
Drive·
Macro Assembler

NOTICE

This manual describes the proprietary COFF (Common Object File Format) macro assembler (DM_ASM)
and COFF linker (DM_COFFLINK) for the DSP assembly language used with Adaptec's AIC44XX DMC.
DMC is an acronym for Drive Manager Ie containing a DSP core (PINE™) and proprietary circuitry on a
single IC. The words PINE and DM (Drive Manager) may, at times, be used interchangeably in the text.

The information contained in this document is subject to change without notice.

Copyright© 1995 Adaptec, Inc. All rights reserved. This document contains proprietary information which
is protected by U.S. and international copyright laws. It may not be used, copied, distributed, or disclosed
without the express written permission of Adaptec, Inc.

Adaptec and the Adaptec logo are registered trademarks of Adaptec, Inc. PINE, PINEASM, and COFFLINK
are trademarks ofDSP Semiconductors USA, Inc. Microsoft and MS-DOS are registered trademarks of
Microsoft Corporation. All other trademarks used are held by their respective owners.

DM_ASM and DM_COFFLINK User's Manual

Table of Contents

SECTION· Introd.uction .. 1

1.1 General Description .. 1

1.2 Related Documents .. 1

1.3 What's New .. 1

1.3.1 Assembler ... 1

1.3.2 Linker ... 2

SECTION - Installation ... 3

2.1 Package Contents ... 3

2.2 Installation Instructions for New Users .. 4

SECTION - DM_ASM Description .. 5

3.1 General Notes ... 5

3.2 DM_ASM Invocation ... 6

3.2.1 Batch File Invocation .. ; .. 6

3.2.2 Output Files .. 6

3.2.3 Using Make Files ... 6

3.2.4 Command Line Invocation ... 6

3.3 Instruction Set Syntax .. 8

3.3.1 Full Name vs. Simple Labels ... 9

3.4 Arithmetic and Logical Operators .. 10

3.5 Assembler Operators .. 11

3.6 Macro Preprocessor Operators ... 16

3.7 Assembler Directives ... 16

3.8 Macro Preprocessor Directives .. 21

3.8.1 Conditional Directives ... 21

3.8.2 Macro Directives .. 23

3.9 DM_ASM Limitations ... 26

SECTION - DM_COFFLink Description ••••••••••••••••• _ ••• _ •••••••••••••••••••••.•••••••••••••••••• 27

4.1 General Notes ... 27

4.2 DM_COFFLINK Invocation ... 27

4.2.1 Batch File Invocation ... 27

4.2.2 Command Line Invocation ... 28

4.3 DM_COFFLINK Script File .. 28

4.3.1 Linker Directives ... 31

4.3.2 Libraries Script Section .. 34

4.3.3 Objects Section .. 34

4.3.4 Classes Section .. 35

4.3.5 Code Section .. 36

4.3.6 Data Section .. 37

4.3.7 Data Overlays .. 38

4.4 Linking Algorithm ... 38

4.5 Generating COFF Library Files .. 40

4.6 Generating PROM Burnable Files ... 41

4.7 DM_COFFLINK Limitations ... 41

4.8 DM_COFFLINK Error Messages .. 42

SECTION - Programming Hints ... 45

5.1 Data Structures ... 45

5.2 Safe Macros Using PUSHSEG and POPSEG ... 46

5.3 DIFF Equate ... 46

5.4 Common ExportlImport Include Files ... 47

5.5 Multiple Segment Definitions ... 49

5.6 Direct Memory Addressing Support .. 49

5.7 Fractional Arithmetics Support .. 51

APPENDIX A . DSP Instruction Set ... _ 53

A.l Notation and Conventions ... 53

A.2 Instruction Set Summary ... 56

APPENDIX B • Restrictions Checked By DM_ASM ... 73

B.I Instruction Restrictions .. 73

B.I.I Self Restriction on ALU Instructions: 00 .. 73

B.l.2 Self Restriction on aX and p: .. 73

B.I.3 Self Restriction on Indirect mov Instructions: .. 73

B.1.4 Self Restriction on reg-to-reg mov Instructions: ... 73

B.1.5 Self Restriction on ac-to-reg mov Instructions: .. 73

B.I.6 Self Restriction on p-to-reg mov Instructions: .. 73

B.1.7 Self Restriction on pc as Source Register: .. 74

B.I.8 Block restrictions (bkrep): ... 74

B.I.9 Forward Restriction on Moving Data to the pc: .. 74

B.I.IO Forward Restriction on Repeat Instructions: ... 74

B.I.II Forward Restriction on Repeat Instruction Types: .. 74

B.I.12 Forward Restriction on stO: ... 74

ii DM_ASM and DM_COFFLINK User's Manual

APPENDIX C - Internal Preprocessor Directives .. 75

APPENDIX D - DM_ASM Error Messages .. 77

0.1 Macro Pre-Processor Error Messages: ... 77

0.2 Syntax. Error Messages: .. 78

0.3 Range Checking Errors: ... 79

0.4 Logical Error Messages: ... 80

0.5 File 110 Messages: .. 80

0.6 Memory Allocation Messages: ... 81

0.7 Limitations Messages: .. 81

0.8 Restrictions Messages: ... 81

0.9 Command Line Messages: ... 82

0.10 Internal Error Messages: .. 82

0.11 InformationlReport Messages: ... 82

iii

This page intentionally left blank.

iv DM_ASM and DM_ COFFLINK User's Manual

1.1 General Description

SECTION 1
Introduction

This manual describes the proprietary COFF (Common Object File Format) macro assembler
(DM_ASM) and COFF linker (DM_COFFLINK) for the DSP assembler language. The Drive Man­
ager Assembler will be referred to as DM_ASM and the Drive Manager Linker as DM_COFFLINK.
The information i~ this manual is updated to correspond to the DM_ASM version 6.2, and to
DM_COFFLINK version 6.2. Finally, this manual will briefly describe how to generate programma­
ble load files, linker maps, and symbol tables.

This manual assumes that the reader is familiar with assembly programming and with the DMC
instruction set. It explains the installation procedures, the various invocation parameters, all assem­
bler directives, the linker script files format and options, some programming hints, error messages
and restrictions or limitations.

1.2 Related Documents

DSP Core Programmer's Manual, PN: 700175-011
DM_ASM and DM_CoffLink User's Manual, PN: 700174-011
DM_DBG Programmer's User's Manual, PN: 700176-011
AIC-4420 Drive Manager Chip Data Sheet, PN: 700211-011
AIC-4420 Drive Manager Chip ROM Code User's Guide, PN: 700185-011

1.3 What's New

Below is a short list of the changes in version 6.2.1 versus 6.2.0. For the most complete and up-to­
date information, see the release notes.

1.3.1 Assembler

1. Octal Constants

The new assembler allows the use of various numeric representations, including the new
OCTAL representation, consisting of any string of the numeric characters 0, 1, ... , 7 starting
with a zero (0). For example, 017 is the octal representation of fifteen, not to be confused with
17, which is the decimal representation of seventeen.

By default, in version 6.2.1 of the assembler, the octal format is disabled, to allow compatibil­
ity with old code. To enable the new octal format, add the invocation the "-octal" flag, i.e.

pineasm6 -octal <assembly_file.asm>

1

Introduction Section 1

2

pineasm6 -octal <assembly_file.asm>

2. Improved Restriction Checking

The new assembler, version 6.2.1 correctly flags certain architecture restriction violations
related to the "bkrep" instruction, previously assembled and left undetected in version 6..x.

3. Undefined and Undeclared Label References

The assembler now issues a warning whenever an undefined and undeclared label is refer­
enced in a particular module. To get rid of the warning, an explicit .EXTERN or .GLOBAL
declaration of the label must be preceded the usage of the label.

1.3.2 Linker

1. Improved Coff Section Map

As of version 6.2.1, the coff section map is ordered according to the section addresses. Fur­
thermore, the section names are now nicely aligned to create a much more readable and useful
map. By default, the map section does not include symbol relocation information.

2. Improved Coff Symbol Table

As of version 6.2.1, the coff symbol table is ordered according to the symbol name and pro­
vides the absolute {relocated} address of all the symbols after linking all sections.

3. Long File Names (Unix)

Version 6.2.1 fixes a bug encountered in the Unix version of version 6.2.0 of long library file
names (including the full path) in the linker script file.

4. Positive Numeric Offset Bug

Version 6.2.1 fixes a bug encountered in version 6.2.0, when positive numeric offsets were
used, e.g.

move @ Label+2, rO

or

move @ Label+2, rO

The correct value is now used for patching the opcode in the object

5. Library Files

The Linker has been fixed when working with library files.

6. The linker now correctly handles the "next{ ... }" directives in overlays defined in the linker
script file.

SECTION 2
Installation

2.1 Package Contents

The list of files supplied on the DM_ASM I DM_COFFLINK software package diskette includes:

Documentation Files:

READASM. TXT- initial instructions, latest information

Batch Files:

COFF2DMC.BAT
COFF2HEX.BAT
AA.BAT
LINK6.BAT
L.BAT

FL.BAT

LINK2ROM.BAT

Executable Files:

- creates DMC format file for ROM mask creation
- creates a PROM burn file in Intel hex format
- invokes macro preprocessor, DM_ASM and listing enhancer
- invokes DM_ COFFLINK linker
- invokes DM_COFFLINK and prepares RS-232 serial port download file

(using ROM software)
- invokes DM-COFFLINK and prepares RS-232 serial port download file
for rogramming flash EEPROM (using flash support software)

- invokes linker and generates ROM format file for mask creation

COFFLNK6.EXE - PINE COFF object linker
COFFUTIL.EXE - utility to extract COFF in HEX fonnat (used by COFF2HEX.BAT)
ERROR. COM - utility used by batch files to return error level
HEX2DMC.EXE - utility to convert HEX file to DMC file
INTELHEX.COM - utility used by COFF2HEX.BAT to generate PROM burn file(s)
MPP.EXE - PINE macro preprocessor
PINEASM6.EXE - PINE macro assembler
SORTHEX.EXE - utility used to sort COFF contents
DOWNLOAD.EXE - creates TXT file for RS-232 serial port download into the DMC
PINEABS.EXE - creates ABS listing with absolute addresses
COFFLm.EXE - COFF object library archiver (ver 1.0)
HEX2ROM.EXE - utility to convert HEX file to ROM file

DM_ASM and DM_COFFLINK User's Manual 3

Installation Section 2

2.2 Installation Instructions for New Users

4

The DM_ASM and DM_COFFLINK programs require MS-DOS version 5.0 or higher. For a first
time installation, either I} perfonn the following four steps, or 2) run the INSTALL.BAT file on
the installation diskette and then perfonn steps 3 and 4 only:

1. Create Directory

It is suggested that the user install all DM_ASM/COFFLINK files in a directory named
C:\TOOLS\DMC. The name of the directory is not important, but it must be set as an environ­
ment variable named DMCTOOLS (see item 3 below). Change to this directory:

MD C:\TOOLS\DMC

CD C:\TOOLS\DMC

2. Copy Files

Copy or uncompress all files in the diskettes' root directory to C:\DMC\TOOLS directory:

COpy A:*.*

PKUNZIP A:*.ZIP

3. Modify AUTOEXEC.BAT File

Add the following line to your AUTOEXEC.BAT file:

SET PINETOOLS=C:\TOOLS\DMC

SET DOS4G=QUIET

Next, make sure that an environment variable TEMP has been defined in your
AUTOEXEC.BAT file. It must be set to a directory that will be used for scratch files. A RAM
disk can be used for this purpose.

NOTE: the TEMP directory name can not contain a trailing backslash (\), i.e. when it is the
root directory of a device, e.g.

SET TEMP=E:\TEMP OK

SET TEMP=E: OK

SET TEMP=E:\ Wrong!

Change the PATH environment variable to include the DMCTOOLS directory:

PATH=%PATH%;%PINETOOLS%

4. Modify CONFIG.SYS File

In order to ensure ample environment space, your CONFIG.SYS file must specify COM­
MAND.COM and the amount of environment space, (the default of 256 is nonnally not suffi­
cient), e.g.

SHELL=C:\COMMAND.COM IP IE:1024

The installation procedure is now complete, and you can start using DM_ASMICOFFLINK COFF
macro assembler and linker.

NOTE: The version 6 tools use a 32-bit DOS extender technology to allow use of extended
memory.

DM_ASM and DM_COFFLINK User's Manual

SECTION 3
DM_ASM Description

3.1 General Notes

DM_ASM is a case-sensitive COFF macro assembler that fully supports the DSP assembly lan­
guage. It permits dynamic memory allocation at link time and has complete DSP programming
restrictions checking. DM_ASM prepares the object for full symbolic debugging with the
DM_DBG software. It has C-like operators and conventions that allow easy development of code
and data structures.

COFF object files created by the assembler are linked by DM_COFFLINK via a linker script file
into a executable COFF load file. This load file can be loaded by the DM debugger software for
symbolic emulation or simulation.

COFF makes modular programming simple because it enables the programmer to think in terms of
blocks of code and blocks of data, referenced hereafter as segments or sections. Assembler and
linker directives enable the programmer to easily create and relocate sections. Labels are refer­
enced using a segment name followed by a dot and an offset in that segment, similar to the way
that labels are identified in a typical C debugging environment. All segments are of either CODE
or DATA type. The load file can consist of any arrangement of either CODE or DATA segments.
All segment names and labels defined as "external" are automatically stored in the symbol tables
of the COFF files, so that symbolic debugging can be performed in the debugger once the COFF
executable has been loaded into memory.

The DM macro assembler is comprised of three parts: the macro preprocessor, the main program
that analyzes the assembly instructions and a post-processor for listing enhancement. The macro
preprocessor is the DOS executable program MPP.EXE. The main program is the DOS executable
file PINEASM6.EXE. The post-processor is the DOS executable LST.EXE.

The macro preprocessor has the following purposes:

1. Merges included files.

2. Replaces macros and equated strings.

3. Filters the relevant portions of the input file in case of conditional assembly.

4. Prepares line number information for the assembler.

The main program has the following two passes:

1. Assembly pass - where syntax is checked and the COFF object file is built.

2. Restriction pass - where DSP architectural restrictions are checked.

5

DM_ASM Description Section 3

3.2 DM_ASM Invocation

3.2.1 Batch File Invocation

The nonnal way to invoke the DM macro assembler is via the batch file AA.BAT, where the argu­
ment is the base name of the source file, i.e., without the mandatory .ASM extension. From the
DOS command line type:

AA BaseFileName

If you receive the DOS error message "out of environment space", increase the environment space
in your CONFIG.SYS file (see installation instructions in Section 2).

3.2.2 Output Files

The outputs from running DM_ASM with AA.BAT are an object file (.0 extension) and a listing
file (.LST extension). In the%TEMP% directory, a temporary MPP.TMP file is created, which can
be viewed for debugging problems occurring during the macro preprocessing stage (see also the
general notes above).

3.2.3 Using Make Files

There are two ways to use MAKE utilities to run DM_ASM and DM_ COFFLINK. If you have the
latest versions of the MAKE utilities from Microsoft, you can run a "dynamic make", i.e., a
MAKE that has the ability to swap to extended memory or to swap to disk. In this case do not write
CALL before batch file commands. If you have a more restricted MAKE version, you can run a
"static make", i.e., a MAKE that produces a batch file of what it would have executed dynamically,
and then execute the batch file after the MAKE is finished. In a static MAKE, you must write
CALL before batch file commands. In Microsoft MAKE utilities, static makes are obtained when
invoking with the -N option. Note that if your conventional memory is limited, it is recommended
to use a static make.

3.2.4 Command Line Invocation

The MPP.EXE preprocessor can be invoked directly from the DOS command line:

mpp [options] sourcefile > outputfile

Options:

-iPathName To look for included files in the provided path if not found in current directory.
Multiple directories can be given, separated by";" or ",".

-s To filter out all statements falling under false assembly condition. By

default, these lines are printed as comments.

-c To filter out all user's comments.

-w To print warning messages in output file.

-h To print a help message.

-0 FileName To force a particular output filename (replaces the 44> outputfile" part)

6 DM_ASM and DM_COFFLINK User's Manual

Section 3

NOTES:

1. Uppercase letters can also be used for selecting the options (-I~-M~-S~-C,-W).

2. An environment variable named MPP can be set with a DOS command to specify a path for
searching included files, e.g. "SET MPP=c:\user\include;x:\pine\inc". If both environment
variable MPP is set and the -i option is used~ then the environment variable is ignored. By
default, the active directory is always searched first.

3. MPP returns a DOS error code of 1 upon detection of any kind of error.

The PINEASM6.EXE main program can also be invoked directly from the DOS command line:

pineasrn6 [options] < sourcefile > listingfile

Options:

-iPathName To look for included files in the provided path if not found in current

directory. Multiple directories can be given~ separated by ";" or ",".

-s

-c

-w

To filter out all statements falling under false assembly condition. By

default, these lines are printed as comments.

To filter out all user's comments.

To print warning messages in output file.

-h To print a help message

-0 FileName To force a particular output filename (replaces the "> outputfile" part)

NOTES:

1. PineASM returns a DOS error code of 1 if any errors occur.

2. If using the interactive mode (option -S), activate the assembler by entering a single or
double "Z (control+Z) character sequence.

DM_ASM and DM_COFFLINK User's Manual 7

DM_ASM Description Section 3

3.3 Instruction Set Syntax

8

The instruction set syntax is summarized in appendix A of this manual. The following list specifies
programming conventions assumed by the DM_ASM COFF macro assembler, not mentioned in
the architecture specification.

CONVENTIONS:

1. The COFF assembler is case-sensitive. Opcode mnemonics, register names, and flag names
are all lower case. Assembler directives are all upper case. Directive, mnemonic, register, and
flag names are reserved words. User labels should not conflict with them.

2. The hexadecimal and binary numeric formats are C style, e.g. Ox1234 and OblOlO.

3. The syntax used for offset addresses, i.e. the location counter relative jump address used in brr
and callr instructions, is the following:

$
$ + NurnericExpression
$ - NurnericExpression
NurnericExpression + $

Example:

brr $+1

4. There are two immediate value operators, # and ##, for short values (8 bits) and long values
(16 bits) respectively. The following instructions can accept both fprms: mov, add, sub, and,
or, xor, cmp. For these instructions, the assembler will automatically use the long format for
immediate constants that can not be represented by 8 bits. All other instructions that can accept
an immediate value operand, accept only the short form. They must be specified with #.
Instructions that allow only long immediate values should have the ## operator prefixed to
their operands.

Examples:

mov #0, rO
mov ##0, rO
mov #Oxffff,rO
mov #Ox7fff,rO
mov #O,aO

mov ##O,aO
mov #O,aOl
mov #O,aOh

one word instruction
two word instruction
one word instruction, sign extension ignored
two word instruction
illegal one word instruction (see architecture
specification)
two word instruction
one word instruction
one word instruction

5. The movp instruction is different when the first operand is the accumulator. The low accumu­
lator must be explicitly specified, e.g.

; correct syntax movp (aOl), rS
movp (aO), rS i architecture specification syntax - illegal format

Note that the movp syntax conforms with calla.

6. To ensure full architectural restriction checking associated with the bkrep instruction, a bkrep
block must be completely contained within a single COFF section, i.e.

a) No .CODE, .DATA or .ORG directives are allowed inside a bkrep block.

DM_ASM and DM_COFFLINK User's Manual

Section 3

b) The second operand of the bkrep instruction, which contains the tenninating address of
the block, can contain only a forward reference to a temporary or permanent label declared
in the same COFF section.

7. To ensure full checking of relative branches and calls, the brr and callr instructions can
branch to a (relative) address only within the current COFF section.

8. Comments can be added in 2 ways: on a single line (e.g. after an instruction), by preceding it
with a semicolon (;), or on mUltiple lines as in C programs (/* comment */).

3.3.1 Full Name vs. Simple Labels

For compatibility reasons with previous versions of the assembler and linker, permanent labels are
of either two types: "full name" or "simple". The type depends on the section (segment) in which
they are defined.

Labels that are defined in a .CODE or .DATA section, are "full name" labels. They inherent the
name of that section as a prefix to the label, separated with the dot (.) operator. A reference to such
a label, needs the specification of the full name, i.e. "segment_name.label_name". Inside a .CODE
or .DATA section, if a reference is made to a label, it is automatically prefixed with the section
name, unless an explicit section name is prefixed by the programmer. Every time a new .CODE or
.DATA section is declared, a new prefix is active which is automatically given to label definitions
and added to label references in that section. By using the . USE directive, the default prefix to
label references can be changed until a new .CODE or .DATA section is declared, or a new .USE
declaration is made. The directives .PUSHSEG and .POPSEG can be used inside .CODE and
.DATA sections, to temporarily change the active segment for prefixing, and restoring the previous
active segment, without knowing the section name, which is useful for macros that can be invoked
in different segments. Note that '1'u11 name" labels can have the same label name in the same mod­
ule if they are defined in different segments.

The "simple" labels on the other hand, are labels that are defined in a .CSECT or .DSECT section.
Inside a particular module (file) they must have a unique name, across both program (code) and
data memory spaces. By default, they are local, unless the .PUBLIC directive is used to declare
them global, in which case they may not be redefined in any other section or module. Simple labels
do not inherent any segment prefix and are referenced just by their name.

To refer to a "full name" label inside a .CSECT or .DSECT section, just add the appropriate seg­
ment prefix. To refer to a "simple" label from within a .CODE or .DATA section, you must instruct
the assembler not to automatically add the segment prefix by first issuing a ".USE 0" command. In
this case, this mode will be in effect until a new .CODE, .DATA or .USE directive is used. See the
description of the various directives for more details.

DM_ASM and DM_COFFLINK User's Manual 9

Section 3

3.4 Arithmetic and Logical Operators

10

The arithmetic and logical operators are a subset of the C language operators. All of the operators
are effective at assembly time on resolvable constants. The order of expression evaluation is the
same as in C.

The following are the supported operators:

+

/

*
%
&&
II
&
I
A

»
«
Unary +
Unary -
Unary
Unary !
(expr)

!=
>=
>
<=
<
expr? vI: v2

Addition operator
Subtraction operator
Integer division operator
Multiplication operator
Modulo operator
Logical-And operator
Logical-Or operator
Bit-And operator
Bit-Or operator
Bit-Xor operator
Arithm. shift-right operator (sign ext)
Bit shift-left operator
Positive operator
Sign change operator
Bit complement operatoR
Logical not operator
Group operator
Equal test operator
Not equal test operator
Greater than or equal test operator
Greater than test operator
Less than or equal test operator
Less than test operator
Conditional operator (if expr then vI, else v2)

NOTE: The C paste operator (##) and string operator (#) are not supported, because they are used
to specify long or short immediate values in immediate addressing (see Section 3.5
below). The paste operator is described in Section 3.6.

Section 3

3.5 Assembler Operators

##Operator

The long immediate operator is both an assembly-time and link-time opemtor which accepts a
word (16-bit) value.

Example: mov ##label+l, rO

Operator

The short immediate opemtor is both an assembly-time and link-time operator which accepts a
byte (8-bit) value.

Example: mov #0, rO

$ Operator

The location counter opemtor is a link-time opemtor which represents the address of the next
instruction. An operand expression may not include both a label and a '$' together.

Example:

: Operator

brr $-1
mov #$+label, rO

branch to self
illegal

The (:) is the label definition operator. It is both an assembly-time and link-time opemtor. The off­
set name is the symbolic name of the label with respect to the current segment. Note that the direc­
tives .USE, .PUSHSEG, and .POPSEG, have no effect on the current segment. The unabbreviated
reference to this label is "CurrentSegmentName.OffsetName." The abbreviated reference to this
label is "OffsetName." It is affected by the use of the directives .USE, .PUSHSEG, and .POPSEG.

NOTE: The trailing colon (:) is mandatory. The maximum length of an offset name is 31 char­
acters.1t must start in the left-most column with a letter (lower or upper case) and may
include any letters, digits or underscore L) symbols. Preceding as well as trailing blanks
and tabs are ignored. Labels are case sensitive.

Example:

My_Labe12: mov #O,y
brr My_Labe12, eq

DM_ASM and DM_COFFLINK User's Manual

label definition
label reference

11

DM_ASM Description Section 3

12

% ••• : Operator

The (% ... :) is the temporary label definition operator. It is an assembly-time operator. The scope
of a temporary label is only within the current COFF section, i.e., the current instance of the cur­
rent segment. The current section tenninates with the .CODE, .DATA, or .ORO directives. Tem­
porary labels must be used only in the bkrep instructions, to ensure proper restriction checking.
Temporary labels may be used by all other branching instructions, for example when the program­
mer is exhausting his label naming creativity, or when multiple program pieces exist that are
branched to upon the same cause or condition.

NOTES:

1. Temporary labels are not symbolically disassembled by the debugger.

2. The temporary label must be followed by an instruction before the end of the COFF section in
which it is defined, otherwise it will be ignored.

>%Label and <%Label Operators

These operators are the assembly-time forward and backward temporary label reference operators
respectively. The closest forward or backward reference is used respectively. Temporary label ref­
erences can not be prefixed with a segment name. The scope of a temporary label is only within
the current COFF section, i.e., the current instance of the current segment. The current section ter­
minates with the .CODE, .DATA, or .ORG directives.

NOTES:

1. By default, references to temporary lables are assumed to be forward.

2. The reference to the last address of a bkrep loop must be a temporary label.

Example: add r 0, a 0
br >%Ok, It

%Ok:
add rl, aO
br >%Ok, gt

%Ok:

. Operator

The (.) dot operator, or segment prefix operator, allows for fully specified "full name" permanent
label references. It is an assembly-time operator. Offset names are only unique within segments,
i.e., the same offset name may be defined in many segments. An offset name is unique only when
prefixed with its segment name. By default, "full name" label references (label references inside
.CODE or .DATA sections) that do not contain an explicit segment prefix, use the prefix of the cur­
rent .CODE or .DATA segment, i.e., the segment where the label is referenced (and not necessarily
where it is defined). The. USE, .PUSHSEO, and .POPSEO directives affect the default behavior of

DM_ASM and DM_ COFFLINK User's Manual

Section 3 DM_ASM Description

unprefixed "full name" type of labels (see section 3.4 above). Names, numbers or numeric expres­
sions can be used for offsets (which might be useful for addressing arrays). The dot operator can
not be used with "simple" labels. Names, numbers or numeric expressions can be used for offsets
(which might be useful for addressing arrays).

Examples:

mov #SegName.OffsetName1, rO
mov #SegName.15, rO
mov #SegName. (3*5)

The proper way of referencing the base address of a segment is SegName.O, where only a segment
name is required as an external reference (see section 3.7 below) and no offset names are required.
SegName.O must be declared as external, e.g. .

.EXTERN SegName.O

Even though the assembler does not currently support a type definition or structure definition
directive, with the use of simple macros, one level structures can be defined. This can easily be
used to declare the same structure in multiple segments (see also section 5).

@ Operator

The (@) at operator, or modulo-256 operator, allows for automatic label references in direct
addressing mode. This is a link-time operator. Symbol names preceded with this operator, will be
treated as direct memory addresses by the linker, i.e. their final (relocated) address will be trun­
cated to 8 bits by modulo 256 operation on the address value.

Examples: mov @SegName.OffsetName1, rO
mov aOh, @SegName.Label

FRACT(number,bits) Operator

The fract operator is an assembly-time operator which calculates the 16 bit integer value represent­
ing the floating point operand in a user supplied fractional representation. The fractional represen­
tation is specified by indicating the number of bits to the right of the floating point.

Examples:
mov
mov

##FRACT(0.25, 15), rO; translates to
##FRACT(3.5, 12), r1 ; translates to

mov ##Ox2000, rO
mov ##Ox3800, r1

In the first example, 1 bit is used for the sign of the number and 15 bits are allocated for represent­
ing the fraction 0.25. In this format, the range of values that can be used is from -1.0 to + 1.0 (not
including the limits). In the second example, 1 bit is used for the sign of the number, 3 bits are allo­
cated for the integer part of the number and 12 bits are used for the fraction part of the number. For
more examples and programming hints, see also Section 5.7.

DM_ASM and DM_COFFLINK User's Manual 13

DM_ASM Description Section 3

14

IMMEDOFFSET Operator

The immediate offset operator is an assembly-time operator which calculates the offset of a label
from within the segment in which it is defined. The label can not be an external or forward refer­
ence. This operator can effectively be used to calculate the number of consecutive variables.
defined in a long data segment. See also Section 5.3 for more examples on how to use this opera­
tor.

Example: mov #IMMEDOFFSET Segment.Offset, rO

INCODE Operator

The INeaDE operator is a link-time operator. It preceeds a label and instructs the linker to use the
address of the label residing in the program space. This operator is used when creating down-Ioad­
able programs. In this case, a section might be linked in both the program and data space. Labels in
this section are thus defined twice, in both the data space and program space. By default, all label
references used in call(r) and br(r) instructions refer to the program space, and all other label refer­
ences are assumed to point into the data space. In case a down-Ioadable program is created, a label
reference used in an instruction which is not call(r) or br(r) might be a reference into the program
space, in which case it must be preceeded with the operator INCODE.

Example:

mov ## INCODE MyTable, r4 ; take address of MyTable in the program space
movp (r4)+,(rO)+

OFFSET Operator

The offset operator is a link-time operator which calculates the offset of a label from within the
segment in which it is defined. If the label on which this operator is used resides in a data segment
that is located on a page boundary (specified at link time), this operator can be used for direct
addressing mode. Upon linking, the object code that corresponds to the label is patched to reflect
the distance between the final label address and the final address of the start of the segment in
which this label is defined.

Example: mov #OFFSET Segment.Variable, rl

See also Section 5.6 for more examples on this operator and how it can be used for direct memory
addressing.

PGOperator

The PG(Symbol) link-time operator finds the 256-word memory page of the symbol. It is equiva­
lent to using SHR(Symbol, 8). This link time operator enables the programmer to load the proces­
sor's page register with the Jpg instruction, without worrying where the symbol is eventually
located by the linker.

Section 3 DM_ASM Description

Example:

Ipg #PG(Segment.Offset)

NOTES:

1. For trouble free data memory accesses using the efficient short direct addressing mode, the
programmer must guarantee via the linker that his data segments are aligned on page bound­
aries (using the a6gn linker option) and that the data segments do not exceed the physical page
size of 256 words (using the inpage linker option). If these conditions are not met, the pro­
grammer must change the page bits each time according to the data variable being accessed.
See also section 5.6 for more explanations and examples.

2. The PG operator can be used with arithmetic expressions of the type +const or -const.

SHR Operator

The SHR(Symbol,nBits) link-time shift-right operator executes a bit shift-right. It differs from
''»'' which is an arithmetic shift-right assembly-time operator. This link time operation allows
efficient loading of the preocessor's page register via the LPG #immediate instruction.

Example: Ipg #SHR(Segment.Offset, 8)

NOTES:

1. The programmer must guarantee via the linker that the segment is aligned on the proper
boundary.

2. nBits must comply with: 0<= nBits <= 15

3. See Section 5.6 for more examples and how this operator can be used for efficient direct mm­
ory addressing.

SIZEOF Operator

The SIZEOF(SectionName) link-time operator calculates the size of a section. This link time oper­
ator helps creating efficient code when the size of a section is a parameter. Examples are initializa­
tion programs that need to inialize all the variables allocated to a particular data section.

Example:

NOTE:

clr aO
rep #SIZEOF (MyData)-1
mav aOi, (rl)+

The SIZEOF operator can be combined with simple arithmetic expressions of the type+const8 or -
const8 (where const8 represents an 8 bit signed number) as shown in the above example.

15

DM_ASM Description Section 3

3.6 Macro Preprocessor Operators

The macro preprocessor supports the following string operator:

t Operator

The paste operator implemented as a single quote C), enables pasting in C-like "define"s, e.g.:

. EQU Index 10

. EQU String Abc

mov #Label'Index, rO
mov String'Index, y

which translates to mov #LabellO, rO
which translates to mov AbclO, y

3.7 Assembler Directives

16

Assembler directives supply program data and control the assembly process. They allow partition­
ing of code and data into sections, allocation and initialization of memory, definition of global
variables, conditional assembly and control the appearance of the listing. For all directives (except
the DW directive) the first non-blank character of the line must be a dot (.). All directives must be
specified in upper case (as opposed to the instruction mnemonics). The following is a complete list
of the assembler directives supported by DM_ASM .

• CODE [SegmentName]

This directive defines the start of a code segment. If no segment name is supplied, the default code
segment "CODE" is used. The .CODE directive creates a new COFF section that can be linked by
the linker with other .CODE, .CSECT, .DATA or .DSECT sections into the processor's program
(code) or data memory space. When a new COFF section of this type is created, the previous tem­
porary symbol table is deleted, and the current. USE segment name is set to the argument of the
.CODE directive. All labels defined in the newly created COFF section, are of type "full name".
This means that the segment name is implicitely attached to all the labels, and that to refer to such
a label, it is necessary to specify the full name (e.g.SegmentName.Label).

Example:

• CODE MyCodSeg

NOTES:

1. The DW (Data Word) directive described below can not be used inside a .CODE section. To
create a table of constants in the program space, link an appropriate .DATA or .DSECT section
into the program memory space, by specifying the .DATA or .DSECT section name in the
linker script file together with the program's code sections.

2. .CODE segment names are automatically PUBLIC and must be unique across all modules, all
code, and all data segments, regardless of whether the segment is only used privately within a
module.

3. .CODE segments may be split within a particular module or in different modules, creating
multiple sections of this segment. These sections are then glued together at link time to form
one code segment according to the linking algorithm (see sections 4.4 and 5.5 for details).

DM_ASM and DM_ COFFLINK User's Manual

Section 3

.CSECT SectionName

This directive defines the start of a code section. The .CSECT directive creates a new COFF sec­
tion that can be linked by the linker with other .CODE, .CSECT, .DATA or .DSECT sections into
the processor's program (code) or data memory space. When a new COFF section is created, the
previous temporary symbol table is deleted. All labels defined in the newly created section, are of
type "simple". This means that no segment name is attached to labels, and that to refer to such a
label, it is enough to specify the label name. The .CSECT directive must be followed by a section
name.

Example:

.CSECT MyCode

NOTES:

1. The DW (Data Word) directive described below can not be used inside a .CSECT section. To
create a table of constants in the program space, link an appropriate .DATA or .DSECT section
into the program memory space, by specifying the .DATA or .DSECT section name in the
linker script file together with the program's code sections.

2. .CSECT segments may be split within a particular module, or in different modules,creating
multiple sections of this segment. These sections are then glued together at link time to form
one code segment according to the linking algorithm (see sections 4.4 and 5.5 for more
details) .

• DATA [SegmentName]

This directive defines the start of a new data segment. If no segment name is supplied, the default
data segment "DATA" is used. The DATA segments contain data definitions (not instructions). By
default, the linker maps the .DATA segments into the processor's data space regardless of whether
it contains initialized data. The linker can be instructed, however, to map .DATA segments into the
processor's program (code) space, for example, to include constant tables or filter coefficients.
When a new COFF section of type .DATA is created, the previous temporary symbol table is
deleted, and the current .USE segment name is set to the argument of the .DATA directive. All per­
manent labels defined in a .DATA section are of "full name" type, as explained in paragraph 3.4,
i.e. they should be referenced by specifying (implicitely or explicitely) SegmentName.LabelName.

Example:

. DATA MyDatSeg

NOTES:

1. Segment names are automatically PUBLIC and must be unique across all modules and all
code and data segments, regardless of whether the segment is only used privately within a
module.

2. Data segments may be split within a particular module, creating multiple sections of this seg­
ment. These sections are then glued together at link time to form one data segment according
to the linking algorithm (see sections 4.4 and 5.5 for more details).

DM_ASM and DM_COFFLINK User's Manual 17

DM_ASM Description Section 3

.DSECT SectionName

This directive defines the start of a new data segment. By default, the linker maps the .DSECT seg­
ments into the processor's data space regardless of whether it contains initialized data. The linker
can be instructed, however, to map .DSECT segments into the processor's program (code) space,
for example, to include constant tables or filter coefficients. When a new COFF section of type
.DSECT is created, the previous temporary symbol table is deleted, and all permanent labels
defined in the .DSECT section are of "simple" type, as explained in paragraph 3.3, i.e. they are ref­
erenced by specifying just their name. The .DSECT directive must be followed by a section name.

Example:

. DSECT MyData

NOTES:

1. Segment names are automatically PUBLIC and must be unique across all modules and all
code and data segments, regardless of whether the segment is only used privately within a
module.

2. DSECT data sections may be split within a particular module, creating multiple sections of a
segment. These sections are then glued together at link time to form one data segment accord­
ing to the linking algorithm (see sections 4.4 and 5.5 for more details).

DW Data Value [,Data Value [,Data Value •••]] or
DW NumericExpression DUP Data Value

This directive allocates one or more words of data which may be initialized. The DW directive is
used like an instruction, in the sense that it is the only directive that is not prefixed by a dot (.).
The DW directive must contain a list of one or more data values. Data values may be a numeric
expression, a symbolic expression or uninitialized. Uninitialized values are signified by a'?'.
Internally, uninitialized values are stored as zeros. The DW directive may only be used in a data
segment and, like instructions, may be preceded by a label. The DUP operator may be used to
repeat the initialization value, e.g.

Examples:

DW ?
DW 1,2,3
DW 3 DUP ?
DW 2 DUP 5
DW "abed"

%TempLabel:
DW 1

PermLabel:
DW $
DW PermLabel
DW <%TempLabel

translates to ? ? ?
• I • , •

translates to 5,5
translates to Ox6162,Ox6364

18 DM_ASM and DM_COFFLINK User's Manual

Section 3

.EXTERN Symboll [,SymboI2 [,SymboI3 •••]]

This directive allows the use of symbols defined in another (external) assembly module (file).
These symbols are resolved by the linker. Symbol names should be fully specified, i.e., prefixed
with the appropriate segment name, unless the USE directive is used. To declare a segment name
external without specifying any offsets, use Segment.O. Using symbols from external modules that
have not been declared with either the EXTERN or GLOBAL directives will generate an assembly
error during the relocation pass of the assembler.

Examples:

.FF

. EXTERN

.USE

. EXTERN

. EXTERN

Segl.Offset2, Seg.Offset3
Seg2
Offset4, OffsetS
Seg2.0

This is the form feed directive. It causes the start of a new page when the listing is printed .

• FORMAT LinesPerPage [,CharactersPerLine]

This is the format directive. It causes the listing to be formatted according to the specified values.
By default, 66 lines per page are created and 80 characters per .line .

• GLOBAL Symboll [,SymboI2 [,symboI3 •••]]

The GLOBAL directive combines the EXTERN and PUBLIC directives, i.e., it can be used to
specify symbols that will be imported from external modules and/or symbols that will be exported
to other modules. It is useful for header files, since the same directive can be used for both the
importing and exporting module. The disadvantage of this directive is that it could lead to multi­
ple definitions of the same symbol in more than one module, which would cause an unresolved
linker error.

Example:

. GLOBAL Segl.Offsetl, Segl.Offset2, Seg2.0ffset3

.LIST BooleanNumericExpression

The LIST directive is used to switch source listing generation on and off. The default is 1 (on) .

. ORG NumericExpression or

.ORG $+NumericExpression

The ORG directive sets the location counter of the current segment to the value specified by the
argument. The ORG directive creates a new COFF section with the same name and type as the
current segment. Internally, a CODE or DATA directive is generated.

DM_ASM and DM_COFFLINK User's Manual 19

20

Section 3

.POPSEG

The POPSEG directive sets the current USE segment with the value obtained by popping the top
entry from a segment name stack. In conjunction with the PUSHSEG directive, this directive is
useful for writing nested macros that, when finished, will not have any effect on the current USE
segment.

.PUBLIC Symboll [,SymboI2 [,SymboI3 •••]]

The PUBLIC directive is used to declare the symbols in its argument list (to be defined later in the
module), as being exportable to other modules. These symbols can be declared in other modules
with either the EXTERN or GLOBAL directives, and the linker will be able to resolve them. Like
the EXTERN and GLOBAL directives, unqualified symbol names, i.e., symbol names not pre­
fixed by a segment name, will use the current USE segment name by default.

.PUSHSEG

The PUSHSEG directive pushes the current USE segment name onto the top of the segment name
stack. In conjunction with the POPSEG directive, this directive is very useful for writing nested
macros that, when finished, will have no effect on the current USE segment.

.TITLE "text"

This is the title directive. Each new page following this directive, will have the title printed on the
top of page, below the fixed header (company logo and version number), the date and time of
printing and the page number .

. USE [SegmentName]

The USE directive specifies the current USE segment name to be used when encountering an
unqualified permanent symbol reference. When no argument is specified, the name of the current
segment is used. The current USE segment name is affected by the following directives: CODE,
DATA, ORG, and POPSEG.

DM_ASM and DM_ COFFLINK User's Manual

Section 3

3.8 Macro Preprocessor Directives

In addition to the assembler directives, the following are supported by the macro preprocessor:

.INCLUDE "FileName"

The INCLUDE directive is identical to the C "#include" directive, i.e., it instructs the assembler to
read and merge another module (file) into the source file at the line where this directive is located.
Conventional completely specified DOS path names of files may be used to access files outside the
working directory. Alternatively, an environment variable, named MPP, may be set (using the DOS
command SET) to tell the macro preprocessor to look for the file in the path specified by the MPP
variable in case the file is not found in the current (working) directory. Multiple directories may be
specified by seperating with a semicolon (;). In addition, one can overwrite the environment vari­
able path, by using the -i or -I option when invoking the macro preprocessor (see also Section
3.2.4).

NOTES:

1. One can nest included files up to 14 levels.

2. Up to 10 paths may be specified and each is limited to 80 characters.

3.8.1 Conditional Directives

.IF BooleanExpression

The IF directive marks the beginning of a conditional block. It is used to control the assembly
conditionally as follows: If the boolean expression is evaluated as true, then the source lines in the
conditional block (following the IF directive up to another conditional directive) are included in
the source. If the boolean expression is false, the conditional block is ignored .

• IFDEF Symbol

The IFDEF directive marks the beginning of a conditional block. It is used to control the assembly
conditionally as follows: If the symbol is defined previous to the current segment location counter,
then the source lines in the conditional block are included in the source. If the symbol is unde­
fined, the conditional block is ignored .

• IFNDEF Symbol

The IFNDEF directive marks the beginning of a conditional block. It is used to control the assem­
bly conditionally as follows: If the symbol is not defined previous to the current segment location
counter, then the source lines in the conditional block are included in the source. If the symbol is
defined, the conditional block is ignored.

21

DM_ASM Description Section 3

22

.ELSE

The ELSE directive marks the end of a previous conditional block and the beginning of a new con­
ditional block. It is used to control the assembly conditionally as follows: If the boolean expres­
sion associated with the previous conditional block is evaluated as false, then the new conditional
block (following the ELSE directive) will be included in the source .

• ELIF BooleanExpression

The ELIF directive marks the beginning of a nested conditional block. It is used to control the
assembly conditionally as follows: If the boolean expression is evaluated as true, then the next
conditional block is included in the source. If the boolean expression is false, then the conditional
block is ignored .

• ENDIF

The ENDIF directive marks the end of a conditional block. (See also previous conditional direc­
tives).

Examples of conditional directives:

.IF Flag>O

mov #OxOf, rl

.ELSE

mov #O,r2

.ENDIF

.IFDEF segl.Offsetl

clraO

.ELIF Flag<2*4

mov #l,all

. ELSE

mov #2,all

.ENDIF

Section 3 DM_ASM Description

3.8.2 Macro Directives

.ENDM

The ENDM directive terminates the definition of a new macro. A macro definition can not be
nested inside another macro definition. See .MACRO for more details and examples .

• EQU Symbol FreeText or
.EQU Symbol(ParameterList) FreeText

The EQU directive is equivalent to the C "#define" directive, Le., the macro preprocessor treats
equates as literals (which may be nested). The first format is used for simple definitions of con­
stants represented by symbols, the second format is used for smart C-like macros.

NOTES:

1. Equates to the PC location operator (.EQU var $) do not make sense and should not be used.

2. Equate expansion is delayed until the final stage, so nesting is possible.

3. Up to 3000 equates may be defined in one module.

4. The maximum length of each equate body is limited to 1000 characters.

5. The maximum number of parameters is 20.

6. In the second format, the opening parenthesis must imme~iately follow the symbol name.

7. Equates may be redefined. A warning message will be generated by the preprocessor.

8. H the equated symbol is not followed by free text, a default value of 1 is assumed. This can be
used to define symbols for use by the conditional directives, without giving a value to the sym­
bol. The .PURGE directive can then be used to undefine this symbol.

Examples:

.EQU AAA BBB

.EQU BBB 111
mov #AAA, rO translates to mov #111, rO

.EQU BBB 22 redefinition
mov #AAA,r1 translates to mov #22, r1

.EQU min(a,b) (((a) <= (b)) ? (a) : (b))
add ##min(3,4), aO ; translates to add ##(((3) <= (4))

;? (3) : (4)), aO

.EQUFlag

.IFDEF Flag
.INCLUDE "file"

.ENDIF

.PURGE Flag

equivalent to .EQU Flag 1

file will be included

23

DM_ASM Description Section 3

.MACRO Symbol [parameterList]

The MACRO directive starts the definition of a new macro. A macro is composed of a declara­
tion, a macro ending statement (see .ENDM) and a macro body of one or more assembly instruc­
tions in between. When the macro is declared, it is given a unique name and an optional parameter
list. As in C, macros are treated as literals. Unlike C, the parameter list is defined or referenced
without surrounding parenthesis. The main difference between a macro and an equate is that mac­
ros can expand over multiple lines. Macro definitions may not include other macro definitions, but
macros can use previously defined macros so nesting is possible.

NOTES and LIlv.HTATIONS:

1. A maximum of 1000 macros is allowed in each module.

2. Macros may not contain more than 1200 characters inside the body of the macro.

3. A maximum of 20parameters is allowed. Each parameter is limited to 200 characters.

4. Macro names are not allowed with embedded white space characters.

5. Macro definitions appear in the listing file as a comment. The expansion of macros in the list­
ing is controllable by a switch. An additional" .X" directive is generated in the listing by the
macro preprocessor for each macro that has more than one line in its body, for the purpose of
synchronizing reports on erroneous lines by DM_ASM.

6. Macro definitions can not be nested. However a macro definition can use a previously defined
macro (forward references are not allowed).

7. Single and multiple line comments (/* comment *1) can not be used inside macros.

Macro definition examples:

.MACRO MyMac

.ENDM

mov iO, rO
mov il, rl

.MACRO MyMacWithArgsNO,Nl,N2
mov iNO, rO
mov iNl, rl
mov iN2, r2

.ENDM

.MACRO NestedMac
clr aO
MyMac

.ENDM

Section 3

Macro usage examples:
MyMac /* mov #0, rO

mov #1, r1 */

MyMacWithArgs 4,5,6 /* mov #4, rO
mov #5, r1
mov #6, r2 */

NestedMac

.PURGE Symbol

/* clr aO
mov #0, rO
mov #1, r1 */

DM_ASM Description

The PURGE directive is the equivalent of the C "#Under' directive. It ends the definition of a sym­
bol.

Example:
. PURGE Segl.Label

DM_ASM and DM_COFFLINK User's Manual 25

DM_ASM Description Section 3

3.9 DM_ASM Limitations

26

The assembler has the following size limitations:

1. A module can not contain more than 3072 symbols. Symbols include all segment names, off­
set names and the segment name "CODE" which is always defined by default.

2. A module can not contain more than 63 COFF sections. Every use of the directives .DATA,
.CODE and .ORG creates a new COFF section regardless of whether the segment has been
previously defined.

3. A COFF section may not contain more than 64K of code or data Note that data segments
larger than 256 words can not take advantage of the processor's directaddressing mode. Th~
linker will check that the 64K limits are not exceeded after combining all sections.

4. A single COFF section may not contain more than a combination of 256 temporary label defi­
nitions and references.

5. Segment names may not exceed 8 characters and must be globally unique.

6. Offset names may not exceed 31 characters and must be unique within their segment.

7. Temporary labels may not exceed 31 characters and need not be unique (but their scope is only
for the current segment).

8. The maximum size of the segment name stack activated by .PUSHSEG and .POPSEG direc­
tives is 16 entries.

9. The .EXTERN, . PUBLIC , and .GLOBAL assembler directives can. accept a list of up to 10
label names. There is no direct limit to the number of times that the directives may be repeated
(with other label names).

SECTION 4
DM_COFFLink Description

4.1 General Notes

The CoffLink COFF linker is designed to link COFF object modules created by the PineASM
COFF assembler version 6.x or higher or by the CoftLib COFF library archiver. The linker can be
used to locate segments at absolute locations or relative to other segments (with an address align­
ment option), and to overlay segments. The assembler does not support any absolute location
operators. Alllinkingllocating must be specified via the linker. The Pine architecture, assembler
and linker work in harmony with each other. For example, in order to accommodate the processor's
direct addressing mode, the Pine has the Jpg #immediate instruction, the assembler supports
link-time @ and PG operators, and the linker supports the directives align and inpage that can all
be used to support worry-free direct addressing. The linker supports overlays in both the code and
data memory spaces, for efficient on-chip data memory usage and program downloading applica­
tions. The linker works with libraries. The linker supports user defined memory classes, and has by
default, two address spaces/classes that are predefined and correspond to the processor's physical
code and data memory spaces. The linker is an open system. Commands are entered via a script
file referred to hereafter as the linker script file.

The linker is installed together with the assembler. See Section 2 for installation instructions.

4.2 DM_COFFLINK Invocation

There are two ways to invoke the linker. The usual way is to activate the linker via a batch file
named LINK6.BAT, the second way is to run the main program, COFFLNK.6.EXE, directly from
the DOS command line.

4.2.1 Batch File Invocation

When running the LINK6.BAT batch file, the arguments are the various optional files and the base
name of the linker script file without the mandatory .LNK extension, e.g.

LINK6 [options] LinkerScriptBaseFileName

The output from LINK6.BAT are a COFF executable file (.A) and a listing file (.LIN), each of
which can be obtained independently of the other with optional user-supplied filename.

DM_ASM and DM_COFFLINK User's Manual 27

DM_COFFLink Description Section 4

The options are:

- h help information
-p invoke the MPP before the linker
-m create section map
- s create symbol table
- x create cross reference index

4.2.2 Command Line Invocation

The linker executable, COFFLNK6.EXE, can be invoked directly from the DOS command line as
follows:

COFFLNK6 [option] < LinkerScriptFileName

where the options are as follows:

-h
-8

-L
-1 file
-0 file
-p
-m
-s
-x
-w

help information
script file is taken from the standard input
output is directed to the standard output
force output file name for linker listing (full name is required)
force output file name for COFF executable (full name is required)
invoke the MPP before the linker
create section map
create symbol table
create cross reference index
wrap mode active in listing file

4.3 DM_COFFLINK Script File

28

The linker script file has several interleavable sections (parts): classes, objects, libraries, code,
and data. Multiple instances of each section are allowed. Only the objects section is mandatory.
Section order relative to the other sections is usually not important, but the order of the contents
within each section (after combining multiple instances) is very important - it dictates the order of
the link algorithm. Code and data segments not explicitly mentioned in the script [lle, are linked
according to a default algorithm. The complete linking algorithm is detailed in Section 4.4. The
classes section is used to define a list of memory types, each associated with a memory range. The
default classes are code and data, each having a memory range of OxOOOO-Oxffff. The objects sec­
tion contains an ordered list of all object files to be linked. The libraries script section contains an
ordered list of all library objects to be linked. The section labels, i.e.a classes, objects, 6braries,
code or data, must be on a line by themselves followed immediately by a colon (:). Only one filet
segment per line is permitted. Lines may contain a trailing comment signified by a semi-colon (;).
Blank lines are permitted. The script file is case sensitive except for file names. The following fig­
ure describes the general structure of the linker script file.

Structure of the linker script file:

objects:
ListOfObjectFiles

DM_ASM and DM_COFFLINK User's Manual

Section 4 DM_COFFLink Description

libraries:
ListOfLibraryFiles

classes:
ListOfClassDeclarations

classl:
ListOfSegmentsWithOptionalAttributes

class2:
ListOfSegmentsWithOptionalAttributes

classN:
ListOfSegmentsWithOptionalAttributes

Only one file or segment per line is pennitted. Lines may contain a trailing comment signified by a
semi-colon (;). Blank lines are pennitted. The script file is case sensitive except for file names.
The following are two typical examples of a linker script files. The first is for linking together 3
object files, declaring two user defined memory classes (in addition to the two predefined classes)
and for locating particular segments at specified addresses.

Example 1:

objects:
filel.o
c:\mypath\subdirectory\file2.o
.. \ .. \file3.o

classes:

code:

data:

xrarn:

xram [d:OOOO,d:03ff]
yram [d:fcOO,d:ffff]

Segment 1
Segment2 at
Segment3

Ox8

Segment 4
SegmentS

at Ox8000 inpage
align OxlOO inpage

Segment 6
Segment7 align OxlOO inpage

yram:
Segment 8

will be located at OxOOOO
will be located at Ox0008

will be after Segment4

will be located at OxOOOO
should not exceed Ox03ff

will be located at OxfcOO

29

DM_COFFLink Description Section 4

30

The second example uses libraries and creates a data overlay.

Example 2:

objects:
filel.o
c:\mypath\file2.0
.. \file3.0

libraries:
file4.1ib
.. \lib\fileS.lib

code:
Segment 1
Segment2 at
Segment 3 10

data:
Segment 4
SegmentS inpage

{

OxlOO
will be located at OxOOOO
will be located at Ox0100
linker will start trying
to locate from address 0

will be after Segment4

Segment 6
Segment 7
Segment 8

located after SegmentS
align OxlOO inpage
at Segment 6

}

The linker script file has several interleavable sections (parts): classes, objects, code, and data.
Multiple instances of each section are allowed. Only the objects section is mandatory. Section
order relative to the other sections is usually not important, but the order of the contents within
each section (after combining multiple instances) is very important - it dictates the order of the link
algorithm. Code and data segments not explicitely mentioned in the script file, are linked accord­
ing to a default algorithm. The complete linking algorithm is detailed in paragraph 4.4. The classes
section is used to define a list of memory types, each associated with a memory range. The default
classes are code and data, each having a memory range of OxOOOO-Oxffff. The objects section con­
tains an ordered list of all object files to be linked. The section labels, i.e. classes, objects, code or
data, must be on a line by themselves followed immediately by a colon (:). Only one file/segment
per line is permitted. Lines may contain a trailing comment signified by a semi-colon (;). Blank
lines are permitted. The script file is case sensitive except for file names.

DM_ASM and DM_COFFLINK User's Manual

Section 4 DM_COFFLink Description

4.3.1 Linker Directives

The complete list of reserved linker directives is:

at
align
classes:
code:
data:
hi
impage

libraries
10
next
next (•••)
noload
objects:

The optional location attributes at, align, image, hi, 10, and next allow the user to specify how he
would like the linker to locate the various data and code segments (included in the object files
mentioned in the objects section). Each memory class defined in the classes section (including the
default code and data classes) is described separately in a different section of the script file. The
emulator attribute is added to those segments that belong to PICEOS.

To locate a segment, one and only one of the following location attributes must be explicitly or
implicitly associated with each segment:

at ConstantNumericExpression
at SegmentName
at hi
at 10
at next
at next(AddressExpressionList)
10
next
next(AddressExpressionList)

An AddressExpressionList is a list of symbolic addresses, e.g.

(SegA,SegB,SegC)
(SegA+IO,SegB-5)
(100)
(next, 10+100)
(hi-OxlOO)

All the above location attribute combinations can be appended with a numeric offset or the align
attribute, e.g.

at SegA + 7 align OxlOO
next(SegB+6,SegC) - 10
at hi - Ox200
at next (OxlOO)
at OxlOO noload

DM_ASM and DM_COFFLINK User's Manual

equivalent to 'at OxIOO'

31

DM_COFFLink Description Section 4

32

Notice that the linker will surround each subexpressionafter each + or - operator, by parenthesis.
This means that

at next (segA - Oxff +4)

is actually interpreted as

at next(segA -(Oxff +4)

or

at (SegB -100 - OxlS + 3)

as

at (SegB - (100 - (OxlS + 3)))

align
The align directive is followed by a numeric constant value. It is used to force the linker to place
the relevant segment at an address that is an integer multiple of the numeric constant. It can be
appended to any other location expression.

Examples:

SegA

SegB align OxlOO ; SegB after SegA on address that is multiple of OxlOO

SegC at SegB+50 align 4 ; SegC at SegB+SO, but align to a multiple of 4

at
The at directive must be followed by an address expression. An address expression can be a
numeric value, a simple numeric expression, the linker directive 10 or hi, a reference to a previ­
ously located segment (no forward references are allowed) or a reference to a next expression.
When the at attribute is used in the linker script file, it means that the linker must locate the associ­
ated segment at the indicated address expression, subject to an optional alignment.

Example:

SegA
SegB
SegC

hi

at OxSOO
at SegA+OxlOO
at next

locate SegA at address OxSOO
locate SegB at address Ox600
put SegC at the next available address after SegB

The hi directive stands for the highest address of the memory class. For the predefined code and
data classes, hi=Oxffff. It must be used together with a negative offset after an at directive.

DM_ASM and DM_COFFLINK User's Manual

Section 4 DM_COFFUnk Description

Example:

classes:
yram [d: fcOO I d: ffff]

yram:

•

Segl at hi - Ox200
Seg2

Inpage

locate Segl at OxfeOO
locate Seg2 after Segl

The inpage directive can be used with data segments to request the linker to check that the associ­
ated segment does not cross physical page boundaries (each 256 data words long), and issue a
warning if the segment does.

Examples:

data:
Segl inpage ; put Segl at OxOOOO, make sure it is shorter than 256
Seg2 at Ox 180 ; locate Seg2 at Ox 180
Seg3 inpage ; put Seg3 after Seg2, make sure it does not cross Ox200

10

The 10 directive stands for the lowest address of the memory class. For the predefined code and
data classes, 10=OxOOOO. When the 10 attribute is used in the linker script file, it means that the
linker must start searching from the lowest address of the memory class, subject to an optional
alignment constraint. By default, if no location attribute is assigned to the first segment in the
class, it is located at the fIrst address of the class, i.e. at 10.

Example:

code:
SegO at Oxl00 ; locate SegO at OxlOO
Segl at 10 ; locate Segl at OxOOOO
Seg2 at Ox 1000 ; locate Seg2 at address OxlOOO
Seg3 10 ; try to locate Seg3 before SegO or Seg2 if possible

next and next(List)

The next directive is used to indicate the next available free hole's address that fits the segment. It
can be followed by an address expression list in which case it means the next available address
after all specified addresses. When the next attribute is used (or when no attributes are given at
all), it instructs the linker to start searching from the address immediately following the hi address
of the previous segment that was located, subject to an optional alignment constraint. When

33

DM_COFFLink Description Section 4

34

next(List) is used, the effect is similar to the simple next case described above, except that the
search begins with the address following the maximal hi address of all segments in the list. When
the list contains a constant numeric expression, the hi address is one less than the value of the
expression (so that the search can start at the value).

Example:

data:
Segl at Ox 1 000 ; locate Segl at address OxlOOO
{

Seg2 ; locate Seg2 after Seg 1
Seg3 at Seg2 ; locate Seg3 at the beginning of Seg2

; locate Seg4 after the longer section Seg4 at next(Seg2,Seg3)
; among Seg2 and Seg3

Seg5 next ; locate Seg5 after end of Seg4
}

nolo ad
The optional noload directive is used for segments that are linked with other segments, but that
should not be loaded by the loader of the debugger at load time.

4.3.2 Libraries Script Section

The libraries script section contains an ordered list of all library object files to be linked.

The following is an example of a libaries script section:

libraries:
libl.lib
\path\lib2.lib
lib3.xyz
mylib. ; mylib. (note that no default extension is appended)

4.3.3 Objects Section

The objects section contains an ordered list of all object files to be linked. File names without
extensions will be considered as having a default extension of ".0".

The following is an example of an objects section:

objects:

modl.o
mod2.o
\path\mod3.o
mod4.xyz

modl
mod2.o
\path\mod3
mod4.xyz
modS. modS. (note that no default extension is appended)

DM_ASM and DM_ COFFLINK User's Manual

Section 4 DM_COFFLink Description

4.3.4 Classes Section

The classes script section defines a list of logical memory types of the target executable COFF file.
Up to 14 classes may be defined by the user. Each class is assigned a memory range (defining the
10 and hi addresses of the class) in either the program (code) space or the data space. For each
memory class defined, the programmer should add a script section in the linker script file to spec­
ify which segments (.CODE, .CSECT, .DATA and .DSECT sections) declared in the object files,
belong to that memory class. During the linking process the linker makes sure that the appropriate
segments fit into these ranges. The classes script section is entirely optional. By default, two mem­
ory classes are predefined, the code and data memory classes, each having the default range of the
entire program (code) and data memory spaces respectively, e.g. they have the range of OxOOOO­
Oxffff. Memory classes may overlap in their address ranges, however a segment can not implicitely
overlap in two different classes. This means that once a particular segment in a particular class, is
located in either the program (code) or data memory space, another segment, in the same or in
another class, can not be mapped into the same memory addresses (in the same memory space)
occupied by the first segment, unless an overlay group is explicitely declared, as described below.
The following is an example of a typical classes script section:

The following is an example of a typical classes section:

classes:

xram [d: 0000, d: 03££] user defined class for
yrarn [d:fcOO,d:ffff] user defined class for
eprom [c:8000,c:bfff] user defined class for

Note that by default the following two classes are always predefined:

code
data

[c:OOOO,c:ffff]
[d: 0000, d: ffff]

defined by default
; defined by default

on-chip xram
on-chip yram
external eprom

Once classes are defined, one should specify for each class which segment belong to the class. In
the example above, one can add 5 script sections, named code:, data:, xram:, yram: and eprom:.
Using linker attributes, the programmer can instruct the linker to locate some or all the segments
into specific memory locations. See the linker location attributes description above and more
details in paragraphs 4.3.4 and 4.3.5 describing the code and data script sections. Segments
defined in the object files, that are not explicitely mentioned in any of the class script sections, are
mapped as described by the default linking algorithm, i.e .• CODE and .CSECT sections are
mapped into the default code: script section (after the last segment already mapped), and .DATA
and .DSECT sections are mapped into the default data: script section, (after the last segment
already mapped). Classes should be used to guarantee that particular data structures or programs fit
into physical memory devices or memory limits imposed by a particular chip configuration.

35

DM_COFFLink Description Section 4

36

4.3.5 Code Section

The code script section specifies which segments (.CODE, .CSECT, .DATA and .DSECT sections)
defined in the object files mentioned in the objects: script section, are to be linked in which order
into Pine's default program (code) memory class. The syntax for specifying a segment is as fol­
lows:

SegmentName [at [hi I 10 I next [(list)]] SymbolicNumExpr] [align NwnExpr] [noload]

or

SegmentName [10 I next] [align NumExpr] [nolad]

All attributes are optional. All can be appended with a +/- constant numeric expression offset (e.g.
at SegA + OxOfl) or with the directives align or noload. The at attribute specifies an exact address
in which to map the segment. The align attribute specifies that the segment must be mapped on the
next address, which is a multiple of the specified numeric expression. The 10 attribute is used to
instruct the linker to map starting from the memory class' lowest address (default 0 for code class),
even if other segments have already been mapped at higher addresses, obviously, without causing
overlapping of segments. The hi attribute can be used to instruct thelinker to map and fill the mem­
ory space relative to the memory class' highest address, (Le. address Oxffff in the code class). The
next attribute specifies that the segment must be mapped immediately after the previous segment.
The segments in the code class are not necessarily only .CODE and .CSECT sections. ROM tables,
for example, are .DATA or .DSECT sections that can also be linked into the program (code) space.
The SymbolicNumExpression is a C-style numeric expression that may contain one or more seg­
ment names that have already been located (no forward references are allowed).

The following is an example of a typical code script section:

code:
segl
seg2
seg3
seg4
romtbl

align OxlOO
10
at seg2 + Ox600 noload
next

To support program downloading, code segments may overlap other code segments if specified so
using overlay groups. This is useful when a relatively small program RAM is available which is
used to run different applications or program sections downloaded from slow EPROMs in the data
space, at different run times. To create downloadable programs, a particular segment may be linked
twice: once in the program space (where it is down-loaded to and executed) and once in the data
space (where it loaded from). See paragraph S.x for further details and examples.

Code Overlays

Segments within the code script section may be overlaid to allow multiple views of the same pro­
gram address space. To overlay code segments, these segments must belong to an overlay group,
which can be viewed as one logical segment. Overlay groups are created by surrounding the mem­
ber segments with braces { }. An overlay group is restricted to fit inside its class boundaries Gust
as any normal segment). Multiple overlay groups are allowed per class, but overlay groups may not
be nested or overlap each other. The next address following an overlay group is the maximum next

Section 4 DM_COFFUnk Description

address of all the member segments. In terms of syntax, data and code overlays are identical. Note
that to facilitate downloading, it is possible to use the SIZEOF and INCODE operators to obtain
the length of a section and to refer to the address in the program space of a symbol that is linked
into both the program and data memory spaces. See the description of the assembler operators and
directives for more details. See section 5.x for a typical downloadable application. The following
example defines a code overlay:

code:
Reset
{

Progl

at OxOOOO

Prog2 at Progl
}

See data overlays for further details and limitations concerning overlay groups.

4.3.6 Data Section

The data section specifies which data segments are to be linked in which order into Pine's default
data memory space. The syntax for specifying a segment (except within overlays) is as follows:

SegmentName [at [hi I 10 I next [(list)]] SymbolicNumExpr] [alignNurnExpr] [inpage] [noload]

or

SegmentNarne [10 I next] [a1ignNumericExpr] [inpage] [n010ad]

All attributes are optional. All can be appended with a +/- constant numeric expression offset (e.g.
at SegA + OxOn), the align, inpage or noload attributes. The at attribute specifies an exact
address in which to map the segment. The align attribute specifies that the segment must be
mapped on the next address of the specified multiple. The 10 attribute is used to instruct the linker
to map starting from the memory class' lowest address (default 0 for data class), even if other seg­
ments have already been mapped at higher addresses, obviously, without causing overlapping of
segments. The hi attribute can be used to instruct the linker to map relative to the memory class'
highest address (default Oxffff for the data class). The next attribute specifies that the segment
must be mapped immediately after the previous segment. The inpage attribute must be used for
data segments that must not cross the physical page boundaries in the data space. The noload
attribute will cause the loader of the debugger not to load that segment at load time.

The following is an example of a typical data section:

data:
segl
seg2 at Ox240
seg3 align OxlOO inpage
seg4 inpage noload

Usually the data memory space on the Pine chip is limited, so the programmer is forced to use the
same address space for different data segments. This can be accomplished using data overlays.

37

DM_COFFLink Description Section 4

4.3.7 Data Overlays

Data segments within data sections may be overlaid to allow multiple views of the same data
address space, i.e. C-style unions. To overlay data segments, these segments must belong to an
overlay group, which can be viewed as a logical segment. Overlay groups are created by surround­
ing the member segments with braces { }. An overlay group is restricted to fit inside its class
boundaries (just as any normal segment). Multiple overlay groups are allowed per class, but over­
lay groups may not be nested. The 'next' address following an overlay group is the maximum 'next'
address of all the member segments.

The following is an example of a data overlay group defined in memory class MyClass. On the
right is a picture reflecting the memory map defined by this overlay group.

MyClass:

{ ; begin overlay group Bl [] SegA
SegBl at SegA
SegB2
SegB3 B2
SegB31
SegB32 at SegB31 B3
SegB33 at SegB31
SegC at SegA B31 B32 B33

} ; end overlay group

SegD EJ
NOTES and LIMITATIONS:

1. Segments defined in an overlay group may overlay only onto other segments in the same
group. Segments defined in an overlay group may not overlay onto segments outside the
group.

2. No attributes may be assigned to the overlay group as a whole, i.e. on the line containing the
open brace {. Attributes can only be assigned to the individual segments that are members of
the group.

3. The default location attribute given to segments within the group is at next.

4. Holes created inside an overlay group (as a result of using the at attribute) can not be filled by
sections outside the overlay group.

4.4 Linking Algorithm

38

The linking algorithm for the code and data sections is as follows:

1. The program space segments (i.e .. CODE, .CSECT, .DATA and .DSECT sections that are
explicitly specified in the code script section) are mapped in the order in which they are

Section 4 DM_COFFLink Description

encountered. If a segment has no associated location attributes, it is mapped immediately after
the end of the previous segment. If the at attribute is used, the segment will be mapped starting
at the specified address. If the align attribute is used, the segment will be mapped at the next
address on the specified alignment boundary. If the next attribute is used, it is mapped imme­
diately after the end of the previous segment. If the 10 attribute is used, mapping starts from the
lowest address upwards. Segments can be grouped together to form an overlay group. The seg­
ment group is treated as if it is a logical segment. Its length is taken as the difference between
the lowest and highest addresses of all the segments in the group. A segment following an
overlay group will be located immediately after the highest address occupied by any of the
member segments.

2. Remaining .CODE and .CSECT sections that have not yet been mapped (i.e. those that are not
explicitely mentioned in the script file) are mapped immediately after the last segment men­
tioned and mapped into the program space, into the code class, according to rule 1 above. If
no segments were specified in the code script section, then mapping begins at the lowest
address. The remaining .CODE and .CSECT sections are mapped in the order of the fIrst time
they are encountered in the (ordered) list of object files found in the object section.

3. The data space segments (i.e .. DATA, .DSECT, .CODE and .CSECT sections that are explic­
itly specified in the data script section) are mapped in the order they are encountered. If a seg­
ment has no associated location attributes, it is mapped immediately after the end of the
previous segment. If the at attribute is used, the segment will be mapped beginning at the
specified address. If the align attribute is used, the segment will be mapped at the next address
on the specified alignment boundary. If the inpage attribute is used, the linker will check that
the segment does not cross a physical page boundary (any address of type OxYYOO). If the
next attribute is used, it is mapped immediately after the end of the previous segment. If the 10
attribute is used, mapping starts from the lowest address upwards. Segments can be grouped
together to form an overlay group. The segment group is treated as if it is a logical segment. Its
length is taken as the difference between the lowest and highest addresses of all the segments
in the group. A segment following an overlay group will be located immediately after the high­
est address occupied by any of the member segments.

4. Remaining .DATA and .DSECT sections that have not yet been mapped (i.e. those that are not
explicitely mentioned in the script file) are mapped immediately after the last segment men­
tioned and mapped into the data space, in the data class, according to rule 3 above. If no seg­
ments were specified in the data script section, then mapping beginsat the lowest address. The
remaining .DAT and .DSECT sections are mapped in the order of the first time they are
encountered in the (ordered) list of object files.

5. Data and code overlays are allowed only when explicitly specified. Implicit overlays resulting
from the use of the at or align directives will generate an error.

6. The linker issues a warning when it detects relocation size conflicts, i.e., the size of a symbol's
address after having been fully resolved requires more bits than available in the operand field
of the instruction.

7. The linker issues a warning when it detects a data segment, associated with the inpage
attribute, that crosses a physical page boundary (every 256 words is a defined as a physical
page, so every address OxYYOO is considered such a page boundary).

8. The linker will mark segments associated with the noload attribute, so that the loader of the
debugger will not load that segment into memory at load time.

DM_ASM and DM_COFFLINK User's Manual 39

DM_COFFLink Description Section 4

4.5 Generating COFF Library Files

It is possible to create COFF libraries from one or more simple COFF object files using the COF­
FLffi utility. This utility converts COFF object files (.0) into COFF library files (.Lm) using the
following command:

COFFLIB command LibraryName

where the command is one of the following:

-h help information
-a ObjectFile
-x ObjectFile
-v

add the specified module to the COFF library
extract the specified module from the COFF library
view the COFF library contents

For example, suppose you have 3 files, each containing two library functions:

file l.asm produces
file2.asm produces
file3.asm produces

file 1.0
file2.0
file3.0

contains
contains
contains

func la and func 1 b
func2a and func2b
func3a and func3b

Then the following commands create a COFF library named MYLIB.Lffi with these functions:

COFFLIB
COFFLIB
COFFLIB

-a filel.o MYLIB.LIB
-a file2.o MYLIB.LIB
-a file3.o MYLIB.LIB

and the following command verifies the results:

COFFLIB -v MYLIB.LIB

which should return the following list:

filel.o funcla and funclb
file2.o func2a and func2b
file3.o func3a and func3b

It is possible to go back from an archived library module to a simple COFF object file, using the
extract command. For example to get back file2.0 from the above library, enter:

COFFLIB -x file2.o MYLIB.LIB

40 DM_ASM and DM_ COFFLINK User's Manual

Section 4 DM_COFFlink Description

4.6 Generating PROM Burnable Files

Most EPROM programmers do not accept COFF object files as input. A utility can be used to con­
vert COFF executable files (.A) into byte-wise Intel-Hex format files (.HCL,.HCH,.HDL,.HDH).
The Intel-Hex file can also be used for loading programs into the debugger but without any sym­
bolic data. The conversion can be activated in two ways: via batch file and directly from the DOS
command line.

Using the batch file, the argument is the base name of a COFF executable file without the manda­
tory (.A) extension:

COFF2HEX CoffExecutableBaseFileNarne

The output from COFF2HEX.BAT are the four byte-wise INTEL-HEX files:

CoffExecutableBaseFileNarne.HCL
CoffExecutableBaseFileNarne.HCH
CoffExecutableBaseFileNarne.HDL
CoffExecutableBaseFileNarne.HDH

To convert directly from the DOS command line, use the program INTELHEX.COM. The input
must be prepared in the appropriate format, i.e. a ordered list of hexadecimal addresses NNNN
(with c: or d: prefix for indicating the memory space) followed by the hexadecimal value MMMM
as described below:

C:NNNN MMMM
C:NNNN MMMM

D:NNNN MMMM
D:NNNN MMMM

The program COFFUTIL.EXE can be used to obtain this file from the binary COFF executable
file. The syntax for invoking both programs from the DOS command line is as follows:

COFFUTIL -c CoftFile > DataFile
INTELHEX < DataFile

The output from INTELHEX.COM are the four byte-wise INTEL-HEX files shown above. Nor­
mally, there is no reason to directly invoke this program from the DOS command line.

4.7 DM_COFFLINK Limitations

1. There is a limit of 3K symbols.

2. There is a limit of 256 COFF sections.

3. There is a limit of 128 object files.

4. There is a limit of 128 segments.

5. There is a limit of 16 memory classes (of which 2, 'code' and 'data' are predefined).

6. There is a maximum of 16K cross reference entries.

DM_ASM and DM_COFFLINK User's Manual 41

DM_COFFLink Description

4.8 DM_COFFLINK Error Messages

Link Errors:
"Illegal link relocation type at %s+Ox%4.4X, symbol '%s'"

"Incorrect s_flag '%lx' in section header of object file '%s'"

"Multiple definitions of label '%s' in file '%s'"

"Object file '%s' contained warnings"

~~Reference to '%s' is not resolvable as a base address for '%s'"

"Relocation size conflict at %s+Ox%4.4X, symbol '%s'"

"Segment '%s' is used for both CODE and DATA"

"Undefined Extern symbol: %s"

"Undefined Global symbol (Slipped through??): %s"

"Undefined Public symbol: %s"

"Undefined symbol: %s"

"Unexpected segment overlay in segment '%s' address Ox%4.4X"

"Unspecified segment type for segment '%s'. Internal software error"

I/O Errors
"Cannot re-read relocation entries from output file"

"Cannot re-read section contents"

"Cannot re-write section '%s' contents"

"Cannot re-write section contents"

"Cannot read contents of object file's'"

"Cannot read object file '%s'"

"Cannot read relocation info of file '%s'"

"Cannot read string table count from object file '%s'"

"Cannot read string table from object file '%s'"

"Cannot read symbol table info of file '%s'"

"Cannot write contents of file '%s'"

"Cannot write file header of output file"

"Cannot write section header '%s'"

"Cannot write section relocation info of file '%s'"

"Cannot write string table count"

"Cannot write string table of object file '%s'"

"Cannot write symbol table info of file '%s'"

"Unable to open object file '%s'"

"Unable to open output file"

"Unable to read file header of object file '%s'"

"Unable to read section header of object file '%s'"

"Unable to read string table of file '%s'"

Section 4

42 DM_ASM and DM_COFFLINK User's Manual

Section 4

Limitation Errors
"More than maximum allowed code segments (%d)"

"More than maximum allowed data segments (%d)"

"More than maximum allowed object files (%d)"

"Section '%s' exceeded 64k"

"Segment %s exceeds the maximum allowed segments (%d)"

Memory Allocation Errors
"HashTbI is full"

"Unable to allocate memory for bit maps"

"Unable to allocate memory for symbol manipulation"

"Unable to allocate space for object file name '%s'"

"Unable to allocate space for symbol tables"

"Unable to create symbol table"

Internal Errors
"Unable to retrieve info from Hash Table for symbol:"

Linker Script File Errors
"Cannot find segment '%s'"

"Invalid syntax in linker directive file %s(%d)"

"Missing 'code:'or 'data:' directive"

"Missing 'object:'or 'code:'or 'data:' directive"

"Nested overlays not supported"

"No object files defined"

"Object file '%s' already listed, ignoring additional entry"

££Segment name '%s' already listed, ignoring additional entry"

££Unrecognized switch '%s\n"

Information/Report Messages:
£'\nNo errors in Link.\n"

£'\nTotal of %d linker errors. No executable file created.\n"

DM_ASM and DM_COFFLINK User's Manual

DM_COFFLink Description

43

DM_COFFLink Description Section 4

44

SECTION 5
Programming Hints

5.1 Data Structures

One-level deep·data structure type definition macros can be created as follows: .

. MACRO MyStruct
Memberl: DW ?
Member2: DW
Member3: DW ?

.ENDM

? ? . , .

The above macro can be used to define the same data structure in more than one segment .

. DATA MySegl
MyStruct i defines MySegl.Memberl, MySegl.Member2, MySegl.Member3

.DATA MySeg2
MyStruct defines MySeg2.Memberl, MySeg2.Member2, MySeg2.Member3

A segment independent macro can be defined which operates on the data structure .

. MACRO OperateOnMyStruct Segment
mov #Segment.Memberl, (rO)+
mov #Segment.Member2, (rl)­
mov #Segment.Member3, (r2)+s

.ENDM

The macro can be used as follows:

OperateOnMyStruct Segl
OperateOnMyStruct Seg2

DM_ASM and DM_COFFLINK User's Manual 45

Programming Hints Section 5

5.2 Safe Macros Using PUSHSEG and POPSEG

The following macro moves the specified label to the specified register. If the label is unqualified,
i.e. it contains no segment prefix, the segment Seg 1 is used as default. Even though the macro uses
the USE directive, and therefore modifies the current USE segment, it is able to save and restore
the state of the current USE segment of the caller (via the PUSHSEG and POPSEG directives).

.MACRO DefaultCopy
.PUSHSEG

SrcLabel, TargetReg

.USE Segl
mov ##SrcLabel,TargetReg
.POPSEG

.ENDM

.CODE MyCodSeg
Label:

nop

save USE segment
modify current USE segment

restore USE segment

DefaultCopy Member2, rO i mav ##Segl.Member2, rO
DefaultCapy Seg2.Memberl,aO; mav ##Seg2.Memberl, aO
mov #Label, rl i mov #MyCodSeg.Label,rl

5.3 DIFF Equate

46

Normally, only one label is allowed in an operand expression. The IMMEDOFFSET operator can
be used to convert the offset of a label (with respect to the segment in which it is defined) into an
immediate numeric constant. Therefore any number of labels may be used in an operand expres­
sion as long as at least all but one are converted into constants by the IMMEDOFFSET operator.
Recall that the IMMEDOFFSET operator can only handle labels that have been previously defined
within the module, i.e. the labels cannot be external or forward references.

A common use of two labels in an operand expression is to calculate the difference, i.e. relative
offset, between the location of the two labels:

.DATA MyDatSeg

LblA: DW 5 DUP ?

LblB: DW ?

.CODE MyCodSeg

mov # (IMMEDOFFSET MyDatSeg.LblB) - (IMMEDOFFSET MyDatSeg.LblA), rO

The code can be simplified with the following equate:

. EQU DIFF2 (Labe12 , Labell) ((IMMEOOFFSET Labe12) - (IMMEOOFFSET Labell))

The equate can be used as follows:

mov #DIFF2(MyDatSeg.LblB,MyDatSeg.LblA), rO

DM_ASM and DM_COFFLINK User's Manual

Section 5 Programming Hints

Nonnally, it would be very poor programming practice to calculate the difference between two
labels that were not defined in the same segment. In order to enforce this check, the DIFF equate
could be modified as follows:

.EQU DIFF3(Seg,Labe12,Labell) DIFF2(Seg.LabeI2,Seg.Labell)

The protected equate can be used as follows:

mov #DIFF3(MyDatSeg,LbIB,LbIA), rO

The drawback of using the protected equate DIFF3 is that none of the labels can be temporary,
since a temporary label can not contain a segment prefix. The unprotected equate, DIFF2, has no
such drawback, since the (optional) segment prefix for each of the two label arguments must be
explicitly supplied. Normally, it would be expected that the difference operator would be used for
data structures defined with pennanent labels. DIFF3 is preferred in more general cases.

5.4 Common Export/Import Include Files

Every assembly module should begin with a list of include files that define the module's exports
and imports. The simplest way to organize a project is to break it down into its segments. Each
segment should be assigned its own file set, e.g. MySeg.ASM and MySeg.INC, where the segment
name and the file base name are identical. The .INC file should contain a USE directive followed
by GLOBAL directives which enumerate all the public labels in the module. The .ASM file should
start by including common macros, followed by including the ~odule's export file, followed by
including all of the module's import files, e.g.

iFILE: Segl.ASM
i common project macros
.INCLUDE "PROJECT.MAC"
i module exports
.INCLUDE "Segl.INC"
i module imports
.INCLUDE "Seg2.INC"
.INCLUDE "Seg3.INC"

local equates and macros used by this module
, ...
i body of the module
.CODE Segl
, ...

iFILE: Seg2.ASM
i common project macros
.INCLUDE "PROJECT.MAC"
i module exports
.INCLUDE "Seg2.INC"
i module imports
.INCLUDE "Seg3.INC"
.INCLUDE "Seg4.INC"
i local equates and macros used by this module

DM_ASM and DM_COFFLINK User's Manual 47

Programming Hints Section 5

48

body of the module
.CODE Seg2
, ...

iFILE: Segl.INC
equates and macros exported by this module

, ...
i labels exported by this module
.USE Segl
.GLOBAL Labell, Labe12, Labe13

iFILE: Seg2.INC
equates and macros exported by this module

I •••

i labels exported by this module
.USE Seg2
.GLOBAL Labell, Labe12, Labe13

In order to have a common header file for both exports and imports, when using the EXTERN and
PUBLIC directives instead of the GLOBAL directive, the following trick could be used:

;FILE: Segl.ASM

; common project macros
.INCLUDE "PROJECT.MAC"

; module exports
.EQU GLOBAL PUBLIC
.INCLUDE "Segl.INC"
.PURGE GLOBAL

; module imports
.EQU GLOBAL EXTERN
.INCLUDE "Seg2.INC"
.INCLUDE "Seg3.INC"

local equates and macros used by this module

body of the module
.CODE Segl

Section 5 Programming Hints

5.5 Multiple Segment Definitions

It is possible to define a segment in multiple parts in a single module. It is also possible to define a
segment in multiple modules. The second practice is strongly discouraged. When defining A.A.
segment multiply in a single module, the location counter of the segment continues from where it
was previously, regardless of whether other segments have been defined in the interim.

Example:

. CODE Seg1 1st instance of this segment - location counter is 0

. CODE Seg2

. DATA Seg3

. CODE Seg1 ; location counter automatically continues

The first time a segment is defined within a module, its location counter is initialized to zero.a If a
segment is defined in more than one module, then the ORG directive should be used in one or
more of the modules in order to stop the segments from implicitly overlaying each other. The
linker catches and warns when it detects this type of implicit overlay. Explicit overlays are allowed
in data segments.

; FILE: MOD1.ASM
.CODE Segl

; location counter initia~ized to 0

; FILE: MOD2.ASM
.CODE Seg1
.ORG Ox80

location counter initialized to Ox80

5.6 Direct Memory Addressing Support

When using direct memory addressing in DMC, the opcode of the instruction supplies the lower 8
bits of the address, while the upper 8 bits of the address are supplied by the PAGE bits in status
register STI. Since it is very inconvenient to use absolute values (for the lower 8 bits of data
addresses) inside the assembly program, one uses symbols defined in data segments. This way,
when new symbols are added or old ones deleted or moved, the assembler and the linker take care
of generating the correct lower 8 bits of the address. Each new data segment, starts a new series of
consecutive symbols, starting from temporary address 0 upwards. At link time each such data seg­
ment can be located anywhere in the data space and the symbols corresponding to these segments
will be relocated accordingly.

DM_ASM has an automatic modulo 256 operator for cutting the 8 lower bits of a 16 bit address
(by the linker) for purposes of direct memory addressing. This is the @ operator. In addition, the
OFFSET operator can be used, provided that all data segments are linked to be on DMC's page
boundaries (i.e OxOOOO, OxOl00, Ox0200, etc.) and are not longer than 256 addresses. The OFFSET
operator tells the linker to put in the opcode of the instruction, the value corresponding to the offset
of the symbol from the beginning of its data segment, i.e. it subtracts the absolute (final) 16 bit

DM_ASM and DM_COFFLINK User's Manual 49

Programming Hints Section 5

so

address of the beginning of the segment in which the symbol is defined, from the absolute (final)
16 bit address of the symbol. As an example, suppose a program has the following code:

. DATA SegA

VarA: DW ?

VarB: DW ?

VarC: DW ?

. CODE SegB

Ipg # SHR(SegA, 8}
mov OFFSET SegA.VarC, rl

and that the linker is instructed to locate segment SegA at OxOIOO. The DM_ASM assembler will
give a temporary address of 0 to SegA and SegA. VarA, a temporary address of I to SegA. VarB and
temporary address 2 to SegA.VarC. Next, the DM_COfFLINK linker will give the final address of
OxIOO, OxIOO, OxlOI and Oxl02 to SegA, SegA.VarA, SegA.VarB and SegA.VarC respectively. In
addition, in the code segment SegB, the linker will update the opcode for the Ipg instruction by
calculating the value of shifting SegA, i.e. OxIOO, by 8 bits to the right. This results in putting the
value I as the immediate operand of the fIrst instruction. For the second instruction, the linker sub­
tracts Oxl00 (SegA) from Oxl02 (the final value of SegA.VarC) so that the first operand of the
mov instruction, (the direct memory address offset) will be 2.

What happens when there are many data segments? If the data segments are not aligned on page
boundaries, then the OFFSET operator will produce incorrect direct memory addresses. As an
example, suppose that the same program is used as previously, but that the linker locates SegA at
Ox205 (which is not aligned on a page boundary) as a result of another segment occupying the
memory space up to address Ox204. In this case, the assenibler will produce the same output, but
the linker will give the final (absolute) addresses of Ox205, 0x205, Ox206 and Ox207 to SegA,
SegA.VarA, SegA.VarB and SegA.VarC respectively. In addition, in the code segment, SegB, the
linker will substitute the value 2 for the immediate operand of the Ipg instruction (Ox205 »8 gives
2), and for the fIrst operand of the mov instruction, it will still produce the value of 2, because
SegA. vare - SegA = Ox207 - Ox205 = 2. This however is not the correct direct memory address
offset, needed to access SegA. varC which has address Ox207, i.e. has direct memory offset of 7 in
page 2.

The @ operator, on the other hand overcomes this problem, since it tells the linker to perform a
modulo 256 operation on the absolute address, instead of the substraction operation. For example:

. DATA SegA

VarA: DW ?

VarB: DW ?

VarC: DW ?

. CODE SegB

Ipg # SHR(SegA, 8}
mov @ SegA.VarC, rl

Section 5 Programming Hints

Whether the linker is instructed to locate the segment SegA at address Oxl00 or Ox205, the object
of the second instruction will be correctly "relocated", because Oxl02 modulo 256 is 2 and Ox207
modulo 256 is 7. It is, therefore, better practice to use the @ operator for all direct memory
addressing operands, and keep the OFFSET operator for use with data structures.

5.7 Fractional Arithmetics Support

Fractional arithmetics can be performed by a fixed point DSP such as the Drive Manager (OM) by
allocating part of the 16 bits of a variable or memory location for the sign, the integer part and the
fractional part. For example, let us define the Qn binary fractional notation, where n bits are allo­
cated for the fraction and 15-n bits are kept for the integer part of the number. The MS bit is used
for the sign bit. In binary fractional numbers, each bit to the left of the floating goint has the usual
weight of 2n, while the bits to the right of the floating point have a weight of 2- n+ 1).

As an example, consider the 16 bit number Ox3500 in Q12 notation.

15 12 11 0

I 0 I 0 I 0 11 1.1 1 I 0 11 I 0 11 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I

The floating point value of this binary fractional number is: 21 + 20 + 2-2 + 2-4 = 3.3125

The largest positive fraction in Q15 notation is very close to 1.0, represented by Ox7fff, while 0.5 is
represented by Ox4000. In Q14 notation, on the other hand, 14 bits are used to represent the frac­
tional part of the number, leaving 1 bit for the integer part. The largest positive number in Q14
notation is therefore 1.99999 (Ox7fff). Note that Q15 fractions are more accurately represented than
Q14 fractions, however numbers larger than 1.0 can not be represented by Q15 fractions. When
multiplying binary fractional numbers, one needs to align the floating point in the result just as in
decimal floating point arithmetics. This is accomplished by shifting the product one bit to the left
and taking the high part of the shifted P register. For example assume one needs to calculate 0.5 *
0.5 = 0.25. Using Q15 notations, Ox4000 * Ox4000 = Oxl0000000. The 32 bit result has Q30 nota­
tion (15+ 15 bits to the right of the floating point). By shifting the product 1 bit to the left, the high
part of the product becomes Ox2000 which is 0.25 in Q15 notation.a Shifting the product 1 bit to
the left, corresponds to deleting 1 sign bit from the Q30 product that contains 2 sign bits (one from
each multiplicand). As another example, suppose one multiplies a Q15 number by a Q12 number.
The product will be a Q27 number, i.e. it has 27 bits representing the fractional part and 3 bits for
the integer part.

The assembler has a built-in operator that automatically converts floating point numbers to 16-bit
binary fractional numbers with a variable, user-specified, number of bits for the fractional part of
the number.

51

Programming Hints Section 5

52

Examples:

mov # # FRACT (0 . 5 , 15), x
mov ##FRACT(O.015625, 15}, rO
mov # # FRACT (1 . 25 , 14), y

translates to mov ##Ox4000, x
translates to mov ##Ox200, rO
translates to mov ##Ox5000, y

For convenience, one can define a macro to simplify the notation as follows:

. EQU Q15 (num) FRACT (num, 15)

.EQU Q14(num} FRACT(num, 14 }

so that the previous examples can be rewritten as:

mov ##Q15 (O.5), x
mov ##Q15(O.015625), rO
mov ##Q14(1.25), y

with the same end result.

Note that the DSP architecture has a built-in shifter for the product register, that is specifically con­
venient for Q15 * Q15 operations. If all numbers are assumed to be in Q15 notation, the program­
mer can set the shift mode of the P register to be 1 bit to the left (SP=2 in STl) and all results will
be correctly aligned. By moving the product register to the accumulator and using combinations of
the shr, shl, shr4 and shl4 instructions, it is possible to use all fractional notations to obtain frac­
tional arithmetics with variable accuracy.

APPENDIX A
DSP Instruction Set

A.1 Notation and Conventions

Registers:

ro = Address registers: rO, rl, r2, r3, r4, r5
ri = Address registers: rO, rl, r2, r3
rj = Address registers: r4, r5

aX =aOoral
aXl = Accumulator-low (LSP), X = 0, 1
aXh = Accumulator-high (MSP), X = 0, 1
aXe = Accumulator extension, X = 0, I
ac = aO, aI, aOh, alh, aOI, all

cfgx = Configuration registers of DAAU (modi or modj, stepf or stepj), x = i, j

tos = Top of stack
pc = Program counter
lc = Loop counter
extx = External registers, x = 0, 1, ... 7

reg = aO, aI, aOh, alh, aOI, all, ro' x, y, p or ph, pc, lc, tos, stO, stl, st2, cfgi, cfgj, extx

Address Operands:

Address
$Offset address

= Unsigned 16 bits (0 to 65535)
= 2's complement 7 bits (-64 to 63 offset range: -63 to 64)

Immediate Operands:

#Short immediate
#Signed Short immediate
##Long immediate

= Unsigned 8 bits (0 to 255)
= 2's complement 8 bits (-128 to 127)
= 2's complement 16 bits (-32,768 to +32,767)

DM_ASM and DM_COFFLINK User's Manual 53

DSP Instruction Set

54

cond - condition field:

true Always
eq Equal to zero
neq Not equal to zero
gt Greater than zero
ge Greater or equal to zero
It Less than zero
Ie Less or equal to zero
nn Normalize flag is cleared
v Overflow flag is set
c Carry flag is set
e Extension flag is set
I Limit flag is set
or R flag is cleared
niuO iuserO input user pin 0 is cleared
iuO iuserO input user pin 0 is set
inl iuser 1 input user pin 1 is set

Other:

(x) = The contents of x
[] = Optional field at the instruction
-> = Is assigned to
» = Shift right
< < = Shift left

= Not
=Or
= And

Flags Notation:

The effect of each instruction on the flags is described by the following notation:

* The flag is affected by the execution of the instruction.
The flag is not affected by the instruction.

1 or 0 The flag is unconditionally set or cleared by the instruction.

stO bits
Flags

11 10 9
Z M N

8
V

7
C

6
E

5
L

4
R

Appendix A

Appendix A DSP Instruction Set

Conventions

1. The arithmetic operations are penormed in 2's complement.

2. When the r n register is used by an instruction, the contents of the rn register are post-modified
as follows:

Options controlled by instruction:

Options controlled by configuration registers cfgx:
Step size: stepi, stepj - 2's complement 7 bits (-64 to 63) Modulo size: modi, modj - unsigned 9
bits (1 to 512)
Options controlled by st2:
For each rn register it should be defined if Modulo is used or not.
For using modi or modj the relative mn bit must be set

Assembler syntax: (rn) , (rn)+, (rn)- , (rn)+s

3. ph (the MSP of the p register) can be write only. The 32-bit p register is updated after a mul­
tiply operation and can be read only by transferring it to the ALU, that is, it can be moved into
aX or be an operand for arithmetic and logic operations. When transferring it into the ALU, it
is sign-extended to 36 bits. This enables the user to store and restore the p register.

4. The p register is used as a source operand, as one of the reg registers (e.g. in pacr instruction)
or in multiply instructions, where the p register is added or subtracted from one of the accumu­
lators. When using the p register as a source operand, it always means using the "shifted p
register." Shifted p register means that the p register is sign- extended into 36 bit and then
shifted as defined at the sp field, status register stl. In shift right the sign is extended, whereas
in shift left a zero is appended into the LSB. The contents of the p register remain unchanged.

5. All move instructions using the accumulator (aX) as a destination are sign extended. All
instructions which use the accumulator-low (aXl) as a destination, will clear the accumulator­
high and the accumulator-extension. Therefore, they are sign extension suppressed.

All instructions using the accumulator-high (aXh) as a destination, will clear the accumulator­
low and are sign extended. An exception is mov direct address, aXh, { eu}, when moving data
into accumulator-high can be controlled with sign extension or with sign extension suppressed
(the accumulator-extension aXe is unaffected).

6. In all arithmetic operations between 16-bit registers and aX (36 bits), the 16-bit register will be
regarded as the 16 low-order bits of a 36-bit operand with a sign extension in the Most-Order­
Bits.

7. It is recommended that the flags be used immediately after the ALU operation or moved into
ac operations. Otherwise, very careful programming is required (some flags may be changed
in the meantime).

8. The condition field is an optional field; when the condition is missing then cond = true.

9. When transferring data into the hardware stack, the data is transferred to the tos, and the stack
is pushed down one level. When transferring data out of the hardware stack, the data is copied
to the destination, and the stack is popped one level.

10. ALU instruction is one of the following instructions: add, sub, or, and, xor, cmp, addl, subl,
addh, subh, moda, norm, mac, msu, sqra, sqrs.

55

DSP Instruction Set

A.2 Instruction Set Summary

add
Syntax:

Operand:

Operation:

Affects flags:

addh
Syntax:

Operand:

Operation:

add to accumulator

add operand, aX

reg
#short immediate
##long immediate
(rn)

direct address

aX + operand -> aX

Z M N V C E
* * * * * *

add to high accumulator

addh operand, aX

(rn)

direct address
reg

aX + operand*2 A 16 -> aX

Affects flags: Z M N V c E

* * * * * *

addl add to low accumulator

Syntax: addl operand, aX

Operand: (rn)

direct address
reg

Operation: aX + operand -> aX

L

*

L
*

Appendix A

R

(except aX, p)

aXl is unaffected

R

(except aX, p)

(operand is sign-
extension suppressed)

Affects flags: Z M N V C E L R
* * * * * * *

56

Appendix A DSP Instruction Set

and
Syntax:

Operand:

Operation:

and accumulator

and operand, aX

reg
(rn)
direct address
#short immediate
##long immediate

If operand is aX or p
aX(35:0) and operand -> aX(35:0)

If operand is short immediate
aX(7:0) and operand -> aX(7:0)
aX(15:8) -> aX(15:8)
o -> aX(35:16)

If operand is reg, (rn) or long immediate
aX(15:0) and operand -> aX(15:0)
o -> aX(35:16)

Affects flags: Z M N v c E L R

bkrep
Syntax:

Operand:

Operation:

* * *

block repeat

bkrep operand, add

#short immediate
reg

operand -> lc
1 -> lp status bit

*

Begins an interruptible block of instruc­
tions that is to be repeated operand + 1
(1 .. 256) times.

Affects flags: No
Note: Address "add" must be temporary label

br conditional branch

Syntax:

Operation:

br address [, cond]

If condition then
address -> pc

Affects flags: No

DM_ASM and DM_COFFLINK User's Manual 57

DSP Instruction Set

brr relative conditional branch

Syntax: brr $offset address [, cond]

Operation: If condition then
pc + 1 + $offset address -> pc

Affects flags: No

call conditional call subroutine

Syntax: call address [, cond]

Operation: If condition then

Affects flags: No

pc -> tos
address -> pc

Appendix A

calla call subroutine at address specified by
accumulator

Syntax: calla aXI

Operation: pc -> tos
(aX) -> pc

Affects flags: No

callr relative conditional call subroutine

Syntax:

Operation:

callr $offset address [, cond]

If condition then
pc -> tos
pc + 1 + $offset address -> pc

Affects flags: No

58 DM_ASM and DM_COFFLINK User's Manual

Appendix A

clr
Syntax:

Operation:

Affects flags:

clrr
Syntax:

Operation:

Affects flags:

cmp
Syntax:

Operand:

Operation:

Affects flags:

copy
Syntax:

Operation:

Affects flags:

conditional clear accumulator

clr aX [, cond]

If condition then
o -> aX

z M N v c
* * *

E L R

*

DSP Instruction Set

conditional clear and round accumulator

clrr aX [, cond]

If condition then
Ox8000 -> aX

z M N v c
* * *

E
*

compare to accumulator-

cmp operand, aX

reg
(rn)
direct address
#short immediate
##long immediate

aX - operand

Z M N V C E

* * * * * *

L

L

*

conditional copy accumulator

copy aX [, cond]

If condition then
ay -> aX

Z M N V C E L

* * * *

R

R

R

59

DSP Instruction Set Appendix A

((illt disable interrupts

Syntax: dint

Operation: 0 -> ie

Affects flags: No

((i"s division step

Syntax: divs direct address, aX

Operation: aX - (direct address)*2 A 15 -> ALU output
If ALU output < 0 then

aX = aX * 2
else

aX = ALU output * 2 + 1

Affects flags: z M N v c E L R
* * * *

eillt enable interrupts

Syntax: eint

Operation: 1 -> ie

Affects flags: No

lll~ load the page bits

Syntax: lpg #short immediate

Operation: #short immediate -> 8 low order bits of stl

Affects flags: No

60 DM_ASM and DM_COFFLINK User's Manual

Appendix A DSP Instruction Set

mac
Syntax:

Operands:

multiply and accumulate previous product

mac operandi, operand2, aX

y, direct address
y, (rn)

y, reg
(rj)' (ri)

(except aX, p)
(XRAM & YRAM)

Operation:

(rn) , ##long immediate

aX + shifted p -> aX
operandi -> y
operand2 -> x
x * y -> p

Affects flags: Z M N v c E L R
* * * * * * *

moda modify accumulator conditionally

Syntax: [moda] Function , aX [, cond]

Operation: If condition then
aX is modified by 'Function'

Function: shr aX = aX » 1
shl aX = aX « 1
shr4 aX = aX » 4
shl4 aX = aX « 4
ror Rotate aX right through
rol Rotate aX left through
not aX = not (aX)
neg aX = -aX
clr aX = 0 -
copy aX = aX
rnd aX = aX + Ox8000
pacr aX = shifted p + Ox8000
clrr aX = Ox8000

carry
carry

Affects flags: According to function, when condition is true.

modr Modify rn

Syntax: modr (rn)

Operation: rn is modified.

Affects flags: Z M N v c E L R

*

Note: R flag is set if rn register is zero, otherwise cleared.

DM_ASM and DM_COFFLINK User's Manual 61

DSP Instruction Set

mov move data

Syntax: mov soperand, doperand

Soperand, doperand:

Operation:

Affects flags:

62

reg , reg
reg , (rn)
(rn) , reg
rn ,direct address
aXl , direct address
aXh , direct address
y , direct address
x , direct address
direct address , rn
direct address , y
direct address , x
direct address , aX
direct address , aXl
direct address, aXh [, eu]
##long immediate , reg
#short immediate , aXl
#signed short immediate , aXh
#signed short immediate , rn
#signed short immediate , y
#signed short immediate , x-

soperand -> doperand

No effect when doperand is not
No effect when soperand is not
When soperand is aXI or aXh:

Z M N V C E L R

*
When doper and is ac:

Z M N V C E L R

* * * *
If doperand is stO:

Z M N V C E L R

* * * * * * * *

Appendix A

ac, stO
aXI, aXh

Appendix A DSP Instruction Set

movp Move Program Memory

Syntax: movp soperand, doperand

Soperand, doperand:

(aXl) , reg
(rn) , (ri)

Operation: soperand points to prom -> doperand

Affects flags: No effect when doperand is not ac, stO.

mpy
Syntax:

Operands:

When doperand is ac:

z M N v c E

* * * *
If the doperand is stO:

z M N v c E

* * * * * *

multiply

mpy operandl, operand2

y , direct address
y , (rn)

L R

L R

* *

y , reg
(rj) , (ri)

(except aX, p)
(XRAM & YRAM)

Operation:

(rn) , ##long immediate

operandl -> y
operand2 -> x
x * y -> p

Affects flags: No

mpJTs multiply signed short immediate

Syntax: mpys y, #signed short immediate

Operation: #signed short immediate ->x
x * y -> p

Affects flags: No

DM_ASM and DM_COFFLINK User's Manual 63

DSP Instruction Set Appendix A

msu mUltiply and subtract previous product

Syntax:

Operands:

Operation:

msu operandi, operand2, aX

y , direct address
y , (rn)

y , reg
(rj) , (ri)
(rn) , ##long immediate

aX - shifted p -> aX
operandi -> y
operand2 -> x
x * y -> p

Affects flags: Z M N v c E L

* * * * * * *
R

neg conditional negate accumulator

Syntax: neg aX [, cond]

Operation: If condition then
-aX -> aX

Affects flags: Z M N v c
* * * * *

n()J) No Operation

Syntax: nop

Operation: No operation

Affects flags: No

E L R

* *

(except aX, p)
(XRAM & YRAM)

Appendix A

norm
Syntax:

Operation:

Affects flags:

not
Syntax:

Operation:

Affects flags:

or
Syntax:

operand:

Operation:

Affects flags:

DSP Instruction Set

normalize accumulator

norm aX, rn

If n = 0 (aX is not normalized) then
aX = aX * 2

else

z
*

rn is modified

nop
nop

M

*
N

*
v c
* *

E L R
* * *

conditional (bitwise logic) not accumulator

not aX [, cond]

If condition then
not (aX) -> aX

z M N v
* * *

or accumulator

or operand, aX

reg
(rn)
direct address
#short immediate
##long immediate

c E L R

*

If operand is aX or p then
aX(35:0) or operand -> aX(35:0)

else

z
*

aX(15:0) or operand -> aX(15:0)
aX(35:16) -> aX(35:16)

M N v c E L R
* * *

DM_ASM and DM_COFFLINK User's Manual 65

DSP Instruction Set Appendix A

pacr round product

Syntax: pacr aX

Operation: shifted p + Ox8000 -> aX

Affects flags: Z M N V C E L R

* * * * * * *

rep repeat next instruction

Syntax: rep operand

Operand: #short immediate
reg (except aX, p)

Operation: Begins a noninterruptible single word
instruction loop, to be repeated operand + 1
(1 .. 256) times.

Affects flags: No

ret conditional return from subroutine

Syntax: ret [cond]

Operation: If condition then
tos -> pc

Affects flags: No

reti return from interrupt

Syntax: reti

Operation: tos -> pc
1 -> ie

Affects flags: No

66 DM_ASM and DM_COFFLINK User's Manual

Appendix A DSP Instruction Set

rnd conditional round accumulator

Syntax: rnd aX [, cond]

Operation: If condition then
aX + Ox8000 -> aX

Affects flags: Z M N V C E L R

* * * * * * *

rol conditional rotate accumulator left

Syntax: rol aX [, cond]

Operation: If condition then

Affects flags: Z M N V C E L R

* * * * *

ror conditional rotate accumulator right

Syntax: ror aX [, cond]

Operation: If condition

I I I " I I I I I I I " I I I I I I I
aXe aXh aXl

Affects flags: Z M N V C E L R
* * * * *

67

DSP Instruction Set Appendix A

68

shl conditional shift left accumulator 1 bit

sh14 conditional shift left accumulator 4 bits

Syntax: shl aX
sh14 aX

Operation: If condition then

~ I I I " I II I I I I II I I I I II I ~o
aXe aXh aXl

Affects flags: Z M N v c E L R

* * * * * *
Note: V is cleared if the operand being shifted could be

represented in 35 bits for shl, in 31 bits for sh14,
set otherwise.

shr
shr4
Syntax:

Operation:

conditional

conditional

shr aX
shr4 aX

If condition

shift right accumulator

shift right accumulator

then

r-OIIJI I I I I I I I II I I I I I I I ~
W aXe aXh aXl

Affects flags: z M N

* * *
v
o

c
*

E
*

L R

1 bit

4 bits

Appendix A

sqr
Syntax:

Operand:

square

sqr operand

(rn)

reg
direct address

Operation: operand -> y
operand -> x
y * x -> p

Affects flags: No

DSP Instruction Set

(except aX, p)

sqr~ square and accumulate previous product

Syntax:

Operand:

Operation:

Affects flags:

sqra operand, aX

(rn)

reg
direct address

aX + shifted p
operand -> y
operand -> x
y * x -> p

Z M N V

* * * *

-> aX

C

*

(except aX, p)

E L R

* *

sqrs square and subtract previous product

Syntax:

Operand:

Operation:

Affects flags:

sqrs operand, aX

(rn)

reg
direct address

aX - shifted p
operand -> y
operand -> x
y * x -> p

Z M N V

* * * *

-> aX

C

*

DM_ASM and DM_COFFLINK User's Manual

(except aX, p)

E L R

* *

69

DSP Instruction Set

sub
Syntax:

Operand:

Operation:

Affects flags:

subh
Syntax:

Operand:

Operation:

Affects flags:

subl
Syntax:

Operand:

Operation:

Affects flags:

70

subtract from accumulator

sub operand, aX

reg
(rn)
direct address
#short immediate
##long immediate

aX - operand -> aX

z M N v c
* * * * *

E L

* *
R

subtract from high accumulator

subh operand, aX

(rn)

direct address
reg

Appendix A

(except aX, p)

aX - operand*2~16 -> aX (aXl is unaffected)

z M N v c E L R

* * * * * * *

subtract from low accumulator

subl operand, aX

(rn)
direct address
reg

aX - operand -> aX

z M N v c
* * * * *

E

*

(except aX, p)

(operand is not sign­
extended)

L R
*

DM_ASM and DM_ COFFLINK User's Manual

Appendix A DSP Instruction Set

trap software interrupt

Syntax: trap

Operation: pc -> tos
OxOOOA -> pc
Disable interrupts (intO , intI).

Affects flags: No

)(()r exclusive or accumulator

Syntax:

operand:

Operation:

xor operand, aX

reg
(rn)

direct address
#short immediate
##long immediate

If operand is aX or p then
aX(35:0) xor operand -> aX(35:0)

else
aX(15:0) xor operand -> aX(15:0)
aX(35:16) -> aX(35:I6)

Affects flags: Z M N v c E L R

* * * *

71

DSP Instruction Set Appendix A

This page intentionally left blank.

72

APPENDIX B
Restrictions Checked By DM_ASM

B.l Instruction Restrictions

The following list of restrictions on the use of DSP instructions are imposed by the DSP architec­
ture, e.g. the pipe line mechanism or the interconnection of busses. These restrictions are checked
by the assembler and their violation is reported. Self restrictions are restrictions imposed on the
use of two operands of the same instruction, while forward restrictions are restrictions imposed on
an instruction by subsequent instructions.

B.I.I Self Restriction on ALU Instructions:

It is forbidden to use the same accumulator as both the source and destination in ALU register
instructions.

B.I.2 Self Restriction on aX and p:

It is forbidden to use the ax and p registers as source in the following instructions:

addh, addl, bkrep, mac, mpy, msu, rep I sqr I sqra I sqrs, subh and subl

B.I.3 Self Restriction on Indirect mov Instructions:

Indirect moves where the source and destination operands are the same rn register are forbidden.

B.l.4 Self Restriction on reg-to-reg mov Instructions:

Register to register moves where the source and destination operands are the same register are for­
bidden.

B.I.5 Self Restriction on ac-to-reg mov Instructions:

Register to register moves where aX is the source operand and non ax is the destination operand,
are forbidden.

B.I.6 Self Restriction on p-to-reg mov Instructions:

Register to register moves, where p is the source operand and non ax is the destination operand,
are forbidden.

73

Restrictions Checked By DM_ASM AppendixB

74

B.1.7 Self Restriction on pc as Source Register:

It is forbidden to use the pc as source register in the following instruction: bkrep

B.1.8 Block restrictions (bkrep):

After the bkrep instruction:

1. The body of the loop can not contain bkrep and mov/p to le.

2. The last and the next to last instruction in the loop can not be:

br, brr, call, calla, callr, mov/p to pc, rep, ret/i, trap.

3. The next to last instruction may not use the lc register. If the body of the loop consists of only
one instruction, it may not use the Ie register.

4. It is forbidden to jump to the last address of the loop with:

br, brr, call, calla, callr, ret/i, mov/p to pc.

(Returns from interrupt routines with reti command are allowed at any time).

B.1.9 Forward Restriction on Moving Data to the pc:

After moving data to the pc (using the mov instruction), the next instruction must be nop.

B.1.10 Forward Restriction on Repeat Instructions:

After a rep instruction, the following single-word instructions may not be used:

brr, calla, callr, movp, rep, ret, retiandtrap.

B.1.11 Forward Restriction on Repeat Instruction lYpes:

Two-word instructions may not be used after a rep instruction.

B.1.12 Forward Restriction on stO:

After ALU instructions or after an instruction where aO, aOI, aOh, aI, all, alh, stO is the destination
operand, stO can not be used as a source:

add, addh, addl, and, cmp, or, mac, moda, msu, nor.m, sgra,
sgrs, sub, subh, subl, xor.

DM_ASM and DM_ COFFLINK User's Manual

.ERROR FreeT ext

APPENDIX C
Internal Preprocessor Directives

The ERROR directive is the equivalent of the C "#error" directive. It displays the free text (the
given argument) as a message to '~stderr" and exits. This directive is used by the preprocessor itself
and is not recommended for use by the programmer .

• LINE number ["filename"]

The LINE directive is used to control the line number and/or name of the current source file for the
purpose of reporting errors. This directive is inserted by the preprocessor for the assembler and is
not recommended for use by the programmer .

. x

The X directive is used to signify each line but the first of a multiple line macro expansion in order
to keep the source line counter synchronized. This directive is inserted by the preprocessor for the
assembler and is not recommended for use by the programmer.

75

Internal Preprocessor Directives AppendixC

This page intentionally left blank.

76

APPENDIX D
DM_ASM E"or Messages

D.I Macro Pre-Processor Error Messages:

"PineMPP Error LOOI: %s(%d): Unexpected number: %s"

"PineMPP Error L002: %s(%d): Unexpected %s\n"

"PineMPP Error LOO3: %s(%d): Unexpected <cr>\n"

"PineMPP Fatal error L004: %s(%d): Exceeded maximum nesting level of '%d'\n"

"PineMPP Fatal error L005: %s(%d): Can not open file '%s'\n"

"PineMPP Fatal error L006: %s(%d): Invalid .INCLUDE directive: %s\n"

"PineMPP Error L007: %s(%d): Invalid .LINE directive"

"PineMPP Error L008: %s(%d): Unexpected .ENDM directive\n"

"PineMPP Warning YOO2: %s(%d): .MACRO redefinition of %s\n"

"PineMPP Fatal error YOO3: %s(%d): Too many .MACROs: %s\n"

"PineMPP Fatal error YOO4: %s(%d): Too long(%i) .MACRO definition: %s\n"

"PineMPP Warning YOO5: %s(%d): .EQU redefinition of %s\n"

"PineMPP Fatal error YOO6: %s(%d): Too many .MACROs: %s\n"

"PineMPP Fatal error YOO7: %s(%d): Too long(%i) .MACRO definition: %s\n"

"PineMPP Warning YOO8: %s(%d): .EQU redefinition of %s\n"

4'PineMPP Fatal error YOO9: %s(%d): Too many .EQUs: %s\n"

4'PineMPP Fatal error YOlO: %s(%d): Too long(%i) .EQU definition: %s\n"

4'PineMPP Warning YOII: %s(%d): .EQU redefinition of %s\n"

4'PineMPP Fatal error YOI2: %s(%d): Too many .EQUs: %s\n"

4'PineMPP Fatal error YOI3: %s(%d): Too long(%i) .EQU directive: %s\n"

4'PineMPP Error YOI4: %s(%d): Can not purge symbol: %s\n"

"PineMPP Warning YOI5: %s(%d): Undefined symbol: %s\n"

"PineMPP Warning Y025: %s(%d): Missing parameters\n"

"PineMPP Error Y026: %s(%d): %s\n"

"PineMPP Fatal error Y027: Illegal switch %c\n"

"PineMPP Internal error YIOI: %s(%d): Too long input string: %s\n"

"PineMPP Internal error YI02: %s(%d)"

"PineMPP Internal error YI08: %s(%d): Unable to add symbol\n"

77

DM_ASM En-or Messages

"PineMPP Internal error YI09: %s(%d): Unable to delete symbol\n"

"PineMPP Internal error Yll 0: %s(%d): Unable to find symbol\n"

"PineMPP Internal error YIII: %s(%d): Too many tokens in input string: %s\n"

"PineMPP Internal error YII2: %s(%d): Too long input string: %s\n"

"PineMPP Internal error YII3: %s(%d): Too many tokens in input string: %s\n"

"PineMPP Internal error YII4: %s(%d): Too long input string: %s\n"

"PineMPP Internal error YII5: %s(%d): Can not create symbol table\n"

D.2 Syntax Error Messages:

".TITLE %s\nTitle Directive not yet implemented\n"

"DW directive allowed only in DATA segment"

AppendixD

"External symbol definition '%s'" - Attempt to define a symbol previously declared as external.

"Illegal instruction"

78

"Illegal shift value" - SHR operator is out of the range 0 - 15.

"Illegal use of temporary symbol"

- Use temporary symbol in SHR operation.

"Invalid MODA function"

"Invalid instruction"

"Invalid operand for current directive"

"Invalid operandI, should be #UShort or Reg"

"Invalid operandI, should be #UShort"

"Invalid operandI, should be (Ax) or (Rn)"

"Invalid operandI, should be (Rn)"

"Invalid operandI, should be Address"

~~Invalid operandI, should be Ax"

"Invalid operandI, should be AxL"

"Invalid operandI, should be Cond or nothing"

"Invalid operandI, should be Direct"

"Invalid operandI, should be Y"

"Invalid operandI, should be offset expression"

"Invalid operandI, should be one of (Rn), Y"

"Invalid operandI, should be one of Reg, (Rn), Direct"

"Invalid operandI, should be one of Reg, (Rn), Direct, ##Long"

"Invalid operand2, should be ##Long"

"Invalid operand2, should be #Short"

"Invalid operand2, should be (Ri) or ##Long"

"Invalid operand2, should be (Ri)"

AppendixD

"Invalid operand2, should be (Rn)"

"Invalid operand2, should be Address"

"Invalid operand2, should be Ax"

"Invalid operand2, should be Reg"

"Invalid operand2, should be condition"

"Invalid operand2, should be one of Reg, (Rn), Direct"

"Invalid operand2, should be one of RegPH, (Rn)"

"Invalid operand2, should be one of RegPH, (Rn), Direct"

"Invalid operand2, should be one of Rn*, Ax, AxL, AxH"

"Invalid operand3, should be Ax"

"Invalid operand3, should be EU"

"Invalid operand3, should be condition"

"Invalid relocation type"

- The relocation type of a symbolic expression is not one of the following:

Dollar, absolute address, forward or backward reference for temporary symbol.

"Label redefinition '%s'"

"Missing ',' between operands"

"No operand for current instruction"

"One hashmark required"

"Segment name can not include '.'"

"Segment name larger than 8 characters"

"Segment name required"

"Symbol redefinition '%s'"

"Too many segments declared for directive"

- The identifier list of .EXTERN, .GLOBAL or .PUBLIC exceeds the max. of 10 identifiers.

"Two hashmarks required"

"Undefined Public symbol: %s"

"Undefined symbol: %s"

"Undefined temporary label '%s'"

~~WARNING: Label \"%s\" truncated to \"%s\''''

"invalid LINE directive"

D.3 Range Checking Errors:

"Number exceeds 16 bits"

"Number exceeds digit limit"

~~Out of range. ##Long range is (-32768 to +32767)"

"Out of range. #Short range is (-128 to 127)"

DM_ASM and DM_ COFFLINK User's Manual 79

"Out of range. #UShort range is (0 to 255)"

"Out of range. Address range is (0 to 65535)"

"Out of range. Direct range is (0 to 255)"

"Out of range. Offset range is (-63 to 64)"

D.4 Logical Error Messages:

"Cannot immediately resolve symbol"

- IMMEDOFFSET operation with symbol which is not yet defined.

"Relocation size conflict, symbol '%s'"

"Segment %s used for both Code and Data"

"Segment stack depleted"

- Attempt to use POPSEG directive when no segment name has been pushed to stack.

"Temporary label relocation size conflict, symbol '%s'"

D.S File 110 Messages:

80

"Can not open temporary string file"

"Can not re-read r_temporary contents file"

"Can" not re-read temporary contents2 file"

"Can not re-read temporary relocation file"

"Can not re-read temporary section contents"

"Can not re-read temporary string file"

"Can not re-write section contents"

"Can not re-write section relocation info"

"Can not re-write string table"

"Can not re-write temporary section contents"

"Can not update temporary relocation file"

"Can not write file header"

"Can not write section header no. %d"

"Can not write string table count"

"Can not write symbol table info"

"Can not write temporary string table info"

"FATAL ERROR: Unable to write to temporary relocation entry file\n"

"File Problem while resolving temporary symbols"

"Unable to write to temporary contents file"

"error: unable to open/create object file '%s'\n"

AppendixD

AppendixD DM_ASM En-or Messages

D.6 Memory Allocation Messages:

"Assembler could not allocate sufficient memory"

"FATAL ERROR: Out of heap space\n"

"Unable to allocate memory for label:- \"%s\""

"Unable to allocate memory for section header \"%s\""

"Unable to allocate memory for symbol:- \"%s\''''

"Unable to allocate memory for temporary symbol:- \"%s\''''

"Unable to create symbol table"

D.7 Limitations Messages:

"Segment '%s' exceeds module section count limit"

"More than %d temporary labels"

"Segment '%s' size greater than 64K"

"Segment stack size exceeded"

- More that 16 segment names has been pushed to stack by PUSHSEG directive.

'''%s' exceeds symbol limit"

D.8 Restrictions Messages:

"After MOV to PC next instruction must be NOP"

"Ax and P regs cannot be used in this instruction"

"Ax src/dst opmd requires Ax dstlsrc oprnd"

"Bkrep end of loop address is not a label expression"

"Bkrep label expression invalid"

"Bkrep label not in same segment"

"Branch to end of BKREP loop"

"Cannot repeat BKREP, BRR, CALLR, MOVP, REP, and TRAP instructions"

"Cannot repeat two word instructions"

"Cannot use the same accumulator for both src and dst opmd"

"Cannot use the same reg for both src and dst oprnd"

"Cannot use the same reg for both src and dst opmd"

"End of segment encountered before checking forward restriction of previous instruction"

"End of segment encountered before terminating BKREP loop"

"Final instruction of BKREP extends beyond loop boundary"

"Illegal branch to end of BKREP loop from address Ox%4.4X"

"Illegal instruction at end of BKREP loop, i.e. branch instruction"

"Illegal instruction in body of BKREP loop, i.e. nested BKREP or MOV IP to LC"

DM_ASM and DM_COFFLINK User's Manual 81

AppendixD

"Illegal instruction preceding end of BKREP loop, i.e. branch instruction or MOV IP from LC"

"Invalid Bkrep End Of Loop Address"

"P src opmd requires Ax dst opmd"

"PC cannot be used as src opmd"

"STO is invalid src oprnd"

"unknown"

D.9 Command Line Messages:

"Unrecognized switch '%s\n"

D.IO Internal Error Messages:

"Could not fetch symbol from symbol table"

"Could not find current data segment in symbol table"

"Could not retrieve symbol from symbol table"

"Error accessing symbol table"

"Internal error: StartBit> 16 on second word"

"Retrieving symbol hash table info"

"Symbol hash table full"

"Unable to enter/access file name in hash table"

D.II Information/Report Messages:

82

"****Restriction Pass\n"

"Cannot close server while still connected to clients. Suggest that you close clients first."

''\nNo errors in Assembly.\n"

''\nTotal of %d assembly errors. No object file created.\n"

''\nTotal of %d assembly wamings.\n"

DM_ASM and DM_ COFFLINK User's Manual

@adaptec8

Adaptec, Inc.
691 South Milpitas Boulevard
Milpitas, CA 95035
Tel: (408) 945-8600
Fax: (408) 262-2533

PIN: 700174-011 Rev 3
Printed in U.S.A. RJ 12195
Information is subject to change without notification.

