms of output link 
displacement, solenoid 1 produces 1/22 the total 
output; solenoid 2, an output of 1/11; solenoid 
3, an output of 2/11; solenoid 4, an output of 
5/22; and solenoid 5, an output of 5/11. The 
distance that the output moves between its zero 
position, when none of the solenoids is energized, 
and its 23 position, when all of the solenoids 
are energized, is a summation of individual out­
puts. 

In order to understand the manner in which 
the weighting produces the required motion of the 
output link, refer to Figure 9. and consider the 
case in which solenoid 1 is energized and the 
other four solenoids are de-energized. Solenoid 
1 moves its end of the 3-lever a distance of 1 
unit (equivalent to the solenoid stroke length). 
The other end of the 3-lever remains stationary, 
since solenoid 2 is de-energized~ Since the 3-
lever output link is 1/3 of the distance from the 
stationary end to the moving end, it moves 

1/3 x 1 = 1/3 

unit. The 3-lever output link imparts this mo­
tion to its end of the l2-lever. The other end 
of the l2-lever remains stationary, since it is 
connected to the output link of the stationary 
9-lever, which does not move because solenoids 3 
and 4 remain de-energized. The output link of 
the l2-lever is 1/4 of the distance from the sta­
tionary end to the moving end, therefore, the 
output link moves 1/4 x 1/3 = 1/12 unit. The 12-
lever output link imparts this motion to its end 
of the 22-lever. The other end of the 22-lever 
remains stationary, because it is connected to 

de-energized solenoid 5. Since the output link 
of the 22-lever is 6/11 of the distance from the 
s~ationary end to the moving end, it moves 

6/11 x 1/12 = 1/22 

unit. By a similar process of reasoning, it can 
be verified that each of the other solenoids 
introduces a motion corresponding to the 2, 4, 5 
and 10 digit with which it is associated, divided 
by 22. 

In the RANDEX application only 20 of the 23 
possible positions of the lever adder are used, 
therefore, the total distance that the output 
link is moved is only 19/22 of the solenoid stroke 
length. Space must be left between position 19 
of one tooth, and position zero of the next ad­
jacent tooth to obtain equally spaced information 
tracks at a density of 20 tracks per servo-rack 
tooth. Total rack motion is then limited to 
19/20 of the distance between adjacent servo-rack 
teeth. A solenoid stroke length, equal to the 
distance between adjacent teeth, was selected for 
this design. Therefore, a differential pulley, 
connected between the lever adder output link and 
the servo-rack, is used to multiply the output 
motion of the lever adder by a factor of 11/10. 
In the example above, the servo rack moves 

1/22 x 11/10 = 1/20 

of the distance between adjacent teeth. 

By varying the differential pulley ratio and 
lever weights. other computer codes can be used 
with the same basic lever ad~er assembly. 

Primary features in the construction pf the 
lever adder are the levers and dashpots, which 
are located between the solenoids and output. 

The levers are manufactured as segmented 
circular discs (See Figure 10). Note that the 
link (thin band with pin on end) wraps around a 
circular portion of the lever to its point of 
attachment to the lever. This is done to provide 
constant spacing between links, simplify manu­
facturing, and reduce link stresses. Relative 
positioning of the circular portions determines 
the lever ratio. 

As solenoids are energized and de-energized, 
the associated dashpots control the acceleration 
and deceleration of the rack and lever adder 
system. To function properly, the entire lever 
adder is put into, and kept in, a container fil­
led with damping fluid. A series of holes to­
ward each end of the cylindrical section of dash­
pots allows the passage of damping fluid into 
and out of the cylinder. 

Since upward and downward movements of the 
dashpots piston are symetrical, only the down­
ward movement will be discussed. The lever ad­
der output is biased by spring tension on the 
servo-rack. When a.solenoid is actuated, the 



plunger pulls in rapidly. stretching an intercon­
necting spring between the dashpot piston and 
plunger. as a result of the piston being restrict­
ed in its movement by the damping fluid in the 
dashpot. The pull, exerted on the piston by the 
spring. moves the piston which results in damping 
fluid being forced out through the hole in the 
wall of the dashpot. As the piston moves beyond 
the midpoint of the stroke, it starts to cut-off 
the openings, thereby reducing the escape area 
for the damping fluid remaining in the cylinder. 
Size and location of these holes control the pis­
ton acceleration and deceleration. Since the 
servo-rack is connected to the dashpots through 
links and levers. its motion is also controlled. 
When the piston reaches the end of the stroke, 
very little kinetic energy remains in the system, 
and overshoot or jerk is virtually eliminated. 
Bias springs. including the servo-rack spring. 
move the dashpot pistons in the opposite direc­
tion as solenoids are deenergized. 

The servo cycle consists of a "forward 
torque" phase, a "closed loop" phase, and a "re_ 
verse torque" phase. 

During the forward torque phase. the servo 
control logic connects the forward torque output 
of the torque circuits transformer to the servo 
amplifier. The phase of this fixed amplitude 
signal is such that the carriage is driven to the 
right, away from the tooth with which the car­
riage pawl is initially engaged. At the same 
time, the holding signal is removed from the pawl 
coil, and the pawl retracts by spring tension. 
thereby clearing the teeth of the servo-rack. 
The duration of the forward phase is timed by a 
delay flop in the servo logic. 

At the end of the forward torque phase, the 
servo control logic begins the closed loop phase 
by connecting the error signal from the servo 
potentiometer arm to the servo amplifier. The 
amplitude of this error signal is proportional 
to the distance between the carriage position and 
the new address position. The phase is dependent 
upon the direction of the error. The carriage is 
driven to the position midway between the addres­
sed tooth and the next tooth to the right, at 
which position the error signal is zero. In order 
to prevent the carriage from excessively over­
shooting the required null position, a signal 
proportional to the velocity of the carriage is 
combined with the error signal. The error and 
velocity signals are supplied to a "zero detec­
tor" circuit in the control logic, as well as to 
the servo amplifier input circuit. When the er­
ror and velocity signals reach zero, the control 
logic terminates the closed loop connections and 
sets up the reverse torque connections. 

In the reverse torque phase, the reverse tor­
que output of the torque circuits transformer is 
connected to the servo amplifier. This is a fixed 
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amplitude signal, phased so that the carriage is 
driven toward the addressed tooth. At the same 
time, pawl control signals from the control logic 
circuit cause the carriage pawl to be extended. 
Thus, the pawl is driven ag~inst the addressed 
tooth. The application of the reverse torque to 
the servo amplifier input circuit is timed to 
coincide with the peak amplitude of the reverse 
torque voltage, thereby lowering the response 
time of the servo. In addition, in order to al­
Iowa period of undamped acceleration, the ap­
plication of the velocity signal for damping to 
the servo amplifier input circuit is delayed for 
one cycle of the reverse torque voltage. The 
velocity signal is then applied. resulting in a 
reduction of the velocity at which the carriage 
pawl is driven against the addressed tooth. The 
reverse torque phase continues until a new servo 
cycle is initiated. 

REFERENCE 

1 J. P. Eckert. J. C. Chu, A. B. Tonik, 
W. F. Schmitt, "Design of UNIVAC~ -LARC System: 
I," EJCC, Proceedings, 1959. p 61. 
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Fig. 1. RAND EX Drum File 



STORAGE 
TOTAL STORAGE 
INFORMATION - UNIVAC 

SOLID STATE COMPUTER 

DRUM PARAMETERS 
LENGTH 
DIAMETER 
SPEED 
BIT DENSITY - USSC 
BIT FREQUENCY - USSC 
TRACKS PER DRUM 
TRACKS PER INCH 

ACCESS-FLYING MAGNETIC HEAD 
MINIMUM HEAD POSITIONING TIME 
MEAN HEAD POSITIONING TIME 

(ASSUMING RANDOM ADDRESSES) 
MAXIMUM HEAD POSITIONING TIME 
MEAN DRUM LATENCY TIME * 
MAXIMUM DRUM LATENCY TIME * 

RECORDING 
READ-WRITE ELEMENT WIDTH 
ERASE ELEMENT WIDTH 
HEAD TO DRUM CLEARANCE 
HEAD POSITIONING TOLERANCE (PLUS - MINUS) 

DRUM FILE PHYSICAL CHARACTERISTICS 
LENGTH 
WIDTH 
HEIGHT 
WEIGHT 

ELECTRIC SERVICE 
AC INPUT TO DRUM FILE-60 CYCLE 

KVA 
STARTING SURGE 
RUNNING 

VOLTS 
DC INPUT TO DRUM FILE SUPPLIED BY 

DRUM CONTROL UNIT 

POWER DISSIPATION 
AC 
DC 

COOLING 
HEAT DISSIPATED 
MAXIMUM ROOM TEMPERATURE 
MAXIMUM ROOM HUMIDITY 

* Time for data of a specific track to appear 
under the head once the head has reached address. 

Fig. 2. RANDEX II Specifications 

198.588 million bits 
126.72 million bits 
25.344 million digits 

44.0 in. 
24.3125 in. 

870 RPM 
650 PPI 
720 KC 

2000 
50 

125 millisec. 

350 millisec. 
550 millisec. 

35 millisec. 
69 millisec. 

0.011 in. 
0.019in. 
0.0002 in. 
0.002 in. max. 

76 in. 
33 in. 
68.5 in 

2000 Ibs. 

5.5 
2.0 

230 

1600 watts 
500 watts 

9200 BTU/hr. 

90 percent 
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Fig. 3. Front View, Less Casework, Showing Sealed Enclosure 



Fig. 4. Rear View, Less Casework, Showing Access Areas 
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Fig. 5. Servo and Carriage Access Area 



CARRIAGE 
DRIVE CABLE 

RAIL PAWL COIL 

SERVO-RACK 

PAWL MECHANISM 
(LATCHED ON RACK) 

*HEAD ASSEMBLIES AND 
HEAD CABLE REMOVED 

Fig. 6. Carriage, Rail and Servo - Rack Arrangement 
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Fig. 7. Flying-Head Components and Assembly 



Fig. 8. Lever Adder Assembly 
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5/11 6/11 
22-LEVER 

3/4 1/4 
12-LEVER 

2/3 1/3 
3-LEVER 

5/9 4/9 
9-LEVER 
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12345 

I 1 
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ADDRESS LI NES 

Fig. 9. Lever Adder Schematic 
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Fig. 10. Lever Assembly 
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DATA PROCESSING TECHNIQUES IN DESIGN AUTOMATION 
By 'Dr. William L. Gordon 

Minneapolis-Honeywell Regulator Company 
Electronic Data Processing Division 

Newton, Massachusetts 

Summary 

By providing a computer with basic infor­
mation concerning the design of a device as 
complex as the modern computer one not only ob­
tains an efficient record retention system but 
also brings to bear the full decision making a­
bilities of the computer on the design problem 
itself'. A major thesis of this paper is that 
the automation of the design of a complex system 
is primarily a data-processing problem in which 
the most powerful tools reside in the abilit,r of 
the computer to perform such jobs as editing, 
extracting, sorting, and merging pieces of basic 
design information. This contention is substan­
tiated by briefly describing the system current­
ly in use to\provide mechanized aids to design 
and production at Minneapolis-Honeywell Regu­
lator Company, Electronic Data Processing Di­
vision. 

Introduction 

In the course of proceeding from the de­
sign to the construction and maintenance of • 
device as complex as the modem computer one is 
led rapidly to the need for efficient record re­
tention systems capable of handling such diverse 
pieces of information as the formal logic of the 
device or the production wiring specifications. 
Not only must the record system be capable of 
rearranging and presenting the information for 
particular use, but it desirably must also do 
what it can to reduce the' gigantic clerical job 
of effecting the transition fram the basic de­
sign considerations of logic and circuitry to 
their amalgamation in the finished machine. 

The major advantages of such an automated 
design system lie in its abilit,r to perform 
rapidly and accurately while busily exploring 
the consequences of basic design changes, how­
ever trivial. The fact that such automatic pro­
cesses do exist is additional testimo~ to the 
systematic approach to machine design so es­
sential to the human consideration of any cam­
plex device. 

This paper is a report on such a Design 
Automation System currently in successful use 
at the Honeywell Electronic Data Processing Di­
vision. It is concerned primarily with 'the 
techniques of utilizing the capabilities of an 
electronic data processor, in this case the 
D-IOOO. The inputs to this processing system 
consist of statements of the purely logical de­
sign of a unit of arbitrary size, skeletal in­
formation as to logic and circuit. placement, and 
descriptions of the individual circuit types. 
au tpu ts are quite varied and range from analysis 

of the logical design to wiring specifications 
for the machine; this latter including punched 
card decks to operate automatic wire wrapping 
machinery. 

The program system was originally executed 
to aid in implementing the design and con­
struction of the H-Boo and will find use as well 
in the production of future systems. This latter 
statement should be not interpreted as saying 
that future designs will necessarily be forced 
into the same mold, but rather as asserting that 
the processing system is of sufficient flexi­
bili ty and simplici t,r to guarantee rapid adapta­
bility to changes in basic design philosophy. 
Indeed, with a few data safeguards removed, we 
would be quite capable of specifying a length of 
coaxial cable between two remotely located in­
surance policies. 

The most distinguishing feature of the pro­
gram system in operation is its low usage of the 
arithmetical abilities of the computer. This is 
conditioned less by the fact that the D-IOOO is 
most powerful when employed with the buSiness 
data-processing operations of sorting, merging, 
and high speed information flow to and fram mag­
netic tape as by the fact that the job at hand 
was a data processing job with the model found. 
1t is a major thesis of this paper that Computer 
Design Automation (as well as design automation 
of other complex systems) is principally a job 
of symbol manipula~ion lying almost entirely 
within the realm of standard data processing 
technique. The reader will undoubtedly agree 
wi th this statement insofar as record retention 
is an aspect of the design problem. The point 
to be made here is that the design process it­
self is largely a process of augmenting and ex­
panding basic information by a series of merge 
(match) passes, extraction, editing, or data 
rearrangement passes (sorting), over the basic 
information. 

Basic Processing 

Input 

Logical design data is presented to the 
machine in the form of Bodlean equations modi­
fied to meet punched card requirements. Each 
logical statement carries with it an indicator 
of the circuit type to be employed in the physi­
cal realization of the statement. This latter 
device enables the designer to specify the input­
output relations of non-logical or time-sensitive 
devices for which Boolean'notation is inadequate, 
the circuit type designator serving to remind 
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the reader (and the processing program) of the 
way this black box should be treated. For ex­
ample, the statement: 

(1) GBA A/B.e * D.E.F 
makes logical sense if one interprete tt/tt for 
Mequalstt , tt." for nandtt , and "*" for "or", but 
may more simply be interpreted as establishing, 
at the very least, an input-output relation be­
tween signals B and A, C and A, etc. Indeed, a 
possible way to file away the logic is in this 
latter form. However, given a file of logical 
statements in the fonn (1) it may be easily 
transformed into the latter by a single paSs 
over the data. This leads us immediately to 
the process of examination of the loads on all 
signals •••• a process typical of machine use in 
this system. (cf. Figure 1) 

Signal Loading 

The original logical statement is regarded 
as specifying a source together with its inputs. 
Dually, each input may be regarded as a load on 
the source bearing its name. By forming an item 
for each occurrence of each literal the logic 
may be recast into a file of signal name pairs 
indicating a relation of the form "B is an input 
to Att. Sorting all such items on the input field 
groups all occurrences of a signal name together 
thereby fonning a list of all loads on all sig­
nals. The driving signal name itself is proper­
ly treated as an input to an unknown load. Wi th 
auxiliar,r information descriptive of the circuit 
type and gating structure dragged along for a 
free ride, a final pass editing for printout has 
an easy time tallying loads on each signal. 

Matching the tape forming the input to the 
sort with the sort output tape foms a simple 
means of cascading each signal through another 
level of logic. This is an effective method of 
chaining the input relation through as many 
stages as desired. By reinterpreting the re­
lation as meaning nis a part of" this procedure 
is seen to have a direct counterpart in the 
business of exploding parts inventories on the 
basis of assembly levels. 

So far, this has examined the logic from a 
purely abstract point of view (quite proper to 
logic) but the designer is not merely playing 
games on paper. These logical statements are 
intended to have a circuit realization. Again 
a dual statement may be made, i.e., the circuits 
are to have a logical realization. With this in 
mind a master file of available circuit (package) 
types is treated in like black box fashion with 
a typical entry appearing as s 

(2) GBA 10/11.12 * 1).15.17 

where physical pin numbers or other designators 
indicating location relative to the package at 
hand replace the formal logical symbols. This 
device of using the same format forces the logi­
cal aspects of the circuit description into the 
same mold as the logic itself. Aside from ap-

pearing a natural way of representing the cir­
cuit it leads easily to the production oriented 
step of detennination of' wiring configurations. 

Network Determination 

The formation of a file in which all pins 
of the same wire network are grouped together is 
identical to the process used in loading calcu­
lations with the exception that a correspondence 
between the symbolic logic and the package struc­
tures must be made first. This is done via the 
use of a third file specifying for each signal 
the type of package it is being implemented with 
and the slot location of the package in the 
racks. The logical statements are matched with 
this last file, the resulting tape resorted by 
package type designator and then matched against 
the pin structure. Resorting the final output 
produces a file organized by logical signal name 
in which the symbolic literals have had package 
and pin locations associated with them in one­
to-one fashion. The resulting document is a 
compendium of the entire design and all other 
information is derived from this generated file. 
Reprocessing the pin modified logic through the 
loadlist type extraction and sort regroups all 
occurrences of each signal. The pin locations 
that here ride along are likewise grouped to­
gether thereby fonning a first approximation to 
a wiring list. 

It should be remarked that the processing 
system to this point is sensitive only to the 
names of signals and location designators and 
has not found it necessar,r to establish ~ geo­
metric relations between the physical points. 
In this sense no mathematical computation other 
than tallying has taken place. Nevertheless, 
the original logical design has been exploded 
and recast into a form which could be used for 
construction purposes. Indeed, a highly simpli­
fied version of this system was implemented with 
tabulating equipment and employed in the success­
ful construction of a small machine. 

Wiring Determination 

The principal remaining problem is to pair 
the pins of a given signal run to form wires. 
Here simple sorting is no longer effective, for 
the circuit designers have determined that a de­
sirable criterion for wiring a given network is 
to minimize the total wire length in the entire 
run. It is at this point that geometry rears 
its head and metric relations between pins must 
be examined. Nature and Mathematics still smile 
however and this becomes one of those rare cases 
in analysis where doing the best thing locally, 
i.e., building up the network iteratively by ap­
pending closest points at every step, produces a 
demonstrably minimum overall solution. With 
further constraints (e.g., no more than three 
wires may be commoned at a particular pin) the 
algorithm breaks down; but again Nature is be­
nign and the deviations tum out to be statisti­
cally insignificant. 



It is this process, computational in 
character, that forms the largest fly in the 
ointment of the thesis that automated design 
consists almost exclusive~ of information 
shuffling. Con3equently it will not be report­
ed upon in detail here, but is certainly of 
sufficient interest to warrant independent pre­
sentation. Overall system flexibility is still 
retained by isolating the length decision-making 
algorithm with a routine which interprets all 
pin designators in terms of an absolute 3 - di­
mensional coordinate system thereby allowing 
complete revamping of the construction geometry 
wi th small programming changes. A portion of 
this wire determination system includes further 
computation for the machine selection of the 
various wire types to be used; which selection 
procedure accounts for both wire length and cir­
cui t loading. 

With Wires fully' determined, additional in­
formation as to capacitative loading, current 
flow in each wire branch, number of wires per 
pin, etc., iIlay be easiq accumulated and report­
ed to the designer who may make necessary modifi­
cations, update his files and come through the 
entire system again. When he is satisfied with 
the design the wiring file for the unit is ready 
for release to production. 

Production Outputs 

At this point the file of wires may be 
broken down and sorted six ways from Sunday to 
fi t production jigging and assembling require­
ments, (left-handed assemblers need not apply, 
for the information is presented for assembly by 
right handed operators). With all breakdowns 
and sorts made from the parent wiring file, ac­
curacy is guaranteed up to the point of wire in­
sertion. Independent lists are provided for in­
spection and ring out purposes. 

The use of automatic wire wrappirig machinery 
in the production process has necessitated the 
construction of a program system to effect the 
translation of the wiring information to a deck 
of punched cards which will instruct the off­
line automatic equipment. '!be value of the data 
rearrangement is high in this case because the 
problem of sequencing the wire wrap machine for 
efficient operation requires great reordering of 
the wires in terms of such criteria as path con­
figuratioD;, color, length, number of wraps on pin, 
etc. Again this particular work will be report­
ed upon elsewhere. 

Manual Entries 

'!be only input point indicated to the sys­
tem has been at the level of the basic logical 
design. Although minor changes can be exploded 
through the entire system it has been found de­
sirable to allow the engineer access to the out­
put wiring files. Manual intervention at this 
point can account for the special cases not 
worthy of programming into the system as well as 
allow the engineer final say on what the results 
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of processing have been. It further enables the 
engineer to make minimal changes to a machine 
already under construction. The nature of the 
decision making portions of the system, notably 
the point at which the wiring network is de­
termined, make it difficult to guarantee that 
second passes through the full system on moder­
ately input data will keep change minimal. This 
is largely because the routines are trying to 
minimize an overall criteria. 

Checking 

With manual modification possible the pro-
. cessing system continues, but in a different 

mode. Now it cannot generate final information, 
it can only check on the apparent accuracy of 
the file. Two modes are still left open to per­
form these checks. The first is that after up­
dating the wiring file a check can be made on 
connectivity of each electrical path. The second 
check to be made on the modified wires is to do 
a complete reversal on the original processing 
system. and regenerate from the wires the logic 
that they implement. This latter file is the 
true document of the machine incorporating all 
known information about the design. Unfortu­
nateq it is still incomplete for it mere~ de­
scribes what the machine should be - as opposed 
to what it really is; this latter anomaly oc­
curring only because the insertion of the wire 
into the machine and into the machine file are 
two different processes. 

Extensions ! Generalizations 

The basic model exploited in the above sys­
tem is quite simple, the computer is regarded as 
a massive assemblage of "black boxes" (circuits 
or packages) each possessing input and/or output 
points connected together by a relational scheme 
known on~ to the logical designer. The indi­
vidual black boxes themselves are constructed as 
an assemblage of other Itblack boxes" (components) 
according to a scheme known only to the circuit 
designer. We may continue up or down in this 
hierarchy to include the system designer or the 
co~onent designer at macro-molecular or sub­
atomic levels, but for convenience and with no 
real loss of generality will settle at the level 
of the circui~ which the logical designer must 
interrelate. Each such circuit has well defined 
input and/or output points which in the finished 
machine accumulate a large number of attributes, 
among which are the following:-

1. A deaignator indicating the relative 
position of the point in the machine (e.g., 
connector pin location). 

2. A designator indicating the type of 
circuit to which this node belongs (e.g., flip­
flop). 

3. Number of connections made to this 
point. 
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~. Description of the wire coming to this 
point (length, type, route, etc.). 

5. Items 1 and 2 for the other end of the 
wire coming to this point. 

6. Items 1 and 2 for the signal source 
driving the network of which this point is a 
member. 

7. Current flow in the wire of i tern 4. 
e. Wave forms at this point. 
9. Name of the signal appearing at this 

point - name of the network. 
10. Structural significance of this point 

in relation to the inside of the black bo~. (e. 
g., 5th leg of the 2nd gate etc) 

11. Name of the black box this wire is going 
into. 

The above list is by no means exhaustive, 
nor does any person associated with the design, 
construction or use of the machine have a need 
to examine all of the information contained 
therein at anyone time. By the same token it 
is not until the design is complete that such a 
compilation may be attempted for each node (pin) 
in the device. The major function of the Honey­
wll Design Automation System is to piece to­
gether the essential pieces from various design 
sources and at some points compute a few of the 
items in the list. 

In examination of the list more closely 
several items may be grouped as falling into 
distinct design areas. Items numbered (2),(9), 
(10), and (11) suitably edited form the logical 
design; whereas item (10) above represents the 
link between logic and cireui try. Com~ining 
items (9) and (1) is essentially the job of 
package allocation. Matching these pieces of 
design information produces input to a wiring 
determination routine from which all else is de­
rived. Curiously, in the course of back-tracking 
from wires to logic the program system at one 
point uses logical structure as a key for sort­
ing. 

The present system is keyed heavily to the 
problem of backboard wiring interconnection of 
the circuit "black boxes". An enlargement ot 
the system will enable machine processing to go 
inside the packages or outside to the major unit 
complex. Here we will be exploiting the fact 
that all location designators are relative to 
the level at which they occur. For example, 
each component placed on a package is located 
only on that package; each package inserted into 
a slot in the machine is located only relative 
to that unit (e.g., peripheral control unit). 

* Wiring networks are usually simply connected, 
i.e., there is only, one wire path (equipo­
tential) between two points. A convention es­
tablishing one point in such a network as a 
source establishes an orientation for the two 
ends of each wire in the network. 

Remarks 

The generality of the above model suggests 
its application to other equally complex jobs. 
All we have really done is endowed each con­
nection point with a .name and address obtained 
from different sources. Relations between names 
are interpreted as calling like relations between 
addresses; indeed the very application of Boolean 
Algebra to switching circuit theory came about 
by making symbolic name assignments to physical 
circuits, largely divorcing the problem of logi­
cal design from its physical implementations. 
Certainly the same technique is applicable to 
other complex systems ••• the procedures de­
scribed here effecting the reverse step of making 
all necessary name and address correspondences. 
This degree of abstraction has played a signifi­
cant role in computer design and use, enabling 
the breakdown of a complex system into under­
standable smaller pieces; or rather the as­
semblage of the system from comprehensible 
building blocks. 

Name and address processing is certainly 
familiar to the programmer who in an effort to 
free himself from physical address consider­
ations has constructed automatic program systems 
to allow writing his program symbolically (as 
the logical designer does today) letting the 
machine solve his allocation problem. The only 
essential difference here is that when this is 
done he rarely has to communicate in detail the 
resulting information to anything other than a 
computer. 
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ecuted a heav.y influence on engineering and pro­
duction procedures. Analysis and programming 
are relatively mild aspects of the problem; but 
perhaps this is because machines are really 
quite docile. 



FROM FILE UPDATING 
SYSTEM 

RUN# I 
SET UP TAPES FOR 

1----1 .. MAJOR UNIT UNDER 
PROCESS THIS RUN 

RUN #2 
MERGE LOGICAL DESIGN 
INFORMATION WITH 
LAYOUT INFORMATION 

RUN#4 
MATCH LOGIC AGAINST 
f5'iN"S'5N PACKAGE t­
ACCOUNT FOR ALL PIN 
FORM EXPANDED LDGIC 

RUN#3 

~ COMBINED 
ITEMS INTO ORDER 
BY PACKAGE OR 
CIRCUIT TYPE 

FILE MODIFIED TO 1---..... 
INCLUDE PIN INFORM­
ATION 

RUN#6 
FORM I ITEM FOR 

... _--IEACH OCCURENCE OF 

RUNH7 
SORT BY LOGICAL 
SIGNAL NAME TO 
GROUP ALL OCCUR­
ENCES OF SAME 
SIGNAL 

EACH L1TERAL­
APPEND CORRESPON­
DING PIN LOCATION 

EDIT FOR PRINT 
COMPUTING LOADS 

1--_ .... ON EACH SIGNAL 

TO WIRE DETERMINATION 
(PIN PAIRING) SYSTEM (ON 
DEMAND) 

RUN#5 

SORT FILE INTO 
ORi5ER BY LOGICAL 
SIGNAL NAME 

EDIT FOR OFFLINE 
PRINT 
MACHINE FILE AND 
DESCREPANCY 
REPORTS 

OUTPUT 

t----I'" DOCUMENTS 

FOR DESIGN EVAL­
UATION AND RECORDS 

Fig.!. Process Flow for Generating Pin Groupings from Formal Logic and Packaging Information. 

209 
5.1 





211 
5.2 

IMPACT OF AUTOMATION ON DIGITAL COMPUTER DESIGN 

by 
W. A. Hannig and T. L. Mayes 

General Electric Company 
Computer Department 

Phoenix, Arizona 

Introduction 

A digital computer logician's job 
may be defined as a two-fold task. First, 
he ~st generate abstract ideas on the 
organization of a proposed computer to 
handle a particular type of problem, and 
second he must convert these abstract 
ideas into data that a factory can use to 
construct and ch~ck out the computer. 

At the General Electric Computer 
Department, we have spent considerable 
effort in supplying tools for the lo­
gician to use to simplify and to better 
optimize the job of converting abstract 
organizations into factory data. These 
tools are automation programs which 
allow the logician to use pro~rams, run 
on existing computers, to des~gn proposed 
computers. 

The paper describes: 

1. The functions performed by these 
programs; 

2. The logician's use of these 
programs as a tool; 

3. The use of the data produced 
by these programs; and 

4. The effect that the use of these 
programs has upon the human organization 
that designs and builds these computers. 

The Functions Performed by the Programs 

Summary of functions 

The programs may be divided accord­
ing to five major job categories: 

1. Arrangement of Boolean equations 
to describe the over-all computer logic. 

2. Interpretation of Boolean 
equations to determine logic gates and 
other circuits required; how they are to 
be interconnected. 

3. Assignment of circuits to plug­
in circuit cards. 

4. Generation of information for 
interconnecting circuit cards. 

5. Preparation of logic schematic 
diagrams. 

The program functions in each 
category are discussed in detail in the 
following sections. 

Arrangement of Boolean Equations 
(See F~g. la.) 

For describing the over-all logic 
of a digital computer,- it is of great 
advantage to have a set of Boolean 
logic equations which show how each 
flip-flop is controlLed during each time 
interval of each command. Such equations 
are assembled and arranged by this pro­
gram from a manually prepared list of 
the control signals active during each 
interval. 

In the execution of a command, 
various control signals, emanating from 
a command decode network or from control­
ling counters, enable various gates in 
a series of steps to execute the command. 
Thus, for each command the logician lists 
the control signals which are turned on 
during each step of the execution. This 
list, in punched card form, is sorted 
and printed in order of command step and 
also in order of control signal (to show 
the command steps using each control 
signal). The list in its former sequence 
is one of the inputs to the program. 

The logician also prepares on 
punched cards a list of the logic 
equations which are activated by the 
control signals referred to above. 

And, finally, the logician prepares 
special program control information which 
deals with the identifying headings. 
These headings will appear in the printed 
output, which deals with numerous ex­
ceptions to the pattern (such as the 
implication of equations due to the 
absence of a control signal during a 
part~cular command step), and which 
organizes the over-all program logic. 

From these three inputs the program 
collects the equations for each command 
step. The equations for each step are 
collected by searching the equation list 
(on magnetic tape) for the equations 
corresponding to the control signals 
associated with that step. With suitable 
headings interspersed to identify the 
various registers, the collected equations 
are subsequently formatted for off-line 
printing on regular drawing forms. By 
careful control, all the active equations 
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for one command step generally fit onto 
one sheet to make the results easier to 
use. (Example in Fig. 2.) 

Each major, independent equipment 
of the system requires this logical de­
scription information by preparation of 
lists of control signals, equations, and 
program control information. The three 
kinds of data, prepared by the logicians, 
are processed by one set of routines, 
virtually unchanged from one equipment to 
the next. This characteristic is gener­
ally true of the other programs as well; 
the variations represented by the dif­
ferent major equipments were treated 
simply as variations in the data pro­
cessed by the programs. 

Interpretation of Boolean Equations 
(See Fig .. lb.) 

The original equations discussed 
above are grouped together manually to 
form the complete "unimplemented" 
equations for each flip-flop. The 
logician then operates upon these 
equations to match the available logic 
circuit structures and circuit rules. 
He expresses his results in the form 
of "implemented" logic equations which 
are punched into cards. (Example in 
Fig. 3.) 

These equations are interpreted by 
a program in order to produce a list of 
the "elements" required to implement the 
desired logic. An "element" is the 
smallest subdivision of a computer which 
still retains its logical identity, e.g., 
AND gate, OR gate, flip-flop, etc. Each 
element is described by a unique code 
name and by a list of the input signals 
to the element. Thus, this program pro­
duces an Element Input List which 
identifies all the elements required and 
shows how they are interconnected. These 
elements are free-floating; they are not 
associated with plug-in cards as yet; 
hence, no pin numbers are present. 

The process vf interpreting the 
equations is related to other equation 
interpretation programs in which the 
equation is scanned and thereby divided 
into unique entities, in this case, the 
elements. Each equation contains signals 
and symbols (logical operations, pa­
rentheses, and such). Beginning from 
one end of the equation, the program 
selects the first three of these, re­
gardless of whether they are signal or 
symbol, and classifies all signals as 
simply another unique kind of symbol. 
The three-symbol group is looked-up ip 
a table containing all possible combi­
nations of three symbols. If the group 

is permissible (two plus signs together 
would be impermissible), a "level incre­
ment" is obtained and algebraically 
added to a cumulative level number. The 
table also supplies information as to 
whether the resultant level number should 
be odd or even and what to do to it if 
the number requires adjustment. When 
finally acceptable, the level number is 
stored in association with the middle 
symbol of the group (the first and last 
symbols of the equation are asterisks). 

The same process is repeated for 
the next group of three symbols, using 
the second and third of the previous 
group as the first and second of the 
next. Thus, a two-symbol overlap occurs 
between successive groups. In each case 
the cumulative level is adjusted and 
assigned to the middle symbol until the 
entire equation has been traversed. In 
some cases, a prepass is necessary to 
ascertain the presence of certain kinds 
of symbols. 

Following the level assignment, 
the program, still working on the same 
equation, successively scans the level 
numbers to detect particular values 
grouped together. The signals within 
such a group are the inputs to an ele­
ment, and that element is immediately 
identified and added, with its inputs, 
to the list of elements being prepared. 
The list of symbols,signals, and level 
numbers is also modified appropriately. 
In this process, successive levels of 
gates are identified, starting from the 
outside gates of the structure and con­
tinuing until the innermost gates have 
been identified and set up. 

The program complains if the number 
of levels implied by the equation is 
excessive for the particular type of 
"source" element (which the gates, as a 
group, control). The program shifts 
the gating structure about somewhat in 
accordance with certain limitations im­
posed by the circuitry. It also inserts 
degenerate (one input) gates as required 
by the circuits rules. Gate width is 
checked as a function of the location of 
the gate in the structure and the type 
of source element involved. 

The resultant list is, in a sens~, 
a list of equations having only one level 
each, where the logical relationship is 
identified by the kind of gate. But_ 
rather than view them as equations, they 
are viewed as elementary building blocks, 
the distinct entities of which comprise 
the computer being designed. This list 
is the main stream of the programs which 
follow. The Element Input List is 



operated upon in various ways; other lists 
are derived from it, but it continues to 
appear along the line in altered, aug­
mented form until it represents a complete 
determination of the machine from which 
manufacturing information and reference 
documents are derived. 

One of the uses of the Element 
Input List is to serve as input to the 
loading calculation routines which pre­
pare a sort item for each element's 
input signal whose loading must be evalu­
ated. These items are sorted to gather 
together the names of the load elements 
on the sources being evaluated. Through 
the use of a manually-prepared table 
showing the location of the registers 
(in a gross sense), the program computes 
the wiring capacitance. Using a table 
of a-c and d-c loading limits and in­
formation contained in the load list on 
timing restrictions (derived from the 
input logic equations) in which critical 
and non-critical timing is identified, 
the program assigns the loads to the 
sources in such a fashion as to group the 
loads geographically and to avoid over­
load. Parallel sources (producing 
identical logic functions from identical 
input signals) and the opportunity for 
the program to add power drivers where 
the timing permits, impose a relatively 
complex assignment task. Each time a 
load is added, for example, the wiring 
pattern may change greatly or very little; 
a great change may jump the capacitance 
appreciably and prevent the addition of 
the load. Thus, the wiring must be 
routed and its length computed repeatedly. 

Once the loads have been assigned, 
the program determines the pull-up or 
pull-down currents required to drive the 
loads properly and produces a list of 
data showing which specific source drives 
each load as well as a list of the drivers 
added. These lists are used to update 
the Element Input List, which previously 
has shown source signals in a generic 
sense Qnly, rather than by specific ele­
ment name. The load list is also for­
matted and printed for use by the 
logician. Overload cases which the 
program could not cure because of timing 
restrictions also are listed for the 
logician. 

For some equipments, an additional 
loading calculation is made to reduce the 
amount of driving requirement, and hence 
the circuitry, required. In this calcu­
lation.the loads on a source are ex­
amined for the presence of certain types 
of signa~which would absorb all of the 
gate's load, and which would be mutually 
exclusive of each other. Introduction 
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of such signals into a pair of loads 
driven by the same source would reduce 
the effective load on the source to that 
of only one load. The massive amount 
of timing information and considerable 
processing required made it imperative 
to do this calculation by computer. 
Substantial reduction of circuitry re­
sulted, and in some cases otherwise 
impossible logical configurations were 
made possible by this approach. The 
assignment of these mutually exclusive 
loads required special treatmen't in 
that the group could not be divided among 
the driving sources without recomputing 
the effective load. 

Assignment of Circuits to Plug-in Cards 
(See F~g. lc.) 

The next program assigns the ele­
ments to plug-in cardsa The available 
cards are represented in skeleton form 
in a master file. Each skeleton in­
cludes the circuits contained on the 
card in the form of outpu~and inputs 
grouped together with the associated pin 
numbers shown. Thus, the circuits are 
in essentially the same form as the 
elements. 

Basically, the program must find a 
circuit of suitable type for each element 
and assign it by entering the name of 
the element as the output of the circuit 
and by entering the input signals of the 
element as inputs into the circuit. 
Space is provided in the skeletons for 
the program to enter these input and 
output signal names (the output signal 
is identical to the name of the element). 

If a suitable circuit can not be 
found on an existing card, the program 
must select an appropriate card type 
from the skeleton file, copy it into the 
list of cards being used, and assign the 
element as described. 

With numerous ways in which some 
elements may be assigned, including 
dividing them among two or more cards, 
the program makes use of tables so 
organized to provide intricate logical 
ability in combination with control 
data contained within the skeletons 
themselves. Some of the plug-in cards 
contain partial gating structures of 
various types, and the program must do 
considerable work to locate sets of gates 
which can make use of these structures. 
The programs also must look ahead, in 
effect, to determine the card type which 
should be set up not only to satisfy the 
needs of the immediate element being 
assigned - which might be satisfied in 
any of several ways - but also to provide 
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a card type suitable for the remaining 
elements to be assigned to this group of 
cards. 

The group of cards dealt with to­
gether is limited to twenty-eight, the 
number contained within a physical 
module. Because a specific group of 
elements is not always assigned to a 
specific module~ the program must 
assign and reassign increasing numbers 
of elements to cards until the number 
of cards reaches the allowable limit. 
The reassignment is necessitated by the 
changing pattern of card types and 
numbers as additional batches of ele­
ments are added. Sometimes, an alto­
gether different card type may be used 
when elements are added to the group 
because of their ability to justify such 
a type. In another mode, a definite 
batch of elements is designated for a 
module, and the assignment becomes simp­
ler and more rapid. In each case, a 
manually prepared table is used to 
designate the/twenty-eight card modules 
Which are to contain various groups of 
elements. 

The resulting list of plug-in cards 
shows all the cards assigned by the 
program. Spare circuits are identified 
by blank spaces, because of the lack of 
signal names associated with the circuit 
identification. 

This list, called the Element Pin 
List (EPL), is a key and permanent file. 
Its format permits easy modification by 
manual updating Which is accomplished 
simply by preparing one punched card for 
each pin the signal of which is to be 
changed. Entire plug-in cards may be 
added or deleted by single punched cards. 
The update cards are processed by a 
routine which finds the designated pin 
or card, makes the indicated change, 
prepares a new file, and causes a re­
placement sheet to be printed showing 
the new conditions. 

The EPL is used not only for the 
subsequent preparation of wiring data 
and schematics but its format (inputs 
grouped with outputs) also permits the 
generation of load lists which are auto­
matically checked for overload. Such 
checking is prudent after a series of 
manual updates may have thrown a source 
over the allowable loading limit. In 
addition, load lists are added to logic 
schematics derived from the EPL. 

Generation of Information for Inter­
connecties circuit Cards 

(See Fl.g. ld.) 

The Element Pin List represents a 
collection of cards which contain the 
circuits necessary to perform the 
computer functions. Some of the inter­
connections are already made on the 
cards, but the cards themselves must be 
interconnected. This is accomplished 
by a combination of etched back panels 
into which the cards are plugged, and 
harness wiring to interconnect the 
etched back panels. The program pre­
pares punched tape information to control 
automatic machinery which produces the 
etched back panels, and it prepares 
wiring lists from Which the panels are 
manuall¥ interconnected. 

As the first step of this process, 
the program must determine which signals 
extend beyond the confines of a single 
etched panel so that suitable panel 
interconnection points may be provided 
and connected by etched wiring. These 
connection points are not specifically 
called out at this stage because the 
specific points will be selected by 
the etched layout program. 

These general connection points, 
together with the other pins included 
within an etched panel, are processed 
in a group. Each pin in the group is 
associated with a particular signal. 
Pins bearing the same signal are wired 
together. As the layout proceeds, 
specific pins connecting to other panels 
are selected and listed separately for 
use by the harness wiring program. 

The etched panel permits connections 
through horizontal etched copper strips 
and through vertical jumper wires in­
serted into holes in the panel. Thus, 
a typical connection between two pins 
may consist of a series of horizonta+ 
and vertical segments zig-zagging 
across the panel. Isolation of one 
run from other runs is accomplished by 
means of breaks in the copper strips 
which are provided in the etching 
process. 

The program must seek an open path -
there is a limited number of vertical 
and horizontal lines. available - by 
testing for cuts and for existing jumpers 
which bar the way. The trials are made 
and a path found much as a rat finds its 



way through a maze, except that certain 
preferences and patterns are established 
to guide the process. In addition, the 
task is somewhat simplified by seeking 
merely a satisfactory rather than an 
optimum layout. 

Once the layout is complete, the 
data is converted to x-y coordinates for 
the location of cuts in the copper strips 
and for the location of holes in the 
panels through which the jumpers will be 
placed and dip-soldered to the etched 
copper. A printed image also is pre­
pared of the layout to show the location 
of holes, cuts, and jumpers for manual 
use. Commonly the progr~L is unable to 
complete all the connections with its 
somewhat limited imagination and rules; 
uncompleted connections are listed for 
manual completion with the aid of the 
printed image of the panel. 

the harness pins are collected until 
all the etched panels are layed out. 
Again, pins bearing the same signal are 
wired together. The routing is done to 
reasonably minimize the length of each 
string of wires. The resulting list of 
"from-to" connections is grouped to 
provide convenience to the manufacturing 
operation. The connection items are 
also sorted on signal name to provide 
a signal reference list. Another list 
is provided by reversing each con­
nection item, adding it to the list, 
and sorting the combined data on the 
"from"'pin number to produce a pin refer­
ence list. And finally, the wiring 
strings are sorted according to the low­
est pin number in each string to produce 
a list which allows semi-automatic 
checking of the wiring by ringing out 
each string in orderly, non-redundent 
succession. 

J 

Minor changes are made manually on 
the etched layout data through use of 
the layout image. Changes to the harness 
are made by preparing add-delete punched 
cards for each wire added or deleted. 
These cause the program to update the 
list and produce a replacement sheet for 
the pages thereby affected. 

Pre~aration of Logic Schematic Diagrams 
( ee F~g. le.) 

These automatic processes which 
convert logic equations into lists of 
circuit cards and their interconnections 
mu~t also report what they have done. 
The chief report is in the form of logic 
schematic diagrams. (Sample in Fig. 6.) 
These diagrams show in graphic form how 
the elements are interconnected in 
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logical patterns to enable the user to 
trace rapidly through a series of ele­
ments and to identify the function of 
each element readily. Input and output 
pin numbers are shown. Names and pin 
numbers of loads are included. 

These diagrams are generated from 
the Element Pin List; as a result, the 
diagrams match the wiring information 
because both are derived from the same 
source. 

The logic schematic program in­
volves a certain amount of pre grouping 
of the information through sorting and 
editing operations. The main format 
routine traces through the data in 
reverse order (upstream) to find and 
lay down the elements in the print 
image. This process also serves as a 
useful check on the completeness of 
the data, for should an element be 
deleted in error, its absence would 
break the chain and cause other ele­
ments to be "left over" at the end of 
the tracing process. 

The important task of keeping the 
documentation of a computer in accurate 
and complete condition is aided, not 
only by the common-source generation 
referred to above, but also by use of 
an automatic updating process. When 
a change is made to the Element Pin 
List, the schematic program automatical­
ly detects such a change and produces 
a series of operations which finally 
result in printing a set of replacement 
sheets for all those previous sheets 
which experienced any changes. 

All the output documents which are 
to be distributed to various using 
groups are printed on continuous-feed, 
preprinted vellum forms. A double-faced 
carbon sheet imprints on the back of the 
vellum and produces a carbon copy for 
immediate use while the "tracings" are 
being reproduced. The various document 
producing routines completely title, 
number, and otherwise identify the draw­
ings according to standard practice. 

All the output data is printed on 
a conventional printer having the usual 
scientific characters such as parenthesis, 
equal sign, and such. 

General Comments 

, The programs consist of over 60,000 
single address instructions for the IBM 
704 Computer and are produced through 
regular assembly procedures (such as 
the SHARE Assembly Program). They were 



216 
5.2 

developed jointly by engineering and pro­
gramming groups within the Computer 
Department. Communication from the engi­
neers to the programmers was primarily 
by means of conventional flow diagrams 
augmented by prose specifications and 
tabular control data for specific 
situations. 

Use of the Automation 
Program as a Design Tool 

One of the first ways that a lo­
gician can record his abstract ideas is 
in the form of an operation flow chart. 
This chart lists the micro-operations 
and their time sequence within a given 
machine instruction or command. An 
automation program gathers all the 
micro-operation and timing information 
and produces a concise set of organ-
ized documents called "Block Descriptions". 
The Block Descriptions (sample shown in 
Fig. 2) illustrate the control equations 
for every micro-instruction interval of 
time in all machine instructions. The 
logician combines the equations from 
each of the Block Description time in­
tervals ,to form the complete Boolean 
equation for each "stage" of the pro­
posed computer. (A proposed computer 
is sub-divided into a series of regis­
ters and a register is further sub­
divided into stages. A "stage" is a 
logical device the fan-out of which can 
be greater than one, for example: a 
single driver, or a single flip-flop.) 
The summation of equations for all stages 
of the computer then form the complete 
logical description of the proposed 
computer. For a moderately large scale 
computer this may result in 1000 Boolean 
equations for 1000 stages. Each equation 
describes the logical operations and 
connections to be made within a stage. 
All the equations, as a group, describe 
the interconnections to be made among 
stages of the proposed computer. 

The Boolean equations now form the 
input data to a group of computer pro­
grams which generate manufacturing 
information for the factory. When the 
equations are written, it is assumed 
that all named logic signals are capable 
of driving an unlimited number of loads. 
Later programs either will remedy over­
load conditions automatically or complain 
to the logician. 

The equations are punched into cards. 
The punched card format is entirely 
variable (see Fig. 3), meaning that 
equations are punched on the cards with 
few restrictions. The philosophy is to 
orient the input data to the logician and 

leave the interpretation problem to the 
computer program. (Refer to Fig. 3 for 
a sample equation listing.) 

The Element Input List program that 
interprets the equations has three 
functions. These are: 

1. To conduct exhaustive checks of 
the hardware implication of the equations 
for circuit rule violations. 

2. To generate what we call an 
Element Input List. (As defined pre­
viously an "element" is the smallest 
subdivision of a computer which still 
retains its logical identity, e.g., AND 
gate, OR gate, flip-flops, etc.) 

3. To assign all loads to appro­
priate sources within each stage and 
make a load list. 

The "Element Input List" is a list 
of the elements needed to implement the 
proposed computer. These elements have 
been named and their input signals have 
been specified by logic name. After the 
Element Input List is generated, all the 
loads implied by this list are assigned 
to sources within stages. Quite often, 
this means the program must insert power 
drivers to relieve overload conditions. 
After the loads are assigned a load list 
is made that shows the loads, including 
wiring capacitance, presented to every 
source in the machine. 

From this first series of programs 
which generate the Element Input List, 
there are a tremendous number of possible 
error print-outs which the logician may 
receive. Examples of possible error 
print-outs are: 

1. Gates too wide. 
2. Depth of logic too great. 

How many of these error print-outs 
occur is a function of how well the 
equations conform to the circuit rules. 
(Refer to Fig. 4 for an example of error 
print-outs.) When an error print-out is 
made, the logician can either modify his 
equations to remedy the trouble, or, if 
he can show that special conditions 
exist, it may be possible to ignore the 
print-out. 

The next step in the design of the 
proposed computer is to assign the hard­
ware implied by the logic equations to 
printed circuit cards and locate these 
cards in the computer cabinets. When 
an Element Input List acceptable to the 
logician has been produced, he can pro­
ceed to the group of programs called 
"Card Assignment" that will assign the 



implied hardware and locate it in the 
computer. cabinets. 

The purpose of this set of programs 
is as follows: 

1. To generate an Element Pin List; 
and 

2. To physically locate the plug­
in cards within the computer cabinets. 

The Element Pin List is permanently 
maintained on magnetic tape and is 
printed for the logician to examine. The 
printed Element Pin List displays one 
plug-in card on each page of paper. 
(Refer to Fig. 5 for example of Element 
Pin List.) The Element Pin List is also 
accessible to the logician for update 
purposes. Generally, updating of this 
list is for purposes of either optim­
izing the program results or for chang­
ing the computer's logic. 

The logician's gross control of the 
physical location of plug-in cards with­
in the computer is achieved through the 
use of the Module-Register table. This 
table shows either the number of stages 
from each register to be put into a 
module; or the number of plug-in cards 
of each register which are allocated to 
each module. He is aided in making 
this table by a program which prepares 
the plug-in card count necessary for 
each register. A IfmoduleH is a group 
of up to 28 plug-in cards which go to­
gether into one area of a computer 
cabinet. 

There is a large amount of checking 
within these programs to see that the 
resulting Element Pin List conforms to 
certain requirements and restrictions. 
Some of the items being checked are: 

1. An insufficient number of plug­
in card positions allocated to a given 
register; 

2. Clock omitted from flip-flop; 
and 

3. Register not assigned a 
location in the computer. 

If a rule violation is uncovered, 
there is an on-line print made (as was 
the case in the Element Input List pro­
grams). The logician then may remedy 
the violation by one of the following 
three methods: 

1. Modify the input equations 
and re-run all affected data; 

2. Make the modification manually 
by updating the element pin list; or 

3. Show that special conditions 
exist which permit the apparent vio­
lation. 
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Logic schematics are made from the 
Element Pin List. (Refer to Fig. 6 for 
example of machine produced logic 
schematic.) These schematics are made 
entirely by machine programs and are 
printed on a conventional line printer. 
Each schematic shows the logic inter­
connections and physical connections 
(pins) within each stage of the computer. 
The schematic drawings are organized 
by stages and listed in sorted order by 
logic name. A load list is presented on 
the schematic which indicates the logic 
name and pin number of each load on the 
stage in question. 

There is checking in the schematic 
program for a "closed system" of ele­
ments. Examples of some of the checks 
include: 

1. Logic element called for (as 
an input signal) does not exist in 
Element Pin List. 

2. Extra logic element was named 
that was never used. 

Errors uncovered by the programs 
can be corrected either by updating 
the Element Pin List, or by modifying 
the input equations and re-running those 
portions of the computer design data 
that are affected. 

From the Element Pin List, the 
wiring information for manufacture is 
generated by use of the wiring programs. 
Our particular Ifproduct design" is one 
that is wired with semi-automatic machine 
tools. In particular, the modules (with 
28 plug-in card positions) are wired 
with printed circuit back panels. Hori­
zontal "wires" on the back panels are of 
etched copper and vertical insulated 
jumper wires are put in place manually. 
The harness which interconnects all the 
module back panels is made manually. 
The control data for the automatic 
machine tool are in the form of two 
punched paper tapes for each module. 
One tape is used to operate an automatic 
drilling machine to drill pin holes and 
jumper wire holes in the back panel. 
The other tape is used to operate the 
same machine tool, but a light source is 
substituted for the drill. The light 
exposes a negative which controls the 
back panel etching. Data on both of 
these punched paper tapes is in the form 
of X - Y coordinates to position the 
machine tool table. 
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During the operation of the wiring 
program each of the module back panels 
has all the vertical and horizontal 
"wires" determined. An image of the 
back panel is printed out for visual 
check and reference before manufacture. 

The wiring programs also produce 
four printed lists. The printed lists 
describe the harness which interconnects 
the back panels. 

The first of these printed lists is 
the "Logic Sorted Pin List tt as shown 
in Fig. 8. All the pins are arranged 
in the order of their logic name. This 
Logic Sorted Pin List is used as a 
reference document for maintenance of 
the computer. 

The next printed list is called the 
master pin list. This list is sorted by 
pin number and shows the connections to 
each pin in the harness. During manu­
facture this list serves to check that 
the proper number of wires are connected 
to each harness pin. 

The third printed list is the manu­
facturing list. This is a "from-to" 
list of wires. It is sorted on logic 
name but is partitioned to match the 
manufacturing assembly process. 

The fourth and final printed list 
is the checking list. Semi-automatic 
equipment is used to check that listed 
harness pins have been connected to­
gether during manufacture, and this list 
serves as the input checking data for 
the semi-automatic equipment. 

After a machine has been designed 
and sent out into the field, these same 
program-produced documents comprise much 
of the documentation for the computer. 
The Block Description, Logic Schematic 
and Logic Sorted Pin List are the three 
main documents sent into the field. 

While this completes the description 
of the design of a computer using design 
automation programs, -it might be of 
interest in retrospect, to observe the 
philosophical approach taken in the pro­
grams, and to make certain comments on 
the logic nomenclature used in the input 
data. 

From the beginning, it is always 
assumed that the manual input data is 
in error. Therefore, the programs con­
tinually check the data for format, and 
circuit rule adherence. 

The initial run through each major 
program usually results in several pages 

of on-line er~or prints for a moderately 
large scale computer design. It is al­
ways hoped that the programs have been 
designed flexibly enough to handle all 
the varied configurations the logician 
can dream up. It is not unusual that the 
first pass through a program with new 
data will uncover data configurations 
that "we would nev~r use," (so said the 
logician) but which would indeed cause 
the program to halt. In such instances, 
a small amount of repair to the program 
is all that is necessary before it is 
running again. 

When automation programs are made 
available to the logician, it becomes 
vital that a rigorously descriptive 
logic nomenclature be used. Stated in 
another fashion, the only variable data 
supplied to the automation program is the 
input logic data. If this data partially 
or clumsily specifies the proposed 
computer - other information being 
implied - the automation programs are 
unnecessarily made more complex. 

The logic nomenclature sy~tem we 
are using progressively subdivides a 
computer. The computer is subdivided 
into registers. The registers are sub­
divided into stages. The stages are 
subdivided into elements. The name of 
a signal produced by an element is 
identical to the name of the elemen~. 
Every logic signal within the computer 
will be associated with its own stage 
and register by the logic name. 

The logic name is a 10-character 
fixed field as shown in Fig. 9. The 
alphabetic characters in the first four 
characters identify the register from 
which the logic signal in question 
originates. The first six characters -
in total - identify the stage which 
originates the logic signal. The re­
maining four characters identify and 
describe the specific element within 
the stage. 

Our pin number nomenclature, as 
shown in Fig. 10, provides a similar 
partitioning so that the complete pin 
number identifies the physical location 
of that pin. 

Use of the Automation 
Program Output Documents 

Three documents of primary im­
portance emerge from the computer design 
phase. 

1. Block Descriptions; 
2. Logic Schematics; and 
3. The Logic Sorted Pin List. 



Moreover, after a machine has been 
designed and sent out into the field, 
these same program-produced documents 
serve as the total documentation for the 
computer. 

When a fault is to be located in a 
computer, the first step is to determine 
the machine instruction in which the 
fault occurs. This isolates trouble 
shooting to a few pages in the Block 
Description. Tests are made until a 
faulty stage signal has been isolated 
within a register. Then the trouble 
shooter moves on to the Logic Schematic. 
With the Logic Schematic, the trouble can 
be isolated to one or two wires, or it 
may be located. If more information is 
needed, the trouble shooter refers to 
the Logic Sorted Pin List to determine 
the exact routing of the wires in question. 
Note that trouble shooting proceeds in an 
orderly fashion through the documents. 
There is a minimum of "page flipping" and 
of moving from one document to another. 

While the output documents have 
been organized to allow orderly trouble 
shooting, the most outstanding ad­
vantage of these machine-produced docu­
ments is not their ease of use but their 
ACCURACY. One can be absolutely certain 
that all three documents exactly reflect 
the hardware being maintained and that 
they are consistent within themselves. 
Also, the continuity of information from 
one document to another, through the 
logic name, is assured since all three 
documents basically originate from the 
equation input data. 

Although these three documents have 
been briefly mentioned previously, it is 
now necessary to explain them in more 
detail. 

The Block Description is a sheet 
with a standard format that shows all 
registers, error flip-flops, control 
flip-flops, and the like that are basic 
to the computer control. For each of 
these registers, flip-flops, and such 
there is a blank space to be filled out 
which shows the control signal that is 
activated to put the registers and flip­
flops into operation. If this control 
space is left blank, it means that the 
flip-flop cannot be operative during 
this micro-step. Every micro-step of 
every machine instruction has a Block 
Description sheet showing appropriate 
control signals. It is typical to have 
ten or twenty Block Description sheets 
for one machine instruction. (Refer to 
Fig. 2 for example.) 

For trouble shooting, it is usually 
known which machine instruction is 
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failing. This isolates the trouble to 
ten to twenty sheets of the Block De­
scription. Next the micro-step that is 
failing is located which isolates the 
trouble to one sheet of the Block De­
scription. Note that this one sheet 
gives all the pertinent information on 
the internal state of the computer. 

The Logic Schematic displays in 
pictorial form the structure of the 
logic networks. Also, sufficient in­
formation is included so that equivalent 
points in the hardware can be located 
easily for testing. (Refer to Fig. 6.) 
The entire set of logic schematics for 
a machine forms a "closed loop" type of 
document. This means that if you start 
at some place in the drawings and trace 
downstream from that point you will 
eventually be able to trace back to the 
starting point from the upstream side. 
Thus, for trouble shooting it is neces­
sary to be able to start at any point in 
the schematic and trace upstream or 
downstream with ease. Our schematics are 
organized by stages and are arranged in 
sorted order by stage logic names. 

Upstream tracing with these sche­
matics is done by extracting the logic 
name which serves as an input to the 
stage in question and proceeding to 
this stage of the logic schematic. Down­
stream tracing is easily accomplished by 
using the load list included on each 
stage schematic. While the load list 
gives all the downstream load information, 
the load stage schematic also may be 
located by the load logic name if neces­
sary. 

Due to its simplicity, the Logic 
Sorted Pin List (see Fig. 8) mentioned 
previously will not be described further 
except to say that the logic names used 
in the Block Descriptions and Logic Sche­
matics are also carried through to the 
Logic Sorted Pin List. 

Automation Program Effects Upon the Human 
OrganLzatLon DesLgnLng and 

BULldLng Computers 

There are about 60 separate routines 
which together make up the five major 
programs we have described. These 
routines are largely stored on a program 
magnetic tape, although some are stored 
on punched cards. All of these routines 
were written for use on an IBM 704 Com­
puter. The machine operator must select 
the routine and routine sequence he wishes 
to use on the particular input data. 
Generally these decisions are made before 
"getting on" the machine, and a deck of 
control cards provides the sequence of 
routines to be called in from the program 
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tape. 

Generally, the machine operator 
function is performed by one person 
whose sole task is to run the programs on 
the data supplied by the logicians. Many 
technical decisions are made while running 
the routines. Quite often, the on-line 
error printouts from the programs will 
dictate immediate termination of a machine 
run until corrections in the data can be 
made. Sometimes error printouts may be 
ignored. Therefore, the operator has to 
be an engineer selected from the staff of 
computer design engineers. This machine 
operator, however, spends only a moder­
ate portion of his time on the machine. 
The remainder is involved in organizing 
data to be run, keeping accurate control 
on the large number of magnetic tapes 
which represent the various machines 
being designed, and communicating with 
the logicians to give them results or to 
show them where the input data is faulty. 

The logicians are responsible for 
preparing the input data for their parti­
cular machine design. Usually, this is 
accomplished by recording the data on 
forms and having the cards punched at 
one central location. Then, it is the 
logician's task to check the listing of 
these cards and to order that certain 
machine runs be made on this data. The 
machine run order request is made to the 
machine operator. The operator then 
schedules the machine time for the run, 
makes the run, and returns the results 
to the logician. 

The basic input data to these pro­
grams is the Boolean equation repre­
sentation of a proposed computer. Any 
equipment that is described with equa­
tions can be processed by these same 
programs. Therefore, the programs are 
invariant to the logic of the machine 
being designed. This is borne out by 
the fact that eight separate and dis­
tinct computer equipments (systems or 
parts of a system) have been designed 
to date with the same programs. 

It has been indicated that a moder­
ately large scale computer would have 
equations for about 1000 stages. These 
1000 equations are the prime input data 
to this automation process. For the NCR 
304 Central Processor which was built for 
the National Cash Register Company by 
the General Electric Company, there were 
about 1000 equations that were stored on 
approximately 2000 punched cards. 

Listed below are some of the running 
times of these programs on a 704 Computer. 
These running times were for the design of 
the Central Processor portion of the NCR 

304 Computer. 

Initial Update 
Program ~n Run 

Block Description 6 hrs. * 
Element Input and 3-1/2 hrs. 1 hr. 

Load Lists 

Card Assignment 3 hrs. * 
Logic Schematic 2 hrs. 1 hr. 

Wiring 8 hrs. * 
*Approximately equal to the update volume 
divided by the total data volume times 
the initial running time. 

As illustrated, a complete design 
can be done rapidly, assuming perfect 
input data. With this ability to gener­
ate new designs easily and with speed, 
the automation programs now can assume an 
entirely new role. Such programs can be 
used as evaluators to test the effect of 
varying parameters and circuit rules to 
optimalize the design. 

One excellent example of the evalu­
ation role of the programs took place 
during the design of the NCR 304. A 
power driver plug-in card had been built 
and was within a few weeks of going into 
production for th. NCR 304, when a tran­
sistor manufacturer announced a new 
transistor with about 70% greater load 
driving capability. However, the price 
of the new transistor was considerably 
higher than the transistor that might be 
replaced. The questions to be answered 
were: 

1. Can the higher cost of the new 
transistor be justified? 

2. Can the new driver be included 
in the design before the computer release 
to the factory in the immediate future? 

With the adjustment of a few con­
stants within the program and a few 
hours maChine running time, it was 
simple to justify the higher priced tran­
sistors and generate all the new data 
required for the factory. 

To summarize the effects these auto­
mation programs have had upon the Engi­
neering organization using them, here 
are some of the immediate and rather 
obvious results which were achieved: 

1. Reduced computer design cycle 
time; 

2. Reduced engineering design 
manpower; 

3. Better documentation of the 



designed computer; 
4. Greater reliability built into 

the computer through complete adherence 
to circuit rules; 

5. Better optimized computer de­
sign; and 

6. Drastic reduction in the edu­
cational effort necessary to teach the 
logicians the circuit rules. 

Now, let us examine some of the 
above items in detail. An engineering 
model of the NCR 304 Central Processor 
was built by entirely manual methods. 
The production model NCR 304 Central 
Processor was built by using the auto­
mation programs. The production model 
bore no physical resemblance to the 
engineering model. Even the plug-in 
cards were completely re-designed. Thus, 
both designs were different except for 
the logic, and both designs started with 
approximately the same logic equations. 

Considerably less' engineering man­
power was needed for the design of the 
production model than the engineering 
model even though the production model 
was a much more complete design. The 
non-engineering personnel remained about 
constant during the two designs. Using 
the same manpower on the automated de­
sign as on the manual design, the 
computer design cycle could be reduced, 
and here it should be noted that with 
the automated design, a few key engi­
neering people can run the entire design 
effort rather than spreading the design 
among many groups of engineers. Stated 
in another fashion, the design task has 
been modified such that non-engineering 
personnel can do much of the work form­
erly done by engineers, and yet a few 
engineers can maintain absolute control 
of the whole process. 

One reason why fewer engineering 
man-months are required in the automated 
design is that most of the "engineering" 
decisions of how to implement logic with 
hardware are made by the programs. In 
addition, having the programs implement 
the logic into circuits produces an 
additional effect of great importance. 
This is that ALL logic configurations 
are thoroughly checked to conform to 
circuit rules. Such things as wire 
capacitance loading on every source are 
accurately calculated and factored into 
the total loading picture. With an 
entirely manual design process, this 
would be almost impossible even though 
reliable machine operation dictates such 
calculations. 

with t~e implementation of logic 
into circuits by program, the designer 
only needs to know the circuit rules in 
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a gross sense. The circuit designers 
develop the circuit and its rules and 
deliver this detail information to the 
programming group who builds the rules 
into the program. There are a total of 
only two or three people in the program­
ming group who ever see these detail 
circuit rules as opposed to educating a 
large number of personnel as was formerly 
required. Thus, it is evident that one 
of the difficult and important communi­
cation problems in digital computer 
design has been circumvented. 

When the Design Automation techniques 
were introduced, there was considerable 
resistance to them in certain areas. 
Familiarization with the new documents, 
however, brought firm support for the new 
documents and their many benefits in a 
very short time. The greatest advantage, 
perhaps is the knowledge that the docu­
ments always exactly represent the 
equipment in question. Also, the machine 
updating of the drawings results in a 
very short time lag until changes are 
reflected in the drawings. 

The digital computer design task 
is never static. It will be continu­
ously and progressively automated by the 
use of programs run on existing com­
puters. Better optimized designs and 
design processes in which such matters 
as accuracy and adherence to circuit 
rules are effectively handled, both 
serve as stimuli for automating the 
design task. 
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and 
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Fig. la. Over-all Design Automation Flow Chart 
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Fig. lb. Over-all Design Automation Flow Chart 
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Fig. Ie. Over-all Design Automation Flow Chart 
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Fig. ld. Over-all Design Automation Flow Chart 
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BLOCK NUM8ER 0102 0 

.------ SPECIAl STORAGE REGISTER fS.ftEG) 
ADDRESS REGISTER (l-REG) 

FSI11-FS121 • 
FLOI1-Fl041 • FA011-FA041 XP141 Pl071 FS110-FS120. F5001 XSlll 
FlOI0-FL040 • FA010-FA040 XPl41 PL071 
Fl051-FL141 • FS131-F5141 • 
FL050-fL140 • XP141 PL071 '5110-F5140. FSOOI XS141 

A AND L REGISTER TIMING 

FL001 • XP051 PL251 

F51'1 
F5150 

. 
• F5001 XSUI 

FLOOO c XP081 '5161 
---------------------- F5160 • 11'5001 )(5161 
AUX.ADDRESS REGISTER (A-REG' 

11'5001 - XP231 '5431 
FAOI1-FA081 • FA051-F4121 FLOOI XA051 FSOOO. XP091 
FAOI0-FA080 • FA050-F4120 FLOOI XA051 -------~---------------------------~ 
FA091-FA121 • FMOl1-F~041 FL001 PA021 ADORESS COU~TER (DS-COU~TER) 
F4090-F A120 • FM010-F~040 FlOOI PA021 
FAl31 • FM05l FP281 FLOOI PA021 F0011-F0041. 
FA130 FM050 FP281 FLOOI PA021 F0010.,0040 - XP201 XOOOI 
FA141 a FM061 FP281 'lOOl PA021 
fAl~O s FM060 FPl81 FLOOI PA021 FDO~1 a XP201 P0081 
--------------------- F0050 
ARITHMETIC UNIT -------------

XFOII-XF061 • F5011-F5061 XFAll 
XFJ1C-XFJ6C a F5010-F5060 XFAII 

XGOII-XG061 • FMOII-FM061 X6All 
XGOIO-XG06C • FMOIO-FM060 XGA11 

FKA11 = NJ111 FPOOI XKAll 
FKAI0 NJ110 FP001 XKAll 
FKA10 = FP141 XKA90 

OECI,..AL ADO 

ME~ORY REGISTER 

NO CHANGE OF CONTENT IN LOGIC PERIOD 

MEMORY-SELECT • ADDRESS IN L-REG. 

EXTRACTION REGISTER (E-REGI 

NOT COUNTING 

£E211-EE241 • FM011-FM041 FEOOI PE021 
EE210-£E240 • F"010-'M040 FE001 PE021 

FE011-EE201 • 'E051-EE241 Fe001 PE041 
FE010-££200 • F£05O-EE2~O FEOOI PE041 
FE001 • XP211 PE231 
FEOOO • XPO~l PEl51 
'EOOO • XP221 

TALLY ~EGISTER C6-REG) 

NO CHANGE 

MISC. 81T STORAGE 

FlMl1 • (FL01-14 • CONSOLE SWITCHES) 
JI401 IP231 IM-MAINI 

FlM11 .'JI~11K • JI423K(FMOll+FM0211+ 
J1433K FM021+ JI~43K FMOll 
FMOlI) XP081 PN231 

'lORI • IP08 '"051 PftZ'l ---------D£CISf0f4 "'-OGle 

'''011 • 

FI(OlO • IP141 

FK021 • (FAO,-01- 000) XPI01 PNZ31 

FK020 - XP141 

INSTRUCTION REGISTER 

FN141-FN161 • FMOII-FM031 SR031 XPO~l 
PN231 

FNl.0-FN160 - FMOIO-FM030 SR031 xP091 
PN231 

'N171 • FM051 SHOll XP091 PN231 
'"110 • F~O~O SAO'l XP091 PNZ31 

PROGRAM COUNTER (FN01-FN07, 

FKOIO FK020 - COUNT TO NEXT BLOCK 

FKOIO FKOl1 - SKIP TO BLOCK 
PH031 

FKOll FK021.- SKIP TO BLOCK 

FK01! FK020 - SKIP TO SLOCK 

04 

co 
00 

r 
r COMMAMD- AD]) 
1 
1 BI.OCK- OZ FN1'" FNl T 

LOOK UP SECOND WORD OF" 
COMMAND 

The automonitor FF is set 
if the monitor address selec­
tion switches are equal to 
the L-reg. and the' monitor 
address switch is on; or if 
the automonitor character is 
equal to or greater than the 
monitor charaeter selection 
swf.tch setting. 

The B & C portions of the 
second word of the command. 
containing the partial word 
designations, are copied in­
to the E-reg. from the M-reg, 

The S2,.reg,_ is cleared. 

The A portion. which con­
tains the monitor character 
and relative addreSSing in­
struetions~ are copied into 
the A-reg. 

If the monitor character is negative, the over-ride FF is set. 

The mode bits of character 9 are copied into the N-reg. 
providing the machine is not in R3 test mode. 

The index register character (R) is copied into the L.S. 
four bits of the L-reg. while the remainder of the L-reg. is 
cleared. 

The program counter counts to the next bloek if the index 
register field selector (S) is not equal to zero. 

The program counter skips to block 01-04 if the index registe~ 
field selector (S) is zero. 

Ut!'V 
• !'V 
!'VOl 
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EWIIOA • QCOIIA * FP201A NGOIOA * 
EWIIIA = QCOIIA * PGOl3A * 
EWl20A a QCOIIA * EW121A FG040A * 
EWl2lA • QCOllA * EWIOOA EW120A FGOOlA FGOIIA FPOOOA DP230A EWlI1A • 
FAOIOA • OCOIIA * FA050A OA05lA + FLOIOA OA061A • 
FAdllA a QCOllA * FA05lA DA05lA + FLOllA DA06lA * 
FAo20A • QCOIIA * FA060A OA051A + FL020A DA061A • 
FA021A • QCOllA * FA061A DA05lA + FL021A DA061A • 
FA030A • OCOIIA * FA010A DA05lA + FL030A DA06IA • 
FA03IA a QCOllA * FA01lA DA051A + FL03lA OA061A • 
FA04QA = OCOllA * FA080A DA051A + F~040A DA06IA • 
FA041A = QCOIIA * FAOSlA OA051A + FL041A OA06IA • 
FAOSOA a QCOIIA * FA090A DA051A + FL050A OA061A • 
FA051A • QCOIIA * FA09lA OA05lA + FL051A DA06IA • 
FA060A • OCOllA * FAIOOA OA05lA + FL060A DA061A * 
FAQ6lA = QCOllA * FAIOlA DAOSIA + FL06lA DA061A • 
FA010A = aCOIIA * FAllOA DA05lA + FL010A DA06IA • 
FA011A • QCOIIA * FAIllA DA051A + FL011A DA061A • 
FAOaOA • QCOIIA * FA120A DA051A + FL080A DA061A • 
FA08lA = QCOIIA * FAl2lA DA051A + FL081A DA06lA • 
fA090A • QCOIIA * FLO lOA OAOIIA + FMOlOA DA021A + NJOIOA OA031A 

FSOIOA DA041A + FL090A DA061A + DA121A* 
FA091A = QCOIIA * FLOIIA DAOIIA + FMOIIA DA021A + NJOIIA OA031A 

FSOllA OA04lA + FL09lA DA06IA * 
FAIOOA IS <)COllA * FL020A OAOIIA + Fr~020A OA021A + NJ020A DA031A 

FS020A OA04lA + FLIOOA DA06lA + OA121A • 
FAIOlA • OCOIIA * FL021A OAOllA + FM021A DA021A + NJ021A DA031A 

FS021A OA04lA + FLIOIA DA06IA • 
FAllOA • QCOIIA * FL030A DAOllA + FM030A OA021A + NJ030A OA03lA 

FS030A DA041A + FLIIOA DA061A + DA121A * 
FAIll~ • QCOIIA * FL03lA DAOIIA + FM031A DA021A + NJ03lA OA031A 

F503lA OA041A + FLIIIA OA061A * 
FA120A • QCOIIA * FL040A OAOIIA + FM040A OA02lA + NJ040A OA031A 

FS040A DA041A + FL120A DA061A + DA121A • 
FA12lA • QCOIIA * FL041A DAOIIA + FM041A DA02lA + NJ041A DA031A 

FS041A DA041A +FL121A DAd6lA * 
FA130A = QCOIIA * FL130A FP281A DAOIIA + FM050A FP281A DA021A + NJ050A 

FP28lA DA031A + FS050A FP281A DA04lA + FL130A DA061A 
FP281A DAl2lA * 

FAl3lA s aCOIIA * FL131A FP28lA DAOIIA + FM051A FP281A DA021A + NJ05lA 
FP28lA OA031A + FS051A FP281A OA041A + FL131A OA061A • 

FA140A • OCOIIA * FL140A FP261A DAOIIA + FM060A FP281A OA021A 
NJ060A FP281A DA031A + FS060A FP281A DA041A 
FL140A DA061A + FP281A OA121A • 

FA141A = OCOIIA * FLl4lA FP28lA DAOIIA + FM061A FP281A OA021A + NJ061A 
FP281A ~A031A + FS061A FP281A DA041A + FL141A DA061A • 

FBOOOA • OCOIIA * DPOOIA peS03A + OP031A P8533A + DP041A PB543A 
DP011A PB573A + DP081A P8583A + OP09lA PB593A + OPlOIA 

PB3;3A + OE321A FPOOIA PB643A + FSOIOA FS020A FS030A 
FS040A FS060A FPOOIA P8353A + DPOIIA PB513A + DP231A PB733A • 

FB001A • QCOIIA * OP221A PB423A + OP231A PB433A + OP021A PB223A 
DP051A PB253A + OP081A PB283A + DE31lA FP26lA P8343A 
fFSOIIA + FS02lA + FS031A + FS04lA + FS06lAJ FPOOIA 

PB353A * 

Fig. 3. Sample Input Equation Data 

Figure 3 is a partial listing of the equations for a recently designed machine. The plus 
sign is an OR relation and the parenthesis is an AND relation. The logic signals are the 
six character groups. An AND relation is implied where no character appears between 
logic signals. The asterisk denotes the beginning and ending of the equation input 
terms. 



SSWl IS UP--OUTPUT 
D,\051 A 
Di\051A 
DAOSIA 
DA051A 
PA081A 
DA081A 
DA081A 

ILLEGAL eHAR 
EA081A 
EA081A 

FORMAT 
SEQUENCE 
ILLEGAL CHAR 
fOR/·1AT 

FA011A 
FAOB1A 
FAOBIA 
FA081A 
FAOBIA 

fORt-1AT 
FORt-1AT 
fOR~~AT 

fORMAT 
FORMAT 
fORI1AT 
FORI"-1A T 
FORMAT 
SEQUENCE 
FOR:-.1AT 

JC043A 
JC043A 

SEQUENCE 
fORMAT 

NO LOAD l.IST FOR 
NO LOAO l.IST FOR 

IS ON TAPE 8 
LEVEL TOO HIGH DP071AOOOOOOOOOOO6 
LEVEL TOO HIGH DP061AOOOOOOOOOO06 
LE.VEL TOO HIGH DP041AOnOOOOOOOOO6 
LEVEL TOO f-tIGH DP031AOOOOOOOOOO06 
WIDTH ERROR IN GATt: DAOBIASGOll-
WIDTH ERI~OR IN GATE. DA081A4GOll-
I.J I l) THE R R OR I N GATE OA081A3G011-
EA021A 
l.EVEL TOO HIGH DU011AOOOOOOOOOOO5 
WIDTH ERROR IN GATE I:.A08lA3G011-
EA801A NO FIRST ASTERI3K. 
EA091A 
EA091A 
FAOOOA CLOCK 
CLAI"\P ERROR IN GATE FAOIlA2GOl1-
WIDTH ERROR IN GATE fAOBIA5GOll-
WIOTH ERROR IN GATE fA081A4GOll-
WIDTH ERROR IN GATE fL\OB1A3GOll-
CLAt<1P ERROR IN GATE fA081A2G018-
FA191A NO FIRST ASTE~ISK. 
fCOlOA A:)011AA0021A + 
fCOIOA + AD011AA0021A 
fCOIIA NO FIRST ASTERIS~ 
fC021A NO FIRST ASTERISK. 
fe02lA OA045A 
FC021A DA046A 
fCOIIA NO FIRST ASTERISK 
FCCllA 
EQ sur-1 JC034A 
'II 10TH ERROR II'~ GA T E JC043A5GOll-
WIDTH ERROR IN GATf: JC043A4GOll-
fNOBOA 
PAOllA NO Ef OJN 

El.EMENT FPIOOA 5G021-
ELEMENT FP100A 5G041-

FPOOOA OFOl 
fPOOOA OF02 

DOES NOT APPEAR 
DOES NOT APPEAR 

FP200A OF02 

IN INPUT DATA 
IN INPUT DATA 

NO LOAD LIST FOR 
TAPE 5 IS FULl.. REPLACE AND PUSH 

NO LOAD LIST FOR 
NO LOAD LIsT FOR 
NO LOAD LIST FOR 
NO LOGIC ~OR LOADS 
ELEMENT FSllOA 
ELEMENT FSl20A 
lEFT OVER El.EMENT 

4G071-
4G071-
FS160A 

START. 

FP240A OFOl 
FP260A OFOl 
FP290A OFOl 
FP291AO"'OA 

DOES NOT APPEAR. l~ 
DOES NOT APPEAR IN 
4GOl X 03F6 

INPUT DATA 
INPUT DATA 

lC2140 

Fig. 4. Error Printouts from Element Input List and Logic Schematic Programs 

In Fig. 4, the upper half of the example shows a number of error printouts made by the 
Equation Interpretation program. The lower half shows error printouts made by the 
Schematic program. Both examples are from Production Input data. 
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CKT. 
TYPE 

ZG2 

CARD 
LOCATION 

CARD SERIAL 
NO. IN MOD. 

CARD 
TYP~ 

OlHl 

EQUATION 
SUM 

DM771A 
E~821A 

FL142A 

23 04-

EL.LEVEL PIN CKT. EQUATION ~L.LEVEL PIN 
& TYPL NO. TYPE SUl-1 __ _ __ & TY?~ NO. 

4G 0 III 4 7 4 G 2 D ~ 8~ lA __ 4 GO 2 12 _ 08 
OE020- 29 FLQ93A OF01D- 17 
OFOIB- 28 18 

2G2 DM771A 4G0111 45 4GZ D~801A ~G0312 09 
FL093A OFG1D- 41 FL142A OF015- 13 
F L.l_C3A_ __0 F_O LC.... 40 ___ ___ 14 

~G2__ __ __ __ _ 42 4 G 2 D >18 0 l..!. 4 G 0 41 1 0 5 

2G2 

ZGZ 

4G2 

4G2 

37 FM810A OF01E- 03 
36 04 

44 4G2 __ Q;-"180 lA_ _4G0511_ 06 
35 DM181A OH013- 12 
3~~~_____ 10 

46 4R 43 
31 
32 4R 33 

DM761A 4G0211 07 4R ,1 
PMOO3A OHOAO 19 
EM82lA OE020- 20 4R ~O 

DM111A 4GOZ11 11 4R 2~ 
RM803A 15 
EM821A OEOZO- 16 
Fig. S. Plug-In Gate Card in Element Pin List Format 

Figure 5 is an Element Pin List representation of a single plug-in gate card. Note that 
some of the gates and some of the inputs have been left unused. Also, some pins have 
identical logic names attached-indicating that these pins will be wired together. 
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O\C'J 
C'J • 
C'Jl.(') 

OLlIlA OH02 IE32 • 05 IE31 -------- lE36 + FL131A OFOI 
JI13lK IE35 • lE14 + MODULE - 02H8 

IE36 + 
+ DM401A 5GOI 0lH12N35 

FS05lA OHOA IHl7 • + DM411A 4G03 01HllS40 
FP281A OHOA IHIS • 03 tHoa IF19 + + DM421A 4G03 01HllS41 
Dl111A OHOl IH41 • IH45 + + DM631A 4G01 0lH12M36 

+ + DM64lA 4GOl 01H12M38 
FA131A OFOI lH13 • 04 1H09 IFl8 + + DM65lA 4G01 0lH32Hl4 
OL19lA OHOZ IHl4 • + + 01 IEBS FLl3lA OFOI FAI3lA 4GOI 03H5ZS13 

+ 01 IF05 ---- lE33 + ... .--.....--...-....-...- FA13lA 4G05 03H51R33 
FAl3lA OFOI IH19 • + IF06 + lE46 lE04 JK431A 4GOI 04F7lF43 
FP28lA OHOA IH20 • 01 lH07 -- IF17 + + QCOIIA 2H80 lE01 NJ450A ---- 03F51E09 
DLl5IA OHOl IH31 • IH42 + + lEl2 NJ470A 03F51F09 

+ + NKM50A 4G04 04H41D3l 
FM051A OHOA IHI5 • + + 
FP28lA OHOA IHl6 • 02 IHll -- IF16 + + 
DLl6lA OHOI IH35 • IH44 + 

+ 
SLl3lA lHO) • 06 IH05 ----- • lE34 + 
DL22lA OH02 IH04 • 

Fig. 6. Machine Produced Logic Schematic 

The machine produced Logic Schematic displays the structure of the logic networks. In this schematic, inter­
connections between elements of the stage are made obvious by their placement on the drawing. Therefore, 
the use of interconnecting lines is unnecessary. Rows of periods designate the scope, or width, of an AND 
gate and rows of plus signs designate the scope of an OR gate. Any break in the sequence of these symbols 
terminates the scope of the gate in question. Input pins to elements are physically located with the four 
character pin number immediately to the left of the scope line for the element. To the right of the gate scope 
symbols is the two character gate name (serial number) and next to the two character gate name is a four 
character pin number identification of this gate output. I.f several circuits have to be connected in parallel 
to implement this gate, then several output pins will be present in a column. It is implied that all pins in the 
stage are contained in the cabinet, rack and module that is shown as the ~'module" in the upper right corner 
of the drawing. 



DL21LA OH02 •• --~ 
FL13lA 4G05 

JI13lK 

FS05lA OROA 
\ FL13lA 4G03 

FP~81A OROA 

DL17LA ORO 1 
FL13lA lGOl 

FL13lA 4G04 I \ FA13LA OFOle I "\ i ,\~Set input I FL13LA OFOI 
FL131A 3GOl 

DL19LA OH02-V 

~ I 
I ~~OP I Output 02HBlEO!' 

Clock 

FA131A OFOl 

FP28LA OROA:=] ) FL131A 
DL151A OHOI 4GOl I QCOlLA 2H80 

FM05lA (ROA 

FL131A 4G02 

V LOAD LIST 

FP28lA OROA:={) 
V 

I OlHl2N35 DN40LA 5GOl OlHl1540 

DL16LA OROl 

DN411A 4G03 

~ SL131A 

OR02~ J etc. 

Fig. 7. Hand drawn Logic Schematic (with no pin information) 
Figure 7 shows the equivalent hand drawn logic schematic for comparison to the machine 
produced schematic of Fig. 6. It should be noted that Fig. 7 includes no pin number 
(physical location) information whereas Fig. 6 has both logic and pin information. 
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LOGIC PIN NO. 

ENOIOEOEOI 41H22M29 
41H32l11 
41H41A38 

ENOI1EOHOA 41H32ZJ9 
41H42A23 
41H51Z29 

ENOI1EOHOB 41F19COl 
41H32Z0' 
41H41Z33 

EN020EOEOl 41H41All 
41H22MIO 

EH021EOHOA 41F31Z2' 
41F41A40 
41H12Z40 
41H31Z0J 
41H42A40 

EN021EOti08 41'19C06 
41F41A20 
41H52A20 
41H41Z:42 

Fig. 8. Sample page from Logic Pin List 
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f 

If 

Alphabettcs Denote 
Register 

A 

Numeri cs Denote 
8bage 

f , 

'['rue­
li'alse 
8il1nal 
Desig-

Ma t10r 
Compute 
Unit 

D 0 3 1 B 

Element Circuit Element Serial 
Type Number 

r 4 '1 ~ 

o 41 
The following information is carried in the above logic designation: 

Third stage of the FD register 

True signal 

Central Processor logic 

Flip-flop element - fourth serial number in stage 

Fig. 9. Sample Logic Nomenclature 

Hinged 
or Module Module Module Pin 

Fixed Number Row Socket Number 
Rack 

Cabinet Number 

t .A , "', "', , 
" 

0 3 H 6 1 R 3 91 

Fig. 10. Sample Pin Nomenclature 
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CALCULATED WAVEFORMS FOR THE TUNNEL 

DIODE LOCKED-PAIR CIRCUIT 
D. R. Crosby H. R. Kaupp 

Electronic Data Processing Division 
Radio Corporation of America 

Camden, N. J. 

The purpose of this paper is to present an intro­
ductoryanalysis of the tunnel diode locked-pair circuit. 
The characteristics of the tunnel diode, together with 
the simplicity of the locked-pair circuit, make it a 
major contender for use as a high-speed computer 
element. 1, 2 High speed and high gain are the main 
advantages of the locked pair; the multi-phase power 
supply and lack of a simple means for logical inver­
sion are the main disadvantages. The basic circuit 
consists of two tunnel diodes in series, the node com­
mon to the tunnel diodes being both the input and out­
put terminal. As a computer element, the locked pair 
functions in much the same manner as the phase-locking 
harmonic oscillator (PLO). Like the PLO, the locked 
pair overcomes the difficulty of COincident input and 
output terminals byusing a three-phase voltage source. 
However, the theory of three-phase majority 10g!c is 
not essential to the understanding of this paper. 3,4 

A. Basic Concepts of Locked-Pair Circuitry 

The equivalent circuit of a tunnel diode is shown 
in Figure lA, and the volt-amp characteristic of the 
nonlinear conductive element is shown in Figure lB. 

lIYI 

@ EQUIVALENT CIRCUIT 
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IiI ~ k 
/~ 

5

V 
50 100 

IYy,Iyl 

200 250 300 350 
MllI..IVOLTS 

® TYPICAL NEGATIVE CONDUCTANCE 
CHARACTERISTIC 

FIGURE I - TUNNEL DIODE 

450 

To understand the basic operation of the locked 
pair, examine the idealized circuit of Figure 2, where 
diode inductance and capacity are neglected. Assume 
that tunnel diode B is the active element, and A is the 

load. For the moment, neglect the source resistance. 
Increasing the voltage E "draws" the load curve A 
across the characteristic of the active element B. 
This is analogous to what is done with tube and transis­
tor circuits, the difference here being the nonlinear 
load. Figure 3 indicates the current-voltage relation­
ships for the circuit of Figure 2, at a particular value 
of source voltage, where it is seen that the load curve 
A intersects the element curve B at three points. 
Points one and three are stable, while point two is un­
stable. The state in which the circuit locks, as the 
source voltage is increasing, depends on which of the 
two characteristics first reaches its negative conduc­
tance region. By inserting a locking current, IL (Fig­
ure 2) the operating point is predetermined (Figure 4). 
The effect of 1L is to shift the family of operating points , 
causing element B to reach its negative conductance 
region before element A. Thus, diode B goes to its 
high voltage state. When the voltage E becomes equal 
to EL, point three of Figure 3 will be the operating 
point, so that a locking current into the node causes 
the circuit of Figure 2 to have a high-voltage output. 
Conversely, a locking current out of the node would 
cause a low-voltage output (operating point 1 of 
Figure 3). 

FIGURE 2-IDEALIZED LOCKED-PAIR CIRCUIT 
(INDUCTANCE AND CAPACITY NEGLECTED) 

1MB B A 

I 3 
2 

Y8 
E, 

FIGURE3-CURRENT AND VOLTAGE RELATIONSHIPS .FOR 
CIRCUIT OF FIGURE 2 FOR E-E, 

FIGURE4-RELATION OF CHARACTERISTICS NEAR CRITICAL 
POINT OF SWITCHING 

The locked pair is susceptible to a locking signal 
in the region where the peaks of the diode characteristic 
are crossing; thereafter it is relatively insensitive to 
spurious signals. 
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A significant difference in diode peak current 
produces the same effect as the locking current; hence, 
the locking current must be large enough to overcome 
the differences in diode characteristics. 

The effect of source resistance on diode sWitch­
ing will now be examined. As in Figure 2, "tu-nnel diode 
B will again be considered the active element. However, 
the load curve now is the series combination ·of the 
source resistance, R, and the V-I characteristic of 
diode A. The source resistance affects the peak of the 
load curve by moving it to a higher voltage. Hence, a 
larger source voltage is needed to bring the character­
istics to the critical point of switching, which is indi­
cated quantatively in Figure 5A. Figure 5B indicates 
the operating point of the circuit when the source volt­
age has reached an arbitrary maximum. The effects 
of a high source resistance are seen as a delay in 
switching, and a reduced output voltage. 
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The waveforms for the circuit of Figure 2 can be 
obtained by making a point-by-point plot from the char­
acteristics shown in Figure 5. The current and output 
voltage waveforms in Figure 6 are plotted for a sinus­
oidal source voltage, and a source resistance of 5 ohms. 
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FIGURE 6-WAVEFORMS OF IDEALIZED LOCKED-PAIR CIRCUIT 
(INDUCTANCE AND CAPACITY NEGLECTED) 

B. Computer Solutions 
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The technique related above and used for Figure 6 
is invalid when the effects of capacitance and inductance 
are appreciable. Through use of a digital computer, a 
solution considering the effect of diode capacities, can 
be easily realized. Such a computer solution excludes 
the stray parameters associated with laboratory work 
at high frequenCies, thereby disclosing the basic nature 
of the circuit. 

For the ensuing discussion a sinusoidal source 
voltage is assumed, because it seems to be the most 
practical waveform for driving a large number of 
locked-pair circuits. 

A d-c component is added to the sinusoidal source 
voltage to keep the diode voltage from having negative 
values. A negative voltage across the diode would 
cause an wmecessary loss of power, and if the diodes 
V-I characteristics are not well matched, the circuit 
would exhibit an undesirable output voltage during neg­
ative excursions of the driving voltage. Therefore, the 
source voltage will be of the following form as plotted 
in Figure 6: 

E = Kl - K2 Cos 2 1T ft 

The values of Kl and K2 are somewhat arbitrary. 
However, the d-c component, Kl, must be of such a 
value that the minimum excursion of driving voltage is 
less than the peak voltage of the diode characteristic 
(Vp in Figure lB), otherwise the circuit will never re­
lax. That is, the same diode will always go to its high 
state regardless of the polarity of the locking signal. 
For the problems solved on the computer, the chosen 
d-c voltage component was equal to the peak sinusoidal 
value: . 



The nominal inductance of RCA germanium tun­
nel diodes is 0.4 muhenries, yielding an inductive re­
actance of 1 ohm at 400 mc. Thus, for the values of 
frequency and source resistance used in these examples, 
the inductance of the tunnel diode may be neglected. 

RCA germanium tunnel diodes (nominal 20-ma~ 
peak current) with identical nonlinear characteristics 
are assumed. To facilitate compution, the program­
mers ** developed an analytical expreSSion to approx­
imate the nonlinear characteristic. The experimental 
tunnel diode curve is compared with its analytic ap­
proximation in Flgure lB. 

The first problem was solved for the circuit of 
Figure 2 with diode capacity included. In order to keep 
the problem as simple as poSSible, no locking signal 
is applied; instead, the diodes switch because of the 
difference in capacity. In this instance, diode B al­
ways switches to its high-voltage state because it has 
the smaller capacity. 

The defining equations derived from Figure 2 
are: 

E 

I 

where: 

T 

R 

dVB I2B 
a-;- = fC

B 

ft, the normalized time (f = frequency in cps) 

5 ohms, the source resistance 

0.2 volts, d-c component of source voltage 

0.2 volts, peak value of sinusoidal com­
ponent of source voltage 

170 p.p.f, capacity of twmel diode A 

140 ILlLf, capacity of tunnel diode B 

Solutions were obtained for frequencies of 10, 
30, 100 and 300 mc. The resultant voltage and cur­
rent waveforms are shown in Figures 7 through 10. 

** Both computer solutions were obtained with the 
assistance of R. W. Klopfenstein, Director of 
Mathematical Services, and G. B. Herzog; RCA 
Laboratories, Princeton, N. J. 
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Note that capacity and frequency appear only as 
a product in the defining equations of the circuit. 
Therefore, the waveforms can be interpolated for dif­
ferent values of frequency and capacity through use of 
the relations: 

170 
C Ail = 140 CBII 

where: fI is the frequency for which the waveforms 
were originally calculated, and CAlI, CBII, and f II 
are the new values of capacity and frequency for which 
the waveforms are also valid. 

From the voltage waveforms it is seen that switch­
ing is quite appa.rent at 10 and 30mc. (Figures 7A and 
SA). Although some switching is evident at 100 mc. 
(Figure 9A), it is not distinct. However, at 300 mc. 
(Figure lOA) the diode capacity effectively shunts the 
nonlinear element and switching does not occur. Also 
note that at 300 mc. the diode voltages are almost si­
nusoidal. Examining the waveforms of Figure 6 which 
neglect capacitance effects, in conjunction with the 
waveforms of Figures 7 through 10, the effects of ca­
acity become more clear. From the current wave­
forms it is seen that as the frequency increases, the 
capacity retards the appearance of sharp irregularities 
in the curves. 
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C. Locked-Pair Circuit with Loading 

From the previous discussion it should be noted 
that the two possible voltage outputs for the curves of 
Figure 3 are positive. To perform majority logic, it 
is desirable to drive the locked-pair circuit from both 
ends with voltages of equal magnitude but opposite po­
larity. The two possible voltage outputs of the circuit 
will then be equal in magnitude but opposite in sign. 

A typical locked-pair majority gate is shown in 
Figure 11A. The locked-pair is controlled by the ma­
jority of n inputs (n must be odd), and in turn will de­
liver signals to m number of locked-pair circuits. The 
input-output impedance of the locked-pair circuit will 
be neglected as it is small in comparison with the cou­
pling resistor. For majority rule, all but one input 
current may be cancelled. Hence, the sum of the cur­
rent inputs to the locked pair at a minimum is vo/Rc 
where: Vo represents the output voltage of a locked­
pair circuit and Rc is the value of a coupling resistor. 
The equivalent circuit of the majority gate is shown in 
Figure lIB. 
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The circuit of Figure 11 was solved on the cOm­
puter for a fan-in and fan-out of six. (m = n = 3). As 
in the first problem, equal tunnel diode V -I character­
istics were assumed. The defining equations of the 
circuit in Figure 11b are: 

E K (1 - Cos 2 1T T) = 1 A Rg + VA + Vo 

E K (1 - Cos 2 1T T) = IB Rg + VB - Vo 

Vo 10 Ro = Vs - Is Rs 
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where: 

K 0.10 volts 
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Rg 5 ohms, the source resistance 

R s 

E 
3" 

20 JLJLf 

50 ohms, the equivalent 
load or output resistance 

50 ohms, the equivalent 
locking signal resistance 

the simulated equivalent locking 
signal for n = 3 

T ft, the normalized time 

The smaller values of capacity used indicate that 
the diodes will switch at higher values of frequency than 
those used in the first problem; therefore, frequency 
values of 100, 300 and 600 mc. were used in this prob­
lem. As in the first problem, capacity and frequency 
appear only as a product in the circuit equations; thus, 
the waveforms become valid for other capacity and fre­
quency values. The simulated locking signal, Vs, is 
optimistic since it assumes the maximum output volt­
age of the locked-pair circuit is equal to the maximum 
value of the source voltage E. Also, the locking signal 
is assumed to lead the source voltage by 120°; however, 
the actual locking signal is not only a function of the 
Switching delay induced by the source resistance, ~, 
but also is a function of the phase shift caused by tlie 
capacitors. This may be seen by examjning the output 
voltage and current waveforms in Figure 12 through 14. 

From the figures, note that the output voltage 
waveforms would barely be able to control the next 
stage because the next stage lags by T/3. For more 
positive control, the output voltage waveform should 
be either shifted to the right .IT to .15T or be main­
tained for a longer portion of the cycle. Larger ca­
pacity would yield some positive phase shift, but only 
at the sacrifice of amplitude. A decrease in source 
resistance would increase the effective period of the 
output voltage; but from practical considerations, 5 
ohms is already small. One solution is to increase 
the source voltage. An attractive solution would be to 
use a larger source voltage and have it clipped. 

In general, the current and voltage waveforms 
for this problem are what would be expected after ex­
amining the waveforms of the first problem, i.e., the 
waveforms become "smoother" and the voltage wave­
form of the diode in the high state (diode B) decreases 
in amplitude as the frequency is increased. The out­
put voltage at 600 mc. is almost zero. Although at 
600 mc. , the neglect of inductance may not be entirely 
valid, the waveforms indicate the restrictions placed 
on the circuit by diode capacity alone. 
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The waveforms indicate that definite switching 
occurs for a diode capacitive reactance to maximum 
negative resistance ratio of 3 or greater. Consequently, 
a conservative relationship for germanium tunnel diodes 
in locked-pair circuits is: 

r.witchi:::::::ru';L 250 fweak C1lrre~t I~ mnpampS)l 
[ in megacycles J [ (capacIty In p.p. ) J 

Figure 15 shows the waveforms at 300 mc. for 
equal signal source and load resistors of 30 ohms. 
The only noticeable effect of this increased loading is 
to slightly decrease the output voltage. However, 
upon increasing the power supply resistance from 5 
to 10 ohms, the diodes did not switch at all (Figure 16). 

D. Graphical Interpretation of Loading 

The effects of loading and source resistance, 
neglecting capacity effects, can be predicted by graphi­
cal means similar to those indicated in Part A of this 
paper. From the discussion of Figure 2, when element 
B w~nt to its high voltage state, element A stayedinits 
low voltage state. Since the voltage across non-switching 
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element A remains less than Vp (Figure 18), element 
A can be apprOximated by a resistance equal to Vp/lp. 
Then, the equivalent circuit that is seen by active ele­
ment B can be written from Figure 11. This Thevenin 
equivalent circuit is shown in Figure 17 where: 
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FIGURE 18-GR,APHICAL INTERPRETATION OF LOCKED-PAIR LOGIC GATE (FIGURE II) 

(Rg+rA)RL 
RT = + Rg , Thevenin equivalent re-

Rg + rA + RL 

sistance 

_ VpA r A - ---, linear approximation of element A for VA 
IpA 

<VpA 

Rs Ro 
R = --- , total loading 

L R +R 
s 0 

The current-voltage relations in this equivalent 
circuit are shown in Figure 18. The intersection of the 
B characteristic with the load line, ~, yields the 
voltage drop and current of the active element, B. 
Once these values are known, the rest of the circuit 
variables can be determined. 

A graphical analysis was performed for the 
parameters used in the second computer solution. 
The results are plotted in Figure 19 for the source 
voltage, E, equal to its maximum value of 200 milli­
volts. These results predict quite accurately (to 
within 1% for the 100 mc. computer solution, Figure 
12A) the maximum output voltage and the voltage 
acro~s diode B. The maximum output voltage of the 
locked-pair circuit can be approximately determined 
by the relationship: 

V 0 = ET - E - ~B (RT - Rg> 

where: IVB is the valley current of the tunnel 
diode that is in its high voltage state, and the 
other parameters are as previously defined. 
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FIGURE 19- GRAPHICAL INTERPRETATION OF CIRCUIT IN FIGURE II USING ANALYTIC 
APPROXIMATION OF TUNNEL DIODE CHARACTERISTIC (SAME PARAMETERS 
AS USED FOR 2nd COMPUTER SOLUTION) 

This equatlon was obtained from Figure 18, and 
was based on the assumption that the current in the 
active element is near the valley of the V-I charac­
teristic. This approach may be used where the diode 
capacitive reactance is at least ten times the magni­
tude of'the maximum negative resistance. 

From Figure 19 it can be seen that the load line, 
RT, changes very little when the total load resistance 
is decreased from 25 to 15 ohms. as was noted in the 
corresponding computer waveforms of Figures 13a 
and 15. Also predicted in Figure 19, is the fact that 

the diodes will not switch when the source impedance 
is increased from 5 to 10 ohms, as seen in the com­
puter waveforms of Figure 16. The criteria for diode 
Switching, as affected by loading and source resist­
ance, is determined from Figure 18. 

where: VpB and IpB are the coordinates at the point 
of peak current from the characteristic of the diode 
that is expected to go to its high state. 

All the calculated results agree with the unpub­
lished experimental data, and show that a digital 
computer Is a powerful aid in the analysis of such 
complex nonlinear circuit problems. 
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ON ITERATIVE FAC'l'ORIZATION IN NE'NORK ANALYSIS 
BY DIGITAL COMPUTER*' 
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Abstract 

The need to determine the sum of all tree 
admittance products occurs in almost all appli­
cations of topological network theory. This 
paper describes a method of obtaining this sum 
through an i terati ve factorization of the sum 
of tree admittance products of successively 
more complex subnetworks. Computational effi­
ciency is achieved in that: (1) it is not ne­
cessary to test sets of branches for the pre­
sence of circuits; and (2) it is not neces­
sary to calculate each tree admittance product .. 

A digital computer program has been deve­
loped for use on an IBM-704 which accommodates 
any netWork with complex branch admittances and 
up to 14 nodes. Far more complex networks 
ma.y be anaJ.yzed, however, if they are first de­
composed into two-terminal subnetworks. A 
detailed description and flow chart of the pro­
gram are included. 

Introduction 

Although classical network theory has long 
permitted the a.na.l.ysis of arbitrarily large 
networks of prescribed form, it is only through 
the. use of topolOgical methods and high-speed 
digital computers that it has became possible to 
ana.lyze a general RLC-network of any appreciable 
size. At a given level of theoretical and 
mechanical developnent, the practical limit on 
the size and complexity of a network which lDa\Y 
be analyzed is largely determined by the effi­
ciency of the algorithms used to implement the 
various topological network theorems. This 
paper seeks to improve this efficiency through 
use of a new method for computing the sum of 
tree admittance products -- a quantity used in 
almost all applications of topological network 
theory. 

* !b1s work was supported by National Science 
Pbundatio"ll Grants 0-3676 and 0-6020. 

** Formerly at Department of Electrical Engineer­
ing, Columbia Uni versi ty, New York, N. Y. 

***Presently at Department of Electrical En­
gineering, University of Illinois, Urbana, 
IJ.J..~Oi~. 

Let us canpider an RLC-network of e ele­
ments and n nodes, and let us use N to 
denote the graphical representation of the net­
work. A number of authorsl ,2,3 have discussed 
the generation of the sum of tree admittance 
products in N,T(N), and, in general, the 
methods they propose are based on: 

(1) Determination of the trees of N by 
testing each combination of edges taken (n-l) 
at a time for the presence of circuits; and 

(2) Calculation of the admittance product 
corresponding to each of the trees determined 
above. 

The method we shall present utilizes the 
decomposition procedure introduced in [4] to 
compute T(N) in terms of the sums of tree ad­
m.i ttance products of the various subgraphs of 
N. In practice, T is first determined for 3-
node subgrapns, then for 4-node subgraphs. 
This iterative process continues until T(N) 
has been calculated. In this way, it is never 
necessary to test for the presence of circuits, 
and no admittance product is ever individually 
computed. 

1. Iterative Determination of the Sum 
of Tree Products 

Let N represent a connected, non-oriented 
weigh tea graph. with n nodes and e edges. 
(The term ''branchll may be substituted occasion­
ally for "edge" but the term "elementll will 
only be used in the sense of "element of a net­
work" or "element of a set.") The sum of the 
weights of all edges which are incident on both 
node i and node j (i 1= j) will be denoted 
by Wij. The method we shall use to determine 
T(N) is based on the following iterative pro­
cedure. 

1. Select a generating node, say node n. 

2. Partition the remaining (n-l) nodes 
into k subsets in all possible ways for 
k = 1, 2, ••• , n-l. (Example A illustrates 
the partitioning for a particular 4-node 
network.) 

Example A 

Node 1 is chosen as the genera tins node. 
(See Fig. 1.) 
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k 

1 

2 

3 

Identification Number 
of Partition Element: 

Identification 1 Number of Partition 2 3 

1 (432) 

2 (32) (4) 

3 (43) (2) 
4 (42) (3) (2) 

5 (4) (3) (2) 

Table I. PartitiOninff of the Set 
of Nodes (32) 

3. Associate sub graphs with each element 
of each partition as follovs. .An edge of N 
'fill be included in NlJ.v' the subgraph asso­
ciated with the v-th element of the IJ.-th par­
tition, if and only if both of the nodes u:pon 
'i.,rhich it is incident are contained in the v-th 
element of the IJ.-th partition. (It is suf­
ficient that orderings of both :partitions and 
elements exist. The nature of these orderings 
is uni.m:portant.) Fig. 2 presents the various 
NIJ.V ,.,rhich are derived from the graph of Example 
A. 

4. We may now express the sum of tree pro­
ducts for graph N as 

T(N) = r. S 7i [T(N ) r. Y1m]} (1) 
- IJ. t v IJ.V i€N 

IJ.V 

,-,here T( NlJ.v) is the sum of tree products:fOr 
subgraph NlJ.v, n is the generating node, and 
i is any node in NlJ.v. If NlJ.v consists of a 
single node (e.g. N32 of Example A), then 
T(~~v) = 1; if NlJ.v is non-connected, 
T(NIJ.'() = O. 

The maximum possible number of nodes in 
NlJ.v is (n-l). Therefore, the problem of find­
ing tree products in an n-node net"imrk has been 
changed into one of finding tree products in net­
"orks with at most (n-l) nodes. If (1) is 
applied to NA, Fig. 1, as partitioned in Ex­
ample A, "ive determine the sum. of tree products of 
NA to be 

T(NA) = T(Nll)'(e+f) + T(N2l)'(e+f)'T(N22)'O 

+ T(N3l)·e'T(N32)·r + T(N4l)·f'T(N42)·e 

+ T(N5l)·O.T(N52)·e'T(N53)·f (2) 

= T(Nll)'(e+f) + T(N3l)T{N32)'ef 

_ + T(N41)T{N42)'ef (3) 

At this :point we observe that T(N32) = T{N42) 
= 1, T{N3l) = d, and T{N4l) = a. We may 
reuse (1) to obtain T{Nll) as 

(4) 

Substituting (4) in (3) we have 

T(NA) = [(b+c)(a:+d) + ad](e+f)idef+e.ef 
(5) 

= bae + bde + cae + cde + ade + bat 

+ bdf + cat + cdf + ad! + def + aef 
(6) 

If equation (l) is applied to a 3-node graph, 
the sum. of tree products of any subgraph is 
either 1 or a sum. of edge-weights (e. g. 
T{N2l) = b+c in Fig. 2b). Thus, in actual com­
putation, we first calculate the sum. of tree 
products for all 3:node sub graphs of N which 
do not contain the generating node. These are 
then used to find the sum. of tree products for 
4-node subgraphs. This process is repeated 
until we have calculated T{ N) itself. Example 
B demonstrates the actual method of computa­
tion, but', for clarity, does not completely 
reflect a computer solution. In Appendix B, 
the graph of Fig. 3 is solved in the manner of 
the computer solution. 

Example B 

(See Fig. 3). In any subgraph of N,B, the 
highest numbered node will arbitrarily be chosen 
to be the generating node. The symbol 
T(abc ••• k) will denote the sum. of tree pro­
ducts for the subgraph which is formed from the 
original graph by removing nodes other than 
abc ••• k and all edges incident on these 
deleted nodes. Thus, in NB, T(124) = at. 

T(123) T(12). (c+bfe) + (b+c)e 

= f(b+c4e) + (b+c)e 

T(124) fa 

T(134) ed 

T(234) (b+c)(a:+d) + ad (Eq. 4) 

T( 1234) Hb+c)( aid) + ad]( e+f) + def + aef 

(8) 

(Eq. 5) (9) 

These constitute the sums of tree products 
for all subgraphs of N:s vrhich do not contain 
node 5. We nOiv determine T( N:a) to be 

T(NB) = T(12345) = T(1234).-{gfb.) + T(124)'hg 

+ T(234).hg + T(12)h'T(34)g 

+ T(14)'h'T(32)g (10) 



T(~) = {[(b+c)(a-Kl) + ad1(e+f) + def + aef}(gfh) 

+ fahg + [(b+c)(e:+d) + ad]hg + fhdg (11) 

As each edge of N:s has been uniquely iden­
tified, expanding (11) would result in an enu­
meration of all of the trees of NB. On the 
other hand, if each edge were assigned a numeri­
cal value and only T(NB) were desired, only 
those equations corresponding to (1) ,.,ould be 
employed. T(N:s) is calculated in Example C 
for a particular assignment of numerical values 
to the edges of NE. 
Example C 

In Fig. 3, let 

a=c=e=g=l 
and 

b=d=f=h=2 

T(123) = 2(2+1+1) + (2+1)1= 11 

T(124) = 1·2 = 2 

T(134) = 1·2 = 2 

T(234) = (2+1)(1+2) + 1·2 = 11 

T(1234) = 11(1+2) + 2·1·2 + 1·1-2 = 39 

T(~) = 39(1+2) + 2·1-2 + 11-2·1 + 2-2·2·1 . 

= 151 
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Equation (11) results from the repeated 
application of (1) to NB and various of its 
subgraphs. Some idea of the effort require~ to 
apply equation (1) to graphs of varidUs sizes 
may be had by consulting Table II where the num­
ber of unique partitions for n-node graphs 
(n = 1,2, ••• , 13) are tabulated. If the origi­
nal graph contained seven nodes, then, after re­
moving the generating node, all possible 3,4,5 
and 6-node graphs would nave to be inspected. 
From Table II, we see that a 6-node graph may 
be partitioned in 203 unique ways. The corres­
ponding numbers for 2,3,4 and 5-node graphs are 
found to be 2,5,15 and 52. Thus, the number 
of different partitions which must be considered 
is found to be 

6 6 6 6 
(3)·2 + (4)·5 +(5).15 + (6).52 + 1·203 = 460 

(12) 
When calculations involving this many partitions 
are to be carried out, it becomes essential that 
a reliable method of generating partitions be 
found. This could lead to the use of a table of 
partitions but, for computer calculations, the 
follOwing procedure is preferable. 

1. Choose one node, say node 1. It can be 
partitioned in only one way. 

2. Add one node to the previously parti­
tioned set of nodes increasing the number of 
nodes from k to k+1. For each partition of 
the k nodes into a subsets (a = 1,2, ••• ,k) 

t3: number of elements in set to be partitioned 
a: number of partition 

1 2 3 4 5 6 7 8 9 10 11 12 
elements 

1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 3 7 15 31 63 127 255 511 1023 2047 
3 1 6 25 90 301 966 3025 9330 28501 86526 
4 1 10 65 350 1701 7770 34105 145750 611501 
5 1 15 140 1050 6951 42525 246730 1379400 
6 1 21 266 2646 22827 179487 1323652 
7 1 28 462 5880 63987 627396 
8 1 36 750 11880 159027 
9 1 45 11~ 22275 

10 1 55 1705 
11 1 66 
12 1 
13 

TOTAIS 1 2 5 15 52 203 877 4140 21147 115975 678570 4213597 

Table II: The Number of Uni ue "\-fa; s in Hhich Sets of t3 Elements Can Be 
Partitioned Into a-element Partitions nat3 

Note that na ,t3 (a,t3 = 1,2,3, ••• ) 

13 

1 
4095 

265720 
2532530 
7508501 
9321312 
5715424 
1899612 

359502 
39325 
2431 

78 
1 

27648528 
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form ~l partitions of the k+l nodes as fol­
lows. Form one partition of (~l) elements by 
using the new node as an addi tionaJ. element; form 
ex partitions of ex eleJnents by adding the new 
node to each of the ex elements of the original. 
partition in turn. 

3. Repeat 2 until all nodes have been 
partitioned. 

I:f' the sums of tree products for all newly 
developed subgraphs are generated at each step, 
then this method allows a straightforward deter­
mination of the sum of tree products for the 
overa.11 graph. Example D illustrates this for 
N
B

, the graph Qf Fig. 3. 

Example D 

nodes 
selected 

1 
1,2 

1,2,3 

1,2,3,4 

Graph ~ of Fig. 3 

partitions 
sum of tree products of 
new1Y introduced sub­

graphs 

T(134) = ed 

T(234) = (bie).(artd}kW. 
(Eq. 8) 

T(124) = fa 

T(12;4) = 
= [(bie)(artd)+ad](e+f) 

+ def + a.ef 

T(N:B) may now be caJ.cu1a.ted as in Eq. (11). 

2. Computer Determination of the SUm 
~ Tree Admittance Products 

The digital computer progr~ discussed in 
this section was written for use on an IBM 104 
and is designed to ca.lcu1a.te the sum of tree ad­
mi ttance products for an electrical net ... rork in 
·which the branch admittances are expressed as 
complex numbers. FOr input purposes these net-
... -rork admittances must be combined in such a form 
that no more than one branch exists between any 
pair of nodes. The progr~ ... -rill accept any net-

'WOrk 'With as many as fourteen nodes provided a 
32,168-Word maguet1c core storage unit is 
available. 

A block diagram showing the functional steps 
in the overaJ.l calcul.a.tion is given in Flow 
Chart I. Appendix A supplies deta.ils about the 
format and execution of the various functions. 
Appendix B demonstrates the method by which the 
progr~ bandles the calcul.a.tion of T(N) for the 
network considered in Section 1, Example B. 

Note that the program makes a. dist'inction 
between those nodes connected to the generating 
node and those which are not. After a subgraph 
has been selected and a generating node chosen, 
the initial partitioning does not involve all 
the remaining nodes of the subgraph but only 
those nodes which are connected to the generat­
ing node. The unconnected nodes are then dis­
tributed among the elements of each partition 
in all possib1e ways. The possibility of ever 
having 

E w = 0 
1~N n1 

J.LV 

(13) 

is avoided in this way. 

The two potential limitations on any pro­
gram whi9h caJ.culates the sum of tree a.dmi ttance 
products are memory capacity and computer time. 
Either or both 'Will limit the size and generaJ.­
i ty of the network 'Which may be analyzed. 

The problem of memory capacity is revealed 
by the table of partitions, Tab1e II. For 
n ~ 9, there are simply too ma.ny partitions for 
them all to be developed in the computer core 
memory at one time. The need to conserve com­
puter time prohibits the use of any of the other 
computer storage devices. To perform such an 
extensive set of calcul.a.tions 'With a limited 
storage capacity, the program must use an effi­
cient procedure 'Which generates a few partitions, 
evaluate3 these and stores the partial sum, gene­
rates a few more, etc., until all partitions have 
been generated and evaluated. A re-examination 
of the method used in generating the parti tiona 
of Example D indicates such a procedure. In 
that example, the partition involving node 1 
alone is developed, from this partition all par­
titions involving nodes 1 and 2 are develop­
ed, all the partitions involving nodes 1, 2, 
and 3 are developed from these, and finaJ.ly all 
partitions involving four nodes are developed. 
In general., the method. generates all partitions 
involving k+l nodes from a lmowledge of all 
those involving k-nodes. However, it is 
possible at a:ny stage to find those k+l node 
partitions corresponding to only one of the k­
node partitions, then to find those k+2 node 
partitions corresponding to only one of the k+l 
node pl.rtitions, etc. When all the partitions 
generated by a single k-node partition have been 
utilized, then the 1*1 node partitions corres­
ponding to another k-node partition are gene-



Start of Program 
-I'"' 

'I' 
Step 1: Set n = number of' 

nodes in network. 
FOr each :pair of nodes, store edge 
weight of connecting branch. 
Let 0=3. 

,~ 

Select generating node 
for overall graph. 

,~ L 
Step 2: Generate next grouping of 
0 nodes out of n-l (generating 
node for overall ne~vork not included). 

,~ 

Step 3: Select for each grouping a 
generating node; determine 'VThich of 
the remaining 0-1 nodes are connect-
ed to it. 

~~ ! 
Step 4: Generate next set of parti-
tions of connected nodes. Evaluate 
product term for each. 

,~ 

Step 5: For each partition of con-
nected nodes, assign unconnected nodef 
in all possible ''fays. For each resul-
tant :partition evaluate product term 
and store cumulative sum. 

,~ 

Have all partitions been evaluated? 

Yes No 

1 t 
Step 6: Store sum of tree products 
for subgraph in memory. 

Flow Chart I 

# 

... 
r-

! 
Have all groupings of 0 nodes 

out of n-l been evaluated? 

Yes No 

"" Does o = n? 

N.o Yes 

~~ ... Increase 
~ ~ 0 by 1-

'I' 

Step 3': Detehnine ,.,.hich nodes are 
connected to generating node for over~ 
all graph. -------

" .. ~ 
step 4' : Same as Step 4 for overall 

graph. 

Step 5 for overall I Step 5': Same as 
graph. 

,II 
Have all partitions been 

evaluated? 

Yes No 

t 
11 --

Step 6': Print T(I~) for overall 
graph. 

± 
End of Program 
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rated, and these made use of in turn. In this 
manner, alJ. the partitions may be generated. 

Perhaps the method will be clarified by 
reworking example D. Th~ object is to develop 
the fifteen 4-node partiti-bns in such a way as 
to retain the smallest number of parti tiona in 
JlM!DDOry at any one time. In Example E, which 
shows the successive stages of the developnent 
of these partitions, X indicates that the pro­
duct term is evaJ.uated at that stage and added 
to the cumulative sum. Note that at no stage is 
it necessar,y to retain more than five partitions 
in memory. 

Exm!q?l.e E 

Development of 4-node partitions by an 
1terat1ve procedure, illustrat1ng a saving 1n 
memory capacity. 

(1) -+ ~1)(2) ~1)(2) (1)(2) 
12) -+ 12){3) f12)(3) 

123) ... 123)(4) 
1234) 

r)(2) 
... 11)(2)~) (1)(2)(,) 

~ 12H3T1 X 13)(2l !131(2l 124)(3 X 1)(23 -+ 1)(23 (4) 
12)(34 X 14)(23~ 

1)(234 

(1)(2)(3) -+ r)(2H')(41 ... ~13)(2)(4) X 14)(2Wj 
l34)(2~ X 1~~24 3 (13)(24 it 1 2)(34 

... 
X 
X 

... 
X 
X 
X 

X 
X 
X 
X 

The significance of this saving of core 
stol'8ge is better appreciated by considering a 
12-node subgraph. Table n shows that there are 
over 4 m1ll1on 12-node part1t1ons. Yet it is 
poss1ble to generate &ll of them. and evaJ.uate 
the product term for each without ever retain­
ing as many as one hundred parti t10ns at any 
time. These part1t10ns, being so few in number, 
may be stored in memory in a convenient and ef­
fic1ent manner. For, the sake of programming 
convenience, twelve storage locations are set 
aside to retain a single partition of 12 nodes; 
nonetheless, the total storage for partit10ns is 
so small as to be negligible. 

In evaluating the product term for the par­
t1tions, a saving in cam;puter time has been 
realized by orga.n:f.zing the canputat10ns to take 
advantage of the i t~rhtive developnent of the 
partit1ons. Oons1de; once again the part1tion 
developnent given in Example E. The part1t10n 
product for each 4-node partit10n may be evaJ.u­
ated separately, and the sum cumulatively stored. 
But each 4-node part1t10n is derived from some 
3-node part1tion by altering at most one part1-
tion element. If' the ,-node partit10n product 
has been evaJ.uated, each 4-node product derived 
from. 1t may be evaluated by dividing out the old 
factor and multi~ by the factor which re­
places 1t. For those partitions which are gene-

rated by adding the new node as a separate 
element , it is not even necessary to divide out 
any factor. The case in which one or more of 
the factors is zero must be treated carefully 
but provides no serious problems. The use of 
this procedure is illustrated in Appendix B. 
However, its usefulness is only appreciated by 
considering a partition of-many elements -- say 
twelve. In evaJ.uating such a partition we may, 
instead of performing the twelve multiplications 
of the element factors, perform one division 
and one multiplication. Of course, it is not 
just as simple as the above com,parison would in­
dicate, since we must provide additional book­
keeping and also evaluate the partition products 
for those inte:rmed1ate partitions used in the 
generation. 

Conclusions 

The importance, in calculating the sum 
of tree products for any graph, of using a 
factored expression involving the sums of tree 
products of the subgraphs, can be seen in the 
following comparison. There are associated with 
a 12-node graph (or network) N in which an 
edge connects each pair of nodes 1210 or ap­
prOximately 6.19 x 1010 trees. In analyzing 
this network by our method, the product term of 
Eq. (1), Section 1, must be evaluated for each 
of 1.52 x 106 groupings of subgraphs. Thus in 
a 12-node network, there are about 4 x 104 times 
as many trees as groupings. Even these groupings 
are not evaJ.uated separately; the iteratIve na­
ture of the develolJll8nt of the groupings permits 
evaluation of cOlIDIlOn factors of these products 
once for many groupings. Since there are for a 
given network many less groupings than individual 
trees and since even these groupings are evalu­
ated in factored form, a program based on our 
method is potentiall.y orders of magnitude fas­
ter than any method which requires the calcula­
tion of individual. tree aiJmittance products. 

The method by which T(N) is calculated 
does not depend on any special structural char­
acterist1cs (i.e. ladder or lattice structures, 
etc.) of the network N. Networks of com.pl.etely 
arbitrary topology and branch weights may be 
analyzed provided the number of nodes in the 
network does not exceed the prescribed limit. 
However, networks of interest often contain 
subnetworks which are connected to the rest of 
the network through two' te:rm1nals only. In 
such a case, the calculation can be shortened 
by determ:1n1ng the driving point aiJmi ttance of 
the two term:1nal subnetwork, which then is re­
placed in N by a single branch whose weight 
is the complex aiJmittance of the subnetwork at 
the frequency under consideration. The use of 
such simplification, where poSSible, will great­
ly reduce the cam;putation t:tme. 

MaeWilliams2 cited an example of a net­
work of 11 nodes and 21 branches which re­
quires ,0 minutes of IBM 704 time. 'Whether 
the network had any topological characteristics 
which simplified the cam;putation 



is not known; further, it is presumed that the 
edge weights of the branches were restricted to 
:Pure real or pure imaginary values. For a net­
work with 11 nodes, and arbitrary topology, 
which may contain as m.any as 55 branches 
each of .'which has a complex weight, our program 
estimates less than 30 minutes in computation 
of the sum of tree admittance products. 

There are several ways in which the efficiency 
and usetulness of the program may be extended. 
The first modification, a simple one, effects a 
considerable sav:t.ng of computer time wen the 
network under consideration reflects a minor 
change from the network previously investigated. 
After a particuJ.ar grouping of a nodes out of 
n-l has been generated, step 2 of Fig. 5, this 
subgraph is tested to see if any of its edges 
have been modified fram those of the network 
previously anaJ.yzed. If none have been modi­
fied, the value for that subgraph will already 
be in memory and the program can proceed :f.mme­
diateJ..y to the next grouping. 

A more general and useful calculation than 
that perfo:rmed by the present p-ogram is to find. 
the sum of tree admittance products as a function 
of frequency. That is, instead of the input 
edge weights expressed in tems of complex num­
bers, let these weights be given as a rational 
function of frequency. The resultant sum of 
tree products would then be expressed as a cam­
plex function -of frequency. To solve this more 
general. problem, certain modifications of the 
program are needed, particularJ..y the method of 
evaluation of the partitions. None of the diffi­
culties involved appear to be of a fundamental 
nature, although the camplexity of the network 
which could be analyzed would be restricted. 

A further extension is a program which con­
siders any one of the network edges a variable 
admittance. With this additional modification 
the program couJ.d be used to directly calculate 
the input admittance of a given network looking 
in at any pair of terminals as a function of 
frequency. 

Appendix A 

Programming deta:lls and format are given for 
each of the furlctionaJ. steps indicated in Flow 
Chart I, Section 2. 

Stet? 1. 

The value of n and the edge weights are 
supplied on punched cards. For the latter there 
is, for each pair of nodes in the network, a 
card on which is punched two numbers designating 
the nodes (such as 2-6) and also the real and 
the 1maginary parts of the complex admittance 
of the branch connecting the nodes. Where no 
branch exists in the network between two given 
nodes, the value zero real and zero j]Dsgf nary is 
supplied. For non-zero admittances, the values 
are given in floating point decimal using the 
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stande.rd decimal card code. The allowable range 
of floating point decimal number~is approxi­
mateJ..y n x 10-37 to i1 x 10+..J I and zero. 
With regard to these limits, same caution must 
be exercised since these limits apply not only 
to the input edge weights but to the numbers 
arising from all calculations in the program. 

After translating these branch weights into 
floating point binary, ~e program stores them 
as part of a larger table in core memory. !Jh1s 
table will eventually contain the sum of tree 
admittance products for all subnetworks; the in­
put edge weights constitute the 81m of tree pro­
ducts for their two-node networks.* This table 
will occupy two blocks of 2n- l memory locations, 
one block for the real parts of the admittances, 
one for the imaginary parts. Note that the ex­
ponent is n-l rather tban n since only those 
subgraphs not including the generating node for 
the overall graph will be analyzed. It is the 
size of this table, 2n locations, which 11m1ts 
the size of the network which may be analyzed. 
For n = 14, ~ = 16,.";84 locations or one­
half of the core storage of a 32, 768-word memory 
unit. This is one reason that the program is 
limited to networks of not more than fourteen 
nodes. The generating node will arbi trar1l.y be 
chosen as the highest-numbered node. 

This step generates the various groupings 
of a nodes out of n-l. The format used 
throughout the program to indicate a given 
grouping of nodes is a simple one: the last n 
binary posi tiom of the 36-bi t computer word. 
gives, in positional notation, the nodes consi­
dered. The subgraph, of a 6-node graph consist­
ing of nodes 1, 3, 5 and 6 would be coded as 
shO'Wll in Fig. 4. 

To generate all groupings of a nodes out 
of n-l, all binary numbers fram 1 to 2D-l 
are first generated, along with the binary weight 
of the number in the unused upper portion of the 
word. From this set of 2D-1 binary numbe;t's 
are chosen, in turn, those of lteight a (where 
a = 3,4, ••• ,n-l). This is equivalent, according 
to the format, to choosing all groupings of a 
nodes out of n-l for a = 3, a = 4, etc. 

It is necessar,y to select for each sub­
graph a generat~ node. The left-most binary 
unit corresponding to the highest numbered node 
is always selected. The rema.1n.ing nodes are 
separated into two classes, those connected to 
the generating node, and those not connected. 
A node is considered connected if either the 
real or the imaginary part of the aiIm1 ttance of 
the branch connecting it to the generating node 
* Actually the weights of input edges, where 

one node is the generating node for the over­
all graph, will have to be stored in a sepa­
rate table. 



248 
5.4 

From Step 3 r 
Choose one connected 
node; it can be par-
titioned in only one 
way. 

L 
Add a second node to ~ 
the previously par-
titioned set· of nodes 
fOrming the new par-
t-tt1onA. 

1 
Add a third node, 

etc. 

It 

Add a thirteenth 
node, etc. 

Flo" ahart II 

Evaluate for this 
, partition the factor 
' introduced into the 
p~duct. 

) 

t 
Evaluate for first 

.. (or next) partition 
' the new factor in-

troduced. 

J, 
Does n = 37 I 
No Yes I I I 

J, 
.. Evaluate, etc. ,. 

J, 
Does n = 41 I 

I No Yes 

---~ L 

_-1-. 

---

J 
.. Evaluate, , 

etc. 

~ 
Does n = l4? 

I Yes 
I 

Proceed to St~ [2. 6 

Ir-

t~s Ni;> 

Divide out replac- Is there a 2-node 
.. ed factor in par- partition that 
r tition product and has not been used 

multiply by new 
factor. '\ 

J 

~Add partition pro- .. 
r ducts~.cumulative ,. 

,~ 

Y~s Np 

Is there a 3-node .. Divide out, partition that has r 

etc. not been used? 

I '[\ 

JAdd partition pro- .... 
duct to cumulative , 

sum. )\ 

Yes I No 
Is there a 4-node 
partition that haf 
not been used? 

'I' 
• 

Yes I ko 
Is there a l3-node 

~ Divide out, ~ition that has r 

etc. [not been used? 
1\ 

I 

,. Add partition pro-
duct to cumulative 

Alnn 



is non-zero; if both real and imaginary parts are 
zero the node is considered unconnected. 

Steps 4 and 5 

The method of generating partitions for the 
connected nodes, with the distribution of the 
remaining nodes among the elements of each ~­
ti tion in all possible ways, and the evaluation 
of the product ter.m for each,constitutes the 
core of the program. The structure of this 
section of the program is quite complex. The 
manner in which it faces the two potential limi­
tations of the program, memory capacity and 
computer time, has been given in the body of 
the report. 

To clarify the structure, a block diagram of 
these two steps is shown in Flow Chart II. In 
this diagram there is, for reasons of simpliCity, 
no distinction shown between the treatment of 
the connected nodes and the unconnected nodes. 
The only distinction which the program makes 
bet'treen the two is that unconnected nodes are 
never permitted to occup,y a partition element 
by themselves, since such a partition would 
make no contribution to tbe sum of tree pro­
ducts. 

After all the partitions have been generated, 
and evaluated, the cumulative sum, vThich is now 
the sum of tree products for the subgrapn under 
consideration,is stored in the appro~riate loca­
tion of the table mentioned in connection with 
step 1. The program then proceeds to step 2 
unless all groupings have been considered. In 
step 6', the sum of tree products for the over­
all graph is evaluated. It is translated back 
to floating point decimal and the resuJ.t printed 
out. If the va.1ues of the sum of tree products 
for any subgrapns are desired, these may also 
be translated and printed, out using the same 
routine. 

ApPendix B 

The follOwing analysis of the network of 
Fig. ; closely reflects the actual computer 
solution. 'lhe numerical values of the edge are 
those used in Example C, Section 1. 

a = c e = g = 1 

b d f h 2 

The steps ;'Thich are deSignated correspond. to 
those given in the flow chart shown in Section 
2, FlO'tv Chart I. 
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Step 1 

Set n = 5. 

In t: 

Nodes i 
1 2 0 
1 ; 0 
1 4 0 
1 5 0 
2 ; 0 
2 4 0 
2 5 0 
3 4 0 
; 5 0 
4 5 0 

Select node 5 as generating node. 

Step 2 

Generate all binary numbers from 1 to 24 
to determine all possible groupings of nodes 1, 
2, ; and 4. 

Nodes 

4 ; 2 1 

0 0 0 1 

0 0 1 0 

0 0 1 1 

0 1 0 0 

0 1 0 1 

0 1 1 0 

0 1 1 1 -+ T(123) 

1 0 0 0 

1 0 0 1 

1 0 1 0 

1 0 1 1 -+ T(124) 

1 1 0 0 

1 1 0 1 -+ T(134) 

1 1 1 0 -+ T(234) 

1 1 1 1 -+ T(12;4) 



250 
5.4 

Let ex = 3. 

Choose node 3 as generating node; nodes 1,2 are connected. 

Partition 
(1) 

(1)(2) 
(12) 

New factor in product term 

T(1)W31 = 1-1 = 1 
T(2)w32 = 1-3 = 3 
T(12)(w31+w32) = 2(1+3) 

= 8 

Step 6 Store T(123) = li_ 

T(124) 

Partia.l sum 
Product term of iroducts 

1 

1-3 = 3 3 
!~8 = 8 11 
1 

~ Choose node 4 as generating node; node 2 is connected, node 1 not connected. 

Steps 4 and 5 

Step 6 

T(134) 

Partition 
4 (2) 
3 { (12) 

Store T(124) = 2. 

New factor in product term 

T(2)w42 = 1-1 = 1 
T(12lw4i'kY42) = 2· (0+1) = 2 

Partia.l sum 
Product term of oducts 

1 
!.2 = 2 2 
1 

~ Choose node 4 as generating node; node 3 is connected, node 1 not connected. 

Steps 4 and 5 
Partition New factor in product term 

4 [ (3) T(3)w43 = 1·2 = 2 

Step 6 St~r! T(134) (:3h. T(13*4iw43) = 1(0+2) = 2 
T(234) 

Partia.l sum 
Product term of products 

Choose node 4 as generating node; nodes 2 and 3 are connected. 

Let ex = 4. 

Partition New factor in roduct term 

T(2)w42 = 1-1 = 1 
T(3)w43 = 1'2 = 2 
T(23)(w42~v43) = 3(1+2) 

= 9 
store T( 234) = 11 

Partial sum 
Product term of iroducts 

1 

1·2 = 2 
1·9 = 9 1 

2 

11 

Choose node 4 as generating node; nodes 2, 3 are connected, node 1 not connected_ 



Steps 4 and 5 

Partition 

(2) 

(2)(3) 

(23) 

(12)(3) 

Ne,., :factor in product term 

T(2)vT42 = 1·1 = 1 

T(3)-tv42 = 1·2 = 2 

T(23)(i-T42~v43) = 3(1+2) = 9 

T(12)(W·41~v42) = 2(0+-1) = 2 

Product term 

1 

1·2 = 2 

!·9 = 9 
1 

Partial sum 
o:f products 
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(2)(13) 

(123) 

T(13)(W41+w43) = 1(0+2) = 2 

T(123)(w41+W42~v43) = 11(0+-1+2) = 23 

i·2 = 4 
g.2 = 2 
2 

2.33 =33 
9 

4 

6 

39 

Store T(1234) = 39. 

Node 5 is generating node. 

Step 3 t Nodes 1 and 3 are connected, nodes 2 and 4 not connected. 

5' 

Steps 4' and 5 I 

Partition 

(1) 
(1)(3) 

(13) 

Nffil :factor in product term 

T(l)W
51 

= 1·2 = 2 

T(3)w
53 

= 1·1 = 1 

T(13) (l-T51+w
53

) = 1(2+1) = 3 

T(12)(l-T
51

+w
52

) = 2(2+0) = 4 

T(23)(w
52

+w
53

) = 3(0+-1) = 3 

T(124)(w51~v52+W54) = 2(2+OfO) = 4 

T(34)(\V53+w54) = 2(140) = 2 

T(14)(w51~T54) = 0(2+0) = 0 

T(234)(w52-kT53-kv54) = 11(0+1+0) = 11 

Product term. 

2 

2·1 = 2 
2 ~ 
~. 3 = ) 

~.4 = 4 

g·3 = 6 
1 

*.4 = 4 
~.2 = 8 
1 
6 
2".0 = 0·3 

6 
"3.11 = 22 

Partial sum 
o:f products 

4 

12 

12 

(12)(3) 

(1)(23) 

(124)(3) 

(12)(34) 

(14)(23) 

(1)(234) 

(123) 

(1234) 

T(123) (w51+w52+w53) = 11(2+0+1) = 33 

T(1234)(1v51-kT52+w53-kT54) = 39(2-1-0+140) = 117 

~'33 = 33 

33'117 = 117 
33 
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Step 6' Print 

End o:f Program. 
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A COMPUTER CONTROLLED DYNAMIC SERVO TEST SYSTEM 

V. A. Kaiser and J. L. Whittaker 
Douglas Aircraft Company, Inc. 

Santa Monica, California 

Recent years have seen an increasing number of 
successful applications of digital computers to 
a real-time control in industry. These appli­
cations generally concern the monitoring and 
control of a large number of relatively slowly 
varying parameters of a process. Equally suc­
cessful has been an application of a control com­
puter to provide control and data processing for 
the dynamic testing of missile servo-control sys­
tems. At Douglas Aircraft Company, computer­
controlled tests are currently being conducted on 
servo systems which operate at frequencies rang­
ing to 400 cps. In this application, emphasis is 
placed on the monitoring of several rapidly 
changing parameters in order to provide a real­
time description of the dynamic characteristics 
of the servo systems. 

PURPOSE OF THE AUTOMATIC TEST SYSTEM 

Steadily increasing requirements are being placed 
on the performance, reliability, and operating 
environment of missile flight control servo sys­
tems. To satisfy these advanced requirements has 
demanded a continuous effort in the missile in­
dustry to improve on previous designs, maintain 
closer design parameters, and to develop better 
hardware. Each stage in the development of a 
missile flight control system requires extensive 
testing, and the development program cannot pro­
ceed until it has been ascertained that all 
intermediate design requirements have been met. 
These efforts are resulting in an ever-increasing 
amount of laboratory dynamic testing. 

Manual methods of conducting the many required 
dynamic control system tests have become unde­
sirable for several reasons. To complete a de­
velopment program in the alloted time requires 
that several tests be conducted concurrently in 
order to offset the time required to conduct each 
individual test manually. This parallel testing 
procedure necessitates extensive duplication of 
test equipment and a large labor force of test 
engineers, technicians, and data reduction 
personnel. The manual methods of conducting the 
tests have thus become an economic burden. In 
addition, the reliability of the manual test re­
sults is relatively low. Errors accumUlate from 
numerous sources such as faulty equipment cali­
brations, incorrect interpretations of low 
signal-to-noise ratio signals, and carelessness. 
Small changes in servo parameters due to wear, 
hydraulic fluid contamination, or operating envi­
ronment may therefore be completely hidden in 
the "data spread". 

These deficiencies in the manual methods of con­
trol system testing were recognized by the Test­
ing Division of Douglas Aircraft Company. In 
early 1958, a study was initiated to investigate 

possible methods of improving the testing pro­
cedures. It was conceived that the duplication 
of test equipment and personnel required by the 
parallel testing procedure could be eliminated by 
time-sharing a single master test system. Eco­
nomic justification of the master tester could be 
realized if the individual tests could be con­
ducted serially in the same length of time as 
that required for parallel testing by the con­
ventional methods. The study was therefore di­
rected toward an automatic computer-controlled 
test system. The versatility necessary for de­
velopment test work, as well as the speed, 
accuracy, and reliability requirements, limited 
the study to digital rather than analog eqUip­
ment. From this study resulted a digital 
computer-controlled dynamic servo test facility 
which was placed in operation in mid-1960. 

This automatic test system, controlled by a 
Thompson-Ramo-Wooldridge RW-300 digital control 
computer, has been located in the Hydro­
Mechanical Systems Development Laboratory at 
Douglas. With this facility, the many various 
servo system tests which previously required 
weeks to perform are now conducted daily. 

GENERAL FACILITY DESCRIPTION 

The RW-300 computer and its associated input­
output eqUipment are located in what is called 
the Control Center of the Systems Laboratory. 
From this central location, tests are conducted 
on missile servos located at eleven remote sites 
in the laboratory as shown in rigure 1. These 
sites include missile mock-Ups, environmental 
chambers, and work benches. Switching is accom­
plished manually in the Control Center to select 
one of these sites-, and the equipment located at 
the selected site is tested automatically by the 
computer. Intercom and closed circuit television 
systems provide means for communications between 
the operator in the Control Center and personnel 
at the test locations. The operator can thus 
observe the system in operation while the test is 
being performed and can immediately stop the test 
should a malfunction occur. With proper schedul­
ing of tests at the various remote locations, 
many different tests on various servo-system 
hardware configurations can be conducted in 
succession. 

The RW-300 computer is the heart of the automatic 
test system. Designed for process control, the 
computer contains a flexible input-output sub­
system. Using the digital and analog outputs, 
control of the servo system configurations, the 
driving functions applied, and other peripheral 
equipment is maintained throughout the test 
(Figure 2). The analog-to-digital converter, an 
integral part of the RW-300 computer, is used to 
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convert samples of the servo system output sig­
nals to digital form. Conversion is under pro­
gram control and the digital values of the 
samples are stored automatically in a reserved 
section of the magnetic drum storage of the 
computer. 

The memory capacity of the computer is approxi~ 
mately 8000 words, including 1024 words reserved 
for analog data and 16 words of rapid-access 
memory. Each word contains 18 binary digits, and 
may be used for program storage (1 + 1 instruc­
tion system) or data storage (17 magnitude bits 
plus sign). A total of 20 arithmetic and logical 
decision operations are available for program 
instructions. 

The equipment located with the RW-300 computer in 
the Control Center is shown in Figures 3 and 4 
and includes a Flexowriter, X-Y plotter, a Master 
Control Console, and the servo-system electronic 
equipment and instrumentation equipment. The 
Flexowriter serves as the primary input-output 
device for the computer and includes a paper tape 
reader and punch unit. The tape reader is used 
to load the instructions into the computer memory 
and to provide the test parameters and variations 
for the program. The Flexowriter is also used 
for tabulation of test results. 

Complementing the Flexowriter as an output device 
is a Mosely 2A X-Y plotter. The plotter is 
computer-controlled and can plot up to six sepa­
rate Bode diagrams describing the servo system as 
the test is being conducted. The Bode plots may 
describe the various loop or component frequency 
responses, or, by the assignment of each plotter 
symbol to a separate driving function amplitude, 
may describe the amplitude-dependent non­
linearity of the servo system. 

The Master Control Console houses the intercom 
switching and the television camera SWitching. 
A Hewlett-Packard 202A function generator, modi­
fied for digital frequency and amplitude control, 
is also located in the console. The function 
generator is used to provide the driving func­
tions for the frequency response tests on the 
servo systems. Digital drawers, which contain 
the relays which effect the digital outputs to 
the Flexowriter, X-Y plotter, and function gen­
erator complete the Master Control Console. 

The four-bay electronic equipment console 
(Figure 4) houses all the servo system electron­
ics eqUipment. Many amplifier, filter, and com­
pensation network combinations are located in the 
console. Digital outputs from the computer are 
used to form a specific configuration of these 
elements for the particular servo system hardware 
being tested. Also located in the console are 
the strain gauges and thermocouple reference 
junctions which make available computer monitor­
ing of "g"-loads, pressures, flows, temperatures, 
etc., at the test site during the test. 

SYSTEM OPERATION AND COMPUTER PROGRAM 

The capability of the computer to read punch­
coded paper tape from the Flexowriter concur­
rently with the execution of the test provides 
much of the versatility of the automatic test 
system. The sequence of tests tc be conducted, 
the specific driving functions to be applied, and 
the data to be obtained are coded and listed on 
paper tape~ This information is read as required 
by the computer during the execution of the test. 

The basic block diagram of the computer program 
is shown in Figure 5. The program is divided 
into six regions, each of which performs a spe­
cific function for the test. Entrance into a 
region is only by a code read from the tape iden­
tifying that region. When the test is started, 
Region I is entered. Here the time of day is 
recorded, and the test is assigned an identifica­
tion number, also printed on the result sheet. 
The exit from Region I is Region II, where a dig­
ital input from the tape reader is performed. 
The code read from the tape is interpreted, and 
the program exits to the particular region iden­
tified by the code. When the instructions of the 
region have been performed, the program immedi­
ately returns to Region II to read another region 
code from the tape. Thus the regions are entered 
in the order which they are coded on the tape. 

The three basic types of tests available are (1) 
Equipment Calibration, (2) System Frequency Re­
sponse, and (3) System Stability Test. The re­
gions which perform these tests are identified as 
C, R, and T respectively. In addition, for the 
equipment calibration and frequency response 
tests, there are two regions which operate to set 
up a required driving function. These two re­
gions are identified by IF' and 'A'. In Region 
F, the frequency of the driving function is read 
from the tape and, by means of the digital out­
puts, set on the function generator. The desired 
driving function amplitude is, in a like manner, 
set in Region A. 

A typical test tape format is shown in Figure 6. 
The first character in each line identifies a re­
gion. The digits following the region codes con­
tain the information required by the region to 
complete the operations in that region. The dig­
its following the C and R codes (calibration, 
frequency response) are used to instruct the pro­
gram (1) what output ratios to compute, and (2) 
whether these gain and phase results should be 
printed, plotted, or both printed and plotted. 
The digits following the F code (frequency) are 
the octal representation for a particular driving 
function frequency. The driving function ampli­
tudes follow the A (amplitude) region codes. The 
digits following the T (stability test) contain 
the information necessary for the stability test. 
These digits contain codes for (1) the gain set­
tings of the amplifiers, (2) the compensation 
networks to be digitally inserted into the 



various loops, and (3) the results to be printed 
at the completion of the test. The S code is 
punched at the end of each tape and is inter­
preted by the program a~ "te:st completed." The 
computer stops operation upon receipt of this 
code, and the operator may switch to another test 
location to begin another test on a different 
servo system. 

For a frequency response test on the servo system 
or an electronic equipment calibration, then, 
three regions must be listed. (R, F's and A's or 
C, F's and A's). For a stability test, only re­
gion T is entered. The test engineer list~ the 
codes necessary to conduct the specific test de­
sired. The digits following each region code are 
obtained from a set of tables. A tape is punched 
containing these codes in proper sequence and 
placed in the Flexowriter tape reader. After 
switching to the desired test site in the labo­
ratory, computer operation is begun. The test is 
then performed automatically, the desired results 
are printed and/or plotted, and the computer 
ceases operation when the test is complete. 

DATA ACQUISITION AND MAJOR CALCULATIONS 

After the driving function has been sele.cted and 
applied to the system, the data from which the 
system response is calculated are obtained in the 
following manner. Programmed digital outputs 
from the computer connect four lines from the 
servo system through scaling amplifiers to the 
input of the analog-to-digital converter. The 
scaling amplifiers are controlled by the computer 
to scale the voltages to the most accurate range 
for conversion. Upon command, these four signals 
are sampled in sequence at the rate of 3840 
samples/second or 960 samples/line/second. The 
digital values of these samples are stored in a 
prescribed sequence on the reserved section of 
the magnetic drum memory. The converter is b.i­
polar, and converts voltages ranging to ±10.23 
volts with a resolution of ±10 millivolts. 

Since the section of the RW-300 memory reserved 
for the storage of analog data contains 1024 
words, each of the four signals is sampled 256 
times during one conversion cycle. From these 
samples, the amplitude and relative phase of 
each signal are determined. The method used is 
that provided by Fourier analysis. The real and 
imaginary components of the fundamental of each 
signal are given by Equations (l) and (2). 

Where: 

J
2 Tr 

A = ! f( t) sin wt dt 
rr 0 

f
27T 

B = ! f( t) cos wt dt 
11 0 

A = Real part of fundamental of f(t) 

(2) 

B = Imaginary part of .fundamental of f{t) 
W = Radian fundamental frequency 
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Because each signal f{t) is represented in dis­
crete samples, it is necessary to approximate 
these integrations by numerical methods. The 
trapazoidal method of numerical integration is 
used, and the above integrals are approximated by 
Equations (3) and (4). 

2 [So 
N-l 

A c:: - - sin (o) + L ~ sin k89 N 2 k = 1 

Bw ~ + 2 sin N (3) 

B 0< g [so cos (0) 
N-l 

+ k~l Sk cos k89 
N 2 

SN 
N] ( 4) + 2" cos 

Where: 
So' Sl' ••• Sk ••• Sn - Samples of f (t) 
N = Total number of samples 
8 9 = Angle between samples Sk ana Sk+l 

The integrations of Equations (1) and (2), and 
hence the above summati9ns, must be performed 
over an integer number of cycle of f(t). Since 
the sampling rate is fixed, the number of samples 
N is varied with frequency so that, as nearly as 
possible, an integer number of samples are used 
to ~epresent an integer number of periods of 
f{t). It has been found that for N ~ 30, suffi­
cient accuracy is maintained. At least thirty 
samples of f(t) are therefore used in the above 
summations. 

Rectangular-to-polar conversion of the results of 
Equations (3) and (4) provide the amplitude and 
phase angle for each signal as given in Equation 
(5). 

f(t) = C~ (5) 
Where: 

-1 B 
</>= tan A 

C = B 
sin </> 

After each of the four input signals have been 
represented in this manner, the desired amplitude 
ratios and phase relationships are calcula~ed. 
The logarithms of the amplitude ratios provide 
the gain in decibels. The component, loop, or 
system gain and phase relationships are then 
printed with the Flexowriter and/or plotted with 
the X-Y plotter. The program is then ready to 
read the coded tape to obtain the next requested 
driving signal. 
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An example of a typical result sheet is shown in 
Figure 7. This particular test began with an 
equipment calibration. Under CALIBRATION are 
listed the static test parameters. These include 
the servo-amplifier quiescent currents, the 
servo-amplifier gain, and the feedback transducer 
excitation voltages. A brief frequency response 
test on the electronic e~uipment in the feedback 
loops was then conducted. Under FREQUENCY RE­
SPONSE, the component, loop, and system gain and 
phase relationships are tabulated for various 
driving functions. Under each column is listed 
the gain in decibels fol~owed by the phase shift 
in degrees. 

Plotted on the X-Y plotter during this test 
(Figure 8) was the closed-loop system frequency 
response. Each driving function amplitude was 
assigned a different symbol on the plotter. The 
spread observed on the plot is therefore a result 
of the amplitude-dependent nonlinearity of the 
servo system. 

SUMMARY 

The procedure used by the test engineer in con­
ducting a dynamic test on the servo system with 
the automatic test system is as follows. First, 
the hardware to be tested is set up at one of the 
remote sites in the laboratory. The loading 
(inertia, spring, damping, etc.) and the environ­
mental conditions for the servo system are ar­
ranged. A test tape, listing the codes for the 
particular tests deSired, is punched with the 
Flexowriter punch unit. This paper tape is 
placed in the Flexowriter tape reader and the 
automatic test system is switched to the remote 
site where the servo system is located. Computer 
operation is then begun. Without manual inter­
vention, the computer program reads the punch­
coded tape as the information is needed, executes 
the operations instructed in each program region 
listed on the tape, and prints and/or plots the 
results of the test as they are obtained. When 
the test is complete as indicated by a code on 
the test tape, the computer halts and the engi­
neer has the desired tabulated and plotted trans­
fer functions at hand. Another test engineer, 
with an entirely different servo system located 
at another remote site in the laboratory, may 
then switch the automatic test system to his lo­
cation and follow the same procedure. 

The justification of this serial test procedure 
in replacing parallel manual testing has been 
achieved. A typical dynamic servo system test 
conducted manually required up to two hours to 
obtain sufficient data with which to evaluate the 
system. An additiona~ two hours were usually 
required to calculate the results and plot the 
desired transfer functions. A similar test con­
ducted with the automatic test system now takes 
from 10 to 20 minutes (depending upon the extent 
of the test). Since the results are obtained in 
plotted form, the entire test is accomplished in 
only a small fraction of the time previously re­
quired. The many required tests can therefore be 
conducted serially at a more rapid rate than was 

previously possible using the parallel manual 
method. The savings resulting from the elimina­
tion of duplicate test equipment will be con­
siderable. A by-product of the time savings is 
the reduction of servo system component wear. 
Because the servo system is being driven only a 
fraction of the previous time, wear and the re­
sulting changes in operating characteristics 
have been minimized. The previous expense of 
maintaining several prototypes of each component 
has thus been eliminated. 

In addition, the accumulative errors accrued 
during a manually perf.ormed test were estimated 
to provide results accurate to only ± 10%. The 
digital computer provides these test results ac­
curate to ± 1%. Thus more confidence can be 
placed on the test results, and more accurate 
evaluations of the system performance can be 
made. 
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Fig. 4. Servo System Electronic Equipment and Instrumentation Console 
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C212431410. 

FOOl300 

AOOOIOO 

A000200 

F006300 
AOOOIOO 

R432210310. 

F000200 

AOOOl20 

AOOOl60 

TI00036043172. 
S 

Fig. 6. Test Tape Format 
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10-20-60 1022 AM 
RUN NO. ~ 

CAlI BRATI ON 
11 211.9 MA 
12 209.6 MA 
AMP. GAIN 100.2 MA/V 
BUZZ 20.'7 V 
£Xl 10.,1 V 
EX2 19.92 V 
f'REQ. A MPL.. YFMjYCAJ.. YFAVjVCAL E2/VeAL 

'.915 ~.925 -0.066 -0.656 -o.~ -0.890 0.091 -0.750 

".92 ~.~ .0.101 -1.507 -0.007 -2.m 0.085 -0.554 

202.2 ~.196 -o.O~ -7.566 -o.()'1JI. -8.296 0.171 -0.0'1 

f'R[QUENCY RESPONSE 
f'REQ. A MPl. YF'B2/El Yf'B2/E2 Yf'Bl/El YFBl/E2 

,.960 0.980 -0.156 -190.6 1,.1!., -86.11 -6.925 -101.' 6.66Ji. -'56.7 
2.007 -o.m -191.1 14.97 -~.12 -7.089 -100.9 8.00' -3.917 
'.980 0.011 -188.0 16.42 -95.92 -8.015 -100.1 8.390 -7.~ 
6.019 o.~ -188.1 17.12 -97.25 -9.i196 -98.61!. 7 .5"~ -7.196 
8.091 0.066 -187.9 17.~ -95.73 -11.20 -98.~ 5.996 -6.785 

6.011 0.980 -0.269 -195.7 11.10 -92.75 -10.58 -106.6 0.789 -3.695 
2.01.2 O.O~ -1~.8 12.11!. -96.31 -10.51 -106.1 1.593 -7.652 
,.960 -0.003 -192.5 1,.22 -97.19 -11.36 -10'.0 1.859 -9.196 
5.9Ji.9 0.078 -191.7 14.oJi. -98.31 -12.88 -loJi..6 1.082 -11.19 
7.976 0.066 -191.2 11!.." -97.80 -1~. 73 -103.8 -0.'51 -10." 

8.0116 0.992 - 0 .265 -200.1!. 8.718 -96.71 -12.95 -111.1 -3.972 -7.503 
2.0~ -0.101 -198.0 9.886 -97.72 -13.02 -110.6 -3'0~ -10.~ 
3.9Ji.l 0.058 -195.8 11.17 -100.3 -1'.90 -109.2 -2.785 -13.76 
5.91~ 0.071!. -194.4 12.03 -98.86 -15.51 -108.3 -,.~ -12.75 
7.898 0.091 -19'.8 12.30 -99.06 -17.~ -107.~ -5.070 -12.67 

12.0, 1.007 -0.32Ji. -209.0 5.535 -99.85 -16.50 -123.5 -10.6I!. -14.30 
2.035 -0.161!. -206.1 6.878 -101.0 -16.53 -122.8 -9.1!.92 -17.72 
'.914 0.1" -202.1!. 8.285 -102.5 -17.39 -118.6 -9.250 -18.75 
,.851 0.l32 -200.' 9.l32 -103.5 -18.99 -115.2 -9.992 -18.39 
7.875 O.lltc -199.1 9.5~ -101.9 -20.77 -11'.4 -11.38 -16.'7 

15.95 0.992 -0.562 -217.6 ,.,.., -loJi..2 -18.98 -l3Ji..9 -15.07 -21.50 
2.00, -0.023 -2l3.9 1!..636 -105.5 -18.92 -130.5 -11!..26 -22.15 
'.945 0.2J16 -207.9 6."'7 -107.' -19.811- -12'.4 -13.75 -22.86 
5.867 0.308 -205.1 7.3OJi. -107.1 -21.~ -120.3 -14.48 -22.34 
7.86, 0.'39 -202.9 7.911!. -106.5 -23.26 -116.8 -15.70 -20.116 

20.07 1.000 -0.792 -~.9 1.296 -108.1 -21.78 -11!.7. 7 -19.69 -Zl.94 
2.~ -0.257 -220.7 2.96Ji. -109.7 -20.49 -11U.1 -17.26 -30.07 
3.917 0.382 -214.0 ~.632 -110.2 -21.62 -131.5 -17.37 -~.71!. 
5.890 0.50' -209.9 5.898 -111.1 -23.42 -l25.6 -18.02 -26.89 
7.851 0.562 -207.9 6.~37 -111.3 -25.21 -12'.5 -19.34 -26.811-

25.05 0.972 - 0.968 -239., -o.~ -11~.7 -2,.oJi. -156.2 -22.53 -'1.58 
2.00, 0.00' -230.8 1.386 -115.6 -22.58 -150.1 -21.20 -34.89 
'.9Ji.l 0.679 -22O.1!. '.394 -116., -23.67 -138.8 -20.95 -3Ji..76 
5.949 0.902 -216.0 1!..425 -116.9 -25.25 -1~.~ -21.73 -32.34 
7.8M. 1.091 -214.0 .... m -118.6 -Zl.21 -130.9 -2'.35 -35.116 

30.01 0.960 - 2.105 -250.9 -2.~76 -115.5 -23.11 -180.4 -2'.~ -1!.5.oJi. 
2.015 -0.839 -21!.1.2 -0.742 -116.4 -2 .... ZI -165.' -2~.17 -ltc.63 
'.898 o.~ -225.1!. 2.326 -116.1 -alt..eo -1"'9.9 -22.96 -ltc.57 
6.250 1.375 -219.8 '.789 -122.2 -Zl:T8 -11!.1.5 -25.36 -4'.95 
8.382 1.781 -220.0 '.785 -125.8 -29.01 -138.0 -Zl.Ol -4'.92 

ltc.oJi. 0.960 - '.367 -267.8 -4.972 -121.8 -~. 71!. -201.6 -".35 -55.57 
1.972 -0.945 -261.9 -3.050 -128., -26.04 -1811-.9 -30.15 -51.35 
1!..156 1.082 -N.5 0.171 -126.2 -27.0' -~.9 -27.94 -49.69 
5.886 2.'32 -238.9 0.980 -l32.9 -29.}5 -157.6 -30.70 -51.71!. 
8.2J16 2.~ -20118.9 -o.161!. -l36.8 -32.01 -169.7 -34.73 -57.57 

".99 0.988 .5.238 -288.8 -7 .... 76 -l32.4 -3505'1 -2ltc.5 -37.81 -811..14 
2.050 -2.'39 -m.o 4.921 -l32.2 -30.}2 -201..1 -32.91 -59.28 
1!..042 1."5 -259.9 -1.601 -135.6 -29.00 -181., -32.05 -57.1' 
5.95' 1.m -265.7 -1.886 -139.5 -30.81 -186.1 -34.66 -59.94 
7.765 1.707 -~8.1 -2.882 -14,.8 -".51 -197.2 -38.10 -62.92 

59.~ 0.980 - 7.261 -302.7 -9.488 -l39.5 -34.01 -32l.9 -36.2' -158.7 
2.042 -1!..738 -295.9 -7.~ -138.9 -32.99 -235.' -35.73 -78." 
I!..~ 0.500 -260.9 -'.585 -1112., -30.53 -201.6 -34.62 -6'.10 
5.972 1.18, -266.1 -'.582 -11!.5.6 -".lIe -208.5 -38.25 -68.07 
7.898 0.171 -297.2 ~.699 -1~.5 -35.1' -216.8 -ltc.oo -68.16 

79.91 0.98It. -11.30 -326.4 -13.25 -155.' -1!.7.89 -170.5 -1!.9.8, -357.' 
2.015 -9 .... 1~ -~9.' -11.66 -149.6 -ltc.25 -261.1 -1!.2.51 -91.36 
.... 007 - .... 667 -,1,.0 -8.082 -149.5 -37." -2"".7 -ltc.85 -80.19 
5.96Ji. -2.289 -313.8 -6.59' -15' .... -36.00 -238.5 -!Jo.,l -78.05 
7.9" -2.826 -,19.1 -7.082 -155.7 -37.911- -2"',.1!. -42.19 -80.01 

101.9 0.98Ji. -17.05 -'36.6 -18.12 -159.5 -42.0' -270.7 .. 1!.'.10 -9'.62 
2.011 -l~.6' -"5.' -16.01 -160.0 -52.lt2 -266.2 -53.80 -90.91 
'.937 -l0.35 -"3.7 -12.5I!. -159.' -lt6.17 -267.5 -~.37 -9'.13 
6.015 -7.2lt6 -'38.6 -10.30 -164.9 -"'1.08 -271.0 -".11!. -97.35 
8.019 -6.816 -'38.~ -10.0' -161!..8 -40.94 -267.5 -".16 -9,.60 

Fig. 7. Typical Tabulated Result Sheet 
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HOT-WIRE ANEMOMETER PAPER TAPE READER 

John H. Jory 
Soroban Engineering, Inc. 

Melbourne, Flor:ida 

Summary 

'fhe Hot-Wire Anemometer Paper Tape 
Reader was conceived as a relatively simple 
apparatus to serve as a high reliability device 
such as required in peripheral computation 
equipment. The hot-wire anemometer principle 
has been employed extensively in the past for 
the study of transient air flow phenomena in 
compressors and turbines. The principle of 
operati~n concerns an electrically heated wire 
used to detect a change in air velocity in its 
immediate vicinity by observing its change in 
temperature and consequent change in resist­
ance. Using this principle to read perforated 
members such as punched paper tape at high 
speeds offers a number of distinct advantages 
over conventional reading methods. 

Methods of Readin~ Paper Tape 

At present there are available three gen­
eral types of paper tape reading mechanisms. 
Brush type readers employ brushes which rest 
on one side of the paper tape and pas s through 
perforations to engage contacts disposed on the 
opposite side of the tape. Sensing pin type 
readers mechanically insert pins through per­
forations occurring in the tape and thus accom­
plish the reading function. Photoelectric 
readers employ a beam of light directed toward 
a photocell which is interrupted at ail times 
except when perforations are disposed between 
the photocell and the light source. The two 
former members are relatively slow since the 
inertia of the sensing members limit the rate 
at which perforations may be sensed. The 
photoelectric' method is materially more rapid 
than the other two methods but suffers from 
difficulties arising from the presence of dirt 
and paper chaff in the region of the photocells. 
More particularly, dust and bits of paper from 
the perforated member accumulate around the 
photocells and limit the amount of light reach­
ing the photo-sensitive element. Unless the 
photocells are regularly cleaned the amplitude 
of signals decreases to a point where the circuits 
and system become unreliable. A further prob­
lem arises in the reading of oiled tapes which 
are translucent, causing reflections from the 
tape to appear as point sources at the tape, 
introducing cross-talk between circuits. In 
order to overcome these difficulties special-

ized techniques must be employed. Also inas­
much as oiled paper tapes are the most com­
monly used in the field due to their reducing 
wear on punch pins, photoelectric readers are 
limited in their application to paper tape 
handling. 

Hot-Wire Reader 

The Hot-Wire Reader operates by allow­
ing air under pressure to pass through per­
forations in punched paper tape and be directed 
over electrically heated wire elements which 
are thereby cooled, causing their resistance 
to change and thus indicating the presence of 
a perforation in the tape. In the most advan­
tageous interpretation of this reading scheme 
the paper tape is situated between the following 
sub-assemblies: 

1. A plenum chamber with an arcuate 
surface in which a slit is cut which bears on 
the tape. This chamber is kept at a low pres­
sure by means of a suitable vacuum source. 

2. A sensor plate having a small window 
opposite each channel position of the tape be­
ing read, the windows being aligned with the 
opposed slit in the plenum chamber. 

A small coil of wire is situated within 
each window in the sensor plate and the se 
sensing elements change their temperature 
and resistance when a perforation in the tape 
passes between them and the slit in the plenum 
chamber. This hot-wire reading technique 
inherently overcomes the difficulties encoun­
tered with photoelectric reading. Since there 
is sporatic air flow through the reading station, 
dust, dirt, and lint are automatically removed 
and deposited in the pump filter. The reader is 
capable of reading optically transparent, trans­
lucent, or opaque media. Moreover, the reader 
is simple and inexpensive. ,utilizing readily 
available amplifiers and hot wires. The read­
ing speeds attainable are limited only by the 
mechanical transport mechanism and the qual­
ity of the amplifiers used. In addition changes 
in ambient temperature do not affect reading 
even though changes in hot wire temperature 
are being detected since the temperature of 
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hot-wires is maintained at about 4000 C. which 
is quite high with respect to ambient. The am­
plifiers adjust their drive continuously to main­
tain constant resistance in the hot-wire which 
is' compared with a fixed resistor in a bridge 
circuit. 

Hot-Wire Elements. The hot-wire elements 
are composed of 15 or 20 turns of nicke 1-iron 
alloy wire with a high temperature coefficient 
of resistance. The coils are 0.001 inch diam­
eter wire wound on a 0.005 inch mandrel. Hot­
wire elements themselves have relatively high 
thermal time constants, and so a system which 
allows the hot-wire to change temperature in 
response to the initiation and termination of 
air flow only would be slow in comparison to 
photo-electric readers. By employing ampli­
fiers with sufficient feedback the temperatures 
of the hot-wires are maintained essentially 
constant, and a resistance change merely 
sufficient to generate an error signal occurs. 
In addition the hot wires are wound in coils as 
opposed to the conventional straight wire 
elements. With straight wire elements the 
thermal inertia of the end supports is found to 
affect the response of the system. Thus by 
employing a coiled wire, the major portion of 
the wire is substantially removed from the end 
supports so that their thermal inertia does not 
injure the response. 

Flexibility of Reading Technique. Either con­
tinuous or discontinuous reading may be em­
ployed with the hot-wire reader and either AC 
or DC circuits may be used as amplifiers al­
though there is a well known tendency for DC 
circuits to drift. Also if discontinous reading 
is employed a code may remain stationary over 
the reading station thereby allowing the device 
to act as a temporary storage register until 
the equipment again begins to transport. If the 
device stops with a web of the tape over the 
reading station there will be no output signal at 
this time and readings will be obtained while 
transporting the tape. If the hot-wire sensing 
elements are placed within the plenum chamber 
and a low pressure maintained there, paper tape 
could be pulled oyer the arcuate surface of the 
chamber and edge guided only, not requiring any 
sort of clamping device on one side of the tape. 
In this configuration the chamber would have 
holes rather than a slit so that each channel 
could be sensed from inside the chamber. This 
would eliminate any threading inconvenience 
when loading the reader with tape. 

One extremely important aspect of the 
Hot-Wire Reader is the lack of the need for 
sophisticated components in the construction 

and operation. The operating air pressure 
required is approximately one inch of water so 
that extremely small blowers and motors may 
be employed. Paper tape channels are on one­
tenth inch centers allowing ample space for 
mounting of hot-wires. Due to the freedom 
from complexity of this apparatus, it is an ex­
tremely reliable device, which concept is 
gaining more and more importance in the data 
handling field. 
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WITHIN A DIGITAL COMP UT ER 
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Summary 

A novel approach to arithmetic operations in 
digital computers is described which combines 
digital and analog techniques. This is accom­
plished by using parallel- serial interconnections 
of digital/analog converters. The intercon­
nections are under stored program control and 
are effected by selecting multiplexers which 
route the analog signals to perform various 
arithmetic operations. The final analog signal, 
which is the result of the computation is con­
verted to digital form by means of an analog / 
digital converter. 

Because of the extreme parallel nature of D/ A 
Arithmetic, high computational speeds are 
attained, although all the ci. rcuitry is operating 
slowly by present digital computer standards. 
Using present techniques the analog nature of 
the computation limits the accuracy to four or 
five significant decimal figures. Therefore, 
the D/A Arithmetic Unit could not replace the 
arithmetic unit presently in digital computers, 
but could be used to solve problems or parts of 
problems that do not require extreme accuracy. 

Digital/Analog Arithmetic 

Introduction 

A computer is usually classified as being either 
analog or digital. Each has its advantages and 
disadvantages, when handling mathematical 
problems. In a previous paper l, it was shown 
how digital and analog techniques could be com­
bined to synthesize various analog type building 
blocks having accuracies not obtainable with 
conventional analog techniques. 

This paper suggests a method of combining 
digital and analog techniques in order to per­
form the arithmetic operations in digital com­
puters. The techniques offer the potentiality 
of extremely high computational speed at low 
cost. 

Arithmetic operations in the arithmetic unit 
described in this paper are performed without 
the use of conventional adder circuitry as found 
in most stored program computers. This is 
done by routing analog signals, by means of 
multiplexers, onto the reference voltage in­
puts of D / A Converter s, summing the analog 
signals thus formed, and finally converting 
the result to digital. 

Before beginning the discussion of the D/A 
Arithmetic Unit, a brief discussion of D/A 
conver sion, building blocks of D / A arithmetic, 
and several interconnections of them will be 
given. 

Digital to Analog Conver sion 

Figure 1 depicts a unipolar, three binary bit, 
digital to analog converter. DI' DZ, and D3 
are single-pole double-throw switches which 
can be thrown independently to zero volts or V r 
volts; zero being a logical 0 and V r volts being 
a logical I. If the output voltage is calculated 
as a function of Db DZ' and D3, equation I 
results: 

(1) 
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It should be noted that the bracketed factor in 
equation (1) is the definition of a binary number, 
where Dl is the most significant bit, DZ is the 
next most significant bit, and D3 is the least 
significant bit. Further, equation (I) illustrates 
that the open circuit voltage is not only propor­
tional to the digital input but is also proportion­
al to the reference voltage, Vr • 

Digital/ Analog Building Blocks 

Digital/ analog building blocks have both digital 
and analog inputs and outputs; to provide clarity 
th.e following rules are followed in this report: 

1. All digital quantities enter and leave the 
top of the block. 

Z. All analog quantities enter and leave the 
sides of the block. 

Figure Z, the D / A Converter, is the block 
representation of Figure 1. This block is im­
portant since it is through this that multiplica­
tion is performed. A requirement of the D/A 
Converter is that it present a small load to the 
voltage reference. The current that flows from 
the voltage reference must first pass thr'ough the 
the multiplexers, therefore a large current 
would produce a large voltage drop across the 
multiplexer's "on" impedance. 

Figure 3 is a summing amplifier. It is used 
for both impedance matching and summing of 
the analog signals. Since it is required to 
have little dc drift, it would most likely be 
chopper stabilized. 

The multiplexer, Figure 4, is one of the most 
important blocks, since it is through multi­
plexing that the different arithmetic operations 
are performed. It is required to have a low 
"on" impedance and a moderately high "off" 
impedance. 

The circuit of Figure 5 is a variable gain 
amplifier. This circuit is similar to the 
summing amplifier except that the feedback 
can be varied by means of the digitally con­
trolled D/A Converter, which can change the 
gain to any of three values, one-tenth, one or 
ten. This scaling helps conserve the accuracy 
of the D/A Arilhm.etic Unit. 

The comparator, Figure 6, is the last of the 
building blocks that will be described. A 
positive current flows into A and a negative 
curr ent flows out of B. The digital output D 
indicates which current is larger in magnitude. 
Tlts circuit is used in converting the analog 
result of the arithmetic computation to digital 
form. 

Interconnection of Building Blocks 

In Figure 7, the digital output of the compara­
tor controls the logic which strives to make 
BI and BZ equal. 

Under this condition: 

(2) 

If AI. AZ and DZ are preset and DI is varied 
until /BI/;:./BZ/' then equation 2.can be re­
written as: 

(3) 

If on the other hand. AI' AZ and DI are preset 
and DZ is varied until BI ;:. BZ. then equation 2 
becomes: 

Al 
DZ;:'- DI 

AZ 
(4) 

The significance of equations 3 and 4 is that 
depending on whether Dl or DZ is preset. the 
function or its reciprocal can be digitized. 

in Figure 8, C 1 is equal to the negative product 
of Al and DI or 

(5) 

Similarly Cz is equal to the negative product of 
AZ and DZ or 

Cz =-AZ . DZ 

The voltage B is equal to the negative of the 
sum of Cl and Cz or 

(6) 

In Figure 9. the output voltage B is equal to the 
product of U. DI and DZ. U is the normal ref­
erence voltage and is assigned the value unity. 



therefore: 

B = U . Dl . Dl = Dl . Dl (8) 

Digital/ Analog Arithmetic Unit 

Thus far, the "digital/analog building blocks and 
some simple inter connections of them have been 
explained. Figure 10 is the digital/analog arith­
metic unit. It consists of three sections. 

Section I performs tl},e arithmetic operations. 
It contains 16 D/A converters, l4 negative unity 
gain amplifiers and 7l multiplexers. It should 
be remembered that with various interconnec­
tions of D/A converters and amplifiers many 
arithmetic operations can be performed. How­
ever, with as many as 16 D/A converters, it is 
unlikely that any particular arithmetic operation 
would have many applications. The multiplexer s 
reroute the analog signals so that many different 
arithmetic operations can be performed. In 
other words, by means of multiplexing, the in­
terconnection of the D/A converters can be al­
tered, thereby changing the programmed arith­
metic operations within a few microseconds. 

Section II is a digitally controlled variable gain 
amplifier. It adjusts the gain so that the input 
to Section III is as large as allowable. This is 
done because Section III contributes the largest 
part of the total error, so that if the gain of the 
variable gain amplifier is large, the relative 
error due to Section III is small. 

Section III performs the analog to digital con­
version. It can perform one of two functions. 
Either it converts the value of the input analog 
signal or it converts the reciprocal of the input 
analog signal. If the input voltage is positive, 
then the input is used as reference for D/ A18, 
and - U is used as reference for D/ A19' Re­
calling from Figure 7 that depending on which of 
Fl or F 3 , Figure 10, is preset a,rtd which is 
varied until the inputs to the comparators are 
equal will determine whether the function or its 
reciprocal is digitized. If the input is negative, 
then the input would be used as reference for 
DiA19 and +U would be used as reference for 
D/A18' The polarity indicator is used to make 
this decision. 

In summary, the arithmetic operations are per­
formed in Section 1, and Section II and III con­
vert the output of Section I into digital form. 

To illustrate the flexibility of digital/analog 
arithmetic two different problems are set up for 
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solution. The first is the computation of the 
first e~ght terms of a Taylor series with arbi­
trary coefficients; the second is the multiplica­
tion of two eight by eight matrices. 

Example One. Assume that it is desired to cal­
culate eX for arbitrary values of x. If eX is ex­
panded in a Taylor series the result is: 

(9) 

If the proper multiplexers of Figure 10 are in 
the 1 state and all other's are in the 0 state, the 
interconnection illustrated by the heavier line 
in Figure 11 results. 

In Figure 11, the output of A3 is equal to x. It 
is the reference to D/AS' therefore, the output 
of AS is proportional to xl, and similarly the 
output of A7 is proportional to x 3 , and so on. 
The digital input to D/ Al is I, therefore, the 
voltage at BI is equal to 1. The digital input to 
D/A4 is also 1. Because its reference is equal 
to x, the voltage at Bl is equal to 1 . x or just 
x. Similarly, the voltage at B3 is equal to 
xl/ll and so on. The voltages of B1, Bl ... B8 
are all summed in the summing amplifier in 
Section II and its output is equal to: 

(10) 

or eX to the accuracy of the 8 terms of the 
Taylor series. This voltage can be used as 
such, or it can be converted to a digital number 
in Section III. If the value of eX for a different 
value of x is desired, the coefficients remain 
the same and x is changed. For values of x 
greater than I, 8 terms of the Taylor series 
may not be sufficient. For this case additional 
terms can be calculated separately and the re­
sults added. 

Example Two. The second example is the multi­
plication of two eight by eight matrices. In sym­
bolic form: 

(C) = (A) (B) (11) 

where the ijth entry of (C) ~ 

..... ai8 . b8j (1l) 
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Figure 12 is the interconnection (heavy lines) 
that would perform this operation. The digital 
input to D/ A1 is ail' making the reference to 
D / AZ pr oportional to ai 1. The digital input to 
D/ Az is b1j and therefore Bl is a voltage pro­
portional to ail . b 1j . Similarly BZ is propor­
tional to ai2 . bzj and so on. The voltage of B1' 
B2 .. BS are all summed in the summing ampli­
fier in Section II and its output is proportional 
to: 

This voltage is converted to digital form in 
Section III. When multiplying two eight by eight 
matrices, 64 such multiplications must be per­
formed. In order to obtain the CiC ... l) term, the 
"a" entries stay the same- and only ~e "b" entries 
must be changed. In other words, in order to 
get succeeding C entries only half the informa­
tion must be changed. This of course is time 
saving. If larger than eight by eight matrices 
are to be multiplied it is done in parts, and the 
results are added. 

Although it has not been shown, the sign is 
handled by digital means. This is easily done 
because the', information that chooses the proper 
channels to be multiplexed. determines the flow 
of information. It turns out that this coupled 
with the mathematical rules for signs is enough 
to compute the sign of each term. Referring to 
Figur e 10 again. it can be seen that if 51 is mul­
tiplexed in and Sz is multiplexed out. B 1 will be 
positive. If the reverse is true. Bl will be 
negative. The digital logic handling the sign 
decides whether Bl should be positive or nega­
tive and selects 51 and Sz accordingly. BZ. B3 
..... BS are handled in the same manner. 

Another important point is that although only 
digital inputs were used in both examples. com­
binations of both digital and analog inputs could 
be operated on. In figures 10. 11, 1Z multi­
plexers M4. MS. M1Z. etc. can be used for this 
purpos e . The typical digital/analog arithm-etic 
unit would have this flexibility. 

The D/ A Arithmetic Unit described in this 
report is just an idea. however a scaled-down 
model has been built. which at least demonstra­
tes the feasibility of such a system. 

The building blocks which make up the D/A 
Arithmetic Unit were originally designed for 
use in an A/D Converter. In order to test the 
A/D Converter a special tester was built. The 
tester would generate. by means of a D/A Con­
verter. various voltages controlled by a fixed. 

program and the A/D Converter would convert 
these voltages back to digital. This digital quan­
tity would then be compared to the digital quantity 
in the tester. If they were different by more than 
a prescribed amount the tester would stop and 
an error indication would result. If the error 
was smaller than the prescribed amount the 
tester would generate a new voltage and the 
process would be repeated. If the system dia­
gram of the converter-tester combination is 
referred to. Figure 13, it will be noticed that it 
has many of the component building blocks of the 
D/A Arithmetic Unit. and could be considered as 
a scaled model of it. The results of the tests 
made on the converter-tester combination not 
only demonstrated feasibility of the DI A Arith­
metic Unit but ,gave indication of what could be 
expected in terms of speed and accuracy. 

As far as speed goes the converter-tester com­
bination was run at 100 usec. cycle period. a 
cycle consisting ~f generating a voltage in the 
tester. DIAl' converting it back to digital in the 
converter. D/Pg comparing it with the original 
digital input and then making the decision 
whether to generate another voltage or to stop 
the hlachine. Therefore, a D/A Arithmetic Unit 
which performs at a speed of 100 usec per 
operation is consistent with the actual perform­
ance of the scaled model. 

In the data taken of the accuracy. the maximum 
error between the digital generated number and 
the digital output was less than t .05 full scale, 
although the vast majority of errors fell within 
± .OZ, full scale. This large difference between 
the maximum error and the vast majority of 
errors is to be expected in successive approxi­
mation type AID Converters. The reason for 
this will not be discussed in this report. How­
ever. this error is quite small when one consi­
ders the number of contributing factors to it. for 
example. two D/A Converters, two independent 
references. one amplifier and one comparator. 
In the D/ A Arithmetic Unit two separate refere­
nces would not be used as was in the model since 
the reference is the most difficult to accuralely 
control. There are two other facts about this 
test that are most encouraging. The fir$t is 
that none of the semiconductor elements neces­
sary for this high accuracy were specially sel­
ected for this purpose. Most of these semi­
conductors were randomly selected from normal 
digital computer lots. The second important 
fact is that many of the circuits used in this test 
were superceded by later designs, which would 
improve the operation considerably. These tests 
and those made on the indivic:hal circuits indicates 
that D/A and AID conversions can be performed 



with average accuracies of .0010/ of full scale 
and .010/ of full scale respectively. 

If these performance specifications are written 
in terms of Figure 10, then it appears practical 
that Section I could be made accurate to one part 
in 100 thousand of full scale and that Section III 
could be made accurate to one part in 10 thousand 
of full scale. The difference in accuracy bet­
ween Section I and Section ill is the main reason 
for requiring Section II. As an example assume 
that A' B is to be solved. A current is produced 
at the output of Section I accurate to one part in 
100 thousand of full scale. Assume this pro­
duces an equivalent voltage at the output of 
Section II also accurate to one part in 100 thou­
sand. If this voltage is numerically ~qual to 
7.6328 volts, when it is converted in Section III 
four place accuracy is obtained, so that the vol­
tage of 7 .6328 volts will convert to 7 .632 volts. 
In other words, the last place figure is lost. 
However, because Section II is a variable gain 
amplifier this last figure can be recovered. If 
now a slightly different problem is solved 

A . B - 7.6320 (14) 

the voltage at the output of Section II will now 
become 

7.6328 - 7.6320 

or (15) 

0.0008 

Since Section III is only accurate to four places 
o .0008 cannot be converted to digital in 
Section ill. but if the gain of Section II is in­
creased by a factor of 10. the output voltage of 
Section II would be 0.0080 and Section ill could 
convert this voltage and obtain an eight in the 
last place. If the value of the first conversion 
7 .632 is added to the value of the second con­
version 0.0080, 7.6328 results. This is the 
answer 10 desired. In other words. if 
Section I is accurate to five places. a five place 
answer can be obtained. by-using techniques 
such as these. 

Auxiliary Arithmetic Unit 

In order to present a better understanding of 
how the D/A Arithmetic Unit might operate with­
in a digital computer the entire auxiliary arith­
metic unit of which the D / A Arithmetic Unit is a 
part will be described. 
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Figure 14 is the Auxiliary Arithmetic Unit (AAU). 
The inputs to AAU are from two sources. The 
digital information is from the digital computer 
(not shown) whereas the analog information is 
from external analog sources (also not shown). 
for example. strain gages. tachometers. thermo­
couples. pressure gages or any other device 
whose reading can more conveniently be con­
verted to a voltage rather than directly to a 
digital quantity. The analog sources may be 
connected to the AAU through a bank of multi­
plexers. The output is a digital quantity which 
is the result of the computation and which gen­
erally goes back to the computer or possibly a 
remote D/A Converter which controls a part of 
a process by ineans of a voltage. The easiest 
way towards understanding of each of the building 
blocks in Figure 14 is to show the chronological 
order of events when solving a problem in AAU. 

1.. A "Load Information" command comes from 
the digital computer which tells AAU that 
the operation registers and the data regis­
ters are to be loaded. (Referring to Figure 
10 and Figure 14. the data registers contain 
the digital information D l • D2 •.... D16 and 
the operation registers select the operation 
or computation.) In order to permit this 
loading, the information gate as sociated 
with these registers is opened by the con­
trois. 

2. The digital information comes from the 
computer s erial by word, each word con­
taining a tag which tells whether it is an 
operation or data. The word is then gated 
into the proper register. This process is 
continued until the operation and all the 
data is loaded into the proper registers. 

3. The "Load Information" line is lowered. 

4. The signs. '" • of the data D and the opera­
tion information M. N, V are applied to 
polarity decoder. The output S of the polar­
ity decoder is applied as the digital control 
signals Sl' S2' S3' S4' etc. 

5. The operation information M. N. V is applied 
to their respective multiplexers which digi­
tally controls the operation. 

6. The digital information D is applied to the 
appropriate converters. 

7 . The "Start Computation" command is given. 

8. The polarity output P which senses the 
polarity of the output of Section II. Figure 

10. select Tl and T4 or T3 and T4 
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accordingly. In Figure 11 and Figure lZ 
the polarity was negative so therefore TZ 
and T3 were multiplexed in. 

9. The polarity output P together with q,. 
(which determines whether the function 
or its reciprocal is wanted) presets FZ 
or F3 in the manner previously described. 

10. The scaling factor Fl b selected. This 
can be done in several ways. One method 
is to have the polarity block of Figure 10 
also give the approximate magnitude of the 
voltage at the output of Section II and then 
select the sc;aling 'of Fl accordingly. 

l1. The answer appears in FZ or F3 depending 
on step 9. The information in Fl is also 
needed since this is the scaling factor. 

lZ. The process is repeated for the next 
problem. 

The auxiliary arithmetic unit performs fixed 
decimal point operations and therefore the 
decimal point must be considered separately. 

Conclusions 

Accura£Y 

Practically, an average accuracy of ± .0011 
to ± .011 full scale can be achieved. Since 
most of the errors are fixed, it is particularly 
desirable to operate as close to full scale as 
possible. The variable gain amplifier helps 
achieve this. Some numerical methods have 
been considered for the purpose of improving 
the accuracy. In general, their shortcomings 
outweigh the increase of accuracy they may 
offer. 

When all is said and done, digital/ analog arith­
metic will not be useful where accuracy is at a 
premium. However, there are some problems 
in which its accuracy may be sufficient. In 
some problems the accuracy of the information 
is limited, so that extreme accuracy of compu­
tation is unwarranted. Two examples of this 
occur in industrial process control and circuits 
analysis. In the former the input information 
is in analog form and in the latter, the most 
precise components are often 51 resistors. 

In digital/analog arithmetic most operations 
take the same time, for example, the solution 
of: 

y=aTb (16) 

would take the same time as: 
( 17) 

about 100 usec. 

The average speed of computation for the single 
addition in the first example is 100 usec., 
whereas the average speed of the 8 multiplica­
tions and 7 additions in the second problem is 
6.8 usec. per single computation. The latter 
speed is fast even when compared to high- speed 
digital arithmetic. 

Another aspect of speed to consider is the 
number of times memory must be used in the 
course of computation, since in high-speed 
computation the memory may be the limiting 
speed factor. Therefore, a less conspicuous 
advantage of digital/analog arithmetic is that it 
requires fewer trips to memory for similar 
computation as compared to digital arithmetic. 

A third important factor is that during the time 
the digital/analog arithmetic unit is computing, 
it can operate completely independant of the 
rest of the computer. This allows the computer 
to perform its necessary functions in parallel 
with the digital/analog arithmetic unit for most 
of its cycle. Also, becaus ether e is a long 
lapse of time between successive operations, a 
high percentage of this time can be utilized. 
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A HIGH-SPEED SERIAL GENERAL PURPOSE COMPUTER 

USING MAGNETOSTRIC TIVE DELAY LINE STORAGE 

By 
Robert Mark Beck 

Packar~ Bell Computer Corporation 

Los Angeles, California 

Summary 

This paper presents the design objective 
of a general purpose computer which is in­
tended to serve as a component in special 
purpose systems. 

Some of the design considerations applied 
toward meeting these objectives are also pre­
sented. The significance of the use of magne­
tostrictive delay memories in a low-cost 
computer as well as the approach used to mini­
mize the active elements in a flexible computer 
input/output system are discussed. 

Introduction 

For the past three years, Packard Bell 
Computer Corporation has designed and de­
veloped lJpecial purpose data gathering and 
data handling systems. 

A typical system function is to translate 
several channels of analog information into a 
prescribed digital format and record the digital 
information on magnetic tape. In these 
systems, an electronic mUltiplexer selects the 
proper channel of input voltage and holds it for 
digitalization by an analog-to-digital converter. 
A special digital control unit then edits and 
arranges the digital information into the re­
quired format. The digital information is then 
recorded on magnetic tape. 

Another typical· system function is to 
generate control signals as a function of 
several analog inputs. The control signals 
thus generated are used to select, operate, or 
control other units. A system of this type may 
become very extensive, with many registers 
required for such functions as accumulation of 
data, multiplication, memory, shifting, or 
intermediate storage of data. Therefore, even 
a low-performance system of this type may re­
quire over ZOO flip-flops and 500 words of 
memory. 

Upon investigation of the special purpose 
system approaches described above, the follow­
ing major disadvantages were determined! 

a. It is difficult to meet short schedules. 
Large amounts of expensive design and develop­
ment time are required since each system 
must be built for its special function. 

b. The special purpose system is not 
flexible; therefore, when it becomes obsolete, 
only a minimum of the 'Components can be 
salvaged. 

c. Because of the relatively short life of 
special purpose systems, maintenaru::e knowl­
edge and records can not be effectively accumu­
lated. 

Examination of the above facts compared 
with general purpose computer characteristics 
resulted in the following conclusion: A special 
purpose system could have a major portion of 
its disadvantages eliminated by making the heart 
of the system a general purpose computer, es­
pecially designed with a flexible input/ output 
which would allow it to operate with other equip­
ment in the system. Of course, the crux of this 
idea is to have the majority of the system engi­
neering expressed in computer programming 
instead of special hardware. The major ad­
vantages to be derived from this method of 
implementing special purpose systems are as 
follows: 

a. Design and development time are mini­
mized since a large part of the system function 
is performed by the computer. Only the program 
of the system must be developed, and portions 
of it may be existing subroutines. 

b. The system is flexible since changes 
are easily incorporated in the program to meet 
new or revised system requirements. 

c. The computer continues to be useful 
even after the special purpose system becomes 
obsolete. The major components, including the 
computer, may be kept intact for use in future 
systems. The program is the only part of the 
system which becomes obsolete. 

d. The reliability and ease of maintenance 
are increased because continual maintenance 
knowledge and records will be retained for the 



284 
6.3 

computer t which is a maj or portion of the 
system. Check routines may be incorporated 
to ensure that the computer is operating cor­
rectly. 

Design Specifications 

A computer to be used as a systems com­
ponent, as set forth in the introduction,requires 
stringent design specifications. 

The computer must be very fast to per­
form sequentially the operations of a special 
purpose digital system. Furthermore, a low 
component count is necessary to make the com­
puter cost competitive with the special equip­
ment it replaces. 

The communication required with other 
units in a system dictates a flexible input/ 
output. Many input/ output channels with many 
codes and formats must be available. 

To be economical in all cases, the memo­
ry capacity must be expandable so that the 
memory capacity can suit the size of the job. 
Furthermore, programming should be made as 
easy as possible in order to keep the program­
ming time and expense less than the engineering 
which it replaces. This suggests a complete 
command list using single address operation. 
Finally, if the computer is to be a component 
in a system, it should be compact and suitable 
for rack mounting. 

Analysis of the above requirements led 
to the design goals as follows: 

1. 

2. 

3. 

High-Speed Operation - -

50,000 commands per second 

Minimizahon of Components 

a. 30 Flip-Flops 

b. 300 Transistors 

Flexible Input/ Output - -

a. Basic: 

Flexowriter with Reader and Punch 

b. Other Equipment: 

Magnetic Tape Handlers 
High-Speed Paper Tape Punches 
High-Speed Paper Tape Readers 
Analog Voltage Multiplexers 
Digitizers 
Digital-to-Analog Converter 
Card Punches and Readers 
External Core Memories 

4. Expandable Memory - -

a. Basic - - 2,000 words 

b. Expanded - - 16,000 words 

5. Easy Programming - -

a. Complete Set of Instructions 

b. Single Address Operation 

c. Double Precision Commands 

6. Word Size - - 21 Bits plus Sign 

7. Compact Construction - -
Suitable for Rack Mounting 

Computer Description 

Using these design goals, the first design 
conferences were started in November 1959. 
A 10-man engineering team took part in these 
design conferences. This team worked simul­
taneously on the logic, circuitry, and mechanic­
al design of the proposed computer. 

In August 1960, a prototype of the computer 
was placed in operation. Circuitry reliability 
testing and program checking have been con­
tinuously performed on this computer since it 
was placed in operation. 

During the prototype checkout, ten pro­
duction computers were built. The first pro­
duction cOlll:puter was delivered in October 1960. 

Memory Elements 

The fundamental design decision was to 
chose the type of memory element. Initially, a 
magnetic drum with a 1 mc bit rate and speed 
of 400 cps, and a low-speed core memory with 
a cycle time of 10 microseconds were con­
sidered. 

Our attention then turned to magnetostric­
tive delay lines, as a result of articles published 
by the Ferranti Company and Arma Corporation 
on the use of magnetostrictive delay line memo­
ries in the Pegasus computer and the Titan_ 
Missile test computer, respectively. An ex­
pandable memory could be made very con­
veniently by packaging each memory line as a 
plug-in module. Based on a temperature coef­
ficient of 0.5 PPM/oC, 6,144 bits could be 
stored in each memory line register. This 
would realize 256 words of 24 bits each per 
memory line. Furthermore, using a 2 me NRZ 
writing process, the desired goal for a high­
speed serial operation would be practical. Hence, 
based on these advantages, magnetostrictive 



delay lines were chosen for the memory of the 
PB 250 general purpose computer. 

Figure 1 shows a complete memory line 
module. This circuit card includes line ad­
dress selection circuits in addition to the line 
and the reading and writing circuits. The 
writing circuit consists of a flip-flop which is 
DC coupled to the magnetostrictive line's input 
transducer. The reading transducer presents 
a 2 mv peak-to-peak differential signal. This 
signal is amplified, then reshaped by a Schmitt 
circuit. The output of the Schmitt circuit is 
gated into the read flip-flop. The waveforms 
as they appear at various points in the delay­
line register are shown in Figure 3. 

Figure 2 shows a one-word delay line 
module which is used in arithmetic portions of 
the computer. This circuit circuit card is 
smaller because it does not contain line address 
selection circuitry. 

Computer Circuitry 

The characteristics of the basic circuits 
used in the PB 250 are outlined below: 

1. Gating - -

2. 

3. 

a. Voltage Levels: 
o volts (ft fals e ff level) 
- 8 volts ( It true fI level) 

b. Structure: 

Two-level AND gates feeding OR 
gates. 

Clock Waveform - -

Single phase, 2 mc square wave. 

Flip-Flops - -

a. Construction: 

Two Transistors ( no clamping) 

b. Input Coupling: 

Capacitor - Diode 

4. Emitter Followers 

One-Transistor 

5. Inverter s - -

One-Transistor 

Where delays would become too great, 
transistor OR gates are formed by connecting 
the emitters of several emitter followers. 
Figure 4 shows the basic circuit configurations 
( specialized circuits such as solenoid drivers 
and clock generators are omitted). All circuits 
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were designed to achieve reliable performance 
with a minimum of semiconductor elements. 
These circuits were derived from 3 mc circuits 
used in Packard Bell Computer Corporation's 
TRICE Computer ( a digital differential analyzer 
system). 

Computer Organization 

The computer word is made up of 24 bits. 
Two of the bits, the first ( a guard bit) and the 
24th ( an odd parity bit), are not available to 
the programming. Numbers in the machine are 
expressed in binary with 21" bits plus sign. The 
command format is indicated in Figure 5. This 
block diagram also shows all the basic elements 
of the PB 250. The heavy-lined rectangles 
locate the five one-word magnetostrictive delay 
line registers. The computer's 32 flip-flops 
( excluding reading and writing flip-flops for 
magnetostrictive delay line registers) are 
summarized in Table 1. 

Arithmetic Operations 

The computer's arithmetic operations are 
based on the three one-word registers: A. B, 
and C. 

For double preCision operations, the A and 
B registers are arranged to handle double pre­
cision numbers with the sign and 21 most sign!­
ficant bits of the number in A and the ZZ least 
significant bits in B. The basic arithmetic oper­
ations are outlined below: 

1. Addition and Subtraction - -
Addend or Minuend ---_._ .. - A or A and B 
Augend or Subtrahend .. Memory 

Results .. A or A and B 

Z. Left and Right Shifting - -

3. 

4. 

A Register and B Register shifted as a pair, 
C Register is incremented or decremented 
to allow for efficient floating point subrou­
tines. 

Multiplication - -

Multiplier .. B Register 
Multiplicand ... C Register 

Produ~t .. AandB 
Registers 

Division - -

Numerator ~ AorAandB 
Denominator ~ C Register 

Quotient ... B Register 
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5. Square Root - -

Argument -------1 __ A or A and B 

Square Root of 
Argument ------..... - B Re gister 

Each of the short registers recirculates 
once per word time. Therefore, multiply, 
divide, and square root commands produce one 
new bit in the answers for each execution word 
time. The shift operations require one word 
time per shift. These commands are executed 
for a programmed duration, for improved opti­
mum programming. 

Timing 

Two methods of programming exist for the 
PB250. The normal computer program con­
sists of reading successive commands in se­
quence from a command line. This method 
offers optimum storage usage. Every 3-milli­
second cycle of a long memory line, a new 
co~and is read and executed when the operand 
in the command appears. Hence, the computer 
waits a major portion of the time. An operation 
rate of 333 commands per second is realizable 
using this method of programming. 

To provide high-speed operation, an 
optimum time programming technique is av-ail­
able. Any command which contains an opti­
mum code bit is called alL optimized command. 
The command immediately available at the com­
pletion of the execution of the optimized com­
mand is read. Hence, the computer can be 
reading or executing a command at all times. 
Using optimum time programming, a compu­
tation rate of 40,000 commands per second is 
obtainable. 

The execution time for addition or sub­
traction is 12 microseconds for single preCision 
numbers and 24 microseconds for double pre­
cision numbers. Execution of left shifting, 
right shifting, multiplication, division, and 
square root commands requires 12 microseconds 
per word time of execution. As previously 
mentioned, the length of execution of these com­
mands is programmed within the structure of 
the command. For example, a full-length, 
22-bit plus sign multiplication requires 276 
microseconds. Hence, with optimum time pro­
gramming, the PB250 can perform 2,800 full­
length multiplications per second. 

Input! Output Operation 

The bulk of the input! output capability of 
the PB Z50 is designed into the command struc­
ture. The computer handles characters in any 
code configuration ( up to 8 bits per character) 

for input! output operation. 

Each output character is delivered by an 
output command which has a programmed du­
ration. This programmed duration is control­
led by using the C Register as a counter to pro­
vide output character signals ranging from 12 
microseconds to 24 seconds. 

Each 8-bit input character is entered into 
a small input buffer contained in the computer. 
These 8-bit input characters are assembled 
into words by computer programming. The 
same computer circuits are used to handle 
character rates of 10 cps to 2,000 cps in an 
efficient manner. 

Computer handling of each character by 
programmed operation removes any restric­
tions on codes or formats and also minimizes 
the amount of hardware applied to input/ output 
operation in the computer. High data transfer 
rates may be obtained by using an external 
buffer. For control applications, the computer's 
complement of links with external equipment is 
completed by its ability to sense the many input 
lines and generate many f'f string pulling" out­
put signals. 

An external 2 mc shift register is provided 
as auxiliary equipnlent for large, quick bursts 
of input or output data. This is especially use­
ful when dealing with analog-to-digital and 
digital-to-analog converters, card readers and 
punches, line printers, etc. 

The computer may be programmed to sense 
many parallel input lines. This capability is 
enhanced by a command which allows program 
branChing based on any of 30 input lines. The 
converse is available for output operation; that 
is, output pulse signaling to anyone of 30 out­
put lines. 

Finally, to provide a maximum of flexibility 
for input and output, a special provision is in­
corporated for synchronbing and interconnecting 
two or more PB 250. s. With this arrangement, 
one computer may serve as the central com­
puter, while other computer s may be us ed for 
input and output functions. 

Packaging 

Figures 6, 7, and 8 show the computer as 
a rack-mounted component. The PB250 re­
quires 33 1/4 inches of vertical rack space. 
The Flexowriter requires an additional 17 1/2 
inches of rack space. 

The computer frame can accommodate up 
to 15 memory lines ( approxinlately 4,000words). 
Additional memory lines may be mounted in 
another chassis. Any 256-word memory line 



may be replaced by a shorter line, such as a 
l6-word line. for increased fast access memo­
ry. 

The total component count includes only 
375 transistors and 2,300 diodes. There are 
120 plug-in circuit modules. The open-book 
case style. as shown in Figure 7, allows easy 
access to all the socket wiring of these modules. 

For program tracing, the control panel at 
the left side of the front panel indicates the 
status of the static flip-flops. The marginal 
test switches located on the control panel are 
used for varying the clock period. Further 
m4rginal checking may be performed by ad­
justing the two main power supply voltages, 
+ 6 volts and - 12 volts. 

Performance Review 

Although the PB 250 Computer was designed 
to be a useful system component, it has also 
proved to be a powerful general purpose com­
puter. With, an automatic optimum program­
ming assembly routine and a library of rou­
tines and subroutines, the PB 250 provides the 
greatest advance in low cost computers since 
magnetic drums were first used. 

Efficiency of the computer is greatly in­
creased by the use of the solid-state devices 
such as transistors, diodes, and magnetostric­
tive delay lines. The efficiency of these com­
ponents is made pos sible by using a 2 mc 
operating frequency ( about 10 times the fre­
quency of drum computers). This frequency 
also allows more efficient logic coupling bet­
ween the input/ output equipment and the com­
puter. Hence, the burden of input and output 
operations is placed on programmed subrou­
tines, thereby reducing input/output hardware, 
and' thus compensating for the expense of high­
frequency components. 

The PB 250 approaches or exceeds the 
design ,?bjectives that were set for it. A large 
numbei of special system programs are now 
being prepared with very satisfactory perform­
ance indicated. These systems include tracking 
radar antenna control, power plant control, 
atomic reactor data logging, etc. 

The complete PB 250 command list is 
presented in Table 2. The commands in the 
top half of the list are the basic single address 
operations, whereas the commands in the lower 
half of the list have a programmed execution 
duration which starts in the word sector after the 
command is read and ends at the address speci­
fied by the command. 
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Flip-Flops 

FI, F2, F3, F4, F5 

Ec, Rc 

Is 

Oc, 06, OS, 04, 03, 

L5, L4, L3, L2, Ll 

K3, K2, KI 

Sc 

Ca 

Of 

Pc 

Ae, Be, Ce 

Rf, Tf 

02, 01 

Table 1. 

Function 

Pulse Time Counter ( P 1 - P 24 ) 

Phase Control - -

Ec Rc : Wait to Read Command 

Ec Rc: 

Ec Rc : 

Ec Rc: 

Read Command 

Wait to Execute Command 

Execute Command 

Comparison Detector - -

Compares Sector Counter and Instruction 
Register 

Operation Code Register 

Operand Line Registel 

Command Line Register 

Carry for Sector Counter 

Carry for Arithmetic Unit Adder 

Overflow 

Parity Check 

Arithmetic Unit Register Shift Flip-Flops 

Reader and Typewriter Controls 



OP 

00 

01 

02 

03 

04 

05 

06 

07 

10 

11 

12 

13 

14 

15 

16 

17 

20 

21 

22 

23 

2.4 

25 

26 

27 

30 

31 

32 

33 

34 

35 

36 

37 

HLT 

lAC 

IBC 

LDC 

LDA 

LDB 

LDP 

STC 

STA 

STB 

STD 

ADD 

SUB 

DPA 

DPS 

NAD 

LSD 

RSI 

SAl 

NOP 

lAM 

MLX 

SQR 

DIY 

MUP 

TCN 

TAN 

TBN 

TRU 

Command 

Table 2. 

OP 

Halt 

Interchange A and C 

Interchange Band C 

LoadC 

Load A 

Load B 

Load AB double precision 

Store C 

Store A 

Store B 

Store AB double precision 

Add 

Subtract 

Add double precision 

Subtract double precision 

Normalize AB 

Left Shift AB 

Right Shift AB 

Scale AB 

40 

41 

42 

43 

44 

45 

46 

47 

50 

51 

52 

53 

54 

55 

56 

57 

60 

61 

62 

63 

No Operation 64 

Interchange A It M 65 

Move Memory Line to Line 7 66 

Square Root of AB to B 

Quotient of AB+ C to B 

Product of B x C to AB 

Transfer if C negative 

Transfer if A negative. 

Transfer if B negative 

Transfer unconditionally 

67 

70 

71 

72 

73 

74 

75 

76 

77 

EBP 

GTB 

AMC 

CLB 

CLC 

CLA 

AOC 

EXF 

DIU 

RTK 

RPT 

RFU 

LAI 

CAM 

cm 

WOC 

WOC 

PTU 

MCL 

BSO 

BSI 

TOF 

TES 

Command 

Extend bit pattern of A 

Convert A from Gray to Binary 

AND of M ItC 

Clear B 

Clear C 

Clear A 

AND-OR Combined 

Extract Field 

Disconnect Input Unit 

Read Typewriter Keyboard 

Read Paper Tape 

Read Fast Unit 

Load A from Input 

Compare A and M 

Clear Input Buffer 

Write Output Character 

Write Output Character 

Pulse Specified Unit 

Move Command Line 

Block Serial Output 

Block Serial Input 

Transfer on Overflow 

Transfer on External Signal 
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Fig. 1. Complete Memory Line Module 
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Write Flip-Flop 

(Driving Side) 

Voltage Across 

Launching Coil 

Delay Line Output 

(Amplified from 2 mv 

to 6 v peak-to-peak) 

Schmitt Output 

Schmitt Output with 

superimposed digital patterns 

Time at 0.5 usee/div 

Time at 0.2 usee /div 

Fig. 3. Delay Line Waveforms 
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Fig. 6. PB2S0 Rack Mounted 
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Fig. 7. PB250 With Case Opened 



Fig. 8. PB2S0 With Case Pulled Out 
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THE INSTRUCTION UNIT OF THE STRETCH COMPUTER 

R. T. Blosk 
Product Development Laboratory, Data Systems Division 

International Business Machines Corporation 
Poughkeepsie, New York 

Introduction 

The Instruction Unit (I unit) was developed 
as the largest portion and the major control unit 
of the large-scale, high-performance Stretch 
computer. 1 This computer is the central pro­
cessing unit of the Stretch system2 contracted 
for development and delivery to the Atomic 
Energy Commission for their Scientific Labora­
tories in Los Alamos, New Mexico. 

The purpose of this paper is to describe the 
major functions. of the I-unit, give a general 
picture of the internal machine organization and 
the logical reasons behind it, and present several 
examples of how some of the performance goals 
were achieved. 

A diagram of the Stretch system appears in 
Figure 1. It consists primarily of the central 
computer, 6 blocks of 2-usec memories (each 
containing 16, 384 words of 72 bits}~ a basic I/O 
Exchange unit with its associated I/O units and 
adapters, and a high-speed Exchange (disk 
synchronizer) unit wi th its disk unit and adapter. 
The system is expandable up to a maximum of 
16 memory blocks, 32 basic I/O channels, and 
32 disk units. 

The computer is divided into five major 
elements: the memory bus control unit, the in­
struction unit, the lookahead unit, and the serial 
and parallel arithmetic units. These are shown 
in Figure 2. 

One of the principal factors in achieving the 
high performance in the computer is the ability 
of these separate logical areas within the com­
puter to operate independently and simultan­
eously. This means that while one of the arith­
metic units is busy executing an instruction, the 
lookahead unit can be "stacking" up the following 
instructions with their operands, and the I unit 
can be fetching and indexing more instructions 
preparatory. to loading them into lookahead. In 
many cases, the I unit can actually be executing 
an instruction wholly within the I unit, simultane­
ously with the execution of apreceding instruction 
in an arithmetic 'unit. In effect, the computer 
is a form of "pipe-line" which once filled is 
~apable of a very high output rate. Basically, 

the main job of the 1 unit is td keep this "pipe­
line" filled by maintaining the instruction fetch­
ing and preparation rate compatible with the 
operating rates of lookahead and the arithmetic 
units. 

A complete description of the specific 
functional responsibilities of the I unit will be 
given later. However, there were a number of 
more general requirements which significantly 
affected the entire design of the unit. The most 
important of these were: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

It had to handle a large diversified instruc­
tion set in a wide variety of word formats. 3 
(see Appendix Al. 

It had to prepare half-word instructions, 
full-word instructions, and full-word in­
structions across memory word boundaries. 

To achieve the desired performance, it had 
to process several instructions simultan­
eously. 

It had to be completely interruptable and 
. . 4 recoverable on every lnstruchon. 

It had to test for many exception conditions.! 
set corresponding indicators, and be capa­
ble of suppressing or terminating the asso­
ciated instruction if necessary. 

It had to differentiate between three types 
of memory -- external memory (EM}, index 
storage (XS}, or internal register (IR} -- on 
all fetches and stores (see Appendix B). 

It had to update the time clocks every milli­
second. 

It b,ad to be virtually instantaneously 
stoppable to provide meaningful automatic 
error scans. 

It had to be constructed with standard 
circuits, panels, and frames. 

It had to be a reliable and thoroughly 
checked unit. 
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As a result of these requirements, plus 
the many assigned program functions, the in­
struction unit was designed and built to occupy 
five full double-gate standard frames and parts 
of three others, filling 46 standard panels, 
using approximately 1275 standard ... circuit 
double cards and 6385 standard-circuit single 
cards, and requiring about 53,680 transistors. 

Functions 

The instruction unit has as one of its two 
primary functions the fetching and preparation 
of every instruction executed by the computer. 
The fetching carries with it the responsibility 
for checking and possibly correcting the word 
after it is received from memory. Every word 
in external memory contains 64 data bits and 8 
error correction code (EGG) bits. These ECG 
bits permit single error detection and correc­
tion plus double error detection. The prepara­
tion of each instruction involves the indexing5 

of the instruction (if required), the partial de­
coding to determine instruction class and unit 
destination within the computer for execution, 
plus the actual operand fetch and loading of the 
instruction into lookahead. It also requires 
various tests of each instruction for indica tor 
setting and possible suppressing and/or in­
terrupting. Some indicators require that the 
instruction not be executed {suppres sed}, while 
others permit full or partial execution with the 
option of causing an automatic interrupt at the 
·completion of the instruction. The actual point 
of execution and interrupt test is not until some 
time after processing by the I unit. In order to 
know the memory location of every instruction 
as it is tested for an interrupt, the I unit loads 
the advanced instruction counter (IC) value 
into lookahead with each instruction. If an 
interrupt is detected later, the program can 
store the IC value of the instruction following 
the one being interrupted. This enables the 
interrupt sub-routine to know where to return 
to the main program after the interrupt. 

Two type s of indexing can be spe cified -­
normal and progressive. The normal mode 
modifies the operand address by the value of 
the index word with the resultant effective 
address replacing the original operand address, 
In progressive indexing, the result of the alge­
braic addition of the operand address and index 
value replaces the index value, and the orig­
inal index value replaces the operand address 
as the effe ctive addres s. This mode can also 
specify a stepping of the count field and mayor 
may not call for an automa1ic refill if the count 
goes to zero. 

All instructions eventually are loaded into 
lookahead. There are four levels of storage 
in lookahead, and each contains an op-code 
field, an indicator field, an operand field, and 
an instruction counter field. Normally an in­
struction only requires one level of lookahead; 
however, some require more. An example is 
a variable field length instruction in which one 
level is used entirely for operation definition, 
such as variable field length, byte size, and 
offset. A second and possible third level is 
then required fo1' the operands. 

All instructions to be executed by the 
floating point (FP) unit, the variable field 
length (VFL) unit, and the Exchange units are 
loaded into lookahead to await operand return 
and subsequent execution. As the instruction 
is loaded, the operand ~s fetched to the look­
ahead (LA) operand field, any indicators set by 
the instruction so far are transferred to the LA 
indicator field, and the IC value for the next 
ins truction is set into the IC field. 

If an instruction is of the index arithmetic 
type which is executed wi thin the I unit, look­
ahead is loaded at the completion of the execu­
tion. In this case, the lookahead operand field 
contains the old contents of the index word 
that was modified. The indicator and IG field 
are set normally. This provides a means of 
recovering the index words which are modi­
fied out of sequence should an interrupt occur 
on a previous instruction. 

The second primary function of the I unit 
is the actual execution of a large number of 
instructions in the Stretch instruction set. In­
dex arithmetic instructions form the largest 
class in this set and they include direct, 
immediate, and indirect forms of addressing. 
The direct address refers to a location in 
memory for the operand, whereas the 
immediate address is the actual operand. 
There are several special instructions which 
act upon the index registers. Load Value 
Effective is a load type of instruction using 
indirect addressing, where the contents of the 
location in memory specified by the address 
may refer to another memory location. Load 
Value with Sum provides a means of multiple 
indexing by utilizing a form of geometric 
addressing where each bit of the address refers 
to a separate index register. Rename pro­
vides a method of "naming" index registers by 
putting in one index register the location in 
memory from which the contents of another 
index register came and to which it can be 
returned. 



The Branch instructions comprise another 
class which the Iunit is responsible for execut­
ing. They include all unconditional and condi­
tional branches. The conditions may depend 
upon: any of the indicators, any bit in memory, 
and any index count field. In addition, each in­
struction has a number of modifier bits which 
specify whether the branch should occur on a 
zero or one condition, whether the bit should 
be left alone, inverted, set to zero, or set to 
one, and in the case of index count branching 
whether the value field should be modified by 
0, +1, +1/2, or -1. The index and indicator 
branch instructions are half-word in length 
and the branch on bit is a full word. The 
half-word instructions may have a half-word 
prefix specifying a store instruction counter 
operation if the branch is successful. This 
forms a full-word instruction. The store in­
struction counter half-word instruction never 
occurs alone. 

If an indicator branch is conditional upon 
an index indicator, the I unit determines the 
status and completely exe cutes the instruc­
tion. If the condition depends upon some other 
indicator, then the I unit completes the in­
struction, assuming the branch to be un-

successful. It loads the necessary operation 
code, indicator location, and recovery infor­
ma tion (branch addre s s) into lookahead to 
cause a test of the indicator later, after all 
previous instructions in LA have been com­
pletely executed. If at this time the branch is 
found to be successful, then a branch recovery 
operation is initiated and lookahead returns the 
branch address and all old index words to the 
I unit .. This recovery is similar to an in­
terrupt recovery. 

Word transmission instructions form 
another class which the I unit must execute. 
These include two basic types. One is the 
Transmit, which transfers data from one 
location in memory to another. The other 
type is Swap, which causes an interchange of 
data between two locations in memory. These 
instructions also contain a modifier bit which 
specifies whether the word count is contained 
in the instruction (immediate) or in an index 
word (direct). Another modifier specifies 
whether the addresses are stepped forward or 
backward. 

The remaining instructions executed by 
the I unit include a general Refill and a Refill 
on co unt zero which provides the ability of 
refilling any word in memory. Execute and 
Execute Indirect are two instructions which 
provide the ability to execute "subject" in-

301 
6.4 

structions at direct or indirect locations in 
memory. The Store Zero instruction forces 
zeros into any memory location. A complete 
list of I-unit instructions appears in Appendix 
C. 

Another function directly involving the 
I unit is the automatic interrupt operation. 
At the completion of every instruction execu­
tion, a test must be made on the indicators to 
d~termine if an interrupt is required or not. 
If not, normal program operation is continued. 
If an interrupt is called for, recovery opera­
tions are initiated in lookahead and the I unit 

An interrupt is signaled whenever the interrupt 
system is enabled (by the program), and an 
indicator in the register and its corresponding 
bit in the mask register are one IS. The I unit 
must determine the indicator causing the in­
terrupt, -reset the indicator, and locate the 
"free instruction" associated with that par­
ticular indicator. It then fetches the in­
struction, prepares it, and either executes it 
or loads it into lookahead. If it is not a 
successful branch instruction, the I unit re­
turns to the original program and continues 
normal operation; hence the term "free in­
struction". However, if it is a successful 
branch, the I unit branches to the new pro­
gram routine and proceeds normally until a 
new branch instruction returns it to the 
original program. The interrupt mechanism 
is automatically disabled during the fetching 
and execution of the "free instruction". 

Time clock operation is another function 
as signed to the I unit. The computer contains 
two time clock values; an interval timer of 19 
bits {8-1/2 minutes} and a real time clock of 
36 bits {777 days}. These two quantities are 
contained in one word located in the small, 
fast-access, index core storage. Approxi­
mately every millisecond (1024 cps), while tl.le 
computer is under program control, the I unit 
must stop its normal operation, fetch this word, 
and step the two clock values through the index 
adder. The interval timer is stepped -1 and 
the real time clock is stepped + 1. When the 
interval timer goes to zero, a cbrresponding 
indicator is set. The interval timer may be 
set by the program but the real time clock may 
not. 

The I unit also has the responsibility for 
monitoring all memory addresses for out-of­
bounds conditions. All external memory 
fetches for the computer are initiated by the 
I unit, and each addres s is compared against 
an upper and a lower boundary register. De­
pending upon the state of an outside-inside 
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control trigger, appropriate indicators are 
~et according to the type of fetch {instruction 
or datal. All stores are performed by the 
lQokahead. However, before loading looka­
head with a store operation, the 1 unit tests the 
store address and sets a store indicator in 
lookaheadl if out of bounds. These indicators 
may cause suppression of the instruction and/ 
or an interrupt and automatic branch to a 
corrective routine. 

The last important function of the I unit 
is providing manual controls for direct inter­
vention by the operator console and customer 
engineering maintenance console. Since the 
I unit has complete control over all opera­
tions- to be performed by the computer, it was 
found to be the logical place for the rm.jority 
of the manual controls. These controls pro­
vide the ability to: 

1. Start or halt the machine. 
2. Load new programs. 
3. Display or store memory. 
4. Single-step the program an operation 

or a cycle at a time. 
S. Enter a particular instruction into 

the machine. 
6. Put the machine in a repeat instruc­

tion mode. 
7. Continuously test index storage. 

Repeat instruction mode causes the 
machine to continuatly repeat the fetching, 
preparation, and execution of one particular 
instruction word. 

In addition to these specific functions, 
several problems arose which required special 
handling. One of these was created by pre­
accessing instructions before completing the 
execution of previous instructions. In the case 
of store-to-memory types of instructions, it 
was possible that an instruction might be 
storing into the immediate program area and 
particularly into an instruction that had al­
ready been fetched by the I unit. To guard 
against this, a program store compare cir ... 
cuit was designed which compared all in ... 
struction fetch addresses against the store 
address register in lookahead. 1£ the in­
struction fetch has not been made yet and it 
compares equal, the I unit waits until the 
store is complete before resuming. If the 
instruction fetch has already been made, an 
I-unit recovery must be made and the in­
structions refetched after the store is com­
pleted. 

There are three different types of 
'addressable memory in the system: internal 

transistor registers, index,core storage 
registers, and the main external memories. 
This presents a problem in the I unit. When 
indexing instructions and fetching operands 
rapidly, the I unit loads lookahead and fetches 
an operand on the cycle following the index 
modification cycle. This leaves no time to 
decode which type of memory is involved and 
to select the correct control sequence. It is 
presumed that the address refers to external 
memory, and an external fetch is begun. The 
decoding is complete before the midpoint of 
the fetch cycle. If the presumption proves to 
be wrong, the actual fetch can be blocked 
and the correct fetch control can be selected 
for the next cycle. If the presumption is 
correct, the original fetch is completed and 
a decode cycle has been saved. 

These are just a couple of examples of 
the many complexities which faced the design 
group in designing the I unit to meet all the 
functional, performance, and reliability re­
quirements of Stretch and at the same time 
keep the cost to a minimum. 

Data Path Organization 

The first step in the design of the unit' was 
to design a data path system, with a minimum of 
hardware, that accomplished all the functions 
assigned to it. The next step was to determine 
the amount of time-sharing that was possible, 
and the amount of concurrency necessary to 
achieve the high performance goals desired, 
still at minimu~ cost~ Finally, after arriving 
at a satisfactory compromise of the first two 
points, the system was studied carefully and 
checking / correcting circuitry added to obtain 
the high degree of reliability desired. 

The result was a machine organization as 
shown in Figures 3 and 4. Figure 3 is a diagram 
of the data paths for the principal part of the 1 
unit, and Figure 4 is a diagram of the interrupt 
mechanism. The basic I-unit organization con­
sists of six transistor registers, two adder units 
with checking, six data paths, two address 
busses, and one checker/corrector unit. In 
addition, there are indicator and tag storage 
positions, a boundary compare unit, a program 
store compare unit, lookahead load data transfer 
busses, and a leftmost one detector-encoder for 
the multiple indexing Load Value with Sum in­
struction. The interrupt mechanism consists of 
two transistor data registers, one unit address 
register, and a leftmost one detector-encoder. 
These data paths account for approximately 40 
per cent of the hardware. The remaining 60 



per cent is taken up by extensive control logic, 
with its associated timing, and decoder circuitry. 

The six main registers in the I unit are the 
instruction counter register (lCR), the instruc­
tion-data word buffer registers (1 Y and 2Y), the 
index register (XR), the preparation and execu­
tion register (ZR), and the multi-purpose work­
ing register (WR). 

Instruction Counter (IC) 

The IC system was designed to provide the 
actual memory address of the instruction cur­
rently being executed or prepared for looka­
head -in the Z register, and at the same time 
fetch succeeding instructions into the Y regis­
ters. Since a number (6) of instructions may 
be located in the Y and Z registers simultane­
ously, some means had to be developed to keep 
track of the instruction addresses as the in­
structions proceed througli the I unit. It was 
found that we could eliminate the necessity of 
multiple IC registers by using the one ICR to 
keep track of the instruction being operated on 
in the ZR, and using outputs of the ICR or the 
IC adder to fetch following instructions. 

The ICR contains 21 bit positions, two of 
which are parity bits. The two low-order bits 
are separated from the seventeen high-order 
bits and haV"e their own individual advancing 
mechanism to provide the flexibility needed for 
advancing by half and full words. The high­
order seventeen (0-16) bits feed a plus one, a 
parallel, carry propagate adder, which actual­
ly provides the (ICR quantity +2> address. By 
selecting combinations of ICR and adder out­
puts, we can obtain four full word addresses: 
n, n+ I, n+2, andn+3, wherenis theICR 
address. This provides all the lookahead 
addresses needed for pre-accessing instruc­
tions into the Y-register instruction buffers. 

The ICR has a set of in-gates (21) from 
the lookahead IC buffer for use in recovery 
operations. It also has a set of in-gates frorp. 
the index adder out bus for branch operations. 
The final set of in-gates is for setting the IC 
adder output into the register for a full advance 
of the IC system. 

Both ICR and the IC adder output can be 
gated out to the memory address bus for instruc­
tion fetching. The ICR also can be gated to the 
index adder in bus A (ABA) for store instruction 
counter and branch relative operations. The 
ICR has a complete set of ungated output lines 
to the lookahead IC input gates for loading the 
associated IC address into lookahead along with 
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the instructions, and for program store testing. 
It has a set of ungated output lines to the IC ad­
der, and several special lines to the control 
area. Another full set of these lines go to the 
maintenance console for indicating the contents 
of the IeR and the IC adde r output. 

Instruction and Data Buffer Registers (1 Y and 2Y) 

To achieve high-speed instruction prepara­
tion, particularly floating point instructions, it 
was necessary to provide two instruction .buffer 
registers. These two registers are identical 
and are used alternately for receiving instruc­
tion words fetched from memory by the IC. They 
are also used for data operands required for the 
execution of instructions performed in the I unit. 
They each contain 73 positions; 64 data bits, 8 
check bits, and 1 memory check bit. The 8 
check bit positions may contain error correcting 
code (ECC) bits or parity bits. All words in 
memory contain error correcting code bits, but 
during the checking/correcting operation in the 
I unit, the ECC bits in the Y register are re­
placed with parity bits for checking internal op­
erations. The memory check bit indicates whe­
ther or not an error occurred during the memory 
access, and, therefore, indicates whether the 
word received is valid or not. 

The Y registers have two complete sets of 
input gates; one from the memory out bus 
(IMOB) for memory fetch returns, and one from 
the checker out bus (ICOB) for check/ correct 
operations and internal word transfers~ 

Each Y register has a full set of out-gates 
to the checker in bus (ICIB), again for checking/ 
correcting or internal word transferring. Each 
also has two sets of half-word (36 bit) gates to 
the adder in bus B (ABB) for direct transfer or 
arithmetic operation through the index adder. 
Four sets of out-gates from the two I fields of 
each register permit addressing index storage 
via the index address bus (XAB). 

Both registers have 73 lines to the mainte­
nance console for indication, plus a number of 
ungated lines to the control areas for instruction 
predecoding and special memory addresses. 

The parity fields are split up across the Y 
registers in the following manner: 

Po (0 - 17) 

PI (18 - 23) 

P
2 

(24 - 27) 

P 3 (28 - 31) 

P 4 (32 - 49) 

P 5 (50 - 55) 

P 6 (56 - 59) 

P 7 (60 - 63) 
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These fields were found to be the best com­
bination for effectively handling all the different 
word formats encountered in the system. 

Index Storage (XS) and Index Register (XR) 

The specifications for the Stretch Computer 
called for 16 index words located in high-speed 
storage. The first approach was to use 16 tran­
sistor registers, but this was soon found to be 
undesirable for several reasons. One was that 
it was extremely expensive, particularly if each 
register was to be capable of directly operating 
with the index adder to perform all instruction 
indexing functions and the execution of all index 
arithmetic operations. Another reason was that 
the large amount of hardware involved presented 
a packaging problem and detracted from the an­
ticipated high performance. It was apparent that 
a buffer register would be required, which alone 
would have all the required logical capabilities 
and would allow each of the 16 index registers to 
be transferred into it prior to execution. This 
still presented a large and expensive piece of 
hardware. The ideal solution was found by pro­
viding a compact, high-speed, 16-word, non­
destructive-read, core memory for the index 
words, with one data register (XR) to read into, 
store out of, and perform all the logical operations 
required. 

The index storage (XS) was 'ac:tually designed 
with 17 words of 73 bits each. The seventeenth 
word contains the interval timer and the elapsed 
time clock for rapid access and advancing of 
these values. It is a two-dimensional array 
(17 x 73) and has a read-out time of approximately 
200 nanoseconds. Total access time including 
address gating, transmission, and decoding re­
quires one machine cycle. To store the contents 
of the XR into XS requires two cycles. The first 
one destructively reads the selected word, there­
by resetting it to zeros, and the second cycle 
writes the XR contents into the selected row of 
cores. The index address is checked during the 
decoding. The XR is checked during the following 
logical operation for which the index word was 
fetched. 

The index register was designed with two 
principal objectives in mind. One was to provide 
the function of a data register for fetching and 
storing to/from index storage. The other was to 
provide the ability of executing all the full word, 
half word, field transfer, and logical operations 
required to execute all the I-unit instructions. 
The result is that the XR has five sets of in­
gates and out-gates with many separately con­
trollable fields. 

This register contains 73 bit positions in­
cluding 64 data and 9 parity check bits. Eight of 
the check bits correspond to the eight in the Y 
registers, and the ninth is the parity on bits 46 -
49 to provide means of obtaining a parity check 
on the index count and refill fields. 

The primary input to the XR is directly from 
the sense amplifiers of the index storage during 
an index fetch operation. A full set of gates (73) 
allow gating from the I-checker out bus straight 
into XR for checking and full word transfer op­
erations. Four sets of gates allow gating from 
the adder out bus into four different fields of the 
XR. These fields are: the 25 bits of XR beginning 
at position 0, the 25 bits of XR beginning at posi­
tion 32, the 18-bit count field beginning at position 
28, and the l8-bit refill field beginning at position 
46. These gates are all: used in the execution of 
various types of index arithmetic instructions. 
In addition to these inputs there is a direct reset 
of all 73 positions for setting the XR to zero prior 
to a read-out of index storage. 

The XR has a full set of out-gates (73) to 
the checker in bus for checking and full word 
transfer operations. It has three sets of par­
tial gates to the adder in bus "A". These pro­
vide the ability of gating the value field, the 
count field, and the refill field to the adder for 
arithmetic ope ration or transfers through the 
adder. One set of gates (24-27) to the adder 
in bus B provides the ability to check the sign 
of the value field during value field operations 
in the adde r. 

There are three detector circuits connect­
ed directly to the XR. These circuits provide 
the following indications: 

X value less than 0 X count equal to 

X value equal to 0 X count equal to 0 

X value greater than 0 X refill equal to all l's 

These are used to set indicators or modify 
execution controls for various operations. In 
addition, there are a number of special ungated 
outputs of the XR which feed adder true/ com­
plement controls, execution controls, and parity 
adjust logic in the parity checker/generators. 
A full set of ungated outputs go to the mainte­
nance console for indicator purposes. 

Preparation - Execution Register (ZR) 

This register is the basic operating register 
of the I unit. Every instruction is placed in 



this register from the Y registers for indexing. 
decoding. execution. and lookahead loading. 
It is full word in width to accommodate full word 
instructions and to speed up floating point half­
word instructions. All full-word instructions 
appear straight. left to right in the register. 
regardless of how they were received from 
me,mory and placed in the Y registers. There 
are a large number of output gates on the re­
gister because of the many special functions 
performed in the register in indexing (normal 
and progressive). executing I-unit instructions. 
fetching operands. and loading the instructions 
into lookahead. 

The ZR contains 74 bit positions. including 
64 data and ten parity bits. Eight of the ten 
parity bits correspond to the standard eight in 
the Y and X registers. The other two are for 
parity on the channel address field (12 - 18) for 
I/O instructions, and the length field (35 - 40) 
of VFL instructions. Associated with the ZR 
is a small three-bit P register which is used 
solely for retaining the progressive indexing 
code (bits 32 - 34) during any index modification 
of the right half of a VFL instruction. 

The only in-gates provided on the ZR are 
for gating the adder out bus into various posi­
tions of the ZR. There are two sets of these 
gates. one for the left half of Z and the other 
for the right half. These gates have split con­
trol to provide for partial gating. This takes 
care of all the in-gating required by instruction 
transfers from Y to Z, plus all arithmetic re­
sult gating into Z. 

The out-gating of the ZR is more extensive 
and complicated. There are two sets of out­
gates for gating the left half or the right half of 
Z to the adder in bus B for arithmetic operations 
on the left or right operand addresses. There 
is a separate gate for gating the length field 
(35 - 40) to the adder in bus A for word bound­
ary cross-over test. and a separate gate for 
sending the immediate count (50 - 55) in trans­
mit instructions to the W register for counting 
purposes. There are two sets of out-gates pro­
vided for gating the left (0-17) or right (32 -49) 
operand address to the memory address bus for 
operand fetches. There are five sets of gates 
for gating the left or right operand address. the 
left or right J field (index operand in index in­
structions). and the left I field (index address 
for index modification) to the index address bus. 
These permit fetching of index word operands 
and the index fetch for the delayed modification 
of the left half of Z. 

There also is a set of ten out-gates to the 
checker in bus for rearrangement of fields for 
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loading instructions into 100kahead. These also 
have split control for selecting the width of the 
fields. 

In addition to the in and out-gates. the ZR 
has 41 positions line driven to the control area 
for operation and memory area decoding. As in 
the case of all the registers. all positions of the 
ZR have an ungated line to the maintenance con­
sole for indicator purposes. 

Working Register (WR) 

This register is only 19 positions long (in­
cluding one parity). It is used primarily for 
operand address storage. and secondarily as the 
counting register for transmission type instruc­
tions which cross memory word boundaries. for 
multiple indexing address decoding. and for auto­
matic refill and interrupt address operations. 
In transmIt operations the direct or immediate 
count field is placed in the W register for count­
ing purposes. while the from and to operand ad­
dresses remain in Z for the fetching. storing, 
and stepping operations. 

The WR has three in-gates: one from the 
adder out bus for transfer and arithmetic opera­
tions. one from the maintenance console keys 
for manual insertion of an address. and one from 
the interrupt bit address encoder for automatic 
interrupt operations. 

The WR has three out-gates: one to the ad­
der in bus A for arithmetic operations such as 
counting. one to the memory address bus for 
word boundary crossover and refill fetches. and 
one to the index address bus for index fetches. 

Ungated outputs of the WR feed a leftmost 
one detect logical unit for multiple indexing ad­
dress decoding. The output of the detect circuit 
feeds an address encoder. the output of which 
is set into a five-bit register called the geometric 
load address register (GLAR). The detect and 
encoder logic is checked. 

Ungated outputs of the WR also feed various 
decoder circuits for determining special address 
and contents equal to one conditions. The output 
of the leftmost one detector (LMOD) feeds the 
adder in bus B for resetting the current multiple 
indexing address bit in WR by a subtract opera­
tion through the index adde r . The output of the 
GLAR feeds the index address bus for index 
fetching during the Load Value with Sum execution. 

All 19 positions of the WR and five positions of 
the GLAR go to the maintenance console for in­
dicator purposes. 
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Index Adder Unit (IAU) 

The specifications for the I unit called for 
arithmetic operations on fields up to 24· posi­
tions wide. High performance required a par­
allel adder of advanced design with a minimum 
of logical levels. In order to guarantee com­
plete reliability, it had to be thoroughly check­
ed. Since the many operations of the I unit re­
quired all the registers to be capable of feeding 
the adder, it was found that the transfer and 
adder paths could be combined and time-shared 
to provide the most economical and yet com­
pletely checked system. This was accomplished 
by providing an eight-bit bypass path around 
the 24-bit adder to permit half-word {32-bit} 
transfers. A further study indicated that the 
best performance could be gained by providing 
a controlled complementer on one input, with 
automatic re -complementing ability on the out­
put. The basic 24-bit parallel adder was bro­
ken up into six four-bit blocks with parallel 
carry lookahead and carry propagate detect 
logic for each. Garries from block to block 
and end-around carries are detected early and 
propagated through. The 24-bit add or sub­
tract is accomplished in five logical levels. 
Input checking is accomplished by comparing 
input parities with the half sum parity. and the 
rest of the adder is checked by a. carry predic­
tion checking method. 

Standard I-unit parity is generated on the 
output in parallel with special memory address 
decoding. The bypass eight positions are parity 
checked and passed through to the output bus. 
The output is completely latched at sample 
time to prevent race conditions through 'the un­
gated paths when gating the result back into one 
of the input registers. 

The adder in bus A (ABA) has a complemen­
ter on the input and is accomplished in the same 
logical level that does the ~Ringo The inputs to 
ABA are the IG, WR, XR, and ZR. Th,e ABB 
is not complemented and the inputs come fro'm 
the YR's, the LMOD, and the ZR. In-addition, 
there are numerous lines to control the com­
plementing, re-complementing, and pa·rity ad­
justments for various fields and operations. 
The adder out bus (IAOB) has 32 data bit posi­
tions plus 11 parity bit positions for selection, 
depending upon the fields involved. The IAOB 
feeds the left and right halves of the ZR, the 
left and right halves, count, and refill fields of 
the XR, the WR, and the IGR. 

The I Ghecke r 

One of the earliest requirements of the 
Stretch system was for automatic error correc-

tion of memory words. The method adopted 
was that of using the Hamming 6 error-correc­
ting code (EGG) which required eight EGG bits 
with a 64-bit data word. In the I unit it was 
necessary to be able to check and correct mem­
ory words (instruction and operands) and convert 
to the I-unit parity system. It was also necessary 
to provide a full word transfer bus for high-
speed transfer operations in executing many of 
the I-unit instructions. It was found that these 
two operations could share equipment by com­
bining the transfer bus with the full word EGG 
checking/ correcting and parity checking/ gen­
erating logic. It was also found that the EGG 
checking/ correcting operation on instructions 
could be overlapped with the initial pre -decoding 
required on the new instructions when they are 
received in the Y registers. 

Lookahead had a similar problem with EGC 
checking/ correcting and parity checking/ gen­
erating on operands fetched to lookahead by the 
I unit, and in storing result operands to memory. 
A study of the two units showed that one I 
checker unit could be time -shared between the 
I unit and lookahead, provided a fast priority 
system could be designed to guarantee little 
loss in performance. This was done and the re­
sult is a single I checker with separate I checker 
in busses from the I unit and lookahead OR'd at 
the input to the checker. The checker out bus 
(IGOB) is a 64-bit data bus plus 29 parity and 
EGG lines for selection by the controlling unit 
for the proper parity or EGG bits for the re­
ceiving register. This bus feeds the four looka­
head levels· first and then the XR and the 2Y re· 
gisters. The output of the checker is complete­
ly latched at sample tim~ to prevent race condi­
tions through the ungated paths while gating the 
result into the receiving register. 

Interrupt Mechanism 

Figure 2 shows a block diagram of the in­
terrupt mechanism. It consists of a 64-position 
indicator register (IR). a 28-position ma.sk re­
gister, and a leftmost one detect and encoder 
circuit. 

The indicator register has two inputs; one 
from '.:he arithmetic checker out bus (AGOB), 
and the other, the individual turn-on line from 
each indicator's particular logical area. These 
logical areas include the I unit, the VFL and FP 
execution units, lookahead, exchange, and 
memory. There is no parity on the contents of 
this register because it is continually changing, 
due to the many asynchronous inputs. The only 
out-gate on the IR is to the arithmetic checker 
in bus (AGIB) and is used for transferring the 
contents of the register to another location. 



Similarly, the input gate from AGOB is for 
bringing in a new word to the IR. Ungated out­
puts from a portion of the register feed the up­
dated indicator register in the I unit for recov­
ery purposes. A full set of ungated outputs feed 
the leftmost one detector and the maintenance 
console. 

The mask register has an input only from 
the ACOB for bringing in a new mask word. It 
also can be gated to the AGIB for storing pur­
poses, and has ungated outputs to the leftmost 
one detector and maintenance console. Logical­
ly, the first 20 positions (0 - 19) of the mask 
register are always one, and the last 16 posi­
tions (48 - 63) are always zero. They are 
fixed and are not programmable. There are 
four parity bits associated with the mask re­
gister positions 21 - 47, and they conform to 
the parity flelds of the arithmetic bus and 
checker. 

The leftmost one detect circuit has two 
functions; one to test rapidly for any match 
between an indicator position and its asso­
ciated mask bit, the other to determine, in the 
case of multiple matches, which one has higher 
priority. Priority is established from left to 
right (0 - 63), and the match with highest 
priority blocks the remaining ones f:tom being 
effective. The test for any match is done in 
only a few levels by ORing all the compare 
And circuits, and signalling an interrupt if the 
mechanism is enabled. The enabling/disabling 
is controlled by a single trigger which is set 
on/ off by programming. Once an interrupt is 
signalled, the leftmost one detect logic is 
allowed time to establish priority, to encode 
the matching pair of indicator and mask bits 
into the register bit address of the particular 
indicator, and set it into the' WR. The bit 
address is a six-bit address plus one parity 
bit. 

Included in this logical area is a seven-bit 
channel address register which is used to hold 
the address of the I/O unit which sets I/O status 
bits into the indicator register. This register 
may be set by either the basic or high-speed 
exchanges and includes two parity bits.- It can 
be gated to the AGIB (positions 12-18) for trans­
fer purposes. 

Also designed for this area but not packaged 
was the other GPU e1."egister. This register of 
19 positions is used for systems involving more 
than one computer. It can be gated out to the 
ACIB and gated in from IGOB for transfer pur­
poses. There are four parity bits associated 
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with the 19-bit field to conform with the arith­
metic bus and checker requirements. 

Updated Index Indicator Register (UXIR) 

There are eight triggers in the I unit which 
contain the status of the index register involved 
in the most recent index arithmetic instruction 
executed by the I unit. These indicators differ 
from the status of the corresponding main indi­
cator register triggers by the effect of the in­
dex arithmetic instructions which have been 
executed by the I unit but whose result indica­
tors are still in lookahead awaiting transfer to 
the indicator register in proper instruction 
sequence-hence, the term'updated indicators". 
This UXIR is used to test for conditional 
branches on these indicators. 

A listing of the indicators contained in the 
updated indicator register is as follows: 

1. Index low - XL 
2. Index equal - XE 
3. Index high - XH 
4. Index count zero - XGZ 
5. Index value less than zero - XVLZ 
6. Index value zero - XVZ 
7. Index value greater than zero - XVGZ 
8. Index flag - XF 

Indicator and Address Tag Triggers 

Due to the multiplicity of instructions that 
are contained in and being operated on simul­
taneously in the I unit, it is necessary to tag 
(store with the particular instruction) each in­
struction with identifying informati.on regarding 
certain conditions which may arise during its 
processing. Examples of these conditions are 
memory and ECG checks on new instructions, 
parity checks on instruction transfers from Y 
to Z, and type of memory address decoded 
during ,the transfer through the index adder. 
These triggers are located for the most part in 
the control area, so that they can immediately 
condition the control trigger outputs of the 
following cycle. There are some 26 triggers 
of this nature in the control area of the I unit. 
These include the following: 

A. Y Register Tags 

1. 1 Y instruction fetch indicator 
2. 2Y instruction fetch indicator 
3. I Y operand address invalid 
4. 2Y operand address invalid 
5. 1 Y identifiable check 
6. 2Y identifiable check 

lYlF 
2YIF 
lYAD 
2YAD 
lYIDG 
2YIDG 
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7. 1 Y memory check 1YMC 
2Y1v.tC 8. 2Y memory check 

B. Z Register Tags 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
ll. 
12. 
13. 
14. 

C. 

1. 
2. 
3. 

Z left operand address -special (0':'15) ZLSA 
Z left operand address -index (16-31) ZLXA 
Z left operand address-nonexistent ZLNA 
Z right ope rand addre s s - s pe cia1 (0 -15) ZRSA 
Z right operand address-inde~ (16-31) ZRXA 
Z right operand address -nonexistent ZRNA 
Z left instruction fetch indicator ZLIF 
Z right instruction fetch indicator 
Z left operand address invalid 
Z right operand address invalid 
Z left contains identifiable check 
Z right contains identifiable check 
Z contains data store condition 
Z contains data fetch condition 

W Register Tags 

W operand address-special (0-15) 
W operand address-index (16-31) 
W operand address nonexistent 

ZRIF 
ZLAD 
ZRAD 
ZLIDC 
ZRIDC 
ZDS 
ZDF 

WSA 
WXA 
WNA 

D. General 

1. I unit contains non-identifiable check NIDC 

Control Orsanization 

The remaining hardware in the I unit is 
taken up by an extensive and complex system 
which controls the flow of instructions and oper­
ands in the data paths previously described, in 
many different combinations of simultaneous and 
asychronous operations. The system consists 
primarily of many control triggers, commonly 
referred to as control stages or sequencers, 
plus their input and output switching logic and 
ORing of control lines to the data paths. Also 
adding to the hardware is the extensive decoder 
logic required to determine which operation and 
variation is called for in instruction preparation 
and execution. Associated with the control is a 
considerable amount of powering circuitry for the 
distribution of the clock pulses in each control 
area. These clock pulses originate at the com­
puter master clock and are distributed to vari­
ous units using delay line techniques for skew 
minimization. The data paths and control were 
designed to operate with a 4 megacycle clock and 
at present are operating at a 3.3 megacycle rate. 
The I-unit controls operate at half the master 
clock frequency. 

The controls are divided logically into the 
following categories: 

1. Instruction cou.nter 
2. Instruction preparation 
3. Lookahead loading 
4. Instruction execution 
5. Miscellaneous 

IC Controls 

The instruction counter controls consist of 
eight control stages for sequencing the opera­
tion of fetching instructions to the Y registers, 
checking I correcting them through the I checke:r, 
and advancing the IC :register. There are thir­
teen supervisory control storage triggers to con­
dition the control stages as to whether a fetch is 
in progress (outstanding), lY or 2Y is empty, ZL 
or ZR is empty, a branch to lY of 2Y is required, 
or a recovery is required. Six tag triggers indi­
cate whether there are any checks, instruction 
fetch alarms, or invalid addresses assoclated 
with the instructions in the Y registers. There 
are eight block and suspend triggers for ins.tan­
eously interrupting the normal IC operation to 
allow the I-unit instruction execution controls the 
use of the Y registers. 

These controls essentially attempt to keep 
the Y registers filled with new and checked in­
structions. They signal the preparation controls 
whenever Y register data is ready for transfer 
to Z. In branch and recovery operations, the IC 
controls are designed for rapid resetting and re­
starting at the new address in order to minimize 
the time required to refill the Y regiSters. 

These controls time share the I checker and 
the memory address bus with other controls. 
They operate simultaneously with the prepara­
tion and lookahead load controls as long as no 
interlock occurs to indicate that no YR is empty, 
an I unit instruction requires execution, or an 
interrupt is required. 

Preparation Controls 

The preparation controls consist of eight 
control sequencers which control the prepara­
tion of all instructions for the computer. This 
preparation involves the transfer of instructions 
from the YR' s to the ZR. the index fetching and 
address modification if required, and the word 
boundary crossover test for VFL instructions. 
In addition to the sequencers, there are six 
supervisory type control triggers which condition 
the selection of the right or left half of the 
current YR and the corresponding half of the ZR. 
Instruction pre-decoding as to type of instruc­
tion and indexing requirements is stored in 
eleven supervisory control triggers. There are 
eight additional tag triggers associated with the 



two halves of the ZR to indicate the class of 
floating point instruction in Z, so that the look­
ahead load controls can rapidly take over and 
load lookahead without a delay for decoding 
purposes. 

These controls signal the IC controls when 
a YR is empty, and signal the lookahead load 
controls or I-unit execution controls when the ZR 
has a prepared instruction. These contro Is are 
a completely independent set of hardware and 
operate simultaneously with the IC and look­
ahead load controls. Their function is basically 
to empty the YR I S and prepare and fill the ZR as 
rapidly as possible. to insure a high rate of in­
struction flow through the computer. 

Lookahead Load Controls 

The lookahead load controls consist of four­
teen sequencers which control the loading into 
lookahead of all I/O, VFL, and FP instructions. 

Five of these deal solely with the loading of 
VFL instructions and are in the form of a five­
stage execution timer. Every VFL load begins 
with the first stage and may then step to anyone 
of the remaining four, so that every VFL in­
struction requires anywhere from two to five 
steps. Each sequencer loads a different look .. 
ahead level so that a VFL instruction may occupy 
two to five levels. 1£ an operand address refers 
to an index address, the basic sequence is broken 
out of in order to fetch the index word by means 
of a common index fetch sequencer, and then 
control is returned to the VFL load sequence"!",::. 

There are two complete sets of our FP load 
sequencers for each half of the ZR. This was 
necessary to guarantee the fast switching and 
loading from the two halves of Z required to 
achieve the high FP performance. Each set of 
four FP sequencers controls the loading of one­
level or two-level FP instructions, depending 
upon whether one or two operands are involved, 
and it controls the actual fetching of the oper­
ands from external memory, index storage, or 
internal registers. The majority of FP instruc­
tions require only one control step in which the 
operand is fetched from main memory at the same 
time that the FP instruction is loaded into the 
single lookahead level. 

While this loading is being executed, the IC 
and the preparation controls rna y be simultan­
eously operating to maintain the instruction rate. 
The lookahead load controls signal the prepara­
tion controls when an instruction is completely 
loaded and the instruction in the ZR can be re-
p laced with a new one. 

Instruction Execution Controls 
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To execute the large number of I-unit in­
structions in all their variations required the 
design of a large control system. The instruc­
tions were categorized by type and then divided 
into logical operations and analyzed for maxi­
mum sharing of common controls. Circuit 
limitations and packaging rules often prevented 
sharing as much as was desired. As the control 
logic grew, it became necessary to package it in 
two frames instead of one, which, in turn, 
created a communication problem in critically 
timed areas. In order to keep the number of 
logical levels to a minimum, it was necessary 
to design a large amount of parallel logic into 
and out of each control stage. 

The instruction set was divided into four 
categories: index arithmetic, branch. transmit. 
and miscellaneous operations. Each group was 
worked on separately. and the control sequences 
and logic required were designed. These con­
trols were then compared for similarities. 
and wherever possible. common control logic 
was combined. The result was that sixty-one 
control sequencers and nine supervisory 
triggers. plus an operation decoder. were re­
quired to execute the instructions in satisfactory 
performance times. These controls provide for 
fetching and checking operands from memory 
(main memory, index storage, or internal regis­
ters), index adder logical operations, partial and 
full word transfer, checking operations, and the 
loading of lookahead with a large variety of oper­
ation codes and indicators. Most of these 
operations have a large number of input and out­
put conditions whose combinations can cause each 
operation to be performed in a wide variety of 
ways. Other requirements of these controls were 
that they be able to stop immediately on errors, 
be recoverable in case of instruction suppressing 
and interrupt conditions, and be able to manually 
step a cycle at a time. Every control stage has 
a line to the maintenance conso Ie for indication. 

Miscellaneous Controls 

These controls are used primarily in the 
execution of the manual operations and the 
special recovery routines. They consist mostly 
of supervisory control triggers which initiate, 
condition, and terminat e control sequences 
which perform the desired functions. The actual 
operations within the sequences are controlled by 
sequencers in the instruction execution area, 
and are shared for this purpose. For this reason 
the execution operation decoder must be blocked 
so as not to affect the stepping of the sequences 
for these special operations. Some special con-
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trol functions also taken care of in this area are: 
a store wait control when lookahead contains a 
store to XS, or the indicator or mask registers; 
time clock operation triggers; and I unit recovery 
because of program store test. Some of these 
special functions are very critically timed, since 
they must block normal operation immediately, 
or it will be too late and unrecoverable damage 
may be done. These controls are packaged in the 
IC control area so as to minimize the communi­
cation delay of the interlocks. 

Performance Characteristics 

Since the Stretch computer was originally 
contracted for by the Los Alamos Atomic Ene rgy 
Commission, certain of its performance goals 
were particularly important to the customer. Of 
primary importance was the complete floating 
point operation, including the instruction fetch­
ing, preparation, operand fetching, and actual 
execution. In the branch instruction, the Count 
and Branch instruction was to be used exten­
sively for controlling the many iterative program 
loops characteristic of scientific computing. The 
variable field length operation was desirable and 
attractive but its performance need not be, nor 
could it be economically, as high as FP. The 
index arithmetic instructions were all very im­
portant. 

The manner in which the Instruction unit 
achieves the desired performance goals in these 
areas wi 11 follow. These examples are chosen 
because of their special importance in scientific 
computing, and one should not infer that all the 
remaining operations were not important or not 
at a comparable performance level. The high 
overall performance goals of Stretch required 
that all the operations be executed in a much 
more powerful manner than any previous 
machine. 

Floating Point Instruction Preparation 

A timing diagram showing the preparation 
of continuous FP instructions is shown in Figure 
5. The preparation includes the fetching of in­
struction words from 2 usec memory, the ECC 
checking of the instruction, the Y to Z transfer 
and index fetch, the address modification, and 
finally the operand fetch and lookahead load. It 
can be seen how successive instruction fetches, 
preparations, and lookahead loads are over­
lapped to achieve a performance goal of one FP 
instruction every two cycles. Each instruction 
is assumed to require indexing. If this were not 
the case, then instantaneous rates would reach 
one FP instruction every cycle, but the average 
rate would still remain at one per two cycles. 

This is because the maximum rate of instruction 
fetches is balanced with the maximum indexing 
rate and lookahead rates. 

The diagram starts out by assuming a start­
up operation (either program start or recovery 
operation) where two rapid fetches are made by 
the IC to the Y registers. When the words are 
received from memory, they are immediately 
checked; if there are no errors, an extra 
correct cycle is not required. During 
the check cycle, the ECC is converted to 
parity and the preparation controls pre -decode 
the type of instruction. In this case each word 
contains two FP instructions. The next cycle 
is the transfer from the left half of I Y to the 
right half of Z. The criss-crossing of half­
word locations was adopted as the simplest 
way of handling the different combinations of 
full-word and half-word instructions that can 
occur. During this transfer, any addressed 
index word is fetched into the XR. Assum-
ing each instruction is to be indexed, the 
next cycle is the actual address modification, 
where the index value in X is added to the oper­
and address in ZR through the index adde'r and 
the result replaces the original operand address. 
These last two cycles tied up the lAU, so the 
next instruction in 1 YR waited. The first in­
struction is now ready for loading into looka­
head and fetching of the operand. With the lAU 
not busy, we can also transfer the next instruc­
tion to ZL and fetch its index word. The oper­
and fetch would be initiated were it not for the 
1 YR-ZL transfer emptying the 1 Y register. 
The Ie controls anticipate this and try to fetch' 
the next instruction word (IC + 3) into it. This 
conflicts with the operand fetch of the lookahead 
load cycle, but since -the IC controls have 
priority, the IC fetch is made simultaneously 
with the 1 YR transfer to Z and the index fetch. 
The lookahead load cycle is blocked during this 
cycle and completes the operand fetch and the 
load operation on the following cycle, over­
lapped with the modification of the second in­
struction. This early instruction fetch 
guarantees that the 1 Y register will be filled 
and checked by the time the 2Y register is 
emptied. In this manner the flow of instruc­
tions can be maintained. The degree of simul­
taneity in the I unit is best illustrated by the 
cycle with the single asterisk (*) which shows 
an instruction fetch to 2Y, a check cycle on 1 Y, 
a 2YR transfer to Z, an index fetch, and an 
attempted lookahead load, all occurring at the 
same time. 

The high degree of overlapped operation in 
the computer is best shown by the last cycle 
(**). In this cycle the following operations are 



occurring simultaneously: 

1. Instruction 1 is being executed and 
checked. 

2. Instruction 2 is being transferred from 
LA to the PAU. 

3. Three of the 4 LA levels are loaded 
with instructions 2, 3, and 4., 

4. Instruction 5 is ready to be loaded and 
its operand fetched. 

5. Instruction 6 is being transferred from 
lYR to ZL. 

6. The index word required by instruction 
6 is being fetched. 

7. Instructions 7 and 8 are being ECC 
checked in the I checker and being pre­
decoded. 

8. The IC is fetching the 5th instruction 
full word containing ins tructions 9 and 
10. 

This is but one variation of FP prepara­
tion. Other variations develop when the oper­
and address refers to index storage or an 
internal register, or where a second operand 
is implied, as in Multiply Cumulative and Load 
Cumulative Multiplicand, or when different 
types of instructions are intermingled with the 
FP ins tructions . 

The diagram not only indicates how one 
performance goal is achieved, but also indicates 
the large amount of control complexity required 
to efficiently interlock and execute this I-unit 
instruction preparation function. It further ill­
ustrates how complete overlap of instruction 
fetching, indexing, and lookahead loading is 
achieved. 

VFL Instruction Preparation 

The preparation of a variable field length 
instruction is shown in the timing diagram of 
Figure 6. Starting at the same point as Figure 
5, it shows the sequence when the second in­
struction is a full word VFL instruction located 
across memory word boundaries. In this case 
the left half of the first instruction word fetched 
is an FP instruction, and the right half is the 
left half of the VFL instruction. The left half 
of the second instruction word fetched contains 
the right half of the VFL instruction, while the 
right half of this word contains another FP in­
struction. 

The first instruction is processed exactly 
the same as in the previous example. Notice 
that this time when the right half of 1 Y is trans­
ferred to Z left, the eventual correct alignment 
of the full-word instruction in Z is provided for. 
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Again, any index word addressed by the half 
word in 1 YR is fetched into the XR. Before pro­
ceeding into the modification cycle, however, 
the type of indexing called for. normal or pro­
gressive, mus't be determined. This information 
is contained in the right half of the instruction, 
and is not available until the 2Y register has 
been filled, checked, and pre-decoded. In the 
example, this is completed by the end of the 
1 YR to ZL transfer, so no wait is required. 
Assuming normal indexing, the next cycle is 
the modification cycle for the left half. If pro­
gressive indexing (PX) had been specified, a 
much different sequence would have been re­
quired, and the operation would be done in two 
steps. The first one would replace the VFL 
operand address with the value field of the in­
dex word, and the instruction preparation would 
continue on and be loaded into lookahead. Fol­
lowing the lookahead loading, a control sequence 
would be entered where the increment, count, 
and refill operations on the index word, if 
called for, would be executed. The results of 
this operation would then be loaded into look­
ahead as the second of PX operations. 

After normal modification of the left of the 
VFL instruction, the right half is transferred 
from 2YL to ZR and its index fetch executed. 
The next cycle then modifie s the right haif of 
the instruction. The indexing and instruction 
operation codes are preserved during the modi­
fication. The next step is to determine whether 
one or two memory words are required to ob­
tain the operand field. The operand field can 
start at any bit position in a memory word and 
extend into the next memory word as long as 
the total field length is 64 bits or less. The 
word boundary crossover test (WBC) is done by 
adding, in the index adder, the length field to 
the full 24-bit operand address field. If a carry 
into position 17 of the operand address field 
occurs, then the instruction operand does, in 
fact, cross memory word boundaries. The high­
order 18 bits of the result are gated into the WR, 
and this is actually the operand address for the 
second memory word. 

This completes the preparation, and all 
that is left is to load the instruction into look­
ahead and fetch the operands. In this case 
three cycles are required. The first loads the 
instruction operation information into one 
lookahead level. Since the data field is used 
for part of the instruction information, no 
fetched operand can accompany this level. The 
next two cycles are for fetching the two operands 
of the instruction into two more levels of 
lookahead. The number of cycles required to 
load VFL type instructions varies from two to 
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five, depending on whether the instruction re­
quires one or two operands, whether it is a 
fetch or a store to memory type of instruction, 
and whether any special registers are implied 
in addition to the operand addres s. 

Having successfully loaded the instruction, 
the next half word FP instruction can be trans­
ferred from 2YR to ZL and the normal FP pre­
para tion continued. 

The dia.gram shows that the VFL instruc­
tion in this case took eight cycles as compared 
to two cycles for a normal FP. If the instruc­
tion had no indexing specified and only one 
operand memory word was required, the oper­
ation would have only taken five cycles. Again, 
there are many variations of these instructions, 
depending on the type of indexing required, 
whether the instruction arrives straight or 
across memory words, whether the operands 
are in XS, EM, or IR, and whether it is a store 
to memory operation or not. 

Count and Branch Execution 

The execution sequence for a Count and 
Branch (CB) instruction is shown in Figure 7. 
Assuming a continuation of the FP preparation 
of Figure 6, the fifth instruction is defined as 
a CB instruction. In the example, it is assumed 
that the instruction requires indexing, and there­
fore, it is possible to overlap the operation de­
coding with the modification cycle. Otherwise, 
it would have been necessary to take a separate 
decode cycle. Once decoded, the operation 
enters an execution sequence controlled by the 
decoder outputs and conditions arising out of 
the individual operations. The first cycle is a 
fetch of the index word, whose count field de­
termines whether the branch is successful or 
not. The next cycle, the fetch of the branch 
address instruction, is initiated, and at the same 
time the count field of the index word in the XR 
is decoded for a XC = I condition. If the condi­
tion for branching exists, the fetch is completed; 
if the condition does not exist, the fetch is 
blocked. This permits as rapid a fetch of the 
next instruction as possible, in order to begin 
filling up the Y registers with the new sequence 
of instructions. Overlapped with the instruc­
tion fetch is the loading into a lookahead level 
of the index word before modification. This is 
referred to as a psuedo-stol"e level, and is only 
used in recovery operations where the index 
registers have to restore to some previous 
level as a result of an interrupt or no-op condi­
tion. The next cycle is the actual counting down 
through the index adde r of the count field of the 
index word in the XR. After this is done, the 

value field can then be advanced or diminished 
'J:>yone or one-half, if called for by the instruc­
tion. This is also done through the index adder. 
At the same time, the advanced IC value (address 
of the instructions following the CB) is loaded 
into the same lookahead level as the psuedo­
store. This is done because the next cycle de­
stroys the IC contents by transferring into it 
the branch address from Z. If a no-op of this 
instruction is required, the I unit can continue 
straight on in the program. After the advance/ 
diminish cycle, the updated index word is re­
turned to XS. This is done by a clear cycle for 
resetting the word during the same cycle that 
transfers the branch address into the IC, and 
then following with a store cycle which sets the 
contents of the XR into the previously reset 
word in the array. To complete the operation, 
all indicators associated with this instruction 
and the new IC value are loaded into lookahead 
to be tested later in proper instruction sequence 

for an interrupt. If a condition occurs which 
will no-op the instruction, then the new IC field 
is not loaded, only the indicators and a no-op 
tag. This will cause any branching already done 
to be cancelled by a recovery operation later. 

Since the instruction branched to was 
fetched early in the operation, the new instruc­
tion word has arrived and has been checked by 
the time the CB instruction is completelyex­
ecuted. Immediately the normal instruction 
preparation is restarted, and in this case, the 
branched to FP instruction is loaded into look­
ahead four cycles later. 

The entire execution of the instruction 
took six cycles and was overlapped with the 
operand fetch, ECC check, and execution of 
instruction 1. In other words, it took ten 
cycles from the completion of one instruction 
in the program to branch to another program 
location and prepare and load the first new FP 
ins truction into lookahead. 

Variations of this instruction execution se­
quence occur with respect to the branch condi­
tion being 0 or not 0, the advance/diminish 
modifiers, and the setting of indicators that may 
cause a no-op or interrupt. In addition, there 
are other instructions in the same category 
which are more complicated and time-consum­
ing. These include the Store Instruction Count­
er if Count and Branch (SIC - CB), the Count, 
Branch, and Refill (CBR), and the SIC-CBR 
variations. 

Summary 

The instruction unit is a large com.plex, 
high-speed com.puter unit designed and built to 



provide the major functional ability and control 
for the Stretch Computer. A complete des­
cription of the major functional requirements is 
given along with some examples of the difficul­
ties encountered. The machine organization, 
including data paths and controls, is described, 
and many of the primary design considerations 
are discussed. The complexity and size of the 
unit are largely determined by the instruction 
buffering, fast access index registers, the ex­
tensive overlapping and simultarleity of opera­
tions, and the innumerable combinations and 
variations of instruction sequences that have to 
be controlled. "The control is achieved by a 
synchronous clock controlled network of vari­
able sequence execution control stages. The 
performance is shown for a few typical and 
particularly important operations. 

de sign of the data paths. 
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The overall engineering effort was under the 
supervision of Messrs. E. Bloch and R. E. 
Merwin. 
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APPENDIX A 

Instruction and Index Word Formats. 

VFL OA BA 110001 I I p I LENGTH I BS I OFFSET OP I 

0 1718 23 28 3132 35 40 44 50 60 63 

1/0 -I CHANNEL :ADR 1
1000 

I 
1: ADDRESS 

11 
OP I 

TRANSMIT FROM ADR 
1
1000 

1 I TO ADDRESS II J OP 'I 

SIC - BR SIC ADR 11000 I I BR ADR OP 

BR ON BIT OA BA 
1
1000 I I BR ADR OP III 

INDEX VALUE lsi COUNT REFILL 

0 23 28 4546 63 

FP OA OP I 1: I 
0 17 28 31 

32 49 60 63 

DIRECT INDEX OA I J OP I 

IMMED. INDEX DATA I J OP OP 

COUNT a BR BR ADR J OP III 

BR. IND. BR AOR IND OP III 

MISC. OA OP I 



APPENDIX B 
Memory Address Assignments 

Location Name Length Bit Address Type 

0 Zero 64 0-63 EM 
1 P, a Inte rval time r 19 o - 18 XS 
1 P, b Time clock 36 28 - 63 XS 
2P Interruption address 18 o - 17 EM 
3P Upper boundary 18 o - 17 IR 
3P Lower boundary 18 32 - 49 IR 
3P Boundary control bit 1 57 IR 
4 Maintenance bits 64 o - 63 EM/MC 
5b Channel addre s s 7 12 - 18 IR 
6 Other CPU 19 o - 18 IR 
7 Left Ze ros count 7 17 - 23 IR 
7 All ones count 7 44 - 50 IR 
8 Left half of accumulator 64 o - 63 IR 
9 Right half of accumulator 64 o - 63 IR 
10 Accumulator sign byte 8 0-7 IR 
11 c Indicators 64 o - 63 IR. 
12 d Mask 64 o - 63 IR. 
13 R.emainder 64 o - 63 EM 
14 Factor 64 o - 63 EM 
15 Transit 64 o - 63 EM 
16-31 Index registers XO - XIS 64 o - 63 XS 
32-k Normal external memory 64 o - 63 EM 

P Permanently protected area of memory. 

a R.ead-only except for STORE VALUE, STORE COUNT, STORE 
REFILL, and STORE ADDR.ESS. 

bRead-only. 

c Bit positions 0 - 19 are read-only. 

d Bit positions 0 - 19 are always ones, and bit positions 48 - 63 
are always zeros. 

k Last word address in a particular memory configuration. 

IR. Internal Register 

XS Index Storage 

EM External Memory 

MC Maintenance Console 
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APPENDIX C 

I Unit Instruction List 

A. Direct Index Arithmetic 

1. Load index. 
2. Load value. 
3. Load count. 
4. Load refill. 
5. Store index. 
6. Store value. 
7. Store count. 
8. Sto re refill. 
9. Add to value. 

10. Add to value and count. 
11. Compare value. 
12. Compare count. 
13. Rename. 
14. Load value effective. 
15. Store value in address. 

B. Immediate Index Arithmetic 

1. Load value immediate. 
2. Load count immediate. 
3. Load refill immediate. 
4. Load value negative immediate. 
5. Add immediate to value. 
6. Add immediate to value and count. 
7. Add immediate to value and count 

and refill. 
8. Subtract immediate from value. 
9. Subtract immediate from value and 

count. 
10. Subtract immediate from value and 

count and refill. 
11. Add immediate to count. 
12. Subtract immediate from count. 
13. Compare value immediate. 
14. Compare value negative immediate. 
15. Compare count immediate. 
16. Load value with sum. 

C. Unconditional Branching 

1. Branch. 
2. Branch relative. 
3. Branch enabled. 
4. Branch disabled. 
5. Branch enabled and wait. 
6. No operation. 

D. Indicator Branching 

Branch on Indicator 

Modifiers: 

a) Leave indicator. 
b) Set indicator to zero. 
c) Branch if off. 
d) Branch if on. 

E. Bit Branching 

B ranch on bit 

Modifiers: 

a) Leave bit. 
b) Invert bit. 
c) Set bit to zero. 
d) Branch if off. 
e) Branch if on. 

F. Index Branching 

1. Count and branch. 
2. Count, branch, and refill. 

Modifiers: 

a) Branch if count non-zero. 
b) Branch if count zero. 
c) Leave value is changed. 
d) Add half to value. 
e) Add one to value. 
f) Subtract one from value. 

G. Store Instruction Counter If 

H. Transmit Operations 

1. Transmit 
2. Swap. 

Modifiers: 

a) Forward 
b) Backward 
c) Direct count 
d) Immediate count 

J. Miscellaneous Operations 

1. Refill. 
2. Refill on count zero. 
3. Execute. 
4. Execute indirect and count. 
5. Store zero. 
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THE PRINTED MOTOR: A NEW APPROACH TO INTERMITTENT AND 
CONTINUOUS MOTION DEVICES IN DATA PROCESSING EQUIPMENT 

R. P. Burr 
Circuit Research Company 
33 Sea Cliff Avenue 
Glen Cove, New York 

Sunnnary 

The printed d-c motor is character­
ized by high pulse torque capability and 
freedom from cogging or preferred arma­
ture positions. These attributes lead to 
a variety of applications in data pro­
cessing equipment ranging from reel and 
capstan drives in magnetic and paper tape 
transports through detenting and position­
ing mechanisms. 

Analysis of the motor on a velocity 
basis yields a simple equivalent circuit 
which is a powerful tool for designing 
both the machine and its drive circuits 
into a specific requirement. Since there 
is no rotating iron in the structure and 
since the field is supplied by permanent 
magnets, the speed-torque curve of the 
motor is a straight line whose slope de­
fines a ''mechanical source impedance." 
Inertia of the proposed load appears as 
a capacitor in the same dimensional sys­
tem. When the desired machine motion can 
be expressed in terms of velocity and the 
inertia of the load is known, the shape 
and magnitude of the necessary driving 
signal can be determined for the oper­
ating cycle. 

A typical example of an application 
in a paper tape transport is described. 

Machine Structure and Printed Armature 

Most of the important electro­
mechanical characteristics of the printed 
motor are shown in the exploded view of 
a typical small machine as given in 
Figure 1. Here we see the mechanical 
relationship of the five key elements of 
the device: exciting magnets, armature, 
field return path, brushes and bearings. 
In the photograph the eight pole pieces 
of the permanent magnet cage are visible 
to the right. These are polarized alter­
nately north and south, so that there are 
actually four pole pairs in the structure. 
One should imagine that magnetic flux 
leaves some particular pole, travels 

parallel to the machine axis and tra­
verses the armature disc into the soft 
iron return ring at the left. Within 
the return iron the flux divides and 
travels in both directions circumferent­
ially until it arrives under adjacent 
magnetizing poles of opposite polarity. 
At this point it re-emerges into the air 
gap, passes again through the armature 
and thence back into the magnet. Hence, 
we have what is in effect a planar or 
axial air gap d-c motor structure in 
which the torque producing conductors 
rotate independently of the magnetizing 
iron, and in which, reciprocally, the 
uniformity and smoothness of the magnetic 
field is virtually unaffected by rotation 
of the armature. The photograph also 
shows the brush locations. One may ob­
serve that commutation takes place dir­
ectly upon the surface of the armature 
disc so that every conductor is commutated 
in sequence. This point is of consider­
able importance when added to the fact 
that rotation of the armature does not 
modulate the flux density. The result 
is that the printed motor displays no 
cogging whatever: the armature has no 
tendency toward a preferred set of 
positions. 

It would be difficult to imagine 
a d-c motor of simpler construction. The 
key, of course, lies in the design and 
fabrication of the printed armature which 
serves not only as the motor winding but 
as the commutator, or vice versa. The 
details of this important component need 
not concern us here since they have bten 
discussed elsewhere in the literature • 
Suffice it to say for present purposes 
that the armature is produced by modern 
printed circuit techniques from a mas~er 
drawing: the conductors have a flat 
cross-section, are uninsulated in the 
conventional sense, and are carried upon 
a substrate of mylar, epoxy-glass, or 
high-alumina ceramic, as the application 
demands. The technique may be practiced 
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for machines ranging in power output up 
to several mechanical kilowatts and in 
peak torques from a few ounce-inches to 
several thousand pound-feet. In each 
case the armature may be thought of as 
the "annular" equivalent of a wave wind­
ing in which commutation takes place upon 
every active conductor. 

Electro-mechanical Characteristics 

In order to visualize applications 
for the printed motor we must first ex­
amine its electro-mechanical character­
istics and attempt to construct an ana­
logy for its performance as a circuit 
component. As with most physically un­
complicated structures, we shall find 
this approach to be both easy and grati­
fyingly simple. 

A first step is to consider the re­
lationship between speed and torque which 
may be deduced from an inspection of 
Figure 3, which is a schematic of the 
machine from an electrical point of view. 
Resistor ra is defined as the armature 
resistance plus brush resistance plus the 
resistance of the source of voltage ET, 
if any. Voltage ea is the back EMF and 
is related to the speed S in thousands of 
revolutions per minute (or some other con­
venient unit) by a constant factor ke • 
Similarly, the output torque, T, is given 
by T = kT ia where kT is another constant 
factor. Application of Ohm's law to the 
circuit yields the classical equation for 
an ideal shunt wound or permanent magnet 
field d-c motor: 

14"~ - T r + keS 
...... L" - kT a (1) 

A slight rearrangement of this ex­
pression leads to: 

T I:"a + S 
kekT 

(2) 

which is the equation of a straight line 
as shown in Figure 4 having a negative 
slope numerically equal to ra/kekT. 

Before continuing, we should pause 
to note that no component for electrical 
inductance is shown in Figure 3. In 
point of fact, the inductance of a print­
ed motor armature is so small as to be 

negligible; torque at stall is in phase 
with the applied voltage. Subsequently, 
we shall be discussing intermittent oper­
ation of the motor at frequencies of 
several hundred cycles per second so 
that this point should not be neglected. 

Equivalent Circuit Development 

Equation (2) and the plot of Figure 
4 show clearly that the end points of any 
family of speed-torque curves are a fun­
ction only of the motor terminal voltage, 
EI. A further step may be taken by recog­
n zing that the slope of these curves, 
ra/kekT,is a useful measure of quality 
in such machines. The dimensions of the 
slope are speed-change-per-unit-applied­
torque and it may be thought of as re­
SUlting from an equivalent series mech­
anical resistance, which we shall desig­
nate by the symbol &ms. 

Upon pursuing this idea a little 
further, we are led to the concept of 
an electromechanical equivalent circuit 
on the basis of speed as shown in 
Figure 5. Here the usual voltage source 
is replaced by a generator of speed, Si, 
delivering an "output" So through an 
internal resistance, &ms. The flow of 
torque, T, through &ros causes a speed 
drop as shown in Figure 4. Torque is 
therefore analagous to current. Nothing 
is lost in regarding the machine from 
this viewpoint, since Figure 3 and 
Figure 5 are identical except for a change 
of dimensions. Consideration of the power 
relationships in both circuits will demon­
strate this fact. 

The circuit of Figure 5 is a first 
approach and is adequate to describe the 
motor only so long as we are dealing with 
steady state conditions and torque loads 
(including friction from bearings and 
brushes) which are independent of speed. 
Practical experience with and analysis 
of printed motors has shown that the total 
loss torque to be expected must always 
contain a viscosity component, or a torque 
which is proportional to output speed, in 
addition to a constant value. Graphically 
the behavior is as shown in Figure 6. To 
be consistent with our previous concept 
of mechanical resistance we will assign 
the symbol HmD to the slope of the viscos­
ity or damping torque line. The damping, 
component of torque to be expected at any 
speed is therefore So/RmD. 



By substituting the speed-varying 
torque component into equation (2) or the 
circuit of Figure 5, one obtains: 

which, after some algebra, becomes: 

S. RmD _ 'TI Ruts RutD 
~ Rms+RmD F Rms+RmD 

(3) 

(4) 

whereupon we observe with the aid of 
Thevenin's Theorem that RmD is a shunt 
"resistor" across the output tenninals 
of the network, as in Figure 7. 

To complete the network for transient 
operating conditions, which are usually of 
chief concern in servomechanisms, we must 
provide a component for the mechanical in­
ertia of the motor and load. By inspect­
ion of the equations of motion for a 
printed motor, one arrives at the conclu­
sion that mechanical inertia may be repre­
sented as a capacitor of appropriate mag­
nitude connected in parallel with RmD ac­
ross the network output tenninals. In 
particular, a possible equation of motion 
for the circuit of Figure 5 in response to 
a velocity "step", Si, is: 

So = Si 
dSo 

- J -- x Ruts dt 

where J denotes total system inertia. 
Rearranging this slightly we get 

dSo So --+--
dt JRms 

which is solved to obtain: 

(5) 

(6) 

(7) 

In this equation the factor J • Rms 
is the system mechanical time constant, 
1r, and is to be compared with the 

analagous factor R • C in a simple 
resistance capacitance network. 

The complete equivalent circuit is 
shown in Figure 8. Two sets of con~is­
tent units are given in Table I, while 
specific values of the various elements 
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for several types of printed motors are 
listed in Table II. 

Interpretation of Equivalent Circuit 

Having now devised a useful tool to 
aid in thinking about the motor we are 
in a position to draw several conclusions: 

First, we note that the veloctty 
response of the motor to changes of the 
input speed (i.e., applied tenninal 
voltage) or output torque will be exact­
ly analagous to the electrical response 
of the equivalent single-time-constant 
RC network. Conclusions on frequency 
response, power dissipation, source 
impedance and the like are equally valid 
for either system. This is a comfortable 
fact because it means that the motor is 
a simple element to consider in the over­
all design of a servomechanism. 

Second, the arrangement of the 
circuit indicates clearly that an in­
crease of the viscous damping component 
is beneficial to the system response 
time. The corresponding reduction of 
RroD lowers the motor time constant, i.e., 
we broaden the bandwidth by loading the 
"capacitor." At the same time, excessive 
damping will result in an inefficient 
machine useful only at low speeds, since 
the speed attenuation through &rns into 
RmD ultimately becomes large. 

Third, for high perfonnance the 
resistance of the "generator" is extremely 
important and should be kept low with re­
spect to the annature and brush resistance. 
Otherwise the effective value of Rms will 
rise above the theoretically attainable 
value and the time-constant will increase. 

Fourth, tne perfonnance of the motor 
as a transducer is critically dependent upon 
flux density in the air-gap. Both ke and 
kT vary directly with field strength, so 
that the value of both Rms and the time­
constant vary inversely as the square of 
the field. 

Fifth, the transition between the 
velocity input to the network and the 
actual driving voltage is given by the 
factor ke' since ET = ke Si. This is 
to say that once the desired input vel­
ocity has been detennined the corres­
ponding driving voltage is in direct 
proportion. 
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Application 

Two general types of servos are of 
interest in the field of data processing 
equipment. The first covers the range of 
motor applications in velocity servos for 
magnetic tape reel and capstan drives, 
analog mUltiplying devices and similar 
continuous motion applications. The second 
area contemplates intermittent operation 
of the machine as in paper tape drives, 
card handling apparatus, printers and so 
on. In this field, the desired result 
usually involves the rapid and precise 
acceleration and deceleration of some 
medium from one position to another in a 
manner which may not be repetitive. Con­
trol is usually provided by some form of 
pulse position servo, the signals to the 
motor being simply "ON" or "OFF". The 
equivalent circuit is particularly use­
ful for this type of operation since the 
velocity hehavior in either of the two 
states can be easily predicted. 

Figure 9 shows a typical arrangement 
for the step-by-step advance of perfor­
ated paper tape. Let us assume that it 
is desired to eliminate all brakes and 
clutches from the transport and to ac­
complish movement of the tape simply by 
starting and stopping the motor,--which 
is directly coupled to the tape drive 
capstan. Further, we wish that slewing 
operation with stop on a character be 
available without modification to the 
system. To achieve these conditions, 
the following sequence of events can be 
supposed: 

1. Start: The motor is at 
rest with the tape in registry 
over the reading aperture. A 
clock or command pulse is re­
ceived, switching the electronics 
and the power transistor con­
trolling the motor into the 
conducting state. 

2. Run: The motor velocity 
rises rapidly to its terminal 
value (or very nearly) before 
~ext sprocket hole appears 
in the reading aperture. (This 
condition guarantees a stop 
will occur in registry inde­
pendent of the tape travel 
while slewing.) 

3. Stop: A stop pulse is 
received from the tape, 
switching off the electronics 
and the motor. The motor 
velocity decays to zero in the 
interval between the arrival of 
the sprocket hole at the edge 
of the reading aperture and the 
movement of the hole to a posi­
tion of good registry. 

In order to arrive at the desired 
velocities in the neQwork, we must 
calculate from the various times, 
velocities and displacements implied by 
the specifications. One commences the 
design by adjusting the diameter (and 
there£ore the inertia) of the capstan 
drum so as to maximize linear accelera­
tion at the drum periphery. Next, the 
total permissible time for the motion 
may be calculated from the maximum 
stepping speed required; it might be, 
for example, 5 milliseconds for standard 
one-inch paper tape. For the time per­
iod from Start to Stop as previously 
described, one must assume that about 
2.5 time constants elapse, so as to be 
sure~t the motor is near terminal 
speed when the Stop Signal is received. 
Further, it is reasonable to assume 
(by calculation from the equivalent 
circuit) that the motor may be effective­
ly stopped in about one time constant 
with a small amount of reverse pulsing. 
Therefor~we oonclude that the entire 
motion time must occupy about 3.5 time 
constants, so that one time constant 
must equal about 5/3.5 or 1.4 milli­
seconds. Finally, we can estimate the 
various displacement components of the 
cycle accurately, since these are given 
by the drum diameter and the dimensions 
of the tape. From the information on 
motion time, drum diameter, running 
displacement and time constant, one may 
calculate and plot a curve of the motor 
output velocity which must be delivered 
by the equivalent circuit. A typical 
result is sketched in Figure 10. Note 
that a reverse pulse is shown as begin­
ning at Stop. The negative voltage 
pulse applied to t~e motor terminals 
during this interval is such that it 
would result in a complete reversal of 
the machine along. the dotted line ex­
tending into the negative velocity'region 
if sufficientLy proionged. 

The corresponding veloc'ty (or 



terminal voltage) input to the network is 
shown in Figure 11. The forward or "run" 
velocity is effectively that obtaining at 
the instant of Stop in Figure 10, since 
we assume that terminal velocity has been 
achieved during the "run" period. The 
reverse velocity amplitude must be con­
sistent with the assumption of a complete 
stop in about one time constant. This is 
the same thing as saying that the reverse 
velocity asymptote shown in Figure 10 must 
be 

1 _ 1 
1 - lIe 

times the forward velocity. The pulse 
duration is set close to the expected 
stopping time, but is not critical since 
an error in timing when the motor velocity 
is near zero results in only a small dis­
placement. 

Reduction to practice with such a 
design procedure is fundamentally a 
series of successive approximations: the 
designer is bound by limitations of the 
motor itself in terms of the realizable 
values of Rms and RmD which may be 
employed to get a usable result. Further, 
the effect of friction torque is always 
beneficial to intermittent motions if it 
is not excessive and is difficult to 
assess until the physical apparatus is 
tested: friction is easily compensated 
by raising the forward velocity and 
assists in a rapid stop since the friction 
torque "current" di~charges the inertia 
"capacitor." In general terms, the 
equivalent circuit approach is valuable 
since it provides a point of departure 
and as a means for reconciling unexpected 
phenomena which are so often experienced 
in matters of this sort. 

Developmental Tape Reader 

The circuit parameters and schematic 
driving arrangement for a newly developed 
high performance printed motor in a dev­
elopmental paper tape reader are shown in 
Figure 12. ° Note that the damping resistor, 
RmD, which would normally be several ttmes 
Ruts (Table II), is adjusted to be half 
the series resistance. In practice this 
is accomplished by laminating the arma­
ture with a thin disc of soft aluminum. 
The tape capstan drum and other mechanical 
parts of the machine are carefully adjust­
ed to achieve low inertia. 
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Operating tests on this reader 
transport show that a mechanical time 
constant of about one millisecond has 
been achieved. The motor will execute 
the complete cycle of start, accelerate, 
run, shut-off, decelerate and stop at 
a rate of 250 lines per second for 
standard one-inch paper tape. Stop­
on-a-character is automatically obtained 
for slewing operation while the reader 
will advance blocks of tape ten lfaes 
long at a rate of 25 per second. 

Conclusion 

The printed motor is an electrically 
simple device, providing smooth torque 
from a low inertia mechanical structure. 
Linearity of the speed-torque curves 
allows the construction of a simple 
equivalent circuit which accurately 
represents the transient performance of 
the machine in continuous and inter­
mittent motion servos. The feasibility 
of a proposed application may be studied 
and a design formulated by reconciliation 
of the desired velocity behavior with the 
machine parameters. 

1 Henry-Baudot, J. and Burr, R. P., 
"Printed Circuit DC Motors for 
Electronic and Instrument Applications," 
IRE National Convention Record, Part 9, 
March 1959 and Burr, R. P., "Printed 
Circuit Motors" presented at 1959 
AlEE Machine Tool Conference, 
Cleveland, Ohio, October 20, 1959. 
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Table I 

Consistent Units 

Equivalent Motor Speed Network 

A. Speed is measured in 1000 rpm, denoted by kpm. 
Armature resistance, r a , in ohms. 
Torque per ampere, kT' in in-oz/ampere. 
Back EMF per kpm, ke' in volts/kpm. 
Mechanical resistance, Rms, Rm~ in kpm/in-oz. 
Inertia, J, in 105 x in-oz-sec • 
Terminal voltage, ET, in volts. 

Note: The mUltiplying factor 105 for J arises from 
a conversion between radians per second and kpm. 

B. Speed is measured in radians per second, rad/sec. 
Armature resistance, r a , in ohms. 
Torque per ampere, kT' in gr-cm/ampere. 
Back EMF per kpm, ke, in volts/rad/sec. 
Mechanical resistance, ~s, Rmn in rad/sec/gr-cm. 
Inertia, J, in gr-cm-sec • 
Terminal voltage, ET, in volts. 



Table 11 

Rms l\nD 
?: 

mi11i-
Motor kpm/in-oz 19!m/in-oz seconds 

PM 368 94.5 x 10-3 842 x 10-3 34 

PM 368 A 94.5 x 10-3 13.2 x 10 -3 5 

PM 488 23.5 x 10 -3 400 x 10-3 41 

PM 668 2.5 x 10-3 106.6 x 10-3 24 

PM 1028 242 x 10-3 12.13 x 10-3 23 

PM 368 HF 15 x 10-3 7 x 10-3 1.5 

Cont. Peak 
Torque Torque 

in-oz in-oz 

12 150 

12 150 

42.5 375 

140 1175 

1000 8400 

30 375 

Case 
Diameter 

inches 

4.250 

4.25 

5.625 

7.125 

11.0 

5.625 

0\(..1) 
• (..I) c.n ...... 
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Fig. 7. Location of Mechanical "Viscosity" Re sistance 

Fig. 8. Complete Equivalent Speed Network Including Inertia Capacitor 
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