SYSTEM DEVELOPMEN

DSP Core

Digital Signal Proces

Cadaptec

NOTICE

This manual describes the proprietary 16-bit general-purpose Digital Signal Processor (DSP) Core, used in
Adaptec’s AIC-4411 DMC. DMC is an acronym for Drive Manager Chip containing a DSP core (PINE™)
and proprietary circuitry on a single IC. The words PINE and DM (Drive Manager) may, at times, be used
interchangeably in the text.

The information contained in this document is subject to change without notice.

Copyright© 1994 Adaptec, Inc. All rights reserved. This document contains proprietary information which
is protected by U.S. and international copyright laws. It may not be used, copied, distributed, or disclosed
without the express written permission of Adaptec, Inc.

Adaptec and the Adaptec logo are registered trademarks of Adaptec, Inc. All other trademarks used are
held by their respective owhers.

PINE, PINEASM, and COFFLINK are trademarks of DSP Semiconductors USA, Inc.
Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.

DSP Core Programmer’s Manual

H

100XXXXXXXXXXXXXX PINE CONTROL OPCODES! 0000-3f £t

; =

10000000 XXXXXXXX, 3.13¢c, nop 0000-01€f

100000010xxxxXXXX, 3.4, trap 0200-02£¢

70000001 Ixxxxxxxx unused |8} 0300-03(f

$0000010xxxxXXXXX, 3.138, eint 0400-05£f

;0000011 xxxXXXXXX, 3.13b, dint 0600-07£(

10000100xiiiififi, 3.6b, lpg timm 0800-09££

10000101 xxxXXXXXX unused (9] 0a00-0bf f

100001 10AXxXmmNNN, 3.10, norm ax, (Rn)#+ 0c00-0df £ 6/8 Rns

1000011 1xxxxmnNNN, 3.11, modr (Rn)+ 0e00-0£ 1t 6/8 Rns
;0001000xii1ii14d, J.6a, rep fimm 1000~-11£¢f

;0001001xxxxRRRRR 3.7, rep r 1200-13f¢ 31732 regs
70001010x1itd4444k, 3.8, bkrep fimm, filong 1400-151¢

$0001011xxxxRRRRR, 3.9, bkrep reg, #ilong 1600-17££ 31/32 regs
10001 1xxAffffccee, J.12, moda funct, ax, cond 1800-1£f 13 func
;00100rrrrrrrccec, 3.1a, callr 5+r, cond 2000-27tf

;00101rrrrrrreece, 3.1b, brr S+r, cond 2800-2(ff

10011000xxxxxccec, 3.2a, call ¢ilong, cond 3000-31£€

;0011001xxxxxccec, 3.2b, br #ilong, cond 3200-331¢

;0011010xxxxxcccc, 3.), ret cond 3400-35(f

;001101 1xxxxxxxXX, 3.4, reti 3600-37€¢

;0011100AXXXXXXXX, 3.5, calla axl 3800-39¢t¢€

;0011101 xxxxxxxXX unused {9) 3a200-3bfE

;0011110A2aaaaaaa, 3.15, divs diradd, ax 3c00-3d(£

1001111 1xxxxXXXXX unused [9] 3e00-3ff¢

t

1 01XXXXXXXXXXXXXX PINE MOVE OPCODES: 4000-7£€F

H

10100000AXxxxRRRRR, 2.8, movp (axl), reg 4000-41£f 31/32 regs
1010000111 TImmNNN, 2.9, movp (Rn)+, (Ri)+ 4200-43€€ 6/8 Rns
1010001 xxxXXXXXX% unused [10] 4400-47£F

70100 1ORRRRPMMNNN, 2.3a, mov reg, (Rn)+ 4800-4bff 31/32 regs, 6/8 Rns
101001 1RRRRRVMNNN, 2.3b, mov (Rn)+, reg 4c00-4 1t 6/8 Rns, 31/32 regs
;01010NNNsSSSSSssS, 2.1, mov #+imm, Rn* 5000-571¢

;010110DDDODSSSSS, 2.5, mov sreg, dreg 5800-5bfE 31732 regs
;0101110xxxxRRRRR, 2.4, mov #ilong, reg Sc00-5dff 31732 regs
;010111 IxxxxXXXXX unused |9) 5e00~5Lf¢f

;0110000Aa82a2a2aa, 2.1b, mov diradd, ax 6000-611¢

;10110001 20822483, 2.1d, mov diradd, axh 6200-621¢

10110010Aa232a24a8, 2.1c, mov dlradd, axl 6400-65€F

;110011A232a33aa, 2.1e, mov diradd, axh, eu 6600-67£f

;1101NNNaaaaaaaa, 2.6a, mov Rn*, diradd 6800-611f

;11108NNaaaaaaaa, 2.6b, mov diradd, Rn* 7000-77££

;11110HAaaa323aa, 2.1a, mov axH, diradd 7800-7bff

jO111110A01440044, 2.2a, mov fimm, axl Tc00-7dE €

70111111A5555535S, 2.2b, mov {+imm, axh Te00-7£(f

i

1 IXXXXXXXXXXXXXXX PINE ALU OPCODES: 8000-f£ff

1

1 1000000A00XRRRRR, 1.3a, oper reg, ax 8000-801¢, 8100-811f 31732 regs
7 1000000A00XRRRRR, 1.3b, mpy y, reg 8000-801f, 8100-811f 31732 regs
11000000A00XRRRRR, 1.3c, mac y, reg, ax 8000-801f, 8100-811f 31/32 regs
11000000A00XPRRRR, 1.3d, sqr reg 8000-801f, 8100-811f 31/32 regs
11000000A00XRRRRR, l.Je, sqra reg, ax 8000-801f, 8100-811f 31/32 regs
$10000xxx01xxxxXX unused [3,6] 8040, etc

1100010xx01xxXXXX unused [2,6] 8840, 8340, B8ai0, 8bi0
71000110x01xmmNNN, 1.6a, mpy (Rn}+, ttlong 8c40-8c5f, 8d40-8d5¢E 6/8 Rns
11000111A01xmmNNN, 1.6b, mac (Rn)+, tilong, ax 8e40-8e5f, B8f40-8f5f 6/8 Rns
11001000A0 1 xmmNNN, 1.6c, msu (Rn)+, {ilong, ax 9040-905f, 2140-913f 6/8 Rns
11001001x01xxxxxX unused [1,6] 9240-927f, 9340-937¢
1100101xx01xxxxXX unused [2,6] 9440, 9540, 9640, 9740

11001 1xxx01xxxXXX vnused [3,6) 9840, etc

+1000000A10xmmNNN, 1.2a, oper (Rn)+, ax 8080-809f, 8180-819f 6/8 Rns
11000000A10xmmNNN, 1.2b, mpy Y, (Rn)+ 8080-803f, 8180-819¢ 6/8 Rns
+1000000A1 OXMMNNN, 1.2¢, mac y, (Rn)+, ax 8080-809f, 8180-819f 6/8 Rns
1 1000000A1 OXMmMNNN, 1.2d, sqr (Rn)+ 8080-809¢, 8180-819¢ 6/8 Rns
31000000A10xmmNNN, 1.2e, sqra (Rn)+, ax 8080-809f, 8180-819f 6/8 Rns
+1000000A1 1 xxxxXX, 1.5a, add tilong, ax 80c0, 81cO

31000001A1 1 xxxxXX, 1.5b, sub {ilong, ax 82¢0, 83c0

31000010A1 1xxxxxX, 1.5¢, ot #tlong, ax 84c0, 85¢c0

1100001 1A1 1 xxxxXX, 1.5d, xor #ilong, ax 86c0, 87¢c0

$1000100A1 IxxxxxX, 1.5, and filong, ax §8¢0, 89c0

11000101A1 1xxxxxX, 1.5f, cmp tilong, ax 8ac0, 8bcO

710001 1xx1Ixxxxxx unused [2,6) 8cc0, 8dc0, 8ecO, BfcO

11001 xxXX11XXXXXX unused (4,6) 9ec0, etc

i 101coo0Aaaaaaaaa, 1.1a, oper diradd, ax a000-beff

i 101ooooAaaaaasaa, 1.1b, mpy y, diradd a000-bf [

3 10looooAaaaaaaaa,
11010o000A2aaaaaaa,
:1010000Aaa33423a,
i 11000xxxXXXXXXXX
$110020xxxXXXXXXX
$1100110x03911J11,
111001 10x1xxxXXXX
$1100111A03311J11,
;110011 Ix1xxxxxxx
$1101000A03§14J11,
31101000xIxxXXXXX
31101001 xxxxXXXXX
$110101xxXXXXXXXX
$ 1101 IxxxxxXXXXXXX
i1110000ALi1i1Lid,
;1110110AsssssSSss,
$111011 1xxxxxxxxx
31111 XXXRXXXXXRXX

1.1,
1.1d,
l.1e,
unused
unused
1.7a,
snused
1.7,
unused
1.7¢,
unused
unused
unused
unused
1.4a,
1.4b,
unused
unused

mac y, diradd, ax
sqr diradd

sqra diradd, sx

(11)

[10)

mpy (R§)+, (Ri)+
11,71

mac (Rj)+, (RI)¢, ax
1,7

msu {R))t, (Ri)+, ax
1,71

9]

f10}

(11)

oper fimm, ax

mpys f+imm, ax

{91

t12]

2000-be{f
2000-beft
2000-bf{f
€000-c7Lt
¢800-cblf
€c00-cc?f, cd00-cd?{
cc80-ceff, ¢dB0-cdff
ce00-ce7f, cf00-cf7f
ceB80-ceff, cfBO-cfff
d000-d07f, d100-d17f
d080-dOff, d180-clff
d200-d3(f
d400-d7£f
d8oo-drft”
000-ebff
ec00-edff
ee00-efff
£000-££€f

(@ adaptec /A577)

DRIVE MANAGER IC

R

16.3 DSP INSTRUCTION SET--execution bus cycle times (0-wait):

INSTRUCTION DESCRIPTION FLAGS | Reg | Ind | Dir | SIm | LIm
add op, ax ax += +0op ZMNVCEL- 1 1 1 1)
addh op, ax ax += +op << 16> ax | @MVCEL- 1 1 1
addl op, ax ax += op ZMNVCEL- 1 1 1
and op, ax ax &= op ZMN~-E~~ 1 1 1 1 2
bkrep, op, add lc=op:lpflaig=1 | -——--—--) 2
br add [,cond] pc=add | —====—--)
brr $off [,cond] N — 5
call add [,cond] tos=pc:pc=add | —————-— 2
calla ax] tos=pc:pc=axl | -—=-————- 2
callr $off [.cond] tos=pc;pc+=off | —-=m--—- 2
clr ax [,cond] ax =0 ZMN-~E—— 1
clr ax [.cond] ax = 0x8000 IMN--E-= 1

|_cmp op, ax flags = ax - +0D ZMNVCEL- 1 1 1 1 2
copy ax [,cond] a0=al oral =al ZMN--E—— 1
dint ieflag=0 | -==m—m-- 1
divs dir. ax unsigned divide step LN-~E—— 2
eint ieflag=1 | =m=m=m-- 1
lpg oD page register =op | ——==-——- 1
mac ool, op2, ax ax += p: p = opl * op2 | ZMNVCEL- 1 1 1 2
modr (r)+ m+=0.1.-1.orstep [——==——= R 1
mov soo, dop [.eul | dop = sop (data space) | —=———--- 1 1 1 1 2
movDp sop. dop dop = sop (pgm space) | —=—=—=-- 3
mpv ovl, op? p = (v=opl) * (x=002) | ——==———- 1 1 1 2
mpVvs V. #0D p=v*(x=op) | -mm=—=—- 1
msu opl. op2. ax ax -=p:p=opl * op?2 | ZMNVCEL- 1 1 | 1 2
neg ax [,cond] ax = -ax ZMNVCEL- 1
noo no operation | =m===———- 1
norm ax, rn if INax <<= 1; modr | ZMNVCELR 2
not ax [.cond] ax = ~ax ZMN~--E - 1
or op. ax ax I= op ZMN-~E-— 1 1 1 1 2
pacr ax [,cond] ax = p + 0x8000 ZMNVCEL- 1 .
rep op repeat next op umes | ~=-=---- 1 1
ret [.cond] pc = tos ——————— 2
reti pc=tos:ieflag=]1 | ~==-—=—- 2
rnd ax [,cond] ax += 0x8000 ZMNVCEL- 1
rol ax [.cond] rotate left through ¢ ZMN-CE -~ 1
ror ax [.cond] rotate right through ¢ | 2MN-CE-- 1
shl ax [.cond] ax <<= 1 ZMNVCE —— 1
shl4 ax [.cond] ax <<=4 ZMNVCE —— 1
shr ax [,cond] ax >>= | ZMNOCE ~—— 1
shrd ax [.cond] ax >>=4 ZMNOCE —— 1
sqr op p = (y=op) * (x=op) | —===—-=- 1 1 1
sara op, ax ax+=D:p=0p * 0D ZMNVCEL~ 1 1 1
sars op. ax ax-=p;:p=o0p *op ZMNVCZL- 1 1 1
sub op. ax ax -= 40D © | ZMNVCEL- 1 1 1 1 2
subh op, ax ax -= +op << 16 ZMNVCE L~ 1 1 1 ;
subl op. ax ax -= op ZMNVCEL- 1 1 1
trap tos = pc: pc = 10:ie=0 | -=—-——-- 2
XOr 0D, ax ax "= op ZMN-—E -~ 1 1 1 1 2
PRELIMINARY SPECIFICATION CONFIDENTIAL Rev. 0.0 Page 162 of 159

DSP Instruction Set Appendix A
paCI‘ round product
Syntax: pacr aX
Operation: shifted p + 0x8000 -> aX

Affects flags:

rep

Syntax:

Operand:

Operation:

Affects flags:

ret

Syntax:

Operation:

Affects flags:

reti

Syntax:

Operation:

Affects flags:

Z M N v c E L R

* * * * * * * —

repeat next instruction
rep operand

#short immediate
reg (except aX, p)

Begins a noninterruptible single word
instruction loop, to be repeated operand + 1
(1..256) times.

No

conditional return from subroutine

ret [cond]

If condition then
tos -> pc

No

return from interrupt
reti

tos -> pc
1 -> ie

No

DM_ASM and DM_COFFLINK User’s Manual

Appendix A

LK KIed s srerrs e

mac

Syntax:

Operands:

Operation:

Affects.flags:

moda

Syntax:

Operation:

Function:

Affects flags:

modr

Syntax:
Operation:

Affects flags:

Note: R flag is

multiply and accumulate previous product

mac operandl, operand2, aX

y, direct address
Y. (xp)

y, reg (except aX, p)

(ry), (r;)
(rp), ##long immediate

aX + shifted p -> aX
operandl -> vy
operand2 -> X

X *y ->p

Z M N v C E L R
* * * * * * * -
modify accumulator conditionally
[moda] Function , aX [, cond]

If condition then
aX is modified by 'Function'

shr aX = aX >> 1

shl aX = aX << 1

shr4 aX = aX >> 4

shl4 aX = aX << 4

roxr Rotate aX right through carry
rol Rotate aX left through carry
not aX = not (aX)

neg aX = -aX

clr aX = 0_

copy aX = aX

rnd aX = aX + 0x8000

pacr aX = shifted p + 0x8000

clrr aX = 0x8000

(XRAM & YRAM)

According to function, when condition is true.

Modify r,
modr (xr,)
r, is modified.

V4 M N v C E L R

*

set if r, register is zero, otherwise cleared.

DM_ASM and DM_CO¥FFLINK User’s Manual

61

Table of Contents

SECTION 1 - Introduction 1
1.1 GENEral DESCIIPLION ..u.eeivineiiiniiiiiiictenteerstee et sate st st e e s se st assnssessvesssessesnsssasssasssssrassessassrensersasarenes 1

1.2 Document Organization et st st sa s ae et et sed s e e s se s s e aeaere s aanearereserasase 1

1.3 Related DOCUIMNENLALIONc.ccoerireruerereerenrereseemeseeiesesssessasasessesesnessessesassseserssessessasessessasssessessessesensensesnesases 1
SECTION 2 - Architecture Features 3
2.1 TechnolOZY FEALUIESccovuieenirenrarenrciecnersneeseesaescrsersnsressassssrossnssssassasasessssns cteeeneresssnennes 3
SECTION 3 - Programming Model 5
3.1 General Descriptionccccee.... eeeeteeeae ettt st et e e e e e st ne e saerate saeentntsanartesnasanertens 5

3.2 BUSES vttt s s bt s e s s e ses e s a s e e s e e et saee e nasassasaesasses 7
3.2.1 DataBuses....... eeeesresrete b b e s R e R eR SR eR R SRR eSS oR e RS b e s et e e Rt e R e Rt sate et b e R nsa s s 7

322 Address BUSEScoeiiniernncncnicnrenecesenisesinenssasssesesens eeeresrsrest et ae b r s sra e e bs b sansanreans 7

3.3 Computation Utccceccerrcrceisiencncrnrencnrersssarseenesesssesacnens cettrreecet sttt s eean e e e e s et e e sesaraeerasatres 7
3.3.1 MUILPHET ceoveueeeuseeeneemsecumeesseessesssessesssssessesssssssessnsssssssssssssesssssssssnsansssssssssssessasssssansassassssssasssssssees 7

3.3.2 Data ALU/Shifter sttt et st e s b e e sare st ert e ssranessententassasarnesertestrtnte 7

34 Data Address Arithmetic Unit (DAAU) ..cccveevecierreciernrercirresneecesneennns 8
3.4.1 Address MOGIfICAtIONcocovvemvririrricnerersecstecsanisesescosnassesarenssesessssesssasassssssassssessessasanssssarssseses 8

3.5 Program Control Unit (PCU) ettt ettt reate st S b et er e st s aeR e sana e se s e ananane .10
3.5.1 Program Address Arithmetic Unit (PAAU)cocrvurennerrcetrnneeencesesstessnsensssessesesesssnssssssssssens 10

3.6 Memory Spaces and Organizationc.cccceeeeeeeeeeeseecrcamesrronssecsscncns .12
3.6.1 Datad MEIMOTY ...ccovvrerrecerenrereenseseesenesessesessiossessssnssessassassssssonssssassssssassesasassans .12

3.6.2 Program MEIMOTYcoccceeeeereccrccsiseneessnsereecscencosersssuessessessesessenseseonssssssassastessesmesessssssnsssesessss 13

3.6.3 Memory Addressing MOGEScccovirereecmieresenrinirsecnstssaestneeseseeeesssasatoseasasssesassesssessanssasassssen 14

3.7 Programming Model and REISIETScccvierrirereeeursceenceiennneseeeassessasarsnsseesessessescsssssesssessessessessasesssonencees 15
3.7.1 Programming MOGELccccuivvieririisuicernineesestesiescneersesaeesesstesssssessessesmesasssessesessssssssssnsesesessorses 15

372 Status REGISLETS ...cccceeeercerrerierrrieereeserniasneseesesnnreassassessenns eerererttetesne e eee e et aaeeseenteserene 17

373 SHACK coeeeietiieceeetitetentstt ettt et e et st et sae et es sasae e seenese e ns et e at et e s e et ae s saaneseresanens 22

374 User-Defined REGISIETS ...c.oeririieieecciieeeeeceeerrraeiereesesessrestasnsassasessesssesssasssseesssressssssesssnasmmsnes 22

3.8 INPUL ANA OQULPUL eceeeceimrcnnircecnes ettt sesese e ssnsaesressesassesssessssnssestssssseserentsnsssssssarenestentasssentoasatsnns 22
DSP Core Programmer’s Manual i

SECTION 4 - Instruction Set

4.1 Introduction . setseesstssatsste sttt e bt e e bt bt sh st set e s se et et e seesne s nebaeesaseresRteR et aeesse s eeae s et et st stearesnesnnterranererens 23
4.2 Notation and CONVENLIONSccccccceveereeeereerreereeraresreessesenesseesssseesessassasssssessarsssessasesssssesssseasssssssasssass 23
421 NNOLALON .cceeruenncrerenianereerecerecsresesessrssssaesssssestesssossasestasssssssasasessstassssssssssssssssasssassassssasanssasssnsoserss 23

4.2.2 CONVENLIONS ...oereerurereerrecarrsseseesassesmssessasarsestassessessessosassssessasasassosanssossssasassstensasessssrsssersssnsssossessanes 26

4.3 INStIUCHION Set SUIMINATYcoevirererererorenereeserenrerecensessssesassncstssesssassssssssssssessestssssssssassnsessassssssssasasassassases 27
44 Instruction Set DEtalsc..ccivieuinieieiinirieieniiiirisecsesscsaesaceeeseseessssssssrssescsasssssssassassessssssnssessasasnsessaseenes 29
44.1 Arithmetic and Logical INSIIUCHONScccvveeeeeveeneerirerseseeresesnssessesessesessssssssasssssasssesasssssssnsassessses 29

442 Multiply INSITUCHIONS ..cocovrviriereecricaruisecscsentsasarenesresesesencsesesssassenssossescscassescassesesssasasssssssssossnsssssans 46

443 Move Instructionscecoveueenes .51

444 L.OOD INSTUCHONS ...covuiuineeanieieneriesterrensencaacasesessestssuescssessesnessssasstsssonssesessnsssssersorassassnene 55

445 Branch/Call INSITUCHONScccerveriseeereersiesirensucsanssracsaseesmensansassesonsesasosses 57

44.6 Control and Miscellaneous INSITUCHONSccovvrveuerecvsmrensesssecrssnresrsassesssosassssesesesssassasasssassrasse 61

4.5 InStruCtion EXECULIONcccevieieiiismnienseeorentrseneeesercesensesesasestessasesesesssssssssssssssosssessssssessssasssseressessasnssseanansas 64
4.5.1 Pipeline Methodccooeeiuioiiiiieiarenrenersseesenrreieesesacsssasssessesnsesessssesssssessssesassssonssneesssssnssnns 64
SECTION 5 - Core Interface 65
5.1 INITOQUCLION w..cvvuireeinrricisintrsuinistiissiesstesessestssessesuesstsssesesseestsntssossatssentsssasssessssseserssserssssssasssessssssssessssses 65
52 CIOCK ..vevveevinvecennecneinnsrsnsesoressnacestssseneesarsucassansestasasssemnesessnsonsesesncsnesasssssssssesesstsrmassnasn .. 65
5.3 RESEL ettt css s sttt et es s s m e s sttt b s e st s b et s et a e e R e st e s st et e s anantes 65
5S4 INEEITUPLS eeoeverecreeccrenereronenesesnsssiesnsenenesasnsarsessassssessasasssesasssesnssssesassesssssassssasssseses ... 66
54.1 BPL INTO, INT ..ooooreeereeenreneeeereeesasseseensesessessnsassassesesnsns ... 66

DSP Core Programmer’s Manual

SECTION 1
Introduction

1.1 General Description

Drive Manager’s DSP (PINE) is a DSP engine for the Adaptec AIC-4411 Drive Manager Chip
(DMC). It enables low-cost, low-power DSP processing. The core consists of the main blocks of
a Central Processing Unit (CPU), including the ALU, multiplier, accumulators, RAM and ROM
addressing units, and the program control logic.

The DSP consists of three main execution units operating in parallel: the Computation Unit (CU),
the Data Addressing Arithmetic Unit (DAAU) and the Program Control Unit (PCU). It has two
blocks of data RAM for parallel feeding of two inputs to the multiplier. The CU has a 16 x 16 mul-
tiplier, 36-bit ALU, and two 36-bit accumulators. The DSPDSP programming model and instruc-
tion set are aimed at straight forward generation of efficient and compact code.

1.2 Document Organization

The key features of the DSP core are described in Section 2. The core block diagram and detailed
descriptions of each block are given in Section 3. The DSP instruction set is explained in Section
4. Section 5 describes the interface to the DSP core for ASIC design purposes, including details on
clocking, exception handling.

1.3 Related Documents

DM_DBG User’s Manual

DM_ASM and DM_COFFLINK User’s Manual

AIC-4411 Drive Manager Chip Data Sheet

AIC-4411 Drive Manager Chip ROM Code User’s Guide

DSP Core Programmer’s Manual 1

Introduction Section 1

This page intentionally left blank.

2 DSP Core Programmer’s Manual

SECTION 2
Architecture Features

2.1 Technology Features

* 16x16 bit 2's complement parallel multiplier with 32-bit product.
» Single cycle multiply/accumulate instructions.

* 36-bit ALU.

* Two 36-bit accumulators.

¢ On-chip 1Kx16 bit program ROM operation. (See Adaptec’s current “AIC-4411 Drive
Manager Chip ROM Code User’s Guide” for details.)

- Diagnostic commands
- Code download commands

e 32Kx16 bit maximum addressable off-chip program/data space and 24Kx16 bit maximum
off-chip program-only memory space.

* Areas of the 32K off-chip program/data memory can be programmed in 8K blocks for
access using either the RAM_CS or ROM_CS Chip Select signals.

e 2x256x16 bit on-core data RAM.

* On-chip 2Kx16 bit ROM and on-chip 2Kx16 bit RAM is accessible via program or data
buses on the same address space.

» Data RAMs can be also viewed for programmer as a single continnous RAM.
¢ 16 level hardware stack.

e (4+2) x16 bit general purpose pointer-registers with 2 dedicated Address Arithmetic Units
for data memory (RAM/ROM) indirect addressing, circular buffering, loop counters, and
program memory indirect addressing.

» All general and most special-purpose registers are arranged as a global register set of 31
registers for most data move and ALU instructions.

» Shifting capability:

- Accumulator shift +4,+1,-1,-4
- Accumulator rotate - +1,-1
- Product register to accumulator +1, 0, -1.

* 2Kx16 bit common program/data RAM.
* 2Kx16 bit common program data ROM.

e Memory mapped I/O space (AOOOh-BFFFh) configurable to access any 8K-block of entire
64K off-chip program space, which can be used for Flash chip programming.

DSP Core Programmer’s Manual 3

Architecture Features Section 2

* Automatic saturation mode on overflow while reading content of accumulators.

* Zero overhead looping, REPEAT and BLOCKREPEAT instructions with one nesting
level.

* Memory mapped I/O.
e Wait state support for off-chip memory or I/O.
e STOP mode of operation for stopping the core.

* Interrupts and exceptions:

- 1 reset

- 2 maskable interrupts

- 1 TRAP (software interrupt)
* Divide step support.
* Normalize step support.

4 DSP Core Programmer’s Manual

SECTION 3
Programming Model

3.1 General Description

A high-level block diagram of the DSP architecture is shown in Figure 3-1. The major compo-
nents of the DSP core are:

Data Buses - XDB, YDB, PDB
Address Buses - XAB, YAB, PAB
Multiplier

* Input registers -X,Y

* QOutput register -P

* Qutput shifter

Data ALU/Shifter

* Output accumulators - A0, Al

* Saturation logic - SATU

Data Address Arithmetic Unit -DAAU

* DAAU registers -RO+R3,R4+RS5
* DAAU config. registers - CFGI, CFGJ
Program Control Unit -PCU

* Program Add. Arith. Unit -PAAU
* Program decode controller
* Interrupt controller

Memories - XRAM, YRAM, (PROM)

Stack
Status Registers

Internal Bus Switches
Input/Output

- STO, ST1, ST2
User-Defined Registers (off-core) - EXTO0 <+ EXT7

DSP Core Programmer’s Manual

Programming Model

Section 3

YAB

l >
Y-RAM| |X-RAM DAAU _
: . =1
vy y Y
A4 v 4
STACK STATUS 4R—ESEI'—
CU MULTIPLIER PCU -
¢ ¢ INTY
ALU/SHIFTER T PAB >
t P08

SAT

Figure 3-1 DSP Core Block Diagram

DSP Core Programmer’s Manual

Section 3 Programming Model

3.2 Buses

3.2.1 Data Buses

Data is transferred on the following 16-bit buses: a bidirectional X Data Bus (XDB); and two uni-
directional buses - the Y Data Bus (YDB) and the Program Data bus (PDB). Data transfer
between the Y Data Memory (YRAM) and the Multiplier (Y register) occurs over the YDB.
Instruction word fetches take place in parallel over PDB. The bus structure supports register to
register, register to memory, memory to register and program memory to data memory/register
data movement. It can transfer up to two 16-bit words in the same instruction cycle.

3.2.2 Address Buses

Addresses are specified for the on-chip XRAM and YRAM on two unidirectional buses: the 16 bit
X Address Bus (XAB), and the 10-bit Y Address Bus (YAB). Program memory addresses are
specified on the 16-bit unidirectional Program Address Bus (PAB).

3.3 Computation Unit

3.3.1 Multiplier

The multiplier unit consists of a 16x16 to 32 bit parallel, single- cycle, non-pipelined multiplier,
two 16-bit input registers (X and Y), a 32-bit output register (P), and an output shifter. Together
with the Data ALU, PINE can perform a single-cycle Multiply-Accumulate (MAC) instruction.
The P register is updated only after a multiply instructions and not after a change in the X and/or Y
registers.

The X and Y registers may be read or written by the XDB, and the Y register by the YDB, as 16-
bit operands. The 16-bit Most Significant Portion (MSP) of the P register, PH, may be written by
the XDB as an operand. This enables a single-cycle restore of PH during interrupt service routine.
The complete 32-bit P register can be used only by the ALU and can be moved only to the two
accumulators.

The X and Y registers can be also used as general purpose temporary data registers.

The (P) register is sign extended into 36 bits and then shifted.

3.3.2 Data ALU/Shifter

The Data ALU/Shifter performs all arithmetic, logical and shifting operations on data operands.
The Data ALU/Shifter consists of a 36-bit, parallel, single-cycle, non-pipelined ALU/Shift unit
(ALU/S), two 36-bit accumulator registers (A0 and A1), and a saturation unit (SATU).

DSP Core Programmer’s Manual 7

Programming Model Section 3

The Data ALU/Shifter receives one operand from Ax (x=0,1), and another operand from either the
output shifter of the multiplier, the XDB (through the bus alignment logic), or from Ax. The
source operands may be 16 or 36 bits. Operations between the two accumulators are also possible.
ALUY/S results are stored in one of the accumulators. The source and destination accumulator of
an instruction is always the same.

The ALU/S can perform positive or negative accumulate, add, subtract, compare, shift, logical,
and several other operations, most of them in one instruction cycle. It uses a two's complement
arithmetic.

Unless otherwise specified, in all operations between the 16-bit operand and Ax (36 bit), the 16-bit
operand will be regarded as the LSP of a 36-bit operand with a sign extension for arithmetic oper-
ations and a zero extension for logic operation. The ADDH, SUBH, ADDL and SUBL instruc-
tions are used when this convention is not adequate in arithmetic operation (refer to these
instructions in Section 4).

Registers AXH and AxL can also be used as general-purpose temporary data registers.

3.4 Data Address Arithmetic Unit (DAAU)

The DAAU performs all address storage and effective address calculations necessary to address
data operands in data and program memories. In addition, it supports loop counter operations in
conjunction with the MODR instruction (see Chapter 4 on Instruction Set) and the R flag (see to
Paragraph 3.7.2 on Status Registers). This unit operates in parallel with other core resources to
minimize address generation overhead. The DAAU can implement two types of arithmetic: linear
and modulo. The DAAU contains six 16-bit address registers (RO-R3 and R4-R5) for indirect
addressing, and two 16-bit configuration registers (CFGI and CFGJ) for modulo and increment/
decrement step control. The registers are divided into two groups for simultaneous addressing
over XAB and YAB (or PAB): R0-R3 with CFGI; and R4-R5 with CFGJ. Registers from both
groups can be used for both XAB and YAB (or PAB) for instructions which use only one address
register. In addition, in these instructions the XRAM and YRAM can be viewed as a single contin-
uous data memory space.

All DAAU registers may be read or written by the XDB as 16-bit operands, thus serving as gen-
eral-purpose registers.

3.4.1 Address Modification

The DAAU can generate two 16-bit addresses every instruction cycle which can be post-modified

- by two modifiers: linear (step) and modulo modifier. The address modifiers allow thecreation-of-
data structures in memory for circular buffers, delay lines, FIFOs, software stacks, etc. They can
also be used when the Rn registers are used as loop counters in conjunction with the MODR
instruction (see Section 4 on Instruction Set) and the R flag of STO (see Section 3.7.2 on Status
Registers). Address modification is performed using 16-bit (modulo 65,536) two's complement
linear arithmetic. The range of values of the registers may be considered as signed (from -32,768
to +32,767) or unsigned (from 0 to +65,536).

~

8 DSP Core Programmer’s Manual

Section 3 Programming Model

3.4.1.1 Linear (Step) Modifier

During one instruction cycle, one or two (from different groups) of the address register, Rn, can be
post increment/decrement by 1 or by a 2's complement 7-bit step (from -64 to +63). The selection
of linear modifier type (one out of four) is included in the relevant instructions (see Section 4.2.2

on Conventions for Instruction set). Step values STEPI and STEPJ are stored as the 7 LSB of the
configuration register CFGI and CFGIJ respectively.

CFGI
15 14 13 12 11 10 5 8 7 6 5 4 3 2 1 O
l T | | 1 I T | | | T | T l
MOD I STEP I
I | 1 | | L | | L1 | L L |
CFGJ
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| l | | | | | | 1 T | | | !
MOD J STEP J
I ! | L | | 1 I R | l |

Figure 3-2 Configuration Registers
3.4.1.2 Modulo Modifier

The two modulo arithmetic units can update one or two address registers from different groups
during one instruction cycle. They are capable of performing modulo calculations of up to 2**9.
Each register can be set independently to be affected or unaffected by the modulo calculation using
the six Mn status bits in the ST2 register. Modulo values MODI and MOD)J are stored in 9 MSBs
of configuration registers CFGI and CFGJ respectively.

For proper modulo calculation, the following constraints must be satisfied (M = modulo factor; q =

STEPx, +1 or -1):

1. The lower boundary (base address) must have zeros in at least the k LSBs, where k is the mini-
mal integer that satisfies 2**k > M-Iq|

2 MODx (x denotes I or J) must be loaded with M-Igl.
3 M must be an integer multiple of q (this is always true for g=+/-1).

Note: Igl denotes the absolute value of q.

The modulo modifier operation, which is a post-modification of the Rn register, is defined as follows:
Rn <- 0in k LSB; if Rn is equal to MODx in k LSB and q > 0,
Rn <-MODx in k LSB; if Rnis equal to 0 in k LSB and q <0,
Rn <- Rn + q ; Otherwise

Note: R0-R3 can only work with STEPI and MODI, while R4-R5 can work only with STEPJ and
MODJ.

DSP Core Programmer’s Manual : 9

Programming Model Section 3

Examples:

1. M=7 with STEPx=1 (or +1 selected in instruction), MODx=7-1=6, Rn=10H (hex). The
sequence of Rn values will be: 10,11,12,13,14,15,16,10,11,...

2 M=8 with STEPx=2, MODx=8-2=6, Rn=10H. The sequence of Rn values will be:
10,12,14,16,10,12,...

3 M=9 with STEPx=-3, MODx=9-I-3I=6, Rn=16H. The sequence of Rn values will be:
16,13,10,16,13,...

3.5 Program Control Unit (PCU)

The Program Control Unit (PCU) performs instruction fetch, instruction decoding, exception han-
dling, and wait state support. In addition, it controls the internal PROM protection (see Section
3.6.2).

3.5.1 Program Address Arithmetic Unit (PAAU)

The Program Address Arithmetic Unit (PAAU) generates the next address to the program memory
and controls hardware loops. It contains the Repeat/Block-Repeat unit, and two 16-bit directly-
accessible registers: the Program Counter (PC) and the Loop Counter (LC) of the block-repeat
unit.

The PAAU selects and/or calculates the next address from several possible sources: the incre-
mented PC in sequential program flow; PROM address in branch or call operations; short PC-rela-
tive address of 7-bit in relative branch operations; start address of hardware loop; interrupts vector
in interrupt handling; or the Top of Stack (TOS) upon returning from subroutines and interrupts. It
also writes the PC to the TOS in subroutines and interrupts.

The PC always contains the address of the next instruction.
3.5.1.1 Repeat and Block Repeat Unit

The Repeat/Block-Repeat unit performs the hardware-loop calculations and control, with no over-
head other than the one-time execution of set-up instructions REP and BKREP. In block-repeat
operation, it stores the first and the last addresses of a loop and counts the number of loop repeti-
tions. It consists of two 16-bit dedicated registers for start and end addresses of the block repeat,
and two 8-bit repeat and block-repeat counters (1 to 256 repetitions). The start and end address
registers as well as the 8-bit repeat counter cannot be accessed as registers by the programmer.
The 8-bit block-repeat counter is the 8 LSB of the LC register, which is one of the global registers.

~ The LC register can be used as an index (e.g. address to an array) inside the block-repeat loop or

~ for determining the value of the block-repeat counter when a jump out of the block-repeat loop

occurs.

Single-level nesting of a single-instruction repeat in the block-repeat instruction is supported.
Interrupts are disabled only during a single-instruction repeat, and when the instruction is being
repeated. For details of specific limitations, refer to REP and BKREP instructions in Section 4 on
the Instruction Set.

10

DSP Core Programmer’s Manual

Section 3 Programming Model

The number of repetitions can be a fixed value in the instruction code or a value contained in one
of the processor's 16-bit registers. This supports calculating the number of repetitions in run-time.

For a clean jump (break) from a block-repeat, a special status bit, In-Loop (LP), is available in
ST2. Itis set when a block-repeat is executed and reset on normal completion of the block-repeat
loop. The user must reset it when a jump out from the block-repeat loop occurs. See also Section
3.7.2 on Status Registers.

If the LP bit is cleared in the block repeat loop and not by one of the two last instructions of the
loop, the processor is no longer in the loop state. Therefore, there will be no jumps to the first
address of the loop and the counter will not be decremented.

If the LP bit is cleared by one of the last two instructions of the loop, its effect will take place only
in the next loop. (Unless the only instruction in the block repeat loop clears the LP and the LC is 2
or more, then the loop will be performed 3 times.)

The LC register may also serve as a general-purpose register for temporary storage.

DSP Core Programmer’s Manual 11

Programming Model Section 3

3.6 Memory Spaces and Organization

Two independent memory spaces are available: the data space (XRAM and YRAM) and the pro-
gram space (PROM). Each is 64K words. The addresses from 1000h to 7FFFh access the same
memory from either the program or data buses.

3.6.1 Data Memory

The data space is divided into an X data space for the XRAM (from zero to 64511 <63K-1>), and
a 'Y data space for the YRAM (from -1 to -1024). The range of the data space can also be consid-
ered as unsigned, making the XRAM and YROM spaces continuous. The XRAM space has an
internal space (on-core data RAM/ROM) of 1K (from 0 to 1023), and an external space of 62K.
The YRAM space is internal only. See also Figure 3-3. The above data space partition allows
modular expansion of the on-core XRAM and YRAM, and at the same time enables looking at the
two RAMs as single continuous data RAM.

The on-core XRAM and YRAM sizes are at least 2x144x16 bits and can be expanded in 2x64x16
bit blocks from 2x128x16 bits (i.e. the next size is 2x192x16 bits, the one after that is 2x256x16
bits, etc.) up to 2x1Kx16 bits. The XRAM and YRAM can also be expanded by data ROM in
64x16 bit blocks up to a total (RAM + ROM) of 2x1Kx16 bits. The X data memory can be
expanded off-core (with no additional wait state cycles) up to the YRAM boundary.

On-chip DMC peripherals are memory mapped I/O into the data space at address Exxxh. Wait

state generation can be supported for off-chip memory. (See the current AIC-44XX Drive Manager
Chip Data Sheet for programming details.)

OFFFFh :

YRAM (On-Chip)
OFFOOh '
Mem Mapped I/O (On-Chip) l
08000h |
Common Prog/Data XRAM |
(Off-Chip) 02000h |
Prog/Data ROM (On-Chip) !
01800h '
Prog/Data RAM (On-Chip) |
01000h |
— 00100h , :
XRAM (On-Chip) |
00000h |

Figure 3-3 Data Memory Map

12

DSP Core Programmer’s Manual

Section 3 Programming Model

3.6.2 Program Memory

The program space starts at address 00010H. Addresses 0000H-0001H are used for Reset; and
addresses 0008H-000FH are used for TRAP, BPI (Breakpoint interrupt), and two maskable inter-
rupts respectively. Each interrupt address has been separated by two locations so that branch
instructions can be accommodated in those locations if desired. Addresses 0002H-0007H are

reserved (see Figure 3-4.).

The internal PROM is 1K words and can be extended in 1K-word blocks up to 32K words. The
program space may be expanded off-chip up to 64K words.

The program memory addresses are generated by the PCU

FFFFh
Prog Code Area (Off-Chi
g (P) Off-Chip
Program
8000h Memory
7FFFh
Prog/Data (Off-Chip)
2000h —
Prog/Data ROM (On-Chip)
1800h
Prog/Data RAM (On-Chip)
g/D P 1000h
. 0400h
Boot ROM Code (On-Chip)
0010h .
On-Chip
Interrupt 1 P
000Eh -ogram
Memory
Interrupt 0
000Ch
TRAP
000Ah
BPI
0008h
Reserved
0002h
Reset
0000h —_

Figure 3-4 Program Memory Map

DSP Core Programmer’s Manual 13

Programming Model Section 3

3.6.3 Memory Addressing Modes

There are two data addressing modes:

1. Direct Addressing Mode: Eight bits from instruction as LSB plus eight bits from status register
ST1 (see Section 3.7.2 on Status Registers) as MSB compose the direct address to the Data
memory. The pages are thus of 256 words each. For example, page 0 is from O to 255 in
XRAM, page 1 is from 256 to 511 in XRAM, and page 255 is from -256 to -1 in YRAM.

2 Indirect Addressing Mode: The Rn registers of the DAAU are used for indirect addressing to
the XRAM and YRAM.

Addressing program memory is accomplished by:

1. Indirect Addressing Mode: The Rn registers of the DAAU and the accumulator can be used for
addressing the PROM in specific instructions.

2 Special Relative Addressing Mode: Special Branch-Relative (BRR) and Call-Relative
(CALLR) instructions support jumping relative to the PC (from PC-63 to PC+64).

14

DSP Core Programmer’s Manual

Section 3

Programming Model

3.7 Programming Model and Registers

All of DSP core’s visible registers are arranged as a global register set of 31 registers, which can be
accessed by most move and ALU instructions. The registers are listed below, organized according
to units’ partition. Additional details on each register can be found in the description of each unit

and in the following paragraphs.

3.7.1 Programming Model

CU REGISTERS:

15

X | |
15 0
Y | |
3t 16 15 0
P PH [}
3s 32 31 16 15 0
A0 [me] AcH I AL |
35 32 31 16 15 . 0
Al | AE { AH | AlL |
DAAU REGISTERS: .
15 7 6 s} 15 6]
CFGI | wmoot | | CFGJ | [swers |
15 0 15 0
RO |] R4 | |
15 (] 15 [s]
Ri | B R5 | |
15 [+]
R2 | 1
15 o]
R3 | Bl

DSP Core Programmer’s Manual

15

Programming Model

Section 3

Programming Model (continued)

PCU REGISTERS:

15 Q

PC | |
15 0

T 1

GENERAL REGISTERS:

15 0

ST]
‘ 15 0

ST | |
. 15 0

st2 [|
15 0

TOS* |]

*Upto 16X16-bit stack levels

USER-DEFINED REGISTERS (Optional Off-Core):

15 0

EXTO 1

.15 o N

EXT1 ¢ i
15 0

EXT2 |
15 0

EXT3 !
15)

EXT4 |
15)

EXTS !
i5 0
e -

EXT7 :

.
]
IS

16

DSP Core Programmer’s Manual

Section 3 Programming Model

3.7.2 Status Registers

Three status registers are available for flags, status bits, control bits, user I/O bits, and paging bits
for direct addressing. The contents of each register and their field definitions are described below.

3.7.2.1 Status Registers Format

STO
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| | |
A OE l Z M N AV C E L R [[IM1{{IMO|l IE || SAT
l | i . i i
Accumulator 0
Extension Bits
Zero Interrupt
. Mask
Minus J
y v
NormalizedV Interrupt
Enable
Overflow v v
Carry ¢ Saturation
Mode

Extension v

Limit

Rn 1s Zero

ST1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| |] I | | | | | | |
A1l E S P * * PAGE
| | i | | | | | 1 | |

Accumulator 1
Extension Bits

Data Memory Space
Page
Shift
P Register

v
Reserved

DSP Core Programmer’s Manual 17

Programming Model

Section 3

ST2

15 14 13 12 11 10 9 8 7 6 5

IP1|{IPO|STP| LP |[IU1|IUO

oul|ouly O 0 || M5

M4 | M3 | M2 | M1 | MO

Interrupt JUSER1
Pending
Stop IUSERO o
Mode OUSER1 L
Inloop OUSERO
Notations: * Written as zero, read as don’t care
0 Written as don’t care, read as 0
~ Not
v Or
N And
@ Exclusive-Or

v
Modulo Enable

18

DSP Core Programmer’s Manual

Section 3 Programming Model

3.7.2.2 Status Register Field Definition
Most of the fields can be modified by writing to one of the status registers.

The flags (Z, M, N, V, C, E, L) indicate the result of the last ALU operation. At most of the cases
the ALU output is latched at the destination accumulator, i.e. at most of the cases the flags indi-
cates the destination accumulator status.

If an instruction has a different effect than those listed under the status register fields, refer to the
specific instruction in Section 4.

STO Register

Zero (Z) -Bitll
Set if the ALU output equals zero; cleared otherwise.

The zero flag is cleared during processor reset.
The zero flag can be modified by writing to STO.

Minus (M) -Bit 10
Set if ALU output is a negative number; cleared otherwise. The minus flag is the same as the MSB
of the ALU output (bit 35).

The minus flag is cleared during processor reset.
The minus flag can be modified by writing to STO.

Normalized (N) - Bit9
Set if the 32-bit of the accumulator which was the destination at the last instruction is normalized;
cleared otherwise, i.e. setif Z U ((bit 31 ® bit 30) N ~E).

The normalized flag is cleared during processor reset.
The normalized flag can be modified by writing to STO.

Overflow (V) -Bit 8
Set if an arithmetic overflow (36-bit overflow) occurs after an arithmetic operation; cleared other-
wise. It indicates that the result of an operation cannot be represented in a 36 bits.

The overflow flag is cleared during processor reset.
The overflow flag can be modified by writing to STO.

Carry (C) -Bit7
Set if the result of an add generates a carry, or if the result of a subtract generates a borrow; cleared
otherwise. It is also affected by the shift and rotate operations in the MODA instruction.

The carry flag is cleared during processor reset.
The carry flag can be modified by writing to STO.

DSP Core Programmer’s Manual 19

Programming Model Section 3

Extension (E) - Bit 6
Set if bits 35-31 of the ALU output, are not identical; cleared otherwise. It indicates that the result
of an operation cannot be represented in a 32-bit accumulator.

The extension flag is cleared during processor reset.
The extension flag can be modified by writing to STO.

Limit (L) - Bit5§

Set if the overflow flag was set (overflow latch) or a limitation-occurred when performing a move
instruction (MOV) from one of the accumulators (AxH and/or AxL) through the data bus. Other-
wise it is not affected.

The limit flag is cleared during processor reset.
The limit flag can be modified by writing to STO.

Rn register is zero (R) - Bit4
This flag is affected by the MODR and NORM instructions. The R flag is set if the result of the
Rn modification operation (Rn ; Rn+1; Rn-1; Rn+S) is zero; cleared otherwise.

Note: If the Modulo is enabled for the specific Rn register, Rn reaches the buffer boundary, and
the Modulo mechanism sets a 0000H value in the register - the R flag is cleared.

The R flag status is latched until one of the above instructions is used.

The R flag is cleared during processor reset.
The R flag can be modified by writing to STO.

Interrupt Mask (IMO, IM1) - Bits 2, 3
IMO - Interrupt mask for INTO

IM1 - Interrupt mask for INT1

Clear - disable the specific interrupt

Set - enable the specific interrupt

The interrupt mask bits are cleared during processor reset.
The interrupt mask bits can be modified by writing to STO.

Interrupt Enable (IE) - Bit 1
Clear - disable all maskable interrupts

Set - enable all maskable interrupts

The interrupt enable bit is cleared during processor reset.

- The interrupt enable bit can be modified by instructions EINT (enable interrupts), DINT (disable-

interrupts), or by writing to STO.

Saturation Mode (SAT) - Bit 0
Clear - enable the saturation when transferring the contents of the accumulator onto the data bus
Set - disable the saturation mode

The saturation enable bit is cleared during processor reset.
The saturation enable bit can be modified by writing to STO.

20

DSP Core Programmer’s Manual

Section 3 Programming Model

ST1 Register

Shift P register (SP) - Bits 10, 11
The shift P register bits control the scaling shifter at the P register output.
SP bits 11, 10:

SP = 00 no shift

SP = 01 shiftright
SP = 10 shift left
SP = 11 Reserved

The SP bits are cleared during processor reset.
The SP bits can be modified by writing to ST1.

RAM Page (PAGE) - Bits0,1,2,3,4,5,6,7
Used for direct address. Refer to Section 3.6.3 on Memory Addressing Modes.

The PAGE bits can be modified by the LPG instruction or by writing to ST1.

ST2 Register

INT PENDING (IP0,IP1) - Bits 14,15

IPO - Interrupt pending for INTO

IP1 - Interrupt pending for INT1 _

The interrupt pending bit is set when the corresponding interrupt is active. The bit reflects the
interrupt level regardless of the mask bits.

The IPx bits are read only.
STOP (STP) - Bit 13
Set - stop processing mode (Low-power standby)

Clear - normal operation

The STOP bit is cleared during processor reset.
The STOP bit can be modified by writing to ST2.

INLOOP (LP) - Bit 12
Set if a block repeat is executed; cleared by the user or at the end of the block-repeat.

When transferring data into ST2, the LP bit will be influenced as follows:
"0" The LP bit is unaffected.
"1" The LP bit is cleared.

This bit can be used to break from a block repeat.

The inloop bit is cleared during processor reset.
The inloop bit can be cleared by writing to ST2.

In addition, refer to Section 3.5.1.1 on Repeat and Block-Repeat Unit.

DSP Core Programmer’s Manual 21

Programming Model Section 3

IUSERO, IUSER1 (IUO, IU1) - Bits 10, 11
The IUSERX bits are read only and reflect the logic state of the corresponding user input pins.

OUSERO0, OUSER1 (0U0, OU1) - Bits 8,9
The OUSERX bits can be modified by writing to ST2 and define the logic state of the correspond-
ing user output pins.

The OUSERX bits are cleared during processor reset.
The OUSERX bits can be modified by writing to ST2.

Modulo set (M0, M1, M2, M3, M4, M5) -Bits 0, 1, 2,3,4,5

Cleared Mn bit - when using the corresponding Rn register, the Rn register will be modified as
specified by the instruction regardless of the modulo option.

Set Mn bit - when using the corresponding Rn register, the Rn register will be modified as speci-
fied by the instruction using the suitable modulo.

The Mn bits are cleared during processor reset.
The Mn bits can be modified by writing to ST2.

3.7.3 Stack

A hardware stack is connected to the XDB and its top (TOS), and can be accessed as a Last-In-
First-Out (LIFO) data register file. The stack is automatically loaded with the PC whenever a sub-
routine call or an interrupt occurs and popped back on return from subroutine or interrupt, respec-
tively.

3.7.4 User-Defined Registers

The core supports 8 user-definable registers, which can be located on the DMC. This feature
enables future expansion of the core. These registers appear in the data register fields of all rele-
vant instructions. With these registers, external computation units can be loaded with data and
read at the end of the computation directly into internal registers in single cycle.

3.8 Input and Output

Memory mapped I/O is used.

- Two special input bits and two output bits are available as status bits in status register ST2.Condi-

tional instructions can be executed according to the two input bits.

22

DSP Core Programmer’s Manual

SECTION 4
Instruction Set

4.1 Introduction

This chapter provides an overview and detailed description of the DSP instruction set. The chapter
also gives sufficient information to understand the nature of DSP programming and the capability
of the instruction set itself.

4.2 Notation and Conventions

4.2.1 Notation

The following notations are used in this chapter:

Registers:

N = Address registers: 10, r1, 12, 13, r4, r5
tl = Address registers: 10, r1, 12, 13

rJ = Address registers: 4, r5

aX =aloral

aXl = Accumulator-low (LSP), x =0, 1
aXh = Accumulator-high MSP),x=0, 1
aXe = Accumulator extension, x =0, 1
ac =a0, al, aoh, alh, a0l, all

cfgX = Configuration registers of DAAU (MODI or MODJ, STEPI or STEP]), x=1,J

tos = Top of stack
pc = Program counter
Ic = Loop counter

extX = External registers, X =0, 1,...7

reg = a0, al, aOh, alh, a0], all, N, x, y, p or ph, pc, lc, tos, st0, stl, st2, cfgl, cfgJ, extX

DSP Core Programmer’s Manual 23

Instruction Set Section 4

Address Operands:
On-chip data RAM/ROM
Off-chip data RAM/ROM:
Direct address = Paged direct address of 8 bits (see Chapter 3, Section 3.6.3 on addressing modes)
Program ROM:
Address = Unsigned 16 bits (0 to 65535)
$Offset address = 2's complement 7 bits (-64 to 63
offset range: -63 to 64)
Immediate Operands:
#Short immediate = Unsigned 8 bits (0 to 255)
#Signed Short immediate = 2's complement 8 bits (-128 to 127)
##Long immediate = 2's complement 16 bits (-32,768 to +32,767)
Assembler syntax: ____ decimal

Ob_,0B___ binary
Ox___ ,0X___ hexadecimal

When using hexadecimal representation, if the number starts with a letter (A-F), a leading zero
must be inserted.

cond - condition field:

true Always
eq Equal to zero
neq Not equal to zero
gt Greater than zero
ge Greater or equal to zero
It Less than zero
le Less or equal to zero
nn Normalize flag is cleared
v Overflow flag is set
c Carry flag is set
e Extension flag is set
1 Limitflagisset
nr R flag is cleared

niu0 TUSERQO input user pin 0 is cleared
in0 TUSERQO input user pin 0 is set
il IUSER!1 input user pin 1 is set

DSP Core Programmer’s Manual

Section 4 Instruction Set

Other:

(x)= The contents of x

{} = Optional field at the instruction
[x] = Specific notes

> =1s assigned to

>> = Shift right

<< = Shift left

_ = Not

_ =0r

_ = And

Flags Notation:

The effect of each instruction on the flags is described by the fdllowing notation:
* The flag is affected by the execution of the instruction.

- The flag is not affected by the instruction.

10or0 The flag is unconditionally set or cleared by the instruction.

st0 bits 11 10 9 8 7 6 5 4
Flags Z M N v C E L R

For flag definitions, refer to Section 3.7.2.2 on Status Register Field Definitions.

DSP Core Programmer’s Manual 25

Instruction Set Section 4

4.2.2 Conventions
1. The arithmetic operations are performed in 2's complement.

2 When rN register is used by an instruction, the contents of tN register are post-modified as fol-
lows:

Options controlled by instruction:
N, tN+1, tIN-1, rN+step
Options controlled by configuration registers CFGx:
Step size: STEPI, STEPJ - 2's complement 7 bits (-64 to 63)
Modulo size: MODI, MODYJ - unsigned 9 bits (1 to 512)
Options controlled by st2:
For each 1N register it should be defined if MODULO is used or not.
For using MODI or MOD)J the relative Mn bit must be set.

For more details on the modulo arithmetic unit refer to Section 3.4.1.2 on Modulo Modifier.
Assembler syntax: (rN) , (fN)+, (tN)- , @N)+S

3 ph (the MSP of the p register) can be write only. The 32-bit p reg is updated after a multiply
operation and can be read only by transferring it to the ALU, that is, it can be moved into aX or
be an operand for arithmetic and logic operations. When transferring it into the ALU, it is sign-
extended to 36 bits. This enables the user to store and restore the p register.

4 The p register is used as a source operand for different instructions as follows: as one of the
reg registers; at moda instruction - PACR function; at multiply instructions where the p register
is added or subtracted from one of the accumulators. When using the p register as a source
operand, it always means using the 'shifted p register'. Shifted p register means that the p reg-
ister is sign-extended into 36 bit and then shifted as defined at the SP field, status register st1.
In shift right the sign is extended, whereas in shift left a zero is appended into the LSB. The
contents of the p register remain unchanged.

5 All move instructions using the accumulator (aX) as a destination are sign extended. All
instructions which use the accumulator-low (aXl) as a destination, will clear the accumulator-
high and the accumulator-extension. Therefore, they are sign extension suppressed.

All instructions using the accumulator-high (aXh) as a destination, will clear the accumulator-
low and are sign extended. An exception is mov direct address,aXh,{eu}, when moving data
into accumulator-high can be controlled with sign extension or with sign extension suppressed
(the accumulator-extension aXe is unaffected).

6 In all arithmetic operations between 16-bit registers and aX (36 bits), the 16-bit register will be
regarded as the 16 low-order bits of a 36-bit operand with a sign extension in the Most-Order-
Bits.

7 Itis recommended that the flags be used immediately after the ALU operation or moved into
AC operations (see restrictions at 11.b). Otherwise, very careful programmmg is requlred
(some flags may be changed in the meantime). -

8 The condition field is an optional field; when the condition is missing then cond = true.

9 When transferring data into the hardware stack, the data is transferred to the tos, and the stack
is pushed down one level. When transferring data out of the hardware stack, the data is copied
to the destination, and the stack is popped one level.

10 ALU instruction is one of the following instructions: add, sub, or, and, xor, cmp, addl, subl,
addh, subh, moda, norm, mac, msu, sqra, sqrs.

26 DSP Core Programmer’s Manual

Section 4

Instruction Set

11 General Restrictions:

A Arithmetic and logical operations must not be performed with the same accumulator as the

B st0 cannot be used as a source operand after one of the following instructions:
1. An ALU instruction
2. An instruction where st0/a0/a0l/a0h is the destination operand

source (soperand) and the destination (doperand). Example: add a0,a0.

12 Following the mov operand, pc and movp soperand, pc, a nop instruction must be placed. After
a move instruction to the pc, the nop instruction is executed. Only then is the pc updated
according to the move instruction, e.g. performing a jump instruction. When an interrupt is
accepted after a move to pc instruction (jump instruction), the tos contains the destination of the
jump address.

4.3 Instruction Set Summary

The following is a summary of the Pine instruction set organized by instruction group. Page num-
bers for details of each instruction are shown at the right.

ARITHMETIC & LOGICAL INSTRUCTIONS

add Add
sub Subtract
or OR
and AND
Xor Exclusive - OR
cmp Compare
addl Add to Low Accumulator
subl Subtract from Low Accumulator
addh Add to High Accumulator
subh Subtract from High Accumulator
moda Modify Accumulator Conditionally
norm Normalize
divs Division Step
MULTIPLY INSTRUCTIONS
mpy Multiply
mac Multiply and Accumulate Previous Product
msu Multiply and Subtract Previous Product
mpys Multiply Signed Short Immediate
sqr Square
sqgra Square and Accumulate Previous Product
sqrs Square and Subtract Previous Product

(p-29)
(p- 33)
(p-34)
(p- 35)
(p-37)
(. 38)
(p-38)
(p. 39)
(-39
(p. 40)
(p- 41)
(p- 44)
(p- 45)

(p. 46)
(p. 47)
(p- 48)
(p. 48)
(p- 49)
(p- 49)
(p- 50)

DSP Core Programmer’s Manual

27

Instruction Set Section 4
MOVE INSTRUCTIONS
mov Move Data (p. 51)
movp Move Program Memory (p. 54)
LOOP INSTRUCTIONS
rep Repeat Next Instruction (p. 55)
bkrep Block Repeat (p. 56)
BRANCH / CALL INSTRUCTIONS
br Conditional Branch (p-57)
brr Relative Conditional Branch (p. 58)
call Conditional Call Subroutine (p- 58)
callr Relative Conditional Call Subroutine (. 59)
calla Call Subroutine at Location Specified (p. 59)
by the Accumulator
ret Return Conditionally (p. 60)
reti Return from Interrupt (p. 60)
CONTROL & MISCELLANEOUS INSTRUCTIONS
nop No Operation (p. 61)
modr Modify IN (p. 61)
eint Enable Interrupt (p. 62)
dint Disable Interrupt (p. 62)
trap Software Interrupt (p. 63)
Ipg Load the Page Bits (p. 63)

DSP Core Programmer’s Manual

Section 4 Instruction Set

4.4 Instruction Set Details
This section provides detailed descriptions of each instruction. It includes instruction syntax,

description of operation, operand details, effect on flags, number of execution cycles, and other
relevant notes and exceptions.

The instructions are organized according to the groups listed in the summary in Section 4.3.

4.4.1 Arithmetic and Logical Instructions

add Add

add operand , aX

Operation: ax + operand -> aX
Source Source Destination
operand 1 operand 2 operand

The instruction has two source operands which are added at the ALU, the
ALU output is latched at the destination operand.

The flags are affected according to the ALU output, in this instruction
it reflects the status of the destination accumulator.

Affects flags: 2 M N \Y C E L R

* * * * * * * -
Cycles: 1

2 when the operand is ##long immediate
Words: 1

2 when the operand is ##long immediate

'aX' means one of the accumulators a0 or al. This accumulator is both
source operand and destination operand.

The 'Operand'’ field is the other source operand, added at this instruc-
tion and can be one of the following options -

operand: reg
#short immediate
##long immediate
(rN)
direct address

DSP Core Programmer’s Manual 29

Instruction Set Section 4

reg - is one of the 31 Pine registers : a0, al, aOh, alh, a0l, all, rN,
X, ¥, P, pc, lc, tos, st0, stl, st2, cfgIl, cfgd, extX. The contents of
the source register is added to the accumulator. The operation result,
the ALU output, is placed at the accumulator.

Example:
add rl,a0
Before execution After execution
al 1001H 1008H
rl 7H 7H

Short Immediate - the 8-bit (positive number) is one of the source oper-
ands. The 8-bit value is added, right-justified, to the accumulator. The
operation result, the ALU output, is placed at the accumulator.

Example:

add #255,a0

Before execution After execution

a0 1001 1256

Long Immediate - the 16-bit value is one of the source operands. The 16-

L - - |

bit value is added, right-justified and sign-extended, to the accumula-
tor. The operation result, the ALU output, is placed at the accumulator.

E.g.

add ##0FFFFH,al

Before execution After execution

al 20H 1FH

30 DSP Core Programmer’s Manual

Section 4 Instruction Set

(rN) - is indirect addressing.

Source operand Data location

N —>

rN - 16 bit

One of the DAAU registers (r0, rl, r2, r3, r4, r5) points to one of the
64k data words. The data location contents, pointed by the register, is
the source operand - added to the accumulator. The operation result, the
ALU output, is placed at the accumulator.

The rN register is modified after the instruction is executed as follows:

(rN) - no update

(rN) + - N is autoincrement

(rN) - - rN is autodecrement

(rN)+S - xN is autoincrement/autodecrement by the offset S

Each of these modifications can use the MODULO option.

For further details regarding the postmodification, see section 4.2.2
(2).

Example:

add (rl)+S,a0

Before execution After execution
a0 1001H 1101H
rl 7H 9H
Data location 7H 100H 100H
CFJI meaning S=2 2H 2H
st2 meaning no XXX0H XXX0H

modulo option for 1l

DSP Core Programmer’s Manual 3

Instruction Set Section 4

Direct Address -

The data location, one of the 64k data words, is one of the source oper-
ands. The 16-bit data location is composed of the page number at stl reg-
ister and the 'direct address' field - the offset at the page. The data

location contents is added to the accumulator. The operation result, the

ALU output, is placed at the accumulator.

8 LSBs of stl ‘direct address’ field
Page number Offset at Page Data location
8 bit 8 bit
Example:
add 2,al
Before execution After execution
al OFFFFFFFFFH OH
stl meaning page 1 OF301H 301H
Data location 102H 1H 1H

32

DSP Core Programmer’s Manual

Section 4

Instruction Set

sub Subtract

sub operand , aX

Operation: aX - operand -> aX
operand: reg
(rN)

Affects flags: 2

*

Cycles:

Woxds:

N RN

direct address
#short immediate
##long immediate

M N v C E L R

* * * * * * -

when the operand is ##long immediate

when the operand is ##long immediate

DSP Core Programmer’s Manual

33

Instruction Set Section 4

or OR

or operand , aX

Operation: If operand is aX or p
aX[bits 35-0] OR operand -> aX[bits 35-0]

If operand is reg, (xN),
short immediate, long immediate
aX[bits 15-0] OR operand -> aX[bits 15-0]
aX[bits 35-16] -> aX[bits 35-16]

Clarification: If the operand is one of the accumula-
tors or the p register, it is ORed with the destina-
tion accumulator.

If the operand is a 16-bit register or an immediate
value, the operand is zero-extended to form a 36 bits
operand, then ORed with the accumulator. Therefore,
the upper bits of the accumulator are unaffected by
this instruction.

operand: reg
(rN)
direct address
#short immediate
##long immediate

Affects flags: 2 M N \% C E L R

* * * - - * - -

1

2 when the operand is ##long immediate
1

2

when the operand is ##long immediate

34 DSP Core Programmer’s Manual

Section 4 Instruction Set

and AND

and operand , aX

Operation: If operand is aX or P
aX[bits 35-0] AND operand -> aX([bits 35-0]

If operand is short immediate
aX[bits 7-0] AND operand -> aX[bits 7-0]
aX[bits 15-8] -> aX[bits 15-8] [1]
0 -> aX[bits 35-16]

If operand is reg, (rN), long immediate
aX[bits 15-0] AND operand -> aX[bits 15-0]
0 -> aX[bits 35-16]

Clarification: If the operand is one of the accumulators or
the p register it is ANDed with the destination accumulator.

If the operand is short immediate, the operand is zero-
extended to form a 36-bit operand, then ANDed with the desti-
nation accumulator. Bits 15-8 are unaffected; other bits of
the accumulator are cleared. [1]

If the operand is a 16-bit register or a long immediate
value, the operand is zero-extended to form a 36-bit oper-
and, then ANDed with the accumulator. Therefore, the upper
bits of the accumulator are cleared by this instruction.

operand: reg
(rN)
direct address
#short immediate
##long immediate

Affects flags: 2 M N Y C E L R

* * * - - * - -

7 flag is set if all the bits at the ALU output are zeroed,
otherwise cleared. Note: when the operand is short immedi-
ate, ALU output is bit[35:8] = 0, bits[7:01 = aX[7:0] AND

operand.
Cycles: 1

2 when the operand is ##long immediate
Words: 1

2 when the operand is ##long immediate

DSP Core Programmer’s Manual 35

Instruction Set

Section 4

and AND (continued)

(1]

The instruction and #short immediate, aX can be used for clearing
some of the low-order bits at a 16-bit destination.

For example: mov ram, aX
and #short immediate, aX
mov aX, ram

Using the and instruction, bits 15-8 are unaffected, therefore the
high-order bits at the destination do not <change.

In addition, this instruction can be used for BIT TEST, test one of
the low-order bits of a destination.

For example: mov ram, aX
and #short immediate, aX
br address,eq or br address,neq (check
the zero flag)

36

DSP Core Programmer’s Manual

Section 4 Instruction Set

xor Exclusive - OR
xor operand , aX

Operation: If operand is aX or p
aX[bits 35-0] XOR operand -> aX[bits 35-0]

If operand is reg, (xN),
short immediate, long immediate
aX[bits 15-0] XOR operand -> aX[bits 15-0]
aX[bits 35-16] -> aX[bits 35-16]

Clarification: If the operand is one of the accumulators or the p
register it is Exclusive-ORed with the destination
accumulator.

If the operand is a 16-bit register or an immedi-
ate value, the operand is zero-extended to form a
36 bits operand, then Exclusive-ORed with the
accumulator. Therefore, the upper bits of the
accumulator are unaffected by this instruction.

operand: reg
(rN)
direct address
#short immediate
##long immediate

Affects flags: 2 M N A% C E L R

* * * - - * - -

Cycles: 1
2 when the operand is ##long immediate

Words: 1
2 when the operand is ##long immediate

DSP Core Programmer’s Manual 37

Instruction Set Section 4

cmp Compare
cmp operand , aX
Operation: aX - operand

operand: reg
(rN)
direct address
#short immediate
##long immediate

Affects flags: 2 M N \Y C E L R

* * * * * * * -

Cycles: 1 .

2 when the operand is ##long immediate
Words: 1

2 when the operand is ##long immediate

addl Add to Low Accumulator

addl operand , aX

Operation: aX + operand -> aX
The operand is sign-extension suppressed.

operand: (rN)
direct address

reg [1]

Affects flags: 2 M N A% C E L R

Cycles: 1
Words: 1

[1] The reg cannot be:aX, p.

38

DSP Core Programmer’s Manual

Section 4

Instruction Set

subl Subtract from Low Accumulator
subl operand , aX

Operation: aX - operand -> aX
The operand is sign-extension suppressed.

operand: (rN)
direct address

reg [1]

Affects flags: 2 M N \Y% C E L R

* * * * * * * -

Cycles: 1
Words: 1

[1] The reg cannot be: aX, p.

addh Add to High Accumulator

addh operand , aX

Operation: aX + operand*2°16 -> aX
The aXl is unaffected.

operand: (rN)
direct address

reg [1]

Affects flags: Z M N v C E L R

* * * * * * * -

Cycles: 1
Words: 1

[1] The reg cannot be: aX, p.

DSP Core Programmer’s Manual

39

Instruction Set

Section 4

subh Subtract from High Accumulator

subh operand , aX

Operation: aX - operand*2716 -> aX
The aXl is unaffected.

operand: (rN)
direct address

reg (1]

Affects flags: 2Z M N Vv C

* * * * *

Cycles: 1
Words: 1

[1] The reg cannot be: aX, p.

40

DSP Core Programmer’s Manual

Section 4 Instruction Set

moda Modify Accumulator Conditionally
moda func , aX , { cond }
Operation: If condition then aX is modified by 'func’

The accumulator and the flags are modified according
to the function field only when the condition is met.

func: SHR aX = aX >> 1
SHL aX = aX << 1
SHR4 aX = aX >> 4

SHL4 aX = aX << 4

ROR Rotate aX right through carry

ROL Rotate aX left through carry

NOT aX not (aX)

NEG aX = -aX

CLR aX = 0

COPY aX = aX

RND Round upper 20 bits of the aX
aX = aX+8000H

PACR aX=shifted p + 8000H [1]

CLRR aX = 8000H

Affects flags: See below.

Cycles: 1

Words: 1

[1] Shifted p register means that the p register is sign-extended to 36
bits and then shifted as defined at the SP field, status register

stl.

[2] At assembler syntax the moda can be omitted.

DSP Core Programmer’s Manual 41

Instruction Set Section 4

moda Modify Accumulator Conditionally (continued)
SHR, SHR4

Shift right step

aXe axh aXl

Affects flags: Z M N v C E L R

* * * 0 * * - -

C - Set according to the LSB (SHR bit 0,
SHR4 bit 3) shifted out of the operand.

SHL, SHL4

Shift left step

o

aXe aXh aXl

Affects flags: Z M N v C E L R
*

* *

C - Set according to the MSB (SHL bit 35, SHL4 bit 32)
shifted out of the operand.

V - Cleared if the operand being shifted could be repre-

sented in 35 bits for SHL / in 31 bits for SHL4, set
otherwise.

ROR

(o]

aXe axXh aXl

Affects flags: 2Z M N \Y C E L R

* * * - * * - -

C - Set according to the LSB (bit 0)
shifted out of the operand.

42 DSP Core Programmer’s Manual

Section 4 » Instruction Set

moda Modify Accumulator Conditionally (continued)

ROL

o]
€]

aXe aXh aXxl

Affects flags: Z M N \Y C E L R

* * * - * * - -

C - Set according to the MSB (bit 35)
shifted out of the operand.

NOT, COPY, CLR, CLRR

N
=
=1
<
O
t
()
o)

Affects flags:

* * * - - * - -
NEG, RND, PACR
Affects flags: 2 M N v C E L R
* * * * * * * -

DSP Core Programmer’s Manual 43

Instruction Set Section 4

norm Normalize
norm aX , rN

Operation: If N = 0 (aX is not normalized)
then aX = aX * 2
N is modified
else nop
nop

This instruction is used to normalize the signed number at
the accumulator. Affects the rN register.

Affects flags: 2 M N v C E L R
*

* * * *

*
*
*

R flag is updated in norm instruction ONLY when rN pointer is
modified.

C is set or cleared as at SHL (moda).
Cycles: 2
Words: 1
[1] The norm instruction uses the N flag to decide if shift or nop.
Therefore when using norm at the first iteration, the flag must be

updated according to aX.

[2] To normalize a number using the norm instruction, the norm instruc-
tion can be used together with a rep instruction.

Example: rep #n
norm a0, (x0)+

Another method is to use the N flag for conditional branch.

Example: NRM norm a0, (r0)+
brr NRM, NN

44 DSP Core Programmer’s Manual

Section 4 Instruction Set

divs Division Step
divs direct address ,aX

Operation: aX - (direct address*2715) -> ALU output
If ALU output < 0
then aX = aX * 2
else aX = ALU output * 2 + 1

Affects flags: 2 M N v C E L R

* * * *

Cycles: 2

Words: 1

[1] The 16-bit dividend is placed at accumulator-low; the accumulator-
high and the accumulator-extension are cleared.

The divisor is placed at the direct address.

For a 16-bit division, divs should be executed 16 times. After 16
times the quotient is in the accumulator-low and the remainder is
in the accumulator-high.

The dividend and the divisor should both be positive.

DSP Core Programmer’s Manual 45

Instruction Set

Section 4

4.4.2 Multiply Instructions

mpy Multiply
mpy operandl , operand2
Operation: operandl -> y [11
operand2 -> X
X *y =-> P

operandl , operand2: Yy ,
Y

vy ,
(xJ) .
(rN) ,

Affects flags: No

Cycles: 1
2 when the operand is

Words: 1
2 when the operand is

direct address

(rN)
reg (21
(rI) (3]

##long immediate

##long immediate

##long immediate

{1] ¥y -> y means that y retains its value.

[2] The reg cannot be aX, p.

[3] The multiplication at mpy (xrJ), (rI) is between XRAM and
YRAM only. Where rJ points to YRAM, rI points to XRAM.

DSP Core Programmer’s Manual

Section 4 Instruction Set

mac Multiply and Accumulate Previous Product
mac operandl , operand2 , aX

Operation: aX + shifted p -> aX [13

operandl -> y [2]
operand2 -> X
X *y ->p
operandl , operand2: vy , direct address
Yy , (TN)
v , reg [31]
(rJ) , (xI) [4]

(rN) , ##long immediate

Affects flags: 2 M N v C E L R

* * * * * * *

Cycles: 1
2 when the operand is ##long immediate

Words: 1
2 when the operand is ##long immediate

[1] Shifted p register means that the previous product is sign-extended

into 36 bits, then shifted by defined at the SP field, status regis-
ter stl.

[2] ¥y -> ¥ means that y retains its value.
[3] The reg cannot be aX, p.

[4] The multiplication at mac (rJ), (rI) is between XRAM and YRAM only.
Where rJ points to YRAM , rI points to XRAM.

DSP Core Programmer’s Manual 47

Instruction Set

Section 4

msu Multiply and Subtract Previous Product

msu operandl , operand2 , aX

Operation: aX - shifted p -> aX
operandl -> y
operand2 -> x

X *y ->p
operandl , operand2: % ,
Yy ,
y '
(rJ) ,
(rN} ,

Affects flags: 2 M N v C

* * * * *

Cycles: 1
2 when the operand is

Words: 1
2 when the operand is

[1] Shifted p register means that
into 36 bits, then shifted as
ister stl.

[1]
(2]

direct address
(rN)

reg[3]

(rI) [41]

##long immediate

##long immediate

##long immediate

the previous product is sign-extended
defined by the SP field, status reg-

[2] ¥ -> y means that y retains its value.

[3] The reg cannot be aX, p.

[4] The multiplication at msu (rJ), (rI) is between XRAM and YRAM only.
Where rJ points to YRAM , rI points to XRAM.

mpys Multiply Signed Short Immediate

mpys vy, #signed short immediate

Operation: - #signed-short -immediate -> x

X *y ->p
Affects flags: No
Cycles: 1

Words: 1

48

DSP Core Programmer’s Manual

Section 4

Instruction Set

sqr Square

sgr operand

Operation: operand -> y
operand -> X
Yy *x ->p
operand: (rN)
reg [11

direct address

Affects flags: No

Cycles:

Words:

1

[1] The reg cannot be aX, p.

sqra Square and Accumulate Previous Product

sgra operand ,aX

Operation: aX + shifted p -> aX [1]
operand -> y
operand -> X
Yy *x ->p
operand: (rN)
reg [2]

Affects flags: Z M N v C E

* * * * * *

Cycles:

Words:

direct address

[1] Shifted p register means that the previous product is sign-extended

into 36 bits, then shifted as defined by the SP field,

ter stl.

[2] The reg cannot be aX, p.

status regis-

DSP Core Programmer’s Manual

49

Instruction Set Section 4

sqrs Square and Subtract Previous Product
sqrs operand , aX

Operation: aX - shifted p -> aX [1]
operand -> y
operand -> X
Yy *x ->p

operand : (rN)
reg [2]
direct address

Affects flags: Z M N v C E L R

* * * * * *

*
]

Cycles: 1
Words: 1

[1] shifted p register means that the previous product is sign-extended
into 36 bits, then shifted as defined by the SP field, status regis-
ter stl.

[2] The reg cannot be aX, p.

50 DSP Core Programmer’s Manual

Section 4 Instruction Set

4.4.3 Move Instructions

mov Move Data

mov soperand , doperand

Operation: soperand -> doperand
soperand , doperand reg , reg (11,023,131, (4]
reg , (rN) [11.,05],[6]
(xN) , reg {41, ([5].1[6]
rN , direct address
axl , direct address
aXh , direct address
Y , direct address
X , direct address

direct address , rN

direct address , v

direct address , X

direct address , aX

direct address , aXl

direct address , aXh , {eu} [71
##long immediate , reg [4]
#short immediate , aXl

#signed short immediate , aXh
#signed short immediate , rN [8]
#signed short immediate , y [8]
#signed short immediate , x [81

Affects flags: No effect when doperand is not ac, st0 or when soperand
is not aXl, aXh

When soperand is aXl or aXh:

When doperand is ac:

Z M N v c E L R

* * * - - * - - [7]

If doperand is st0, the instruction affects all the
flags.

Cycles: 1
2 when the operand is ##long immediate

Words: 1
2 when the operand is ##long immediate

DSP Core Programmer’s Manual 51

Instruction Set

Section 4

mov

(1]

[2]

(31

[4]

[5]

[6]

(7]

(8]

Move Data (continued)

The 32-bit p register can be transferred only to aX (mov p,aX)
ph is a write-only register, therefore soperand cannot be ph.

The 36-bit aX can be a soperand only with the following instruc-
tions: mov al,al ; mov al,al.

With mov reg, the soperand cannot be the same as the doperand.

When the operand reg is the pc register, a nop instruction must be
placed after the mov soperand,pc instruction.

No mov's are permitted between off-core memory and external regis-
ters and vice versa. This means that mov extX, (rN) , mov (rN),extX
rN can only point with internal RAM.

It is not permitted to move data from RAM address pointed by one of
the rN registers to the same rN register (and vice versa) with post
modified.

The eu field is an optional field.

eu = accumulator extension is unaffected (sign extension sup-
pressed)

Instruction Accumulator Content
Fields After The Instruction
ac eu Extension bits 16 MSB 16 LSB
aXe aXh aXl

ax - sign-extended sign-extended DATA
aXl - clear clear DATA
aXh - sign-extended DATA clear
aXh eu unaffected DATA clear

The flags after executing mov direct address, aXh, eu are the same
as after executing mov direct address,aXh.

Loading the doperand by short immediate number with sign- extension.

52

DSP Core Programmer’s Manual

Section 4

Instruction Set

mov Move Data (continued)

[9] Conventions:

The instruction at PROM address 0100H mov pc,ram

After execution (ram)=0101H

mov (x0),xr0

Before execution

r0

20H

RAM ad@ress 20H

1000

After execution

1000

1000

DSP Core Programmer’s Manual

53

Instruction Set Section 4

movp Move Program Memory

movp soperand , doperand

Operation: soperand points to PROM -> doperand
Move a word from Program ROM pointed by soperand to RAM or
to reg pointed by doperand. When using aX as a soperand,

the address is defined by accumulator-low.

soperand , doperand: (aX) , reg [1]
(rN) . (xrI)

Affects flags: No effect when doperand is not ac, stoO.
When doperand is ac:
Z M N \ c E L R
If the doperand is st0, the instruction affects all the
flags.
Cycles: 3
Words: 1

[1] When the operand reg is the pc register, a nop instruction must be
placed after the movp (aX),pc instruction.

54 DSP Core Programmer’s Manual

Section 4 Instruction Set

4.4.4 Loop Instructions

rep Repeat Next Instruction

rep operand

Operation: Begins a single word instruction loop that is to be
repeated operand+l times.

Repetition times is between 1 to 256. The rep instruction
and the instruction being repeated are not interruptable.

operand: #short immediate
reg (1]

Affects flags: No

Cycles: 1

Words: 1

[1] The reg cannot be aX, p.

[2] When using reg as an operand, the number of times the instruction
is to be repeated is defined by the low-order 8 bits of the reg.

[3] Any instruction that breaks the program address continuity cannot
be repeated. (brr, callr, movp, trap, ret, reti, mov operand,pc

,rep, calla)

[4] rep can be performed inside block-repeat (bkrep).

DSP Core Programmer’s Manual 55

Instruction Set Section 4

bkrep Block Repeat

bkrep operand , add

Operation: operand -> 1lc [1]

1 -> LP status bit

Begins a block repeat that is to be repeated operand+l
times.

The number of repetitions ranges from 1 to 256.

The first block address is the address after the bkrep
instruction, and the last block, address is the address
specified by the 'add' field. [2]

The operand is inserted into the loop counter lc regis-
ter. The inloop status bit LP is set - enable block
repeat.

The repeated block is interruptable.

operand: #short immediate
reg [31,14]

Affects flags: No

Cycles: 2

Words: 2

[1]

[2]

[3]

[41]

151

[é]

[7]

When using #short immediate as an operand, it is copied to the low-
order 8kbits of the lc. The high-order 8 bits are undefined.

In case the last instruction at the block repeat is:

a. One word instruction - 'add' is the address of this imstruction.
b. Two words instruction - ‘'add' is the address of the second word

of the instruction.

When using reg as an operand the 16 bit register is transferred into
the lc. The number of times the block is to be repeated is defined
only by the low-order 8 bits.

The reg cannot be aX, p, pc.

‘When the block repeat is completed, the low-order 8 bits of the lc

register contains OFFH; the high-order 8 bits are unaffected.
The block repeat length can be one instruction.

If a mov st2, doperand is performed one instruction prior last
instruction of the loop, the value of the LP bit undefined.

56

DSP Core Programmer’s Manual

Section 4 Instruction Set

bkrep Block Repeat (continued)
[8] Restrictions:
1. The last two instructions of the bkrep loop cannot be br, brr,
call, callr, calla, trap, mov soperand, pc, movp soperand, pc,

ret, reti, rep, bkrep.

2. During a block-repeat loop there can be no jumps to the last
address of the loop. Forbidden jumps are:

brr, br, call, callr, calla, ret, reti, mov soperand, pc,
movp soperand, pcC.

3. Restrictions relating the lc register usage at the block-repeat
loop are:

3.1. The lc register must not be written during the block-repeat
loop. :

3.2. The lc register must not be used one instruction prior to the
last instruction of the block-repeat loop.

3.3. If the block-repeat loop is one instruction long, the lc reg-
ister must not be used in this instruction.

4. Notice that illegal instruction sequences are also restricted as
the last and first instructions of a block-repeat loop.

4.4.5 Branch/Call Instructions
br Conditional Branch

br address , {cond}

Operation: If condition
then address -> pc

If the condition is met, branch to the program memory loca-
tion specified by 'address'.

Affects flags: No

Cycles: 2

Words: 2

[1] If the condition is met, 'address' is the address/label of the new

program memory location. The 'address' is the second word of the
instruction.

DSP Core Programmer’s Manual | 57

Instruction Set Section 4

brr Relative Conditional Branch
brr Soffset address , {cond}

Operation: If condition then
'the brr inst.' + $Soffset address + 1 -> pc

If the condition is met, a branch is executed to the fol-

lowing program memory location: ‘'the brr instruction' +
'offset address' + 1

The offset range is -63 to 64. (Offset range is ‘'offset
address'+1)

Affects flags: No
Cycles: 2
Words: 1

[1] Assembler syntax:
brr $offset address, {cond}
or
brr label , {cond}
Where 'label' is the new program memory location. The instruction
word includes the 'offset address' calculated by the assembler as

follows:
(label address) - (brr address) - 1.

call Conditional Call Subroutine

call address , {cond}

Operation: If condition
then pc -> tos
address -> pc¢

If the condition is met, the program counter is pushed into

the stack and a branch is performed to the program memory
location specified by 'address'.

Affects flags: No
Cycies: 2

Words: 2

[1] If the condition is met, 'address’' is the address/label of the new
program memory location. The 'address' is the second word of the

instruction.

58 DSP Core Programmer’s Manual

Section 4 Instruction Set

callr Relative Conditional Call Subroutine
callr Soffset address , {cond}

Operation: If condition then
pc ~-> tos
‘the brr inst.' + S$offset address + 1 -> pc

If the condition is met, the program counter is pushed
into the stack and a branch is executed to the following
program memory location:

'the callr instruction' + ‘offset address' + 1
The offset range is -63 to 64. (Offset range is 'offset
address'+1).
Affects flags: No
Cycles: 2

Words: 1

[1] Assembler syntax:

callr soffset address , {cond}

or

callr label , {cond} .
Where 'label' is the new program memory location. The
instruction word includes the 'offset address' calculated by
the assembler as follows:

(label address) - (callr address) - 1.

calla Call Subroutine at Location Specified by the Accumulator
calla aXl

Operation: pc -> tos
(aX) -> pc
Call subroutine indirect (address from aX).

The program counter is pushed into the stack and a branch
is executed to the address pointed by accumulator-low.

This instruction can be used to perform computed subrou-
tine calls.

Affects flags: No
Cycles: 2

Words: 1

DSP Core Programmer’s Manual 59

Instruction Set Section 4

ret Return Conditionally
ret {cond}

Operation: If condition
then tos -> pc

If the condition is met, the program counter is pulled
from the stack. The previous program counter is lost.
This instruction is used to return from subroutines or
interrupts.

Affects flags: No

Cycles: 2

Words: 1

[1] This instruction can also be used as return from interrupt (INTO0 or
INT1l), to enable more interrupts, the IE bit at st0 must be set

-reti Return from Interrupt
reti

Operation: tos -> pc
1 -> IE (1]

The program counter is pulled from the system stack. The
previous program counter is lost. The IE bit is set -
enable interrupts. [1] This instruction is used for
return from interrupt.

Affects flags: No

Cycles: 2

Words: 1

[1] This instruction is used for returning from interrupts. The trap
and BPI interrupt service routines must be ended with reti instruc-

tion. In these cases, the IE status will be the same as it was
before entering the routine.

60 ' DSP Core Programmer’s Manual

Section 4 Instruction Set

4.4.6 Control and Miscellaneous Instructions

nop No Operation

nop

Operation: No operation
Affects flags: No

Cycles; 1

Words: 1

modr Modify rN

modr (rN)
Operation: rN is modified.

Affects flags: Z M N v C E L R

R flag is set if the 16-bit ¥N register is zero;
otherwise cleared.

Cycles: 1
Words: 1

[1] This instruction can be used also for loop control.

Example: modr (xr0)-
brr add , NR

DSP Core Programmer’s Manual 61

Instruction Set Section 4

eint Enable Interrupt
eint

Operation: 1 -> IE

IE bit is set - Enable interrupts.
Affects flags: No
Cycles: 1

Words: 1

dint Disable Interrupt
dint

Operation: 0 -> IE

IE bit is cleared - Disable interrupts.
Affects flags: No
Cycles: 1

Words: 1

62 DSP Core Programmer’s Manual

Section 4 Instruction Set

trap Software Interrupt

trap

Operation: pc -> tos
000AH -> pc
Disable interrupts (INTO , INT1).

Software interrupt.

The program counter which points to the next instruction

is pushed into the stack. A branch to address location
000AH is executed.

The interrupts (INTO0, INT1l) are disabled regardless of
the interrupt mask bits: IE, IM0O, IM1 at stO.

Affects flags: No
Cycles: 2

Words: 1

[1]) trap instruction cannot be used at: trap service routine, BPI ser-
vice routine.

[2] For returning from trap service routine use reti instruction.

Ipg Load the Page Bits

lpg #short immediate

Operation: #short immediate -> page bits

The page bits, the low-order 8 bits of stl, are loaded
with an 8-bit constant (0 to 255).

Affects flags: No
Cycles: 1

Words: 1

DSP Core Programmer’s Manual

63

Instruction Set Section 4

4.5 Instruction Execution

4.5.1 Pipeline Method

The program controller implements a three-level pipeline architecture. In the operation of the
pipeline, concurrent fetch, operand fetch and execution occur. This allows instruction execution to
overlap. Thus, the effective execution time for most instructions is one cycle. Each pipeline stage
is completed before its result is needed by the next instruction. The pipeline is an "interlocking”
pipeline, transparent to the user, which simplifies programming.

The following chart shows the pipeline operation:

| cyclel | cycle2 | cycle3 | cycled | cycle5 |
I I [| | |
fetch [<=---n--=-=->|<--n+l-->|<--n+2-->| | [
| | l | l |
op. fetch | [<-—-Dn-—=->|<~--n+l-=->|<--n+2-->| [
| I | | | l
execution | | ... |<=---n--->|<--n+l-->|<--n+2-->|
| |

Three instructions are executed for each cycle. For example in cycle 3, the fetch of instruction
n+2, the operand fetch of instruction n+1 and the execution of instruction n are active.

64 DSP Core Programmer’s Manual

SECTION 5
Core Interface

5.1 Introduction

This section describes the basic core clock interface. It includes descriptions of the core clock, the
reset mode, the handling of interrupts and their priorities, the core signals and cycles.

5.2 Clock

The DSP core is driyen by an off-core clock generator.

DSP status bit STP (bit 13 of ST2) is routed to the core edge and can be used by the system clock
generator to stop the clock and enter the STOP mode.

5.3 Reset

Reset is a non-maskable interrupt that can be used at any time to put the DSP core into a known
state. Reset is typically applied after power up when the machine is in a non-deterministic state. It
is also used to exit STOP mode.

When a RESET is applied to the core, the processor enters the reset processing state, the processor
terminates execution and forces the program counter to zero. Therefore, when the RESET signal
is deactivated, execution starts from location 0000H. Reset affects various registers and status
bits. However when RESET is applied during STOP mode, the contents of the RAM and other reg-
isters are unaffected.

The following register bits are cleared during reset:

STO bits 0+11, ST1 bits 10+11, ST2 bits 0+9, ST2 bits 13+12
PC register (0:15)

For more details about reset effects on status registers, see Section 3.7.2.2.

The RESET signal (reset request to the core) must be active for at least 6 cycles. The fetch from
address 0000H is executed 1 cycle after RESET is deactivated.

DSP Core Programmer’s Manual 65

Core Interface

Section 5

5.4 Interrupts

The DSP core has three interrupts: two maskable (INTO and INT1) interrupts and one break-point
interrupt (BPI). It also has one software interrupt (TRAP). The hardware interrupts are high level-

sensitive.

Table 5-1 DSP Core Interrupts

“:I:c";;';yn* Interrupt name & function Priority
0000H RESET 1 highest
0008H BPI External breakpoint interrupt 2
000AH TRAP Software interrupt 3
000CH INTO External user interruptO0 4
000EH INT1 External user interrupti 5 lowest

* Start address for the interrupt/reset routine.

Jumping to the interrupt service routine takes two cycles. The only exception to this is after a

move instruction to the PC, which takes only one cycle.

5.4.1 BPL, INTO, INT1

Interrupts are accepted and serviced at the end of the current instruction execution. Interrupt ser-
vicing will be delayed when one of the following cases occurs:

1. Until the completion of all the cycles of a multicycle instruction including expansion of read/
write cycles due to wait states.

2. Until the end of the REP instruction and the instruction being repeated.

‘When the processor is in STOP mode.
4. Inthe cycle after fetch of the following commands: DINT; mov, soperand, STO; movp (aX),

STO.

If more than one interrupt is pending and unmasked, the interrupt with the highest priority is
accepted and serviced.

DSP Core Programmer’s Manual

Section 5 ' Core Interface

5.4.1.1 BPI - Breakpoint Interrupt

This interrupt is an active high, non-maskable interrupt. When executing a BPI service routine,
another BPI will not be accepted.

When the BPI is accepted, DSP core performs the following:

PC -> TOS
0008H -> PC (interrupt starting address)
IACK pulse is generated

The TRAP instruction cannot be used inside a BPI service routine.
The BPI service routine must end with a RET] instruction.

5.4.1.2 5.4.1.2 TRAP - Software Interrupt

When executing a TRAP service routine, another TRAP cannot be used. Due to interrupt priorities
(see above table) a BPI interrupt can be accepted inside a TRAP routine; INTO and INT1 are not
accepted.

When the TRAP is accepted, DSP core performs the following:
PC -> TOS
000AH -> PC (interrupt starting address)

A TRAP service routine must end with a RETI instruction.

5.4.1.3 INTO0,INT1 - Maskable Interrupts
Interrupts INTOQ,INT1 are active high, maskable interrupts.

When an interrupt is accepted while the IE status bit is set and the individual interrupt is not
masked (the corresponding IMx is set), DSP core performs the following:

IE status bit cleared

PC -> TOS

000CH or 000EH -> PC (interrupt starting address)
JACK pulse is generated

IMx is unaffected

Return from an interrupt service routine by RETI or by RET. When using the RET instruction, the
IE flag must be set in order to enable interrupts again.

DSP Core Programmer’s Manual 67

Core Interface ' Section 5

Notes:

1.

A typical interrupt is activated by applying a high level to the INTO/INT1 input, thus setting
the corresponding IPx bit. When the interrupt is acknowledged, the IE at the status register is
disabled. If the interrupt signal at the input pin continues to be active and the IE is still dis-
abled, no interrupts will be generated. If the interrupt signal level is removed before the IE is
enabled, no further interrupts are generated. If the interrupt request continues to be active and
the IE bit is subsequently set, then another interrupt will be generated after setting the IE.

The PRIORITY between INTO/INT1 is significant only if more than one interrupt is received
at the same time or when the IE is disabled for some time and both INTO and INT1 were
received. In these cases, the interrupt will be acknowledged according to the interrupts priori-
ties.

In case the processor is handling the INT1 service routine and INTO was received, the IPO bit
will be set and the processor will enter the INTO service routine according to the status bits: IE,
IMO. Similar handling will occur if the processor handles INTO service routine and INT1 was
received.

DSP Core Programmer’s Manual

Cladaptec |

Adaptec, Inc.

691 South Milpitas Boulevard
Milpitas, CA 95035

Tel: (408) 945-8600

Fax: (408) 262-2533

P/N: 700175-011 Rev 2
Ptinted in U.S.A. DM/gc 12/1/94
Information is subject to change without notification.

