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From the Editor

This issue of the SIGDA Newsletter is being sent to a large number of non-
members who attended the 1lth Design Automation Workshop in Denver June 17-19.
If you are a nonmember with interests in DA, I hope you will join us and parti-
cipate in SIGDA activities. Upcoming issues of the Newsletter will certainly
justify the minimal fee involved,

We plan to bring'you a series of larger, more stimulating newsletters,
starting with the present number. A serious effort is being made to collect
material suitable for distribution in the newsletter. If you have copy, send
it to me! TIf you have comments (publishable or otherwise) concerning newsletter

contents, please send them to me. (Note the new Lawrence California address

on second cover.)

I am especially interested in promoting non-digital DA and educational
topics: although I am primarily interested in digital DA, perhaps we should
attempt to achieve more of an emphasis balance.

Copy which is ready for inclusion in the Newsletter is especially welcome:
ideal format follows that used in the Workéhop Proceedings.

*Use oversized layout sheets suitable for 257 reduction.

*Use an electric typewriter with a carbon ribbon if at all possible.

*Use photostats or xerox illustration reductions and rubber cement them

directly onto the layout sheets,

*Use white liquid products to cover errors and type directly over them.

Do not erase errors.

*Lightly pencil page numbers on the back of each page of your copy.

*Proof your copy carefully.

We will attempt to publish typewritten material which does not arrive in this

format, but much prefer camera ready copy.



CHAIRMAN'S MESSAGE

The SystemS‘ Approach

Design Automation systems have in the past been
described to provide:

1) Means for communicating (and storing) design data.

2) Means for controlling and checking design data.

3) Application programs which allow the designer/
engineer capability to perform more functions,
quicker, cheaper, and bettetr.

In the past papers at the annual DA Workshop stressed
the application programs. Many algorithms and isolated application
programs which on their own were efficient were presented. However,
this work was seldom tied into how the computer communicates,
controls, and checks the design data.

In the past I have pressed for more of a systems
approach to Design Automation. Therefore, I was pleasantly
surprised to hear a number of papers stress the system aspect.
In particular, the presentation, "Data Base Design for Design
Automation", by Dr. Ed Hassler of Texas Instrument was greatly
appreciated. Ed talked in terms of the total design data base:
designers insight, marketing data, technology data, test examples,
etc. He described the problem of the control of design data
using a familiar example to most of us - a hand held calculator.

This fall (November 11-13, 1974) SIGDA will have a
session "Data Base Systems for Design Automation Support". The
session will consist of two invited papers and an invited panel.

For August or September, 1975, a Workshop is being
planned and jointly sponsored by SIGDA, SIGGRAPH, and SIGFIDET
(now SIGMOD). The Workshop will be structured around Interactive
Data Base Systems for Design Automation. Professor James Linders
of University of Waterloo, Waterloo, Ontario, Canada, will be
General Chairman. The Workshop will be held at Waterloo.

I don't want to leave the impression that the programmed
functions or algorithms are not important; on the contrary, they
use the computer to extend the engineers' capabilities. Both
without looking at the total computing and de51gn environment,

they cannot exist or grow.
(:/AAaﬂﬁléiwlzyQ

Chuck Radke
Chairman, SIGDA

7/30/74
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REQUIREMENTS FOR
SUBMITTING PAPERS

If you plan to submit a paper, you should send three
copies of the paper (rough drafts are acceptable) to the
program chairman no later than January 2, 1975.

Accompanying the draft should be the full name, address,
and telephone number of the principal author, with whom
all further direct communication will be conducted.

Notification of acceptahte will be sent to you during the
first week of February, 1975. After notification of
acceplance, you will receive detailed instructions on the

format to be observed in typing the final copy. To insure

the availability of Proceedings at the Workshop, your
final manuscript will be due April 21, 1975.

Final papers should be no longer than 5000 words, and
the presentation should be limited to 20 minutes.
Projection equipment for 35mm slides and viewgraph
(overhead projector) foils will be available for every talk.
Please indicate what, if any, additional audio-visual aids

you require.

Program Chairman

Rough drafts are to be sent to the Program Chairman:

S. A. Szygenda

The University of Texas

Electrical Engineering Department (ENS 515)
Austin, Texas 78712

512-471-7365

Chairman of 12th DAW
% R. 8. Hitchcock S

The sponsors of the Design Automation Workshop are
the ACM (Association for Compuling Machinery) Special
Interest Group on Design Automation and JEEE
{Institute of Electrical and Electronics Engineers)
Computer Soclety.

Sponsors

Design Automation

Design Automation implies the use of computers as aids
to the design process.

In the broadest sense, the design process includes
everything from specifying the characteristics of a
product to mest a marketing objective lo enumerating
the details of how it is to be manufactured and tested.

Thus design automation embraces applications from one
ond of the design process 1o the other.

ite of 12h DAW

Statler Hilton Hotel
Park Square at Arlington Street
June 23, 24 25, W75

MANUFACTURNG
DIGITAL SYSTEMS
ARCHMITECTURE



1974 1EEE Workshop on Design Automation

"The 1974 IEEE Workshop on Design Automation will
be held on October 23-25 at Michigan State University,
Kellogg Center. This workshop is devoted to the systems
aspect of design automation. The overall goal is to
provide the participants an environment encouraging
general and specific discussion relating to the design
and construction of design automation software. The
sessions are:

1. Data base design

Organization considerations, centralized vs
distributed data bases, data redundancy,
location of design rules, data structures, use
of data base management systems. :

2. Software design

Choice of languages, structured programming,
software aids such as translator writing systems,
data structures, programming style, machine
hardware and operation system influences.

3. The user interface

Human factors, input and output modes such as
graphics and languages, hardware impact, error
analysis of input, DA and general purpose editors,
the .user/dA software interface.

4. Impact of new technology on D.A.

Microprogramming automation, programmed logic
arrays (PLS's), the future of IC's, impact of
microprocessors on DA.

5. Managing a design project

Project specification, case studies schedule
control, module and program function inter-
connection, acceptance and validation, docu-
mentation, configuration project organization,
software performance measurement, software
control.

Attendance is by invitation only. If you would like to
attend, please contact Harold W. Carter, Lawrence Livermore
Laboratory, P.0. Box 808, L-156, Livermore, California
94550, (415) 447-1100, extension 8088."



SIGDA SESSION AT ACM '74

San Diego - November 11-13, 1974

SESSION: Data Base Systems for Design Automation
ORGANIZER: C. E. Radke
ABSTRACT: The use of data base systems for Design Automation

introduces some special problems; two of which are
discussed. The first problem involves assuring the
integrity of the design data as it grows and is
restructured over time. Discussed are problem
areas, for example, authorization of design changes,
consistency checks, user notification of changes,
monitoring of the design, and history recording.
The second involves the evolution of interactive
graphics to a computer integrated design system

for designing computer hardware. Discussed are
common characteristics of a design data base, use
of graphics for data display, examples for which
graphic concepts have been implemented, and the
control of an interactive editing system.

A panel will expand upon the concepts and approaches
presented in the published papers.

PAPER: ° Control of Design Data in the Integrated Ship Design
System

AUTHOR: Dr. P. R. Bono, Naval Ship Engineering Center

-ABSTRACT: The Navy's Integrated Ship Design' System (ISDS)

is being designed as a collection of application
program modules (for preliminary design) which
communicate with a centralized set of data files.
These files use the existing COMRADE Data Management
System which was designed specifically for integrated
systems.

Apart from providing an environment in which to operate
the engineering application modules, ISDS's main role
is to manage the creation, flow and archiving of the
ship design data to control access to this data.
Consequently, a major concern during the lengthy

and complex ship design process is assuring the
integrity of the design data as it grows and is

revised over time.

Planning for control of the design data requires a

clear understanding of the design process and the inter-
relationships between the design tasks. Requirements
are stated, problem areas are identified, and possible
approaches for implementation are suggested.

7/30/74
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SIGDA SESSION AT ACM '74

San Diego - November 11-13, 1974

A Graphics Window to a Data Base for Electronic
System Design

Mr. Charles Alaimo, Bell Telephone Laboratories

This paper will explore the use of "Graphics Windows"
to data bases used in the physical design of electronic
equipment. The comon characteristics of connectivity
oriented data bases will be briefly reviewed. Then an
example of a Graphics Window on this type of data base
will be discussed in detail.

The discussion of the Graphics Window is in two parts.
The first deals with its use as an editor of files
describing printed board designs. The second deals
with experiments conducted with the window which are
aimed at developing display techniques useful for
interactive design.

Prof. Charles Rose, Case Western Reserve University

Mr. Al s. Lett, IBM Corporation




DI'SIGN AUTOMATION IN UNIVERSITIES.

Desiogn Automation is beizinnin: to emerge as a disipline
within the university environments In order to establish a
dialo jue between the universitles involved in DA activities

SIGDA has declided to establish a "DA in Universities! section

in 1ts Newslettere

The followlng questionaire is intended as a census of
DPecign Automation activities in universities.

The results of this gquestionaire will be published in
one of the followlny SIGDA Newsletterse

Completed questionaires as well as contributions to
this sectlon can be mailed to:?

WeMe VanCleemput
Depte of Computer Sclience
University of Waterloo
Waterlooy Ontario, Canada N2L 3G1

QUESTIONAIRE ON DESIGN AUTOMATION IN UNIVERSITIES.

Name scceccccccccscsccscccncccccccscsce Title seeecccovscscccee
University eccececcccccsccsccsvccscectscscsocscsnccsccsosssncocssoe
Department esececcesccccscccccccccconcssssscscccsscscscsccsssconssae
Address.oooco.c00000-0000000000000000.'00000000000cocoaoooo
Areas of interest in the DA fleldeosseeceeevcsccsccsccccsvceses

cesscscecsesecsscsncsssvenee

escescccccsesesscensssssne

0000000 0000000 0CSIONQNOINPOSROIOSNOOIDS

Are you a member of ACM? IEEE? SIGDA?

2¢ Current Status of DA at your universitye.




242 Coursesa
Give a brief outline of courses currently being tauzht;
ind!cate prerequisites, level and text or references useds

2.3 Hardware avallable.

List the facilities available for Design Automation research

(eege central computer systemy dedicated minicomputer(s),
graphics devicesy etce)o

2.4 DA Software available.

List major DA software packages avallable to DA students,
if any.

2¢5 Ongoing Researche

Briefly describe each projecte




2¢06 Publicaticonse

List all research reportsy theses and papers on DAy published

3s Future Planse

Describe brietly any plans for expanding DA involvement in your
department (ee.ge new courses; hardware aquisitions etce)e

4.1 Some areas of Design Automation are more sulted for
inclusion in a university curriculum than otherse.
In your opiniony, what should be emphasized and what
should not bhe taught?

4.2 What role should SIGDA play in DA education?

4.3 What type of research should be done by universities and
what should be left to Iindustry?

44 (If you are in Computer Science) Do you have any contact
with faculty membersy interested in DAy, in other
departments?



4.5 (If you ere not in Computer Science) Do you have any
contact with the CS department?

4.6 Do you have any contact with industry? Do you consider
industrial contact necessary, useful, useless?

10




AGARD-CP-130

NORTH ATLANTIC TREATY ORGANIZATION
ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT

(ORGANISATION DU TRAITE DE L’ATLANTIQUE NORD)

AGARD Conference Proceedings No.130
COMPUTER AIDED DESIGN FOR ELECTRONIC CIRCUITS

11

Copics of papers presentcd at the 25th Technical Meetine of the Avionics Panel of AGARD held at
the Technical University of Denmart. Lvneby, Denmark, 21-25 May 1973.
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A MINICOMPUTER-RASED LOGIC CIRCUIT FAULT SIMULATOR

by

Mark J.

Flomenhoft and Erenda M. Csencsits

Bell Telephone Laboratories, Incorporated

Allentown, Penrusylvania

18103

Presented at the Eleventh Design Automation Workshop

June 17-19,

ABSTRACT

A logic circuit simulator implemented on a mini-
computer with 16K core handles 1000 zero- and
unit-delay gates. Single "stuck-at-0", "stuck-at-1",
and "short-circuit" faults are simulated in parallel
seven at a time using a table-driven selective-trace
fault-injection algorithm. For a typical 100-gate
circuit the simulation rate for the fault-free cir-
cuit or for a group of seven faults is about 800
input patterns per minute, and a complete fault
simulation run takes about 5 minutes and costs $1.

This paper, aimed at simulator program-designers
rather than users, describes technical details of

the implementation including minicomputer consider-
ations, the data structure, coding three-valued-logic
for efficient parallel simulation, the selective-
trace algorithm, the recognition and resolution of
critical races in flip-flops, the recogrition and
resolution of circuit oscillations, implicit fault
collapsing, and short-circuit fault simulation.

INTRODUCTION

During the past few years an in-house stand-alone
interactive integrated-circuit mask layout system
has gained wide popularity within Bell Laboratories.
At present, eighteen minicomputer systems with a
common hardware configuration are in operation at
four locations. To further exploit this existing
computing resource, System for Logic Analysis and
Test Evaluation, SLATE, has been added to provide
a low-cost interactive aid for logic verification
and functional test design. SLATE also provides a
low-cost facility for evaluating test sequences
produced by a main-frame heuristic automatic-test-
generation program.

Written in assembly language for the HP2100 computer,
with 16K core SLATE's capacity is 1000 gates. Each
gate has either zero- or unit-delay and is allowed
three possible logic values -- 0, 1, and "don't know'".
Don't-know is the starting value of every gate and
the resulting value of critical races and oscilla-
tions. The simulation is table-driven and employs

a selective-trace fault-injection algorithm. The
16-bit minicomputer word size accommodates eight
two-bit logic values, and the fault-free and seven
faulty circuits are simulated simultaneously in
"parallel".

THE MINICOMFUTER HARDWARE CONFIGURATION,
AND ITS IMPLICATIONS

The mask layout svstem that SLATE shares utilizes
an !iP2100 minicomputer with 16K core, a disk,
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a magnetic tape unit, a card reader, a CRT keyboard
terminal, and, usually, either a line printer or a
hard-copy unit. Such a system costs about $50,000,
or, amortized over three years and including mainte-

nance, about $12 per hour.

In a 16K minicomputer system core is a scarce resource,
and frequent disk accesses would make simulation
unacceptably slow. Thus it is essential that the
main simulation program and the circuit description
data required for simulation are both maintained in
core. (An early version of the program consisted

of an "executive'" and a "simulator" that were swapped
from disk for each input pattern. Eliminating these
disk accesses by combining the executive and the
simulator into a single program module decreased run
time by more than an order of magnitude.) In order
to accommodate circuits of about a thousand gates,
SLATE employs '"parallel" fault simulation [1]-[4]
rather than the newer 'deductive" [5] or "concurrent"
[6] techniques because the newer techniques require
much more memory.

SLATE is a "table-driven" simulator -- a source cir-
cuit description is translated into tables that are
directly loaded by the simulator -- rather than a
"compiled" simulator -- a source circuit description
ig translated into an assembly language subprogram
that emulates circuit behavior and includes code to
perform fault-injection, selective-trace, etc. Where
a table-driven simulator resides on secondary storage
as a complete core-image program module, a compiled
simulator must be assembled (second translation) and
loaded (third translation) with an executive and input/
output-routine library. Although a compiled simulator
executes somewhat faster, a table-driven simulator
requires less core and provides greater flexibility
for introducing new features.

In-core data -- principally the circuit topology
description -- is dynamically allocated .to storage
as the data is loaded, and pointers are generated to
define the start of each data list. Oun the other
hand, infrequently needed data -- the input sequence,
symbolic gate names, and the list of faults to be
simulated -- are stored on disk in a fixed-space-
per-datum format so that each can be "randomly"
accessed, eliminating the need for pointers. The
input sequence, for example, is stored eight patterns
per disk sector (128 words), and an in-core buffer

is used so that disk is accessed only every eighth
pattern. Both to save space and maximize execution
speed, the program is written completely in assembly
language.



DATA_S IRUCTURY

A logic circuit is composed of the following logi
elements:  primary inputs, equal-delay (unit-dei
gates (ANDs, NANDs, ORs, and NORs), zero-dealay "ried
collector” nodes (wirted-ANDs and wired-ORs), and
batteries (constant scurces of 0 and 1). For each
element a "topology word" designatec the element's
type (three bits), faain (threo bits), fanout (six
bits), delav (one bit), and three status flags: an
"activity" bit (1 when the element is scheduled for
simulation), a "huld" bit (1 when the element's

value is being "held" to resolve a circuit oscilla-
tion), and a "fault" bit (1 when stuck-at faults
associated with the element are b2ing simulated).
Note that although the fanin and fanout of an element
are limited to 7 and 63, respectively, fanin- and
fanout-trees composed of zero-delay ANDs or ORs make
effective fanin and fanout unlimited. (Such trees
can, of course, be automatically generated, although
this feature is not included in our system.)

The input connections for all the elements are con-
tained in an "input connectivity list': first the
input elements of element one, then the input ele-
ments of element two, etc., A pointer associated

with each element designates the beginning of that
element's sub-list of inputs. Since SLATE simulates
1000-gate circuits and the length of the input con-
nectivity list usually exceeds 256, half-word (eight-
bit) pointers would be inadequate. Then, given that
a full word is required, each pointer is stored as

an absolute memory address rather than as a position-
in-list index, eliminating repetitive address cal-
culations during simulation. Similarly an "output
connectivity list" and a list of pointers define the
output connections for every element. Note that
with elements defined as above (primary outputs
intentionally excluded), the total number of input
connections equals that total number of output con-
nections, a useful data check.

As is well known to users of logic circuit simula-
tors, the coarse unit-gate-delay timing model gives
rise to many circuit oscillations. Fortunately,
critical races in latches (two-gate flip-flops) can
be handled very simply, as described below. To en-
able the critical race analysis to be performed,

the pairs of gates composing NAND and NOR latches
are identified in a "flip-flops list". A given gate
can be included in more than one latch, as occurs
for example, in certain toggle flip-flops and gen-
eralized latches (three gates each feeding the other
two) . :

In-core data also includes lists of the circuit
primary inputs, primary outputs, and user-added
monitor points. Space for the remaining data
lists -- the CURRENT and NEXT QUEUEs and the NEW
VALUEs (see below) -- is dynamically allocated
during each unit-delay simulatiom.

THREE-VALUED LOGIC

In SLATE each element
logic values -- 0, 1,

is allowed three possible

and "don't know". Don't-know
is the starting value of every gate and the result-
ing value of critical races and oscillations. Truth
tables for AND, OR, and NOT with don't-know (¥) in-
puts are as follows [7]-[9]:
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A 3B AB AtB AT

X 0 0 X X

XX X X X
X1 X 1 X

To represcnt the three logic values a two-bit coding
is required. The coding

0 > (00)
X + (01)
1+ (11)

allows AND and OR to be executed using the corre-
sponding logical operations of the host computer [9].
Since AND, NAND, OR, and NOR all require AND-ing

or OR-ing logic values, this coding is extremely
efficient.

Taking the NOT of a three-valued logic variable is
not so trivial. Simply complementing the two-bit
code is invalid, for whereas X" = X, (01)° = (10);
but (10) is undefined. Allowing two representations
for X [(01) and (10)] makes NOT easy, but then AND
and OR are complicated. One solution for NOT is to
test the existing value and complement it except
when the value is X. However, this scheme is un-
acceptable ior parallel simulation because each value
would have tc be tested individually, a serial pro-
cedure. Instead, a "parallel' NOT is performed by
complementing the code and interchanging the bits
[4]). It is easily verified that by this technique
0°=1, X“=X, and 1°=0, as desired.

The "natural" way to pack two-bit logic values in a
word is to use the first pair of bits for the first
value, the second pair for the second value, etc.
While interchanging adjacent bits is straightforward,
several program instructions are required, and this
is time-consuming. However, packing the values so
that the two bits are a half-word apart allows the
interchange to be done. with one register rotate in-
struction. For suppose the word bits are denoted

bit
of

1, 2, ..., N. Then a rotation of %-bits moves
1 to bit position (1+%)(mod N), and every pair

bits a half-word apart are interchanged. (For

5+% and 5+%
is shifted to position 5.) Thus NOT is executed

in two steps -- complement and rotate. This tech-
nique 1s analagous to the complement and word-inter-
change described in [4].

example, bit 5 is shifted to position

For later use we call the two bits of a logic value
code "Y" and "Z". Note that Y=0 implies a value
is 0 or X, and Z=1 implies a value is X or 1.

CRITICAL RACES IN FLIP-FLOPS

If both the "set" and
simultaneously change
undergoes a "critical
is indeterminate. In
such an indeterminate

"clear" inputs of a NAND latch
from 0 to 1, the flip-flop

race'", and the resulting state

a three-valued-logic simulator,
state is conveniently represented
by setting the values of the flip-flop's gates to
dor't-know's [3]. The recognition of critical races

is an important attribute of a simulator, for a race
manifests itself as an oscillation of the flip-flop's



gates == 11 » 00 » 11 » 00 ~ +++ -- which markedlv
degrades simulation etficicncy.

Under unit-gate-delay three-valued-logic simulation
there are additional critical race situations to be
recognized. For example, if a NAND latch is in

the "set" state with both its input at 1 and a unit-
width O-pulse occurs on the reset input, the effect
is the same as the simultaneous multiple-input change
sitvation. Another example is the simulraneous
change of the set and clear inputs from 0 and X to

1 and 1, which produces the oscillaticn 1X + X0 »

1X » XO -~ «++ . After considering all possibilities,
one concludes that the flip-flop states 00, OX, and
X0 occur only in response to criti~al races, and
these three states identify all critical race occur-
rences.

When a critical race state is observed, the computed
state is overridden by XX. Taking thls outcome into
account, we can include XX as a state to be "over-
ridden'". We then obtain an especially simple crit-
ical race recognition mechanism, namely, both Y-bits
equal to 0. (Recall that Y=0 implies a value is 0
or X.) Note, however, that XX should be excluded

as a race occurrence if flip-flop races are reported
to the user. Once recognized, a race is resolved
simply by setting Z=1 for both of the flip-flop's
gates, since X is defined by Y-0, Z=1.

We need to extend the critical race prescription so
it 1s appropriate for parallel simulation. Effec-
tively, many independent flip-flops are simulated
simultaneously, and our goal is an efficient parallel
procedure to selectively override the states of the
racing flip-flops only. This is accomplished by
OR-ing the corresponding Y-bits of the computed
values together (in parallel) and then OR-ing the
complement of the result to the Z-bits of each value
(in parallel). Thus, wherever both Y-bits are O,
the corresponding Z-bits are set to 1; and wherever

a Y-bit is 1, the corresponding Z-bits are unaffected.

For a NOR latch, critical races are recognized and
resolved in a dual manner: When both Z-bits are 1,
the computed state should be overridden by XX. Thus
‘we AND the corresponding Z-bits of the computed
values: together and then AND the complement of the
result to the Y-bits of each value.

CIRCUIT OSCILLATIONS

As observed previously, unit-gate-delay simulations
typically give rise to circuit oscillations that
somehow must be artifically terminated so the
simulation can proceed. Again, it is convenient to
use don't-know's to represent the indeterminate
final state of the oscillating gates [3],[4].

The recognition of oscillations is simple, if not
elegant:  An oscillation is assumed to occur when
the input pattern changes and a circuit does not
become stable after some reasonable number of gate
delays [3]. In our system this "oscillaticn crite-
rion" is preset at 100 unit delays but can be
changed by the user as part of his input sequence
stream.

We now describe a technique for réso]ving oscilla-
tions that is optimal in that only oscillating gates
are set to don't-know, all other gates being

unaffected.  (However, don't-know's will propagate

to non-oscillating gates rhat are "sensitized" to
don't-know gares.) Such a technique is advantageous
for two reasons. First i{s the obvious point that only
necessary don't-know's are imposed, thus preserving

as much state information as possible. Second,

after the oscillation is resolved, an audit of the
don't-know's defines the gates that oscillated, en-
abling the user to determine the oscillation loops
and, hopefully, infer the source of the oscillation.

Our technique is based on the two observations that
in every oscillating loop at least one gate changes
value at each time unit of the simulation and that
oscillating loops are "sensitized paths'. When the
oscillation criterion is reached, each gate that
juct changed value is temporarily replaced by a
don't-know battery (a constant soyrce of don't-know),
thus breaking each oscillation loop in at least one
place. The don't-know's then propagate to all the
other oscillating gates. Finally, the batteries
are removed, reclosing loops that now, being don't-
know at each point, are stable.

The temporary replacement of an element by a battery
is accomplished easily using the HOLD BIT in the
topology word for that element: When an oscillation
is recognized, the HOLD BIT of each element that
just changed value is set, and an element is not
simulated when its hold bit is 1. After the oscil-
lation is resolved, the batteries are removed simply
by resetting the HOLD BIT of every element.

All that remains to explain is how don't-know's are
applied selectively to parallel circuits so that
only the oscillating circuits are affected. Given
an element that just changed value, the OR of the
corresponding Y and Z bits of the exclusive-OR of
the LAST and NEW VALUEs is a mask whose 1l's

define the circuits that changed. Modifying the
element's value by OR-ing that mask to the Z bits
and AND-ing the complement of that mask to the Y
bits imposes the appropriate X's.

ZERO- AND UNIT-DELAY SELECTIVE-TRACE SIMULATION

In order to ensure accuracy in evaluating test se-
quences, one would like to employ a timing model
where each gate is assigned an independent prop-
agation delay. However, since in effect a circuit
has to be resimulated for each fault being considered,
employing such a precise model is impractical for
minicomputer as well as main-frame implementations.
On the other hand, the state-variable Huffman model
[11]), which makes for economical simulation (1},[4],
often lacks sufficient accuracy for asynchronous
circuits.

In a unit-gate-delay simulator each gate is assumed
to have ideal equal (unit) delay. This timing model
is a reasonable approximation to real circuit per-
formance, yet is simple enough to be practical for
fault simulation. Furthermore, the model is appeal-
ing because it does not require a user to insert
artificial feedback-delay elements.

Unit-delay simulation is implemented by maintaining
two lists of logic values -- LAST VALUEs and NEW
VALUEs. A unit-delay gate is simulated by taking
input values trom the LAST VALUEs 1list and storing
the computed outpnl value in the NEW VALUEs list.



Thus NEW VALUEs are logic states one gate delay
later than [LAST VALUEs. After all the gates are
processed, '"time" is incremented one unit delay by
replacing LAST VALUEs by NEW VALUEs.

The accuracy of the simulation model is enhanced
without substantially complicating the program by
allowing zero-delay elements to represent tied-
collector wired-ANDs and wired-ORs. A zero-delay
gate {s simulated by immediately storing the computed
output value in the LAST VALUEs list, thus achieving
a zero-delay effect.

At any point in time, logic values are changing at
relatively few points in a circuit. Thus for most

of the elements in a circuit, at any given time

none of the inputs have just changed, and the ele-
ment need not be simulated [3),[4]),[10]. The tech-
nique of simulating at any given delay time only
those elements with an input that just changed is
called "selective trace'. Selective trace is imple-
mented most economically using ''queues’ to list those
elements that were just simulated and those that

are next to be simulated. (An experimental version
of the program that polled the ACTIVITY BIT of each
element, rather than employ queues, to determine
which to simulate, was unacceptably slow. Changing
the algorithm to the one given below reduced run

time for a 1000-gate circuit by an order of magnitude.)

The complete selective-~trace parallel simulation
algorithm using the zero- and unit-gate-delay model
is as follows;

(1) Enter the input elements in the CURRENT QUEUE
and set the input values as NEW VALUEs. Set
the DELAY COUNT to zero.

(2) Null the NEXT QUEUE.

(3) For each element in the CURRENT QUEUE, compare
the NEW VALUE and the LAST VALUE. For each
fanout element of an element that changed value,
if neither the HOLD BIT nor the ACTIVITY BIT is
set, add the fanout element to the NEXT QUEUE
and set its ACTIVITY BIT.

(4) 1s the NEXT QUEUE empty? If yes, go to step
13.

(5) Does the DELAY COUNT equal the OSCILLATION
CRITERION? If no, go to step 7.

(6) For each element in the CURRENT QUEUE, do the
following: Set the HOLD BIT, exclusive-OR
the LAST and NEW VALUEs, and OR the correspond-
ing Y and Z BITs of the result to produce the
element's OSCILLATION MASK. Modify the ele-
ment's NEW VALUE by OR-ing the OSCILLATION
MASK to the Z BITs and AND-ing the complement
of the OSCILLATION MASK to the Y BITs.

(7) For each element in the CURRENT QUEUE, replace
its LAST VALUE by its NEW VALUE. Replace the
CURRENT QUEUE by the NEXT QUEUE. Increment the
DELAY COUNT.

(8) Does the CURRENT QUEUE contain any zero-delay
elements? If no, go to step 10.
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(9) Select a zero-delay element from the CURRENT
QUEUE., Simulate the element. Remove it from
the queue, and reset its ACTIVITY BIT. If its
simulated value differs from its LAST VALUE, do
the following: For each fanoutr element, if
neither the HOLD BIT nor the ACTIVITY BIT is
set, add the fanout element to the CURRINT QUEUE
and set its ACTIVITY BIT. Replace the LAST
VALUE of the simulated element by the simulated
value. Go to step 8.

(10) Simulate each element in the CURRENT QUEUE.
Store the simulated values as NEW VALUEs.

(11) Analyze for critical races each flip-flop both
of whose .elements have their ACTIVITY BIT set.

(12) Reset the ACTIVITY BIT of each element in the
CURRENT QUEUE. Go to step 2.

(13) For each element in the CURRENT QUEUE, replace
its LAST VALUE by its NEW VALUE. Null the
CURRENT QUEUE.

(14) 1f the DELAY COUNT exceeds the OSCILLATION
CRITERION, reset the HOLD BIT of each element.

IMPLICIT FAULT COLLAPSING

Associated with every gate in a circuit is a set

of indistinguishable stuck-at faults [3],{12],(13}.

For example, if i1 is an input and p is the output of

an AND gate, then there is no test that can distinguish
between i stuck-at-0 and p stuck-at-0. As proved in
[14], the following algorithm implicitly generates a
"collapsed" fault list in which such equivalences are
excluded:

(1) For each element with fanin greater than one,
include in the list an "input-open-from' fault
for each input -- stuck-at-1 for an AND or NAND
input and stuck-at-0 for an OR or NOR input.

(2) For each element with fanout not equal to one,
include in the list "output stuck-at-0" and
"output stuck-at-1".

Note that step 2 allows for zero fanout, which occurs
for example, when an element drives a primary output
only.

FAULT SIMULATION

Fault simulation is initiated with the circuit state
either all don't-know's or the same as the fault-free
state after some user-specified input vector. An
initial state consistent with the faults being simu-
lated is obtained as follows: The faulty elements
are entered in the CURRENT QUEUE, and the selective-
trace algorithm is entered at step 8. As each faulty
element is simulated, its faults are "injected" into
the appropriate bits of its NEW VALUE simply by
overriding the computed value by the fault-value [1],
[2]. Successive vectors are simulated starting at
step 1 of the algorithm, and fault injection is per-
formed each time a faulty gate is simulated. Since
the simulator is not required to generate a fault
matrix {15] or a fault dictionary, simulation for a
group of seven faults is terminated as soon as all of
those faults have been "detected". Note that a

fault is considered detected when at some circuit
output the fault-free and fault-present values differ
and neither value is don't-know.



SIMULATING SHORT-CIRCUIT FAULTS

To ensure high effectiveness of test sequences, it

is desirable to simulate "short-circuit' faults --
pairs of elements unintenticnally connected to form
wired-AND's or wired-OR's -- as well as stuck-at
faults. A short circuit can be simulated as a single
stuck-at fault if a battery and four zero-delay guites
are added to the circuit description. For an AND-
short the modification is as follows:

[ )—s

Here, s and t are the shorted element outputs and b
is a battery whose value is 1." The modification in-
cludes reconnecting the fanouts of s and t to S and
T, respectively. Normally, the AND gates output
unaltered values (S=s and T=t), and the cirruit be-
haves as if the modification were not present.
However, with b stuck at 0 the AND gates both output
the shorted value s*t. An OR-short can be handled
in a dual manner.

Since the presence of a short is simulated by a
single stuck-at fault, parallel simulation can be
employed for N shorts at a time, where N is the
number of faults that are simulated simultaneously.
In our case, the circuit size increase is a modest

35 elements for each group of seven shorts. To
simplify the implementation, after a fault group

has been simulated, the current ¢ircuit description
is discarded, and the modifications for the next
fault group are performed on an original description.

PERFORMANCE STATISTICS

For a typical 100-gate circuit the simulation rate
for the fault-free circuit or for a group of seven
faults is about 800 input patterns per minute. A
complete fault simulation to evaluate a test sequence
of 700 input patterns for a 90-gate circuit took less
than ten minutes -~ about five minutes for execution
and the remainder for input and output -- and cost $2
based on the amortized rate of $12 per hour.
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PS LANGUAGLE

DEFINITION

Portia Isaacson
Xcrox Corporation

number of changes to the digital system
designer's parts inventory - mainly the
addition of large scale integration compo-
nents such as memories and processors.

The solution of an information processing
problem involves making the right choices
from the variety of components offered
and designing the havrdware/software inter-
face mechanisms between the components.
Mcthods of simulating this new generation
of digital systcms are nccded as tools.
The demands placed on such a tool are
great: it must (1) facilitate modeling of
a digital system at various levels of
architectural detail; (2) allow within a
single model two components at quite dif-
fercnt specification levels; (3) as a
design progresses, allow replacement of
models by more detailed models; (4) fac-

ilitate modeling of all types of components

- hardware, firmware, and Software; and
(5) have a rcadily changcable;p
PS is a tool for simulation o% digital
systems which mcets thesec demands. In
addition PS is designed to ease the

problem of communicating -hardware/software

mechanisms between people by automati-
cally producing pictures of a system in
its various states. These pictures can
be used as a mcans of describing the
system. The models produced by PS are
called picture-system models [1,2,3].

2. Picture-system models and PS
A picturc-system model of a
system consists of (1) a picture
taining a picture for each statc of the
computer system that is relevant to the
mechanism being modeled, (2) a distin-
guished initial picture corresponding to
the initial state of thc computer system,

computer
sct con-

This work was conducted while the
author was an instructor at North Texas
State University and a Ph. D. candidate
at Southern Methodist Urniversity.
Present address: Xerox Corporation,
1341 W. Mockingbird Lane, Dallas,

Texas 75247.

arts library.
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and, (3) a transition graph which definecs
for cach picturc the sct of picturcs which
may follow it. A simulation on a picture-
system model is a movie, or scquence of
pictures, which corresponds to a sequence
of states in the computer system. All
movies can be obtained by starting with the
initial picturc and choosing the next pic-
ture at each step from the choices dcfined
by the transition graph.

elcment
models

Picture-system model

Fig. 1--A black-box view of PS

Figure 1 is a black-box view of PS.
The primary inputs to PS are the elcment
list and the element models. The element
models define types of components. The
element list defines particular instances
of the components.

An element can have onc of a finite
number of states at any time. Each element
is described by giving its element model
and the elements which are its interfaces.
Similar elements, those having the same
states and transition rules, reference the
same element model. Each clement supplies
its particular set of interfaces in its
reference to the element model. An ele-
ment model defines the transition rules for
an clement of its type in terms of the in-
ternal state of the element and the states
of the interfaces to the elcment.



Graphics can be specificd for cach
clement in the element list and also for
cach clement model.  The graphics expres-
sed in the element model can be dependent
on the state of the element causing the

pictures to vary with clement states.

PS output is a picturc-system model.
PS forms the model by starvting with the
initial state of the subjcct computer sys-
tem, the composition of the clement states,
and applying all possible clement transi-
tion rulecs to determince the sct of states
recachable by a single clement transition
from its initial statce. This process is
repeated for cach generated system state.
The result is a transition graph which
shows all possible transitions during
operation of the computer system. Since
PS rcarranges the transition graph into
straight order [11], much information
about the computer system is immediately
available, such as the identification of
decadlocks whether they be single hang-up
states or the more subtle cycle from which
therc is no escape.

Cach state rcachable by the modeled
system has a corresponding picture in the
picture-set. A picture is formed by plac-
ing in the picturec, graphics dectermined
by the states of the eclements of the com-
puter system.

3. The PS lLanguage

The PS language is composed of two
intecgrated sublanguages. The computer
system description sublanguage is used '
to define a subject system in terms of
its elements, their possiblc states, and
the rules for their changing states. The
graphics sublanguage, based on a method
of encoding curves described by Freeman
[3], is used to express curves which,
when placed in the frame, form a picture.
These sublanguages are integrated by
associating a different curve with each
element state. A state of the subject

“. system is the composition of the states

of its elements. The picture correspond-
ing to a particular state of the subject
system is the one formed by placing in the
frame the curves determined by the states.
of the elements.

Since PS is presently implemented as
a set of PL/I [8] macros and support
subroutines, its syntax is PL/I deter-
mined.

An overview of the language is shown
in Figure 2. A PS '"program'" is a
picture-system specification consisting
of a frame, global curves, and the element
models. The frame scction specifies the
elements of the subject system, the size
of each picture, and any graphics which
appears in all pictures as background for
the state-dependent graphics. Each ele-
ment within the frame is given a unique
name and described by a recfercnce to the
element model of the appropriate type.
The reference supplies the actual inter-
faces of the elcment, an initial state,

1
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<plctur--uysLem-spec\tlcltlon»

<frame>

<glodbal-
curves>
<sfve>

<background- <elenents>

graphics> /\

<elerent,> <element,> ... <element >

<name> <model-reference> <graphics> <initial-
[\ state>
<model-type> <interfaces>
<element-models>
<modsll> <modelz> “es <modol.>

<dummy- -
interfaces>

<graphics>

<model-
type>

<transition-
rules>

<state-dependent-graphics>
<non-variable-graphics>

Fig. 2--PS language overview
and graphics that is unique to the element.
Each element-modcl specification consists
of the model typec, the dummy interfaces,
non-variable graphics, state-dependent
graphics, and transition rules expressed in
terms of the states of the dummy inter-
faces and the internal state of the dummy
element.

The next several sections describe
the PS language. LCach language construct
is described by giving a BNF-like (5] speci-
fication, a user-manual-semantic specifica-
tion and examples. In the BNF-like speci-
fication brackets surround options items.

3.1. Picture-system Specification

<picture-system-specification> ::= <frame>
[ <global-curves> ]
<element-modecl-list>
<global-curves> ::= <namecd-curve>
<global-curves> <named-curve>
<element-model-list> ::= <element-model>
<element-model-list>
<elecment-model>

An example picturc systcm specifica-
tion is shown in Figure 3. The frame seg-
ment of the picture system specification



supplices the size of cach picture in the
model and the list of clement which comp-
risce the subject system.  In Figure 3 the
frame size s 12 rows (vertical units) by
33 columns (horizontal units). 'The cle-
ments ave NO of type CHIEE and NI and N2
of type NODE. Global curves are curves
which can be used by more than one element
model. In Figure 3 FILLER and OUTLINE are

global curves. The clement models are
NODE and CHIEF.

FRAMZC (12,3))
: C(:o')'lil\.ll 0 RU32) 01111 LI32) VU(10)
Civ=*) AT(7,30) O 2T(3,3) AL2T)
CUri*) AT(3,3) O Ot4) AT(3,31} O Ot4)

ELFMINTL NAMED(NO) AT(S, 61 IS_LIKE(CHIEF (N2} ) TEXTI*NO*)
INITIALCS(OM) ) )

ELEMINT( NAMID(NL) AT(S5,15) IS_LIKE(NODZ, INO) ) TEXTU'NL'Y
INITIALISICFF) ) )

ELEMINT( NAMSD(N2) AT(S5,24) IS_UIKEINOOE, (N1} ) TEXT('N2*}

: INITIALUS(OND 3 )

)

CURVE(FILLER ATU2,2) ) B3I0C2IEIIULLIRED) )
CU'VE('JUY!.XN!E,O ﬂ(S)Ol&‘lLl5lU()lCl‘-'lAT(l"ZIO RELICEH IR )

MOOEL( OF(NJDF, (LEFT) )
RULEST

TWHEN( ~(LEFT = NOOE) ) SET(NQDE = LEFT )
1

GRAPHICS(
Clte®) ZINUTLINT)
FOR(S(GN )) DRAWICI®e') LIFILLERY )
FOR(S(CFF)) DRAW() .
WATL6.3) )

MODEL( OF(CHIEF, (LEFT) )
RULESL

WMFNL LEFY =S{ON) € CHIEF =S(ON} )
SEY(CHIEF = S(OFF)

WHEN( LEFT =S{NFF) & CHIEF «SIOFF) )
SET(CHIEF = S(ON} )

]

GRAPHICSIL
CLre ) LIOUTLINF)
FIR(SICNI) DRAW(C(* e} Z(FILLER) )
FOR(SIOFF)) ORAW() -
2AT(6,3) )

Fig. 3--A PS specification

Figure 3 is a PS specification of a
computer system consisting of three ele-
ments which are nodes in a three-node
self-stabilizing network [6]. If a node
can change states, it is privileged. In
a stabilized system only one node is
privileged at a time. A node can test
only its left neighbor's state and its
own state when deciding whether or not
to change states. There is no central
clock. The initial states chosen for the
nodes start the system in an unstable state
as shown in picture 1 of Figure 4, AIl
thrce nodes are privileged. The output
of the program is the transition list and
the picture sct shown in Figure 4. Each
picture is shown with a picture number.
The transition list is in terms of the
picture numbers. For example, the transi-
tion list shows that pictures number 6,

4 or 2 can follow picture number 1. A .
movie can be constructed from the picture
sct by starting with picture number 1 and
following it with any sequence of pictures
permitted by the transitions. One such
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movie is
1l to 4 to 5 to 6 to 7 to 2 to 3 to
4 to ...
Clearly, for this initial state the network
stabilizes after a single transition in all
cases.
3.2. Erame

<frame> ::= FRAME( <rows> , <columns> )
[ <background-curve> ]
<elemcnt-list> )

<element-1list> ::= <element-specification>

| <element-1list>

<element-specification>
<rows> ::= <integer> i
<columns> ::= <integer>




celement-specification> = ELEMENT(
NAMED( <clement-name» )

[ <pre-model-curves |

<element -model-reference»

| <post-model-curves |

[ INITIAL( <clement-state> ) )

)
<clement-name >::= <name>
<clement-model-reference> ::= IS LIKE(
<model-type>
[, ( <model-paramecter-list>) )

<interface-lis:> ::= <interface>
| <interface-list> <interface>
<interface> ::= <clement-name>
<element-state>
<prc-model-curve>::: <curve>
<post-model-curve> ::= <curve>
<clement-state> ::= S( <name> )

Rows and columns are intcgers which

- define the size of cach picture in the
picture set. Rows is the vertical dimen-
sion of the picture and column is the
horizontal dimension. Background curve is
optional. If given, it 'is placed first in
every picture in the picture sct, before
any of the variable element graphics are
placed in the picture. Elcment graphics
may overwrite thec background curve.

The element description has a number
of options. An example minimum specifi-
cation is

ELEMENT ( NAMED(T) IS_LIKE(CLOCK) ) ..
A unique clement name must be given; in
this case it is T. The elemecnt model
reference must be given; in this case the
referenced element model is CLOCK. Since
neither a pre-model curve nor a post-medel
curve is given, the element model CLOCK
should not contain graphics ™ the graphics
within the elcment model arc relative to
the frame location set by the '‘pre-model

curve. For examplc, the eclemcnt descrip-

tion -

ELEMENT ( NAMED(N7) AT(3,8) IS_LIKE( NAND,
(A,B,C) 7))

sets frame location (3,8) in the prec-model
curve so that this instance of a NAND will
be drawn at that location. A post-model
curve only, is convenient when the shape
of the curve depends on the elément, al-
though the character with which the curve
is drawn depends on the statc of the ele-
ment and is therefore determined in the
element model. The elcment description
ELEMENT( NAMED(A) IS LIKE( LINE )
R(3)U(4)R(6) )
is of a LINE that is drawn with either a
0 or a 1 depending on the state of the
line. The shape of the line is specified
by the post-model curve.

The element model reference defines
the type of the elcment and determines its
interfaces. Only the state of the
element and its interfaces can be used
to change the clement state as specified
in the rules scction of the element
model. In other words, if thec state of
element A depends on the statc of element
B, element B must be specificd as an inter-

face to clement A in A's element descrip-
tion. Such an clement description might
take the form

ELEMENT( NAMED(A) IS LIKE(CTHING,(B)Y) ) .
An clement need not have an internal state.
For ecxample, the clement description
ELEMLENT( NAMED(N3) AT(14,2)

IS LIKE(NAND, (A,B,C)))

describes a” NAND gate.  The gate has threce
interfaces. A and B arc input lines and
C is an output linc. The rules in NAND
specify state changes in C in terms of the
states of A and B.

An element state can be supplicd as an
interface to an clement model in order to
parameterize the element model. TFor
cxample,

ELEMENT( NAMED(READER) AT(50,20)
IS_LIKE(TASK, (S(READ)))

ELEMENT( NAMED(WRITER) AT(10,1)
IS_LIKL(TASK, (S (WRITE)))

describes two TASKs that differ only in

their frame locations and the operation

that the task performs - READ for one,

WRITE for the other.

An elcment may be given an initial
state. In the element description
ELEMENT( NAMED(E) IS_LIKE( LINE )

INITIAL(S(LOW)))
the LINE is given the initial state LOW.
Only thosc elements having no internal
statec, such as the NAND described carlier,
need not have an initial state specified.

3.3. Elcment-model specification

<element-model> ::= MODEL( OF( <model-type>
[ , <dummy-interface-list> ] )
<graphics> <rules> )
<dummy-interface-list> ::= <dummy-interface>
<dummy-interface-list>
<dummy -interface>
<model-type >::= <name>

Each element model specifies the
model type, the transition rules and the
graphics associated with an eclement of its
type. The model type is used in the rules
and graphics parts of the element model to
refer to the internal state of an element
defined as the model type. If an element
of model type has interfaces, a dummy
interface list is supplied. The actual
interface 1ist is supplied in an element
description referencing the element model.
The element model for LINLE in Figure §
has no interfaces; however, the element
model for NAND in Figure 6 specifies three
interfaces.

MODZL( OF(LINE)
RULESL)
GRAPHICS(
FOR(S(HIGH) ) DRAW(CS('17))
fUR(S(LON 1) CRAWIC('0*))

Fig. S--Elcmént model of LINE



MODELLE DF(NAND, (ILL,IL2,0LL))

RUL%:SH
. WHONCILL = SeLaw) b TL2 2 StLnwd )
SET(OLL = SUHIGH) )
WHEIN(TLY = SEHICH) & TL2 = S{HIGH) )
SET{OLL = S(LOW ) ) :
)
GRAPHICS ('
ATL Ly 1)
ATC Sy 1)

clel)

AT( 1, 1) 0(3) ATL 1, 8) OU(})
AT( 3, 3) TEXT('NAND®)

)

Fig. 6--Elcment model of NAND

3.3.1. Rules

<rules> ::= RULES( [ <rule-list> ] )
<rule-list> ::= <rule>

<rule-list> <rule>
<rule> ::= WHEN( <state-conditional> )

SET( <statc-assignments> )
WHEN( <state-conditional>)
APPLY( [ <rule-list> ] )
<state-conditional> ::= <statc-tcrm>.
<statc-conditional> <state-term>
<state-term> .:= <state-factor>
| <state-tcrm> § <state-factor>
<state-factor> ::= <statc-operand>
<state-factor> '"|"
<state-operand>
Note: the quotes arc meta characters
denoting that the bar inside
them is not.

<state-operand> ::= <state-test>
( <state-conditional> )
<state-test> ::= <elcment-reference>=

<state-reference>
| <clement-vefgrence>a=
<statc-reference>
<element-reference> ::= <model-type>
<dummy - interface>
<state-assignments> ::= <state-assignment>
| <state-assignments> ;
<state-assignment>

<state-assignment> ::= <element-reference>
. = <state-reference>
<state-reference> ::= <clement-refecrence>
: <element-staie>
<element-state> ::= S( name )

Rules must be specified although they
need not contain a rule. The element
model for LINE in [Figure S has no rule.
Within a rule list each rule is independent
of any others. The order in which they are
specified has no cffecct on the picture-
system model to be generated. A rule has
two parts - the when part and the set or
apply part.

The when part specifies a true/false-
valued cxpression in terms of model type,
dunmy interfaces, clement states, paren-
thesis, and PL/I logical operators. For
cach system state the when part is ecvalu-
ated. The resulting true or falsc value
determines whether or not the following
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set oor apply parts may cause a change in
the system state and therefore a trvansi-
tion.

The set part specifies changes to
the states of model type, the iaternal
state of the actual clement, and interfaces
that are to be made in any system state for
which the when pretix is true. The set is
specificd as a sequence of assignments of
states to clements,  The rule

WHIEN( IL1 = S(IGH) & IL3 = S(HIGH))
SET( OLI = S(LOW))

in Figure 6 tests all system states to
determine if any elcment of typc NAND

has interfaces 1Ll and [L2 both at state
HIGH. For any system state for which

this when part is true, a transition to a
new system state is recorded for the change
in interface OLl's state to LOW. The rule

WHEN( LEFT = NODE ) SET( NODE = LEFT )

from Figure 3 tests all system statcs to
determine whether or not the state of any
element of typc NODE is the same as the
state of its interface LEFT. For any
system states for which the when part is
true, a transition to a new system state
is reccorded. The new state differs from
the last only in that the state of the
element of type NODE has been changed to
the state of its interface LEFT. )
An apply part specifies an entire
rule list that is to be considered only
when ‘its when prefix is true. It is
simply a mcthod of factoring out an
"anded" term from a sct of whens. The
following example codes are cquivalent:

Example code 1
WHEN(A = S(1
WHEN (A 1

S(2)) SET(B=A)
S(#)) SET(B=S(5))

n
wn
~
N
Ln on
o w
nou

Example code 2
WHEN(A = S(1)).APPLY(
WHEN (B S(2)) SET(B=A)
WHEN(B =-S(#)) SET(B=S(5)) )

3.2.2. Graphics

<graphics> ::= GRAPHICS(
[ <pre-for-list-curve> ]
[ <for-list>
[ , <post-for-list-curve> ] )
<pre-for-list-curve> ::= <curve>
<post-for-list-curve> ::=<curve>
<for-list> ::= <lor-list-entry>
| <for-list> <for-list-entry>
<for-list-entry> ::= FOR( <element-statc> )
DRAW( <curves>)
| <curve>

Graphics must be specified although
the body of the graphics specification may
be empty. All thrce parts of a graphics
specification are optional. The forlist
can specify a different curve for cach
state of an clcment of the model type.




A1l curves in the clement model ave
retative to the pltace in the frame sct by
the pre-model curve of cach el nent refer-
cncing the clement model.  This allows
dravings associated with Jdifferent cle-
ments of the same type to have the same
praphics but at difterent places in the
frame.

The pre-for-list curve is placed in
the frame first; then the curves seclected
by the for-list; and last the post-for-list
curve. The graphics specification

GRAPIICS
C('.') Z(OUTLINE)
FOR( S(ON)) DRAW(C('.') Z(FILLER))
FOR( S(OFF))DRAW()
, AT(6,3) )

from Figure 3 has all thrce parts of the
graphics specification. The pre-for-list
curve draws the outline for a NODE by
referencing the global curve  OUTLINE.

The for-list causes thc outline to be
filled in for ON eclements and to be left
empty for OFF clements. The post-for-

list curve is done in either case. It
causes the frame location to be set to
(6,3) relative to the location on entry

to the model. This location is set so that
the post model curve in the element ‘
description cuan place the name of the
particular element below the drawing.

3.4. Curves

~<curve-order>

<curve curve-order>
null
<curve-order> ::=

<curve> [:=

-

( <integer3
(.<intcger5
( <integer>
( <integer>
<integer>
<integer>
<integer>
<intcger>
<signed-integer> ,
<signed-integer> )
C( <quoted-string> )
C( <c-name> )
“] TEXT( <quoted-string> )
ST( <name> )
<named-curve>
| 2( <curve-name> )
<element-namec> <model-name>
CURVE( <curve-name> ,
<curve> )

0
R
L
u
D

UR(
UL(
DR(
DL(
AT

N N N N e e N s

<c-name> ::=
<named-curve> ;:=

The picture associated with a parti-
cular system state is formed by executing
all curve orders in the frame specification
and in the elcment models referenced in the
frame specification. The order in which
the curve orders are exccuted is important
to the appecarance of a picture. For
example, a curve order may determine the
location of the following curve, or the
characters used in drawing the following

executed in

curve.,  the curve orvders arve

the order in which thoy are written

except that for cach ¢lement description
the curve orders determined by the refer-
cnced clement model are exccuted after the

pre-model curve in the clement descrip-
tion and before the post-model curve.

3.4.1. AT curve orvder

The AT curve order mecans to sct the
current location to the specificd row
and column reclative to (1,1) in the upper
left corner of the framec or relative to

the location at which the clement model
was cntered. When an clement model is
cntered the location at the time it was

for graphics inside
is exited, the
in

entered becomes (1,1)
the model. When the model
current location is reclocated to (1,1)
the frame. Figure 7 shows the current
location in the frame sct by the curve
order AT (1,1).

Fig. 7--Example 1 of use of AT curve
order.

Figure 8 shows the current location
in the frame set by the curve order AT(3,5).

Fig. 8--Example 2 of use of AT curve
order.

Figurc 9 shows the current location
in the frame set by the curve order AT(1,1)
followed by an element description followed
by the curve order AT(3,5) in the element
model.
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Fig. 9--Example 3 of usc of AT curve
order in clement model

Figurc 10 shows the currcent location
in the frame set by the curve order AT(3,5)
followed by the clement description
followed by the curve order AT(2,3) in the
clement model.

Fig. 10--Example 4 of use of AT curve
order in element model.

Figure 11 shows the cuirent location
in the frame set by the curve(ordcr AT(7,6)
followed by an element description follow-
ed by the curve order AT(-1,-2) in the ele-
ment model.

Fig. 11--Example 5 of use of AT curve
order in elcment model

3.4.2. C Curve Order

The C curve order means to sct the
source of current characters to the value
specified in the quoted string or the cur-
rent value of c-name. The current char-
acter becomes the leftmost character of

The characters arve usced one

the string.
at a time moving right until the string
is exhausted. At that time the leftwost
character is used again, and so on.
Examples of the € curve order are

c('.")

- C('ALPHA")

c('o")

c('1,234,782")

c(l_l)

c( ELE )

3.4.3. 0, R, L, U, D, UR, UL, DR, and DL

The O curve order means to place the
currcnt character at the current location
and then update the current character to
the next character in the string modulo
the string lcength. The current location
is not changed.

Curve orders R (right), L (left),
U (up), D (down), UR (up-right), UL (up-
left), DR (down-right), and DL (down-lcft)
all have the samec algorithm except for the
direction of movement. The integer in each
case is the number of dircctional movements
to be made. At each new location during
the movement a character is placed and the
current character is updated to the next
character in the string modulo the string
length. Notice that no character is
placed at the initial current location and
that the current location at the completion
of the movement is still at the last char-
acter placed.

‘Figure 12 shows the curve

AT(1,1) C('X') R(2) D(7) .

Fig. 12--Example 1 of curve movements
Figure 13 shows the curve

AT(3,2) C('*-') 0 R(S) .

Fig. 13--Example 2 of curve movements



Figure 14 shows the curve

CO"*') DR(3) R(2) UR(2Z) h(Y)
D(1) DL(L) L(S) C('-') UL(3)
r(7,5) o .

AT(1,1)
DR(2)
A

1]

IR

TIraT

'R
i
1

I

AEX
* U |

|
1t

X

Tx

Fig. 14--Example 3 of curve movements

3.4.4, TEXT Curve Order

The TEXT curve order mecans to place
the quoted string in the frame starting
at the current location and moving to the
right. Figure 15 shows the result of
placing the curve

AT(3,3) TEXT('ALPHA')

in the frame.

Fig. 15--Example of use of TEXT curve order

3.4.5. ST Curve Order .

The ST curve order means that the state
of the named element or model is placed in
the frame starting at- the current location
and moving to the right. Figure 16 shows
the result of placing the curve

AT(4,3) ST( SWITCH )

in the frame if the state of element SWITCH
is OFF.

!
|

Fig. 16--Cxample of usec of ST curve order

3.4.6. CURVE and Z Curve Orders

The CURVE curve order names a
curve so that it can be referenced from
several different places by using the 2
curve order with the curve name. The
cffect of the Z curve order is to causc
the curve to be placed at the current loc-
ation. Figure 17 shows the result of
placing the curve

CURVE( BOX, RN3)
C('*') AT(1,1)
C('.') AT(6,1)

D(3) L(3) U(3) )
7(BOX)
2(BOX)

in the frame.

Ik Ok Dl
X EFx

A
.
sle

elvicle
-

.

-

-
e’ e e

Fig. 17--Example of use of CURVE and

Z curve orders.

4. Conclusion

We have presented picture-system
models as a simulation tool for the digital
system designer. The generation and anal-
ysis of picture-system models has bcen
automated by the PS language implementation.
This paper has described the PL/I-based PS
language.

A wide variety of models have been
developed using the prototype implementation
of PS. Models of traditional digital logic
components at gate level as well as func-
tional levels have been decveloped [9].

Thesc models will be a powerful tecaching
aid. PS digital logic models rcveal races
and hazards as would be expected from an
asynchronous simulator. The development
of digital logic models has motivated, in
part, the exploration of synchronous PS
models in addition to the asynchronous
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models which were the original subjects
of our investigation,

At the high end of the architectural
spectvum, a model of a channel-to-channcel
computer intcrface mechanizm involving
both hardware and sottware has been devel-
oped [3]. This very larpge wmodel, more
than 1,000 states, has been the subject of
a study of the computer system design meth-
odology that we arce developing around PS.
The idea of submodels of picturc-system
models has cmerged as an important analysis
method. Computer systems can be cexplored
for hang-ups, incscapable cycles, races,
and hazards. Fault studices have been
done using the channcl-to-channel model
to study the potential of PS for such
studics. The eftect of an errant oper-
ating system in onc computer, on the oper-
ating system in another computer communi-
cating with it, has been cxplored as a
fault study. The interface unit in the
channel-to-channcl connection has bcen
subjected to fault studics which predicted
its rcaction to any scquence of channcl
signals from the two computers no matter
how nonscnsical. The potential for
diagnostic capability bascd on this type
of study is clear. A model of a channel-
to-channel interface mechanism somewhat
simplier than the onc described in [3] has
been used -during the actual design of
the interface (2]. The model had a very
favorable effect on the communication
between the hardware and softwarc groups
invclved, in addition to pinpointing
oversights which would have led to inter-
face unit hang-ups.

Another 1ntcrest1ng set of models that
are being developed is Dijkstra's cooper-
ating scquential processes [J]. These
models give this author hope for proofs
of operating systems done by 'fordinary"
operating system designers assisted by
PS models. These proofs will be based
on the structure of submodels of system
behavior as defined by the transition
graph produced by the PS system. The
analysis of these transition graphs is
one of the most useful features in PS
that is not found in traditional digital
system simulators. The current analysis
is by ordering of nodes as described by
Earnest [11] and applied by Korfhage [12].
The many other possibilities for transition
graph analysis are onc subject of our
current investigations.

~ The goal of this continuing rescarch
is to incorporate within a single automated
design aid the features necessary to sim-
ulate digital systems at various levels
of architectural detail, in such a way
that we can see (1) that it works and
(2) how it works. The prototype implemen-
tation of PS has shown the feasibility and
usefulness of such a systemn.

28

Acknowledgenents
The author pratetully acknowledges
helpful supgestions from Chavles Bipgds,

Dennis Frailey, James lsaacson, Bob Korthage,

Ahmet Oner, Bill Nylin, Dan Scott, and
Rob Smith. -}
Relerences

1. P. Isaacson, "Picturc-system models and
computer system design,”" Ph.D. disscertation

in preparvation, Computer Scicnce Department,

Institute of Technology, Southern Mcthodist
University, Dallas, Texas.

2. P. Isaacson, "PS: A tool for building
picturc-system models of computer systems,'
to appear, June, 1974.

3. P. Isaacson, '"Picture systems, PS, and
the design of a channel-to-channel computer
interface," to appear, July 1974.

4. Il. Frecman, "On the encoding of arbitrary

geometric configurations,' IRE Transactions

on Electronic (omputers, June 1961,
260-268.

5. P. Naur, (Ed.), "Recvised report on the
algorithmic language ALGOL 60," CACM 6,
(Jan 1963), 1-17.

6. E. Dijkstra, Lectures at a conference
on programming methodology, University of
New Mecxico, March 1974.

7. E. Dijkstra "Co-operating sequential

processes," Programming Languages, . Genuys,

Ed., Academic Press, New York, 1968.
8. IBM, PL/I Language Reference Manual.

9, C. Biggs, "Picture-system models of
digital logic elements," Master's thesis

in preparation, Computer Sciences Department,
North Texas State-University, Denton, Texas.

10. P. Isaacson and A. Oner, '"Picture-system
models of Dijkstra's co- operatlng sequentlal

processes,'" in preparation.

11. C.P. Earnest, et.al, '"Analysis of
graphs by ordering of nodes," JACM, January
1972, 23-42. .

12. R. Korfhage, '"Program restructuring:
garbage in, daisies out,' to appear, June
1974.



A PARTITIONING TECHNIQUE
FOR

LSI CHIPS

Pao-Tsin Wang

International Business Machines Corporation
System Development Division

9500 Godwin Dr.

Manassas, Va. 22110

29




I. Introduction

A technique for partitioning LSI chips

is presented in this paper. This
technique is a refinement of the author's
previous work [1].

The word "partitioning" is taken to mean
the dividing of a chip into n sections.
Each section will contain a group of cir-
cuits. The size of a section is defined
as the amount of physical area occupied
by the group of circuits. Each section
does not have to be equal in size, how-
ever, the difference in size between any
two sections should be within some pre-
specified number. Since the physical
dimension of each circuit is not uniform,
the number of circuits in a section may

vary a great deal from section to section.

A good partition is one such that each
section has a valid size and the number
of interconnections between any two sec-
tions is the smallest. 1In essence, one
should attempt to achieve two goals in
the process of partitioning: maintain
a valid size for each section and reduce
the number of intersection connections
as much as possible.

The partitioning technique presented

in this paper consists of the following
steps. First, the set of circuits is
ordered according to a scoring mechanism
and the resulting order 1is called the
initial order of EEE circuits. Next,

an il1ntercnange “Techrnigue 1s used to
improve that iInitlal order and the
resulting order is called the improved
order of the circuits. Last, the

same interchange technique is used to
partition the improved order 1nto n
sections.

II. Construction of the Initial Order

On a chip, the set of circuits is inter-
connected by a set of nets. A net is
defined as a collection of electrically
common points, where a point may be
either an 1nput gate or an output gate
of a circuit, A circuit, for example,
could be a 4-input-l-output NAND. Since
a circuit, in general, consists of more
than one gate, there is a set of nets

in which the circuit is involved. This
set of nets is called the associated
nets for the circuit. On the other hand,
a net connects a group of circuits which
will now be called the group of circuits
in the net.

An iterative ordering algorithm is
used to establish the initial order

in which one circuit follows the other.
An iteration is a pass where a circuit
1s selected égg Ordered. There are

as many iterations as there are cir-
cuits To begin the algorithm, the
circuit with the smallest number of

associated nets is chosen as the
starting circuit. This circuit now
Becomes an ordered circuit. At the end
of every iteration, a set of candidate
circuits (unordered, of course) wilil

be constructed from the set of nets
associated with the group of ordered
circuits. To select for ordering the
Eest clrcuit among the candidate cir-
cuits, a scoring mechanism is used.

The iteration repeats until all the
circuits have been ordered.

In essence, the scoring mechanism
calculates a score for each candi-

date circuit and selects the circuit
with the highest score. A net is.

said to be complete when all the
circuits in~it have been ordered;
otherwise, the net 1s said to be
incomplete. Oneé obvious criterion

in constructing the scoring mechanism

is to give the highest score to a cir-
cuit that has the potential of completing
the largest number of nets while, at

the same time, including relatively
small number of incomplete nets. Before
the complete scoring mechanism is pre-
sented, some items should be defined as
follows:

X = a candidate circuit after the
ith iteration
NET(X) = the set of associated nets for
R the circuit X
CKT(X) = the set of distinct circuits
i derived from NET(X)
#CKT (X) = the total number of circuits
in CKT(X) ,
SCKT(X) = a subset of CKT(X), repre-
senting the circuits that
have been ordered
the total number of circuits
in SCKT(X)
NT (n) = the set of connected circuits
in the net n
the number of circuits in the
"set NT(n)
SNT(n) = a subset of NT(n), represen=-
ting the circuits that have
’ been ordered
#$SNT(n) = the total number of circuits
in SNT(N)
(o} = the number of common nets
i between the circuit X and
the set of ordered circuits

#SCKT (X)

#NT (n)

2 = the number of nets in the set
NET (X)
N = the number of new and incom-

plete nets brought in by the
circuit X; A =S-C

D = degree of completeness, repre-
senting a measurement on the
potential of the circuit X to
complete its associated nets.
There are two forms used to
define D:

. o Sum Form—p = ¥SCKT(X)+1

CKT (X
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° Product Form-~—D =
#SNT (n) +1

N
neneroy N

I = the total number of incomplete
nets after the ith iteration

= the total number of common
nets between the circuit X
and the particular circuit
ordered 1n the ith iteration

IC

The score S for the candidate circuit
X i8 now defined as:

§ = (C)ZxDxIC
Zx (I+N

Note that since there are two forms for

computing D and that IC could be ignored,

these are four possible scoring mecha-

nisms, any one of which could be used

for the ordering algorithm.

1. Score with D in product form and
ignore IC. :

2. Score with D in sum for and
ignore IC.

3. Score with D in sum form and

include IC,
4., Score with D in
and include IC.

product form

Since the score S is calculated in

a heuristic manner, it is difficult

to predict which scoring mechanism
would produce a better result for a
given chip. Experimental runs have
been made on many chips and the results
indicated the scoring mechanism 1, in
general, produced relatively better
circuit orders; hence, it was chosen
for the iterative ordering algorithm,

III. Construction of the Improved Circuit
Order

The initial circuit order can be described
graphically, as shown in Figure 1, where
the order is to be read from top to bottom.
For example, net A connects circuits 78,

79 and 73, and net B, circuits 90, 88,

89 and 86. Gates are treated as if they
were equal in width in order to simplify
the work of displaying nets. Imaginary
vertical channels are assumed, each of
which is to be filled successively with
nets. If a channel is full or no net

fits, a new channel begins. The total
number of channels required t5 display

all the nets is a rougn measurement

on EEE_"goodness“ of a given initial
circuit order; in other words, the
smaller the number of channels required,
the better the initial circuit order.

To improve the initial order, an inter-
change technique is required, derived
from [2], and will be referred to as
the K-L interchange algorithm. The

strength of the K-L algorithm is its

31

capability in identifying groups of
circuits to be interchanged; further-
more, the algorithm decides when the
interchange process should stop, and
thus provides a dynamic stopping
oint. The existence of such a
§ynamic stopping point resolves the
general problem as to when the inter-
change of objects ought to stop, as
compared to other interchange tech-
niques that could be employed. Due
to the fact that a net, in general,
connects more than ¥wo points, it was
necessary to modify the K-L algorithm
so that nets of more than two points
would not cause the algorithm to
produce misleading results. This
modification was used in (1], and
was also discussed in a recent paper
[3]. It is assumed that the readers
are familiar with [2] and hence, no
detailed description of the K-L
algorithm and its modifications will
be presented.

The improvement of the initial circuit
order is accomplished on a step-by-step
basis,. Refer to.Figure l. When an
imaginary dividing line is drawn on
Location 1, the set of circuits is
split into two subsets. Application
of the K-L algorithm on these two
subsets results in identifying two
groups of circuits to be interchanged,
one group originating from the circuits
above the dividing line, the other
below. There is no order consideration
for eachcircuit within each of thne
After the interchange

two groups.

takes place, one group of circuits

will be placed immediately above the
dividing line and pushes the remaining
circuits above this line upward; the
other group of circuits will be inserted
below the dividing line and pushes the
rest of the circuits below the line
downward., As a result, the initial
order has been altered; however, the
number of Interconnections across the
dividing line was reduced. Since the
goal at the time is to improve the
initial circuit order, no consideration
is given to the physical dimension of
circuits during the process of inter-
change.

The dividing line now moves down to a
new location, say location 2, and again
the K-L algorithm is applied, resulting
in a reduction of the interconnections
across the current dividing line. When
there are no more new locations avail-
able, the dividing line stops moving
downward and starts moving up, genera-
ting new locations where the K-L
algorithm will be applied. For
convenience, the one round of moving
the dividing Iine down and up 3gain
Tor vice versa) is called a pass.
Within a pass, the number of circuits
which the line Jumps over when moving
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from one location to another is called
the step size. After applylng many
passes of line-moving, the initial
circuit order will be greatly improved,
which will now be called the improved
circuit order.

The number of passes and the step size
obviously has a great deal to do with
the degree of improvement on the initial
order; however, it is difficult to
determine in advance how many passes
would be enough and what step size would
be proper for a given chip. For the
program the author developed, it was
decided empirically that the number of
passes was 14 and the step size was

as follows:

Step Size Number of Circuits
5 K<100
9 150 >K> 100
13 200>K >150
Step Size Number of Circuits K
17 300> K >200
25 K> 300

IV, Partitioning of Chips

Partitioning of chips is accomplished
by applying the K-L algorithm on the
improved circuit order. Since a proper
size is to be maintained for each sec-
tion, the size of the circuits can no
longer be ignored during the process

of interchanging circuits. In this
paper, the size of a circuit is taken
to mean the height of the circuit;
hence, the size of a section is defined
as the sum of the heights of the cir-
cuits that are contained in the section.

There are in general, two major steps
in partitioning a chip: the initial
artitioning and the succeedin
artitioning. Two large sections of
circults are constructed after the
initial partitioning is applied; the
succeeding partitioning divides each
of the two large sections into a number
of smaller sections until there are
n sections totally where n is the
number of sections required.

A. Initial Partitioning
* Case 1l: n is even

The chip size is defined as the sum of
the heights of all the circuits that
the chip contains. To obtain a proper
size for each of the two large sections
to be constructed, the chip size is
divided by two. Let S denote this
size. The balance index is set equal
to S/20; in other words, one section,
at most, can only be 10% larger than
the other section.

On the improved circuit order, a dividing
line is to be drawn at the place where
two sections of circuits can be identi-
fied with the size of one section close
to the other section. When the K-L
algorithm is applied, a series of inter-
changes of circuits takes place; the size
difference between the two sections will
be monitored against the balance index

at each Interchange of circuits. At

the end of the algorithm, two large
sections of circuits with proper size

are constructed.

° ,Case 2: n is odd

As noted in the previous discussion,
there is only one way to draw the
dividing line on the improved circuit
order and identify two sections of
circuits when n is even; however,
there are two ways to construct two
sections of circuits when n is odd.
For example, let n be 5 to illustrate
the case.

The approximate size for each of the
five sections is set equal to one-
fifth of the chip size. Let S denote
this size., For the two large sections
to be identified, one section will
take the size of 2S5, the other 3S.

The balance index 1is 2S. Refer to

Figure 1. A line dragg at location
1 could identify two large sections;
on the other hand, a line drawn at
location 3 would also identify two
large sections. After applying the
K-L algorithm on both configurations,
the one with the smallest number of
interconnections will be chosen.

B. Succeeding Partitioning

The succeeding partitioning is simply
the extension of the initial parti-
tioning; the only difference is that
each of the two large sections of
circuits is treated as if they were
complete chips, hence, the initial
partitioning is applied. 1In essence,
n sections of circuits are constructed
by repeatedly applying the initial
partitioning.

The following table provides some
computational results.

(3]
w



CPU

) TIME
8-91 (SEC.)

76

160

202

58

7-8
74

6-17
78

5-6
15
66

4-5
16
50
91

3-4
19
60

TWO _ADJACENT SECTIONS
87

OF INTERCONNECTIONS BETWEEN

NO.
22
71
73

1-2| 2-3
24
50
48

537

530

354
520| 529

402
490

The program was run on an IBM System/360 Mod, 195
The Core required is 185K

TABLE 1 EXPERIMENTAL RESULTS

338
483

SECTION SIZE (IN UNITS)

422
490

369 | 359 | 325 | 358
* NOTE

440
515

1
362
448
516

6

NO.

OF
NETS | SECTIONS

NO.
OF

511
470
699

514
620
1135

OF
CKTS.

3

ICHIP| NO.
1D

V. Discussions

Since the partitioning algorithm presen-
ted in this paper is heuristic in nature,
many decision-making mechanisms are con-
structed empirically. As such, it is
difficult to assess a partitioning result
produced by the algorithm.

In the course of constructing the initial
circuit order, a certain circuit is chosen
as the starting circuit. It appears

that the selection of the starting circuit
has a great deal to do with the final
partition result. The application of

the line-moving approach is used not

only to improve the initial order, but
also to diminish the impact of the
starting circuit on the final result;
nevertheless, the impact still remains,
although to a lesser degree.

There are four scoring mechanisms pre-
sented in this paper. Many other scoring
mechanisms can be found in [4]. At one
time, all four scoring mechanisms were
used to construct the initial order and
comparisons were made on the four final
partition results; however, no conclu-
sive evidence was indicated as to which
one was superior to the other three.

Number of passes and step size are the
other two subjects to be further studied.
The values used in this paper were
selected on the basis of experimental
runs,

It should be noted that no section is
truly independent of the remaining
sections because there are always some
interconnecting nets which tend to
pull circuits in one section to cir-
cuits in .other sections. Effort should
be made to reduce the number of the
interconnections which cross many
section boundaries. From a practical
point of view, these interconnections
could very well mean trouble during
wiring. On occasion certain circuits
may have to be assigned to certain
sections; this pre-assignment of cir-
cuits can also be implemented in the
partitioning algorithm. Due to the
space limitation, no detailed dis-
cussions pertaining to these special
features will be presented.
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