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PREFACE 

GENERAL CHAIRMEN'S REMARKS 

The success of the past two Symposia on Computer 
Architecture and the interest that they have generated 
are the greatest rewards that their organizers could 
possibly hope for. The increase in attendance and the 
quantity and quality of the papers received indicate 
that growth and creativity in computer architecture 
continue on the upswing. At the same time the broad 
circulation (over 3,000 copies) of these Proceedings 
provides recognition to the authors and coverage for 
the interested audience not in attendance at the con
ference. 

An objective of the symposium is to present the 
methodologies and languages for representing architec
tural design within the pragmatics of system evalua
tion and implementation. While these topics have re
ceived attention in the abstract a greater participa
tion of users and designers from government and indus
try would aid greatly in developing these areas. Sym
posium attendance has been historically divided equal
ly between two groups, university and industry, but it 
has been difficult to obtain submissions from practi
tioners of the art. It is a credit to the Program Com
mittee and in particular to its chairman that at least 
a third of the final program consists of industrial 
contributions. This is perhaps a good place to remind 
the non-academic readers of these Proceedings of their 
obligation to give, in the measure that they receive, 
from their own valuable store of practical experience 
and knowledge. 

An exacting Program Committee has been responsible 
for the delicate task of program selection and organi
zation. Their acute perception in the choice of con
tributions is evidenced in the pages that follow. We 
thank them all but in particular Dan Siewiorek for his 
ability to multiprocess a broad variety of tasks in a 
competent and efficient way. One new and valuable fea
ture added to this Third Symposium is the Session on 
Recent Results. It included reports on fresh develop
ments of significance not yet sufficiently ripe at the 

deadline of manuscript submission. The archival value 
of the presentations in the program should be comple
mented by these reports of work in progress, and also 
by a one day Tutorial on Microprogramming by Mike 
Galey and Richard Kleir. 

An evening panel discussion organized by Yoahan 
Chu will concentrate on the unifying and changing as
pects of software and architecture design. This ses
sion and the informal atmosphere encouraged during the 
coffee breaks and other social functions should provide 
the opportunity for personal interaction among the par
ticipants of the conference. 

As in the past, the presence of papers from nine 
different countries brings out the cosmopolitan flavor 
of this conference. Responsible in no small part for 
this participation are Rodnay Zaks from Franci~ and 
Reiner Hartenstein from Germany ghrough the support of 
the Euromicro association. The "Best Paper Award", 
instituted last year to encourage excellence in the 
written and oral presentations of a paper at the Sympo
sium will be continued. The winners for 1975, Harold 
W. Lawson, Jr. and Bengt Magnhagen from Linkoping 
H°ogskola in Sweden, will receive their award of $100. 00 
and a certificate during the opening ceremoni,es of the 
Third Symposium for their paper, "Advantages of Struc
tured Hardware." 

Our appreciation should also go to the unsung 
heroes of an effort like this one: to those who 
enriched the selection process by submitting papers of 
quality that were not, for special reasons, accepted at 
this time and to the many:who aided in behind-the
scenes arrangements. Among the latter we single out 
Harvey Glass and Joe Deeds who worked diligently to 
make it more pleasant for those attending our 1976 meet
ing on the shores of the Gulf of Mexico. 

Michael J. Flynn 
Oscar N. Garcia 

PROGRAM CHAIRMAN'S REMARKS 

A survey of the symposium sessions indicates some 
current trends in computer architecture research. The 
most popular topics (by number of papers submitted) 
were computer networks and multimicroprocessor systems. 
A heightened awareness of the software/hardware inter
face)\s exhibited by three sessions and an evening 
panel discussion. The sessions cover topics of hard
ware/ software system considerations, resource sharing 
and process coordination, and architectures to support 
software concepts. 

Performance of computer systems continues to be an 
important topic. One session covers the theoretical 
concepts of performance evaluation and modeling while 
another session is devoted to architectural features 
for performance enhancement. A historical perspective 
of the art of computer design is the theme of the ar
chitecture evolution session. This session focuses on 
the design decisions in two computer families and prom
ises to be one of the highlights of the symposium. 

Interest continues in hardware· ,descriptive lan
guages and computer architecture education. Finally, 
two new sessions round out the program: the effects of 
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special applications on computer architecture, secon
dary storage. 

The large response to the symposium's call for 
papers provided a wealth of material from which to as
semble a technical program. I would like to thank all 
the authors of submitted papers for their interest and 
assistance in putting together a quality program. 

The fact that over 80 papers were reviewed in less 
than two months is a: tribute to the efforts of the mem
bers of the program committee and the referee!S. Their 
assistance is deeply appreciated. I would also like to 
acknowledge the support provided by Oscar Garcia in the 
many phases of program planning. Finally, a special 
note of thanks is due Dorothy Josephson for keeping the 
manuscripts and letters rolling. My informal calcula
tions indicate that program correspondence was in ex
cess of 800 letters. 

Daniel P. Siewiorek 



Daniel P. Siewiorek, Chainnan 
Daniel Atkins III 
Harvey Cragon 
Edward Davidson 
Reiner W, Hartenstein 
John P. Hayes 

A. M. Abd-Alla 
Guy Almes 
George A. Anderson 
Judith A. Anderson 
James B. Angell 
Daniel Atkins III 
J. L. Baer 
Mario Barbacci 
Forest Baskett 
A. P. Batson 
Dileep Bhandarkar 
Barry Borgerson 
William Brantley 
R. E. Brundage 
Don Chamberlin 
Herbert Chang 
Lih Chang 
Yaohan Chu 
Douglas Clark 
Harvey Cragon 
Edward Davidson 
Peter Denning 
D. Dennis 
Jack B. Dennis 
Lloyd Dickman 
Donald Dietmeyer 
Linda Dodge 
Richard Eckhouse 
Robert A. Ellis 
Lee Ennan 
T. Feng 
Eduardo Fernandez 
Edward Feustal 
Lawrence Flon 
W. s. Ford 
Warren Franz 
Samuel Fuller 
Oscar Garcia 
M. z. Ghanem 
H. M. Gladney 
R. H. Glorioso 
John Grason 
A. N. Habermann 
V. c. Hamacher 
A. Hassitt 
John P. Hayes 
Leonard Haynes 
Leonard D. Healy 
Fredrick J. Hill 
Terry T. Hsu 
Wing Hing Huen 
Ashok Ingle 
Portia Isaacson 
E. Douglas Jensen 
Richard Johnsson 
Anita K. Jones 
Angel Jordan 
J. Egil Juliussen 
Robert Jump 
Olaf Kaestner 
Theodore Kehl 
Willis King 
Leonard Kleinrock 
Michael Knudsen 

PROGRAM COMMITTEE 

W. H. Huen 
E. Douglas Jensen 
Harold Lorin 
Craig Mudge 
Michael D. Mulder 
Marshal c. Pease 

REFEREES 

iii 

Leon Presser 
John F. Wakerly 
John H. Wensley 
Neil C. Wilhelm 
William A. Wulf 
Rodnay Zaks 

Uno Kodres 
R. Krishnan 
H. T. Kung 
John A. N. Lee 
Victor Lesser 
Roy Levin 
G. J. Lipovski 
Ming T. Liu 
Harold Lorin 
Harold Livings 
David Misunas 
Thomas Mitchell 
Craig Mudge 
Michael Mulder 
Dave Nelson 
Peter Neumann 
Peter Oleinick 
Severo Ornstein 
E. W. Page 
Alice Parker 
Janak H. Patel 
Marshall Pease 
Karla Martin Perdue 
Udo W. Pooch 
Leon Presser 
Tom Price 
H. R. Ramanvjam 
S. S. Reddi 
David c. Rine 
Larry Robinson 
Brian Rosen 
Steven Saunders 
Michael Schlansker 
N. F. Schneidewind 
Mark Sebern 
Daniel Serain 
Mary Shaw 
Howard Jay Siegel 
Shankar Singh 
Basil Smith III 
Edward Snow 
Harold Stone 
s. Y. W. Su 
Richard Swan 
Daniel T. W. Sze 
A. Thomasian 
Kenneth Thurber 
Judy A. Townley 
Rollins Turner 
J. D. Ullman 
Christopher Vickery 
Maniel Vineberg 
z. G. Vranesic 
John F. Wakerly 
Jerry Waxman 
Terry Welch 
John Wensley 
Neil C. Wilhelm 
Wayne T. Wilner 
Larry Wittie 
Y. S. Wu 
William A. Wulf 
s. G. Zaky 



CONTENTS 

Page 
Architecture Evolution 

"Computer Structures: What Have We Learned from the PDP-11?", 
Gordon Bell, William D. Strecker, Digi.tal Equipment Corporation •• " •.•••..•.•••••• • • • • 1 

Hardware Descriptive Languages 

"A PMS Level Language for Performance Evaluation Modelling (V-PMS)", 
Helmut Kerner, Werner Beyerle, Technical University, Vienna •• • • • • 15 

"A Design Tool for the Multilevel Description and Simulation of Systems of Interconnected Modules", 
M. Moalla. G. Saucier, J, Sifakis, M. Zachariades, ENSIMAG, Grenoble, France ••••••••••••••• 20 
Education 
"A Course in Computer Structures", 
Jonathan Allen, Massachusetts Institute of Technology •••.•.••••.•••••••••••••••• 28 

"The IEEE Computer Society Task Force on Computer Architecture", 
George E. Rossmann, Palyn Associates, Inc., San Jose ••••••••••••••••••.•••••••• 33 

Multi-Microprocessors 

"The Minerva Multi-Microprocessor", 
Lawrence c. Widdoes, Jr. Stanford University g •••••••••••••••••• 34 

"A Hierarchical, Restructurable Multi-Microprocessor Architecture", 
R. G. Arnold, Rice University, E. W. Page, Clemson University ••• •••••••• 40 

"A Multimicroprocessor Approach to Numerical Analysis: An Application to Gaming Problems", 
Robert McGill, John Steinhoff, Grumman Aerospace Corporation • • • • • • • • • • • • • • • • • • • ••.•• 46 

Performance Evaluation and Modeling 

"A Model of Interference in a Shared Resource Multiprocessor", 
John E. Jensen and Jean-Loup Baer, University of Washington •• •••••••••••••••••• 52 

"A Computer Simulation Facility for Packet Communication Architecture", 
C. Leung, D. Misunas, A, Neczwid, J. Dennis, Massachusetts Institute of Technology ............. 58 

"Cost, Performance and Size Tradeoffs for Different Levels in a Memory Hierarchy", 
S. L. Rege, Burroughs Corporation . • • ••••••••••••••••••••••• o ••••••• ,64 

Applications 

"An Input Interface for a Real-Time Digital Sound Generation System", 
Paul E. pworak, Alice C. Parker, C~rnegie-Mellon University ••••• • • • • t 

"A Microprocessor Oriented Data Acquisition and Control System for Power System Control", 

• •••••••• 68 

Michael C. Mulder, Patrick P. Fasang, Bonneville Power Administration ••••••••••••••••••• 74 

"Multiprogramming for Real-Time Applications", 
H. M. Gladney, G. Hochweller, IBM, San Jose ••••••.••••••••••••••••••••••• 79 

"Basil Architecture - An HLL Minicomputer", 
Theodore H. Kehl, University of Washington .••••••••••••••••••.•••••••••••• 86 

Hardware/Software System Considerations 

"FuP.ction Distribution in Computer System Architectures", 
Harold W. Lawson, Jr., Universidad Politechnica de Barcelona • • • • • • • • • • • • • •••••••••• 93 

"Interface, A Dispersed Architecture", 
Chris A. Vissers, Twente University of Technology, The Netherlands •• 0 •••••••• 0 •••••••• 98 

Resource Sharing and Process Coordination 

"A Design Study of a Shared Resource Computing System", 
A. Thomasian, A. Avizienis, University of California, Los Angeles •••••••••••••••••••• 105 

"Hardware Support for Inter-Process Communication and Processor Sharing", 
W. s. Ford, V. c. Hamacher, University of Toronto • , •••••••••••••••••••••••• 113 

iv 



Recent Results 

"A Taxonomy of Display Processors", 
Ulrich Trambacz, Georg Hyla, Technical University of Berlin ••• 

"Traversing Binary Tree Structures with Shift Register Memories", 

Page 

• 11 9 

W. E. Kluge, Gesellschaft fur Mathematik und Datenverarbeitung mbH Bonn •••••••••••••••• 12·~ 

"Architectural Support for System Protection", 
E. B. Fernandez, R. C. Summers, c. D. Coleman, IBM Los Angeles Scientific Center •••••••••••• 121 

"The Design of a User-Progranunable Digital Interface", 
James W. Gault, North Carolina State University, Alice c. Parker, Carnegie-Mellon University •••••• 121 

"Selection Schemes for Dynamically Microcoding Fortran Programs", 
Philip s. Liu, University of Miami, Frederic J. Mowle, Purdue University •••••••••••••••• 122 

"System Design of a Grammar-Progranunable High-Level Language Machine", 
Serge Fournier, Ming T. Liu, Ohio State University ••••••••••••••••••••••••••• 122 

"SMS 101 - A Structured Multimicroprocessor System with Deadlock-Free Operation Scheme", 
Ch. Kuznia, R. Kober, H. Kopp, SIEMENS AG, Munich •••••••••••••••••••••••• 122 

"The Design of a Multi-Micro-Computer System", 
~>. H. Fuller, D. P. Siewiorek, R. J. Swan, Carnegie-Mellon University ••••••••••••••••• 12~ 

Networks 

"Design and Simulation of the Distributed Loop Computer Network (DLCN)", 
Cecil C. Reames, Ming T. Liu, Ohio State University •••••••••••••••••••• 124 

HDistribution of Functions and Control in RPCNET", 
Paolo Franchi, IBM Scientific Center, Pisa •••• • • • • • • • • • • • • • • • • • • • • • • 130 

"Efficient Message Routing in Mega-Micro-Computer Networks", 
Larry D. Wittie, State University of New York at Buffalo •••••••••••••••••••••••• 136 

i\rchitectures to Support Software Concepts 

"An Investigation of Descriptor Oriented Architecture", 
Terry A. Welch, University of Texas at Austin ••••• 

u'Tagged Architecture and the Semantics of Progranuning Languages: 
E. A. Feustel, Rice University ••••••••••••••••• 

"Design Data for Algol-60 Machines", 

• • • • • • • • • 14 1 

Extensible Types", 
• • • • • • • • • • 147 

A. P. Batson, R. E. Brundage, J.P. Kearns, University of Virginia ••••••••••••••••••• 151 

Architectural Features for Performance Enhancement 

"Cache Memories for PDP-11 Family Computers", 
William D. Strecker, Digital Equipment Corporation • 

"Improving the Throughput of a Pipeline by Inse:i.·tion of Delays", 

• • • • • • • • • • •• 0 ••••••• 155 

Janak H. Patel, Edward s. Davidson, University of Illinois ••••••••••••••••••••••• 159 

"On-Line Architecture Tuning Using Microcapture", 
A. M. Abd-Alla, Laird H. Moffett, George Washington University and Naval Research Laboratory •••••• 165 

Secondary Storage 

"A Character-Orineted Context-Addressed Segment-Sequential Storage", 
Leonard D. Healy, U. s. Naval Training Equipment Center, Orlando •••••••••••••••••••• 172 

"Some Implementations of Segment Sequential Functions", 
J. A. Bush, G. J. Lipovski, s. Y. W. Su, J. K. Watson, s. J. Ackerman, University of Florida •••••• 178 

"A Self Managing Secondary Memory System", 
M. DeMartinis, Universidad de Carabobo, Venezuela, G. J. Lipovski, S. Y. W. Su, J. K. Watson, 
University of Florida • • • • • • • • • • • • • • • • • • • • • • • • • •••• lg) 

"Price/Performance Comparison of C.mmp and the PDP-10", 
Samuel H. Fuller, Carnegie-Mellon University. • • • • • • • • • • • • • • • • • • • • • • • • • • • • 195 

v 





ABSTRACT 

Gordon Bel~ William D. Strecker 
November 8, 1975 

COMPUTER STRUCTURES: 
WHAT HAVE WE LEARNED FROM THE PDP-11? 

Over the PDP-ll'S six year life 
about 20,000 specimens have been 
built based on 10 species (models). 
Although range was a design goal, 
it was unquantified; the actual 
range has exceeded expectations 
(500:1 in memory size and system 
pr ice). The range has stressed the 
basic mini(mal) computer 
architecture along all dimensions. 
The main PMS structure, i.e. the 
UNIBUS, has been adopted as a de 
facto standard of interconnection 
for many micro and minicomputer 
systems. The architectural 
experience gained in the design and 
use of the PDP-11 will be described 
in terms of its environment 
(initial goals and constraints, 
technology, and the organization 
that designs, builds and 
distributes the machine). 

1.0 INTRODUCTION 

Although one might think that 
computer architecture is the sole 
determinant of a machine, it is 
merely the focal point for a 
specification. A computer is a 
product of its total environment. 
Thus to fully understand the 
PDP-11, it is necessary to 
understand its environment. 

Figure Org. shows the various 
groups (factors) affecting a 
computer. The lines indicate the 
primary flow of information for 
product functional behavior and for 
product specifications. The 
physical flow of goods is nearly 
along the same lines, but more 
direct: starting with applied 
technology (e.g., semiconductor 
manufact.urers), going through 
computer manufacturing, and finally 
to the service personnel before 
being turned over to the final 
user. 

The relevant parts, as they affect 
the design are: 

1. The basic technology--it is 
important to understand the 
components that are available 
to build from, as they directly 
affect the resultant designs. 

2. The 
organization--what 
fundamental nature 
organization that 

development 
is the 
of the 

makes it 
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behave in a particular way? 
Where does it get inputs? How 
does it formulate and solve 
problems? 

3. The rest of the DEC 
organization--this includes 
applications groups associated 
with market groups, sales, 
service and manufacturing. 

4. The user, who receives the 
final output. 

Note, that if we assume that a 
product is done sequentially, and 
each stage has a gestation time of 
about two years, it takes roughly 
eight years for an idea from basic 
research to finally appear at the 
user's site. Other organizations 
also affect the design: 
competitors (they establish a 
design level and determine the 
product life); and government(s) 
and standards. 

There are an ever increasing number 
of groups who feel compelled to 
control all products bringing them 
all t:o a common norm: the 
government(s), testing groups such 
as Underwriters Laboratory, and the 
voluntary standards groups such as 
ANSI and CBEMA. Nearly all these 
groups affect the design in some 
way or another (e.g. by requiring 
time). 

2.0 BACKGROUND 

It is the nature of engineering 
projects to be goal oriented--the 
11 is no exception, with much 
pressure on deliverable products. 
Hence, it is difficult to plan for 
a long and extensive lifetime. 
Nevertheless, the 11 evolved more 
rapidly and over a wider range than 
we expected, placing unusual stress 
on even a carefully planned system. 
The 11 family has evolved under 
market and implementation group 
pressure to build new machines. In 
this way the planning has been 
asynchronous and diffuse, with 
distributed development. A 
decentralized organization provides 
checks and balances since it is not 
all under a single control point, 
often at the expense of 
compatibility. Usually, the 
hardware has been designed, and the 
software is modified to provide 
compatibility. 



Independent of the planning, the 
machine has been very successful in 
the marketplace, and with the 
systems programs written for it. 
In the paper (Bell et al, 1970) we 
are first concerned with market 
acceptance and use. Features 
carried to other designs are also a 
measure of how it contributes to 
computer structures and are of 
secondary importance. 

The PDP-11 has been successful in 
the marketplace with over 20,000 
computers in use (1970-1975). It 
is unclear how rigid a t2st (aside 
from the marketplace) we have given 
the design since a large and 
aggressive marketing and sales 
organization, coupled with software 
to cover architectural 
inconsistencies and omissions, can 
save almost any design. There was 
difficulty in teaching the machine 
to new users; this required a 
large sales effort. On the other 
hand, various machine and operating 
systems capabilities still are to 
be used. 

2.1 GOALS AND CONSTRAINTS - 1970 

'I'he paper (Eell et al~ 1970) 
described the design, beginning 
with weaknesses of minicomputers to 
remedy other goals and constraints. 
These will be described briefly in 
this section, to provide a 
framework, but most discussion of 
the individual aspects of the 
machine will be described later. 

Weakness l, that of limited address 
capability, was solved for its 
immediate future, but not with the 
finesse it might have been. 
Indeed, this has been a costly 
oversight in redundant development 
and sales. 

There ls only one mistake that can 
be made in a computer design that 
is difficult to recover from--not 
providing enough address bits for 
memory addressing and memory 
management. The PDP-11 followed 
the unbroken tradition of nearly 
every known computer. Of course, 
there is a fundamental rule of 
computer (and perhaps other) 
designs which helps to alleviate 
this problem: any well-designed 
machine can be evolved through at 
least one major change. It is 
extremely embarrassing that the 11 
had to be evolved with memory 
management only two years after the 
paper was written outlining the 
goal of providing increased address 
space. All predecessor DEC designs 
have suffered the same problem, and 
only the PDP-10 evolved over a ten 
year period before a change was 
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made to increase its address space. 
In retrospect, it is clear that 
since memory prices decline at 26% 
to 41% per year, and many users 
tend to buy constant dollar 
systems, then every two or three 
years another bit is required for 
the physical address space. 

Weakness 2 of not enough registers 
was solved by providing eight 
16-bit registers; subsequently six 
more 32-bit registers were added 
for floating point arithmetic. The 
number of registers has proven 
adequate. More registers would 
just increase the context switching 
time, and also perhaps the 
programming time by posing the 
allocation dilemma for a compiler 
or a programmer. 

Lack of stacks (weakness 3) has 
been solved, uniquely, with the 
auto-increment/auto-decrement 
addressing mechanism. Stacks are 
used extensively in some languages, 
and generally by most programs. 

Weakness 4, Limited interrupts and 
slow context switching has been 
generally solved by the 11 UNIBUS 
vectors which direct interrupts 
when a request occurs from a given 
I/O device. 

Byte hand 1 ing (weakness 5) was 
provided by direct byte addressing. 

head-only memory (weakness 6) can 
be used directly without special 
programming since all procedures 
tend to be pure (and reentrant) and 
can be programmed to be recursive 
(or multiply reentrant). Read-only 
memories are used extensively for 
bootstrap loaders, debugging 
programs, and now provide normal 
console functions (in program) 
using a standard terminal. 

Very elementary I/O processing 
(weakness 7) is partially provided 
by a better interrupt structure, 
but so far, I/O processors per se 
have not been implemented. 

heakness 8 suggested that we must 
have a family. Users would like to 
move about over a rang' of models. 

\ 

High programming costs (weakness 9) 
should be addressed because users 
program in machine language. Here 
we have no data to suggest 
improvement. A reasonable 
comparison would be programming 
costs on an 11 versus other 
machines. We built more complex 
systems (e.g., operating systems, 
computers) with the 11 than with 
simpler structures (e.g. PDP-8 or 
15). Also, some systems 
programming is done using higher 
level languages. 



Another constraint was the word 
length had to be in multiples of 
eight bits. While this has been 
expensive within DEC because of our 
investment in 12, 18 and 36 bit 
systems, the net effect has 
probably been worthwhile. The 
notion of word length is quite 
meaningless in machines like the 11 
and the IBM 360 because data-types 
are of varying lengths, and 
instructions tend to be in 
multiples of 16 bits. However, the 
addressing of memory for floating 
point is inconsistent. 

Structural flexibility (modularity) 
was an important goal. This 
succeeded beyond expectations, and 
is discussed extensively in the 
part on PMS, in particular the 
UNIBUS section. 

There was not an explicit goal of 
microprogrammed implementation. 
Since large read-only memories were 
not available at the time of the 
Model 20 implementation, 
microprogramming was not used. 
Unfortunately, all subsequent 
machines have been microprogrammed 
but with some additional difficulty 
and expense because the initial 
design had poorly allocated 
opcodes, but more important the 
condition codes behavior was over 
specified. 

Understandability was also stated 
to be a goal, that seems to have 
been missed. The initial handbook 
was terse and as such the machine 
was only saleable to those who 
really understood computers. It is 
not clear what the distribution of 
first users was, but probably all 
had previous computing experience. 
A large number of machines were 
sold to extremely knowledgeable 
users in the universities and 
laboratories. The second handbook 
came out in 1972 and helped the 
learning problem somewhat, but it 
is still not clear whether a user 
with no previous computer 
experience can determine how to use 
a machine from the information in 
the handbooks. Fortunately, two 
computer science textbooks 
(Eckhouse, 75; and Stone and 
Siewiorek, 75) have been written 
based on the 11 to assist in the 
learning problem. 

2.2 FEATURES THAT HAVE MIGRATED TO 
OTHER COMPUTERS AND OFFSPRINGS 

A suggested test (Bell et al 1970) 
was the features that have migrated 
into competitive designs. We have 
not fully permitted this test 
because some basic features are 
patented; hence, non-DEC designers 
are reluctant to use various ideas. 
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At least two organizations have 
made machines with- similar bus and 
ISP structures (use of address 
modes, behavior of registers as 
program counter and stack); and a 
third organization has offered a 
plug-replacement system for sale. 

The UNIBUS structure has been 
accepted by many designers as the 
PMS structure. This 
interconnection scheme is 
especially used in microprocessor 
designs. Also, as part of the 
UNIBUS design, the notion of 
mapping I/O data and/or control 
registers into the memory address 
space has been used often in the 
microprocessor designs since it 
eliminates instructions in the ISP 
and requires no extra control to 
the I/O section. 

Finally, we were concerned in 1970 
that there would be 
offsprings--clearly no problem; 
there have been about ten 
implementations. In fact, the 
family is large enough to suggest 
need of family planning. 

3.0 TECHNOLOGY 

The computers we build are strongly 
influenced by the basic electronic 
technology. In the case of 
computers, electronic information 
processing technology evolution has 
been used to mark the four 
generations. 

3.1 Effects Of 
Memory On The 
Designs 

Semiconductor 
PDP-11 Model 

The PDP-11 computer series design 
began in 1969 with the Model 20. 
Subsequently, 3 models were 
introduced as minimum cost, best 
cost/performance, and maximum 
performance machines. The memory 
technology in 1969 formed several 
constraints: 

l. Core memory for the primary 
(program) memory with an 
eventual trend toward 
semiconductor memory. 

2. A comparatively small number of 
high speed registers for 
processor state (i.e. general 
registers), with a trend toward 
larger, higher speed register 
files at lower cost. Note, 
only 16 word read-write 
memories were availableat 
design time. 

3. Unavailability of large, high 
speed read-only memories, 



permitting a microprogrammed 
approach to the design of the 
control part. Note, not for ca 
paper, read-only memory was 
unavailable although slow, 
read-only MOS was available for 
character generators. 

These constraints 
following design 
attitudes: 

established 
principles 

the 
and 

1. It should be asynchronous and 
capable of accepting various 
configurations of memories in 
size and speed. 

2. It should be expandable, to 
take advantage of an eventually 
larger number of registers for 
more data-types and improve 
context switching time. Also, 
more registers would permit 
eventually mapping memory to 
provide a virtual machine and 
protected multiprogramming. 

3. It could be relatively complex, 
so that an eventual microcode 
approach could be used to 
advantage. New data-types 
could be added to the 
instruction set to increase 
performance even though they 
added complexity. 

4. The UNIBUS width would be 
relatively wide, to get as much 
performance as possible, since 
LSI was not yet available to 
encode functions. 

3.2 Variations In PDP-11 Models 
Through Technology 

Semiconductor memory (read-only and 
read-write) were used to tradeoff 
cost performance across a 
reasonably wide range of models. 
Various techniques based on 
semiconductors are used in the 
tradeoff to provide the range. 
These include: 

1. Improve performance through 
brute force with faster 
memories. The 11/45 and 11/70 
uses bipolar and fast MOS 
memory. 

2. Microprogramming (see below) to 
improve performance through a 
more complex ISP (i.e., 
floating point). 

3. Multiple copies of processor 
state (context) to improve time 
to switch context among various 
running programs. 

4. Additional registers for 
additional data-types--1.e., 
floating point arithmetic. 
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5. Improve the reliability by 
isolating (protecting) one 
program from another. 

6. Improve performance by mapping 
multiple programs into the same 
physical memory, giving each 
program a virtual machine. 
Providing the last two points 
requires a significant increase 
in the number of registers 
(i.e. at least 64 word fast 
memory arrays). 

4.0 THE ORGANIZATION OF PEOPLE 

Three types of design are based 
both on the technology and the cost 
and performance considerations. 
The nature of this tradeoff is 
shown in Figure OS. Note, that one 
starts at 0 cost and performance, 
proceeds to add cost, to achieve a 
base (minimum level of 
functionality). At this point, 
certain minimum goals are met: for 
the computer, it ls simply that 
there is program counter, and the 
simplest arithmetic operations can 
be carried out. It is easy to show 
(based on the Turing machine) that 
only a few instructions are 
required, and from these, any 
program can be written. From this 
minimal point, performance 
increases very rapidly in a step 
fashion (to be described later) for 
quite sometime (due to fixed 
overhead of memories, cabinets, 
power, etc.) to a point of 
inflection where the cost-effective 
solution is found. At this point, 
performance continues to increase 
until another point where the 
performance is maximized. 
Increasing the size implies 
physical constraints are exceeded, 
and the machine becomes 
unbuildable, and the performance 
can go to 0. There is a general 
tendency of all designers to "n+l" 
(i.e., incrementally add to the 
design forever). No design is so 
complete, that a redesign can't 
improve it. 

The two usual problems of design 
are: inexperience and 
"second-syst.emitis". The first 
problem ls simply a resources 
problem. Are there people 
available? What are their 
backgrounds? Can a small group 
work effectively on architectural 
definitions? Perhaps most 
important is the principle, that no 
matter who is the architect, the 
design must be clearly understood 
by at least one person. 

Second-systemltis is the phenomenon 
of defining a system on the basis 
of past system history. 



Invariably, the system solves all 
past problems ... bordering on the 
unbuildable. 

4.1 PDP-11 Experi€nce 

Some of the PDP-11 architecture was 
initially carried out by at 
Carnegie-Mellon University (HM with 
GB). Two of the useful ideas: the 
UNIBUS, and the use of general 
registers in a substantially more 
general fashion (e.g. as stack 
pointers) came out of earlier work 
(GB) at CMU and was described in 
COMPUTER STRUCTURES (Bell and 
Newell, 1971). During the detailed 
design amelioration, 2 persons (HM, 
and RC) were responsible for the 
specification. 

Although the architectural activity 
of the 11/20 proceeded in parallel 
with the implementation, there was 
less interaction than in previous 
DEC designs where the first 
implementation and architecture 
were carried out by the same 
person. As a result, a slight 
penalty was paid to build 
subsequent designs, especially vis 
a vis microprogramming. 

As the various models began to be 
built outside the original 
PDP-11/20 group, nearly all 
architectural control (RC) 
disappeared, and the architecture 
was managed by more people, and 
design resided with no one person! 
A similar loss of control occurred 
in the design of the peripherals 
after the basic design. 

The first designs for 16-bit 
computers came from a group placed 
under the PDP-15 management (a 
marketing person, with engineering 
background). It was called PDP-X, 
and did include a range. As a 
range architecture, it was better 
thought out than the later PDP-11, 
but didn't have the innovative 
aspects. Unfortunately, this group 
was intimidating, and some members 
lacked credibility. The group also 
managed to convince management that 
the machine was potentially as 
complex as the PDP-10 (which it 
wasn't); since no one wanted 
another large computer disconnected 
from the main business, it was a 
sure suicide. The (marketing) 
management had little understanding 
of the machine. Since the people 
involved in the design were 
apparently simultaneously designing 
Data General, the PDP-X was not of 
foremost importance. 

As the PDP-X project folded and the 
DCM (for Desk Calculator Machine 
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for security) project started up, 
design and planning were in 
disarray, since Data General had 
been formed and was competing with 
the PDP-8 using a very small 16-bit 
computer. Although the Product 
Line Manager, a former engineer 
(NM) for the PDP-8, had the 
responsibility this time, the new 
project manager was a 
mathematician/programmer followed 
by another manager (RC) who had 
managed the PDP-8. Work proceeded 
for several months based on the DCM 
and with a design review at 
Carnegie-Mellon University in late 
1969. The DCM review took only a 
few minutes. Aside from a general 
dullness and a feeling that it was 
too 1 it t1 e too 1 ate to compete . It 
was difficult to program 
(especially by compilers). 
However, it's benchmark results 
were good. (We believe it had been 
tuned to the benchmarks, hence 
couldn't do other problems very 
well.) One of the designers (HM) 
brought along the kernel of an 
alternative, which turned out to be 
the PDP-11. We worked on the 
design all weekend, recommending a 
switch to the basic 11 design. 

At this point, there were reviews 
to ameliorate the design, and each 
suggestion, in effect, amounted to 
an n+l; the implementation was 
proceeding in parallel (JO) and 
since the logic design was 
conventional , it was difficult to 
tradeoff extensions. Also, the 
design was constrained with boards 
and ideas held over from the DCM. 
(The only safe way to design a 
range is simultaneously do both 
high and low end designs.) During 
the summer at DEC, we tried to free 
op code space, and increased 
(n+l 'E?d) the UNIBUS bandwidth (with 
an extra set of address lines), and 
outlined alternative models. 

The advent of large, read-only 
memories, made possible the various 
follow-on designs to the 11/20. 
Figure "Models" sketches the cost 
of various models versus time, with 
lines of consistent performance. 
This very clearly shows the design 
styles (ideologies). The 11/40 
design was started right after the 
11/20, although it was the last to 
come on the market (the low and 
high ends had higher priority to 
get into production as they 
ex tended the market) . Bo th the 
11/04 and 11/45 design groups went 
through extensive buy in processes, 
as they came into the 11 by first 
proposing alternative destgns. In 
the case of the 11/45, a larger, 
11-like 18-bit machine was proposed 
by thE~ 15 group; and later, the 
LINC engineering group proposed an 
alternative design which was subset 
compatible at the symbolic program 
level. As the groups considered 



the software ramifications, buy-in 
was rapid. Figure Models shows the 
minimum cost-oriented group has two 
successors providing lower cost 
(yet higher performance) and the 
same cost with the ability to have 
larger memories and perform better. 
Note, both of these came from a 
backup strategy to the LSI-11. 
These come from larger read-only 
memories, and increased 
understanding of how to implement 
the 11. 

The 11/70 is, of course, a natural 
follow on to extend the performance 
of the 11/45. 

5.0 PMS STRUCTURE 

In this section, we give an 
overview of the evolution of the 
PDP-11 in terms of its PMS 
structure, and compare it with 
expectations (Bell et al, 1970). 
The aspects include: the UNIBUS 
structure; UNIBUS performance; 
use for diagnostics; architectural 
control required; and 
multi-computer and multi-processor 
computer structures. 

5.1 The UNIBUS - The Center Of The 
PMS Structure 

In general, the UNIBUS has behaved 
beyond expectations, acting as a 
standard for intercommunication of 
peripherals. Several hundred types 
of memories and peripherals have 
been attached to it. It has been 
the principle PMS interconnection 
media of Mp-Pc and peripherals for 
systems in the range 3K dollars to 
lOOK dollars (1975). For larger 
systems supplem9ntary buses for 
Pc-Mp and Mp-Ms traffic have been 
added. For very small systems, 
like the LSI-11, a narrower bus 
(Q-bus) hes been designed. 

The UNIBUS by being a standard has 
provided us with a PMS architecture 
for easily configuring systems; 
any other organization can also 
build components which interface 
the bus ... clearly ideal for buyers. 
Good busses (standards) make good 
neighbors (in terms of 
engineering), since people can 
concentrate on design in a 
structured fashion. Indeed, the 
UNIBUS has created a complete 
secondary industry dealing in 
alternative sources of supply for 
memories and peripherals. Outside 
of the IBM 360 I/O 
Multiplexor/Selector bus, the 
UNIBUS is the most widely used 
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computer interconnection standard. 
Although it has been difficult to 
fully specify the UNIBUS such that 
one can be certain that a given 
system will work electrically and 
without missed data, specification 
is the key to the UNIBUS. The bus 
behavior specification is a yet 
unsolved problem in dealing with 
complexity--the best descriptions 
are based on behavior (i.e., timing 
diagrams). 

There are also problems with the 
design of the UNIBUS. Although 
parity was assigned as two of the 
bits on the bus (parity and parity 
is available), it has not been 
widely used. Memory parity was 
implemented directly in the memory, 
since checking required additional 
time. Memory and UNIBUS parity is 
a good example of nature of 
engineering optimization. The 
tradeoff is one of cost and 
decreased performance versus 
decreased service cost and more 
data integrity for the user. The 
engineer is usually measured on 
production cost goals, thus parity 
transmission and checking are 
clearly a capability to be omitted 
from design ... especially in view of 
lost performance. The internal 
Field Service organization has been 
unable to quantify the increase in 
service cost savings due to shorter 
MTTR by better fault isolation. 
Similarly, many of the transient 
errors which parity detects can be 
detected and corrected by software 
device drivers and backup 
procedures without parity. With 
lower cost for logic and increased 
responsibility (scope) to include 
warranty costs as part of the 
product design cost forces much 
more checking into the design. 

The interlocked nature of the 
transfers is such that there is a 
deadlock when two computers are 
joined together using the UNIBUS 
window. With the window a computer 
can map another computer's address 
space into its own address space in 
a true multiprocessor fashion. 
Deadlock occurs when the two 
computers simultaneously attempt to 
access the other's addresses 
through each window. A request to 
the window is in progress -on one 
UNIBUS, and at the same time a 
request to the other UNIBUS is in 
progress on the requestee's UNIBUS, 
hence neither request can be 
answered, causing a deadlock. One 
or both requests are aborted and 
the deadlock is broken by having 
the UNIBUS time out since this is 
equivalent to a non--existent 
address (e.g., a memory). In this 
way the system recovers and 
requests can be reissued (which may 
cause deadlock) . The UNIBUS window 
is confined to applications where 
there is likely to be a low 
deadlock rate. 



5.2 UNIBUS and ?erf ormance 
Optimality 

Although we always want more 
performance on one hand, there is 
an equal pressure to have lower 
cost. Since cost and peformance 
are almost totally correlated the 
two goals perfectly conflict. The 
UNIBUS has turned out to be optimum 
over a wide dynamic rahge of 
products, (argued below). However, 
at the lowest size system, the 
Q-bus has been introduced, which 
contains about 1/2 the number of 
conductors; and at the largest 
systems, the data path width for 
the processor and memory has been 
increased to 32-bits for added 
performar.ce although the UNIBUS is 
still used for communication with 
most I/O controllers. 

Since all interconnection schemes 
are highly constrained, it is clear 
that future lower and higher 
systems cannot be accomplished from 
a single design unless a very low 
cost, high performance 
communication media (e.g. optical) 
is found. 

The optimality of the UNIBUS comes 
about because memory size (number 
of address bits) and I/O traffic 
are correlated with the processor 
speed. Amdahl's rule-of-thumb for 
IBM computers (including the 360) 
is: one byte of memory is required 
per instruction/sec and one bit of 
I/O is required for each 
instruction executed. For our 
applications, we believe there is 
more computation required for each 
memory word, because of the bias 
toward control and scientific 
applications. Also, there has been 
less use of complex instructions 
typical of the IBM computers. 
Hence, we assume one byte of memory 
is required for each two 
instructions executed, and assume 
one byte of I/O is an upper bound 
(for real time applications) for 
each instruction executed. In the 
FDP-11, an average instruction 
accesses three to five bytes of 
memory, and with one byte of io, up 
to six bytes of memory are accessed 
for each instruction/sec. 
Therefore, a bus which can support 
two megabyte/sec traffic permits 
instruction execution rates of .33 
to .5 mega instruction/sec. This 
imputes to meory sizes of .16 to 
.25 megabytes; the maximum 
allowable memory is .3 to .256 
megabytes. By using a cache memory 
with a processor, the effective 
memory processor rate can be 
increased to further balance the 
processor. Alternatively, faster 
floating point operations will 
bring the balance to be more like 
the IBM data, requiring more 
memory. 
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5.3 Evolution Of Models: Predicted 
Versus Actual 

The original prediction (Bell et 
al, 1970) was that models with 
increased performance would evolve 
using: increased path width for 
data; multi-processors; and 
separated bus structures for 
control and data transfers to 
secondary and tertiary memory. 
Nearly all of these forms have been 
used, though not exactly as 
predicted. (Again, this points to 
lack of overall architectural 
planning versus our willingness and 
belief that the suggestions and 
plans for the evolution must come 
from the implementation groups.) 

In the earlier 11/45, a separate 
bus was added for direct access of 
either bipolar (300ns) or fast MOS 
(400ns) memory. In general, it was 
assumed that these memories would 
be small, and the user would move 
the important part of his algorithm 
to the fast memory for direct 
execution. The 11/45 provided a 
second UNIBUS for direct 
transmission of information to the 
fast memory without Pc 
interference. The 11/45 also 
increased performance by adding a 
second autonomous data operation 
unit called the Floating Point 
Processor (actually not a 
processor). In this way, both 
integer and floating point 
computation could proceed 
concurrently. 

The 11/70, a cache based processor, 
is a logical extension of using 
fast, local memories, but without 
need for expert movement of data. 
It has a memory path width of 
32-blts, and the control portion 
and data portion of I/O transfers 
have been separated as originally 
suggested. The performance 
limitation of the UNIBUS are 
removed, since the second Mp system 
permits data transfers of up to 
five megabytes/sec (2.5 times that 
of the UNIBUS). Note, that a 
peripheral memory map control is 
needed since Mp address space (two 
megabytes) exceeds the UNIBUS. In 
this way, direct memory access 
devices on the UNIBUS transfer data 
into a mapped portion of the larger 
address space. 

5.4 Multi-processor 
Structures 

Computer 

Although it is not surprising that 
multi-processors have not been used 
except on a highly specialized 
basis, it is depressing. In 
Computer Structures (Bell and 
Newell, 71) we carried out an 



analysis of the IBM 360, 
predicating a multi-processor 
design. The range of performance 
covered by the PDP-11 models is 
substantially worse than with the 
360, although the competitive 
environment of the two companies is 
substantially different. For the 
360, smaller models appear to 
perform worse than the technology 
would predict. The reasons why 
multiprocessors have not 
materialized may be: 

1. The basic nature of engineering 
is to be conservative. this is 
a classical deadlock situation: 
we cannot learn how to program 
multiprocessors until such 
systems exist; a system canot 
be built before prog~ams are 
ready. 

2. The market doesn't demand them. 
Another deadlock: how can the 
market demand them, since the 
market doesn't even know that 
such a structure could exist? 
IBM has not yet blessed the 
concept. 

3. We can always build a better 
single, special processor. 
This design philosophy stems 
from local optimization of the 
designed object, and ignores 
global costs of spares, 
training, reliability and the 
ability of the user to 
dynamically adjust a 
configuration to his load. 

4. There are more available 
designs for new processors than 
we can build already. 

5. Planning and technology are 
asynchronous. Within DEC, not 
all products are planned and 
built at a particular time, 
hence, it is difficult to get 
the one right time when a 
multiprocessor would be better 
than an existing Uniprocessor 
together with one or two 
additional new processors. 

6. Incremental market demands 
require specific new machines. 
By having more products, a 
company can better track 
competitors by specific 
uniprocessors. 

5.4.l Existent Multiprocessors -

Figure MP gives some of the 
multiprocessor systems that have 
been built on the 11 base. The top 
most structure has been built using 
11/05 processors, but because of 
improper arbitration in the 
processor, the performance expected 
based on memory contention didn't 
materialize. We would expect the 
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following results for 
11/05 processors sharing 
UNIBUS: 

multiple 
a single 

Pc. Pc. PRICE/ SYS Price/ 
#Pc Mp PERF PRICE PERF* Price PERF** 
1 .6 1 1 1 3 1 
2 1.15 1.85 1.23 .66 3.23 .58 
3 1.42 2.4 1.47 .61 3.47 .48 
40 2.25 1.35 .6 3.35 .49 

*Pc cost only 
** Total system, assuming 1/3 of system is 
Pc.cost 

From these results we would expect 
to use up to three processors, to 
give the performance of a model 40. 
More processors, while increasing 
the performance, are less 
cost-effective. This basic 
structure has been applied on a 
production basis in the GT4X series 
of graphics processors. In this 
scheme, a second P.display is added 
to the UNIBUS for display picture 
maintenance. 

The second type of structure given 
in Figure MP is a conventional 
multiprocessor using multiple port 
memories. A number of these 
systems have been installed and 
operate quite effectively, however, 
they have only been used for 
specialized applications. 

The most extensive multiprocessor 
structure, C.mmp, has been 
described elsewhere. Hopefully, 
convincing arguments will be 
forthcoming about the effectiveness 
of multiprocessors from this work 
in order to establish these 
structures on an applied basis. 

6.0 THE ISP 

Determining an ISP is a design 
problem. The initial 11 design was 
based substantially on benchmarks, 
and as previously indicated this 
approach yielded a predecessor (not 
built) that though performing best 
on the six benchmarks, was 
difficult to program for other 
applications. 

6.1 General ISP Design Problems 

The guid~ng principles for 
design in general, have 
especially difficult because: 

ISP 
been 

1. The range of machines argues 
for different encoding over the 
range. At the smallest 
systems, a byte-oriented 
approach with small addresses 



is optimum, whereas larger 
implementations require more 
operations, larger addresses 
and encoding efficiency can be 
traded off to gain performance. 

The 11 has turned out to be 
applied (and hopefully 
effective) over a range of 500 
in system price ($500 to 
$250,000) and memory size (8k 
bytes to 4 megabytes) . The 360 
by comparison varied over a 
similar range: from 4k bytes 
to 4 megabytes. 

2. At a given time, a certain 
style of machine ISP is used 
because of the rapidly varying 
technology. For example, three 
address machines were initially 
used to minimize processor 
state (at the expense of 
encoding efficiency), and stack 
machines have never been used 
extensively due to memory 
access time and control 
complexity. In fact, we can 
observe that machines have 
evolved over time to include 
virtually all important 
operations on useful 
data-types. 

3. The machine use varies over 
time. In the case of DEC, the 
initial users were 
sophisticated and could utilize 
the power at the machine 
language level. The 11 
provided more fully general 
registers and was unique in the 
minicomputer marketplace, which 
at the time consisted largely 
of 1 or 2 accumulator machines 
with 0 or 1 index registers. 
Also, the typical minicomputer 
operation codes were small. 
the 11 extended data-typing to 
the byte and to reals. by the 
extension of the auto-indexing 
mode, the string was 
conveniently programmed, and 
the same mechanism provided for 
stack data-structures. 

4. The machine is applied into 
widely different markets. 
Initially the 11 was used at 
the machine language level. 
The user base broadened by 
applications with substantially 
higher level languages. These 
languages initially were the 
scientific based register 
transfer languages such as 
BASIC, FORTRAN, DEC'S FOCAL, 
but the machine eventually 
began to be applied in the 
commercial marketplace for the 
RPG, COBOL, DIBOL, and 
BASIC-PLUS languages which 
provided string and decimal 
data-types. 

5. The criteria for a capability 
in an instruction set is highly 

9 

variable, and borders on the 
artistic. Ideal goals are thus 
to have a complete set of 
operations for a given basic 
data-type (e.g. 
integers)--completeness, and 
operations would be the same 
for varying length 
data-types--orthogonality. 
Selection of the data-types is 
totally a function of the 
application. That is, the 11 
considers both bytes and full 
words to be integers, yet 
doesn't have a full set of 
operations for the byte; nor 
are the byte and word ops the 
same. By adhering to this 
principle, the compiler and 
human code generators are 
greatly aided. 

We would therefore ask that the 
machine appear elegant, where 
elegance is a combined quality 
of instruction formats relating 
to mnemonic significance, 
operator/data-type completeness 
and orthogonality, and 
addressing consistency. By 
having completely general 
facilities (e.g., registers) 
and which are not context 
dependent assists in minimizing 
the number of instruction 
types, and greatly aids in 
increasing the 
understandability (and 
usefulness). 

6. Techniques for generating code 
by the human and compiler vary 
widely. With the 11, more 
addressing modes are provided 
than any other computer. The 8 
modes for source and 
destination with dyadic 
operators provide what amounts 
to 64 possible instructions; 
and by associating the Program 
Counter and Stack Pointer 
registers with the modes, even 
more data accessing methods are 
provided. For example, 18 
forms of the MOVE instruction 
can be seen (Bell et al, 1971) 
as the machine is used as a 
two-address, general registers 
and stack machine program 
forms. (The price for this 
generality is extra bits). In 
general, the machine has been 
used mostly as a general 
register machine. 

7. Basic design can take the very 
general form or be highly 
specific, and design decisions 
can be bound in some 
combination of microcode or 
macrocode with no good criteria 
for tradeoff. 



6.2 Problems In Extending 
Machine Range 

The 

Several problems have arisen as the 
basic machine has been extended: 

1. The operation-code extension 
problem--the initial design did 
not leave enouqh free opcode 
space for extending the machine 
to increase the data-types. 

At the time the 11/45 was 
designed (FPP was added), 
several extension schemes were 
examined: an escape mode to 
add the floating point 
operations; bringing the 11 
back to a more conventional 
general register machine by 
reducing the modes and finally, 
typing the data by adding a 
global mode which could be 
switched to select floating 
point (instead of byte 
operations). 

2. Extending the addressing 
range--the UNIBUS limits the 
physical memory to 262,144 
bytes ( 18-bi ts) . In the 
implementation of the 11/70, 
the physical address was 
extended to 4 megabytes by 
providing a UNIBUS map so that 
devices in a 262K UNIBUS space 
could transfer into the 4 
megabyte space by mapping 
registers. 

While the physical address 
limits are acceptable for both 
the UNIBUS and larger systems, 
the address for a single 
program is still confined to an 
instantaneous space of 16 bits, 
the user virtual address. 

The main method of dealing with 
relatively small addresses is 
via process-oriented operating 
systems that handle large 
numbers of smaller tasks. This 
is a trend in operating 
systems, especially for process 
control and transaction 
processing. It also enforces a 
structuring discipline in the 
(user) program organization. 
The RSX series operating 
systems are organized this way, 
and the need for large 
addresses except for problems 
where large arrays are accessed 
is minimized. 

The initial memory management 
proposal to extend the virtual 
memory was predicated on 
dynamic, rather than static 
assignment of memory segment 
registers. In the current 
memory management scheme, the 
address registers are usually 
considered to be static for a 
task (although some operating 
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systems provide functions to 
get additional segments). 

7.0 SUMMARY 

This paper has re-examined the 
PDP-11 and compared it with the 
initial goals and constraints. With 
hindsight, we now clearly see what 
the problems with the initial design 
were. Design faults occurred not 
through ignorance, but because the 
design was started too late. As we 
continue to evolve and improve the 
PDP-11 over the next five years, it 
will indeed be interesting to 
observe, however, the ultimate test 
is use. 
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A PMS LEVEL LANGU~GE FOR PERFORMANCE EVALUATION 
MODELLING (V-PMS) 

Helmut Kerner, Werner Beyerle 
Institut fuer Digitale Anlagen 
Technical University, Vienna 

Summary 

A comparison of Register Transfer level model
ling and V-PMS is quite indicative. While RT-modelling 
approaches a restricted goal, viz.a hardware structure 
capable of performing a few hundred algorithms, a V-PMS 
level model has a complete computer system as its tar
get, i.e. a composite of hardware structures of the RT
level complexity cooperating under the control of an op
erating system in the execution of a load. 

In order to construct a language suitable for 
describing the hardware as part of a total PMS-level 
model for performance evaluation, the original form of 
PMS was substantially changed by providing an expanded 
set of building blocks with corresponding definitions. 
This language, with its clearly defined functions and 
performance data, its unambiguous communication blocks 
and rules for interconnections, provides a human reader 
with a clear understanding of the performance of compo·
nents and of their internal communication within the 
computer system, and links the hardware part to a model 
of an operating system (to be supplied at a later time) . 
For computer readable system specification a syntax for 
connecting the above symbolic components is proposed. 
A description of the CDC Cyber 74/CDC 6600 system exam
plifies the use of the proposed language and its merits 
for building performance evaluation models. 

1. Introduction 

The bulk of papers on Computer Descriptive 
Languagesl treats the design of digital systems on the 
Register Transfer level of detail. Some provide macro
facili ties within an RT-level description language as 
an upward extension of their language into the PMS re
gion4. Others regard the formal descriptive facilities 
of their language as universally suited for any level 
envisioned.5 Only few regard PMS as a second auto
nomous level of abstraction necessary to satisfy the 
needs for documentation of a complete computer system 
in unambiguous, concise and standardised form and for a 
well structured data base of technology and configura
tion data, both oriented toward man in his role as a 
designer or analyser of a system for a given purpose2,3. 
PMS in its present state is directed toward this impor
tant goal. Performance evaluation of computer systems 
is another, different purpose to be supported by com
puter system descriptions on the PMS level. A model of 
performance evaluation consists of three parts (Fig. 1). 

Hardware Part Operating Part 

~
~------··---ocessor, 

mory, 
witches, 
apology, I . 

'-4------< 
1 
Performance I L. 

L------·---- .J -

Operating 
System 

Control 1

1 Structur~ 

Fig. l PMS-level Model 

Load Part 

Program 
Structure 

(1) A model of the Hardware Part, describing the be
havior (functions, responses, performance) of the hard
ware components, but not their internal construction 
(registers, instruction set, etc.). 

A topological description of their interconnec
tions is a necessary part of this model. 
(2) An Operating Part, consisting of the operating sy
stem software, and the hardware (control structure) 
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used for its execution (which may be part of the general 
hardware complex) . 
(3) A. Load Part, i.e. the model of user programs. 

This paper presents a language constructed for 
the description of the Hardware Part of an Evaluation 
Model and of the interfaces to the Operating Part. In 
its computer readable form it should be suitable as an 
input to a performance evaluation model (or simulator) 
by which its Hardware Part will be specified. 

Obviously PMS seems to be a candidate for a 
hardware modelling language, provided it is redesigned 
from a man-understandable short notation into a machine 
readable language. More precisely, the following re
quirements must be met for performance evaluation: 
(1) The sysmbolic components of the hardware system, 
(P,M,S,L~ must be defined by a standard set of well de
fined performance parameters. 
(2) Explicit and unambiguous rules must exist specify
ing the information transfers permissible between com
ponents. These must be formally stated. 
(3) All detail not pertinent to performance evaluation 
(such as the number of internal registers, of subproces
sors within a CPU, technology data, etc.) should not 
be part of the symbolic component definitions. Many 
important performance parameters must be introduced on 
a higher level (e.g. kernel times in lieu of instruction 
sets or times). Others must be added (e.g. concurrency 
within switches, etc.). 
(4) Interfaces to the Operating Part (function selec
tion, responses, etc.) are to be added. 
These reqirements imply such deviations from the PMS 
notation that we decided to coin a new (but similar) a
cronym for the proposed language, namely "V-PMS" (Vien
nese-PMS) in order to avoid confusion with the original 
PMS notation, which is similar but not a subset of 
V-PMS. 

2. V-PMS Language Definitions 

Hardware structures can be defined using four 
categories of V-PMS symbolic components: Processors, 
Memories, Internal Communication Components, and Peri
pherals. Each component is defined in the format: 
<component symbol> (<attribute symbol>,.(attribute 

value>, ..... ) 
(<Action order name>, ..• <response 
name>, ... ) 

The interface signals to the Operating Part (second 
parenthesis) will be omitted in graphical representa
tions. Semantic definitions of components, performance 
attributes, action orders and responses are presented 
in list form and verbally explained. 
2.1 Processors P 

2.1.1 Central Processor Pc (T,Tki'W) (Ki,Mp,D, 
Ms,Md,B,R) 

Selected kernel func
tions from Operating 
Part 
Program locations 
Data magnitude 
Source locations 
Destination locations 
Busy with Ki 
Ready 



Performance Attributes Symbol Unit 

Cycle time T ps 
Word Width w bit 
Kernel time i Tki s 

A CPU ("Pc") could e.g. be defined by its instruction 
set. In staying with the purpose of the language, we 
chose, however, to characterise its performance by the 
time required to execute a set of kernels K1······Ki, 
representing typical tasks such as matrix inversion, 
sorting, etc. Each one of these kernels is associated 
with a basic execution time per unit of data (e.g. sor
ting in memory of a block of n records of fixed struc~ 
ture). The "action-order" specifies the kernel type Ki, 
the memory block Mp holding the program, the number of 
records D, as well as the memory blocks M5 and Ma con
taining the source data.and the result data, respecti
vely. The basic execution time is modified depending 
on the type of memory and buffers used for data and pro
gram. 

2 .1. 2 I/0--Processor P; /o (same as Pc) (similar 
to Pc) An I/O Processor "Pi/o" differs from the gene
ral purpose processor "Pc" only with regard to the "ker
nel" functions and the program location. Its kernels 
are a few distinct I/O programs controlling the transfer 
of data from a class of devices such as discs, tapes, or 
other low speed devices via controllers; its program is 
assumed to be located in the Pi/o· These processors are 
often called "channels". The action-order to an I/O 
processor will select an I/O kernel and identify an at
tached controller and peripheral. 

2.1.3 Controller K (U,B) (B,R) 

Performance Attributes Symbol Unit 

Usage U 
(Blockmultiplexer blx, Bytemultiplexer byx, 
Selector controller sel) 

Blocksize B words 
(if blx was specified) 

Controllers are trivial processors needed only for the 
activation of various peripheral functions. Their at
tributes comprise their usage time and the blocksize to 
be transmitted by one request on their action order line. 
They don't have any performance parameters of their own, 
because their operation is determined by the peripherals 
attached to the controllers. 

On this level of detail the Operating Part is 
forced to provide a very detailed model containing a 
full sequence of action orders and responses. Their is 
also an alternative, global description of the I/O Pro
cessor with kernel functions implicitely defined by the 
file structure definitions contained in the Workload Mo
del. 
2.2 Memories M 

2.2.1 Central Memory Mp (T,W,C,I) 

Performance Attributes 

Access Time 
Word Width 
Capacity 
Interleaving 

Symbol 

T 

w 
c 
I 

2.2.2 Secondary Memory Ms (T,W,C) 

Performance Attributes 

Access Time 
Word Width 
Capacity 

Symbol 

T 

w 
c 

Unit 

ps 
bit 
words 

Unit 

ps 
bit 
words 

Memories are devices which are random-adressable on a 
word or multiple-word basis with location-independent 
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access times. Their block representation contains the 
attributes: The capacity referring to each unit depic-· 
ted,and the attribute "I" for interleaving, stating how 
many such units can be accessed simultaneously within 
one memory cycle. An interleaving factor of I = n makE~s 

therefore a group of n memories appear maximally n times 
faster than each individual memory unit. Since it is 
intended to characterize only the performance of a sys·· 
tern and not its detailed structure, no differentiation 
is made between different means of access such as paral
l@:L lines, synchronous or asynchronous time multiple
xing of a single line, etc. 

2.2.3 Buffer B (Tt0 t, Tpart• Wtot• Wpartl 

Performance Atributes 

Access Time for complete word 
Access Time for partial word 
Word Width of complete word 
Word Width of partial word 

Symbol 

Ttot 
Tpart 
Wtot 
Wpart 

Unit 

p.s 
p.s 
bit 
bit 

Buffer memories are defined as small memories capable of 
performing a format transformation of their content such 
as a serial/parallel conversion, FIFO or FILO (stack) 
organisation, etc. 
2.3 Intercommnnication Elements IC 
------2.3.1 Switches S Cr,P,CC,E) 

Number of incoming lines 
Number of exiting lines 
Path-concurrency 
Priority model (if necessary) 

I 

E 

cc 
p 

There are two types of switches, one of them connects 
two groups of components by a one-to-one cornrnpondence 
(Fig. 2). The parameters I and E give the number of 
components in each of the groups, while CC states the 
number of concurrent paths through the switch. For this 
type of switch the relationship CC~ min (I,E) holds 
true. The path in the switch assumes the "usage" para
meter of the two connected lines. The general case of 
this switch S (I,CC,E) is the crossbar switch. The 
switch with a path concurrency CC= 1 is known as "bus". 
A further special case is a multiplexer or a demulti
plexer, i.e. a switch with only one incoming or out
going line (I = 1 or E = 1) respectively. In order to 
simplify the graphical representation of a system, mul
tiplexers and demultiplexers can be omitted. Should 
there be a possibility for conflict situations to arise 
(e.g. "I" incoming lines competing for a smaller number 
"CC" of internal connections) , a· standard form of con·· 
flict resolution uses a "first come first serve" switch 
discipline. Otherwise the form of priority will bE~ ex
plicitely stated. The most common priority1 which pro-
vi.des service in the numerical order of the connection 
label,will be symbolized by the p-value P = n. 

-----+ 1-----··-

S (I3 ,CC2 ,E4) 

Fig. 2 Switch Schematic 

The second type of switch is similar to a multi
plexer, however, with the difference that it can simul
taneously transmit from one input line into several 
(viz.CC) of the E outputlines. 



The relationship CC~min (i,E) is true only in the di
rection from several outputlines (E>1) to a single in
putline, i.e. CC = 1 in this direction. In the other 
direction the relationship 1<cc~E is true. Fig. 3 
shows a diagram explaining the corresponding symbol. 

s (I 1 I cc 5 I E 7) 

Fig. 3 Direction Dependant Switch, 
Information Replicating 

2.3.2 Links L (R,W,CC,U) 

Performance Attributes Symbol 

Transmission Rate 
Word Width 
Concurrency 
(default value cc:1 

R 

w 
cc 

Usage u 

Unit 

words/s 
bit 

Simplex s, halfduplex h; default value h) 

For graphical representation the symbol L can be 
replaced by a line with the attributes written 
above the line. The following two representations 
are equivalent: 

L (Rlo4, Wl2, CC2, Ud) 2d, 104 x 12 I 
I 

A Link "L" indicates primarily which components are con
nected, i.e. it is normally assumed that the perfor
mance of the line is equal or better than that required 
by the adjoining components. Performance parameters 
(as listed)will only be shown if this assumption is not 
true and the line constrains the performance of the sys
tem. In graphical form the attributes can be stated 
above a line as shown above. The concurrency parameter 
CC states the number of physical lines of a given word 
width, rate and usage,which can be simultaneously used. 
For any other means of communication (such as time mul
tiplexing) the transmission performance will be expres
sed by an equivalent number of physical lines. The de
fault value of CC means a single line (CC = 1). The 
usage of the line is defined as halfduplex or simplex 
by the corresponding symbols shown above. In order to 
keep the determination of line concurrencies simple, 
duplex lines are prohibited and will be replaced by a 
pair of simplex lines. A missing usage parameter in
dicates halfduplex (h) . 
2.4 Peripherals T ( ..... ) (B,R) 

(every peripheral is able to give a ready and a 
busy signal) 

Performance Attributes Symbol Unit 

Console co -----
Teletype TTY 
CRT- Terminal CRT 

Lineprinter LP 

Card Reader CR 

Card Punch CP 

Paper Tape 

Reader PTR 
Paper Tape 

Transmission Rate R 
Transmission Rate R 
Capacity C 
Drawing Speed V 
(for graphic Terminals 
Print Rate R 
Line Width W 

Rate 
Card Width 
Rate 
Card Width 
Rate 

Tracks 
Rate 

R 

w 
R 

w 
R 

s 
R 

characters/s 
characters/s 
character 

cm/s 
only) 

lines/min 
characters/ 

line 
cards/min 

columns/card 
cards/min 

columns/card 
characters/ 

min 

characters/min 
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Punch PTP 
Magnetic Ta Ee MT 

Rotating Mass 
Storage RMS 

Tracks s 
Transmission Rate R characters/s 
Tracks s 
Density D characters/cm 
Transmission Rate R characters/s 
Capacity c characters 
Number of Cylinders NZ 
Access Time T ms 
(one track/average/all tracks) 
Rotational Time TR ms 
Positioning POS 
(default value or 0 means "none", 
else POS1) 

The definitions of peripheral devices and their attri
butes are self-explanatory. 

The Structure Part of the V-PMS Part is complete
ly defined by its links and switches, whether explici
tely or implicitely defined. A further simplification 
of the system description can be achieved by a short 
hand notation in form of a bracket symbol for replica
tion. Any components, with the exception of links and 
switches, as well as any substructure composed of such 
legal components can be iterated. The following con
vention must be obeyed for the sake of clarity: swit
ches within a replicated substructure must not be omit
ted even if such would normally be permitted (as we 
stated for multiplexers and demultiplexers). The num
ber of replications is indicated by the number pre
ceeding the bracket. The actual system can be distin
guished from maximally allowed configuration by setting 
the number of replications for the latter in parenthe
sis (Fig. 4). Of course, the graphical repetition of 
components is a second form of replication. A distinc·
tion between the actual system and the maximal con
figuration is made by connecting the actual components 
with full lines and the additionally allowed components 
with dashed lines. 

Fig. 4 Component Replication 

3. Application 
Descri2tion of the CDC Cyber 74/CDC 6600 

In order to demonstrate the features of the 
proposed V-.Pr"1S language and to evaluate its merits we 
present a description of the Cyber 74 (CDC 6600) system 
as an example: 

A discussion of a few selected details of the 
system diagram (Fig. 5) may underscore these general 
remarks. At first we concentrate on the area labeled 
"A" in Fig. 5. According to the definitions,we recog
nize in the brackets a memory-switch combination. Each 
memory (with a 1 ps cycle time and 4 K words of 12 bit 
width) is connected to a switch capable of transmitting 
one word (12 bits) at a time (CC = 1) to one of ten 
output lines. This combination is ten times replicated. 
A group of 10 lines, one from each M-S combination, 
reaches the I/O processor "Pi/0 ". In the same way, 
another group of 10 output lines, indicated as simplex 
lines, connects through a switch to a group of 5 buf
fers. We recognize a similar group of 10 input lines 
reaching the M-S combination. Seventy halfduplex lines 
connect each of the 10 Mp's to each of seven controllers 
of peripheral equipment. The representation in V-PMS 
enables the observer (human or machine) to recognize 
the maximal possible information flow between the 10 
(peripheral) memories and the connected devices. The 
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Fig. 5 Cyber 74 Diagram, Revised & Expanded PMS Language 

original PMS representation does not reveal these for 
perfo.rmance evaluation important facts. 

The same configuration can be represented in a 
slightly different fashion (Fig. 6). Here each memory 
is connected to one I/O processor within the bracket. 

10 B 

[

Mp(TJ.,Hl2,C4K) El~ 
10(20) I 'L_SCILCCLE9) >_, - B 

P1; 0 <Tl,\H2) 
- . ...__K 

70 

Fig. 6 Peripheral Memory - Processor Complex, 
Version II 

Compared to Detail A, we indicate 10 I/O processors in 
lieu of one, howeve~ with a ten times slower cycle time 
(and kernel times) . This second representation shows 
another feature of the machine, namely the fact that 
each I/O program i.s restricted to 4 K of memory, while 
according to Detai.l A, I/O programs could exceed 4 K. 
With respect to performance the two representations are 
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equivalent. The second Detail "B" of Fig. 5 shows the 
path between the previously discussed peripheral me
mories 10 [Mp] of 12 bit word width and the central me
mory 12 ( 14) (Mp,j with 60 bit words. The function and 
performance of the component group in the path can im
mediately be read from the V-PMS representation: five 
peripheral memories can simultaneously transmit via 5 
simplex lines into a group of 5 buffers. Each one of 
these 5 buffers transforms 5 twelve bit words into one 
60 bit word within 5 ps. A second block of 5 buffers 
disassembles 60 bit words into 12 bit words. Five as
semblies and five disassemblies may maximally occur 
simultaneously. 

A glance over the total system (Fig. 5) allows 
assessing the merits of the proposed PMS-level language. 
Despite the host of detail supplied in the graph, the 
general architectural features are immediately visible, 
yet the graph supplies all the information pertinent 
for performance evaluation, which is missing in the 
original PMS representation. 



Appendix: Syntactical Def~nition 

<configuration>: :~<CA>{< continuation >} 
<CA> : :=<CB> I integer (integer) [<content> J 
<CB> ::=<P>l<M>I <T> 
<content> ::=<CB>{ <continuation A>} 
<P> : :=< P >l<P. 1 > l<K> 
<M> ::=<Mc> <Ml>Ol<B> 
<T> : :=< T~Y> l<CRT>I <LP> l<CR> l<CP> l<PTR> l<PTP>I 

<MT >j<RMS>I <Co> 
<continuation A> ::=<connection A >!<parallel> <CD> 

{<continuation A>} I< parallel> 
<parallel> <CD> {<continuation A>} 

<CD>::= <CB> l<S> 
<connection A> . . <L> <CD> 
<continuation> ::= <connection>l<parallel>< C>{<conti

nuation>} I 
<parallel>< parallel>< C>{ < conti

<C> ::=<CB> l<integer(integer) 
<connection> ::=< L>< C> 

nuation>} 
[~content~] I <S> 

.......... 
<parallel> ::=<.J:_> 

Semantic Definition: The meta language symbol 
means continuation through parallel pathes. 
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A DESIGN TOOL FOR THE MULTIL.LiVEL DESCRIPTION 

Ai\TD SIMULATION OF SYSTEMS OF INTERCONNECTElJ MODULES 

M. MOALLA - G. SAUCIER - J. SIFAKIS - M. ZACHARIADES 

ENSIMAG - B.P. 53 - 38041 GRENOBLE-FRANCE 

ABSTRACT : We suggest a rrethodology and a language to 
pennit the study of a system's behavior (functional va
lidation, evaluation of global perforrrances, critical 
situations). Every system is regarded as an interconnec
tion of corrmunicating m:x:lules functionning in a synchro
nous or asynchronous manner. The control section and the 
data section of each m:x:lule are described separetely in 
terms of respectively non-procedural and procedural sub
languages. 
Key words : Data and Control Section of a system, Petri 
nets, procedural and non-procedural languages, Register 
Transfer Languages, High Level Languages. 

INTRODUCTION 

The object of this work is the elal:x:>ration of a design 
tool for complex systems regarded as the interconnec
tion of corrmunicating m:x:lules functioning in a synchro
nous or asynchronous manner. M:xlules are functional 
subsets performing particular functions for the whole 
system such as merrory uni ts, processors, channels, peri
pheral devices, etc ..• 
This tool Im.1st pennit, given a high level initial des
cription (architectural definition) , the study of the 
system's behavior, of its perforrrances and the detection 
of critical situations such as conflicts, deadlocks and 
thrashing. 
In part I, we give the characteristics which a tool 
responding to those objectives Im.lSt possess. In parti
cular, the necessity of two distinct types of descrip
tions appears for the control and data sections of a 
m:xlule . .!Ybreover, in order to permit perforrrance eva
luation, time has been introduced as well as the pos
sibility to create systems by interconnecting standard 
predefined m:x:lules. 
In part II, a rough description of the language is given. 
Part III gives an example illustrating the application 
of the language to the description of interleaved merrory 
banks with Imlltiple entry points and two domains of ap
plication actually under study. 

PART I 

CCMPUTER HARDWARE DESIGN LANGUAGES : A CRITICAL RbVIEW 

I.1. Description Levels of a System: We can generally 
distinguish 3 description levels for a system [l] : 

- behavioral description in which properties of the 
system are specified in terms of the input/out:pJ.t 
relations. These descriptions are closer to conventional 
programs and they are not in the scope of this study. 

- functional description in which the system is descri
bed as an algorithm in terms of its merrory elerrents 
(variables) • Operators used in the descriptic:n may not be 
hardware primitives. 

- structural description represents the system in terms 
of its hardware comp::>nents, and requires a complete 
knowledge of logic.design. 

I.2. System decomposition : Given a system described by 
an algorithm, one can easily decoffi!:.Dse it into two sec
tions (sub-systems) connected as in fiqure 1. [2]. 
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Data Inputs Control Inputs 

Actions 

D.S C.S 

Test values 

Data Outputs Control Outputs 

Fig .1. 

- The Data Section (D.S) contains the set of a data re
gisters and operators which are used either to calculate 
test values on the data or to transform them. 

- The Control Section (C.S) ensures the sequencing of 
the operations to be executed in the D.S. It m::i.y be re-
presented as an automaton receiving arrong its inputs 
test values depending on the D.S state. To each state 
of the C.S is associated a set of actions executable 
simlltaneously (compatible) in the D.S. Setting the c.s 
at a state is interpreted by the D.S as the order to 
execute the actions associated to this state. 'The c.s 
goes from a state s to a state s' when the o.s has ac
complished the execution of the actions associated with 
s and if the condition corresponding to the transition 
ss' is verified. 

I .3. Computer Hardware Design Language With Respect to 

the Description Levels 

It the case of a structural description of a system, tl1e 
language Im.1st permit the description of the dialog bet-
ween the two sections of the hardwired system. This is 
generally done in the following way : to every statE~ of 
the C.S is associated a label of the program. This label 
names a set of instructions describing elerrentary actiors 
and/or conditional actions. The S.;l,ernentary actions are 
those corresponding to the state ref erred to by the label. 
Conditional actions determine the successor state in the 
C.S. Such a description is facilitated by the use of non
procedural languages such as CASSANDRE [3] DDL [ 4] CDL [5 ]. 
Languages of this type are very convenient for the des-
cription of control structures. 
In the case of a functional description, one can ignore 
how data transformations are perforrred and be interE~sted 
only in the values of certain merrory elerrents at precise 
instants. Thus, we can associate to the states of tl1e 
C.S not only simple actions but procedures, as long as 
the evolution of the C.S does not depend on the values 
of the internal variables during the execution of tl1e 
procedure. This approach permits a rrore global descrip
tion of the system's behavior since it avoids non signi
~icant details of the c.s. 
Arrong Computer Hardware Design Languages (CHOL), those 
often called procedural [ 1] are rrore adequate for dE:!s
criptions of this type, for example APL [6], JI.POL [7], 
SIMULA [8]. 



I.4. A critic of the existing CHIJL's for the proposed 
application 

We do not intend to review, here, all the existing CHDL's. 
A conplete classification of these languages, as well as 
interesting critics concerning their use, can be found 
in [l], [9], [10]. This study is limited only to the 
possibilities of using such languages in order to satis
fy the objectives mentioned in the introduction. A lan"'."' 
guage responding to these objectives has to possess the 
3 following characteristics : 
a) Be a non-procedural language in order to allow the 
representation of simultaneous actions in the descrip
tion of control mechanisms whatever the level of des
cription may be. 

b) Provide the facilities of an algorithmic language per
mitting a powerful and concise description of data hand
ling and conputation. 

c) Provide the possibility to manipulate software enti
ties representing rrodules of the system, as far as their 
description, duplication and synchronized execution are 
concerned. 

For the existing CHDL's, properties a) and b) seem to be 
contradictory. In fact, non-procedural languages are ge
nerally R.T.L.'s imposing a description very close to 
the harwired realisation. It is evident that such lan
guages do not satisfy characteristic c) . 

Conversely, procedural languages rrore or less satisfy 
characteristics b) and c) • AmJng those satisfying b) , 
APL seems to be the rrost adequate to the problem,given 
the richness of its data manipulation operators and the 
facility to handle arrays. However one of its major draw
backs lies in the difficulty to create configurations 
from standard rrodules and to describe parallelism. The 
characteristic c) is partially satisfied by languages 
with synchronization primitives and rrodule duplication. 
In SIMUIA [8], the primitives "class" "sub-class", 
"detach", "resurre" and "simulation class" are used es
sentially for this purpose. Nevertheless, all the defi
nitions that are necessary for the arrangement of links 
between rrcdules (represented by classes) , the synchroni
zation and the control of their execution are left to 
the prograrrmer; thus requiring a good knowledge of pro
grarrming techniques. And anyway, SIMUIA being a high le
vel language, it does not allow structural descriptions 
(R.T. level for instance). 

Furthernore, the distinction between C.S and D.S is adop
ted by the majority of the existing CHDL's as far as the 
analysis and the description of the system are concerned. 
However, this distinction appears much less clearly once 
the program is vrritten. Particularly when faced with a 
complex system with many levels of parallelism, the im
brication of the control and data structures makes the 
program hardly readable and rrodifiable. 

PART II 

PRESENTATION OF THE LANGUAGE 
II.1. Methodological Aspects 
After the critics fonnulated in the last paragraph, the 
approach adopted in the conception of this language be
comes clearer. We shall use two sublanguages, respecti
vely for the description of the two sections C.S and 
D.S. The sublanguage used to describe the C.S is non
procedural and pennits, by methods exposed later, the 
description of synchronous or asynchronous control struc
tures [ 11]. 
The manipulation of variables in the D.S is perfonned by 
a set of procedures; these procedures are described by a 
procedural sublanguage. The C.S of a module is initially 
represented by a graphic model derived from Petri-nets 
[12] given in the following paragraph . The translation 
of the graphic model into the language is done in a sim
ple and direct way. 
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In order to permit the rrodular structuration of a pro
gram, three primitives have been introduced. One for the 
declaration of standard rrodules, one for the creation 
of a system by calling standard rrcdules and one for 
their interconnection. Two rrodules are connected by con
founding their respective interface variables. Finally, 
an execution time is associated with each procedure in 
order to have the possibility to study system perfor
mances and critical situations. Execution time is either 
fixed in advance or calculated dynamically as soon as a 
procedure is activated. 

II.2. Mathematical Model for the Description of the 
Control Section 

We give here a rrodel for the description of control 
structures with parallel asynchronous evolutions. This 
rrodel, actually under study [13], is as general as 
Petri-nets [12] but it allows a less constraining and 
rrore concise description of a system. Its drawback is 
that critical situations such as deadlocks, conflicts, 
determinacy are easier to detect in a Petri-net than 
in this rrcdel. 

Definition 1 : A Parallel Process Control Netvx:>rk 
TP:-i?·~c:-N:-)-[13] ·is a quintuple R = (X,P,Q,f ,Po) where 

- X == {x1 ,x2, ••• ,xm} is a finite set of input variables 

- P == {p
1
,p2 , ••• ,pn} is a finite set of objects called 

places 
- Q == {q

1
,q2 , ••• ,q } is a set of boolean variables in 

n bijection with places 
- f is a mapping, f : p x p + gf(Q,X) where .'.Ti' (Q,X) is 

the set of boolean functions on Q and X; in addition 
f :Ls such that f(pi,pi) = 0, 'il'Pi € P. 

- PO is a set of initial places (PO <;: P). 

With a P.P.C.N , one can associate a labelled digraph 
having as vertices the set of places and such that for 
every couple (pi,pj), (f(pi,pj) ~ 0, there exists an 

edge from pi to pj labelled by f (pi,pj). 

Example : R = ({x}, {pl'p2,p3 }, {q
1

,q2,q3}, f, {p
1 

}) 

where f is defined by the following table : 

f ~l p2 P3 

pl 0 xq3 xqz 

p2 0 0 x'q1 

P3 x' 0 0 

Definition 2 : We define a token as the object having 
tfi.e-£0110Wing properties 
a) A place can contain one token at rrost. A token 

exists at the place pi at time t <=> qi(t) = 1. 

b) Every initial place contains a token. 
c) A transition occurs from a place pi containing a to

ken to every place p. such that f (p. , p.) = 1. When 
J 1 J 

transitions occur from a place p. to places p . , o. , ••• , 
1 J ~ .K. 

the token is rerroved from pi and a token is put in 

each of the places pj,11<_'··· 

A token contained in a place is represented by a point 
within the circle representing the place. 

Fig.2a. 

Q~~!g!~!2g_~ : A source place is a place 
always containing a token. We represent 
such a place by a square (figure 2.a). 
Generally, a system possesses an initia
lization procedure permitting it to be 
set to a particular initial configuration 
This initialization corresponds to a set 
of initial places of the graphic repre
sentation. In case several sets of initial 



places are J;Xlssible depending UJ;Xln inp.it conditions, it 
is convenient to use this type of place (see following 
example). 

Fig.Zb. 

Also, it is often useful to have the J;XlSSi.
bility to express, for a system, deactiva
tion conditions which can be expressed by 
a combinatorial function. For this reason, 
we permit, in the graphical representation, 
edges attaining no place (Fig. 2L). The fi
ring of a transition of this type implies 
the disappearance of the token of its input 
place. 

Note : A Petri network can be represented by a P.P.C.N. 
as suggests fig. 3. In fact, a Petri netv.ork is a P.P. 
C.N. having as labels functions of the fonn a(X)j~J qj 

where a(X) is a boolean function of the input variables 
and J is a subset of f 1,2, •.. ,n} . For this reason, a 
P.P.C.N permits a less constrained and rrore concise des
cription than Petri-nets. 

< ~qzf(x) 

Petri net P.P.C.N 

Fig.3. 

Let us, for example, represent the evolution : "A token 
reaches p1 if a token was at the preceeding instant at 

p2 and p3 rut not at p1". 

In order to describe such an evolution by a Petri-net, 
one has to create one place p~ "complerrentary" of the 
place p

1
; that is, P~ is a place coutaining a token if 

and only if, p1 does not have one. We are then obliged 
to increase the number of places with respect to the 
number of places of the P.P.C.N representing the same 
evolution (Fig. 4). 

Pz P3 p~ 

P.P.C.N Petri net 
Fig.4. 

The following example illustrates the application of 
the P.P.C.N's. 
Example : We want to describe a system controlling the 
traffic through a one-track railroad tunnel which may 
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be used by trains arriving in opposite directions 
(Fig. 5). We diSJ;XlSe of : 

a) Pulse signals 
v - x

1 
and x2 indicating that a train approaches the t:un·-

nel in the directions 1 and 2 respectively. 
- xi and x~ indicating that a train has just entered 

the tunnel in the directions 1 and 2 respectively. 
- x3 and x4 indicating that a train has passed through 

the tunnel in the directions 1 and 2 respectively .. 

b) 'Tu.D lights (v1 ,vi), (v2,v;2) at the tunnel entrances 

indicating whether a train is allowed to pass through~ 

Let the control system b3 such that : 

- v1 = 1 and v2 = 1 if there is no train passing tlrough 

the tunnel or waiting to pass. 
- v

1 
= 0 and v2 = 0 if there is a train passing through 

the tunnel. 

- A train waiting in the direction 1 has priority over 
a train waiting in the direction 2. We suppose that 
there may be only one train waiting in each direct.ion. 

The P.P.C.N. and the Petri network representing the 
system are given in Fig.6.The variables associated to 
the places are given the following interpretation 

- ai a train is waiting in direction i 

- pi a train is allowed to go through the tunnel :Ln 

direction i, but it has not entered yet 

- ti : a train is passing through the tunnel in direc

tion i 

- vi : green light allowing the train to travexse in 

direction i. 

Representation of the C.S by a P.P.C.N 
In order, to represent the C. S of a system by a P. P. C. N, 
we generally associate to a place a list of actions 
described by a procedure to be executed by the D.S. Du
ring the execution of those actions, all the transiticns 
em:mating from the corresJ;Xlnding place are inhibited; 
they becorre enabled at the end of the procedure's exe
cution. The evolution from a place depends on test 
values returned from the D.S and on the state of the 
c.s. The method described above does not correctly 1~rk 
if we associate procedures with the input places of a 
"join" transition. With P.P.C.N's, join transitions are 
not as explicit as with Petri nets 1 but it is easy to 
detect them by a very simple method [14] . 

II-3. Presentation of the language 

11.3.1. ~~~~r~1-~!~~!~r~_2f_!h~_rr2gr~ 
A program is composed of 3 parts. 

a) Definition of standard nodules (library of nodules 
used to build up the system) 

S) Description of the interconnection of such nodules 
in order to impletnP....nt a system 

y) Initialization of the system and specification of 
the input sequence for which the system is studied. 



v •a1Pit,2+a,2PiPztiti 

vz•ai 8 zPi ti +a.J.PiPz ti ti 

R.C.P.P Fig.6. Petri Net· 

We shall give explanations for each of those parts deli
mited as follows 

[

DCLMJDTYPE 

a) ~.MJl\JD 

B) [~ 
END 

y) [rnf 
END 

rr-3. 1.1. ~~~~!!2!!2~_2f_e_e!~ger~~~2g~1~ 
It contains the D.S and c.s description as shown below 

DCIMJDI'YPE .MJDEL ( IN'IVl , •••••• ) 
DCLPROC Pl 

TEMP 5 
IN'IVl- 3 

END 
OCLPRCC 

t +- ?9 
TEMP t 

END 

DCICTRL SYN 

ENDMOD 

Data Section 

} Control Section 

a) Data section : Instructions used in the description 
of a procedure are a subset of APL's instructions. To 
these instructions is added the primitive TEMP whose pa.
rameter indicates the execution tine of the procedure. 
This parameter may be either a constant on an expression 
on the variables of the procedure. 

b) Control section : The primitive DCLCTRL indicates the 
beginning of the description of the C.S. The keywords 
SYN and ASYN following DCI.CTRL specify the type of evo
lution in the control structure, respectively synchronous 
and asynchronous. The basic instruction used for the 
description of the control section has the following for
mat : Pi IF Fij THEN Pj' where Fij is the function asso-
ciated to the transition (P. , P . ) • The functions F. . can 
contain : i J l.J 
- predicates on the time variables or on the D.S varia

bles, 
- l:x>Olean expressions on input or internal variables of 

the c.s. 
Special terrporal predicates may be used. For example, 
the instruction : 
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Pi IF !tc THEN Pj 

rreans that a transition takes place from P. to P. as 
l. J 

soon as a tine tc has elapsed after the end of the pro-

cedure associated to Pi. 

The language's syntax penuits the description of rrany 
transitions in the same instruction by using rrultiple 
tests and branchings. Fo:c example, the instruction : 
pi IF Fil; Fi2; Fi3; ••• THEN pjl; pj2; pj3; ..• 
has the interpretation : a transition takes place from 
Pi to Pjk if Fik is true. 
The instruction : 
pi IF Fil' Fi2' Fi3' 000 THEN pjl' pj2' pj3' 000 

can be used to give priority to an action. Priority is 
defined. by the order of the conditions Fik. That is, the 

transition labelled by Fik is fired if Fik is verified 

and if all the conditions F. such that s < k are faulty. 
The t'M'.:> preceeding instrucd:8ns can also be put into the 
parametrized forms : 
Pi IF Fil; F i 2; F i 3 i • • • 'IHEN P (J) 

Pi IF Fil, F i 2 , F i3, . . . THEN P (J) 

T'MJ primitives, put at the head of the C.S description, 
allow the definition of input and output control varia
bles. The primitive INPur defines input variables of the 
c.s external to the rrodUle (example : INPur x1 ,x2, ••• ). 

The primitive ourPurdefines output variables of the c.s. 
(example : OUTPur Y 1 , Y 2, •.• ) • 

The representation of a transition having as input place 
a source place is given by an instruction of the fo:rm : 

l IF F 'I'HEN P 

For such an instruction, the condition F is tested per
rnarnently, and one token is put into the place P every 
time th.is condition is verified. Finally, the possibi
lity is given to express directly the deactivation of a 
place P_i without token transfer to any other place, by 

using the instruction 

Pi IF F THEN Pi_ 

rr.3.1.2. ~~s!ere!!2~_2f_e_s2~!!~Ie!!2~_2!_!h~-~Y~!~~ 
The primitive CREATE pe:rmits the creation of a new rrodu
le by using the deseription of a predefined standard no
dule. Example : 

CREATE .MJDULEl = .MJDEL 

results in the creation of a new m::xiule called MCDULEl 
as a copy of the standard rrodule MCDEL. 

- The primitive LINK realizes the interconnection of 
rrodules. The genitive notation (with point) is used to 
distinguish the interface variables of several identical 



rrodules. So, we can write : 

LINK MODUIBl. INTVl = MODUIE2. INTVl 

to express the fact that the interface variables INTVl 
of the tvK> nodules MJDUIBl and MJDUIB2 are confounded. 
When there is no ambiguity, the genitive notation may 
be avoided. 

II.3.1.3. Q~!~g~!~9g_9!_!~~-~g~!~~!-~!~!~-~~-2!_!~~ 

~g12~!-Y~!~~~ 
The initialization of a variable may be done by using 
the primitive INIT. Example 

INIT MJDUIBl. INTVl = 2 

means that the variable INTVl of the nodule MJDu:LEl is 
initialized to the value 2. The primitive INIT can re
cover many initializations and the variables concerned 
may be internal or interface variables as well as inp1t 
variables of the C.S. The following examples show some 
possibilities of the use of the primitive INIT : 
INIT MJDUIBl. VARl = valuel ; MJDUIB2. VAR2 = value2 
INIT MJDUIBl. VARl, MJDUIB2. VARl = value3 
INIT VARINX = 1 
All the variables non initialized explicitly by the pri
mitive INIT are initialized to the default value zero. 
Inputs used to experiment the simulated system are in
trcxiuced by rreans of the primitive ENTRIES. These inputs 
are represented by input lists, each list having the 
following format : 

ti : x1 = valuel, MJDUIBl.Y = value2, .•• 

This meara that at time ti the input variables Xl and Y 

of the nodule MJDUIBl will take respectively the values 
valuel and value2. It is also possible to define perio
dic inputs. Example : 
t . : + t [Xl = valuel, MODUIB. Y = value2] 
Ttlis meaRs that the variables Xl and MJDUIB.Y take res
pectively the values valuel and value2 at all the noments 
tj + mtp form= 0,1,2, ... 

PART III 
PRACTICAL EX.AMP LU 

We illustrate this language by a simple example taken 
from [15] ; it describes a nodular architecture for a 
multi -access, mul tibank merrory system ( § III. 1) . 

Mo 

STO 

[]] 
n, r---.---, 
111 I I I 
LU L---L--..J 

ADB 

Df.SO 

[I] 
rn 
111 
LU 

STl 

[JJ 
rn r--,---1 111 
1.U L.---L--.J 

rn ADBUS (address bus) 

DESl 

rn 
rn 
II I 
UJ 

In pa.rt III.2, we will explain how this language can 
help the design (performance evaluation, detection of 
critical configuration> •.. ) 

III-1. Description of the system 

The structure of the system is detailed in f :Lg. 7. We 
distinguish 3 types of nodules 
a) rnerrory bank (MB) 
13) merrory access multiplexor 
y) entry point (EP) 

These nodules'interfaces are as follows 

a) ~!:Y-~-~!~E~S:~_lMBi) 
MAi address register ( 16 bits) 

MDi data register (16 bits) 

ST. status register (2 bits) 
1 ST. 00 =MB. inactive 

l l 

STi 01 = read operation in progress }poi::ted by 
. the rmlti-

STi 10 = write operation in progress ple.xor 

ST i 11 = reading accorrplished } posted by MBi 

(notice : we have nodif ied slightly the original example 
in [15]) . 
• DESi : entry point's address register in case of a 

reading request. 

B) ~~!:!:Y-E2!~!_!~!~!:E~S:~_(EPi) 

ST2 

ri 1 = Read request (1 bit) 

wi 1 = write request (1 bit) 

bi 1 = busy entry point (1 bit) 

CAi: address register (16 bits) 

CDi: data register (16 bits) 

RRPi 1 = read request from the processor connected 
to EP. 

WRP. 
l 

l 

1 = write request from the processor connected 
to EP. 

l 

ADDPi : address buffer of the processor connected to 
EPi 

DATAPi: data buffer of the processor connected to EPi 

DES2 

rn [O 
rn r---1---1 

I I I 
LU L--..l..--.J 

rri 
111 
LU 

rr-1 
11• 
LU 

r---.---.., rn 
I I I 111 
L---'---1 LJ..1 

DB 

lihiiiWlil!WiSiii1A!D 1 It Uk~ [Ill 
DBLJS (data bus) 

n ~ ri r--1 r--, n n n r--1 r--, 
1111111 IL I 1111111 11 I 
U u LI L--.J --J u W U L--.J L--.J 

b2 r2 w2 b3 r3 w3 

Entry pointO 

n n r--1r--, 
1 I I I I 11 I u u ... __ .J 1...--.J 

Entry pointl 

n n r--1r--1 
LJ W L.--J L--..1 
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0 D 0 CA2 0 0 D CA3 

Entry point2 

n '"' r--., r--, 
11111 II I 
U UL---' L--..J 

Entry point3 

n n r--1r--1 
11 11 I II I 
Ll U L.--.J L---1 

(".) 
p_, 

~ Fig.7 
Q 

Memory layout 



The multiplexor uses two buses ADBUS and DBUS (address 
and data) to link an entry point to a merrory bank. The 
internal register ADB(2 bits) indicates which entry 
point uses ADBUS; DB0 and DB1 indicate which entry poirt 

(write) or which merrory bank (read) has posted. a data 
on DBUS; DB2 tells which way the exchange goes (respec-
tively 0 ana. 1) • -
Figures 8a, 8b and 8c show the 3 m:Xl.ule flowcharts and 
the corresponding control graphs. 
Note : In what follows, we keep the same notations for 
places and for their associated boolean variables. 

START 

EP. requets reading 
ana the target bank 
is available ? 
(ri=l,priority i:o+3) 

MB. has completed 
reJding ? (ST.=3) 

(priority j~0+-3) 

y 

R(I): 

ADB - i 
DES(bank) """- i 
ST(bank) - 1 
r. +- 0 

1 

y 

N N E(J): 
Data transmission 
to entry point(EP) 
indicated by DES 
STj ~ b(EP) +- 0 

EPk requests writing 
and the target 

bank is available ? 
(wk=l,priority O ~3) 

y 

W(K): 
ADBUS and DBUS are 
connected to EPk 
ST(bank) .-2 
bk -wk+ 0 

N 

Fig.Sa Multiplexor's flowchart 

III-2. System's description program 
In order to simplify this example, we do not take into 
account the nature of the infonnation exchanged. between 
MB's and EP's; so registers MD and CD are not represen
ted. Therefore, only the bank's number is retained. as 
an address in CA. 
DCLMODI'YPE ENTRYP (b,r,w,CA,ADDP) 

DCLPRCX::: RR 
~'EM!? trr (reception time of a reading request) 

CA + ADDP 
r + b + 1 

END 
OCLPRcx::: WR 

TEMP twr (reception time of a writing request) 

CA+ ADDP 
w + b + 1 

END 
OCLPRCX::: AER 

TEMP taer (acknowledge time of the end of a rea
ding operation) 

END 
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DCLCTRL ASYN 
INPUI' RRP,WRP 
BEGIN 
IN IF. WRP/\b I 
IN IF RRPAb' 
WR IF. b' 
RR IF b' 

AER IF 1 
ENDIDD-

THEN WR 
THEN RR 
THEN IN 
THEN AER 
THEN IN 

DCLMODI'YPE MEMJRYB(ST,DES) 
DCLPRCX::: RH 

TEMP trh (Read Handling time) 

ST 
END 
OCLPRCX::: 

TEMP 
ST 

END 

+3 

WH 
twh(Whrite Handling time) 

+0 

DCLCTRL ASYN 
BEGIN 
~y IF ST = 1 THEN RH 

READY IF ST = 2 THEN WH 
RH IF 1 THEN RA 
RA IF ST = 0 THEN READY 
WH IF 1 THEN READY 

ENDIDD ~-

OCLMODTYPE MULTIPLExOR (ST(4), DES(4), b(4), r(4), w(4), 
CA(4)) 

DCLPRcx::: R (I) 
- TEMP t 

END 

r 
DES [CA [I ]] + I 
ST [CA [I ]] + 1 
r [I] + 0 

iSCLl?RCX::: E (J) 
TEMP t er 
ST [J] + b [DES [.J]] + 0 

END 
OCLPRCX::: W(K) 

END 

TEMP tw 
ST [CA [K]] + 2 
w[K] + b[K] + 0 

OCLCTRL ASYN 
BEGIN --

STARI' IF C0,Cl,C2,C3, 1 THEN R{O) ,R(l) ,R(2) ,R{3) ,J1*) 
STARI' IF C4,C5,C6,C7, 1 THEN E(O) ,E(l),E(2),E(3) ,J2 
R(I) IFl THEN Jl 
E(J) IF 1 THEN J2 
Jl IF ~J2 THEN J 
J2 IF ~Jl THEN J 
J IF C8,C9,Cl0,Cll,l THEN W(O) ,W(l) ,W(2) ,W(3) ,STARI' 
W(K) IF l THEN STARI' 
~-
OCLCONF 

CREATE .MEMJRYBO ,.MEMJRYBl ,.MEMJRYB2 ,.MEMJRYB3=.MEMJRYB 
CREATE MULTIPLEXORO = MULTIPLEXOR ; 
--- ENTRYPO, ENTRYPl, ENTRYP2, ENTRYP3 = ENTRYP 
LINK MEMORYBO. ST=MULTIPLEXORO. ST ( 0) ; 
-- MEMORYBO .DES=MULTIPLEXORO .DES ( 0) ; 

MEMORYBl. ST = ••• 

LINK ENTRYPO.r = MULTIPLEXORO.r(O) 

END 
_:w:rr IN, READY,STARI'=l;b,r,w, ST=O (all places IN, 

READY,STARI',b,r,w,ST are initialized) 
ENTRIES O:RRPO,ADDP0=0;9:vvRP1,ADDPl=l; ••• 
END ••••• STOP 20 

*) In fact, conditions Ci nust be entirely explicited 
in the program; they are given in Figure 8a. 
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Fig. 8b 

Fig.Sc 

initial state 
b,r,w=o 

)associated control graph 

EP ! s flowchart 
l 

initial state 
ST=O 

=::;>associated control graph 

MB! s flowchart 
1 



III-3. Comments on the design aid 
ADBUS and DBUS allocation in the multiplexor is perfor
med according to a decreasing priority EP0 + EP3 and 

.f'.1B0 + MB3. The question arises whether, for given execu
tion times of the m::xiules Multiplexor and MB, some re
quest on EP3 remains unsatisfied for some critical re
quest frequencies on EP0 and EP • We can find the criti
cal values by observing the system for various execution 
times. 
Likewise, a standard multiplexor m::xiule is defined to 
connect 4 MB's and EP's. But, without any essential rro
dification in the description program, these numbers 
can be changed. Thus, we can study the correlation bet
ween structure, number of resources and performances. 
This kind of possibility is essential for the evaluation 
of the performances of I/O architectures(through-put) 
according to the number of the channels and the reparti
tion of the peripheral devices. Another idea could be to 
associate to every EP a critical time t such that : 
every request from an EP must be satisfied in time less 
tant tc in order to avoid disturbances in the processor 
connected to EP. (A processor connected to EP could be 
an I/0 channel with response time bounded by a critical 
value). Notice that in this language, these critical 
time bounds can be expressed in the description of the 
processor by a timing function. 

IV - CONCLUSION 

The first interest of this tool is that it provides a 
methodology for the multilevel description of distribu
ted systems. Certainly, its use is particularly interes
ting for the study of the behavior of a m::xiule(or set of 
rrcdules) , when it is integrated in a specific configura
tion rather than when it is considered separately. The 
separation between C.S and D.S corresponds implicitly to 
the distinction between K and (D,M) primitives in PMS 
[16]. Functional subsets corresponding to the primitives 
L and S are shared by the cooperating m::xiules. It is ne
vertheless sometimes interesting, when emphasis is put 
on the study of the inter-m::xiule conrnunication procedu
res, to extract these functional subsets in order to 
reconstruct the m::xiule performing the link. Conversely, 
it is also easy to deduce from the PMS description of a 
system (possibly completed by its ISP description [ 16]), 
the structure of the program describing this system in 
the proposed language. 
We finally emphasize that our intention has been to pro
vide a simple enough language to be user oriented. All 
rronitoring functions concerning duplication, inter
actions and synchronization of the m::xiules remain trans
parent to the user and are handled by the system suppor
ting the prograrrming in this language. 
The elaboration of this tool has been rrotivated by tv..D 
studies actually developed at the ENSIMA.G [17], [18]: 

a) Study and evaluation of a hierarchical rrerrory struc
ture for multiprocessor l.lB.chines. Such a structure con
sists of : 
. a hierarchy of physical merrories 
• algorithms of dynamic management at each level 

(address translation, comuunication between adjacent 
levels). 

This tool must permit : 
. validation and co~risonof some choices of algorithms 

at each level 
. verification of the global coherance of perfonnances 

b) Design of a complex I/O system (UNIDATA 7740-50-70). 
This tool must permit : 

harrronization of m::xiule characteristics at each level 
(buffer dimensions, inforl.lB.tion adjustments, temporal 
characteristics) • 

. experimentation of the dialog procedure (priority 
logic, conflict resolution, resources dispatching) and 
evaluation of global performances. 
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Abstract 

In this subject, we treat computer structure as 
an element of a group of interacting structures 
including the technology, algorithm, data, and pro
gramming language. In the belief that the best 
designs result when these structural factors "match" 
in a complementary manner, the influence of each of 
these domains is carefully studied at both the concep
tual and descriptive levels. Thus a modular treatment 
of current technology is provid.ed, as well as a 
thorough analysis of algorithmic structure as reflected 
in computational schemata. Single-sequence machine 
design is discussed, including advanced topics such 
as multiple functional unit conflict resolution. 
Following a presentation of microprogramming and 
input/output, virtual ideas centered around the notion 
of process are introduced, leading to the design of 
multiprocessing and multiprocessor systems. These 
ideas are applied and extended in the presentation of 
the Burroughs B6700 as a higher-level language machine 
designed to execute ALGOL efficiently. Finally, the 
subject concludes with an introduction to general 
interpretive structures for high-level languages. 

1. Introduction 

The content of this subject is determined by the 
belief that the best computer designs result from a 
consideration of all the structures that are involved 
in the solution of a problem on a digital computer. 
These structures are associated with: 

1. Technology 
2. Algorithm 
3. Data 
4. Programming Language 
5. Architectural units 

When these structural factors are mutually comple
mentary, we believe that the best results follow, and 
we call the principle that requires this interaction 
"structural match." Thus, we believe that it is not 
possible to design a computer properly unless a 
unified view of all the structural constraints posed 
by the intended application area are well understood. 
The architectural structure of a computer is thus seen 
to be but one of a set of interacting structural fac
tors which must be cohesively interwoven to provide an 
optimal design. 

In addition to the structural match principle, we 
believe that it is important to achieve a proper 
balance between conceptual abstractions and the 
description of practice. Too often, the teaching of 
computer architecture is confined to a highly descrip
tive treatment of several machines such that it becomes 
very difficult to detect general principles. On the 
other hand, it is important to motivate conceptual 
constructs and results by showing their application 
to concrete designs. The course seeks to detect the 
underlying generality in computer design, but to 
continuously interrelate these results to classical 
designs which have stood the test of time. Experience 
has shown that it is possible to combine both bottom
up and top-down approaches by this means in a manner 
such that abstractions are motivated by concrete 
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examples, and then these instances of practice are 
clarified by interpreting them in the light of more 
generalized structures. 

The overall subject is split into three major parts: 

I. A. Combinational and Sequential Logic; Computer 
building blocks 

B. Computation Schemata and Implementation 

II. A. Single Sequence Computers 
B. Microprogramming 
C. Input/Output 

III. A. Processes and Multiprocessors 
B. Algol and Block Structured Languages and 

the B6700 
C. Virtual machines and dynamic microprogram-· 

ming 

Each of these three groupings consumes about 1/3 of the 
subject time. We now discuss each of them in detail. 

2. Logic, Technology, and Schemata: 

In the first third of the subject, the background 
necessary for discussion of single-sequence computers 
is established. First, combinational and sequential 
logic is presented in order to establish a concrete 
basis on which to discuss computer design. Th.is 
material is not presented from the point of view of a 
digital designer, since it is felt that topics such as 
gate minimization and state assignment are not needed 
to appreciate the design of computers. Nevertheles::;, 
basic combinational and sequential logic principles 
are presented, and there is a very complete discussion 
of fliplflops. Use is made of the Algorithmic State 
Machine formalism which facilitates implement:ation
free definitions of sequntial circuits. Following the 
treatment of basic logic principles, modular computa
tional elements are discussed, including registers, 
counters, encoders and decoders, ALU's,multip1exors, 
ROM's, and shift registers. The goal is to provide 
sufficient concrete understanding of logical modules 
so that students can appreciate how a block diagram 
description of a computer could be realized. This 
approach also provides a demystifying benefit. For 
example, many students have difficulty understanding 
how it is possible to write into and read from a 
register simultaneously until master-slave flip-flops 
are explained. Modern MSI and LSI practice is also 
discussed so that ·Students can appreciate the .construc
tion of computers in terms of functional modules. This 
background is utilized later in the course when micro-
programmed computers are discussed. 

Once the student is well versed in the basic 
logical structures contained in computers, we abstract 
on these functional modules to obtain schemata2 which 
concentrate on two aspects of computation. One aspect 
is the way in which data flows between modules, and 
the other is the control of this data flow sequence. 
Computation structures are simplified to schemata 
containing only memory cells and operators as nodes, 
so that the possibilities for concurrent operation can 
be clearly studied. 



The first t2pe of schemata studied is the data 
dependence graph which naturally exhibits all of the 
possible concurrency in a computation by the simple 
means of only allowing each operator and memory cell 
to be used once in the course of evaluating the algo
rithm. Thus, if four additions are needed in an 
algorithm, then four add operators must be provided in 
the corresponding data dependence graph. In this way, 
the only thing that limits completely concurrent use 
of all the operators is the logical dependencies 
contained in the algorithm. Conflicting use of memory 
cells is impossible, since each cell has only one input. 
Figure 1 shows a typical data dependence graph (DDG). 

The DDG provides a conflict-free, maximum-space, 
maximum concurrency representation of an algorithm. 
If the operators and memory cells are controlled 
appropriately, then a minimum-time maximally-parallel 
implementation results. One special case of interest 
is when the operators are all combinational. In this 
case, the memory cells can be removed, and no timing 
control is needed, since the entire schema is repre
sented as one combinational circuit. 

When the constituent operators of a DDG are 
sequential in nature, then it becomes important to 
control their time of operation. That is, we must 
provide a means to tell the operator when the input 
data are ready so that the operator may start. Simi
larly, the operator must acknowledge when it has 
completed its calculation, so that its output can be 
read at the appropriate time. The DDG contains all 
the information necessary to derive the constraints 
on operator sequence, and this is shown in the prece
dence graph of Figure 2. We can see from this graph 
that a given operator cannot be started until all 
operators which precede it in the graph have completed 
their operation. What is now needed is a modular 
control structure which enforces these precedence 
constraints, but no more. Although the case of 
synchronous control is treated completely, we put more 
emphasis on the general asynchronous case. From a 
general point of view, synchronous control timing is 
global in nature and forces a uniform lock-step time 
pattern over the entire system. Asynchronous control, 
however, is local in nature, and provides a timing 
structure which is sensitive to the individual device 
timing characteristics. We believe that it is impor
tant for the student to understand the relative 
virtues of both of th~se control systems, and examples 
of each are given throughout the subject. 

The asynchronous control structure for a DDG can 
be constructed from sequence, fork, and join modules2, 
the interconnection of which can be derived from the 
precedence graph associated with the DDG. The next 
addition to the schemata is a trigger module, which 
allows DDG's to be modified for pipelined operation. 
Basically, the trigger module for an operator checks 
both that new input data is ready, and that the 
operator's output has been latched up in its output 
register. Thus, by the simple expedient of adding 
one new type of control, the DDG structure is naturally 
extended to a pipeline schemata. Since piplined 
structures are of such practical importance, there is 
considerable discussion of these systems, both 
synchronously and asynchronously controlled. 

Following the discussion of pipelined operators, 
the detailed specificity of operators and their indi
vidual operation times is abstracted away from the 
precedence graph and control module structures in order 
to introduce Petri nets. 3 Control examples such as 
FIFO buffers are discussed, and Petri net models for 
all of the asynchronous control modules are presented. 
Petri nets have proved to be a particularly clear and 
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implementation-free way to concentrate on basic control 
issues, and although we emphasize their utility as 
abstract models for physical control structures, we 
also develop their theory including a discussion of 
liveness and safeness. 

Building up from DDG's through pipelined systems, 
the next logical stop is to allow repetitive use of 
operators and cells within a schema and more than one 
input to memory cells. The resulting structures, 
called elementary schemata2 comprise two parts: a 
data flow graph and a precedence graph. Since the 
data flow graph may contain directed loops, repeated 
use of operators and cells is possible, and the 
schemata represent algorithms in less space but more 
time than the corresponding DDG. This space-time 
trade-off is emphasized by showing that for each exe
cution sequence of all the operators in an 
elementary schema precedence graph (which preserves 
the precedence relations), there is an equivalent DDG. 
In order to utilize operators and cells repeatedly, it 
is necessary to introduce a new control module, called 
union, which has one input link for each time the cell 
or operator must be used in the course of a computation. 
Perhaps the most interesting aspect of elementary 
schemata, however, is that they permit conflict at 
memory cells to arise, such as when two inputs to a 
cell are unordered in the precedence graph. We give 
a very careful treatment of conflict, and show that 
every execution sequence of a conflict-free elementary 
schema has the same equivalent data dependence graph. 
The fact that the sequence of memory cell loadings of 
every conflict-free schema is determined solely by 
the initial values of the cells is used to prove that 
every conflict-free elementary schema is determinate. 
Finally, we also prove that every conflict-free ele
mentary schema is functional, in the sense that the 
final values in the output cells are functions of the 
initial values in the input cells. The notion of func
tionality also allows us to give a precise definition 
of equivalence of elementary schemata. 

It has turned out that the careful treatment of 
conflict and its associated concepts has paid off 
substantially in the discussion of many practical 
topics including multi-ported memories, multiple
function-unit processors, process scheduling, and 
concurrent I/O. In all of these cases we have been 
able to give a rigorous conceptually-grounded discus
sion which avoids superficial description. A complete 
discuss:Lon of arbiters4 is given, including implementa
tion details, in order to illustrate the breakdown of 
theoretical models for synchronizers and arbiters 
when events are separated in time by arbitrarily small 
amounts. 

The last type of schema to be discussed is the 
basic schema,2 which adds iteration and conditional 
tests to the power of the elementary schemata. Two 
new control modules are introduced for this _purpose, 
providing for control branching based on the truth 
value of test predicates. With the addition of these 
new features, "while P do G" and "until P do G" 
construe.ts can be easilymodeled. There are no new 
conceptual difficulties due to addition of these 
structures, but the basic schemata are now adequate 
to serve as models for digital computers. Thus the 
treatment of schemata provides a clear foundation for 
the detailed study of computer structures, in which 
all of the difficult control problems are faced. 
Students are thus able to examine very complicated 
machines in the context of an appropriate conceptual 
framework. 



3. Single-Sequence Machines, Microprogramming, and 
Input/Output: 

The second third of the subject is devoted to , 
single-sequence computers. After a brief review of 
computability results5 which show that nearly every 
computable algorithm can be performed on a general 
purpose computer in finite time, a minimal-state 
machine model is introduced which has no state memory 
in the processor except for program sequence informa
tion. This machine allows us to concentrate on the 
basic control sequence within an instruction. From 
the minimal-state machine, it is natural to introduce 
the three-address architecture. A complete basic 
schema for a simple three-address machine is developed, 
and the time balance between memory and processor is 
discussed. Next, the classic one-address machine6 is 
introduced, and historical perspective is used to 
motivate its structure. This architecture extends 
naturally to the modern general register machine, 
where we provide a basic schema for a subset of the 
DEC PDP-10.7 The influence of technology on general 
register designs is pointed out, and the IBM 3708 
architecture is also discussed at this point. 

Stack architecture is then developed, with an e~e 
to later detailed discussion of the Burroughs B6700. 
This is also an appropriate time to discuss program 
sequence control including subroutine access and 
recursion with their heavy reliance on stack·mechanisms. 

A complete treatment of memory designs is pro
vided, including addressing by indexing and indirection. 
Multiport, overlapped, and interleaved memory modules 
are covered using the previously acquired background 
in asynchronous control and arbitration. A variety 
of cache systems is also treated, but virtual memory 
is saved for the last third of the subject. 

A particularly interesting topic is that of 
multiple-functional-unit computers, such as the CDC 
660010 and the IBM 360/91. 11 We point out how conflict 
can arise when such concurrency is allowed, and then 
show that the control structures which resolve the 
conflicts in both of these machines can be interpreted 
as transforming the multiple units into a dynamic DDG, 
which is of course conflict-free. This is a good 
example of how fundamental notions introduced in the 
first third of the subject can be applied to clarify 
difficult control designs and cut through superficial 
differences. We also discuss pipelined processors 
such as the Texas Instruments Asc12 and the CDC Star-
100, 15 utilizing the earlier treatment of pipelining. 

After the basic structure of single-sequence 
machines has been treated, we consider microprogramming.14 
This is useful both to demystify the detailed construc
tion of computers, and to prepare for a discussion of 
virtual machines later. The Wilkes model is presented 
as a systematic means to implement control, and then 
a simple but complete microprogrammed computer is 
discussed in detail. Register, ALU, buss (including 
three-state logic), memory timing, and main instruc-
tion subroutine designs are treated as well as condi-
tion testing and branch sets. Experience indicates 
that this concrete discussion of microprogramming is 
very useful to students as a basis for interpreting 
their conceptual understanding. Vertical and 
horizontal microcoding designs are compared, and the 
use of microcode to dynamically reconfigure the data 
flow structure (as in the SPS 4115 arithmetic section) 
of a machine is presented. Then control memory 
design features are enumerated, leading to writeable 
control stores, dynamic microprogramming, and 
emulation. This seems to be the natural place to 
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present the IBM 360/370 architecture,14 with its 
provision for emulation (e.g. of the IBM 1401 and 7094) 
and family compatability achieved through various 
technological implementations. 

The one remaining aspect of single sequence mach
ines is input/output, the various features of which 
we unify by contrasting how processor state inf orrna
tion is saved and switched. First, status driven I/O 
is presented vi.a a teletype serial interface, complete 
with processor "busy-waiting." Then interrupts 
are introduced, and critically compared with status
driven I/O. The basic schema for a single-address 
machine is modified to accommodate this simple level 
of I/O. Next, direct memory access is developed as 
a special purpose wired-logic processor which avoids 
most interrupts in a block transfer. The direct 
memory access is then generalized to channel archi
tecture, and a complete discussion of channE!l opera
tion is given in the context of disk management.8 
Finally, channels are generalized to completely 
independent I/O processors. Virtual I/O processors, 
such as those used in the CDC 660o10 and Texas 
Instruments Asc 12 are introduced using the "time-slot" 
sharing concept, and then completely separate I/O 
processors for high data-rate applications are used 
as an example of the use of microcomputers. As a 
practical application, we have recently added to this 
section of the subject a treatment of asynchronous 
bus design

7
16 including the new instrument interface 

standard.1 This material is particularly useful to 
non-computer-science students whose main concern is 
to acquire an in-depth understanding of the use of 
computers in complex instrumentation and data 
acquisition systems. 

4. Processes, Block-Structured Languages, and 
Virtual Machines: 

In the last third of the subject, we make a 
transition from single-sequence machines to the 
consideration of asynchronously interacting algorithms 
via the notion of the process, 18 and from this 
abstraction to virtual machine ideas. The previous 
discussion of input/output has provided concrete 
examples of interprocess communication, so that 
students are led naturally to the notion of process, 
or the virtual running of a program. In order to 
introduce ~irtual ideas, we first discuss virtual 
memories, 1 both those with paging and purely 
segmented types. These are then generalized to the 
notion ~O virtual device, as used in Dijkstra's THE 
system. We are then led to the idea of process 
as the basic construct for virtual machines. 

Processes are rigorously defined, as are pro
cessors, and the problems of asynchronous communica
tion between processes via shared variables are 
discussed as examples of conflict at a higher level 
than was previously treated in terms of schema. 
Critical sections are defined, and process control 
primitives are introduced. The interactions of 
create, run, block, wakeup, and terminate are 
illustrated by many examples, and th21f we show how 
these primitives can be implemented. The need for 
perfect arbitration leads to the notion of lock 
variables and the associated busy-waiting problems, 
and then Dijkstra's P and V semaphore operators are 
discussed. Detailed implementations of these 
operators are given, including introduction of test
and-set or equivalent instructions. Students enjoy 
the mental exercise of devising semaphore solutions 
to process communication problems, and we treat 
many classic examples, such as the bounded buffer 
problem, in class. 



Following the consideration of processes we natur
ally turn to multiprocessor systems or several 

22 varieties. Recently we have treated Illiac IV, 
C.nunp,23 SPS-41, 15 and the BBN Pluribus24 as varied 
and interesting examples of the many design options, 
These are particularly valuable illustrations since 
they can be strongly motivated by their intended 
areas of application. 

Once a solid groundwork in processes has been 
established, we find it feasible to examine a very 
unique machine, the Burroughs B67009. First 
however, we review the semantics of ALGOL 6025, and 
introduce Johnston's contour mode126 to make this 
explicit. We have found, incidentally, that the 
contour model provides an especially effective means 
for clarifying recursion, a topic which seems to 
require extensive explanation from many points of 
view. The contour model of ALGOL semantics can then 
be mapped one-to-one onto a stack model, where we 
develop completely the manipulation of static and 
dynamic links. Once the stack model has been pre
sented, it is both natural and easy to introduce the 
B6700. We emphasize here that the B6700 is a very 
complicated machine, albeit of great interest. 
Nevertheless, given the requisite background in 
processes and stack implementation of ALGOL, students 
are able to insightfully absorb a vast amount of 
detail about the computer, since they have the 
appropriate conceptual background with which to 
appreciate and interpret the design. We have found 
this part of the subject, with its attendant treatment 
of procedure entry and exit, multiprocess contour 
model, and events and queues, to be extremely interest
ing and useful to students. Concepts which have been 
developed throughout the course up to this point, 
with the sole exception of microprogramming, all 
come together in the B6700, and students are quick 
to realize that the machine architecture would be 
unintelligible without a deep appreciation of the 
implementation needs of inter-process structure and 
ALGOL variable bindings. The careful treatment of 
these topics requires a lot of time, but we have found 
it to be extremely worthwhile. 

Following the discussion of the B6700 as a higher
level language machine, it is natural to ask if 
machines can be built which can be effectively 
adapted to several higher-level languages. In effect, 
what is needed is an architecture that supports 
several virtual higher-level language machines. The 
best current examQle of such a computer is the 
Burroughs B1700, 27 which we discuss briefly. The use 
of variable length encoding, defined fields, and the 
provision of general interpretation facilities are 
illustrated with this machine. We find this to be 
a fertile area in the subject, but presently lack of 
time, and detailed knowledge of the B1700 implemen
tation, have precluded greater emphasis. 

5. Sununary: 

We have described an attempt to approach com
puter architecture from a broad perspective, and' to 
treat machine architecture design as a system of 
cooperating processes, each of which represents the 
constraints imposed by a particular structural 
domain. In this way, the interaction between tech
nological feature~, algorithmic structure, 
programming languages, and data structures is 
allowed to determine the resultant architecture. 
Our experience has shown that this approach provides 
a good balance between description of practice and 
conceptual analysis, so that the pedagogical 
experience is of inunediate utility but also lasting 
importance. While it is difficult to isolate 
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design principles for computer design, we feel 
that this combined structural approach provides a 
good basis on which to continue the search. 

Fig. 1 Typical Data Dependence Graph 

Fig. 2 Precedence Graph derived from Data Dependence 
Graph of Fig. 1 
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THE IEEE COMPUTER SOCIETY TASK FORCE 
ON 

COMPUTER ARCHITECTURE 

George E. Rossmann 
Palyn Associates, Inc. 

4100 Moorpark 
Suite 201 

San Jose, California 95117 

The subject of computer architecture as 
currently taught in most computer engineering and 
computer science programs is a mixture of architec
tural principles, organizational strategies, and 
implementation techniques. This blurring of the 
hierarchy of system levels that characterize the 
structure of a computer has made it very difficult 
for students (and often instructors as well) to 
determine what were the forces that led to the 
design decisions they have seen reflected in 
machines. Furthermore, current courses in computer 
architecture pay insufficient attention to the fact 
that to a user the essential part of any computer 
system is its visible facilities: language 
processors, operating system, and other software. 
Therefore, they do not support the integration of 
hardware and software design that is required to 
create computer systems which satisfy the user. 

In view of these circumstances, a task force 
was established by the IEEE Computer Society to 
prepare a detailed specification for a course of 
study in computer architecture for students whose 
major interest is in computer engineering or computer 
science. The members of the task force were: 

George E. Rossmann, Chairman: Palyn Associates, 
Inc. 

C. Gordon Bell: Digital Equipment Corporation 

Frederick P. Brooks, Jr.: University of North 
Carolina, Chapel Hill 

Michael J. Flynn: Stanford University 

Samuel H. Fuller: Carnegie-Mellon University 

Herbert Hellerman: State University of New York 
at Binghampton 

The task force defined computer architecture by 
deciding what professional architects are supposed 
to do. We determined that the computer architect's 
task is to define computer systems that use hardware 
and software technologies so as to best satisfy all 
the users' needs, including function, economy, 
reliabiiity, simplicity and performance. In 
carrying out this task, the architect must develop 
an understanding of the potential applications of 
each system and then bring to bear extensive know
ledge of hardware architecture, operating systems 
principles, implementation details, component 
technologies and many other things to accomplish 
its design. 

The task force prepared a report on a course 
of study in computer hardware architecture. The 
material presented in this report was restricted to 
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those topics which we felt every computer engineer and 
computer scientist ought to know and to those computer 
systems which have been in the mainstream of commer
cial equipment. The material was organized into 11 
modules, each dealing with a fundamental aspect of 
computer hardware architecture. The modules are: 

Module No. Title 

2 

3 
4 

5 
6 

7 

8 

9 
10 

11 

Introduction and Meta Representation 

Data Representation 

Instructions and Addressing 

Interpretation and Control 

Memory Hierarchies 

Protection Mechanisms and Hardware 
Aids to Supervision 

Specialized Processors 

Multiple Computers 

Performance Evaluation 

Re l i ab i 1 i t y 

System Design Evaluation. 

Not much was said in the report about software and 
operating systems directly, but their influence on 
hardware architecture permeated all the modules. The 
report was published in the December, 1975 issue of 
Computer~ magazine. 



THE MINERVA MULTI-MICROPROCESSOR 

Lawrence C. Widdoes, Jr. 
Digital Systems I:aboratory 

Departments of Electrical Engineering and Computer Science 
Stanford University 

Stanford, California 94305 

A multiprocessor system is described which is an experiment 
in low cost, extensible, multiprocessor architectures. Global issues 
such as inclusion of a central bus, design of the bus arbiter, and 
methods of interrupt handling are considered. 

The system initially includes two processor types, based on 
microprocessors, and these are discussed. Methods for reducing 
processor demand for the central bus are described. 

1. Introduction 

At Stanford University we are In the process of constructing 
the Minerva Multi-Microprocessor, designed to allow continuing 
experimentation with a class of inexpensive, extensible multiprocessor 
architectures. 

Given the dramatic progress of LSI technology, it has become 
important to find modules suitable for LSI implementation which fit 
together as natural parts of a much larger system. A multiple
instruction multiple-data stream (MIMD) [FLY72] architecture 
may be partitioned so that each processor corresponds to a single 
module, yielding these desirable attributes: 

l. Extensibility. An MIMD architecture is extensible 
with a nearly constant cost/performance ratio, to 
some limit [BAU75]. 

2. Reliability. Parts of an MIMD machine may fall 
and be repaired without catastrophic effects 
[HEA 73]. 

Other ad vantages of multiprocessors are discussed in [LEH66], 
[HWA 74], [RA V73], and [REY7il 

From the hardware point of view, the goal of the Stanford 
Minerva experiment is to make contributions to the following 
questions regarding a low cost, extensible multiprocessor: 

1. What bus structure and hardware communication 
protocols are suitable? 

2. What simple mechanisms can be devised for 
reducing the problem of limited bandwidth of the 
communication channels? 

3. How can the components of a multiprocessor be 
partitioned for LSI packaging? 

In addition, the experiment has numerous software goals, but these 
will be considered elsewhere. 

The remainder of this paper discusses the structure of the 
Minerva Multi-Microprocessor, and presents our conclusions about 
these hardware issues. 

2. Minerva Hardware 

The Minerva Multi-Microprocessor system consists of a 
compatible set of asynchronous devices organized around a single 
demand-multiplexed bus IDBUS (Inter-Device Bus). The 
organization of the multiprocessor Is shown in Figure I, and the 
devices shown there are briefly described in the Appendix. 

For reasons of extensibility, the shared bus IDBUS is the only 
communication path between devices, with the exception that each 
device which Is capable of initiating a conversation over the IDBUS 
has at least one direct communication path to the IDBUS ARBITER, 
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which arbitrates control of the IDBUS. This communicaUon path 
consists of a request line and a grant line. 

We have currently designed two processor devices, c:a.lled the 
8080 CPU and the 3000 CPU, based on the Intel 8080 and 3000-
series microprocessors, respectively. Minerva will support at lea.~t 
eight CPUs of the 8080 class, and four CPUs of the 3000-series class 
simultaneously without severe problems of IDBUS bandwidth. We 
hope to increase these numbers by using software methods to reduc:e 
processors' IDBUS bandwidth requirements. 

2.1 IDBUS Structure 

To meet our aims of extensibility and low cost, we chose a 
single, demand-multiplexed bus with a data-path width of 32 bits. 
Because we are installing 32-bit processors (3000 CPU), this data 
width is necessary. We are able to draw conclusions about interfacing 
processors with narrow data words to a wide bus by using eight-bit 
processors (8080 CPU), so this data width is sufficient. We chose a 
demand-multiplexed design because we intend to acquire enough 
processors to severely overload the bus and to study means C>f 
reducing bus loading; time multiplexing would eliminate this area ()f 
investigation.. Finally, because multiple buses provide at best no 
increase in cost-effectiveness, we chose the simpler single-bus structure. 
In general, the conclusions we draw can be applied to multi-bus 
structures. 

IDllUI 

Figure I 
Minerva System Block Diagram 



We use an IDBUS address width that allows access to 230 

bytes, large enough to allow the addition of virtual memory. Actually, 
the address consists of a 28 bit word address for read and an 
additional four byte-select signals for write. The byte-select signals 
enable writing of any combination of bytes within a four-byte word. 

Any device which wishes to initiate a conversation over the 
IDBUS first reserves the IDBUS by means of a standard protocol: the 
device raises its request line and waits for its grant line to become 
asserted. For reasons of extensibility we do not daisy chain the 
requests and grants; daisy chaining leads to intolerable delays as the 
number of active devices grows. Although requests can be 
overlapped with bus operations, request turnaround time is important 
during periods of low bus utilization, for example, when a single 
processor is executing a largely sequential program segment; therefore 
a centralized arbiter is essential for a system containing many 
processors each with a widely variable bus bandwidth requirement. 

Jordan and Baatz point out the deficiencies of a fixed-priority 
bus arbitration discipline [jOR 741 A !though a fixed-priority 
discipline is tempting because of its simplicity, it is unsatisfactory. If 
the number of requestors is large enough to allow good bus 
utilization, then it is large enough to possibly lock-out the lowest 
priority requestor for an arbitrarily long time. If the maximum 
waiting time is not of interest for those processors which may be 
locked out, then this situation may be tolerable, but if processors are 
to be indistinguishable, and if a processor is to have the capability of 
meeting real time constraints, then lockout must be impossible; we 
must be able to calculate an upper bound on waiting time. 

The IDBUS ARBITER is divided into two parts; a priority 
arbiter and a FIFO arbiter. Out of a total of 39 ports, 16 are FIFO 
ports, and the remainder are priority ports. The number of priority 
or FIFO ports can be easily increased at the cost of slightly longer 
arbitration time. 

The priority ports are used for devices which have a 
predictable, non-saturating IDBUS bandwidth requirement. We 
include these ports primarily because it is often convenient for a 
device (eg., the CRT) which has a periodic, small IDBUS bandwidth 
requirement, to receive guaranteed fast service. Because the IDBUS 
demands of processors are generally dependent upon software, 
processors will ordinarily use FIFO ports. The 3000 CPUs actually 
have two request lines to the IDBUS ARBITER, one to a FIFO port, 
and one to a priority port. The priority line is used to make special 
IDBUS accesses under microprogram control. For example, one 3000 
CPU acts as an arithmetic processor; arithmetic routines are stored in 
the local microprogram. Any processor requiring an arithmetic result 
places operands In main memory and requests service by sending an 
interrupt to the arithmetic processor. The operands are fetched from 
public RAM and the results are replaced in public RAM by 
requesting the IDBUS through a priority port. Since the original 
requestor was forced to wait in a FIFO queue for IDBUS access, this 
strategy does not greatly complicate the calculation of maximum 
waiting time for IDBUS service, but it significantly shortens 
maximum waiting time for arithmetic operations. The use of these 
priority lines will be carefully controlled during the construction of 
the microprograms, and therefore will not cause priority IDBUS 
demand to be unpredictable. 

The disadvantage of FIFO arbitration is added hardware 
complexity, which may result in increased waiting time and increased 
cost. The increased waiting time is small, l 00 ns waiting· time for an 
eight-port FIFO arbiter versus 60 ns for an eight-port priority arbiter, 
both implemented with 7400-series SSI and MSI parts. The increased 
cost is not significant; the 1/0 pin count is obviously identical for alt 
arbitration disciplines, and therefore the LSI implementation costs are 
essentially identical. 

FIFO queueing is not the only discipline that will prevent 
IDBUS lockout; a rotating priority scheme would serve the same 
purpose and the costs are not significantly different. The arbitration 
time for a rotating priority discipline can be essentially identical to 
that of a fixed priority discipline. 

2.2 Interrupt Structure 

For reasons of extensibility, interrupts, like all other forms of 
communication, are constrained to be sent over the IDBUS. 
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Interrupts are sent over the IDBUS from the interrupting device to 
the interrupted device by placing on the IDBUS an address which 
defines the IDBUS conversation as an interrupt and also defines the 
the interruptee processor, and data which defines the interrupting 
device and condition. Each device which has the capability to be 
interrupted listens to the IDBUS for its interruptee address. 

Many 1/0 devices have the capability to send interrupts. 
Each 1/0 device which has this capability has, for each condition 
which may initiate an interrupt, two eight-bit internal registers, the 
interruptee register, and the interrupt identity register. These 
registers are accessible over the IDBUS. They are concatenated with 
appropriate constant signals in order to form the full address and 
data sent over the IDBUS during an interrupt conversation. 

In conventional uniprocessor systems, the boolean variable 
which represents the state of an interrupt" condition is stored at the 
interrupting device. Communication to a processor of the value of 
the variable is either by priority access to the central bus CDEC73], 
or by direct connection. In the first case the interrupt will be handled 
as soon as it is placed on the bus, and in the second case the interrupt 
may be handled at any time, since it does not tie up communications. 
In either case the interrupt is cleared when handled. 

These conventional solutions are obviously unsatisfactory for 
an extensible multiprocessor. We cannot tie each interrupt flip-flop to 
each processor, and we cannot guarantee that an interrupt will be 
serviced as soon as it acquires the bus. We are therefore forced to 
store information about the state of an interrupt at the interruptee. 
The storage of such information causes a peculiar synchronization 
problem in disabling interrupts. That is, it is difficult to know, after 
a particular interrupt has been disabled, whether the interruptee will 
be interrupted by a previous event. The solution to this problem 
which avoids duplicating hardware in each processor is to include in 
each 1/0 device a status bit for each interrupt condition in that 
device. This status bit tells whether the interrupt condition has sent 
an interrupt over the IDBUS since the last time the bit was cleared; it 
is tested after the interrupt condition has been disabled. 

The resettable interruptee feature provides much flexibility in 
interrupt handling mechanisms. In one degenerate case, all l/O 
device interrupts can be directed to a single, fast, interrupt handling 
processor. The 3000 CPU is well suited for this task, although the 
8080 CPU is much too slow. The interrupt handling processor is 
responsible for scheduling all work for the other processors; they 
receive interrupts only from the interrupt handling processor. This 
idea has appeared elsewhere [LAM68]. Such an interrupt 
handling mechanism requires a fast processor in order to service the 
worst case accumulation of interrupts within desired time constraints. 

We are able to implement interrupt handling mechanisms 
which do not require a fast processor, but are only slightly less 
general, by using the full power of the resettable interruptee. For 
Pxample, whenever a processor receives an interrupt of type A, before 
servicing the interrupt it can examine the state of the other processors 
and assign the next interrupt of type A to the best processor. This 
mechanism is less effective than the centralized design because the 
assignment of work is made considerably before the work is to be 
done, and so this strategy will work only in an environment of 
periodic interrupts with predictable computing requirements. High 
processor speed is not required because task scheduling is distributed 
among all processors. 

The function of the resettable interrupt identity feature is 
simply to allow reshuffling of priorities in cases where the interrupt 
identity is mapped onto priority levels at the processor. 

Any processor which can access the entire IDBUS address 
space automatically has the capability to send interrupts; a processor 
can, in fact, simulate the occurrence of any type of interrupt by 
placing the appropriate data on the IDBUS. This feature facilitates 
experimentation with various interrupt handling strategies, and also 
allows processors to exchange signals without polling. 

2.3 Mutual Exclusion 

The software must deal with resources which need to be 
accessed sequentially, and it is therefore important to provide a basis 
for implementing software mutual exclusion primitives which is 
somewhat more convenient than IDBUS interlock [DIJ68]. 



A !though the common solution is to allow all public RAM locations 
to be accessed with an indivisible read"modify-write operation, we 
chose to provide special mutual exclusion flags, for reasons of cost. 
Minerva has 256 mutual exclusion flags ,accessible over the IDBUS. 
A mutual exclusion flag becomes asserted: whenever it is read, and in 
the same IDBUS cycle. It is cleared by a write. These flags thus 
implement the test-and-set primitive, from which higher-level 
mechanisms can be built. 

In order to allow mutual exclusion on a lower level, a control 
signal is included in the IDBUS which retains IDBUS control for the 
grantee during the next bus cycle. This facility allows 
microprogrammed processors to implement a read-modify-write cycle, 
and also allows devices which are not processors to perform mutual 
exclusion if necessary without the extensive control structure required 
for using the mutual exclusion flags. 

2.4 8080 CPU Structure 

The 8080 CPU is a processor module based upon the Intel 
8080 chip [INTA 75). It is shown in Figure 2. and consists of the 
8080 chip and ancillary circuitry. The major functions of the 
ancillary circuitry are to receive interrupts, to provide private 
memory, to provide private I/0 (eg., local status registers not 
accessible over the IDBUS), and to interface the 8080 chip's 8 data 
lines and 16 address lines to the 32 data lines and 32 address lines of 
the IDBUS. 

A II directly accessible ID BUS locations and all private 1/0 
locations are accessed by memory reference instructions; we have 
converted the 8080 IN and OUT instructions to reference the lowest 
256 bytes of private RAM, Addresses are translated before being 
placed on the IDBUS; commonly accessed IDBUS locations are part 
of the 16-bit 8080 address space, and all other locations can be 
accessed by indirection through an address register set up by a 
private 1/0 operation. 

A It hough use of the 8080 chip as the basis for a processor 
module is not currently a cost effective way to obtain instruction 
executions per second in the Minerva system, we were interested in 
the problems involved in interfacing an eight-bit machine to a larger 
bus. The total gate count of the ancillary circuitry excluding private 
RAM is only about 700, and therefore it is easy to imagine that this 
hardware could be placed on bus interface chips organized in a bit
sliced architecture and controlled by an eight-bit CPU chip. 
Furtherm.ore, the cost of the 8080 CPU device is very low, so that 
even with limited resources we have been able to begin construction. 

2.4.l Private Memory 

Each 8080 CPU device includes 1K bytes of private RAM, 
organized as 4K by l byte in order to interface directly with the 8080 
CPU chip. In order to reduce the cost of the 8080 CPU device, the 
private RAM is not directly accessible over the IDB US. Software 
protocols have been established to allow one processor to access the 
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private RAM of another, but private RAM is not normally accessed 
in that mode. 

The primary purpose of the private RAM is to allow us to 
explore software methods of reducing IDBUS loading. Private RAM 
is located· at the bottom of the 16-bit address space seen by the local 
8080 CPU chip; private RAM and public RAM are addressed 
uniformly. Routines that are not location dependent can therefore be 
relocated from private RAM to public RAM or vice versa without 
modification, allowing dynamic optimization of the locaticin of code. 

Commonly used constants and reentrant routines are stored in 
private RAM, as well as some variables that are local to a process. In 
particular, the routine which copies from private to public RAM and 
vice versa is located in private RAM to minimize IDB US loading. 
The storing of local variables in private RAM introducE!S a problem 
in task switching: If a process is switched from processor A to 
processor B, then B must either request the local variables from A, or 
the switching must occur at a time when the local variables are dead. 
It is possible to allow the top levels of a process stack to be stored in 
private RAM, and copying the stack is unnecessary if the proce.ss 
switches processors only upon exit from all blocks whose sta.ck is 
privately stored. In order for the scheduler to make good use of this 
strategy, apriori knowledge of the probable execution times of proce.ss 
blocks is required. 

Each 8080 CPU module has a unique, read-only processor 
identity. The processor identity is the ultimate basis for all 
differentiation between processors, and private RAM is USE!d to 
accelerate access to private information by eliminating indirection. 
For example, interrupt vectors are in general different for each 
processor, and since they are stored in the lowest 1K of the 8080 
chip's address space, it is not necessary to use software indirection to 
locate the proper vector at interrupt time. 

The private RAM effectively makes the 8080 CPU into a 
processor which can be dynamically programmed to perform special 
macro functions without using IDBUS bandwidth. In this sens•? it is 
similar to a dynamically microprogrammed processor, eJ<:cept that its 
implementation is currently less expensive, and its "micro" language is 
the same as its "macro" language, resulting in the feature that code 
can be relocated from private RAM to public RAM and vice versa. 

2.4.2 Instruction Stack 

As an inexpensive means of reducing IDBUS lo::tding caused 
by the 8080 CPU, we chose to employ instruction prefetching. 
A !though instruction pref etching has been used elsewhere 
[BEL 71] and a similar idea, the retention of previously executed 
sequential instructions, has also been used [TH061], previous. uses 
have been for the purpose of decreasing average memory access time. 
The same issue can be considered from the point of view of 
decreasing bus loading. 

The 8080 chip contains an eight-bit data bus, and executes 
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instructions from one to three eight-bit bytes in length. Most 
instructions affect one byte of data, and in efficient programs the data 
byte is usually located in an internal register. As a consequence, most 
memory accesses are instruction fetches. This observation is 
supported by the data in Table l, which were collected by 
simulating a mix of arithmetic and memory management routines. It 
should be noted that the programs sampled showed a wide range of 
values for the quantities listed; the range is indicated. Furthermore, 
the 8080 programs sampled have a strong tendency to execute 
sequential instructions. The sequentiality of programs has been 
asserted elsewhere [SHE68]. 

Fraction of Memory Byte Operations Represented by: 

Fetching All 
Instructions 
and Immediate Data 

Fetching First Byte 
of Non-Sequential 
Instruction 

Fetching Non-Immediate 
Data or Stack 

All Write Operations 

Table l 

.80 to .99 

.01 to .05 

.Ol to .15 

.01 to .10 

8080 Instruction Stream Characteristics 

These observations lead to the conclusion that using the entire 
32-bit IDBUS data path to prefetch instructions would significantly 
reduce th.e 8080 CPU's IDBUS demand. We therefore implemented a 
four-byte instruction stack which operates as follows: When an 
instruction byte which is not in the instruction stack must be fetched 
over the IDBUS, the four bytes containing the desired byte and 
starting on a four-byte boundary are fetched and retained in the 
instruction stack. When an instruction byte which is already in the 
instruction stack is required, it is simply fetched from the instruction 
stack. Immediate operands are considered to be instruction bytes. 

It is possible that an 8080 CPU may loop in its instruction 
stack, never fetching a new instruction over the IDBUS. A case iii 
point is a jump to the current location; the instruction stack would not 
reflect any changes that might occur in that instruction in public 
RAM. This is a minor consideration; we do not intend that exit from 
four-byte loops should be dependent upon another device changing 
the looping instructions in public RAM. On the other hand, this 
problem should be considered for larger instruction stacks. 

The case in which an 8080 CPU writes into its own 
instruction stream is more plausible than the case in which another 
processor writes into an 8080 CPU's instruction stream, and it is 
therefore important to prevent the anomaly in which a processor 
would write into its own instruction stream less than four bytes ahead 
of the current execution address, yet not execute what it had written 
because the instruction stack had not been updated by the write. 

The instruction stack may be contrasted with a cache, which 
can retain non-sequential data and uses a more complicated 
replacement strategy. A cache is thus able to exploit the property of 
program locality, which includes most of program sequentiality, but 
also much more. Unfortunately, the cache is more complicated to 
implement, although it would involve the same number of 1/0 pins, 
and it suffers from the severe problem that if it is big enough to 
exploit locality, then It is big enough that out-of-date information 
becomes a problem. If the only information stored in the cache 
consists of reentrant procedures, then this problem is minimal. On 
the other hand, if the cache can contain only reentrant procedures, 
then much of the locality property is lost. We return to this issue in 
our discussion of the 3000 CPU cache in Section 2.5. l. 

Unless the 8080 instruction stack were to be made large 
enough to allow an instruction in the stack to be used, on the average, 
significantly more than once, it would not pay to make the instruction 
stack larger than the data path, that is, four bytes. Even assuming a 
wider IDBUS data path width, the data path utilization decreases as 
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the instruction stack size increases, as shown in Table 2. Here the 
data path utilization is defined to be the number of useful data bytes 
in an average bus operation divided by the width of the data path. 
The data in Table 2 were collected from the same programs as the 
data in Table l, and show the same variability. 

Stack Length (Bytes) Average Data Path Utilization 

1.0 

2 .80 to .95 

.60 to .90 

8 .35 to .80 

16 .20 to .60 

Table 2 
8080 Instruction Stack Size vs. Data Path Utilization 

By setting a bit in a local status register, the 8080 CPU can 
cause every IDBUS fetch to be placed in the instruction cache. 
Executing in private RAM, the 8080 CPU can therefore access bytes 
in sequential IDBUS locations using minimal IDBUS bandwidth. 

Our instruction stack requires four eight-bit, tri-state data 
latches, four four-bit address latches, and a small amount of control 
logic. This is in addition to the latches required for IDBUS data 
which is routed around the instruction cache. 

Instruction prefetching may be contrasted with a multiple-bus 
design. An alternative IDBUS structure would consist of four eight
bit buses; each processor would have access to each bus, and public 
memory would be four-way interleaved. This design involves 
additional bus control at each processor, and additional bus arbiters. 
More importantly, it involves replication of bus address and control 
signals. This problem becomes relatively less important as the ratio 
of data width to address width increases, but an increased data width 
results in increased cost and also in less efficient use of the data word. 
A 32-bit data word is common; with 20 address signals, six control 
signals, and 32 data signals in each bus, a four-bus structure requires 
232 signals, while a single bus with 32•:"4 data bits requires only 154 
signals. Our instruction stack design requires only about 68 bus 
signals, and corresponds to the four-bus structure in which each bus 
has eight data bits, 30 address bits, and six control signals, a total of 
176 signals. 

On the other hand, multiple buses and interleaved memory 
allow more efficient use of the data path. With the instruction stack 
design, each write operation requires a full IDBUS cycle and 
therefore wastes three bytes of the data path. Other inefficiencies lie 
in data reads and wasted instruction bytes. Our instruction stack 
allows a data path utilization of from .6 to .9, (see Table 2), 
whereas the four-bus design would give a data path utilization of I 
(no waste). Assuming that looping in the instruction stack does not 
take place, in both cases data path utilization is proportional to 
maximum attainable total throughput. 

2.5 3000 CPU Structure 

The 3000 CPU is a 32-bit microprogrammed processor 
module based upon the Intel 3000 chip set [INTB 75). 

The 3000 CPU is largely conventional, executing 
microprograms from a RAM control store of I K by 32 bits. The 
RAM control store is locally accessible, and is also accessible over the 
IDBUS. The design of the 3000 CPU is similar to the design of the 
8080 CPU in interrupt reception, provision of private memory, and 
provision of private 1/0. These aspects will not be discussed further. 
However, the problem of interfacing the high speed 3000 CPU to the 
IDBUS required a unique solution, and this is discussed in the next 
section. 



2.5.1 Cache 

Depending upon the macro-instruction set, one 3000 CPU is 
capable of almost fully loading the IDBUS. We intend to experiment 
with the design of instruction sets which reduce IDBUS loading, but 
microprogramming alone cannot efficiently take advantage of the 
dynamic locality of programs. 

Fortunately, there has been much work done on the design of 
caches to decrease average memory access time [KA P73]. The dual 
role of a cache is that it can dramatically decrease the loading of a 
shared memory bus. 

Our cache has a capacity of 256 buckets, each containing 32 
data bits, 20 address bits, and two control bits: valid and modified. 
Addresses presented to the cache control are 28 bits, specifying a full 
IDBUS word address. Addresses, data, and control bits are presented 
to the cache under microprogram control; the cache is simply a RAM 
with special control logic to perform certain cache operations without 
microprogram intervention. 

The microprogram uses the cache in three modes as follows: 

I. Reading. If the address is a cache hit, then read 
from cache, otherwise create an empty cache bucket, 
read from IDBUS, store the address and data into 
cache, set modified to false, set valid to true, and 
read from cache. 

2. Writing a non-shared address. If the address is a 
cache hit, then set modified to true, store the data, 
and exit. Otherwise, create an empty cache bucket, 
set valid to true, set modified to true, and store the 
address and data. 

3. Writing a shared address. If the address is a cache 
hit, then set modified to false and store the data. In 
any case, perform a write over IDBUS. 

In order to create an empty cache bucket, first the cache 
resident to be removed is chosen by direct addressing (hashing) using 
the address of the new cache resident, and if modified is true in the 
resident to be removed, then the resident to be removed is written 
over IDBUS. 

Shared and non-shared locations are determined by software 
convention, and are differentiated by a special address bit. The 3000 
CPU macro-instruction address space is thus folded; a real IDBUS 
location has one name as a shared location and another name as a 
non-shared location. 

Our highest-level programming language will be modeled 
after Concurrent Pascal [BRl74], and will require explicit 
declaration of shared variables. The addition of a special address bit 
to differentiate between shared and non-shared variables causes 
problems for processors which have access to only a small address 
space and therefore cannot afford to fold that space, eg., the 8080 
CPU, but such processors will treat all variables as shared and will 
not have caches. 

The strategy outlined above for performing reads and writes 
uses minimal IDBUS bandwidth; besides reads of addresses which 
are not cache hits and writes of evicted cache residents, only writes to 
shared addresses require use of the IDBUS. This reduction in 
IDBUS loading is accomplished by maintaining redundant data in 
the various caches, and so provision must be made for keeping the 
redundant data consistent. Each 3000 CPU cache continually listens 
to the IDBUS for writes. Whenever the cache detects an IDBUS 
write, the IDBUS address being written is stored in a 28-bit buffer. 
The buffer is emptied by invalidating the cache resident having the 
address which was overwritten, if there is such a resident. Emptying 
the buffer occurs between processor requests to access the cache; this 
operation is implemented in hardware. There is no problem with 
buffer overflow, since the cache can be examined and a bucket 
invalidated significantly faster than the IDBUS write cycle time, and 
such buffer emptying operations have priority over microprogram 
requests for cache operations. 

Writes over the IDBUS are not partitioned into writes to 
shared locations and writes to non-shared locations, therefore more 
cache operations are done than necessary, since optimally only writes 
to shared locations would affect every cache. 
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Incorrect results are obta.ined if two different. 3000 CPU:s 
attempt to write into the same address and use the non-shared nam1~ 
for the address. We count on a specially constructed high level 
language with concurrency primitives to prevent this type of error. 
Such a language is important for reliable programming with 
concurrency, regardless of the hardware. Brinch-Hansen discusses 
this issue [BRI73]. 

The 3000 CPU has the capability to perform an IDBUS read 
or write without using the cache. This capability is used by 
convention when accessing the mutual exclusion flags in 1)rder t1) 
prevent synchronization problems that would be caused by the 
existence of multiple copies of these flags. 

A !though our 3000 CPU design uses only random MSI and 
SSI in addition to the Intel 3000 chip set, the design can be 
partitioned into a small set of LSI chips. In the LSI implem1entation, 
the cache might operate without microprogram control, inte!rcepting 
all IDBUS accesses except when explicitly inhibited, and als10 
monitoring the IDBUS for writes to resident addresses. 

3. Proe-ress and Goals 

We have completed the construction and debugging of a 
nucleus system containing one 8080 CPU, the IDBUS ARBITER, 
and several peripheral controllers, and have commenced con:struction 
of the remaining peripherals and a 3000 CPU. These devices will be 
completed by the middle of 1976. Several additional CPU's will then 
be added. 

In parallel with the hardware construction, we are prnceeding 
with the design of an operating system and a compiler for Concurre111t 
Pascal. The philosophy in writing the operating system is toi do task 
scheduling dynamically in order to create an environment in whiclli 
the physical implementation does not have to be explicitly considered 
during programming. 

4. Conclusion 

Very low microprocessor costs allow us to consider connecting 
microprocessors together to form a low-cost extensible multiprocessor. 
To keep costs minimal, a central bus is used, and hardware in each 
processor exploits properties of programs in order to reduce IDBUS 
loading. Such hardware can be incorporated into LSI microprocessc1r 
chip sets with little additional cost. 

The bus arbiter is centralized in order to reduce bus access 
time, which is important when bus utilization is low. Th·~ arbitE!r 
uses a FIFO scheduling discipline to bound bus lockout time. 

Maximum flexibility of scheduling disciplines is provided by 
including a resettable interruptee register for each interrupt wndition, 
and extensibility ls retained by directing an interrupt to the 
appropriate interruptee over the central bus. 
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Appendix 

3000 CPU[0:3] 
These devices are processors based on the Intel 3000 chip set. 
Control store is IK 32-bit words of RAM. The 3000 CPU has lK 
32-bit words of private memory accessible by microprogram. A 512-
bucket cache is used to reduce IDBUS loading. 

8080 CPU[0:7] 
These devices are processors based on the Intel 8080 CPU chip. 
Each contains private memory and has a 4-byte instruction cache 
used to reduce IDBUS loading. The 8080 CPU can access the entire 
IDBUS address space; less frequently referenced areas are accessed by 
indirection. 

CRT CONTROLLER (CRT) 
This device controls a standard raster-scan video monitor. It 
continuously reads lines from the PUBLIC RAM and displays them 
on the monitor, requiring less than 31. of the IDBUS bandwidth. It 
requires a data structure in RAM consisting of a linked list of lines of 
ASCII characters, with the head of the list at any location. Character 
fonts are stored in a special RAM accessible over IDBUS and are 
variable. The CRT never interrupts any processor. 

IDB US 
The IDBUS is the only communication path between devices. It has 
a data path width of 32 bits, and an address width of 28 bits plus 
four byte-select signals. 

IDBUS ARBITER 
The IDBUS ARBITER arbitrates control of the shared bus IDBUS. 
It has two classes of request ports, priority ports and FIFO ports. 
The priority ports handle requests in fixed priority order, and the 
FIFO por.ts handle requests in FIFO order. 

IDBUS MONITOR 
The IDBUS MONITOR continually monitors the IDBUS and the 
IDBUS ARBITER. In a 256-bucket buffer, the IDBUS MONITOR 
records for each IDBUS cycle, or for a random sampling of IDBUS 
cycles, the grantee, the slave address, and a floating-point time 
interval since the last recorded IDBUS cycle. This buffer interrupts 
when full, and can be read over the IDBUS. 

KEYBOARD CONTROLLER (KBD) 
This device is the IDBUS interface for an ASCII keyboard. 

MUTUAL EXCLUSION FLAGS (MUTEX) 
MUTEX consists of 256 flags, addressed as memory and organized as 
one per 32-bit word. Two operations are defined for these flags: test
and-set and clear. These flags are used to easily implement mutual 
exclusion. 

PUBLIC RAM (RAM) 
The PUBLIC RAM consists of 16K 32-bit words of MOS dynamic 
memory having about 300 ns access time and 500 ns read cycle time. 
During a write, any bytes of the addressed word may be 
independently inhibited from being written. 

PUBLIC ROM (ROM) 
The ROM consists of lK 32-bit words of reprogrammable MOS 
read-only memory having about 1.5 us access time. It is read over 
IDBUS and is used to bootstrap the system at power-on time. 

REAL-TIME CLOCK (CLK) 
The CLK is a 32-bit counter which increments at 10 us intervals. It 
will be used for time-of-day calculation and high-resolution interval 
timing. It delivers all 32 time bits when read. It has the capability to 
interrupt at the 32-bit alarm time which is stored in a single alarm 
register addressed as a memory location, and it has the capability to 
interrupt at timer overflow. 

UART 
This ts the interface to a standard UART. 
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A HIERARCHICAL, RESTRUCTURABLE MULTI-MICROPROCESSOR ARCHITECTURE 
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Al:lSTRACT 

This paper introduces a system architecture whic~ 
allows a high degree of restructuring so that system 
resources may be tailored to processing requirements. 
The proposed system organization consists of a large 
number of byte-slice processors interconnected through 
a system of busses. Each processor is capable of com
municating with every other processor in the system and 
any number of adjacent processors may be strung to
gether to create a wider arithmetic capability than is 
possible with a single processor. Processors may be 
organized into a number of independent teams while 
processor teams may, in turn, be organized in a hierar
chical fashion to allow for concurrent processing. 
Processor teams may function either in cooperation with 
or completely independent of other processor teams. 

All communication throughout the system consists 
of information packets containing the data to be trans
ferred and a series of tags which indicate the destina
tion address for the data and the action to be taken by 
the processor upon receipt of the information packet. 

Two types of busses are employed: Conventional 
busses and the circulating loop (or Pierce loop). The 
circulating loop moves an information packet in a fixed 
direction a uniform distance in each unit of time and 
therefore allows independent data transfer operations 
to be carried out simultaneously. Several examples il
lustrate the utility of the proposed architecture. 

I NT RO DUCT I ON 

Computer technology appears to be reaching a point 
of diminishing returns in attempts to increase the 
basic speed of a large-scale processor. Regardless of 
the advances in hardware technology, there have tradi
tionally been requirements for architectural innova
tions to gain increased speed and capabilities as well 
as added flexibility. Historically, the major concerns 
for parallel designs centered upon the efficient uti li
zation of hardware resources. With the recent revolu
tion in the capabilities and economics of large-scale 
integration technology, the cost of a basic central 
processing unit has decreased to the point where it is 
no longer a significant fraction of total system costs. 
At present, the cost of software development is of 
major concern even in conventional architectures and 
will likely be the limiting economic factor in archi
tectures which have been developed to exploit program 
parallelism. This paper is directed towards the de
velopment of fundamentally different computer archi
tectures for the efficient utilization of an aggregate 
of the newly available microprocessors operating con
currently to gain increased computational power. 

In order to realize the potential advantages of 
the concurrency of operations possible in multiple
processor systems, an adequate system for communication 
and control among a multitude of processors must be de
veloped. In the past, multiple-processor systems em
ployed only a small number of complete processors or 
large numbers of slaved functional units and were 
structured accordingly. The communication between 
processors has often been achieved through the use of 
a dedicated set of channels, multi-port memories, a 
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cross-bar switch, time-shared busses, or combinations of 
these methods; typically, the control arrangements have 
become less flexible as the number of processors in
creased. Thus, systems of the past are often unwieldy 
and impractical in terms of current desires. 

2' 3 
T. C. Chen has demonstrated the weaknesses in 

traditional concurrent systems and provided motivation 
for the development of multiple-processor systems that 
are loosely coupled with a high degree of local intel-
1 igence and autonomy. In his discussion on the eff -
ciency of traditional, tightly coupled, concurrent sys
tems, Chen shows that for small deviations from the 
ideal, perfectly parallel task to a real task with small 
amounts of serial or sequential requirements, the ef
ficiency of a tightly coupled, concurrent system takes 
a precipitous drop. The efficiency falls initially at 
a rate of M-1 where M is the number of parallel elements 
in the system; the greater M is, the more significant 
the impact of less than perfectly structured, perfectly 
para! lei problems. Since no two problems are ever 
quite the same, this also provides motivation to have 
the system adapt to fit the problem rather than dis
torting the problem to make it amenable to solution by 
the data processing system. 

As a result of considerations such as those pre
viously mentioned, a new system of processor should 
meet the following requirements; 

1. A large number of processor modules should be 
possible. 

2. Uniformity of modules from the point of view of the 
communication/control structure should exist. 

3. Each processor module should be capable of communi
cation with all (or most) other processor modules. 

4. Blocks of processors should be able to function as 
a team, independently of other teams. 

5. A hierarchy of control should be possible as shown 
in Fig. 1. 

6. A dynamic ability to reconfigure the system (i.e., 
rearrange the hierarchy of control) to fit the 
system to the problem, thus allowing the system to 
appear as a Von Neuman machine, a parallel array 
processor, an associative para! lel processor, etc., 
as required. 

]. Considerations such as reliability, fault-tolerance, 
and graceful degradation demand the incorporation 
of redundancy and a capability for dynamic 
reconfiguration. 

The system described here has been developed to 
satisfy the preceding requirements. 

GENERAL SYSTEM OVERVIEW 

As illustrated in Fig. 2, the proposed system con
sists of a number of modules containing microcomputers 
and ancillary circuits connected by a series of busses, 
loops, and SHORT or BLOCK/SHORT modules. All inter
processor communication takes place on the various 



busses. Each processor has its own independent memory 
and is capable of performing any of the system tasks 
assuming it has been suitably programmed. Along with 
the various elements of hardware in the system, a basic 
system philosophy and a set of communication protocols 
are required. It is intended that this system be re
structurable and capable of being organized in a hier
archical fashion. As such, there will generally be one 
processor (any processor) responsible for overall 
system action. This processor designates subordinates, 
establishes the chain-of-command and directs its imme
diate subordinates in the tasks they are to perform. 
In order to implement this philosophy, the following 
basic characteristics/protocols wi 11 be incorporated 
into the design: 

1. Each module will be named, both with a unique, per
manent name, a 11 P-name 11 and with a name that is 
changeable, a 11V-name. 11 Each V-name consists of 
two parts: A Block or team name and an element 
name. All communication is carried out by tagging 
or addressing the information with the destination 
V- or P-name and placing it on a bus. Thus, data 
or commands may be passed to a module by specifying 
both the block and element names or to all modules 
in a block by specifying the block name and 11 XX 11 

for the element name where 11 XX 11 specifies a 11 uni
versa 111 name to which a 11 modu 1 es respond. Like-
wi se, information can be passed to all modules 
simultaneously by specifying 11 XX, XX 11 as the V-name. 

2. All commands sent by a master or controlling module 
must be taken in by its subordinate and acknowl
edged. The subordinate queues the commands pending 
the arrival of the appropriate operands. 

3. Task completion must be signaled. 

4. Several adjacent processors may be strung together 
to form a wider arithmetic ability than would 
otherwise be available. 

5. All communication throughout the system wi 11 con
sist of information packets containing the data to 
be transferred and a series of tags. Since each 
processor is identified by a name, all ambiguities 
associated with the transfer of information are 
resolved through the use of the processor names. 
In addition to the destination P- or V-name, each 
packet wi 11 contain tags uniquely associating the 
operands with the commands in a possible queue or 
other temporary storage medium. For data packets, 
a 1 bit tag will also indicate the order of the 
operands for non-commutative operations. 

DESCRIPTION OF SYSTEM ELEMENTS 

The heart of each system module is the micro
computer itself. Each microcomputer, the microproc
essor with its memory, wi 11 be microprogrammed to pro
vide all the basic functions of a standard processor 
and to respond appropriately to the actions of the 
system. It should automatically perform overhead type 
tasks. For example, it should maintain a queue of com
mands and automatically acknowledge the receipt of com
mands. Generally, the programs would consist of a 
series of subroutines whose call would be initiated by 
commands received from more superior elements of the 
hierarchy. 

Each processor must have a priority interrupt 
capability such that interrupts occurring below the 
processor 1 s priority level are masked. It must also 
have lines for the 11 carry out 11 generated by an arith
metic operation or left shift. Likewise, it should 
also have a 11 carry in 11 capability. Gurrently available 
processors organized on a bit slice basis provide 
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these features. 9 There is no requirement as to word 
length, speed, etc., for the processor. 

Communication between processors is provided by the 
system of busses. There are two basic types of busses 
employed in the system: Conventional time-shared busses 
and circulating busses. The circulatin~ bus or C-Bus, 
often referred to as the Pierce Loop, 6 • • 8 can be con
ceptually considered to be a circulating loop that moves 
a packet of data in a fixed direction a uniform dis
tance in each unit of time. Any user can transmit by 
placing an information packet on the bus anytime a gap 
in the circulating traffic appears at its location. 
Each user must continually monitor the traffic pa·ssing 
its location. When a user recognizes that a packet 
passing its location contains its address (or name), 
the user removes the packet from the bus. The packet's 
former position in the traffic stream is now a gap, 
free to be filled with a new packet by any user. The 
C-bus thus provides a temporary memory or queue of in
formation and is a means by which several independent 
data transfers can be carried out simultaneously. 
There are two classes of C-busses, the DONE busses and 
DATA bus. Their functions will be explained later. 
Conventional busses are of the typical 11 party line11 ar
rangement having one transmitting user and many re
ceiving users at a time; the CMD (Command) and ACK/NAK 
(Acknowledge/Negative-Acknowledge) busses are of this 
type. Each of the conventional busses is equipped with 
a bus controller to arbitrate conflicting requests for 
the bus for transmission. Any user desiring to trans
mit must be granted permission by the controller. 

The functions of the busses can also be separated 
into two divisions: Data transfer and control. In 
order to control the system efficiently, several sets 
of busses providing command and control capabilities 
have been grouped together. Each set will collectively 
be termed a Control Group (C.G.). Each Control Group 
competes for attention from each processor on a pri
ority basis much as in the case of a priority interrupt 
system. The Master Control Group (M.C.G.) is the 
highest, most significant priority or O~ level (C.G.O.). 
Each additional Control Group is on level 1, 2, etc. 
Each Control Group other than the Master can be blocked/ 
terminated at the left edge of any processor by activa
tion of the BLOCK/SHORT module. By this it is 
meant that conventional busses are blocked, circulating 
busses are 11 shorted 11 or the loop is closed. Each 
Control Group consists of a CMD bus, a DONE bus and an 
ACK/NAK bus. The CMD bus carries commands to proc
essors. When a processor name matches the name attached 
to a command on a CMD bus at level 11n, 11 an interrupt to 
the processor is generated on interrupt priority 11n. 11 

If the processor priority is lower than 11n, 11 the inter
rupt is accepted and the command is recognized as des
tined for this processor. A processor recognizing a 
command is obligated to reply positively on the ACK/NAK 
bus if the command can be accepted into its command 
queue. Otherwise, the processor replies with a nega
tive acknowledge or NAK. The DONE bus provides the 
means by which the command processor can acknowledge 
the completion of the required task. 

Data transfers are carried out on the DATA C-bus. 
A data item is placed on the DATA bus in the form of an 
information packet containing the data and the destina
tion processor name. As the packet circulates around 
the bus, the destination name is compared to the name 
of each processor. When a match occurs between the 
name on a data item and a processor, that processor is 
signaled and it is obligated to remove the data item 
from the bus. 

The basic bus formats for information packets with 
an explanation of the various fields is given below: 



CMD BUS 

1~ I NAME 

DATA BUS 

I 
p 

I NAME v 

DONE BUS 

Iv I Name 

ACK/NAK BUS 

I v I NAME 

OPERATION 
# 

OPERATION 
# 

OPERATION 
# 

COMMAND 

I~ I DATA 

P/V 1 bit that indicates that the content of 
the name field is to be interpreted as a 
module's permanent name (P), or its V
name (V) . 

Name the name of a processor. When inter
preted as a V-name, it consists of 2-
parts, the block and the element name. 

Operation # -- Each command sent to a module is num
bered and held in memory in numerical 
order by the receiving processor until 
its operands are present and there are 
no commands having a lower number in 
memory. The operands are uniquely 
identified as belonging with a parti
cular command by a matching Operation #. 

1/0 

DATA 

A/N 

In the DATA bus format, this indicates 
the order of the two operands for non
commutat i ve operations. 

The actual operands, etc., transmitted 
on the DATA bus. 

1 bit that indicates the positive ac
knowledgement (A) of the receipt and 
acceptance of a command or a negative 
acknowledgement (N) indicating that the 
named module is unable to accept or 
perform the required operation. 

The SYNC/CARRY LOOP also transfers data through
out the system. It is designed to transfer information 
shifted or "carried out" from the arithmetic section 
of a processor to the arithmetic section of another 
processor. This al lows several processors to function 
as a single multiprecision arithmetic unit. The SYNC/ 
CARRY LOOP passes through each processor module and 
has no storage of information. By activation of the 
appropriate SHORT modules, as shown in Fig. 3, the 
LOOP may be gated through the processor proper or past 
it. In a similar manner, it may also be "shorted" at 
the left edge of each processor module, i.e., it may 
be broken into two closed loops at the left end of the 
module. 

In addition to the various busses, the items men
tioned previously as BLOCK/SHORT modules and SHORT 
modules perform an important function in the implemen
tation of a hierarchical structure. The BLOCK/SHORT 
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modules are a part of every Control Group except the 
Master Control Group. Their function is to divide a 
Control Group into independent sections. This allows 
several teams of modules to operate independently ~n 
the same Control Group. Each BLOCK/SHORT module is 
controlled by the processor to its immediate left. Fig
ure 4 illustrates the utility of the BLOCK/SHORT mod
u!es. Here C.~. 1 is broken into two independent parts 
with each section functioning just as if it were a com
plete C. G. Processor 2,1, for example, can then con
trol 3,1 and 3,2 without any interaction with other 
processors on C.G. 1. 

BASIC I Li..~ISTRAT ! ONS 

The system, when viewed in an unstructured idle 
configuration, will appear as a collection of p~oc
essors ~rranged in a cylindric fashion connected by a 
collection of busses. However this structure whPn 
viewed in an active state, wili generally be divid~d 
into a col!e~t!on of teams of processors in a hierarchy 
of respons1b1l 1ty and control. Structuring takes place 
in the following fashion: 

1. Initially, the user will designate a processor as 
the master and load its memory with the appropriate 
programs. This processor then begins execution. 

2. The master would decide which of the various proc
essors will perform particular tasks. 

3. The master commands each processor in turn to load 
the program being sent to it over the DATA bus. 

4. Each processor then sets its V-name and priority to 
the values sent it on the DATA bus upon command of 
the master. 

5. The appropriate modules are then commanded to acti
vate their BLOCK/SHORT or SHORT modules as 
required. ' 

. For.example, the hierarchy shown in Fig. 5 may be 
defined 1n the system by activating the appropriate 
BLOCK/SH~RT modules, naming the processor appropriately 
and specifying their priorities or the level on which 
the module expects commands. The o.!!:!_ module has been 
established with the V-name of 11 1,1 11 and designated as 
the most superior element in this structure. Modules 1 
and 5, assigned V-names of 11 2,2 11 and 11 2,1, 11 respectively, 
are both directly controlled by 11 1 ,1 11 and expect com
mands at the O!b_ priority level, i.e., from the master 
control group. Module 1 (named 11 2,2 11

) controls di·
rectly the three modules 2, 3 and 4 (named 3,1; 3,2; 
3,3; respectively) through commands on the control 
group at the 12_! priority level. Note that since the 
BLOCK/SHORT modules between 0 and 1 and between 4 and 5 
have been activated, this group of proc~ssors is capa
ble of completely independent action without inter
actio~ with other modules on the Control Group level 1. 
Assuming that the appropriate control modules in the 
SYNC/CARRY loop have been activated as shown, modules 
11 3,XX" could be considered as an arithmetic functional 
unit of 3·n precision where n is the word size of a 
given module. Module 11 2,2. 11 would be the controller for 
this arithmetic section. 

As another example, consider a parallel array proc
essor. This configuration, using an arithmetic capa
bility of 2·n bits would appear as in Fig. 6. Again 
each level in the hierarchy is controlled on a dif
ferent level control group. Module 11 1, 111 is the system 
controller and actually contains the program to be ex
ecuted. Each of the modules 11 3,1 11 through 11M+2,2" 
contains the appropriate data elements as in any 



parallel lll:lrray processor. Module 11 1, 111 would control 
each of the functional groups A, B, ... by placing a 
command with the appropriate destination name on the 
Master Controf Group CMD bus for the specific control-
1 ing module desired. Processor 11 1,1 11 can control all 
the functional groups simultaneously with one command 
addressed to 11 2,xx. 11 Thus, as in the case of a paral
lel array processor, a single ADD, MULTIPLY, etc., 
command could cause all M functional groups to perform 
the required operation on the appropriate operands in 
each of the independent memories. 

In the case that restructuring is required (due to 
problem changes or hardware failures), the master need 
only cause the system to pause while it proceeds 
through the structuring phase again, etc. It is as
sumed that the master can interrupt any processor by 
commands on C.G.O which can never be blocked. 

Although the preceding discussion and examples 
have only two C.G. 's and result in three levels of 
hierarchy, there could be several more C.G. 's. This 
would allow several more levels of hierarchy and, at 
each level, each processor would appear as a master to 
all those processors subordinate to it. 

The following points should be noted: 

1. All data transfers take place on the DATA bus. 
Therefore, this bus wi 11 be a bottleneck and its 
performance will seriously affect the total system 
throughput. The DATA bus must therefore be a very 
high speed bus. 

2. In order that a group of m processors be connected 
to form an m·n bit arithmetic section, they must 
be adjacent or broken only by single modules opera
ting on a different hierarchy level. 

3. Although the master controller usually would com
municate only with the modules one level below it 
in the hierarchy, it can send commands to any 
module through the master control group. It, 
therefore, can begin corrective action by re
assigning names, etc., should a fault occur. 

OBSERVATIONS AND CONCLUSIONS 

The utility of the system proposed here depends 
upon the amount of hardware and software overhead re
quired and the latency in the interprocessor communi
cations. Based on the work of Hayes and Sherman, it 
can be shown that, on the average, in a light to mod
erately loaded system, the expected delay to place an 
information packet on a C-bus, and consequently the 
total message communication rate, is well within the 
practical limits for useful systems. Assuming a 
number of processors communicating with all other proc
essors symetrically on a bus with a 1 .5 x 106 word/sec 
rate with each processor transmitting at~ rate of 
50 x 103 word/sec, Hayes and Sherman show that each 
processor can expect a delay of less than 0.7 µs. 7 On 
the other had, Avi-ltzhak 1 has shown that, in the 
heavily loaded case, a deadlock situation can occur 
where competing groups of processors 11 see-saw11 control 
of the bus, locking out all other processors. There
fore, it is important that the meaning of 11 heavy, 11 

11moderate·, 11 and 11 light 11 loading be determined quanti
tatively. Worst-case figures must be computed and the 
potential for deadlock eliminated. 

As is evident from the examples, only a limited 
number of Control Groups are likely to be used. It 
will be necessary, however, to determine exactly how 
many levels of hierarchy and hence of Control Groups 
are required to provide a generally useful organiza
tion meeting the criteria mentioned earlier. 
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Since the system is to be constructed in a modular 
fashion with a uniform communications interface between 
modules, the direct.physical configuration of a system 
to serve as a small real-time controller or other fixed
task system should be simple and straightforward. 
Following a 11 divide and conquer 11 philosophy, each 
module would be given a single fixed task and would be 
responsible for or to a small constant set of other 
modules thus reducing the problems inherent in handling 
multiple tasks or interrupts in real-time. 

A point of major concern is the cost of the soft
ware required to support a system of the type proposed 
here and the difficulty of preparing user programs. 
While more research is necessary in this area before 
conclusions can be drawn, the complexity of the support 
software is reduced by the simplicity of the C-bus con
cept and by the intercommunications protocol which is 
largely hardware controlled. 

An interesting point is that the proposed architec
ture can be configured for the execution of data-flow 
programs. 4 , 5 The difficulty of preparing data-flow 
programs is no more difficult than preparing programs 
for conventional machines since it is not necessary to 
explicitly detect parallelism. To execute data-flow 
programs, system processors, or perhaps processor teams, 
would be assigned as operators in the data-flow program. 
Each processor would be directed to distribute copies 
of its computational results to destinations indicated 
by the links of the program. The flow of data tokens 
is represented by the flow of operands on the DATA bus. 
The flow of control tokens in the form of packets 
transmitted on the control busses forces data-flow 
programs to enforce the firing rules. 

In conclusion, an organization of microprocessors 
intercommunicating over a series of busses and having 
a restructurable, hierarchial control philosophy has 
been presented. Although the development of this 
architecture is by no means complete, it is hoped that 
the problems indicated and will yield a flexible multi
processor architecture that allows restructuring of 
system resources to tailor them to processing 
requirements. 

REFERENCES 

1. Avi-ltzhak, B., 11 Some Heavy Traffic Characteristics 
of a Circular Data Network, 11 Bell System Technical 
Journal, Vol. 50, No. 8, pp. 2521-2549, Oct. 1971. 

2. Chen, T. C., 11 Distributed Intelligence for User 
Oriented Computing, 11 AFIPS Conference Proceedings, 
Vol. 41, Part 11, pp. 1049, 1972. 

3. Chen, T. C., 11 Parallelism, Pipelining and Computer 
Efficiency, 11 Computer Design, Vol. 10, pp. 69-74, 
1971. 

4. Dennis, J. B., 11 First Version of a Data-Flow 
Procedure Language, 11 Symposium on Programming, 
lnstitut de Programmation, University of Paris, 
Paris France, pp. 241-271, Apri 1 1974. 

5, Dennis, J.B. and Misunas, D. P., 11 Preliminary 
Architecture for a Basic Data-Flow Processor, 11 

2nd Annual Symposium on Computer Architecture, 
p"'i):"" 126-132, Jan. 1975. 

6. Graham, R. L. and Pollak, H. 0., 110n the Addressing 
Problem for Loop Switching, 11 Bell System Technical 
Journal, Vol. 50, No. 8, pp. 2495-2519, Oct. 1971. 

7. Hayes, J. F. and Sherman, D. N., 11Traffic Analysis 
of a Ring Switched Data Transmission System, 11 Bell 
~tern Technical Journal, pp. 2947-2978, Nov. 1971. 



8. Pierce, J. R., "How Far Can Data I.oops Go?" IEEE 
Trans on Communications, Vol. Com-20, pp. 52t="5°r0, 
1972. 

9. Rattner, et al., "Bipolar LSI Computing Elements 
Usher in New Era of Digital Design, 11 Electronics, 
Vol. 47, No. 18, pp. 89-96, Sept. 197 

1 DIRECTLY CONTROLS 2,3 

3 DIRECTLY CONTROLS 4,5 

Fig. 1. Example of a Hierarchical Structure 

.... 
Oct. 
Cl<:::> 
>-0 
ZDC 
0" v 

PROCESSOR 

NOTE: ONLY TWO (THE MINIMUM) CONTROL GROUPS RAVE BEEN SHOWN 
SEVERAL MORE WOULD BE DESIRED 

Fig. 2. Hardware Organization. 

THRU SHORT 

Fig. 3. SHORT Modules. 

44 

/ 



- --\ 

---""---M~~..__-~~-t+---t+---t<--:·:J) 

Fig. 4. A Hierarchical Organization. 

___ - Repre11nt1 flow of information 
on SYNC/CARRY loop 

" ) 
.1---1-'--~~---...j.....4.--~~-----l~~-...!-+---+-+--/ 

r-~----ifa-......a...::=..:.--&,.l---..+-__...,--8!1-+-----fjll--+--o~-M----+-------l~r+--+----fio!:~-~ 
"'"- _, 

PROCESS~R MODULE 
2 4 

V-NAME 

' PRIORITY 
PERMANENT LEVEL 
NAME 

LEGEND 

Fig. 5. A Hierarchical Organization Employing a Multiple Precision Arithmetic Unit. 

le VII 0 

I eve I 

Fig. 6. An Array Processor. 

45 



A MULTIMICROPROCESSOR APPROACH 
TO NUMERICAL ANALYSIS: 

AN APPLICATION TO GAMING PROBLEMS 

Robert McGill 
and 

John Steinhoff 

Research Department 
Grumman Aerospace Corporation 

Bethpage, New York 11714 

Abstract 

A parallel processing system is described that con
sists of a minicomputer host and a set of bipolar microcom
puter modules. It is argued that such a system in which the 
microcomputers operate with little mutual interaction should 
be effective for an important class of problems in numerical 
analysis. In particular, estimates are given for the opera
tion of the system on a problem in gaming theory. In this 
problem, the extensive I/O and software capabilities of the 
minicomputer provide ease of use for a large part of the 
problem. The relatively simple part of the problem, which 
requires almost all of the computational time, is executed 
in parallel on the microcomputers. It is argued that the 
system, with 10 to 20 modules, would offer one to two 
orders of magnitude more speed at several orders of magni
tude less cost than current large general-purpose machines. 
The potential for the development of new algorithms that 
exploit fully the characteristics of the new devices is 
discussed. 

1. Introduction 

The recent introduction of low cost bipolar micropro
cessors has made it possible to build very fast microcom
puters for control and simple numerical processing. In this 
paper we consider the use of these microprocessors togeth{lr 
with low-cost bipolar random access memories (RAM) for 
solving a certain type of large scientific numerical analysis 
problem. These devices are incorporated in simple, in
expensive computing modules that can perform a (limited) 
class of computations as fast as a large, general-purpose 
machine. A system comprising one or two dozen of these 
modules connected to a host minicomputer is proposed. 
This type of system should be very efficient for solving cer
tain problems requiring a large number of simple computa
tions, each with limited accuracy. Such problems may be 
wasteful of the resources of large, general purpose 
machines, and our approach should provide an effective 
alternative. 

A study is made of a gaming problem whose solution 
requires the generation of a very large number of trajec
tories, each of which has to be tested for decision and win/ 
lose conditions at many time points. The algorithm is sim
ilar to Monte Carlo techniques, for which the use of simple, 

special purpose machines has been considered
1

. 

The program divides naturally into a game simulation 
routine and an executive routine that initializes each game 
and makes decisions based on previous games. Although 
almost all of the computations are done by the game simula
tion routine, it is not very complicated and programming 
each module (which is microcoded) for this function is not 
too difficult. The rest of the program, which requires much 

46 

of the software effort, is programmed in a high level langu
age on the minicomputer, which also provides the ](/ 0 
function. The gaming algorithm considered is easilly adapted 
to the above scheme, and, since the entire game calculation 
is performed in each module, the only communication 
requirements are between the host and the modules. Also, 
the total time spent transferring data is small, and, for 
the number of processors considered, there should be little 
communications conflict. 

The particular problem studied originated from an 
aerial combat analysis program being carried out at 

Grumman 
2

. An estimate is made of the time and cost 
required to solve this problem on the proposed system and 
compared with estimates for an IBM 370/168. In addition 
to the gaming problem, some other problems for which the 
system should be effective are briefly considered. 

The main point of this paper is to show that with 
currently available bipolar devices a system can be econom·
ically developed to solve certain numerical analysis 
problems that might be too costly or otherwise impractical 
to solve on large general purpose machines. Even without 
an automatic operating system, the time required to con-· 
figure and microcode the modules should be considerably 
less than the analysis that went into the original problem 
formulation. This effort might lead to a numerical solution 
that otherwise could not be obtained. 

2. The Multiprocessor System 

The system as configured to solve the gaming problem 
is depicted in Fig. 1. A Data General minicomputer is used 
as host to the modules. Since the microcomputers should 
cost less than $2000 each, the entire system including one or 
two dozen modules represents about twice the cost of the 
original minicomputer. 

For the gaming problem, as will be explained in Sec
tion 4, it is only necessary to transfer data between each 
module and the host. Also, each module executes the same 
program independently of the others, but with different data. 
Except for program loading, the modules and the host each 
ope~ate under their own control. During operation, the de
cision to transfer data to or read data from the memory of 
the host is made by the modules, based on computed condi
tions. The data is then transferred via the direct memory 
access (DMA) channel of the minicomputer. For the number 
of modules considered and for the present problem, the 
amount of time each module spends transferring data will be 
small compared to the total computing time. Thus, access 
conflicts to the DMA channel should be infrequent. In this 
case it is only necessary to use a priority encoder and a 
decoder to resolve conflicts, as described, for example, 
in detail in Ref. 3. This system selects a device and then 



locks out all others until the transfer is completed. Since 
the modules execute identical programs the performance 
should be independent of the particular type of priority 
scheme (fixed, circulating, wait time dependent, etc.) and 
the fixed scheme, which is the simplest, is used. Each 
module enters a wait mode from the time it requests data 
until this data is received. 

If the amount of data to be transferred were larger or 
if more modules were used, this simple scheme would be 
inefficient and a more sophistfoated system would be neces
sary. The entire control and data flow scheme, however, 
is quite problem dependent and it seems best at this time to 
configure the system for the problem, rather than develop 
a general purpose scheme - especially since the cost of 
implementing these specific schemes is not too high. Some 
interesting possibilities for controlling complex systems of 
modules, based on graph models of computation, are given 
in Ref. 4. 

Some other multiprocessor systems which use a 
Multiple Instruction, Multiple Data stream (MIMD) approach 
similar to ours are: 

• Carnegie Mellon's C. mmp
5 

- A set of 16 mini
computers communicating with memory modules 
through a crosspoint switch. Our processor 
modules are much cheaper and faster than these 
minicomputers, but do not have the flexibility and 
software support. Also, in our system, each 
module only has access to a single large memory 
in the host and its own small local memory 

• The computer module set described by Fuller, 

Siewiorek and Swan 
6 

- These modules, like ours, 
are intended for special purpose application and 
also have individual local memories. There is no 
general purpose host, however, to coordinate 
activity and store infrequently used code. Instead, 
this code is distributed among the local memories, 
accessible to each module through a set of inter
module buses which would only directly connect 
nearby modules 

• The multimicroprocessor system described by 

Senger7 is similar to ours, but the microproces,
sors do not have individual control units. Instead, 
the processors are treated as resources and, when 
available, can be acquired by a controller through 
a hardware scheduler. There is a control unit for 
each instruction stream, but the number of pro
cessors need not equal the number of instruction 
streams. 

The following are examples of modular systems that 
are configured specifically for a particular problem. Some 
idea as to the advantages of this approach, for some pro
blems, over using a general purpose machine can be gotten 
from these references. 

• A set of microprogrammable modules, described 

by Cooper 
8 

- Reflects the basic idea that complex 
arithmetic and logical functions can be implemented 
by a set of identical modules connected together 
specifically for the task. These modules are gen
eral building blocks and not constrained to operate 
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in a particular configuration 

• The CDC Modular Change Detection System 
9 

-
This system, much larger than ours, consists of a 
set of 40 similar modules connected to each other 
and to a general purpose computer. Performing 
320 million instructions per second, it implements 
a special algorithm to process image data at a 
cost reduction of three orders of magnitude, com
pared to standard, general purpose machines. 

3. The Computing Module 

The basic module, currently being constructed, con
sists of an Intel 3000 series bipolar microprocessor set, 
bipolar RAM and Schottky TTL MSI and SSI devices, as
sembled on a wire-wrap board. The module is arranged in 
four main sections (see Fig. 2): 

• 16 bit Arithmetic Logic Unit (ALU) 

• 256X16 bit Data Memory (DM) 

• Microprogram Control Unit (MCU) 

• 512X28 bit Microprogram Instruction Memory 
(MIM). 

The full cycle time of the module is 145 ns. while the memory 
access time is 40 ns., so that the design possibilities are 
somewhat different from standard processors whose cycle 
time is memory limited. The operation of these units for 
one cycle is as follows: 

3.1 

• The ALU can decode an instruction and execute an 
arithmetic or logical operation 

• The MCU can compute a new address for the MIM 

• The MIM can output a microprogram instruction 
for the next cycle 

• The DM can write a data word computed in the 
previous cycle and read a new word for the next 
cycle 

• The MIM can be independently addressed by another 
module for a second read operation. 

Microprogram Instruction Set 

The MIM word has 4 fields: 

• Jump - 7 bits used by MCU together with internal 
:flags and carry from ALU to generate next MIM 
address 

• Flag Control - 4 bits used by MCU to set internal 
flags and generate carry input for ALU 

• ALU Control - 8 bits decoded by ALU for operation 
on data in one of 11 internal registers or on the 
DMbus 

• DM Addressing - 9 bits used to form DM address, 
for write control and for loading of the Memory 
Address Register (MAR). 



3. 2 DM Addressing 

There are 3 addressing modes: . 

• The (8 bit) address is taken from the MAR 

• Considering the memory as a 16X16 word matrix, 
4 bits from the MAR specify the column and 4 bits 
from the MIM word specify the row. This mode 
allows any one of 16 words in a column to be 
addressed directly by each microinstruction once 
the MAR is set up 

• 4 bits from the MIM word specify one of 16 words 
in the first column, creating effectively 16 addi
tional directly addressable registers. 

Once addressed, a data word can be read from the 
DM in one cycle, operated on by the ALU in the next, and 
written back into the same location in the following cycle. 
This sequence of operations requires one microinstruction 
and a set of these operations can be executed at the rate of 
one per cycle. This capability requires little extra hard
ware (2 address registers) and a fast memory, and turns 
out to be very useful for the algorithms that we use, where 
variables are "updated" at each of many time points (see 
section 4). 

The use of fast bipolar RAM, in addition to saving 
cycles normally required for some store operations, also 
results in shorter basic cycle times. Also, since the 
modules execute the same program the MIM can be shared 
(this sharing is completely automatic - the modules remain 
functionally independent). Thus, the cost of the bipolar 
RAM, which would otherwise be a dominant factor, is re
duced to about that of the microprocessor chip set. 

At present, we do not have a hardware multiply capa
bility. Although a device could be made fairly cheaply using 
standard Schottky TTL parts which would perform a 16 bit 
multiply in several of our basic cycles, the trade-offs in
volved in including it are different here then in conventional 
computers: The cost of our modules is low and they are 
to be replicated as many times as is feasible so that the 
total cost of the multiply capability might become a signi
ficant fraction of the entire system. Also, the high data 
throughput of our module can make it possible to compute 
certain functions very rapidly without performing any multi
plications (except for multiple shifts). It will be seen that 
the requirements of our particular gaming problem can be 
satisfied in this way. Future problems, however, will 
most likely require that at least some of the modules have a 
hardware multiply capability and this can be included at that 
time. 

Some recently developed processors which are similar 
to burs are described in Refs. 10, 11and12. These 
machines are intended for dedicated signal and image pro
cessing, but have the following features in common with 
ours: 

• Separate data and instruction memories 

• Overlapped instruction fetch, execute and data 
fetch 

• Microprogrammability 
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• Reliance on a general purpose computer (host) 
for mass memory and I/ O 

• Cycle time in the range of 50-200 ns. (the 50 ns. 
machines use ECL technology) 

• Dedicated operation. 

In addition, these processors have some features that 
ours does not, such as multiple, more sophisticated arith
metic units. The more general numerical analysis pro
blems that we plan to attack result in algorithms having 
more branching possibilities and less regularity than signal 
and image processing algorithms and do not seem to be able 
to make efficient use of such micrcparallel structures. 
Instead, we approach our problems with a macroparallel 
structure consisting of a set of independent, simple modules. 

4. The Gaming Problem 

The gaming problem studied here is based on an al
gorithm being developed at Grumman for evaluating the 
effectiveness of an aircraft and its weapons systems in 

aerial combat
2

• A dogfight between two aircraft is simula-· 
ted where the controls of each plane are adjusted according 
to the observed position of the opponent. To provlde a 
simple but realistic simulation, information available to 
each pilot is assumed to be limited, and discrete visually 
discernable regions are defined so that controls can only 
be changed when.an opponent moves into a new re~P,on. 

The algorithm consists of two phases: In the first a 
sequence of runs are made (by the modules), each consis
ting of a simulated dogfight where the controls are chosen 
for each region according to weighted random variables .. 
Each run continues until win, lose, or draw conditions are 
met. Based on the outcomes, the values used to weight the 
control choices are adjusted (by the host) and new runs are 
made. When the weighting values converge, a control 
strategy is available for the next phase. The second, o:r 
statistics, phase consists of a large number of the samo 
aerial combat simulations, but the players use the best 
strategy (most heavily weighted control choices) developed 
in the first phase. The number of wins and losses for a 
sequence of initial conditions in the second phase determine 
the aerial combat effectiveness of the vehicles. 

The program is meant to be used as a tool to determine 
the effectiveness of various changes in the characteristics 
of an aircraft in aerial combat situations. Thus, the pro
gram must be used many times with different values of :para
meters such as maximum velocity or turning radius. F'or 
this reason the computational time for an evaluation canmot 
be too long. 

4. 1 Implementation 

The host is programmed in a higher level language for 
the executive function, which includes maintaining a stack of 
initial conditions, storing and updating the tables of weight
ing values and keeping track of the statistics and the c011-
vergence of the tables. Also, the memories of the modules 
are loaded from the host when it initiates the prog;ram. 

Each module is programmed to independently compute 
an entire game. At the start of each game the module 
requests a set of initial conditions and initial controls from 



the host. It then computes and integrates the velocity pro
files of the two vehicles. At each time point it tests the 
distance between the vehicles as well as relative position 
and heading angles to determine whether a new visual region 
has been entered, or a win, lose or draw achieved. If a 
new region has been entered, the relevant control variables 
are requested from the host and the game is resumed. If 
termination conditions are met, the outcome of the game as 
well as the regions entered and the corresponding control 
choices (in the "learning" phase) are transmitted to the host 
and a new game is started. The modules always use the · 
DMA channel of the host when requesting or writing data, 
and compute the relevant memory locations. 

4. 2 Computational Requirements 

Although the executive routines in the host, together 
with the weighting tables account for most of the memory 
requirements, almost all of the computations are done by 
the modules in generating and testing the trajectories. 
Therefore, we tried to use algorithms that would do these 
calculations in the least time. 

The control choices for the vehicles, as well as the 
trajectory equations are quite simple and the accuracy 
requirements are minimal. The problem is that a very 
large number of games have to be played, in each of which 
these trajectories have to be computed at many time points. 

We chose a scheme similar to a (sequential) digital 
differential analyzer for these computations: Complicated 
functions are written in terms of differential equations, 
which are then integrated. Also, products are written in 
differential form and, when one of the variables changes by 
a specified amount (a power of 2-signaled by the carry from 
an accumulator) the product is incremented by the other 
variable, shifted by the appropriate amount. Implicit equa
tions can be solved by varying the unlmown so that the 
equation is satisfied to within certain bounds. 

An example of the technique used is the transformation 
from Cartesian coordinates (x, y) to polar coordinates 
(R, 9), where (x, y) are the relative coordinates of the 
vehicles and (R, 9) are the relative separation and angle, 
and 

x = R cos 9 

y = R sin 9. 

At the start of the game the exact Rand 9 are computed by 
the host (this represents a negligible overhead). As the 
trajectories are computed x and y are changed. The 
algorithm is then used to compute new polar coordinates 
(R

0
, 9c)' which are no longer exact but are close to the 

correct transformations. These approximate coordinates 
satisfy (to first order) the requirement that 

x = R cos 9 
c c c 

and 
y

0 
= R

0 
sin 9c 

be close to x and y. Each algorithm cycle R
0 

and 9 are changed by a certain amount, a new x and y 
c c c 

found and the new errors lx-x I, IY-Y I computed. The c c 
process continues until the errors are less than a specified 
amount. The property that makes this technique very fast 
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is that by choosing certain increments for R
0 

and 9
0 

new 

values of x
0 

and y c can be computed with only a shift and an 

add (see Fig. 4). The change in R
0

, which we call a stretch 
-n 

is chosen to be aR2 R , and the new R is 
I -If~ C C 

R
0 

= R
0 

+ aR2 R
0

• 

The corresponding new values of x
0 

and y 
0 

are 

x '= x +a 2-nx 
c c R c 

I -n 
y c = y c +aR2 y c' 

where aR = 0, +l or -1 (see Fig. 3). 

For the rotation, 

9 '= -m c 9c+a92 

and 

where a
9 

= O, +l or -1 (see Fig. 4). 

For our algorithm, n and m are kept fixed and aR and a 
9 

chosen to keep lx-x I and IY-Y I within certain bounds. c c 
If n and m are chosen so that the changes in x

0 
and Y 

0 
for 

the above operations are not too different from the changes 
in x and y from time point to time point along the trajectory, 
only a :few iterations will be needed at each step. 

This technique is similar to that used in a fast curve 

generation algorithm
13 

and in the Cordie algorithm
12

' 
14 

These schemes can be made quite accurate, but in our case 
this does not seem to be necessary since the process we are 
modeling (a human pilot) has only crude perception of the 
relevant quantities. 

4. 3 Performance Predictions 

At present, only a two dimensional case is being run 
(constant altitude) on a general purpose machine, and the 
control choices are restricted to left/ right turn or straight 
flight, and accelerate/ decelerate or steady speed. This 
initial study is being used to determine the feasibility of a 
full three dimensional analysis. The two dimensional pro
gram, coded in Fortran IV, takes about three hours on an 
IBM 370/168, and it is estimated that the three dimensional 
case would take between 100 and 1000 hours, depending on 
the amount of operator intervention. 

About 80, 000 games (both phases) are required for the 
two dimensional case. In each game there are about 2000 
integration steps, and about 40 region changes where a new 
control choice must be made and stored. The large number 
of games required is due to the fact that over 300 regions 
were defined for each player with up to 6 control choices 
in each. 

To determine the total computational time for our 
system to run the two dimensional case, we need to lmow 
the number of module cycles necessary to perform the 



trajectory computations at each integration step and the time 
required to transfer data to and from the host at each region 
boundary. From the micro-code already developed for the 
module and from the data channel characteristics of the 
minicomputer, we estimate that the:re are about 100 cycles 
required and 20 µ.s. data transfer time. Also, we have to 
take into account the time that the host spends updating the 
tables and computing initial conditions (about 20 i..e. per 
region). Even though this time is insignificant when the 
problem is done sequentially it may be important here. 

·Based on the above numbers, and the 145 ns. basic 
cycle time we have: 

• Module computing time per game; 

tM Rl2000x100x145 ns. = 29 ms. 

• Data transfer time per game; 

tD RI 40x20 µs. = . 8 ms. 

• Host computing time per game; 

tH Rl40x20 µ.s. = . 8 ms. 

When the data channel to the host is being used, neither the 
module communicating to the host nor the host can do any 
computation. Thus, the time required per game for each 
module is 

tM + tD R130 ms. 

and for the host 

tH + tD RI 1. 6 ms. 

If the number of modules N is much less than tM/tD there 

will be a negligible amount of communication conflict be
tween modules and the total computing time will be 

TRI 80, ooo x max (tH + tn', (tM + tD)/N). 

Using this approximation for N .:S 10, since tM/tD F::J 36, 

we have 

T Rlmax (2.1, 40/N) minutes. 

Since the three dimensional case was estimated to take 30 
to 300 times longer, the time required for our system with 
10 modules to perform the full three dimensional analysis 
should be a manageable 2 to 20 hours. 

5. Extensions of the System 

There are two basic extensions that we can make to 
the system. 

The first only involves software changes and perhaps 
minor modifications to the modules. The basic data trans
fer structure, however, would be kept fixed. This system 
should be applicable to algorithms similar to the one 

1 
studied, such as Monte Carlo techniques and (systematic) 
multidimensional global searches. As in the gaming pro
blem, a large sequence of computations must be made, each 
computation depending only weakly on the others. Also, 
although requiring a large amount of computer time, these 
problems frequently involve only simple codes and modest 
storage and accuracy requirements and can be wasteful of 
the resources of a large general purpose machine. 
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A more involved extension of the system would be to 
include inter-module communication. This modification 
would most likely be necessary for the efficient solution of 
partial differential equations. However, if a certain class 
of very time consuming problems were. chosen and the sys·
tem configured specifically for them, this modification 
should not be too difficult. Certainly, the change would be 
very simple compared to developing a general inter-module 
communication scheme. 

6. Conclusion 

A multiprocessor system that solves a gaming pro
blem has been discussed. The problem is one of a general 
class that requires the playing of large numbers of "games". 
In each of these the trajectories of two or more vehicles are 
computed and tested for decision and win/lose conditions at 
many time points. 

The system uses a minicomputer (with extensive soft
ware and r/ O capability) as an executive (host) and multiple 
microcomputers to implement the basic game computations. 
This system requires only one type of interconnection: host 
to microcomputer module. After microcoding the module 
part, via the host, existing software can be used for the 
complex executive part (where speed of executive is not 
critical, but ease of use and flexibility are). With this 
architecture, the computational speed should increase al
most directly with the number of modules, up to 10 to ~W 
for our particular problem. 

This approach, although relatively simple, only 
became practicable in the past year with the advent of the 
bipolar microprocessor. This device forms the basis of a 
complete miCrocomputer module with small memory but 
high computation speed - of the order of the IBM 370/168 
(145 ns. cycle time) at a total cost of under $2000 (not in
cluding development costs). Thus, 10 to 20 of these modules 
and a host mini can now be assembled for about double the 
price of the minicomputer system ($80, 000). 

The particular gaming problem that we study arises 
in the evaluation of various systems in aerial combat man
euvers. Feasibility studies indicate that a reali:stic three 
dimensional problem would require several hundred hours 
on an IBM 370/168 to solve. Also, for a meaningful study, 
several solutions would have had to be obtained as vari.ous 
parameters are changed. Thus, the usefulness of the 
algorithm in determining the effectiveness of various sys·· 
terns in aerial combat requires that both the time and the 
cost of obtaining solutions be reduced by one to two orders 
of magnitude. Preliminary studies, based on a Data 
General minicomputer and a system of 10 modules, indicate 
that the solution time can be reduced by a factor of 50 to a 
manageable 2-20 hours. 

Equally important in its affect on the performanc:e of 
our system is the length of time it can be economically and 
practically run on the problem. This system could easily 
make a 10-hour run, with less expense and probably less 
turn-around time than a 1-hour run on a large machine. 
Thus, it seems reasonable to claim for the problem con
sidered a factor of about 500 increase in efficiency for our 
system compared to an IBM 370/168. 

In addition to the gaming case, our system should be 
directly applicable to other areas, such as global searches 
or global optimization. These problems, like olllrs, fre-



quently do not have large memory or accuracy requirements 
and can be very wasteful of the capabilities of large com
puters. They can, however, require enormous amounts of 
computation. 

Our main point has been to show that with currently 
available bipolar devi~es a system can be economically 
developed to solve certain numerical analysis problems that 
might be too costly or impractical to be solved on large gen
eral purpose machines. Even without an operating system, 
the time required to configure and microcode the modules 
should be considerably less than the analysis that went into 
the original problem formulation, and the additional effort 
might lead to a numerical solution that otherwise could not be 
obtained. 

Acknowledgement 

Many of the features of the microcomputer were 
suggested by Martin Kesselman, who is currently designing 
and building the first module. 

References 

1. Yu. A. Schreider, The Monte Carlo Method, Perga
mom Press, New York, 1966, esp. Ch. 1. 8. Also, 
E. Sadehand M. Franklin, "Monte Carlo Solution of 
Partial Differential Equations by Special Purpose Com
puter," IEEE Trans. Comp., C-23, p. 389 (1974). 

2. M. Falco, G. Carpenter and A. Kaercher, "TheAnaly
sis of Tactics and System Capability in Aerial Dogfight 
Game Models, " Grumman Research Department Report 
No. RE-474, (1974). 

3. D. P. Siewiorek, "Process Coordination in Multimicro
processor Systems," Microarchitecture of Computer 
Systems, EUROMICRO, (1975), p. 1. 

4. s. S. Patil, "Micro-Control for Parallel Asynchronous 
Computers," Microarchitecture of Computer Systems, 
EUROMICRO (1975), p. 17. 

5. W.A. WulfandC. G. Bell, "C. mmp-A Multi-Mini-Pro
cessor, "AFIPS Conference Proceedings, Vol. 41 
(FJCC 1972), p. 765. 

6. s. H. Fuller, D. P. Siewiorekand R.J. Swan, "Computer 
Modules: An Architecture for Large Digital Modules," 
Proc. Symp. on Computer Architecture, (1973), p. 231. 

7. D. Senger, "A Multiple Instruction Stream Processor," 
Microarchitecture of Computer Systems, EUROMICRO 
(1975), p. 71. 

8. R. G. Cooper, "Micromodules: Microprogrammable 
Building Blocks for Hardware Development," Proc. 
Symp. on Computer Architecture (1973), p. 221. 

9. P. J. Klass, "Analyzer Pinpoints Radar Changes," 
Aviation Week and Space Technology (May 26, 1975). 

10. J. Allen, "Computer Architecture for Signal Processing," 
IEEE Proceedings (April 1975), p. 624. 

11. G. Zimmermann, "SPDM -A SubprocessorWithDyna
mic Microprogramming," Microarchitecture of Com
puter Systems, EUROMICRO (1975), p. 149. 

12. J. Staudhammer, "A Fast Display-Oriented Processor," 
Proc. Symp. on Computer Architecture, (1974), p. 17. 

13. P. E. Danielsson, "Incremental Curve Generation," 
IEEE Trans. Comp. C-19, (1970), p. 783. 

51 

14. J.S. Walther, "A UnifiedAlgorithmforElementary 
Functions," Spring Joint Computer Conference Vol. 38 
(1971), p. 379. 

Figure 1: Multiprocessor System 

ARITHMETIC 
ARRAY 

..J 
DATA 0 

a: CJ') 

I- CJ') 

z UJ 

0 a: 
(.) a 

a (.'.) <! ADDRESS, CONTROL 

i ci 
a: 

o..' (.) DATA 
::;;; ~ 
~ 

MICRO INSTR 256 x 16 
CONTROL DATA 

UNIT MEMORY 

Figure 2: Microcomputer Module 

ADD ....... SHIFT 
....... 

a-
'--------~ 

-o· 

Figure 3: Stretch Operation; Q = x
0

, Y c' Rc 

SUBTRACT 

2·n Ye~[_-_------~,---.,,..--' / 

/ 

/ 

//SHIFT 

~--~~' 
2·n xc---.. [ =- -=- -=- 1 ' 

ADD 
'SHIFT 

Figure 4: Rotate Operation 



A MODEL OF INTERFERENCE 

IN A SHARED RESOURCE MULTIPROCESSOR* 

John E. Jensen and.Jean-Loup Baer 
Department of Computer Science 

University of Washington 
Seattle, Washington 

Abstract 

This paper presents a generalized model of 
tightly-coupled multiprocessor systems which is then 
simplified to form a stochastic model for the study of 
interference. Analysis is performed on the resource 
contention which is characteristic of such systems in 
order to find a measure of system performance. After 
reviewing the problem of memory interference, the 
analysis is extended to contention in other individual 
resources, then combined to form a model for the 
interacting effects of contention in systems where 
processors contend. for several shared resources. 

1. Introduction 

Recent design proposals and realizations [4,10,11] 
have included multiprocessors in attempts to meet the 
expanding demand for high-performance systems. A 
solution to the need for improved efficiency lies in 
the distribution, duplication and sharing of hardware 
resources. Unfortunately this leads to situations 
in which a given unit may receive several simultaneous 
requests for service (e.g. a memory module). The 
result is degraded performance, or interference, 
measured by comparing actual machine performance to 
the ideal case for which there is no contention. This 
paper presents a generalized model of tightly-coupled 
multiprocessors with highly shared computing resources. 
Analysis is then performed on the resource contention 
in order to find a measure of system performance. 

The best known contention problem is when proces
sors and IO controllers interfere in their access to 
main storage. Analytic models with exact solutions 
exist for two processor systems [8] via Markov chain 
methods, but the general case becomes too complex, 
precluding a precise solution. F'or a solution in 
closed-form one has to introduce simplifying assump
tions in order to prevent the analysis from becoming 
unwieldy. A series of models have been introduced 
in which a prototype instruction is assumed and its 
execution rate (IER) analyzed for a variety of multi
processor types [9]. Closed-form solutions are 
obtained for IER in terms of parameters which relate 
typical design characteristics of the memories and 
processors. In addition, cache memories may be intro
duced to the processor-memory interface [3]. In this 
paper, we extend previous formulas [9] to include 
cache memories, and then propose a more general one 
for systems in which processors contend for several 
resource classes as well as primary memory. 

2. The Machine Model 

2.1 A General Shared Resource Multiprocessor 
Figure 1 shows a general model of a shared 

resource multiprocessor (SRM) in PMS notation [2]. 
The example was chosen purely for ease in description 
and conservation of space, with the design of more 
specific configurations being one of the objectives 
of the model. 8 central processors P.c share 16 
modules of primary memory M.p.through a central 
processor-memory switch S.mp. Each P.c possesses 
some local memory M.c and a set of mapping registers 
D.map which define its access to main memory. 

*This.research was supported by NSF grant GJ-41164. 
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The P.c's have no arithmetic power, performing 
only load, store and branch instructions. Other 
instructions are memely fetched and decoded, while 
operands are sent to a shared set of pipelined 
execution units D.e via a common request bus L.req. 
The P.c's are arranged into 2 time-shared rings by 
S.ring, which creates a maximum overlap of computing 
with a minimum bandwidth required in the request 
bus [4]. Input-output is initiated to IO controlle1::s 
in the same way as a request for a D.e. When an "IO" 
instruction is executed, a request is sent to an 
appropriate K.io and the P.c is allowed to continue. 
IO-completion interrupts cause the appropriate P.c to 
be interrupted [5]. 

A special controller K.sched is provided for 
assigning new tasks to P.c's, with two options for 
flexibility in the scheduli.ng mechanism. In the 
"floating control" scheme [5,7] P.c's perform their 
own scheduling under the control of K.sched. Under 
11 fixed control", K.sched serves each request by 
returning the entry point of the new task in memory, 
while a dedicated processor P.sched (with associated 
M.a for the scheduling tables) constantly supplie-s 
K.sched with the next task to be assigned for 
execution. 

2.2 Examples of the Model 
The generality and versitility of the model may 

be illustrated by examining some current designs. 
C.mmp [11] is a set of 16 asynchronously executing 
PDP-ll's (each with local memory) which access main 
memory through D.map's and S.mp. The ring structure 
and D.e's are missing since each P.c has its own 
complete processing capability. C.mmp's IO system 
is similar to its memory system in that the P.c's are 
connected to busses supporting the IO controllers by 
the S.kp switch. Scheduling is handled by the oper
ating system without any additional hardware. 

Figure 2 is a conception of Texas Instruments' 
ASC [10]. A single P.c feeds instructions to 4 high
speed pipelined D.e's which consume streams of vector 
operands under the control of re&isters found in M.c. 
The most interesting feature is the "peripheral 
processor" which performs the control and data-manage·
ment functions for the ASC, and is actually a ring 
of "virtual processors" (P.v). 

Figure 3 emphasizes the ring structure aspects 
by modeling Flynn's SRM [4]. It has 4 rings of 8 
P.c's, and uses L.req and D.e's as in the model. The 
P.c's have no D.map or S.mp, but access memory 
through buffers. Cache memory M.c is associated w:Lth 
each ring. No mention is made of IO, and scheduling 
is done under program control through a standard 
fork-join construct. 

2.3 The Simplified Machine Model 
The model described thus far requires too much 

detail to be studied at the instruction level, hence 
we capture some of its generality into a more manage
able form in Figure 4. Centrally located is S.mp 
which provides access by the P.c's and K.io's to the 
M.p modules. The specialized scheduling processor 
P.s (with memory M.a) makes all policy decisions 
regarding the activation of user and operating system 
tasks as well as allocating the system's resources. 
IO consists of three subsystems, representing the 
common IO speeds anticipated. 



The multiprocessing resources consist of synchro
nized processor rings (3 in the figure) with a set of 
independent pipe-lined D.e's which are capable of per
forming all arithmetic functions (except divides) with 
the same latency. Each ring consists of skeleton P. c' s 
and corresponding M.c's connected by a processor-ring 
switch S.p. The purpose of the time-multiplexed 
switch [ 4] is to select the P. c. that is to be con
sidered "active" during each time-slice of the ring, 
and to coordinate all communication between the P.c's 
and the D.e's and the remainder of the system. 

The instruction units use 'an instruction set which 
is patterned after the SRM [4]. Each of the 8 skeleton 
P.c's begins its instruction-fetch sequence one minor 
cycle behind its predecessor on the ring. In one major 
cycle each P.c will prepare one instruction for execu
tion to take place during the subsequent one. A 60ns 
minor cycle is assumed [1,10], resulting in a 480ns 
major cycle which provides ample time (120ns) for 
finding operands in an implicit cache. In the case 
where an access to main memory is required ("miss" on 
the cache), 600ns should be more than sufficient to 
perform the transfer (120ns plus one major-cycle delay) 
and still maintain the synchronous timing of the 
processor ring. 

3. The Resource Contention Model 

3.1 The Memory Interference Problem 
In this section, we introduce an analytic model 

for general resource contention used to estimate the 
losses due to interference between processors re
questing identical resources. We begin by examining 
memory interference (the request by more than one P.c 
for the same M.p module) using expected values for the 
number and types of instructions executed. The com
bined effects of the hardware speed arid memory con
flicts are characterized by a single entity, the in
struction execution rate (IER), for which we calculate 
and estimate. 

The P.c's and M.p's are viewed as a stochastic 
service system in which the M.p's represent m servers, 
each capable of serving one of k P.c's. Each server 
handles only those requests directed toward it, 
serving them in order of arrival and queuing those 
occurring when it is busy. The M.p's are characterized 
by a constant service time (access time) followed by an 
interval of unavailability (rewrite time) before sub
sequent requests can be serviced. P.c's are character
ized by the amount of elapsed time between the comple
tion of service on one memory request and the genera
tion of the next one. 

The problem is made more tractable with a few 
simplifying assumptions. Although processor behavior 
varies with different instruction types, the probabil
ity distribution of instructions, the average frequency 
of memory requests, and the average time required to 
execute one instruction can be determined. The access 
pattern of each processor is assumed to be random, and 
no distinction is made between read and write requests. 
We simplify further by considering each instruction to 
be a series of instances of a "unit instruction" con
sisting of one memory access followed by a fixed (mean) 
interval of processor activity. 

3.2 An Analytic Model for Memory Contentiog 
In Strecker's formulas for the "unit execution 

rate" [9], the execution sequence is considered as a 
Markov process, consisting of a series of "unit 
instructions", from which we may calculate the rate 
of memory service. (The principle parameters are 
defined in Table 1.) The unit instruction begins when 
an address is received by one of the m modules of M.p 
at S.mp. Ta is the time required for the memory 
control to set up the switch and for data to be 
delivered. Tw is the time required for the module to 
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recover and become ready for the next request. Tp 
begins for each of the k active P.c's when it receives 
data from an M.p, extending through the computation 
until the P.c has a new data address. The "computa
tion" done in this "unit instruction" may be an 
instruction decode, an (indirect) address computation, 
or the actual execution of a machine instruction. 
Several of these unit instructions comprise one com
plete machine instruction. 

The unit execution rate (UER) is the number of 
unit instructions executed per unit time. In terms of 
the service times Sm and Sp [9] 

UER = m * [l - (1-Pm/m)k] / Sm 
such that k 

Pm= 1 - (m/k) * (Sp/Sm) * [l - (1-Pm/m) ]. 
The analysis is split into three cases (bases upon the 
relationship between Tp and Tw) which may be combined 
to form composite equations for the service times as 

Sp ~ Tp9Tw and Sm = Ta+Tw - (Tw9Tp) * (1-Pm/m) 
k 

(where a9b = a-b if a>b, and a9b = 0 if a~b). The 
complete equation for the unit execution rate is then 

k 
UER = _ __;m:;;._.*__..[-=1----=( l;;;_-_P_m_,_/_m.c.-) _].._____ 

Ta+Tw - (Tw9Tp) * (1-Pm/m)k 
where 

Pm k 1 - (m/k) * (Tp9Tw) * [l - (1-Pm/m) ]. 

Ta+Tw - (Tw9Tp) * (1-Pm/m) 
k 

In order to solve the Pm equation, we examine the two 
cases Tp~Tw and Tp>Tw. In the first case Pm=! and 
we are done. In the second case the denominator 
simplifies to Ta+Tw, resulting in a k-th order poly-

·nomial in Pm. Since the two sides of the equation are 
monotonic in opposite directions on the interval [O,l], 
for a given set of parameters we may solve for Pm in 
this interval and obtain the UER from the first 
equation above. 

We extend this model by associating with each P.c 
a cache memory with access time Tb and "hit ratio" Pb. 
Th_e effect of this addition is that with probability 
Pb, the memory request will be satisfied in the cache 
(hence no M.p service) while with probability 1-Pb, 
a normal memory cycle will be required. For the case 
where Tp~Tw it has been shown [3] that 

Sp Pb*(Tp+Tb) + (1-Pb)*(Tp-Tw) 
and 

Sm Pb*( 0 + (1-Pb)*(Ta+Tw) 
such that Pm equals 

k 1 - m*[Pb*(Tp+Tb)+(l-Pb)*(Tp-Tw)] * [l-(1-Pm/m) ]. 
k * (1-Pb) * (Ta+Tw) 

This new Pm equation has a single solution in the 
interval [O,l] as in the previous case. We may 
generalize this formulation to include the case 
where Tp<Tw [6], but the memory being considered in 
this model is relatively fast, so the case Tp~Tw is 
sufficient, yielding 

k UER = m * [l - (1-Pm/m) ] 
(1-Pb) * (Ta+Tw) 

where Pm is determined from the above formula. 

3.3 Modeling Multiple-Resource Systems 
Previously, a unit instruction was defined in 

terms of memory access frequency, with all other 
aspects of the instruction being considered as 
"processor activity", or Tp. Using the same analysis 
as above we can determine the effects of multi
processor contention for other shared resources by 
extending the notion of a unit instruction to repre
sent one "access" to a resource of ~ given class 
(e.g. pipelined D.e's) followed by the average 
processing time between requests for that resource 
class. The period of time comprising one unit 
instruction will, in all cases but for M.p, include 
several machine instructions. For example requests 
for floating-point multiplies occur in approximately 



13% of the instructions for a scientific mix [6], such 
that one unit instruction for the multiply resource 
becomes 1/0.13 times the length of one machine 
instruction. 

When main memory is considered as the sole con
tendable resource, the !ER of a system is computed by 
first estimating the UER of memory, then dividing by 
the number of memory references per instruction. The 
UER of memory is computed using Strecker's approxima
tion which assumes an otherwise constant P.c processing 
time. A similar set of assumptions will allow the UER 
to be. calculated for the floating-point multiply units 
(or any other resource), given that some fixed value 
can be derived for the remaining "processor activity" 
between requests for the multiply units (cf. section 
3.4). The !ER can then be calculated by dividing by 
the frequency of multiply instructions. 

In order to model the UER of other resources, the 
parameters used :ln the contention model must be gener
alized. Table 1 defines the set:of resource conten
tion parameters a-z which will be used in the remainder 
of this paper. The correspondence in parameter names 
for the memory interference example is given in the 
table and is illustrated here functionally. 

UER (k, m, Tp , Ta, Tw, Tb , Pb) =· h (k, m, t , a, w, b , p) 
Table 2 illustrates typical figures for these param
eters applied to a variety of harware resources. 

With the introduction of pipelined D.e's, the 
number of stages v in the pipelirtes becomes of impor
tance. So far we have assumed that all k P.c's 
actively contend for the system's resources at all 
times such that UER=h(k, •.. ). In our machine model, 
however, the P.c's are intentio~ally arranged into 
time-phased rings of v P.c's each, so that they only 
contend with corresponding P.c's from other rings on 
the same time-slot, increasing the !ER of the system. 
If the system contains k P.c's which are all active, 
then there are v separate conterttions (one per time
slice on the processor ring) among goups of k/v P.c's. 
In this situation (for a single~resource system) 
UER=v*h(k/v, ••• ) such that 

!ER= v * h(k/v,m,t,a,w,b,p) I f. 
Suppose now that some P.c's are idle such that 

k is less than the total number of P.c's in the system. 
The approximation above is optimistic in that it 
assumes the k active P.c's to be optimally distributed 
over the v time-slots. In particular, if k<v, it 
computes the !ER to be better than optimal! The 
invalidating factor is that not all v time-slots 
necessarily contain active processors. If we assume 
the k active P.c's to be randomly distributed, then 
c, the expected number of currently active time-slots, 
may be determined as was the expected number of busy 
memories: 

c = v * [l - (l~l/v)k] 
and hence 

!ER c * h(k/c,m,t,a,w,b,p) /f. 

3.4 The Model for Combined Resources 
We have shown how the UER of each resource class 

may be determined, from which we calculate the"per
formance measur(~ IER=UER/ f. In order to combine the 
analyses of the individual resources, we normalize this 
measure to the number of processors by the "processor 
execution rate" PER=IER/k. We also define the "effec
tive execution rate" EER=IER(k)/IER(l) which measures 
the performance in terms of the number of effective 
processors, and the "multiproce.ssor efficiency" 
EFF=EER/k, which gives a directi measure of the 
degradation caused by contention in the system. 

We now combine the analyses of the individual 
resources to fo:rm a model for the interacting effects 
of contention. Consider a system of k processors with 
n resource classes, each characterized by a set of 
parameters {m,v,a,w,b,p} (e.g. Table 2). We calculate 
the UER f©r each resource class i (assuming that we 
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know ti' the average time between the completion of 

service and the generation of the next request for 
resource i) by substituting the appropriate paramE~ters 
into 

hi= h(zi,mi,ti,ai,wi,bi,pi). 
Allowing the unknowns zi and ti' an equation for L, 
the expected length of one complete machine instruc
tion, may be obtained from L=l/PER in terms of th1~ UER 
of the i-th resource: 

l/L = (hi/fi) I zi 

with zi, the average number of processors in cont1:>.ntion 
for resource i, being computed as 

k 
zi = k/ci where ci = vi * [l - (1-1/v:I_) ] . 

The remaining unknown ti was defined earlier 
(for systems with ti ~ wi such that one unit instruc-

tion for class i has length ti+ai. (We have assumed 

for simplicity that pi=O. Otherwise ai may be re

placed by the appropriate expression in ai, bi and 

pi.) However, ti is not a function solely of the i-th 

resource (as assumed earlier), but rather of the execu
tion rates of the n-1 other resources. Thus the 
equation above contains two unknowns, L and ti. In 

order to eleminate ti, we repeat the above 1:>.quation 

for the n resource classes and add a constraint to 
form a system of n+l equations in n+l unknowns 
{t

1
,t

2
, ..• ,tn,L}. The constraint is that L must be 

the sum of the access times per instruction of each of 
the n shared resources, plus the service time of the 
non-shared resources in the skeleton processor (t:imE~ 
required to decode, index, and issue instructions). 

To obtain an equation for this constraint, con-
sider the example of Figure 5. Shown is a six
instruction sequence for a system with three resource 
classes: two M.p modules, an add and a multiply un:lt. 
(We assume an access time of 3 minor cycles and a 
rewrite time of 2 minor cycles for M.p, for a major 
cycle time of 8 minor cycles.) The time occupied by 
communication ai between the processor and each re
source is shown by solid lines in the figure, with 
dashed lines representing the other activities w:L" 

Occasional delays di, represented by dotted-lines, are 
caused when the requested resource is busy serving 
requests from another processor (e.g. the first 
multiply is delayed 1 major cycle). Requests to 
functional units are sent on the last minor cycle of 
the instruction, with the result available exactly 
one major cycle later (cf. a2 's and a

3
1 s and their 

associated w
2

1 s and w
3

1 s). The skeleton processor 

looks only one instruction ahead and hence need not 
worry about potential register conflicts. This was 
also subsumed in our concept of a unit instruction. 

The individual times may be summed in order to 
form a constraint on the length of each machine in-· 
struction, as demonstrated in Table 3. The total 
elapsed time for one unit instruction on r1~source i. is 

ti + ai + di, 

where di is the average delay due to contention for 

the i-th resource. (Thus the table entries for ti may 

be found by subtracting ai and di from the total t:l.me 

elapsed). We use this expression to determine a.n 
expected value for the length of one compl,ete machine 
instruction L in terms of the i-th resourc.e 

L = (ti+ ai +di) * fi. 

The i-th resource occupies time (ai + di) *fi out of 

each instruction, which may be solved from the equation 



above to yield 
(ai +di) * fi = L - ti* fi. 

If we let Lo be the time required per machine instruc
tion by the skeleton processor, we have as our con
straint equation 

L = Lo + ¥ { L - ti*fi }. 
;1.=l 

This completes our svstem of equations. which has 
a unique solution that may be determined numerically. 
The knowledge of L implies that of PER as defined 
previously and hence that of IER. The analytical 
solutions thus achieved are in accordance with the 
results from simulation presented in Table 4. The 
example system in Table 2 was simulated, with resource 
request frequencies determined by random draws from 
four typical instruction mixes [6]. The resulting 
instruction lengths are compared with the contention
free instruction lengths computed by ignoring time 
lost waiting for resources. 

4. Summary and Conclusions 

A general model of a large, tightly-coupled 
multiprocessor system has been introduced and shown to 
be capable of representing several recent design 
proposals and realizations. It was then reduced to 
a more specific model of a shared-resource multi
processor for use in an analytical study of resource 
contention. By examining first the problem of inter
ference in main memory, we have been able to abstract 
previous results [3,9] to find closed-form formulas 
for the effects of contention in any individual 
resource, on the assumption that the behavior of the 
system with respect to all of its other resources is 
known. Furthermore, we have combined the analyses of 
the separate resources to form a more complete model 
when processors contend for several resource classes 
simultaneously. 

Solving for this model yields a unique solution 
which allows a prediction of performance and degrada
tion in multiple-resource systems. Several hypotheti
cal systems have been parameterized through the model, 
and the iterative numerical solution has converged to 
the correct processor execution rate in each case. 
The performance estimates measured by this analysis 
have been shown to be reasonable by simulation at the 
instruction level, and it is anticipated that future 
simulations of systems will make use of this result to 
account for hardware resource contention while retaining 
a high-level view of the systems being modeled. 
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Table 1 - Contention Model Terminology 

Ta effective access time of M.p (service time) 

Tw effective rewrite time of M.p (recovery time) 

Tp average time between the completion of service on 
onememory request and the generation of the next 
request by P.c 

Tb cycle time of fast buff er memory 

Sm time required by M.p to service one request 

Sp ti.me beyond memory cycle required by P.c to 
prepare the next request 

Pb probability of finding the request in buffer 

Pm probability that a request is queued at an M.p 

a service (access) time of each resource (Ta) 

b buffer speed for each resource (Tb) 

c number of processor-ring time-slots containing 
requests for each resource 

d de.lay time caused by contention at each resource 

f frequency of use for each resource (ratio of 
requests per number of machine instructions) 

h the contention function (UER) 

i index to the various resource classes 

k number of active processors (those to which tasks 
are currently assigned) 

L length of one machine instruction (inverse of IER 
on one processor) 

m number of resource units in each resource class 

n number of resource classes 

p probability of using buffer for each resource (Pb) 

t time between completion of service on one request 
for each resource and the generation of the next 
request for that resource (Tp) 

v number of stages in the functional-unit pipelines 
for each resource (coincides with the number of 
time-slices in the processor rings) 

w recovery (rewrite) time for each resource (Tw) 

z average number of processors in contention for 
each resource 



Table 2 - Example of Resource Parameters Table 3 - Timing Summary for the Computation A*B-C*D+E 

Resource Class m v a _w __ b __p_ 

main memory 16 1 600ns 120ns 60ns 0.9 

integer add 1 8 0 480ns - 0 

Total Occurrences Length of Occurrence 
a. w. d. a. wi ~ l. l. __ l._ _'_l._ 

Total Time Consumed 
a. w. d. t. 
_..!. _..!. ~ _..!. 

floating add 2 8 0 480ns - 0 memory units 11 11 5 3 2 33 22 21 26 
multiply unit 2 8 0 480ns - 0 

divide unit 2 8 0 1920ns - 0 add unit 2 2 1 1 8 8 2 16 8 70 

logical unit 1 8 0 480ns - 0 multiply unit 2 2 1 1 8 8 2 16 8 70 

shift unit 1 8 0 480ns - 0 

IO controller 4 1 0 12ms - 0 Total Decode Time (Lo) 6 
scheduler 1 1 480ns 6µs 480ns 0.9 

Total Access Time a. 37 
l. 

Table 4 - Comparison With Simulation Results 

(average instruction length in nanoseconds) 
Total Delay Time di 37 

Total Time Elapsed 80 
Instruction Mix Analxtic Result Simulation Contention-Free 

Floating Point 483 477 401 Number of Instructions 6 
FORTRAN I/O 650 659 369 

X£L/S Compiler 439 443 371 
Average Instruction Length 13.3 

v. SIMTRAN Simulation 532 535 377 
0\ 

Figure 4 - The Simplified Machine Model 
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Figure 5 - Instruction Sequencing for the Computation A*B-C*D+E 
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Abstract: Several proposals for computer data processing and memory systems that exploit the inherent parallel
ism in programs expressed in data flow form have been advanced recently. These systems have packet ~ . .mication_ 
architecture -- each system consists of many units that interact only through the transmission of information 
packets through channels that link pairs of units. 

A simulation facility for evaluatlng the programmability and potential performance of these proposed data pro
cessing and memory systems has been designed. The facility uses microprocessor modules to emulate the b·ehavicir 
of system units or groups of units. By conducting a simulation in accurate scale time a precise extrapolation 
of performance of a proposed system may be obtained. 

The user of the facility will specify the system to be simulated in an architecture description language. A host 
computer translates the system description modules into microprocessor programs and controls the loading and moni·· 
tors the operation of the microprocessors. Application of the facility is illustrated by consideration of a sim·· 
ple data flow processor. 

Introduction 

Recently, a number of proposals for computer data pro
cessing and memory systems organized to exploit the 
parallelism inherent in programs expressed in data flow 
form have been developed. These include a series of 
machines of increasing capability described by Dennis 
and Misunas [2, 3], two machines capable of supporting 
high level language including procedures as data [5, 6, 
8, 9, 10] and memory systems organized for highly paral
lel operation [l]. 

Each of these systems consists of many units connected 
by channels, and is organized so the units operate asyn
phronously and interact only through transmission of in
formation packets over the channels. Each unit of these 
systems is designed so it never has to wait for a re
sponse to a packet it has transmitted to another unit, 
if other packets are waiting for its attention; this 
design principle permits a high level of concurrent 
processing. The units themselves may be constructed 
of simpler units and channels that cooperate in the 
same manner, yielding a hierarchical structure in which 
interactions occur only at well-defined interfaces. 
Systems structured to operate according to this disci
pline are called packet communication systems and are 
said to have pack~ communication architecture. 

The application of packet communication architecture to 
computer system design is now sufficiently advanced that 
careful evaluation of the performance potential of pro
posed systems is required. Since analytic techniques 
of sufficient power are not known, evaluations must be 
carried out by simulation. The simulation of a conven
tional computer architecture is readily carried out by 
progrannning a conventional Von Neuman-type computer, 
and the result of such simulation may be easily inter
preted to predict performance of a proposed machine. 
However, simulation of a highly asynchronous system is 
not so easily accomplished using a conventional sequen
tial computer -- much effort (in progrannning and in 
simulation runs) would be spent in the implementation 
of psuedo parallel processes and the coordination of 
their interactions. 

* The work reported here was supported by the National 
Science Foundation under grant DCR75-04060. 
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With the advent of low-cost LSI processors there is an 
attractive alternative to progrannned simulation on a 
conventional computer: a system having packet conmruni
cation architecture is divided into parts and each part 
is emulated by a microprocessor. We have designed an 
architectural simulation facility based on this idea. 
The facility consists of a number of microprocessor 
modules arranged so they may easily communicate through 
a network for the simulation of any packet connnunica
tion system. The system to be simulated is specified 
in an architecture description language designed e2c
pressly for packet connnunication systems. A host com
puter translates architecture descriptions into program 
modules executed by the microprocessors. The: host com
puter also provides means for debugging and for measur
ing performance of the simulated system. 

Our explanation of the simulation facility is aided by 
discussing its application to modeling the operation of 
a simple data flow processor. We start with a brief 
description of the data flow processor and show how the 
structure of this processor might appear when expressed 
in our architecture description language. Ne~xt comes a 
detailed discussion of the hardware portion of the fa
cility and how it supports the modeling of packet com
munication systems. We conclude with a brief discus
sion of the software support to be implemente~d on the 
host computer. 

An Example of Packet Connnunication Architecture 

Throughout this paper we shall use a simple data flow 
processor as an example of a packet connnunication sys
tem. This data flow processor has been proposed for 
certain signal processing computations such as wave
form generation and filtering in which a fixed constel
lation of operations is applied to a stream of data. 
The processor does not support data-dependent deci
sions, structured data, or procedures, though these fea
tures have been considered in generalized versions of 
this processor (3, 5, 6, 8]. 

The units and channels that comprise the top-level de
scription of the data flow processor are shown in Fig
ure 1. Instructions of a data flow program to be exe
cuted by the data flow processor are stored in Instruc
tion Cells (Figure 2). Each Instruction Cell holds an 
instruction of the program, contains registers fot' 
holding one or two operands of the instruction, and is 



result 
packets 

Functional 
Unit 0 

Functional 
Unit n-1 

Instruction 
Cell 0 

Instruction 
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Instruction 
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operation 
packets 

Figure 1. Structure of the elementary 
data flow processor. 

designated by a unique cell identifier. An instruction 
specifies an operation to be performed on its operands 
and specifies each register (by a cell identifier and 
a register index 1 or 2) which is to receive a copy of 
the result. When all operands of an instruction are 
present in a Cell, the Cell is enabled and its content 
is transmitted as an operation packet to the Arbitra
tion Network. Each operation packet is forwarded by 
the Arbitration Network to a Functional Unit capable of 
interpreting the operation packet. A Functional Unit 
performs the function specified by the instruction code 
of the operation packet it receives on the operands in 
the packet and, for each destination specified in the 
operation packet, generates a result packet consisting 
of a copy of the result and the cell identifier/register 
index of a destination cell register. The Distribution 
Network accepts result packets from the Functional 
Units, and delivers each result packet to the Cell ad
dressed by the cell identifier in the packet. After 
the result packet is received by a Cell, the resul't in 
the packet is stored in the register addressed by the 
register index of the packet. If all of its operands 
are present, a Cell receiving a result packet is en
abled and generates another operation packet to be pro
cessed. A more detailed description of the architec
ture and operation of the data flow processor is given 
in [2J. We note that depending on their construction, 
the Arbitration Network and the Distribution Network 
are capable of processing one or more packets simul
taneously. 

Instruction Cell 

re ister 

instruction destination destination 

~'-e-g_i_s_:_:_:_ra_n_d----------------------~~ >----~-+ 
register 

~'-----o-p_e_r_an_d __ 2 ____________________ ~~ 

Figure 2. Structure of an Instruction Cell. 
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Archit~ Description Language 

Our architecture description language is a design nota
tion for packet connnunication systems. The basic unit 
of description is a module with a number of input ports 
and output ports. A description module is either a 
structural description or a behavioral description. 
A structural description of a module specifies the 
decomposition of the module into simpler modules and 
the channels connecting ports of these simpler modules. 
A behavioral description specifies the module's behavior 
in the form of a sequentially executed program that: 
(1) receives packets from a specified input port; 
(2) transmits packets over a specified output port; or 
(3) updates state variables of the module. In these 
respects our language is adapted from the notation used 
by Rumbaugh to formally describe his data flow multi
processor [9]. 

In add:ltion, our description language borrows much of 
its syntax, type structure and elementary control struc
ture from PASCAL [ll]. An information packet or a state 
variable is defined as a PASCAL record whose components 
are individually accessible. Packet type information 
is included in the specification for each channel con
nection, and for each input port and output port decla
tion, permitting the support software for the simula
tion facility to enforce strong type checking through
out the hierarchical description of a system. 

The overall architecture of the data flow processor is 
specifi.ed in the description langua,ge module Processor 
shown i.n Figure 3. Processor contains a list of sub
modules and a list of interconnections. The interface 
assumed for each submodule is given by the type of in
formation packet which may be transmitted over its in
put and output ports. The relevant packet definitions 

Processor: module (m: integer, n: integer); 

structure: 

Cell [l .. m]: module 

distnet-in input port, 

arbnet-out output port; 

Arbitration-Network: module (m, n) 

cell-in [l .. m] input port, 

fen-unit-out [l .• n] output port; 

Functional-Unit [l •• n]: module 

arbnet-in input port 

distnet-out output port; 

Distribution-Network: module (m, n) 

fen-unit-in [l •• n] input port, 

cell-out [l .• m] output port; 

Cell [l .. m). arbnet-out ~operation-pkt 

to Arbitration-Network ·cell-in [l •. m); 

Arbitration-Network · fen-unit-out [l. .n) send operation-pkt 

to Functional-Unit [l. .n] · arbnet-in; 

Functional-Unit [l •. n) distnet-out send result-pkt 

to Distribution-Network•fc:n-unit-in [l. .n]; 

Distribution-Network · cell-out [l. .m] send result-pkt 

to Cell [l. .m) · distnet-in; 

end Processor; 

Figure 3. Top level description of the data flow processor. 



address =record [cell-id: integer; register-id: integer]; 

operation-pkt = packet [opn: opcode; 

result-pkt 

destination: array [1 •. 2) of address; 

opd: array [1 .. 2] of operand]; 

= packe!:_ [cell-id: integer; 

register-id: integer; 

opd: operand]; 

Figure 4. Packet definition. 

for Processor are presented in Figure 4. The specifi
cation of the data types opcode and operand depends on 
the kind of computation to be implemented on the data 
flow processor and is not given in Figure 4. A complete 
specification of the data flow processor is obtained by 
supplying description modules for Cell, Arbitration
Network, Function-Unit and Distrib~n-Network. Each 
of these description modules must satisfy the interface 
requirements set forth in the definition of Processor 
and must implement the operation of the corresponding 
unit of the data flow processor as outlined above. 

In illustration of the technique for specifying the be
havior of a module, a specification of the operation of 
the module Cell is given in Figure 5. Cell corm:nunicates 
with the other submodules of Processor via its input 
port distnet-in and its output po~t arbnet-out. Packets 
of type result-pkt and operation-pkt are received and 
transmitted by Cell at distnet-in and arbnet-out re
spectively. The state variables of Cell provide stor
age for packets received and store state information 
for controlling the operation of Cell. The state vari
ables are initialized and reset as necessary from one 
cycle of operation of Cell to the next. The when state
ment in Cell (Figure 5~ activated upon receipt, at 
distnet-in, of a result packet which delivers an operand 
to the instruction held in Cell. When all the required 
operands are available, an operation packet is formed 
and emitted at arbnet-out by the send statement (Fig
ure 5). A when statement contain~e or several blocks 
of statemen~one block for processing the input pack
ets arriving at each input port. The complete execution 
of a when statement embodies: (1) receiving and ac
knowledging an input packet from one of the input ports 
monitored by the when ~tatement, and (2) executing the 
block of statements for processing input packets ar
riving at the input port. 

The specifications of Processor and Cell illustrate the 
descriptive power of the architecture description lan
guage. Other submodules of Processor can be similarly 
defined. After presenting the hardware facilities in 
the next section, we will describe the implementation 
of the module Cell as a program executed on the pro
cessor modules. 

Organization of ~ Simulation Facilities 

The simulation facility shown in Figure 6 is composed 
of a host computer, a number of microcomputer modules 
each consisting of a microprocessor and a number of 
memory modules, a control bus for host-microcomputer 
communication, and a Routing Network for transmitting 
packets between microcomputer modules. The host com
puter loads simulation programs into microcomputer 
modules, monitors and controls the progress of a 
simulation, and collects statistical data for per
formance evaluation. The control bus transmits com
mands, addressing information and data from the host 
to the microcomputer modules, and transmits acknow
ledge signals and memory word contents from the 
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Cell:~ 

distnet-in input port receives result-pkt, 

arbnet-out output port~ operation-pkt; 

behavior 

I* State Variables */ 
respkt : record result-pkt; 

operation: opcode; 

destl, dest2: address; 

operandl, operand2: operand; 

opdl-expected, opd2-expected: ~; 

opdl-received, opd2-received: ~; 

repeat begin 

opdl-received := if opdl-expected ~ ~ ~ Ja:.wi; 

opd2-received := if opd2-expected then false §ilse g~; 

while -, opdl-received v -, opd2-received do 

when distnet-in receives respkt do 

~ respkt • register-id of 

1: begin 

if opdl-received then ~; 

opdl-received := ~; 

operandl .- respkt · value ~i; 

2: begin 

if opd2-received then ~; 

opd2-received := ~; 

operand2 := respkt · value ~~; 

~; 

send [opn: operation; 

destination[l]: destl; destination[2): dest2; 

opd[l]: operandl; opd[2): operand2] 

at arbnet-out; 

end repeat; 

end Cell; 

Figure S. Specification of the operation of 
an Instruction Cell, 

microcomputer modules to the host. Under control of 
the host, microcomputer modules execute programs 
which simulate the operation of units of a simulated 
system. In addition to communicating with the host 
via the control bus, each microcomputer module is 
connected by an input port and an output port to the 
Routing Network, through which the module sends or 
receives packets from other modules. 

The Routing Network provides a buffered path betwE!en 
every pair of microcomputer modules, permitting the 
transmission of packets without regard for whether 
the destination processor is ready to receive them. 
A packet transmitted to the Routing Network from a 
microcomputer consists of a destination address for 
the packet and the packet content. The destination 
address is used by the Routing Network to direct the 
packet to the input port of the appropriate micro
computer module. The Routing Network performs arbi
tration and distribution functions in a manner simi
lar to that described for the Arbitration and 
Distribution Networks in [2]. 

Before we describe the structure of the commands is
sued by the host and the various schemes by which the 
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Figure 6. Organization of the simulation facility. 

host controls a simulation, let us examine the mech
anisms available for controlling a microcomputer 
module in more detail. The simulation program module 
contained in each microcomputer module is organized 
so program execution starts from a home state and 
returns to this home state after ea~r~tion, 
that is, after the complete processing of a packet. 
Each microcomputer module also has a wait state in 
which no instructions are executed and control of the 
internal busses of the microcomputer module is relin
quished to the host. 

Two special registers in each microcomputer module, 
the !J:!!!. ~ and the ~ flag, are set by the host 
and utilized to control the progress of a simulation. 
The run count of a microcomputer module is set by the 
host to the desired number of cycles of operation of 
the simulated unit for the current simulation. Each 
time a cycle of operation is completed, the run count 
is decremented. If the decremented run count is zero, 
the microcomputer module enters a wait state and sig
nals to the host that it has entered that state. A 
negative run count enables a microcomputer module to 
process transactions until halted by the host. The 
wait flag is set by the host when it is desired that 
the designated microcomputer module(s) enter the wait 
state. The flag is checked by a microcomputer module 
when the module is in the home state. Hence, microcom
puter modules placed in the wait state through setting 
of the wait flag have no partially completed transac-
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tions, and all state variables of the modules are in a 
consistent state. 

The host performs its control functions by issuing 
commands to the microcomputer modules via the control 
bus. Commands issued by the host are either 
addressed or universal. A universal command is obeyed 
by all microcomputer modules, and such commands are 
u~ed by the host to start, stop, and temporarily sus
pend the execution of a simulation. An addressed 
command is executed only by a designated microcom
puter module. Each command transmitted over the bus 
consi.sts of a selection code and a command name. The 
selection code specifies which of the microcomputer 
modules is to respond to the associated command. 
Each microcomputer module examines the selection code 
of each command to determine whether the module 
should respond to it . 

The host can issue one of nine commands to a micro
computer module. The possible commands are Read, 
Write, Hold, Release, Halt, Enable, Clear, Start and 
Reset. The Read and Write commands provide the capa
bility to examine or alter the contents of a memory 
module associated with a microcomputer module. The 
other commands are used in the selection of a micro
computer module for execution of a Read or Wr'i te 
command, or for controlling the progress of a simula
tion. 

Often, it is desired that several, but not all, of 
the microcomputer modules respond to a Write command 
simultaneously, for example, when loading a simula
tion program into a number of microcomputers which 
are to simulate identical units. This function is 
accomplished by individually issuing Enable commands 
to the desired processors; Commands issued subse
quently are executed by all enabled processors until 
a Clear command is received from the host. Note that 
the Clear command can be either addressed or universal. 

The Start, Hold, Release, Halt and Reset commands are 
used to implement the various schemes by which the 
host controls a simulation. All microcomputer 
modules of the system are initially in the wait state. 
A simulation is initiated by a universal Start command 
which places all microcomputer modules in their home 
states. A simple scheme to halt a simulation is to 
issue a universal Hold corrnnand which halts program exe
cution in all microcomputer modules inunediately. The 
host is then free to read or write into the memory mod
ules by issuing Read and Write connnands. Program exe
cution at each microcomputer module can be restarted at 
the point of interruption by issuing a universal Release 
conunand. 

All microcomputer modules can be put into their wait 
states simultaneously and immediately by issuing a 
Reset command. However, when the microcomputer 
modules are to be stopped for the purpose of debug
ging and evaluation, all modules should be in consist
ent states. This is accomplished through the use of 
a universal Halt command. Execution of the Halt com
mand sets the wait flag of each microcomputer module 
by generating a universal Hold command followed by a 
universal Write into the wait flags, and then a uni
versal Release. Each microcomputer module, upon 
reaching its home state, then discovers that its wait 
flag is set, enters its wait state, and signals the 
host. When the host has received an acknowledge 
signal designating that each microcomputer module has 
entered its wait state, it can examine and alter the 
memory contents of any microcomputer module, and it 
can examine the status of each microcomputer input 
port to see if there are any packets·present. 

Once a simulation has been halted and the status of 
the facility has been determined, one or several 
microcomputer module~ can be enabled for a specified 



number of transactions by properly setting their run 
counts, setting the wait flags of the other microcom
puter modules and then issuing a universal Start 
command. Receipt of the Start command causes each 
microcomputer module to exit its wait state and re
enter its home state. The microcomputer modules whose 
run counts were set will accept packets at their in
put ports. All others will iminediately reenter their 
wait states. 

An active microcomputer module will signal the host 
computer after completing the specified number of 
transactions. The acknowledge signals from the micro
computer modules are ANDed and ORed to produce a 
Universal Acknowledge and an Addressed Acknowledge, 
indicating that the appropriate processors have re
sponded to a universal or addressed corrnnand. 

The various control schemes and communication proto
cols presented provide a minimal capability for con
trolling and examining system ope~ation during a simu
lation. The fact that the host can readily access 
the individual memory modules allows one to easily 
extend the control, analysis and debugging capabili
ties in software. Each microcomputer module can store 
any desired status information in its memory for the 
host to retrieve, even to the point of retaining all 
packets processed by the module. 

An example of a software evaluation facility is the 
evaluation of performance of individual sections of 
a simulated processor through analysis of event 
~· An event count is a count maintained by an 
individual microcomputer of the number of transactions 
which have taken place since initiation of a timing 
interval. The use of event counts allows the study 
of the relative efficiency of sections of the simu
lated processor and provides data necessary for 
determining such parameters as cache size and struc
ture of the memory/processor interconnection networks. 

Simulation of ~ ~ Communication System £!! the 
Hardware Facility 

A packet communication system is simulated on the 
hardware facility through simulation of one or more 
units of the system on each microcomputer module. The 
constructs used in the simulation programs are imple
mented on a microcomputer module in a straightforward 
manner. The implementation of packet transmission and 
processing, the identification of microcomputer states 
during program execution and the coordination between 
packet processing and microcomputer state transitions 
are further illustrated in this section using the 
module Cell (Figure 5) as an example. 

In general, a unit simulated on a microcomputer module 
may have several input ports. A separate input buffer 
is allocated in memory for each input port of the sim
ulated unit. Every packet transmitted through the 
Routing Network specifies a target port, which is an 
input port of a simulated unit. A microcomputer module, 
upon receipt of a packet, uses this target port designa
tion to deposit the packet in one of its input buffers. 

The program module Cell has one input port distnet-in. 
If Cell is the only unit simulated on a microcomputer 
module, every packet arriving at the input port of the 
microcomputer is automatically deposited in the buffer 
associated with clistnet-in. Any output packet of the 
module Cell is t~ansmitted through the output port 
arbnet-out. 

Each microcomputer module is in a wait state after the 
simulation programs have been loaded. A Start cormnand 
transfers the microcomputer module from the wait state 
to the home state, and initiates execution of the simu-
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lation program. Unless temporarily halted by a Hold 
corrnnand, the execution of a simulation program on a 
microcomputer module proceeds until a when statement is 
reached, at which point the microcomputer reenters its 
home state. Upon reentering its home state, the module 
examines its wait flag and enters the wait state if the 
wait flag has been set by the host. If the wait fla.g 
is not set, the microcomputer module queries its wai.t 
flag and the status of the input ports monitored by thEl 
when statement in turn using a round-robin algorithm, 
until the wait flag is set or an input packet becomE!S 
available. If the wait flag is set, the microcomputer 
enters its wait state. If an input packet becomes 
available first, the when statement is executed. 

When the program module simulating ~ is executed on 
a microcomputer, the microcomputer enters its home 
state each time the when statement (Figure 5) that re
ceives result packets at distnet-in is reached. The 
run count of a microcomputer module is decremented at 
the end of each cycle of operation of the simulated 
unit, and the microcomputer module enters its wait 
state if the updated run count becomes zero. In the 
case of Cell, the run count is decremented and examined 
each time the body of the outermost repeat statement i:s 
executed. 

Software Support 

The structure of the controlling software system fo:r 
the simulation facility is presented in Figure! 7. Op
eration of sections of the simulated system iEI speci
fied by modules in the architecture description lan
guage in the manner described earlier. These modul,es 
are translated into relocatable microprocessor object 

relocatable 
microprocessor 

architecture machine 
description language 

:~=~~~ication Jlanguag;1--T-ra_n_s_l_a_t_o_r _ __,I module;~ 

user 
programs 

user 
interaction 
during 
simulation 

source 
language of 
simulated 

icroprocessor 
Simulator 

machine 
language of 
simulated 

abs1::ilut:e 
micro
processor 
machine 
language 
programs 

Ftem 
-------. machine,__ ___ ....__] 

Compiler Loader 

} 
I 

~ .... -~_:_~-~-~o_t;_o_n_ ...... ,,.1(---{:~·r] 

Control 
Bus 

Figure 7. Structure of the simulation 
control system. 



code and are stored in the file system of the host 
computer; the necessary programs from the file are 
linked together to form a non-relocatable micropro
cessor program. Either the individual procedures or a 
complete simulation program can be tested by use of a 
microprocessor simulator residing in the host computer. 
Once the simulation programs have been validated by 
use of the microprocessor simulator, the programs are 
loaded into the microprocessors, and the facility is 
ready to execute a program of the simulated machine. 

A user program to be executed on the simulated archi
tecture is compiled into the machine language of the 
simulated machine and sent to the microprocessor sys
tem for execution. The debugging and evaluation cap
abilities of the system are used to co~trol execution 
of the program and evaluate feasibility of the proposed 
system architecture. 

Conclusion 

The architecture simulation facility appears to be a 
powerful tool for the evaluation of packet connnunica
tion systems. Its capabilities permit the testing and 
evaluation of a broad range of architectural concepts. 
The facility is currently under construction using the 
Motorola M6800 microprocessor and a DEC PDP-11 host 
computer. Portions of the software system are being 
developed on a PDP-10 computer to allow use of the lan
guage CLU [4, 7]. The system is intended to be used 
primarily for an investigation of the design and cap
abilities of data-flow processors, and we expect it to 
be invaluable for this application. 
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Abstract 

This paper evaluates the effect of cost and per

formance tradeoffs on memory system hierarchies 

achieved by varying the total amount of memory 

at any two adjacent levels. The hierarc.hy is 

analyzed in a multiprogramming mode by using a 

two server cyclic queuing model. As an example, 

a two level hierarchy of Bipolar, MOS and a three 

level hierarchy of Bipolar, MOS, and CCD for the 

primary memory are compared. A figure of merit 

that is a function of the number of instructions 

executed by a given processor is used to eval

uate the different memory hierarchies. It is 

shown that up to 3:1 advantage in performance can 

be achieved by using a three level rather than the two 

level hierarchy at the same total cost. The effect 

on the performance of the memory hierarchy due to 

the change in the degree of multiprogramming, the 

speed and cost of CCD technology used, the speed of 

the CPU used and the amount of CCD and MOS memory 

used are then evaluated. The performance of two 

and three level hierarchies is also analyzed as a 

function of the primary memory requirements versus 

the CCD speed. 

Introduction 

Until recently, electronically addressable devices 

such as ferrite core, plated wire, semiconductor 

memories and the electro~echanically addressable 

devices such as magnetic tapes, disks and drums were 

the few technologies from which a computer system 

designer could build a memory system. A number of 

different new technologies and devices have been de

veloped that close the 'access gap 1 9 between the two 

dissimilar technologies mentioned above. Some of 

these are the Charge Coupled Devices (CCD's)2, Bubble 

Memories4, Electron Beam Addressed Memories (EBAM)ll 

and Domain Tip Propagation (DOT)lO. Other technologies 

like CMosl, and Integrated Injection Logic (I2L)7, 

compete directly with the existing technologies. Table 

1 shows the possibility of a six level hierarchy and 

some cost and performance projections for these tech

nologies. 
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This paper uses a two server queuing network model 

to analyze the cost/performance tradeoffs achiev

able by using various sizes of the memories at 

different levels and various combinations of the 

memory technologies. Specifically CCD is usE!d 

as an example in the 'access gap' and comparison 

is made between two and three level hierarchies 

for the primary memory. A multi-programmed mode 

of operation is assumed and a figure of merit is 

defined to analyze the hierarchies. 

Multiprogramming and Memory Hierarchy 

Multiprogramming is multiplexing of CPU over a 

number of different tasks residing in the pr:i.mary 

memory. A task switch is made whenever a par-

ticular task has to wait for certain resource 

(e.g. secondary memory) long enough to justify the: 

overhead involved in switching. Multi-programming, 

a psuedo parallel operation, has been used as a 

method to enhance the CPU utilization when memory 

technologies and I/O equipment with significant 

access gaps are used. Therefore, given a processor 

and a memory hierarchy using different technologies 

T1, Tz .•. Tn (Figure 1), a boundary exists such that 

an access across the boundary necessitates a task 

switch. There may be various reasons for the boun

dary to exist between any two particular technologies. 

One of the main reasons is the disparity between the 

task switching time required by the processor and 

software and the access time of the technology. 

In the memory hierarchy (Figure 1) the technologies 

that are used on the processor side of the task 

switching boundary form a part of the primsry memory, 

while the others form the secondary memory. The 

degree of multi-programming is the average number of 

active tasks that reside in the primary memory and 

is usually a function of the primary memory size 

and working set size of the program. 



Model and Assumptions 

The behavior of a typical task executed in a multi

programming environment is represented by four 

states: the task being serviced by the processor, 

the task waiting for the secondary memory or I/O 

service in a queue, the task being serviced by the 

secondary memory or I/O, and finally, the task 

waiting in a queue for processor service. Thus, 

in general, there are two queues and two service 

facilities and a task cycles through them until 

it is completed (Figure 2). This, then, can be 

modeled by a two server cyclic queuing model. 

Traigerl3 has referenced the use of this model, 

Fuller and Baskett5 have used it in their analysis 

of scheduling philosophies of drum systems while 

Bhandarkar3 has used it to compare magnetic bubbles, 

CCD's, Fixed and Moving Head disks, etc. Most 

previous researchers have used CPU utilization as 

a main criterion to evaluate the effect of multi

programming. Some of the other criterions consid

ered are the waiting time in queue and the memory 

utilization, which is the percentage of the time 

that a given memory spends its time transferring 

its data. The criterion used here will be the 

ratio of the actual number of instructions executed 

by the processor to the maximum number of inst

ructions executed provided all the memory was 

substituted by the level having the fastest speed. 

The assumption made in using the two server queuing 

model (Figure 2) is that both server one, consisting 

of the processor and the primary memory, and server 

two, consisting of secondary memory and I/O, have 

an exponential service time distribution. Even 

though this may not be the case in any particular 

computing system, most models make this assumption 

since most natural phenomenon can be modeled by a 

poisson process and a general feeling for the 

performance of the hierarchy can be determined. 

Later, simulations may be used to verify the results. 

A FIFO scheduling philosophy is assumed for all 

queues in the system. 

Hit Ratio Characteristics 

A typical hit ratio characteristic as shown in 

Figure 3 is used to determine the performance of 

the hierarchy. The statistics were taken from some 

representative programs for a large computer. Once 

the hit ratio characteristics are known, the miss 

ratio characteristics can be easily determined. 
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Processor Characteristics 

A typical processor activity is characterized as an 

instruction fetch, instruction decode, data fetch and 

data operation (Figure 4). Thus, using this model, 

the average time interval between the issuance of 

successive memory accesses can be determined. For 

a more rigorous analysis of the processor behavior 

characteristics, see Streckerl2, 

Performance of the Hierarchy 

If A is assumed to be the average service rate of the 

first server, then the mean execution interval l/A 

can be expressed as [Bhandarkar3]: 

l/A =Hit Ratio [t (M) + t (P )] 
Miss Ratio p c 

Where t (M ) = aggragate access time for the 
p 

prj_mary memory 

t (Pc) - average processing time between 

successive memory accesses. 

Assuming µ ~s the service rate for the second 

server the probability of CPU being busy or CPU 

utilization is given by: 

u probability of CPU being busy 

=• 1 - probability (M jobs queued for second 

server) 

1 -·PM 
=-1 M+l 

- p (Hiller6) 

Where M the degree of multiprogramming and 

p = A/µ 

Once the CPU utilization is found, then the figure 

of merit (f) can be derived as: 

f = No. of inst. executed with a given hierarchy 

No. of inst. executed with all memory sub
stituted by fastest technology 

t (Pc) + t (fastest memory) 

t (Pc) + t (~) 
*U 

Where t (fastest memory) = access time of the 

fastest memory, and U is determined by using 

the equation given above. 

A Memory Hierarchy Design 

The final outcome of a memory system design in 

which a user is interested is its cost and per

formance. Invariably, the requirements are to 

minimize the cost while maximizing the performance. 

The cost and performance of the memory system is a 
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STORAGE~ COMMONLY USED RANDOM ACCESS TIME COST/BIT TECHNOLOGY 
NAME -- ---cAPPR.OX.) --

1 

3 

4 

5 

6 

each~ 50 nsec.* 1.0¢ Fast Semiconductor 
RAM 

Main 500 nsec. 0.1¢ Slow Semiconductor 
RAM 

Block or 
50µsec. 40m¢ Fast CCD 

Swapping 

Backing 
400µsec. 10m¢ Slow CCD 

Store 
Fast Bubbles 

Secondary 50 maec. lm¢ Slow Bubbles 

Mass 5 sec. O.l.m¢ Automated Tape 
Tape Handlers 

TABLE 1 

STORAGE TECHNOLOGY SPECTRUM, MEMORY HIERARCHY LEVELS 

AND COST PROJECTIONS 

*(See Martin and Frankel [1975] for cost performance projections.) 

NAME SYMBOL 

PROCESSOR t(P c) 

BIPOLAR 
MEMORY Tl 

MOS 
MEMORY T2 

CCD 
MEMORY Tl 

DISK AND I/O 

DEGREE OF 
MULTIPROGRAMMING D 

CHARACTERISTICS 

FAST 0.5 usec. 
MED. 1 usec. 
SLOW 4 usec. 

100 nsec. 

500 nsec. 

FAST 40 usec. 
MED~ 192 usec. 
SLOW 400 use.c. 

10 msec. 

1 TO 8 

The processor 
characteristics are 
for average time between 
issuance of memory 
requests. 

Cost ratio with MOS 
3 
4 
5 

TABLE 2: DIFFERENT PARAMETERS USED FOR THE EVALUATION 

OF THE PERFORMANCE OF THE HIERARCHY 
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Ferrite 
CORE 

EBAM 

Fixed Head 
Disks & Drums 

Moving Head 
Disks 

Laser Devices, 
Etc. 
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Paul E. Dworak 
Department of Music 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania 15213 

Abstract 

A man/computer input interface is described in 
this paper. This interface allows human control of 
the frequency, amplitude, spectral content and enve
lope of real-time sound production. 

by 

The interface consists of a two-dimensional 
array of ~eys for enter~ng data, latches and compara
tors to s~gnal changes in key depression, hardware 
for scanning the keyboard and address generation logic. 
Both the fundamental frequency represented by each key 
column and the harmonics of each frequency -- repre
sented by each element in the column -- are 
programmable. Amplitude and envelope are software 
controlled. 

App1ications.of the int~rface instrument range 
from music.compositi?n to clinical use in auditory test
ing. The interface is part of an electronic sound 
generation system presently being designed and 
constructed. 

Introduction 

The ~esigns of electronic sound-generating instru
ments during the past 25 years have demonstrated that 
it is both desirable and necessary for an instrument 
to v~ry, under human control, the frequency (pitch), 
amplitude, spectral content (tone color or timbre) and 
envelope (attack-decay) of a sound being producea. At 
present, analog synthesizers can provide real-time 
control of all these parameters, but at best only a 
few different events may be programmedl. ' 

Hybrid analog/digital systems are limited in the 
number of parameters that can be varied simultane~ 
ously. 2 3 On the other hand? completely generalized 
sound production can be obtained using a digital com
puter and a software approach.~ s This has not been 
attempted previously on a real-time basis However 
witry th~ introduction of high-speed, low-cost digit~l 
logic, it seems reasonable to hope for real-time digital 
sound pr.oduction if an efficient man/computer input 
interface can be designed. Such an input interface 
should provide information about frequency amplitude 
spectral/content and envelope to a dedicat~d central ' 
processor. 

The real problem that needs to be solved in 
interface construction is the meaningful representation 
of as many parameters as possible on an input device 
with limited dimensions and little hardware. In his 
own electronic music studio, Sto~khausen6·has redis~ 
covered and aemonstrated that the combinations pitch 
and tape speed (tempt), loudness and tape speed and 
even spectral content and speed are interdependent 
By constructing similar relationships it is not only 
des~rable, but possib~e, to represent

1

up to four 
musical parameters (pitch, amplitude, envelope and 
spectral content on a two-dimensional input device by 
carefully defining the relationships between the 
parameters. 

The device described here has been developed as 
part of a system that will provide this degree of 

AliceC. Parker 
Department of Electrical Engineering 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania 15213 

flexibility. The total system design consists of the 
following units (see Figure 1): 
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1. A keyboard-like interface to provide direct 
control of frequency, spectral conteint, 
amplitude and envelope 

2. A microprocessor to service and interpret 
the binary information provided by the 
input interface, to allocate digital 
oscillators and to control the digital-to
analog conversion process 

3. A minicomputer employed to provide auxiliilry 
software input, mass storage for memory 
of recent events and increased computing 
power 

4. A random access memory for storing wavefotnns, 
sample increment information used in fre
quency computations and amplitude curves 

Minicomputer: ~ 
Auxiliary Con-
trol Software 

Dedicated RAM Memory · 
Processor -- :::, Waveforms, 
Central Control Sample IncrE~ment 

Unit M1 .... S::=====;Jit""' Information 
Sound Produc- : .. 
tion Control l'liii 

Keyboard 
Interface: 
Human Input 

Binary Output 

-
~-
DAC and 
Sound 
Equipment 

FIGURE 1 : Sys tern Arc hi tec:ture 

Since the instrument being described is 
digital it allows the use of any frequency 
values,' any frequency incremen~s and any ':'aveforms. 
These parameters may be predefined or varied under 
minicomputer~program control. 



Sampling theory and digital sound production are 
well documented in the literature. Furthermore, 
except for the interface, the other elements of the 
system outlined in Figure l are available commer
ciilly, The remainder of this paper will therefore 
deal with the details of the design of the interface. 

A Multi-Input Interface 

The digital interface, a two-dimensional proto
type of which has been constructed and tested, is 
designed to convert information entered along its X 
and Y axes into binary information representing the 
fundamental frequency, spectral content and amplitude. 
Since the output data of the sound desired is binary 
and the system is programmable, the interpretation of 
entered data by the sound generation system is soft
ware dependent. The interface is a mu~ti-input 
device, as opposed to many single-input analog key
boards. The number of inputs that can be entered 
simultaneously depends upon the cycle time of the 
central processor used and upon the memory capacity of 
the total system, but should never be less than ten. 
. The keyboard is a 256-by-8, X-by-Y matrix of 

s1wtches. The prototype of the keyboard which has been 
constructed has an 8-by-3 array of switches (Figure 2). 

~----------------
' I 
I Digital Circuitry : 
I 

+5V 
GND 
Clock IN 

Figure 2: Physical Layout of the 
Prototype Keyboard Interface 
and Sample Data Word 

The x addresses are quickly scanned to locat~ changes 
in key depression from the last sc~n. The b~nary 
address of the chJnged key status is stored in the 
right half of each binary data word. 

The switches depressed at address Xn(any 
s1ng1e x address} are represented by a bit pattern 
corresponding to (XnY1, XnY2, •••• , XnYm} 
(XnONymON = l and XnONymOFF = ~). It is 
apparent that the X addresses may be programm:d to 
correspond to any frequency, as a result of which 
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all pitch intervals and degrees of microtonal tun
ing are possible. 

The bit pattern information at each address is 
envisioned as corresponding to harmonic or non
harmonic multiples of the fundamental frequency 
specifi~d by each X address. If a sine wave is . 
specified, if v0 = fundamental frequency, and 1f 
v1 and v2 are the first two integral multiples of 
Ye, simple Fourier synthesis of a few waveforms is 
possible. If the inputs Y~ through v2 reference 
square waves, sawtooth waves or user-supplied wave
forms, more complex waveforms are possible. Finally, 
if v1 and v2 represent nonharmonic multiples of the 
frequency specified by xnv0, other complex tones 
can be derived. Of course, more interesting tones 
can be produced when eight "Y" inputs are 
available. 

The interface will be scanned from x0 to X255 
in operate mode and whenever a new signal is found 
at any address, scanning will be stopped. An 
interrupt will be supplied to the central processor. 
The central processor will provide logic signal to 
restart the scan. In the prototype, a restart can 
be supplied manually. 

The inputs will be interpreted as follows: the 
address X will be interpreted as the RAM location n 
address, the contents of which contain the fixed
point increment to be used during the sampling . 
process. The bit patterns for each X address.w~ll 
act as indirect references to addresses containing 
other such increment information. The bit pattern 
information will also instruct the processor how 
many summations are to be performed (how many over
tones are present} before a sample is supplied to 
the digital-to-analog converter. 

Scanning will stop only when a new input 
a~pears ow when an old input disappears (onset of 
sound and end of sound). Signals that are unchanged 
will be ignored, as will blank addresses. Process
ing of signals in progress will be uninterrupted 
unless a change in some aprameter occurs (see 
Figure 3). . . 

Memory locations will be allocated in RAM for 
each X-key column and a conversion from the key 
frequencies to the binary sample increment value 
needed by the central processor for sound produc
tion will be performed. by a software program. L~a~
ing the binary values will be performed by the mini
computer. Waveforms for amplitude control wi-11 be 
loaded in allocated storage in a s·imilar fashion, 
employing a program that allows the waveforms to be 
"drawn" in. The interface interpretation program 
will be stored in ROM. Both the keyboard and the 
RAM memory will be interfaced as peripherals to 
the central processor via input-output ports. Infor
mation represented by the keyboard interface states 
is dependent on the contents of the RAM memory. 

Representation of Amplitmde and of ~nvelope 

It has already been explained that, for any 
address X the Y switches represent programmable n' 
overtones. With no additional hardware, the bit 
pattern representation of the Y switches can be 
used to describe amplitude directly and envel~Pe 
(amplitude over time) indirectly. The following 
conventions will be followea: 

1. The greater the number of Y switches 
depressed at any address, the greater 



( l ) (2) (3) System Action 

0 Do nothing at all 

0 Do nothing at all 

0 Do nothing new; continue 
processing the t6nes(s} 
represented 

~ Do nothing new; continue 
processing the tones(s) 
represented* 

Prepare to discontinue the 
last tone(s) of this 
address (channel) 

Stop scan; dump '000' into 
data word; stop tones(s} 
at this address* 

Prepare to start (or change 
tone(s) of this address* 

Stop scan; dump bit pattern 
into* data word; start 
pitch computations 

(1) Address, High or Low; Is this address 
being scanned now? Yes= l; No= 0 

(2) A0 + A1 + A2; Are any of the keys of 
this address depressed? The OR of the 
iAput is represented here. 

(3) A ~ B; ,Has the comparator detected a 
new input? (ls the past bit pattern 
of this address different from the 
present?) 

* Principal Status: Start Tone(s) 
Continae Tone(s) 
Stop Tone(s) 

FIGURE 3: Interface States and Functions 

A 

but not move the center frequency of the 
filter, unless the lowest frequency 
switch depressed changes. That is, if Y~ 
is depressed first, the dominant tcme 
produced will be the frequency 
represented by v0 , if v0 remains 
depressed while Y1 is lowered, 
Y0 will still predominate, but the ampli
tude will increase; if, as a next step, 
Y~~is raised and v2 depressed -- v1 
undisturbed -- the frequency represented 
by Y1 will now predominate. 

4. Amplitude levels will change smooth"ly, not 
in discrete steps. Adding or subtracting 
Y switches from the total number depressed 
will describe a new steady state reached 
after a system-specified time period. 

It wi 11 be necessary for the processor to keep 
track of the order in which switches are depressed 
and released. General curves of the type shown in 
Figure 4 (all derived from the concept of a single 
dominant tone) will be stored in memory to giovern 
amplitude control. 

A 

A 

FIGURE 4: Rela+.ive Amplitudes (A) for 
the amplitude will be. Various Switch Settings 

2. Since a single finger can normally depress 
only adjacent switches, the first switch 
depressed will be interpreted as the center 
frequency of a band-pass filter which 
attenuates the frequencies represented by 
the other Y switches according to a 
programnable curve. 

3. Adjacent switches depressed after the first 
switch will increase the total amplitude, 
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Thi. s interpretation of the bit pattern in for .. 
mation will provide a wide variety of stable timbres, 
especially when eight Y switches are available. It 
will be possible, for example, to stress the 
fundamental or lowest frequency at any address, to 
stress the highest-overtones (frequencies) at this 
address or to sweep through the overtones in any 
order. 

Possible Functions 

A few examples of data input and sound output 
will give the reader a better understanding of the 
keyboard's possible functions: 

l. If at address x1, a single Y key is 
depressed, e.g., v1, the pitch represented by that 
key will be looked up and converted to sound 
whose timbre follows the stored waveforms. The 
other Y pitches at this X address will also be 
converted, but they will be attenuated according to 
an amplitude curve similar to the lower left one 
in Figure 4 (waveforms and amplitude curves are 
stored in different locations in memory and function 
differently). Obviously, if three pitches are 
sounding at x1, the listener will hear a single 
waveform containing the frequency components 
indicated by both the waveforms and the attenuation 
curve. 

2. If Y2_ is also depressed at x1, the pre-
vioos pitches will remain as they were, except that 
the pitch specified by v2 (and from its waveform 
the associated harmonics) will be amplified. The 
resulting timbre will be brighter. 

3. If all Y inputs are depressed, all fre
quencies referenced will be heard and the result
ing sound may be noise-like. This result is con
sidered desirable, since it enables the listener 
to approach noise-like sounds in an organized 
fashion by starting with more simple sounds. And 
the technique for making the transition is simple, 
since it is directly related to the number of keys 
depressed. 

4. If the Y inputs are touched each in turn 
at x1, the resulting sound will approximate that 
produced by sweeping a filter. 

5. If at address x1 , v1 is depressed, and at 
address x10 , v1 is depressed, two distinct tones 
wi 11 be heard, since they will have common wave
forms and equal amplitudes. 

6. If at address x1, all Y's are depressed, 
and at x10 only v1 is depre$sed, the louder sound 
at x1 will absorb the higher, quieter sound at x10 
into a single complex bright tone. 

The types Of sounds produced are limited only 
by the combinations of keys that the fingers can 
reach and in the present design, this represents no 
limitation. Any timbres that can be expressed as 
sums of frequency compon~nts of specified ampli
tudes can be at least approximated. 

Circuit Theory 

For any single channel of the interface (i.e., 
any X

0 
address; see Figure 5), an input, indicated 

by th~ closing of one or more of the three switches 
along the Y axis, is inverted and passed both to 
the D inputs of a Quad Latch (TTL-7475) and to the 
B inputs of a four-bit Magnitude Comparator (TTL-
7485). That is, input v0 appears inverted on 
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latch input o1, delayed on latch output Q1 and 
on comparator input B1• Input v2 appears on latch 
input o3 delayed on latch output Q3 and on compara
tor input B2• 

The Q outputs of the latch are tied to the A0 
throug~ A2 inputs of the comparator. Since the 
lateh inputs are enabled only once during each scan 
and only when the channel to the right af the 
channel under consideration is being scanned (see 
Figure 6), any change in the inputs subsequent to 
the enabling will cause a change in the B inputs of 
the comparator, but not in the A inputs. This will 
cause the A = B output to go low (Figure 5). 

When this condition occurs, the interface is 
prepared to indicate a change of state {see 
Figure 3). When the scan again reaches this 
channel, the address input will be high, as will 
the NOT of A = B. The AND of these two signals 
allows any signals present on the inputs to be 
passed as high outputs to the data word and on the 
prototype, to the LED display as well (Figure 5). 

If both the address and the inverted compara
tor output are high, the high resulting from the 
AND of these tow inputs is inverted and is used 
to block the clock input. This stops the scan by 
inhibiting the shifting in the eight-bit Serial
In-Paral lel-Out S~ift Register (TTL-74164} to be 
discussed in the next section. As long as the 
clock is blocked, both the binary address of the 
channel being examined ahd the bit pattern on that 
channel will be displayed. 

A RESTART pulse momentarily brings the block
ing high to ground and permits counting and shift
ing to continue until a new input is found. 

Once an input is latched, the inputs on that 
channel will be ignored if there is no further 
change in them, since the A inputs of the compara
tor wil'I equal the B inputs. As long as A = B, 
any further display for this channel will be 
blocked and the clock will count normally. When 
an input is present for some time, the interface 
will recognize two state changes for any channel: 

1. A change in the bit pattern for that 
channel in which case scanning will be 
stopped, the new bit pattern displayed 
and passed to the central processor. 

2. A removal of all inputs for that channel 
in which case scanning will be stopped 
and zeros will be displayed and passed 
to the central processor. 

RESTART will re-enable scanning in all cases. 

Scanning of the Keyboard 

Scanning is controlled by a TTL-74164 
Shift Register whose "H" output is tied to its 
serial input. Information on the serial input then 
appears on the "A" 6utput. Clocking the shift 
register causes the information on A to be shifted 
into B, from B to C, and so forth. Information on 
H is shifted into A and the process repeats (see 
Figure 6). Shift registers are cascaded to. provide 
256 address selection lines. 

The initial value of the first shift register 
is 'lf'Jf'J09'J09'J0' (binary). As a result, during 
shifting only one channel {address) will be high 
at a time, making possible the logic described in 
the last section. 
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Higure 6: Prototype Shift Register Functions 
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The shift register outputs control two 
principal functions. Any output controls the dis
play of data on its respective channel. New infor
mation at address x0 is displayed when a 1 is 
sHifted into A. The same procedure is followed for 
the other addresses. The shift register outputs 
also enable the latches of the channel (address) 
preceding the one being scanned. The latch on 
channel x0 is enabled by shift register output B, 
latch, latch x1 by output C, and so forth. Latch 
x8 is enabled by shift register output A. 

Present Project Status and Future Research 

At the present, a prototype of the keyboard 
exists. The D/A conversion hardware has been 
designed and constructed. Software for computation 
and output of waveforms has been tested. Ttie 
remaining tasks include acquisition and programming 
of a didicated processor, system integration and 
testing. 

The keyboard is expected to be used for music 
composition and the investigation of waveforms not 
found in conventional musical instruments. 

Applications 

THe applications of a sound keyboard range 
from electronic music composition to auditory 
research. The concept of having fingertip control 
of sound production would allow design engineers;·to 
hear research waveforms without constructing 
circuitry. Psychophysical experiments on hearing 
would be enhanced by such a device. The interface 
will also make possible human control of electronic 
music events in live performance without resorting 
to magoetic tape and to sequences. 
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Introduc'tion 

'The advent of microcomputer systems with their inherent 
cost/performance advantages had precipitated a reassessment of 
known application areas that heretofore were not considered 
candidates for digital systems solution. In the power industry there 
are many applications for microcomputer subsystems for performing 
data acquisition functions, monitoring changes in the status of the 
high voltage transmission lines, issuing control commands to open or 
to close high voltage breakers via relays, and for acting as an 
intermediate device for storing data or system states. Microprocessor 
oriented subsystems provide cost/performance improvement over 
existing subsystems and are easily applied to applications that 
currently do not use digital systems. 

Described in this paper is a MICRO processor oriented Data 
Acquisition and Control system referred to as MICRODAC which is 
°'Zapable of moni~ring high voltage perturbations (via transducers), 
accepting and issuing control commands, performing format changes 
and error encoding/decoding, performing system self checks, and 
transmitting data to supervisory computers. This system performs a 
very necessary function in power system data acquisition and control 
at low cost, high reliability, and low power consumptions. 

I. System Organization and Operation 

Due to the severity of EMI/RFI fields present in most power 
system field sites, the use of digital systems has been minimal to 
date. However, with the availability of small, low cost and low 
power consuming microprocessing systems, combined with 
special shielding techniques and the improvements in fiber 
optics, it is now possible to blend these systems and techniques 
into a solution for such data acquisition and control 
applications. Figure l provides a glimpse of the overall 
functional system organization that appears effective. Note that 
two of the three interfaces to the external world are optically 
isolated and the third (i.e. power supply) is heavily filtered and 
isolated. The digital computing system is shielded with two 
forms of shielding; EMI/RFI shielding and capacitive shielding. 

The digital system organization of MICRODAC, shown in 
Figure 2, utilizes the Motorola family of microprocessing 
modules and consists of an MC6800 microprocessor, a 1 
megahertz crystal controlled clock, a 7040 Hz oscillator for 
asynchronous interfacing, two RAM's of 128 words x 8 bits 
each, two ACIA's, 14 PIA's, eight INTEL l 702A PROM's of 
256 words x 8 bits each, PIA-input/output interface circuitry, 
AID converters, and DI A converters. The control program is 
stored in the PROM's which are easily programmed, and the 
RAM's are used for temporary storage of data and for MPU 
stack operations. 
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MICRODAC responds to control commands and changes in the . 
sensed input data. Upon detecting a change in the input ciata, 
the PIA-input/output interface circuit generates an interrupt 
signal which is sent to the MC6800, which in tum services the 
interrupt signal by updating tables located in RAM. 
MICRODAC then notifies the supervising computer of the 
change and sends the new data to a service center via a 
fiber-optic communication link. After notifying the supervising 
computer, MICRODAC returns to surveillance mode. When a 
control command is sent to MICRODAC from the service center 
(e.g., system query), MICRODAC executes the issued control 
function. For both data acquisition and control modes of 
operation, MICRODAC performs a software self check 
function. 

To provide for operation in a hostile environment MICFtODAC 
is housed in a double shielded containment cabinet. The outer 
cabinet is constructed with a material which will attenuate EMI 
and RFI interference. The inner cabinet provides for capacitive 
shielding. 

All required power supplies are derived from an unintermptible 
power supply system. This system uses three methods of power 
conversion. A primary D.C. voltage of +13.5 volts is obtained 
from a well regulated power supply in the uninterruptible 
power supply system. During normal conditions, the + Ul.5 volts 
is used to charge an external + 12 volt battery and to power two 
DC/DC converters. One converter outputs a + H> V D.C. and a 
-15 V D.C. The other converter outputs a +5 V D.C. When there 
is an A.C. power outage, the converters opE!rate from the 
external +12 V D .C. backup battery. The battery is 
continuously charged and is ready for service at any time. There 
is no switching of power source involved when there is an A.C. 
power outage because the input to the backup battery and the 
inputs to the two DC/DC converters are both tied to the + 13.5 
V D.C. line. The -9 V D.C. for operating the PROM's is derived 
from the -15 V D.C, The backup battery is good for about eight 
hours. 

II. Hardware Considerations 

The MC6800 microprocessor system operates sole!ly with 
memory space. The MPU references all components connected 
to its bus as memory locations. The address and data bus 
operate at standard TTL levels. Selection of the various memory 
or input/output components is done by selectively enabling the 
appropriate address lines. The MC6871A discretie clock provides 
the MC6800 with two clock signals, namely .01, and f)2~!This 
clock is crystal controlled and has pulse stretching capabilities 
via the HOLDl and HOLD2 inputs. 
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Figure 1 - MICRODAC FUNCTIONAL ORGANIZATION 

The :SiQgle.,~p,-circuit allows execution of a program stored in 
PROM one instruction at a time. The address and data bits are 
displayed on the address and data line LED displays, 
respectively. Initiating a single instruction execution is done by 
depressing the single step switch on the front panel while in 
HALT mode. 

MIGRODAC ·has 1two types of memory, namely RAM's and 
PROM's. ·ruhe;RAM's are used for temporary storage of data and 
for MPU stack operation. The PROM's are used for program 
storage. The eight PROM chips can store up to 2048 words of 
eight bits each. Each chip holds 256 x 8 bits, and programs can 
be stored in each chip by selectively setting the appropriate bits 
after all of the bits have been set to the zero state by exposing 
the chip to ultra violet light. Once programmed and protected 
from ultra violet light, the programs reside in PROM with no 
decay time constant. The procedure for loading a program into 
a PROM is as follows: first, the assembly .langu&ge program is 
translated into an octal listing; the octal isting is then translated 
into a BNPF listing: the BNPF listing is loaded into the PROM 
programmer, and the PROM programmer then programs the 
PROM. This process typically takes 2-4 hours. 
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Interfacing the MPU to the external world is provided by the 
Asynchronous Communications Interface Adapter (ACIA} and 
the Peripheral Interface Adapters (PIA's). The ACIA provides 
data formatting and control capabilities for interfacing parallel 
information from the MPU to serial asynchronous data 
communication devices. The PIA's are used as interfacing 
buffers between the MPU and external peripheral equipment 
which supplies data in parallel. 

The drive capability of all control signals from the MPU is one 
standard TfL load and 30 pf. A number of control signals must 
drive more than one standard TTL load and therefore 
necessitate the use of signal drivers. All drivers, except the data 
line drivers, are unidirectional. 

The power requirements for MICRODAC are as follows: one +5 
volt 3 amp d-c power supply and one -9 volt lamp d-c power 
supply. All Motorola chips require only the +5 volt power 
supply. The INTEL 1702A PROM chips require both power 
supplies. 
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Figure 2 - MICROCOMPUTER SYSTEM 

Ill. System Software Organization 

System software for MICRODAC is arranged as shown in Figure 
3. When system RESET is initiated, the software branches to a 
set of initialization routines which set the input/output 
configuration and issue control commands to all units tied onto 
the common busses. Table formats and initial values are also set. 
The software then initiates a software system self check. This is 
accomplished by exercising the MPU and I/O interfaces with 
known data and with the MPU inspecting the results. The MPU 
is checked first, then the PIA interfaces, and lastly the ACIA 
interface to the supervising computing unit. If all results are as 
anticipated, the system clears the interrupt bit of the MPU and 
the system moves to a WAIT state; waiting for a data change to 
occur or for a command to be issued by the supervising 
computer. When either occurs, the system polls the PIA's and 
the ACIA to identify the source of the interrupt. The polling 
software is organized on priority, with high priority elements 
serviced first. Multiple interrupts are easily and swiftly serviced. 
Once the element generating the interrupt is identified, the 
software branches to the servicing routine to complete the 
required function. When all interrupts have been serviced, the 
MPU returns to the self check software; and if the self check 
routines are successfully executed, the MICRODAC system 
returns to. the WAIT state. Typical times for servicing i.nterrupts 
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are 48 microseconds. The MICRODAC utilizes 1000 bytes of 
PROM storage. The software orgar~ization is modular and is 
easily extended to allow additional PIA's and ACIA's to be 
added to the system. A portion of the software is shown in 
Figure 4. 

IV. Fiber-Optic Communication Link 

Serving as a "smart" subsystem in a power system, MICRODAC 
will be working in an electromagnetically hostile environment. 
As mentioned earlier, MICRODAC is housed in a double 
shielded containment cabinet to shield against EMI and RFI 
fields. For the purpose of isolation, low loss fiber optic cables 
are used as the communication link between MICRODAC and 
the supervising computer. The length of the fibor optic cable 
varies with practical limits of 200 meters. The maximum bit 
rate at which the fiber optic cable will operat•~ is 50 KHz. 
Operating in the optical domain the fiber-optic link offers such 
advantages as high bandwidth, no cro:ss-talks, no 
electromagnetic interference, and high electrical isolation from 
potential noise source. 

The fiber-optic communication link consists of a fiber .. optics 
bundle of 6 fibers, Ga As LED's and driver circuits, and 
avalanche photod~o.de$ and receiver circu~ts. The LED's are 
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Figure 3 - PROGRAM FLOW CHART FOR MICRODAC 

modulated by varying the j1,mction current. The outputs of the 
LED's are transmitted over the fiber-optic bundle with the 
photodiode serving as detectors on the receiver end. The system 
can transmit and receive data rates up to 30 megahertz with an 
SIN of 500 to l. Input and output electrical signal connections 
are made with BNC connectors. The electrical-to-optical signal 
converter uses the input data to modulate the light emitting 
diode source. The reconverter at the output uses photodetectors 
and amplifiers to produce a replica of the input electrical data. 

V. Conclusion 

MICRODAC has been constructed as a prototype unit to 
demonstrate the capabilities of microprocessors as applied to 
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power system data acquisition and control problems. The 
system has performed successfully and has exhibited excellent 
cost/performance benefits. Software for MICRODAC is 
currently being written for several applications in which large 
numbers of units will be used. 
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Abstract 

A software system supporting multiple event-driven 
processes concurrently on a small process control 
computer is described. Each application can be 
programmed and tested independently. An implementation 
of the system, called LABS/7, has been productive for 
over three years. 

The limits to which real-time multiprogramming 
may be pushed are explored. 

Introduction 

In recent years, dramatic reduction in the cost 
of logic and memory has made it reasonable to consider 
applying dedicated, and largely idle, minicomputers 
to real-time control and data acquisition applications. 
The conventional wisdom seems to have been that an 
independent minicomputer should be assigned to each 
application, and that, for applications generating 
large amounts of data, this minicomputer should be 
supported by a large flexible central processor. 
However, cost reduction of electronic circuitry has 
not been paralleled by similar reductions in the cost 
of prograrmning, of computer-computer communication 
links or of peripheral hardware. For example, King 
and Carbonarol show that sharing a printer between 
several processors can be cost-effective and imply 
that similar arguments a~plied to other peripheral 
devices. Wann and Ellis describe a linked system of 
minicomputers which has as on~ of its objectives 
sharing of peripherals. While this paper demonstrates 
how simple the basic support can be for loosely coupled 
minicomputers, it is not clear that the extra effort 
to segment applications is repaid. Jensen's 
description3of a somewhat differently linked system 
shows that partitioning an application can be a 
non-trivial exercise. The arguments supporting 
assignment of a single processor to each application 
have been that, because of system-wide supervisor 
overhead, it is very difficult to provide real-time 
applications adequate response if they compete for a 
single processor; that errors in one application will 
impact another; and that distinct applications cannot 
be independently programmed. This paper describes 
one way in which these difficulties cah be overcome. 

Recently we described a system, called LABS/7, 
which operated on a hierarchy of computers in which 
each of several satellite processors supported multiple 
independent applications.4 The emphasis in that paper 
was on distribution of function between a centralized 
host and multiple satellites, and on system features 
that make application programming easy for 
inexperienced programmers. In the present paper, we 
focus on aspects of satellite processor multi
programming that make a great deal of sharing feasible, 
and attempt to communicate the limits. To a large 
extent, the external characteristics of the supervisor 
and application programs are independent of the 
hardware architecture and of how function is 
distributed between the satellite processor and other 

tPresent address: Deutsches Elektronen-Synchrotron, 
Notkestieg 1, 2 Hamburg 52, W. Germany. 

79 

attached processors, so these factors will be ignored 
in this paper as much as possible. 

Most of the structure of LABS/7 is a straight
forward application of methods used previously in 
process control computers such as the IBM/1800 and 
general purpose machines such as System/360. The 
central idea behind the method for real-time 
multiprogramming is simple. Most of the processing 
required by many real-time applications has very modest 
response requirements. This may be exploited by 
running most of each application at low priority if 
the system provides for rapid response to critical 
short segments of code. 

System Objectives 

The overall objective of LABS/7 was to provide a 
system which manages the entire set of resources of 
a set of coupled computers and defines to the user 
simply and precisely how an application can be 
designed, including options how to assign the function 
among the involved processors. 

If we assume it possible to reduce overall costs 
by having several applications share a process-control 
computer, a general requirement follows--it is 
necessary to support multiple independent real-time 
processes concurrently in such a manner that each 
application can be designed, programmed, and tested 
with minimal reference to other applications. 

Prograrmning development is an increasing cost 
factor. This has been quantitatively explored in 
recent study of the cost-effectiveness of laboratory 
automat:lon.5 In addition, significant improvements 
can result if programming assistants are unnecessary. 
To maximize the usefulness of a ~eal-time system to 
engineers, each user must be able to write his own 
application programs, with minimal consultation with 
support programmers, in a language which provides 
detailed control of timing, synchronization and 
input-output to the instrument. This command language 
should be very easy to learn. 

Control of any single real-time application usually 
involves several asynchronously running tasks. A 
control program to manage the system's 
serially"'."reusable resources is desirable whether or 
not the. system is multiprogrammed. Such a control 
program becomes only slightly more complex if 
independent applications are to be supported. If each 
application is to be able to access the full 
capabili.ties of the hardware, it is impossible to 
eliminate the need for· coordination between users. 
It must be the function of the control program to 
minimize the coordination necessary, and to provide 
methods of resolving contention for each shared 
resource. A summary statement of the objective is: 
The system must inalude a multitasking supervisor, 
which peY'171its each application programmer to control 
the required resources and to synchronize related 
events. PerfoY'171ance specifications for the system 
components should be explicit. 

Below there are itemized specifications6 for 
software which address these general objectives. This 



list of specifications is not intended to be complete, 
but to focus on those requirements that are 
specifically sensor-based~ or for which the 
implementation is strongly influenced by real-time 
requirements, such as responsive connnunication between 
the real-time processor and a large central machine. 
Real-time control and data acquisition are to be 
supported by a control program which manages the 
machine resources and by independently prepared 
application programs. The requirements include: 

(i) A connnand language for real-time application 
programs; 

(ii) The abil.ity to initiate any application 
program either from a terminal or from another 
applicat.ion program and to pass a short 
paramete·r list to the new program; 

(iii) Multiple tasks within each application 
program, and mechanisms for task 
synchronization; 

(iv) Pre-emptive task switching; 
(v) The ability to include sections of machine 

code within an application program; 
(vi) The ability to include in an application 

program a machine language subroutine for 
asynchronous service of an interrupt signal; 

(vii) The ability to record the interval between 
two sensor inputs to high precision; 

(viii) Compactness of the permanently resident 
portion of the control program and of 
real-time application programs; 

(ix) A relocating program loader; 
(x) A program-accessible timer for each 

task. 
Data reduction, storage and reporting functions can 
be supported on either the real-time processor or an 
attached central processor. The balance between what 
is best done on the satellite and what is best on the 
host will vary for different installations and for 
different applications. Much can be accomplished 
with: 

(xi) The ability to transmit data to and from the 
host, to initiate program execution at the 
host from an application program on the 
satellite; and to synchronize program events 
on the host and satellite; 

(xii) The ability of a real-time program to call 
FORTRAN subroutines; 

(xiii) Support for several satellite computers on 
a single host. 

To give the user as much flexibility and simplicity 
as possible in program preparation, the requirements 
include: 

(xiv) 

(xv) 

Symbolic addresses in application source 
code, including those of hardware devices 
and data files; 
The ability to load new programs and to test 
them concurrently with active applications. 

Architecture of Labs/7_ 

The objectives listed above have been realized in 
a system implemented on the IBM System/7 as the 
controller and with either IBM System/360 or System/370 
as the host installation. Since the features of 
interest are not particularly hardware dependent, 
hardware descriptions which are available elsewhere7 
will not be repeated. It is only pertinent that the 
System/7 has conventional process control computer 
architecture, with four interrupt levels, registers 
for each hardware level, and that wide range of 
peripheral devices, including sensor input-output and 
teleprocessing ports, disks and printers is available. 

What is LABS/7? It is a combination of functions 
including: 

a supervisory program for the satellite, with 
service rout:lnes for the sensor interfaces, 
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communication hardware, disks, terminals, and a 
printer; 
a set of commands, with which the user creates 
programs which are executed interpretively by the 
supervisor; 
a host communication program supporting several 
satellite controllers; 
predefined datasets and command procedur1:is on the 
host to fac:llitate program preparation; 
a set of utility programs to initialize the 
satellite and to transfer programs and data between 
the satellite and the host. 

We will describe the key features of the supervisor 
and the real-time command language. The program 
preparation facilities used with LABS/7 are the macro 
assembler, FORTRAN IV compiler, and link-editor 
provided as IBM products for the System/7.8,9 The 
system is oriented towards program and data storage 
on a System/7 attached disk, although this is not 
essential. 

* LABS/7 Supervisor and Emulator 

The user's view of the satellite supervisor and 
the emulator is sketched in Figure 1. The elementary 
unit of work for the supervisor is a command. Commands 
are combined to form tasks, each of which is assigned 
a service priority which is used by the supervisor to 
allocate execution time. An application program 
consists of one or more related tasks which can share 
variables. 

* 

Priority-
State- Executing Waiting 

Application Program 

Ready 
225 

Ready 
21)0 

Waiting 

Application Program 

We use the word "emulator" for lack of a more accurate 
word. Normally an emulator is a set of microprograms 
which create a target machine on a different vehicle 
machine. An interpreter normally denotes a set of 
programs which translate high level language to mach
ine language immediately prior to execution. The 
device used in LABS/7 is a combination of these methods 
and somewhat closer to the first. 



Application program execution is assigned to the 
lower two hardware priority levels. Although the 
supervisor does not enforce it, it is intended that 
a task for which timing precision is irrelevant be 
given a priority corresponding to the lowest hardware 
level. The upper two hardware levels are used for 
servicing completion signals generated by the I/O 
hardware, and for process interrupt exit routines (see 
below). 

The supervisor manages storage in the System/7 
dynamically. The resident supervisor code occupies 
between 3000 and 6000 words of storage, depending on 
which optionals such as disk support, printer support 
and telecommunication support are included and on the 
size of the sensor I/O interface and the number of 
terminals supported. The remaining storage is 
allocated in continguous blocks to application 
programs. An application program can be assigned any 
available storage. There is no software limit to the 
number of tasks or the number of programs executing 
concurrently. 

The supervisor includes an emulator which executes 
each application program command by analyzing its 
assembled form and linking to a system-resident 
routine. Following completion of each command 
execution, the supervisor processes the next sequential 
command in the highest priority task that is ready. 
Since each emulator subroutine is designed to run 
within 250 machine cycles, the top priority task will 
be served within about 400 machine cycles of being 
posted ready. (The latter estimate includes an 
extremely conservative allowance for supervisor 
overhead originating from unrelated tasks.) If a task 
becoming ready has higher hardware priority than the 
active task, switching occurs without waiting for 
completion of the current command. 

Included within the supervisor is support for 
bidirectional transmission of data with several options 
of transmission hardware. This software isolates the 
user from details of transmission protocols and manages 
the transmission line on a first-in, first-out basis. 
Initial program load can occur from disk, across the 
host communication link or from paper tape. Both 
direct access and communication support are optional; 
the system will operate with one or both omitted. 
Support is included to provide each application with 
an independent terminal. 

LABS/7 Command Language 

The command language for application program 
development is intended to make it easy to write an 
application program with fairly detailed control of 
the hardware. The burden of program translation is 
borne by a standard macro assembler9 to avoid 
interpretation overhead when the program is executed. 
The resulting relocatable load module consists mainly 
of pointers to emulator routines and operand addresses. 
This structure minimizes the application program 
storage requirements. Operands in the source code 
are either symbolic or explicit, and may be indexed. 
In particular, data files are referred to by symbolic 
names which are bound to disk data sets by the program 
loader. Sensor-based input/output conrrnands refer to 
specific hardware addresses by symbolic name. This 
feature makes application programs independent of the 
machine configuration. Source programs may have source 
subroutines, which may be nested. 

An application program may have more than one 
task. Each task runs independently, subject to the 
availability of resources requested from the system 
and the completi,on of events for which it explicitly 
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waits, although tasks may communicate with each other 
by using common storage locations. For synchronization 
of task execution with other tasks, with external 
events, or with the completion of some of the slower 
I/O, the command language supports the definition of 
symbolic events; it provides for either explicit 
posting of an event completion or for connecting an 
event name with an emulator routine that must post 
completion. 

Commands have been designed to be similar in 
appearance to FORTRAN statements wherever possible, 
while maintaining the flexibility inherent in assembler 
language. Many instructions have vector operands with 
automatic indexing provided. For example, one may 
add, subtract, multiply, or divide two vectors with 
a single command. The overhead associated with 
emulation of each LABS/7 instruction is 25 to 40 
machine cycles depending on the type of instruction 
and the concurrent system activity. 

In the current implementation, there are about 70 
commands, which may be grouped in 11 categories; some 
examples are given in Table I. A simple example of 
an application program is included in the appendix. 
Because all application program requirements could 
not be satisfied by emulator routines, the command 
set has a mechanism to include· a "user exi.t routine", 
written in System/7 assembler language. This is 
convenient for including functions which are not used 
frequently enough to be permanently resident, and for 
testing new functions. 

FORTRAN subroutines may be called by real-time 
programs, and may themselves call subroutines written 
in the real-time command set. Most of the facilities 
of the FORTRAN IV are available.8 

Timing and Responsiveness 

Engineers and scientists frequently over-estimate 
their data-rate and timing precision requirements when 
they initially consider automating an application. 
In this section, we present observations which can be 
applied to reduce timing constraints.lo The timing 
precision and data-rate capabilities of LABS/7 are 
then summarized followed by an abstract discussion of 
the mechanisms that permit real-time multiprogramming 
with good responsiveness. · 

1) 

2) 

3) 

For most sensor-based applications, the 
precision required of timing control provided 
by the computing system is less than the 
intrinsic speed of the computer. In many 
data acquisition applications, time is not 
even an explicit variable, so that as long 
as reasonable throughput is maintained, data 
input can be controlled by a low priority 
program. For data acquisition applications 
which are time-dependent, it is most often 
necessary to know when the data was taken, 
not to control data acquisition to precise 
intervals. 

A process control computer is capable of 
collecting a million numbers a minute or 109 
data per day. This data rate is far in excess 
of what is usually required, even for a 
demanding set of applications. Scheduling 
of the work, which can be done by the system 
itself, can alleviate peak loads. 

Inexperienced users tend to want to collect 
too much data by an order-of-magnitude or 
more. Every data point collected must be 
either processed or wasted. 



4) Missing the collection of a few points in a 
file of physical measurements may be 
unimportant if it can be recognized that this 
has occurred. Only if a critical measurement 
cannot be redone in time does loss of data 
become serious. 

In most applications, a very high data rate needs 
to be sustained for only for a very short interval. 
Since the start of a high-speed process can be 
synchronized by the computer, it is very easy to devise 
strategies which avoid conflict between incompatible 
high-speed runs. For the few applications which 
require high rates for sustained periods (or extremely 
accurate timing) inexpensive solutions can be designed 
with integrated circuit chips built into a processor 
interface. Two examples, one from a laboratory and 
one from a quality control test illustrate the point. 
In mass spectroscopy of a gas chromatographic effluent, 
scans of 5000 points every half-second may be 
indicated; however, only scans corresponding to a 
chromatographic peak need to be gated into the 
controller, and only the data significantly greater 
than the noise level are meaningful; in a typical 
15-minute run of 107 points, interface electronics 
can reject as uninteresting all but 105 points. In 
fatigue testing of jet aircraft wings, it may be 
necessary to process 50,000 strain measurements per 
second for hundreds of hours in order to record the 
details of a fracture when it finally occurs; one 
could use a microprocessor which passes data to the 
control processor only when the strain is changing 
rapidly, and at that time usurps control of the 
processor. 

In LABS/7, since the objective was to give the 
user all possible freedom, some responsibility for 
sensible use of the resources was also transferred by 
providing guidelines which have been successful at 
avoiding timing conflicts between applications. The 
responsiveness of LABS/7 running on a System/7 can be 
sununarized as follows. The next command of the top 
priority task will be executed within 200 µsec. of 
the time the task is ready to execute. For situations 
in which the interval between two occurences must be 
either very short or controlled to a close tolerance, 
a user exit routine mechanism can be programmed. For 
applications in which the response to an external 
signal must occur within 20 µsec., there is a process 
interrupt exit routine mechanism. Sustained data 
rates of 1000 points per second for multiple concurrent 
applications are possible with the normal capabilities 
of the LABS/7 emulator, as is an aggregate data rate 
of 20,000 points per second. Bursts of digital input 
or output data at over 100,000 points per second may 
be achieveq using a process interrupt exit routine. 
As far as we know, these response times are adequate 
for the several hundred applications which are 
currently supported by LABS/7 in different locations• 
The mechanisms permitting application programs to 
include segments of machine code are seldom used. 

Discussion 

It is clearly not possible to arrange that a single 
processor serves multiple independent applications 
with guaranteed response times for each application 
irrespective of competing activity. Complete 
independence of competing applications is not generally 
possible unless all applications (except perhaps one) 
are slow relative to the processor. However, it is 
easy to arrange that the bulk of each application can 
be executed at relatively low priority and that 
task-switching is available very frequently and with 
low overhead. If the application programming system 
is such that critical portions of code are clearly 
identified small segments, and if the performance of 
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elementary service mechanisms is precisely specified, 
it is possible to adjust the priorities of application 
tasks and interrupt servicing routines so that most 
requirements are met within acceptable engineering 
tolerances, and so that those portions not satisfied 
are clearly identified simple segments which might be 
candidates for service by an attached microprocessor. 
In our experience, adjusting priorities for a set of 
applications has always been very easy to do. 

In the LABS/7 implementation, attainment of the 
achievable limits of performance was not emphasized, 
partly because none of the users of the syst1~m have 
requested performance improvements. However, it is 
worthwhile to estimate what limits are possible and 
what mechanisms might be made available so that 
application programs can access most of the speed of 
the hardware in a high level 
multitasked-multiprogrammed system. To a colllsiderable 
extent, this discussion can be independent of details 
of the hardware architecture. 

The supervisory program for a real-time system 
can be quite conventional--it should provide for 
enqueuing on serially reusable resources,.creating 
and synchronizing tasks, waiting for events and 
responding to interruption requests. (In this 
discussion it is assumed that the processor has three 
or more hardware priority interrupt levels; a key 
parameter is the time required to switch from a lower 
to a higher priority level and to detect which of 
several possible interrupt signals was received.) If 
the processor includes time-sensitive devices, such 
as disks or telecommunication lines, they should be 
assigned to the second highest hardware interrupt 
level so that they cannot interfere with servicing 
the highest level. Over-runs on such devices can be 
handled with normal error mechanisms. 

The majority of each application program is to be 
executed on the lowest processor level. If the system 
provides a mechanism by which control will be regained 
by a supervisory program periodically (e.g., every 
250 memory cycles), it is possible to provide a large 
number of software priorities for multi-tasking. One 
very effective way to do this is with an emulator, 
which is executed without the supervisor eveff giving 
up control. The LABS/7 supervisor switches contriol 
to the ready task of highest priority at the end iof 
every emulator subroutine, whenever an I/O wait is 
necessary and in each pass through the loop of a 
data-dependent emulator subroutine. Such an emulator 
has other very desirable features: application 
programs are extremely compact, the application 
progranuning language is easily extended either with 
new emulator subroutines or with assembler macro 
commands whose individual instructions are i~mulator 
commands or other assembler macro commands; it is 
possible to enhance the emulator functions without 
reassembling application programs; adverse :interactions 
between application programs are largely avoided by 
the isolation the emulator provides; and ne.arly all 
of the overhead of language translation occurs when 
an application is assembled. (Another alternative is 
the type of interpreter described by Freema:n,11 which 
should be further examined.) 

Such an emulator is best exploited by running 
those program segments which do not have important 
timing requirements (see above) as the lowest prj_ority 
tasks. Generally the sensitive program segments can 
be written as quite short medium priority tasks (10 
to 30 emulator instructions corresponding to 2000 to 
6000 memory cycles), with the effect that when one of 
these is encountered, there is very low probabil:Lty 
of unacceptable delays because of competing proci~sses, 
How to segment a program into separate tasks is often 



suggested by the application. Since data are shared 
by tasks within a program, segmentation does not 
materially complicate prograrraning. If this type 
segmentation into tasks is not desired, a similar 
result can be achieved with a "change priority" 
instruction included in the emulator set. 

For data collection,tasks in which timing precision 
is important, the emulator can include a sensor input 
subroutine that includes in its results a time stamp. 
If the implementation is--mask interrupts; read 
internal clock; start sensor I/O read; unmask 
interrupts; wait for sensor I/O completion--the time 
interval between successive data reads will be precise 
to about 10 memory cycles (depending on functional 
details of the hardware). This interrupt masking will 
introduce only negligible disturbance to other 
functions of the system. With well-known interpolation 
methods, it is trivial to reconstruct data tables on 
equal time intervals if this is desired.10 

All function described above is available without 
including machine code in the application program. 
If it is necessary that two external events of a single 
application occur within a small number of machine 
cycles of each other, a user exit routine, as described 
for the LABS/7 implementation, may be employed. If 
the machine language code of the subroutine were 
constructed similar to that described in the preceding 
paragraph, the minimal interval between the events 
would be determined by hardware limitations. 

It is possible to provide for very fast response 
to interrupt~on requests with an emulator subroutine 
which inserts into the interrupt decoder a branch to 
a process interrupt exit subroutine which is a part 
of an application program (there are many ways to do 
this). If no competition is active, the application 
subroutine can be entered within a few machine cycles 
of the time the hardware recognizes which of several 
interrupts occurred. If this device is used at the 
highest interrupt priority, the only interference to 
an application using it will be from other use of the 
same device, from interrupt masking as described 
irranediately above and from interrupt masking required 
in the multitasking supervisor. In practice, the last 
source of interference is negligible compared to the 
former two. To understand these interferences, an 
example is helpful. Suppose there is a system 
restriction that process interrupt exit subroutines 
be limited to 25 machine cycles and that no user exit 
subroutine should mask interrupts for longer than 25 
cycles. Suppose further that there is an average 
interval of 2500 machine cycles between such events 
and that their occurrences are uncorrelated, then the 
probability that entry of a process interrupt exit 
subroutine be delayed by 25 machine cycles is less 
than 1%, and the probability that the delay is 50 
machine cycles or longer is less than .01%. If such 
analysis reveals that the possible peak interference 
is unacceptable, the system can include a mechanism 
to enqueue for exclusive service on the process 
interrupt exit routine function. Perhaps because of 
the application characteristics described above in 
the section on timing and responsiveness, we have not 
felt it necessary to include such enqueuing in the 
LABS/7 implementation. 

Conclusions 

It has been frequently assumed that multi
prograrraning a small computer for real-time applications 
is not viable for reasons of operating system 
complexity, supervisor overhead, or timing 
interferences between applications. In this paper we 
have described a counterexample and abstracted the 
mechanisms on which it is based. All of these 
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mechanisms on which it is based. All of these 
mechanisms are individually well-known, and such a 
system could be implemented within almost any hardware 
architecture. 

An implementation, called LABS/7, exists and has 
the following characteristics: 

The entire operating system, including disk, 
telecommunications and terminal support and an 
emulator requires about 6000 6-bit words of memory. 
Supervisor overhead, relative to applications 
coded in machine language, is less than 20%. 
Applications can largely be programmed 
inde.pendently. The areas of timing contention 
are well-defined and therefore easily resolved. 
Modifications and additions to the application 
language are easy to make. 
And support exists for attachment of several 
real-time processors to a host processor. 

LABS/7 has been in productive service since 1973 
so that the basic ideas presented have been tested 
and found to be useful. 

Appendix - An Application Example 

A short example is given below to demonstrate the 
simplicity of the language for the data acquisition 
portion of an application. 

When a start signal triggers process interrupt 
PI!, 100 digital readings are to be taken from a 
scanning device, Dil. Each reading must be preceeded 
by the setting of digital latch DO! to initiate a 
digital readout. Because a single reading is subject 
to noise, it is necessary to repeat the scan of 100 
readings 50 times and average the results. The 
following LABS/7 statements illustrate how this may 
be accomplished: 

WAIT 
DO 
DO 
SBIO 
SBIO 

SCAN CONTINUE 

* 

Pil 
AVG,50 
SCAN,100 
DO! 
Dil,BUFR,INDEX 

WAIT FOR START SIGNAL 
BEGIN AVERAGING LOOP 
BEGIN DIGITAL SCAN LOOP 
SET DIGITAL LATCH 
READ INTO INDEXED BUFFER 
END OF SCANNING LOOP 

* ADD 100 READINGS INTO DOUBLE PRECISION BUFFER 
ADD AVG,BUFR,100,PREC=D 
MOVE I,O RESET READ BUFFER INDEX 

AVG CONTINUE END OF AVERAGING LOOP 

* * DIVIDE DATA FOR 100 PTS. BY 50. STORE RESULT IN BUFR 
DIVIDE AVG,50,100,BUFR,PREC=D 

BUFR BUFFER 
AVG BUFFER 

100,INDEX=I 
200 

These data might be processed on the System/7 to 
produce a report or be sent to a host computer. In 
order to send the data to a System/370 host, the 
following simple addition opens System/370 data set 
named 'SYS7.TESTDATA' for output, writes data stored 
in BUFR to the host, and closes the data set. 

TP OPENOUT,DSNAME 
TP WRITE,BUFR 
TP CLOSE 

DSNAME TEXT 'SYS7.TESTDATA' 

OPEN HOST DATA SET 
WRITE DATA TO HOST 
CLOSE HOST DATA SET 

NAME OF HOST DATA SET 
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Category Connnand Name 

System Configuration SYSTEM7 

IO DEF 

Task Control ATTACH 

WAIT 

QUEUE 

Program Flow CALL FORT 

GOTO 

Timing Control INTIME 

WTIMER 

Data Definition BUFFER 

Data Manipulation ADD 

CONVERT 

ADDINEX 

Teleprocessing TP OPENOUT 

TP SUBMIT 

Terminal Support YESNO 

WRITE 

Sensor I/O SBIO AOx 

SBIO Diy 

TABLE I 

EXAMPLES OF REAL-TIME COMMANDS 

Function 

Defines the size and I/O configuration of the S/7 hardware 

Relates a symbolic sensor I/0 address to S/7 hardware addresses 

Defines and starts a new task within a program 

Waits for completion of a named event 

Enqueues on a named (serially reusable) resource, such as the 
printer 

Calls a FORTRAN subroutine, and passes parameters 

Unconditional or calculated branch 

Returns the time elapsed since the last execution of INTIME, 
precise to 1 millisecond 

Waits until a previously set time interval expires 

Defines a buffer and a pointer which is automatically indexed when 
certain I/O commands transmit to or from the buffer 

Adds a single precision constant or vector to a single or double 
precision constant or vector 

Translates ASCII characters into EBCDIC characters or vice versa 

Increments the contents of an index 

Initializes communication into a host processor dataset 

Submits a job into the host processor jobstream 

Transmits a query to a terminal, and branches if the answer is 
not yes 

Enqueues for service a table of terminal output commands 

Sets the voltage on analog output converter "x" 

Reads the condition of digital input word "y" 
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Introduction 

During the past several years a computer-aided 
design system (the Logic Machine) has been under 
development in our laboratory. Briefly, the Logic 
Machi_ne consists of a microprogrammable control 
processor, one or more functional units, one or more 
bidirectional buses, and a microprogram all arranged to 
perform a specific digital algorithm. Our major goal 
has been to be able to construct .!!!!Y digital device 
with this system. We have been able to build a graph
ics display terminal (1), a floating point processor 
(2), string/array auxiliary processor (3), and a 
minicomputer (4). It has amazed, us to see how simple 
and fruitful it has been to construct these devices. 
In this paper we describe the use of the Logic Machine 
design system to build still another digital device, a 
high-level language minicomputer. 

The motivation for this effort is probably obvious 
to all hardware designers; software is the most 
expensive part of a computer system and a high-level 
language computer will significantly reduce software 
costs. Not so obvious is the task simplification at 
the systems programming level, enabling a programmer to 
quickly review his work, decide on additions or correc
tions, and expand a program or system. These b~nefits 
reduce the layers of logic and, we are convinced, will 
enable much more sophisticated software systems to be 
built. That is, machine languages are too primitive 
and, eventually, a programmer cannot keep track of all 
the facets of a system. 

Another way to reduce system complexity is to 
reduce the size of the operating system. Clearly, a 
multiuser system requires a large operating system; 
the construction of a "private, personal" computer for 
single users would considerably reduce operating system 
size. LSI memories and bit-sliced microprocessors make 
this feasible. Of course personal, private computers 
are not a panacea; on the other hand, there are situa
tions in which such systems are preferable (even 
mandatory) to multiuser systems. This is so in our 
laboratory, where the emphasis is on physiological data 
acquisition, experimental control, and simulation. 
With LSI microprocessors and semiconductor memories 
used in conjunction with our own design and construction 
facilities, it has been feasible to construct our own 
computers and the necessary operating systems. 

Still another way to simplify a system is to 
limit the scope of intended applications. Admittedly 
our orientation is "warped" by the physiological 
research setting in which we are located. Later, for 
example, we will show how our need for vector arith
metic hardware has influenced our compilation 
techniques, that is, in character string processing. 
Vector/array machines were motivated by large 
scientific problems whereas byte machines were the 
result of the business requirements. The former are 
of little use in business applications, just as the 
latter are of little use in scientific applications. 

Supported by a Grant from the National Institutes of 
Health, Division of Research Resources, Biotechnology 
Research Branch, RR00374. 
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These considerations led us to design (1) a high
level language minicomputer, (2) to be used in a 
"private, personal" fashion by, (3) physiologists/ 
biophysicists. We call this system BASIL (BASIC - SIL, 
for System Implementation Language). The BASIL 
language is a version of BASIC enriched for systems 
programming. Although intended as a single·-language 
computer the possibility of additional languages is 
kept open. Whether or not BASIL is useful to other 
scientists in their research disciplines can only be 
answered by those scientists; the complexity of modern 
science prevents us from making sweeping st.atemen:ts. 
We shall restrict our comments to the computer needs of 
physiologists/biophysicists. 

These are as follows: 

1) An aggregate data acquisition rate of 100 KHz 
A/D samples is usually adequate if the system has fast 
response time. 

2) Digital output control and display feedback 
from the computer to the experiment (and experimenter) 
are required. 

3) Floating-point arithmetic - vector and scalar 
- much "number-crunching" with a strong vector emphasis 
are required. 

4) Peripheral high-speed and low-speed storage 
are needed. Often a single day's experiment will fill 
most of a reel of magnetic tape. For storage of inter
mediate results a modest-sized (4M words) d.isk is 
sufficient. 

5) A main memory of 32 K words (16-bi.ts/wo:rd) is 
quite adequate for physiological/biophysical resiearch. 

Perhaps a more useful list is one that: describes 
nonessential features. 

1) Multiuser operating system. Item 1 above 
prevents, in any practical way, sharing of a computer 
by experimenters. Although it may be technically 
possible to share, the operating system cost (to 
construct and maintain the software and provide memory) 
is so large as to make the single-user uniprocessor 
system a preferred alternative. 

2) Multiple languages. An interactive algebraic 
language is sufficient for most physiological/bio
physical research. All programming, including system 
programming, is to be done in this languag1~. A single
language computer would be of significant benefit in 
an enviroment in which we expect to have .!!!:~. profession
al programmers. Even with professionals system modifi
cations and developments are improved when a high-level 
language is used. 

3) Line printers and card readers. With a 
single-user, single-language system a highly inter
active, source-oriented text editor is quite easy to 
implement. Program development and listings on the 
scope are preferred over the card reader/l:ine printer. 
A 60 char/sec printer/plotter is sufficient for both 
programming listings, manuscript text, and hard-·copy 
graphical output. 

As far as we know there are no minicomputers that 
satisfy all of these requirements. Nor are there 
likely to be any. Jordan Baruch (5) describes how the 
specialization in biomedical research has 



"disaggregated'' the marketplace, making it unprofitable 
for vendors to pursue highly specialized subsegments. 
This is easily seen by the above comparison; the list 
of things not needed by the physiologist/biophysicist 
are precisely those required by the physician/hospital 
records system. 

A global issue is'how to "reaggregate" the bio
medical community. Baruch recommends that scientists 
in subspecialities "standardize and specify out to 
some operating boundary" computer systems for that 
subspeciality. A high-level language minicomputer 
would be of great value in meeting Baruch's recommend
ation. 

Microprogrammed Sequenced Functional Units 

BASIL belongs to the class of digital devices we 
call Logic Machines. That is, several function units 
are connected together over one or more bidirectional 
data buses and are sequenced by microcommands emanat
ing from a vertically encoded microprogram engine 
(control processor). The choice of vertical encoding 
and bus-access discipline are explained in a paper 
describing the LM2, another logic machine minicomputer 
previously constructed in our laboratory. (4) BASIL, 
block-diagrammed in Fig. 1, uses the LM2 functional 
units for main memory, peripheral I/O, cooperative 
processing. Here our attention will be restricted to 
the ALU-addressing function unit, where most of opera
tions associated with a CPU are performed. 

Second-generation microprocessor LSI integrated 
circuits make up nearly all of the data path of BASIL. 
Four Monolithic Memories (6701) Schottky bipolar bit 
slices, each a 4-bit slice (see Fig. 2) capable of 205 
ns microinstructions, form the data part. A
source and B-source registers select 2 of the 16 gen
eral registers for input to the ALU. A µ-instruction 
register selects one of eight functions to be performed 
on a variety of sources and destinations. 

The macroinstruction format is shown in Fig. 3 and 
is composed of three fields: ALU control field, 
microroutine branch field, and two flag bits. The flag 
bits are used as general-purpose modifiers and do not 
have a rigid definition. 

Macroinstructions require a 16-bit word. Operand 
addresses follow the instruction and each operand 
address requires a 16-bit word. Thus, for example, 
A + B -----J C requires four words of storage: 

"ADD" 

ADDRESS OF A 

ADDRESS OF B 

ADDRESS OF C 

Execution of the macroinstruction proceeds as follows 
(refer to Fig. 4, a listing of the BINOP macroroutine). 
A macroinstruction program counter (MacroP) is bussed 
to the memory address register (MAR). If the memory 
is busy.an interlock holds up processing until not 
busy, at which time a read cycle is started. Just 
after the read cycle starts, MacroP is incremented. 
These actions are performed by a single microinstruc
tion - MicroPRDINC. 

MDRMACRO moves the contents of the memory data 
register to the macroinstruction register. This 
microinstruction is also interlocked to memory access 
complete to hold up processing until the data are 
valid. Also the µ-instruction register in initialized 
to transfer inputs to A-ram. A-source and B-source 
are set to 0 and 1, respectively. 
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"DECODE," a control processor microinstruction, 
allows peripheral device functional units to gain 
control of the control processor. See [4] for a 
complete description of cooperative processing wherein 
the control processor executes microinstructions for 
peripheral devices. 

The six-bit control processor microroutine address 
portion of the macro is applied to the address inputs 
of the macro branch table to produce a 12-bit branch 
address. This branch table has lowest priority rela
tive to other branch tables located in the peripheral 
device functional units. Consequently, if none of the 
other functional units require service, DECODE gates 
an address from the macro branch table to the control 
processor. This address causes the control processor 
to start execution of the appropriate microroutine 
required for the macroinstruction. 

MDRDIS transmits the operands from the memory data 
register to the 6701 bit slices. Steering for the 
first operand to Ao was initialized during macro fetch 
by micro MDRMACRO. That steering is changed for the 
second operand by incrementation of the 6701 ALU micro
instruction register which is, in fact, a counter. 

With the two operands in register 0 and 1, the 
microinstruction MacroREGLD transfers the ALU field 
from the macro register to the 6701 microinstruction 
register. 

Finally, the address of the destination is ac
quired. CPMACRO changes the ALU field of the macro 
register to steer from 6701 to output; the result is 
transmitted to the memory, and the microroutine closes 
by jumping back to macro fetch. 

Given in Fig.4 is the timing of macro fetch and 
BINOP. The timing assumes TI ts TMS 4030 with 300 us 
access, 500 ns full cycle). BINOP would execute in 
2 µsec if all operands were stored in a 100-ns memory 
(such as cache) but require more than twice as long 
(5.1 mj_croseconds) when stored in this memory. BASIL 
is actually faster than the worst case described in 
Fig.4 ·because main memory is 4-way interleaved. 

Performance 

A conventional computer would require a minimum 
of three instructions to perform A+ B----:) C: 

LD 

ADD 

ST 

A 

B 

c 
If we assume a 500-ns memory, the conventional machine 
would require 3 µsec: 3 instruction fetches, 2 oper
and fetches (for A and B) and a store (C). BASIL's 
worst case timing is 5.1 for the same operation 
(BINOP). We are willing to accept this two-fold speed 
reduction considering the ease with which the macro
code is produced. Realistically, the over-all machine 
performance of BASIL is much better for the following 
reasons. 

On the one hand, if we assumed a 5-bit operation 
code, a 16-bit macro can only address 2048 words 
directly. This addressing space is unacceptably small 
and most minicomputers have page registers to increase 
the addressing space. Control of the page register 
adds to the compiler complexity and consequently is 
often not used. Alternatively, double word instruc
tions are used and, while simplifying compiler con
struction, such a machine is only about as fast as 
BASIL - two memory cycles are required for each macro 



fetch, and three for operand manipulation. (ln point 
of fact, high-level languages for minicomputers often 
produce far less efficient code. This is because a 
compiler writer will often first design a group of 
macros and the object time code consists of calls to 
these macros. Significant overhead is introduced in 
the calling operation; RT-11 Fortran for the PDP-11/45, 
a macro-based compiler, does A + B ~ C in 12 ..c, sec. 
More sophisticated compilers, such as Fortran-4 PLUS, 
produce better object time code but with much slower 
compilation and much larger memory requirements.) 

Furthermore, BINOP is a scalar operation: the 
worst case for BASIL and the best case for a conven
tional machine. Shown in Fig. 5 are all of the macros 
necessary for the compilation of BASIL. (Notably 
missing are the floating point arithmetic operations, 
which are done in a separate auxiliary string/array 
processor [3]). Many of these macros manipula~e 
strings of characters, usually at memory bandwidth 
speeds. Since much of compilation involves character 
string operations, BASIL compiles at quite high speed. 
Unfortunately, it is nearly impossible to give an 
estimate of BASIL compilation speed relative to that 
of a conventional machine. For the most part BASIL 
seems to be at least twice as fast. 

But speed is not really an important issue 
because, in the environment for which BASIL is intend
ded (i.e., a physiologist/biophysicist's laboratory), 
compilation speed does not have highest priority. Of 
much greater importance is the ease with which 
external command-and-control functions can be incor
porated in the software. Our goal is to encourage 
the basic scientist to develop his own command-and
control systems. With conventional computers this is 
an onerous task involving command language decoding, 
that is to say, lexical analysis. 

BASIL's lexical analysis commands 

Lexical analysis consists of separating the 
parts of a line of source code into its constituent 
parts. Because a conventional compu~er can ?nly 
manipulate a single character at a time, lexical 
analysis tends to be slow and cumbersome. Ou: 
approach is to perform firmware cha7acter ~tring ?per
ations. This has the advantage of increasing lexical 
analysis speed and decreasing the complexity of the 
software. In addition, character string commands are 
useful as fundamental operators in all software 
systems using text: text editors, information re
trieval systems, type setting systems, etc., and thus 
has utility for run-time systems as well. 

To illustrate the use of the firmware commands 
consider the lexical analysis of: 

BETA= ALPHA .NOT. (GAMMA .OR. DELTA) 

This line must be searched with a series of substrings 
taken from a table of operators. For example, the 
substring ".AND." would be passed over the line of 
source code and, in this example, a match would not be 
found. The command to do this operation would be: 

CO=INDEX (LINE, OPER, 1) 

where "LINE" is the source line, "OPER" is current 
operator currently being considered, "L"indicates the 
search to begin at the first character in "LINE." If 
the search is successful the index of "LINE" matching 
the first"·" of ".AND." will be stored in "CO"; other
wise, CO = O. In memory the sequential words for this 
instruction would be: 

"INDEX" 

ADDRESS OF LINE 

ADDRESS OF OPER 

ADDRESS OF CO 

and execution proceeds at nearly memory speed. 

As each operator is located it is moved (by 
instruction MOV) into an array of strings, and the 
operator substring of "LINE" is set to blanks. Thus, 
at the end of the operator scan procedure, the deci
mated line of the example is: 

BETA ALPHA GAMMA DELTA 

The remaining substrings of characters, i.e., the 
symbols, are then transferred to the string array. 
Lexical analysis is thus completed. 

Vector operations, I/O service and micro-interrupts 

BASIL depends on vector-like operations, embed
ded in firmware, to speed up compilation. Microcode1 

for vector-like operations is written to utilize as 
much of memory band width as possible; nevertheless, 
BASIL is memory band width limited. However, I/O must 
be supported at some minimum word rate. BASIL' s disk 
drive, for example, must handle a word every §.~..ttse~cs. 
BASIL's vector hardware, for maximum efficiency, 
performs microsteps in tight sequences such as trans
ferring the contents of the MDR directly to the MAR 
(Fig. 4 ) . If the microcode were interrupted and th~i 
MAR altered, as it would certainly be to satisfy I/O, 
just after the MDR to MAR transfer, the indirect 
address would be lost. Hence, BASIL microcode must 
control the I/O requests and permit them to occur only 
at "safe" times. A conventional interrupt scheme will 
not suffice because it cannot recognize "safe" times. 

A DECODE/PASS microinstruction permits I/O acU v-
ity when no volatile information can be lost. . 
Execution of DECODE/PASS is as follows: 1 . .MPC is 
stored in a DECODE/PASS register, 2. Periphel'al device 
request priority network is checked, .3. If no peri
pheral devices are requesting se7vi~e, t~e c?ntrol . 
processor passes and the next mainline microinstruction 
is executed, 4. However, if a peripheral device 
requires service the decode option is performed (the 
control proc~ssor accepts a peripheral device func
tional unit generated microroutine branch address 
resulting in a branch to a service microroutine), 
5. The DECODE option arms the DECODE/PASS register so 
that, when the I/O service microroutine (which always 
ends with a DECODE) is completed a branch back to the 
location following the DECODE/PASS micro is executed. 
DECODE/PASS micros are sprinkled, by the micropro
grammer, in his code so that the maximum worst case 
time is less than the fastest peripheral device. Shown 
in Fig. 4 are DECODE/PASS instructions with a maximum 
of . 9 .f\sec worst case -- easily within the 6. 4 .c.tSec 
disk response time. Indeed a 500 K word/sec I/O 
transfer rate can be sustained. 

Most DECODE/PASS micros occur just after a memory 
access while the memory is busy; at a time which would 
otherwise be wasted. Operating in the "shadow" time 
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(as it is usually called) in this way slows BASIL little 
and usually not at all. 



Discussion 

It was necessary in the preceding sections to 
provide sufficently fine detail as background for 
what we believe are critical issues of high-level 
language minicomputer architecture. In our opinion, 
the main concern in HLL design is that too much 
language will be embedded in hardware/firmware. (See 
[6], [7]). If too much language is embedded in the 
hardware/firmware, the system is frozen into a specific 
rigid processing framework. 1he future of such a 
system is strictly limited; it will only execute the 
language that was built in. Care must be taken during 
the design phase to ensure that new, improved high
level languages can be developed. 

Furthermore, it is difficult to justify the cost 
of an appreciable fraction of a system's hardware if 
that hardware is limited to source language transla
tion/compilation. Rather, in our opinion, it is far 
better to try to design multipurpose system functions, 
those that are useful both at run-time and at comp
ilation. 

We believe BASIL's character string firmware 
represents such multipurpose system functions. Comp
ilation is speeded and simplified because the firmware, 
executing at close to hard-wired speeds, manipulates 
source code more "naturally." Important system 
functions involving text manipulation, such as text 
editing, are executed faster and are easier to program. 

Probably most important of all, however, is that 
new languages can easily be added and old languages 
improved because the tables that drive the lexical, 
precedence, and syntactical aspects of compilation are 
available to the software engineer for modification. 
Furthermore, if these tables are not enough, the 
software engineer can even build his own system func
tions; BASIL's control processor is user micropro
grammable. 

1hese are important issues for BASIL's end-user 
clientele -- physiologists/biophysicists. A great 
deal of work on unique high-level systems is needed 
for this important biomedical science. Current com
puters and operating sys terns are simply too primitive 
for these systems to be attempted. 

By Chu's definition BASIL is an indirect HLL 
because it produces intermediate code, whereas a direct 
HLL executes source without translation [6]. Although 
there have been many proposals for HLL computers only t\. 
few attempts have been made. By far the most notable 
is SYMBOL [6,7,9], which has, among other features, 
hardware data structures, a special language (SYMBOL), 
all built into a hardwired machine. Only one SYMBOL 
machine has been built thus far, and we speculate that 
potential users have found the system too rigid. 
Weber [10] microprogrammed an IBM 360/30 to execute a 
high-level language called EULER. 1hese authors report 
a significantincrease in execution speed. 

While these projects have been milestones in the 
development of HLL, they· have made discouragingly 
little impact on computer science. We feel that BASIL 
has better prospects because (1) the entire system is 
programmed in a single language and (2) it is designed 
for a specific clientele who traditionally have not 
been concerned with nor benefitted from nor have been 
interested in massive computer systems developments. 
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Location 

Macro fetch 

BINOP: 
ADD, SUB, OR 
XOR, INC, DEC 

Microinstruction Comment 

MacroPRDINC MacroP to memory address register 
(MAR); read cycle initiate; 
increment MacroP 

MDRMacro 

Decode 

MacroPRDINC 

MDRMARRD 

MDR DIS 

DECODE/PASS 

MacroPRDINC 

BLD 
1 

MDRMARRD 

MD RD IS 

DECODE/PASS 

Macro REGLD 

MacroPRDINC 

MDRMAR 

CPMacro 

DECODE/PASS 

JMPFETCH 

Interlock until data ready; memory 
data register (MDR) to ALU instruction 
register (AIR); initialize A- and B
source 

Branch to address specified by highest 
priority F.U. (Macros have lowest, 
peripherals higher); allows peripherals 
to cycle steal 

Total macrofetch 

Acquire address of 1st operand 

Interlock until data ready; 
MDR to MAR; READ cycle initiate 

MDR (1st operand) to 6701 ALU 

No volatile data; permit peripherals 
to get control processor 

Acquire address of 2nd operand 

Move the constant "1" to B-source 

Get 2nd operand 

2nd operand to 6701 ALU 

Permit peripherals to cycle steal 

Macro instruction register to ALU 
instruction register 

Acquire address for result 

Set up to store result 

ALU to MDR, wait till memory 
not busy; start write 

Permit cycle stealing 

Jump to Macrofetch 

Total BINOP 

Total Macrofet ch + 
BINOP 

Equivilant LM2-BASIL execution for BINOP 

Equivilant PDPll/45 (RTll FORTRAN) 

Fig. 4 BINOP Listing 

*Assumes (worst case) 500 ns memory without normal 4-way interleave 
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Time (ns) 

100-300* 

100-400* 

200 

400-900 

100-300* 

100-500* 

100-500* 

100-200 

100-300* 

200 

100-300* 

100 

100-200 

100 

100-100* 

100-500* 

100-500* 

100-200 

200 

1700-4200' 

2300-5100 

20,000 

12,000 



Arithmetic: 
BINOP (ADD, SUB, XOR, OR, AND) 
MONOP (Negate) 
MIJL 
DIV 
Raise to power 

Relationals: 
.NE. 
.LT. 
.LE . 
. EQ. For both strings 
.GE. and integers 
.GT. 

Subscript Addressing: 
Loads: 

One dimension array 
Two dimension array 
Multiple dimension array 

Store: 
One dfmension array 
Two dimension array 
Multiple dime·asion array 

Control~ 

Call subroutine 
GoTo 
Return 

For both strings 
and integers 

For both strings 
and integers 

If (false) GoTo 
For-loop test 
Move (strings and integers) 

Functions: 

References 

Substring 
Index 
Length 
Chrfcn 
Outs tr 
Output (mag tape) 
Outeof " 
Out rem 
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Read: 
Integer 
String 
String temp 

Input: 
Integer 
String 
String - no quotes 
String temporary 
String temp-no quotes 

Print: 
Print integer 
Print string 
Print control 
Print tab 

Pseudo-ops: 
Forward reference 
Integer constant 
String constant 
Integer data pointer 
String data pointer 
Begin dimension statement 
Begin string declaration 
Where is JLOC for line X 
Where is integer symbol 
Where is string symbol 
Where is label 
Where is unknown 
Assign integer 
Assign string 
Append string 

Symbol table 
commands 

Fig. 5 - Listing of macroinstructions 
required for BASIL compilier. 

8. Chu, Yaohan, "Introducing the High-Level-Language 
Computer Architecture," Technical Report TR-227, 
University of Maryland, Feb. ·1973. 

9. Chesley, G. D. and Smith, W. R., "The Hardware
Implemented High-Level Machine Language for 
SYMBOL," Proc. SJCC, 1971, p. 563. 

10. Weber, H., "A Microprogrammed Implementation of 
EULER on the IBM System/360-30," CACM, Sept. 1967, 
p. 549. 



Function Distribution in Computer System Architectures 
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ABSTRACT 

The levelwise structuring and complexity of a computer 
system is presented informally and as a general model 
based upon the notion of abstract machines (processors), 
processes and interpreters. The important domains of 
the computer architect are considered along with histo
rical perspectives of certain stimulae and decisions 
that have affected the distribution of functions anongst 
the various levels of computer system implementations. 

Keywords: Computer Architecture, Computer System 
Complexity, Computer History. 

1. Introduction 

In the early days of digital computers, the stratifica
tion of computer systems was, on the surface, quite 
simple. Two main levels were apparent, namely, hard
ware and programs (e.g. software). Growth in the sophi
stication of the application of computers to new areas, 
changing physical technologies, the man-machine inter
face, the economics of computer usage, production and 
investment, inherent and created complexities and 
finally better understanding of the structuring of 
hardware and software have all influenced the level
wise structuring of the functions within computer sys
tem architectures as we view it in the mid 1970's. It 
would be difficult to get an agreement on precisely 
how many levels exist (or should be described) in a 
modern computer system. It would even be difficult to 
have agreement on the question: What is a modern compu
ter sytem? In any event for purposes of this paper we 
shall begin with the leveling structure as introduced 
by Lawson and Magnhagen (1). This leveling is at least 
representative for a supporting implementation of the 
"Third Generation Computer System" environment as pre
sented by Denning (2). 

2. Informal View of Function Distribution 

The above mentioned leveling structure appears in 
Figure 1. The lowest level is purely physical whereas 
the higher levels are all organizational, realized by 
hardware algorithms or program algorithms (or combina
tions). While the various levels may vary in content, 
one thing is clear: each level (1) uses level(l-1) as 
a "tool" for level (1) composition. In the next sec
tion we formalize, as a general model, the composition 
of levels and the inter-level relationships. Presently, 
we shall consider the implications of Figure 1 in an 
informal manner. 

First let us consider the question of complexities. In 
the paper by Lawson and Magnhagen (1), the notions of 
horizontal (intra-level) complexity and vertical 
( nter- evel) complexity were introduced. That is, 
there is an inherent complexity within each level and 
created complexities due to the mapping of level upon 
level. Many examples of created complexities can be 
sighted. Some will be presented later in the paper. 

The levels of Figure 1 are shown as an inverted pyra
mid to illustrate that "in general", the lower the 
level, the fewer people involved in designing, and 
producing the tools of the levels, whereas, as we go 

toward higher levels the greater the number of people 
involved in using lower levels .as tools. That is to say, 
for example, that more people use integrated circuits 
than design and produce them, or, hopefully, more people 
use computers then design and produce computer hardwares 
and so~wares. This relationship is an important factor 
in developing an informal notion of the cost function of 
vertical complexities to be specified shortly. 

~~~~~.....,.t~JS~E~R~C~O~MMUll~~I.T.Y._~~~~~~~ & 
APPLICATION PACKAGES 

SOFTWARE SYSTEM 

TARGET SYSTEM 

MICROPROGRAMS 

MICRO COMPUTER ARCHITECTURE 

INTEGRATED CIRCUITS AND CIRCUIT -BOARDS 

LOGIC 

CIRCUITS 

Computer System Architecture. 

Figure 1. 

As a rather practical matter, there appears to be a few 
unwritten principles that one can extract from the short 
history of designing and producing computers that have 
been related to many project developments and indivi
duals making decisions. 

Principle 1: 
"If you cannot solve the problem, give it to someone 
else". 

Frequently the passing of problem goes upwards in the 
leveling structure, thus increasing the number of people 
affected by the decision. Complexities become magnified. 

Principle 2: 
"If you cannot select an alternative, provide all possi
bilities". 

That is, give your "users" general purposeness so that 
they can do anything they wish. While this may be use
ful at certain levels of the distribution, it can be 
disastrous at other levels and contribute heavily to 
magnified. complexities. A simple measure of the applica
tion of this principle is the quantity of shelf-space 
for documentation of all possibilities (assuming the 
level is fully documented). 

Of course these two principles are based upon the fact 
that the designers and/or implementors first realize 
that they have a problem or are aware of the alternati
ves. A lack in these directions can cause even greater 
magnified complexities in the eventualey-stem. 

Principle 3: 
"If a tool exists that can be adapted to perform a func
tion; use i~ 

* Former address: Mathematics Institute, Link.oping Univers~ty, Link.oping, Sweden. 
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This decision, normally by those responsible for the 
economics of the system implementation, has frequently 
been catastrophic, The wrong tools are used to imple
ment a level (1+1), thus forcing many complications 
upon the implementors and propogating complexities up
wards. A professional plumber does not use carpenters 
tools to fix leaks in the plumbing, nor does he use 
general purpose tools to rectify a specific problem. 
Amateur plumbers due to the usage of the wrong tools 
or tools of too high a degree of general purposeness 
can create floods .. Several analogies applied to compu
ter system architectures may come to the readers mind 
in which floods were created. 

Principle 4: 
"If a design mistake is discovered during implementa
tion, try to accomodate the mistake instead of fixing 
it". 

This is, of course, an economic· question of project 
investment that must be made by responsible project 
m~nagement in rel~tio~ship to schedule slippage, penal
ties for late delrveri:es, etc, It ;i.s r~re thi;i,t the 
implementation procedure is reset to a point where the 
mistake can be corrected, Frequently, the end cost has 
been higher than the cost would haye been for mistake 
correction. Many design mistakes have wound up being 
presented as ''system features'', 

All four of the above principles have resulted in intra 
and inter level complexities, Now for the informal 
c?st function, It should be obvious that if complexi
ties are passed upwards, towards the users, the cost 
of complexity increases since the cost must be repaid 
for each usage, Whereas if complexities are passed 
downward, it is probable, but not always guaranteed, 
that total costs can oe decreased, 

To illustrate some concrete examples of the passing of 
complexity let us consider the following; 

Passing complexities downwards; 

, simplified job control language 
, vertical (highly encoded} microinstruction formats 

tagged data and program object types 
, virtual storage management by lower levels 

Passing complexities upwards: 

user selection of a multiplicity of file accessing 
techniques 
complicated code compilation decisions left to 
compilers 
using unsuitable microarchitectures for emulating 
foreign target systems 

The author does not offer any rule-of-thumb for decid
ing upon the correct structuring of the levels of a 
computer system architecture. A quote from Horning and 
Randell (3), with which this author is in complete 
agreement, explains why: 

"The appropriate use of structure is still a creative 
task, and is, in our opinion, a central factor of any 
system designers responsibility". 

The author does venture to say that some of the key 
factors are the selection of an understandable amount 
of semantic content at each level and the appropriate 
balance of special purposeness vs general purposeness. 
As for the number of levels; that is system dependent. 
A process control system does not require as many le
vels as a multi-user access system where the users are 
performing different types of data processing. 
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3. A General Model of Function Distribution 

Horning and Randell ( 3) have pointed out that proeess
es can be used to model parts of a computer system. 
In this section, we build on this notion. The main ex
tension is upon the specification of program partB, 
which we consider as being composed of the execution 
sequence of programs utilizing one or more "abstract 
machines". 

Two types of abstract machines form the notion of what 
we shall call "processors". One type of processor can 
service sequential processes, the other type of pro
cessor exists to take care of process interaction:3. 
The latter of these may be viewed as the controller 
of asynchronous concurrent events and for this type 
of processor we assume the notion of "monitors" as 
presented by Hansen (~} and further developed by 
Hoare ( 5} and Hansen ( 6). The important part is that 
the processors perform algorithms leaving out the notim 
of whether they are hardware, software or combinations 
thereof. A processor can, for example, be an arithmeti
cal and logical unit as well as a resource allocation 
monitor. 

A processor which we shall refer to as (pr) res~onds to 
a program (p) and an instance of the execution of (p) 
upon (pr) yields a process (ps). 

We may state formally: 

ps = f(pr,p) ( 3.1) 

A process is a function of a processor and a program. 

If we think then that each level other than the lowest 
level in Figure 1 is a processor, we can construct a 
computer system model generation formula 

(3.2) 

where n = number of levels above the physical circuit 
level of Figure 1 (i.e. the number of organizational 
levels). That is, a processor is defined as a process 
which is developed as a function of a lower level pro
cessor and its "program" where program does not only 
mean stored program, it can mean simple sequencing. 
Note that this formula also serves as a formal defini
tion of the notion of an interpreter or interpreter 
hierarchy. 

Given this notion, we can now state what the role and 
responsibility of the computer architect is in terms 
of producing a computer system design. 

To find conventient mappi~between each (pr. ,p) 
pair that permit convenient realizations of i11 le
vels and to distribute functions according to some 
goals amongst the various levels, Furthermore, to 
seek to minimize both intra and inter level complexi
ties in all parts of the system. 

In respect to system complexity, we can consider the 
following formalization as the measure of complexity( c) . 

n 
c = I: 

i=1 

where: n 
k 

m 

.k 
i 

m 
I: 

j=1 
s. 

J 

number of levels in the system 
exponential growth of complexity between 
levels 
number of potential state transitions within 
a level 

s = a vector containing a measure of complexity 
of each potential state transition. 



We note that the complexity is weighted by the level, 
thus reflecting the increasing cost of complexity dis
cussed in the previous section. It is obviously diffi
cult to measure the complexity of each transition in a 
uniform way, however, it is indeed related to the se
mantic content of discrete activities and the potential 
interactions of the activities at each level whether 
they be timed sequences through a logic chain, micro
instructions, target instructions, procedures or a run 
in a multi-phase application package. 

The programming language conrruent Pascal as presented 
by Hansen (6) contains some interesting features for 
controlling the complexity of interrelationships of 
processes and monitors. The process and monitor func
tions to be performed are declared as abstract types 
rather than as absolute objects. Further, a concise 
statement of real instances of processes and monitors 
giving each instance only specific "access rights" to 
other processes and monitors is made by a-global de
claration. The interconnections within an access graph 
are made quite explicit. Other interactions are auto
matically excluded by the programming language trans
lator. This type of thinking would be extremely use
ful in constructing proce·ssors at all levels including 
microcode, .Q_omputer ~ided Qesign, LSI layout, etc. 

Having now considered the levelwise structuring and 
implication in a general model form, we shall finish 
by considering some historical events that affected 
the distribution of functions and various (pr,p) 
mappings. 

4. Historical Perspective 

We shall consider some, but certainly far from all of 
the events that have caused changes in the distribu
tion of functions in computer system architectures. 

Let us first briefly consider the physical component 
technology changes since we shall later concentrate 
on the organizational aspects. That is, what we have 
built and how we have structured the systems we have 
built. 

The first major step above the early use of relay and 
vacuum tube technologies for logic realization, was 
the invention and use of the transistor. On the memory 
side, the first major step was the invention of magne
tic core storage. We have gone through several genera
tions of transistors realized in different types of 
technologies with astounding success in miniaturiza
tion, packing densities and speed increases to the 
point where the transistor currently forms the basis 
for most memories and logic. 

We shall not belabor these obvious physical changes, 
however, it is worth noting that the physical side has 
had an important impact upon what we have built. Up 
until 1970's when mini and later LSI microcomputers 
became increasingly important, we viewed the central 
processing unit as well as the memories as expensive 
items. 

Due to the early high costs, it is not hard to see why 
the first stored program* type architecture was so 
readily accepted. That is, uniform program - data 
stores, and a simple accumulator oriented processor 
logic. 

* This concept is usually referred to as the van Neu
mann (7) type of architecture, but Professor Maurice 
Wilkes has informed the author that several people in
cluding the group at the Moore School of Electrical 
Engineering, University of Pennsylvania, contributed 
to the concept. Professor Wilkes proposes EDVAC type 
computer. 
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Early attempts to move away from the first stored pro
gram type architectures generally resulted in very 
complex, expensive hardware structures for processors 
such as the Burroughs B5000 (8,9). In any event, it 
was clear that certain architects such as Barton ( 10) 
did not consider the first stored program structure as 
a best solution that was cast in a Bible of stone. It 
is interesting to note that these early departing 
architectures would with todays integrated circuit 
technologies (and computer aided design techniques) 
be many orders or magnitude simpler to realize. 

As the functional requirements for processors grew 
from very simple functions to include features such 
as floating point arithmetic, decimal arithmetic and 
input/output control, it became obvious to Wilkes (11) 
that this increase in complexity required a better 
organizational hardware implementation technique. 
Wilkes thus proposed new levels in the function distri
bution, namely, microprogram architecture and micropro
grams. 

On the software organizational side, it became obvious 
in the late 1940's and early 1950's that constructing 
programs directly in machine language was a nuisance, 
therefore, assembly languages were conceived. Further, 
the notion of utility programs and subroutines for 
computations as well as computer management functions 
like input/output codes evolved to give economic and 
psychological advantages to the field of programming. 
These were the humble beginnings of system softwares. 

The scope of the system software level increased with 
the proposal by Hopper (12) to use higher level pro
gramming languages. It is interesting to note that in 
the early developments of programming languages that 
some implementors realized that the machine for imple
mentation, usually following the early stored program 
computer concept, was n,ot a convenient machine for the 
mapping of programming languages programs. Therefore, 
the idea of inventing a pseudo-machine for the language 
and constructing an interpreter program of the pseudo
machine became popular. 

During the mid 1950's many arguments occurred concern
ing the pro's and con's of using higher level languages 
vs assembly code on the first hand and, on the other 
hand, pseudo machines and interpreters as an implemen
tation techniques as opposed to compiling code. Un
fortunately, compiling won out on the efficiency of 
object program arguments. Thus, since the mid 1950's 
we have spent large sums of money reconstructing com
pilers to generate codes for new hardwares, Many times 
it is difficult and sometimes impoosible to decide upon 
the "best code" to generate for particular programming 
language features. With pseudo machines, there is 
usually only one best mapping, But at that time, it 
would have been-difficult to propose constructing more 
hardware-like pseudo machines. Machine architectures 
and microprogramming, of course, have now evolved to 
the point where this is not only possible but economi
cal, for example, see Wilner (13) and Lawson and Malm 
( 14). 

In the early 1950's a divergence in computer architec
ture occurred based upon the end use of systems. That 
is, processors, their related memories and input/output 
systems were made more special purpose and oriented to
wards scientific or commercial markets. Using this de
sign Btrategy, certain ps = (pr,p) mappings were better 
for certain classes of applications. However, it was 
frequently required to supply compilers of scientific 
languages for commercial oriented processors and vice
versa. These compiler mappings in many instances were 
extremely difficult. Like using carpenters tools to 
fix leaks in the plumbing. 



One of the main arguments for moving to the System/360 
type architecture in the early 1960 1 s was to create a 
more general purpose architecture, thus cutting down 
of the proliferation of different system softwares 
that arose from having several special purpose archi
tectures. One system for all users and, as was attempt
ed, a uniform programming language for all, namely, 
PL/I. One of the main problems was that by adding gene
ral purposeness, the mappings ps (pr,p) for most all 
areas, Fortran, Cobol, PL/I etc. to System/360 became 
more difficult. This resulted in very complicated 
schemes of compiler code generation and optimizations 
of System/360 codes as well as providing the economic 
need for several levels of support. Did this reduce 
the software proliferation? 

While one may question the soundness of the target 
system architecture of System/360, it is important to 
note that this was the first wide scale use of Wilkes 
microprogramming concept. Various System/360 process
ors were designed and programmed to be compatable 
interpreters of the System/360 architecture. The micro
processors were not general purpose microprocessors, 
but designed for the special purpose of implementing 
System/360. In any event, since they were programmable 
they were used to produce "emulators" of IBM second 
generation equipment. Many of these ps = (pr,p) mapp
ings, where pr was the microprocessor, were extremely 
painful and represent prime examples of the plumber 
using carpenters tools and creating floods. 

On the operational (access) side of computers, it be
came evident in the mid 1950's that one user at a time 
exploiting such an expensive resource was uneconomical. 
Therefore, the ideas of spooling programs, supervisors, 
schedulers etc. eventually led to the notion of opera
ting systems. As the reader is well aware, these pro
perties led to profound changes in the way people use 
computers and led to special requirements upon many 
levels in the computer system architecture. Denning 
(2) does an excellent job of extracting the principles 
of operating systems as we know them in third genera
tion computer systems. 

In the mid 1960's several people were speculating that 
microprogramming would become an important media for 
aiding in programming language and operating system 
requirements. See, for example, Opler (15), Lawson 
(16), Wilkes (17) and Rosin (18). However, the neces
sary step to accomplish this was to have a more gene
ral purpose microprocessor. Such microprocessors start
ed to be developed in the late 1960 1 s, see Lawson and 
Smith (19) and have resulted in several interesting 
designs including those mentioned earlier, namely 
Wilner (13) and Lawson and Malm (14). 

While redistribution of functions to a more general 
purpose microprocessor may have certain appeal in re
ducing complexity, it is a realistic fact of life that 
the huge investment in computer products (hardwares 
and softwares) of typical third generation products 
has slowed down the marketing of products based on 
different concepts for target system architectures 
and instruction sets. At least one system architecture 
by the Amdahl Corporation has used redistribution of 
functions to better use Large Scale Integration parts 
in perpetuating System/360 and-370 type architectures. 

One prime example of the redistribution of functions 
from software to hardware has been the wide spread 
use of the concept of virtual memory. This concept 
has helped solve many complex problems with program 
overlays and file management by utilizing levels lower 
than the system software level. It is interesting to 
note that the idea and implementation existed for many 
years before it was widely implemented. See Kilburn, 
Edwards, Lanigan and Sumner (20). 
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On the hardware side, many manufacturers during the 
1960's after strong resistance from "hardware artists" 
have accepted the use of Qomputer !ided _Qesign tech
niques for accomplishing printed circuit board layout. 
This type of resistance is very similar to the argu
ment of "programming artists" utilizing assembly 
languages vs the utilization of higher level langua
ges. That is, I can always do a better job without 
automation tools. But we may ask; at what global eost? 
In any event, just as with higher level languages, CAD 
can be extremely effective and certainly permits us to 
more quickly and clearly realize more sophisticated 
architectures at the lower organizational end of the 
function distribution. 

In the 1970's we have experienced an awareness (certain
ly not too soon) of the complexities of using computer 
systems. Much is now written on structured programming 
and programming style, see for example Dahl, Dijkstra 
and Hoare (21), Weinburg (22) and Denning (23). These 
writings have influenced application and system soft
ware construction and should in the future hopefully 
start to influence lower levels of the organizational 
end of the function distribution. 

Hansens Concurrent Pascal (6) as mentioned earlier con
tains some interesting features for structuring and. 
controlling "compoment" interrelationships. This work 
builds on that of Wirths Pascal ( 24). It is clear in 
these two cases that there is an attempt to redistribute 
functions in the distribution of Figure 1. By having 
the programming language translator "guarantee" that 
invalid interrelationships cannot exist, we can avoid 
constructing lower level hardware and/or microcode 
solutions to checking for invalid operations. 

It is interesting to note that the concepts of structu
red programming and improved programming style require 
a restrictive type of programming, thus reducing seman
tics. Could this be a good general principle? Special 
purpose tools, with restricted semantics, can perhaps 
be used to solve, in a better manner, special problems!! 

While this historical treatment has certainly not been 
exhaustive, it is hoped that the reader can see in 
terms of the earlier informal and general model pre
sentations of structuring and complexity, some of the 
implications of the events that have happended. in the 
brief history of digital computer design, implementa
tion and utilization. 

Conclusions 

It would be difficult to terminate this paper without 
saying a few words about possible directions for func
tion distribution in the future. One thing is clear, 
the range of the distribution that a computer architect 
must cover has increased. He must be intimately famili
ar with all levels with the exception of the details 
of the physics of logic realization by particular tech
nologies. Further, he must be prepared to specify and 
appropriate number of levels to solve the problem at 
hand and assure that the ps = (pr,p) mappings are 
realizable, economic and convenient to utilize. 

Current trends towards LSI logic parts at low costs due 
to high production volume will undoubtedly have a great 
impact upon the organizational levels, see Fuller and 
Siewiorek (25). Just make sure that the parts selected 
represent the correct tools to do the job, otherwise, 
look out for floods. The mass production of large 
scale integration parts may be insensitive to the 
complexity of the logic, but users of the components 
are not insensitive. 



Due to the fact that processor physical structures have 
reduced in cost, we can expect more dedicated systems 
on the one hand and an attempt to utilize many process
ors in a distributed manner on the other. 

As a practical matter for many areas of computer usage, 
we are saddled with our history due to large program 
investments. There will certainly be an impetus to 
seek solutions to new architectures that can accomodate 
this software investment. Most likely, these solutions 
will be combinations of several levels in the distribu
tion of functions. 
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0. Abstract 

Past and current specification techniques use ti
ming diagrams and written text to describe the phenome
nology of an interface. 

This paper treats an interface as the architecture 
of a number of processes, which are dispersed over the 
related system parts and the message path. This approach 
yields a precise definition of an interface. With this 
definition as starting point, the in~erent structure of 
an interface is developed. A horizontal and vertical par
titioning strategy,based on one functional entity per 
partition and described by a state description, is used 
to specify the structure. This method allows un/amb:i_guous 
specification, interpretation, and implementation,and 
allows a much easier judgement of the quality of an in
terface. The method has been applied to a number of wi
dely used interfaces. 

1. Introduction 

Many committees, charged with standardizing an in
terface struggle many years (8 to 10 years makes no ex
ception) to get the job done. What are their problems ? 
We can find at least three. First, an interface is always 
much more complex than a first estimate suggests. Quali
fication and quantification of the needs of the users is 
a difficult task, application dependent, and subject to 
different opinions. The definition of the functional con
tents of an interface that satisfies these needs introdu
ces an extra choice, and consequently makes agreement one 
level more difficult. Second, the disclosure of an inter
face allows the linkage of products of different compa
nies into one system, which requires the political will 
to make this happen. The third problem is the available 
methodology and language for the specification of an in
terface and its preliminary vers.ions. Conventional metho
dology uses timing diagrams and written text, often illus
trated with tables and drawings. This methodology has a 
number of serious disadvantages. The most important of 
these are discussed in this paper. Bad specification me
thodology makes an interface difficult to master and do
cument, and enhances the risk of errors, incompleteness, 
inefficiency and vagueness. It also opens the door to 
obstruction of progress through vague reasoning. An in
terface with such characteristics contributes to non
uniform and unintended interpretations. And faithful to 
Murphy's law this has led to system malfunctioning, even 
though the interface was scrupulously interpreted. 

Therefore, the availability of an efficient tool 
that allows unambiguous and clear specification and in
terpretation of an interface would be of great profit to 
both its designers and users. For the designers it faci
litates a clear discussion and expedites a correct, com
plete, efficient and clear specification. For the users 
it will help to avoid system malfunctioning, caused by 
misinterpretation or unauthorized extension of a given 
interface. 

This paper presents a specification method that 
tries to incorporate the desired characteristics. It has 
been applied to a number of existing and proposed stan
dard interfaces [1,2,31 with satisfactory results. The 
state description technique, which is closely related 
with the method, is reflected in an interface which is 
now becoming an international standard. It proved to be 
of extreme value both in the development and use of this 
interface [4,5], The method is based on the definition 
of an interface, which will be discussed first. Next, 
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technique and language for the specification of an inter
face are discussed. This is followed by the development 
of a structuring discipline for an interface, and a dis
cussion of the character of a standard interface. Finally 
some conclusions are drawn. 

2. Definition 

Few attempts seem to have been undertaken to state a 
manageable definition for the concept of interface. It 
may be that the term interface itself, and its transla
tions to various languages(cutting place, tangent plane), 
pretends to be clear enough. But the term interface is 
currently used with many divergent interpretations. (The 
term 'connection' is used in [6] to indicate the same 
kind of relation definition as discussed in this paper). 
Therefore, if we want to discuss a specification metho
dology for it, an adequate definition is demanded. 

What we clearly want, is to be able to bring sys
tem parts that can be considered and design1ed as sepa
rate functional entities, into relationship to form a 
system with a higher level of functional performance. 
The possibility that some system parts can be brought 
into relationship makes us say that these system parts can 
interface. Therefore an interface can intuitively, but 
still informally, be called a 'relation definition'. In 
order to interface, the system parts must bi~ given 
certain properties which are attuned to each other.(e.g. 
two system parts know the same variable, one as its 
producer,the other as its consumer). All properties of 
a system part are defined by the complete specification 
of its functional behaviour, its architecture. Therefore 
we are able to define an interface by specifying the 
architectures of the related system parts. Through the 
definition of the architecture of each part~ the inter
faces of these parts are concurrently established. 
However, in some cases we may desire, or be forced, to 
define an interface first, and the complete architectures 
later (e.g. for the definition of a standard 
Channel-to-1/0 interface), In these cases it is 
undesirable, unfeasible, and unnecessary to define the 
complete architecture of the related system parts in 
order to be able to define their interface, 

System parts have a relation if they can affect each 
other's functional behaviour. Without mutual effect they 
ignore each other and the system parts are independent 
and unrelated. The mutual effect is through variables 
(messages) with a defined behaviour and exchanged via a 
message path. Suppose we want to define the effect of 
system part A on system part B through variable V .. The 
behaviour of V can be defined throu'gh the definition of 
the generative mechani'sm of V, which belongs to A and 
forms a portion .of A's architecture (the influence~ of A). 
The effect on B through V can be defined through the 
definition of that portion of B's functional behaviour 
expressing that eff~ct (th~ effect on B). Conversely we 
can define the effect of B on A through W. This yields, 
another portion of A's and B's architecture. The two 
portions of A's architecture can be specified either as 
separate portions if there is no correlation between them, 
or integrated if there is. A similar statement can be made 
for B. 

An interface of two or more systems parts defines for 
each system part that portion of its architecture that al
lows a relation between those system parts to form a sys
tem providing a desired function. 



The previous reasoning assumed a functional passive 
message path for the exchange of the variables V and W. 
Though this is often the case, an interface may contain a 
message path that performs logic operations on the vari
ables it exchanges as explained in section 4.3: Central 
message path. Consequently the definition of an inter
face has to be extended to contain the architecture of 
the message path, as-shown in figure I. As with the 
definition of an architecture, the definition of an 
interface is a specification problem. This specification 
problem concerns not one architecture. but a portion of 
each of the related architectures and the message path 
in between. In this sense the concepts of architecture 
and interface are equivalent. The term relational func
tion is given to that portion of an architec.ture that is 
part of the considered interface. The remaining portion 
of the architecture is called local function. It forms 
the complement of the relational function in the 
architecture's total relation with its environment. 

.... 
\ 

_.. 

\ 
..... "" 

Figure la: Three related archi
tectures A, B, and C. 

Figure lb: The A-B-C Interface. 

This definition provides the basis for a sound 
specification method: the interface is specified by the 
separate specification of each relational function and 
of the message path. Since these items are portions of 
an architecture, their description may use the same 
techniques and languages as applied to architectures in 
general. 

3. Description techniques and languages 

Three basically different description techniques 
are conceivable and used to specify an architecture: 
the phenomenological, the assertive, and the generative 
description. 

3.1 Phenomenological description. 

The phenomenological description gives an observa
tion of the behaviour of the input and output variables. 
As known from automata theory, that bases its definition 
of an automaton on it, this is a valid specification 
method. But in order to be complete, the observation 
must include all input and output variables, and all 
possible sequences of their values. Though this ~
requirement is not important for the development of 
(automata)theory, it is impractical for any architecture 
of some complexity, because of the sheer monotony and 
inordinate length of the sequences, It is not surpri
sing that this method is not used in practice for the 
specification of architectures, Therefore it is a real 
surprise to observe that the conventional specification 
method for interfaces is still based on the phenomeno
logical description, since the timing diagrams are 
literally an observation of the signal lines that 
exchange the messages among the system parts, Those 
diagrams are furthermore by definition incomplete, 
as long as they do not contain all input and output 
variables of the relation functions. This incompleteness 
however, is normal in conventional specification 
methodology, since the variables exchanged across the 
local function/relational function boarder, are nor~ 
mally missing in the timing diagrams. (In 4. 1 Sources 
and sinks we come back to this point). To make things. 

I 
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even worse, most specifications only contain the most 
significant sequences. Although this cuts down on the 
monotony and length of the sequences, it makes the 
specification even more incomplete. Hence, the written 
text, which usually goes together with the diagrams, 
becomes essential to fill up the gaps in the specifica
tion with timing diagrams. The text, however introduces 
several new problems. The use of another language will 
inevitably tempt the writer of the specification to 
'explain' the diagrams. And so the reader must carefully 
distinguish between text that contains additional 
specification and text that contains redundant written 
specification of the diagrams. Furthermore it is in most 
cases not clear whether the text is meant to be asser
tive, generative, or phenomenological. The observation 
of the message path as basis for the description, 
results in an intermixed description of the contributing 
relational functions and the message path itself. This 
burdens the implementer of an architecture to untangle 
the relational function, that is part of this architec
ture, from the total specification, The phenomenological 
description is maximally unstructured, opposite to the 
nature of human thinking. Therefore the implementer has 
to bridge the 'maximum distance' from the phenomeno
logical specification to his product, a realizable 
generative specification. 

The previous observations suggest a specification 
method for an interface in which each relational func
tion and the message path is specified individually. 
Each individual specification uses one description 
technique, preferably not the phenomenological, and 
one description language. 

3.2 Assertive description • 
The assertive description method, originally 

introduced to prove program correctness [7,0], speci
fies an architecture by specifying assertions on the 
behaviour of the input and output variables. In so 
doing, the assertions form in fact a shorthand notation 
for the phenomenological description of the input and 
output variables, and allow the latter's drawbacks to 
be avoided • The assertive specification can not be 
simulated, since this requires a model of the generative 
mechanism between inputs and outputs. Simulation can be 
highly desirable if we want to check the assertions 
against samples of the phenomenological descrintion. 
The specification of the assertions themselves is the 
biggest problem in using this technique, in pa~ icular 
when the architecture is complex. This often requires 
that the architecture is specified as a collection of 
related partitions, and each partition is specified 
assertively. Through this partitioned specification, 
internal variables are defined, and the assertive 
approach comes close to ·the generative approach which 
is followed in this paper. 

3.3 Generative description. 

Associated with the phenomenological specifica
tion of a finite automaton, the type of system to which 
we are restricted· when we start an implementation, is 
a (minimlUll) state machine. This state machine can be 
considered as the generative mechanism that maps the 
input onto the output. A description of it can replace 
the phenomenological description. For complex systems, 
as frequently encountered for interfaces, it will 
generally be difficult to establish this minimum state 
description. Since the generative description is used 
to replace a desired input/output behaviour (phenomeno
logy) the latter is not available to deduce a minimum 
state description from it. Associated with the minimum 
state machine are inany equivalent machines with the same 
phenomenology which do not contain the minimlUll set of 
internal states. Therefore, although the minimum state 
description often appears to be the most attractive 
one [2], we often have to be satisfied with a reasonably 
good equivalent description. Most of our experience is 
based on the use of this type of description for inter
faces, though an assertive description might equally 
well have been chosen. 
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3. 4 Language. 

The most pr1m1t1ve language in which the generative 
mechanism for a finite automaton can be expressed is the 
state transition diagram or table, as used in sequential 
circuit theory. Though this language has succesful been 
used in a number of applications [1,3,4], and remains 
quite suitable for specific ('logic') functions, it 
appears to work inefficiently for more complex interfa
ces. In these cases an algorithmic language, that con
tains primitives for many (numerical and logical) opera
tions is much more powerful [2]. Some examples of this 
are shown in figures8 and 9. It remains essential though, 
that the algorithmic description is interpreted as a 
state machine description. The representation of the 
states is free, since they are internal to the automaton. 
The optimum choice is a representation that provides 
maximum clarity of specification. This can often be 
achieved by adapting state representation and formula
tion of transition conditions to each other [2], The 
algorithmic language allows also many different 
representations for the state transition diagrams or 
tables. So these descriptions can be mixed with 
algorithmic statements, and simulated on a computer [9]. 
The possibility of simulating the interface is an 
important advantage of the generative description. 

4. Structure. 

Human nature does not favour the specification of a 
complex system by one single homogeneous function, such 
as a large diagram, table or algorithmic expression. We 
no longer have confidence that it represents what we 
want. Instead we start with smaller individual parts of 
specification. For each part we have confidence that its 
specification is, or can made to be, what we want. And 
we link up (interface) those parts, often by extension 
of their specification, into a larger part of specifica
tion. Such a partioned specification method raises pro
blems of its own: where to start, and how to link up the 
parts. A general structuring discipline, providing a 
structure in which partitions of specification can be 
embedded, can greatly help in reducing these problems. 
Such a structuring discipline for the specification of 
an interface is discussed in the following sections. 

4.1 Sources and sinks. 
The first class of part1t1ons is called the source 

(Q_{l_=O )A !:7'2; 

(a) 

Figure 2: Decoded source. 

'V DECSOURCE 
[1] W1:+CQ.a=o)/W1 
[2] DS+Q_{l_ 
[3] DELAY T2 
[4] W2:+C'f2.a•o)/W2 
[5 J DS+'{2{1_ 
[6] DELAY T1 
[ 7] +W1 

(b) 

Graphic (a) and algorithmic (b) description of a decoded source. 
The local variable .Q.S., whose behaviour Is free, is used to deter
mine the behaviour of the relational variable DS. The behaviour of 
DS is as foll011s: DS=O remains at least Tl seconds valid, DS;i!O re
mains at least T2 seconds valid. Each value of DS#O is enclosed by 
the 'separation message' DS=O. The variable OS is used in the rela
tional function. If D.S. behaves as DS (i.e. as required), the imple
mentation of the source is trivial: a short-circuiting from j~ to 
DS. 

The local function represents the complement of the 
relational function in the architecture's total relation 
with its environment. This leads to the introduction of 
the sink function, the counterpart of the source function: 

I 
A sink function defines the existence, set of values, 

and behaviour, of a relational variable, which is made 
available as input to the local function [3]. 

A sink function has the same appearance .as a source, 
therefore no examples are shown. Practical applications 
often require the combination of a source and sink func
tion into one function. Such a function is called a 
conversational source or sink function, dependent upon 
its main task. The conversational character is required 
when the validity time (the time that the value of the 
variable remains unchanged) of a relational variable is 
defined in a logical way (figure 3) instead of by the 
use of time (figure 2). 

(Q.'i:.l:'.=1 )AP=3 

(Q.'i:.\'.'.=0)AP=5 

and sink functions layer. To operate as one functional Cal 
entity -e.g. a Channel- information is exchanged 
between the local and relational function of the channel. 
Conventional methodology often hides the variables 
carrying this information in vague statements, such as 

' if the Channel is able to connnunicate with a 
device, it places an address on the bus ... ' 

Such a statement gives rise to numerous questions: 
- Where and how is the ability to communicate 

generated ? 
- When the channel is able, will it actually 

communicate ? 
- What happens when the channel is able, but other 

activities require the channel~s attention 
- When, where and how are addresses generated, how 

and where are they coded ? Etc-. 
It is therefore necessary to make a clear distinction 
between the variables generated by the local function 
and by the relational function, and to decide which 
of these cross the boundary between local and relational. 
The interface is only interested in those locally 
generated variables that are inputs to the relational 
function. Since their generation is a part of the local 
function, which is per definition unknown, we cannot 
define their behaviour~ But we can define their required 
behaviour via a finite automaton, called a source 
function: 

I 
A source function defines the existence, set of 

values, and required behaviour of a local variable, 
which is made available as input to the relational 
function [3]. 
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'V CODEDSOURCE 
[1] WAIT:+(CSV+((((2§.!'.'.=1)AP=3)vCSV)A~(Q{l_f=O)AP=5)/WAIT 

( b) [ 2] CS+Q.{1_ 
[3] +WAIT 

Figure 3: Coded converational source. 

Graphic (a) and algorithmic Cb) description of a coded conversa
tional source. The local variables .Q.s.Y. and ~ are used, together 
with the relational variable P, to determine the behaviour of the 
relational variables CSV and CS. As long as CSV=O, the code of CS 
may change. Analogous to figure 2, CSV=O may be interpreted as 
the separation message. CSV is used both in the relational func
tion and in the local function. The code of CS remains valid, as 
long as CSV=l. 

When all sources and sinks for each relational 
function are identified, they form a layer that shields 
the local functions from the remaining part of the inter
face. This remaining part is called in figure 4a basic 
interface function. The source and sink layer definE~ 
the behaviour of all inputs and outputs of the interface 
and is therefore a suitable place to start the definition 
It shows that an interface can be considered as an 
architecture that is dispersed over several other 
architectures and the message path. 
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Figure 4a: Source and Sink layer 
and Basic interface function. 
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Figure 4b: Partitioning of the 
Basic interface function into 
the Basic protocol functions 
and the Basic message path. 

When an interface is considered as a dispersed 
architecture, one can view a system either as a 
collection of related architectures (figure Sa), or as 

I 

a collection of interfaces (figure Sb), The latter 
viewpoint is used when a system makes use of one or more 
predefined interfaces. 
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Figure Sa: System, specified by 
a collection of architectures. 

Figure Sb: System, specified by 
a collection of Interfaces. 

·4.2 Basic protocol. 

When the source and sink layer is defined, the 
remaining part of the interface represents its basic 
function. This basic interface function contains the 
flow of the data from sources to sinks and the 
operations performed on the data. If the basic interface 
function is defined as one automaton and subsequently 
partitioned into the basic protocol functions (the parts 
that are accomodated in the related architectures), and 
the basic message path (figure 4b), it will usually 
result in a voluminous, inflexible and costly basic 
message path. Most interfaces require a reduction of 
this cost through a reduction in the space and time 
allowed for the exchanged variables. At the same time 
increased flexibility is desired and obtained through 
a·general purpose message pat~. Consequently the basic 
protocol functions have to be adapted to this reduced 
and generalized message path to form part of a definite 
specification. Starting with the basic protocol, however, 
is very useful in formulating the interface's basic task 
and in deciding how the elements of this task are alloca
ted to the related architectures. 

4.3 Central message path. 

The next step is the definition of the central 
message path. The basic message path indicates what 
variables are to be exchanged. As a first step it can be 
decided how much space and ~ will be assigned to these 
variables. Three most important and competing parameters 
influence this choice. The first one is the possibility 
of physical separation of the architectures, in particu-

l 01 

Figure 6: Basic protocol function. 

A simpl if led basic protocol function of a complex Channel-to-i/o 
interface [lJ. The function is located in the Channel. The diagram 
shows how a data transfer sequence can be build up. The elementary 
steps In the sequence are represented by the states In the diagram. 
The transitions in the diagram indicate how these steps may be 
sequenced. It follows that data transfers from different devices 
may be mixed. This allows the multiplexing of the message path. 

lar their maximum physical distance. The second is the 
desired time performance of the interface, and the third 
is the desired reliability of the interface. Another 
important parameter is the level of independence of the 
message path from the related architectures. The weight 
of those parameters is highly dependent on the applica
tion of the interface (e.g. industrial plant control 
versus laboratory experiments), which makes a universal 
central message path for all applications unlikely. 

As a second step, the function of the central 
message path is defined. In some message path configura
tions, such as in string or loop configurations, this 
function is trivial: just one or more connections. A 
less trivial function is represented by the so called 
bus or party line configuration that can be found in 
most Channel-to-I/O interfaces. Such a bus structure 
gives the 'or' of the coded variables presented to it 
by the relational functions. This 1or 1 is a simple, 
but essential function that allows multiplexing of 
data from various destinations. The implementation 
of the 'or' function is generally distributed over 
the relational functions. 

'\/ CMP 
[1] L:SflL+PSL 
[2] SRLV+PSLV 
[3] PRL+v/SSL 
[4] PRLV+v/SSLV 
[ 5] -+L 

Figure 7: Central mAssage path function of snLC [l]. 

The central message path function connects one primary station to 
multiple secondary stations. The S(econdary) R(eceivlng) L(inel is 
connected to the P(rimary) S(ending) L(ine). Idem for the S(econ
dary) RCecP.iving) I.Cine) V(alid), which carries thP. clock. 
The value of the PCrimary) R(eceivlnr;) LCine) is the 'or' function 
of the send Ing inputs to the 1 i ne, represented by the ~ 
S(econdary) S(endlng) L(ine). Idem for PCrimary) R(eceiving) L(inel 
V(alid). PSL and PSLV are generated in the function FRAl<'.ETP.MSMIT
TER of figure 8. PRL and PRLV are used In the function FRfYERECEl
VER of figure 8. 

More sophisticated message path functioning can be 
found in many CPU-Channel interfaces. Here the message 
path contains store operations• priority assigments to 
regulate concurrent acces to the same storage locations, 
and the like. These functions are performed by main 
storage. 

The CPU-Channel interface is a prominent example of 
the use of memory in the message path. Exchange of 
variables via memory (indirect transfer) allo~s either 
parallel or sequential operation of the relational func
tions. A freedom of choice which is left to the implemen
ter. When no memory is used, the transfer is direct, 
which requires parallel operation of the relational 



functions. The determination of the space, configuration 
and function of the message path of the interface plays 
a definite role in the total performance and applicabi
lity of the interface. The message path is therefore 
central to the relational functions as illustrated in 
figure JO. It is not surprising that some names of inter
faces are based on it (e.g. the unibus). But this does 
not justify the identification of the message path, or 
its momentary condition (e.g. the state of main storage 
as the interface between the program modules), as the 
entire interface. The message path should be derived from 
the basic protocol functions and not vice versa. 

4.4 Transfer. 

The introduction of the central message path 
requires an adaption of the basic protocol to the space, 
time, and function of the central message path. This 
requires a number of functions to adapt the format 
(multiplex, serialize) of the variables supplied by the 
basic protocol to the message path and vice versa. The 
sequencing of different variables over the same trans
mission path requires a mechanism to indicate the type 
and (in)validity of these variables. The introduction of 
the coded representation of the variables on the message 
path, discussed in the next paragraph, also makes these 
mechanisms necessary. Dependent on the choices made for 
the message path, such a mechanism can make use of hand
shaking, strobing, or enveloping techniques. The chance 
of message mutilation caused by the message path, often 
requires the introduction of message protection mechanisms 
These mechanisms can range from a simple parity check to 
complex methods such as cyclic redundancy check, buffe
ring, numbering and retransmission. 

The functions charged with these types of tasks form 
a layer, shielding the basic protocol from the message 
path. This layer is called Transfer in figure JO. 

V FRAMETRANSMITTER;SPTR;SFLAG 
[1] W1:+(-TRANS)/W1 
[2] SPTR+FLAGPTR,(CHECKBITS SFRAME),SFRAME,FLAGPTR 
[3] W2 :+PSLV/W2 
[4] SFLAG+((pSPTR)>24+pSRFAME)v(pSPTR)~B 
[5] PSL+(0,-1+SPTR)[SFLAGVSCNT"5] 
[6] SPTR+(-SFLAGvSCNT"S)+SPTR 
[7] FRSEND+O=pSPTR 
[8] SCNT+PSLxSCNT+1 
[9] W3:+(FRSEND,PSLV,-PSLV)/W1,W2,W3 

v 

V FRAMERECEIVER ;FINE ;SUPR 
[1] W1:+(-PRLV)/W1 
[2] FINB+RF'LAG 
[3] SUPR+(-PRL)ARCNT=5 
[4] RFLAG+(-PRL)ARC'NT=6 
[5] RCNT+PRLxRCNT+1 

[1] 
[2] 
[3] 
[4] 
[5] 
[ 6 J 

V X+CHECKBITS Y;N 
N+pY 
X+16p1 

L:N+N-1 
X+1+(X,0)"POLAX[O]"Y[N] 
+(N-'O)/L 
X+cl>-X 

[6] RFRAME+(BxRFLAG)+SUPR+PRL,(-FINB)/RFRAME 
[7] FRDY+RFLAGApRFRAME~32 

[BJ W2:+(FRDY,PRLV,-PRLV)/L,W2,W1 
[9] L:RFOKE+A/(16tRF'RAME)=C'HECKBITS 16+RFRAME 
[10] W3:+(PRLV,-PRLV)/W3,W1 

v 

Figure 8: Transfer functions of SDLC [2]. 

The FRAMETRANSMITTER generates PSL and PSLV (see figure 7) from 
the variable S(endlng)FRAME, that It receives from the ENCODER 
function, shown in figure 9. It Indicates when the frame 
is transmitted (by FRSEND) etc. The FRAMERECEIVER assembles a 
variable R(eceived)FRAME from PRL and PRLV (see figure 7), and 
presents this to the DECODER function of figure 9. The subfunction 
CHECKBITS generates the cycl le redundancy checkbits, and ls part 
of both the transmitter and receiver function. It is not an in
dividual auto~aton. 

4.5 Coding and decoding. 

As mentioned under 3.4 Language, the representation 
of the state of the automaton is free as long as we are 
in the architectural phase, and can be chosen to provide 
maximum clarity of specification. When the automaton is 
implemented, the implementer is free to represent the 
state of the variable by any suitable set of code ele
ments according to his criteria. Source and sink 
variables are internal to the individual architecture's 

as are most of the variables contained in the basic pro
tocol and transfer functions. Their final representation 
is the implementer's decision. The situation is different 
however, for the variables that are exchanged via the 
message path. Usually an interface is designed to allow 
the implementation of each architecture by an independent 
group without requiring them to communicate with all 
other groups. When this is the case, the representation 
of the variables crossing the message path is public and 
must be settled by the interface designer. The variables 
are principally provided or accepted by or via the basic 
protocol, and are subjected to the transfer operations. 
Hence the functions performing the coding and decoding 
form a layer in between the (basic) protocol and the 
transfer, as shown in figure 10. The message path 
provides the code elements for the representation of the 
exchanged variables. 
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[ 3] 
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[5] 
[6] 

[1] 

[?. J 
[ 3] 
[4] 
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[6] 
[7] 
[ 8] 
[9] 
[10] 
[11] 
[12] 
[13] 
[14] 
[15] 
[16] 
[17] 
[18] 

V ENCODER;SAF;SCF;SIF 
f/1 :+(-TRANS) /W1 

SAF+(Bp2)TIADD 
SCF+(Bp2)T(16xFB)+(SNSI,SRQI,SROL,SNSA,SCMDR,SRR,SRNR,SREJ,SI)/ 
3 7 15 99 135 ,(1 5 9 ,2xSNS)+32xSNR 
SIF+(SCMDR/HELPFIELD),(SNSI/OUTNSI),SI/OUTI 
SFRAME+SIF,SCF,SAF 

W2:+((ENCODERDY+TRANS),-TRANS)/W2,W1 

V DECODFR;RAF;RCF 
W1:+(-FRDYARFOKE)/W1 

RAF+ -8 +RFRAME 
RCF+-B+-16+RFRAME 
RIF+-16+RFRAME 
MA+( 2.LRAF) E (TADD, CADD) 
PB+RCF[3] 
INR+2.LRCF[O 1 2] 
INS+2lRCF[4 5 6] 
RVIF+-RCF[7] 
RNSI+3=2lRCF[O 1 214 5 6 7] 
RSIM+7=21RCF[O 1 2 4 5 6 7] 
RORP+19=21RCF[O 1 214 5 6 7] 
RDISC+35=2lRCF[O 1 2 4 5 6 7] 
RSNRM+67=2.LRCF[O 1 2 4 5 6 7] 
RRR+1=2.LRCF[4 5 6 7] 
RRNR+5=2.LRCF[4 5 6 7] 
RREJ+9=2.LRCF[4 5 6 7] 

f/2: +( ( DF.CODERDY+FRDY), -FRDY) /'12, W1 
v 

Figure 9: Encoding and Oecoding functions of SDLC [2]. 

The ENCODER function generates the variable SFRAME from the 
variables provided by the protocol functions of SDLC. The DECODER 
function performs the opposite operation. Both functions are l in
ked to the transfer functions of figure 8. 

4. 6 Protocol. 

The introduction of the central message path, the 
transfer layer, and the coding layer may affect th•~ 
basic protocol functions. If so, these functions must be 
adapted to the communication facilities provided by this 
central part of the inte.rface. This adaption predomi
nantly involves the introduction of sequencing funi:::tions, 
due to the time limitations of the message path. The 
adapted basic protocol functions thus form a layer, in 
figure 10 called Protocol, in between the source and 
sink layer and the coding and decoding layer. The 
protocol layer which is defined through this procedure 
contains the highest level of functions representing the 
substance of the relation of the archi tecture:s. In a 
standard Channel-to-1/0 interface, the interface iB 
primarily concerned with the exchange of different 
classes of messages, such as commands, data, and status. 
The protocol layer in this type of interface controls 
such things as the setting up, maintenance and closing 
down of message transfers, as well as the interleaving 
of message transfers from different origins and th1air 
priorities in case of concurrency. In general few 
arithmetic and other data manipulation 
functions, are found in this type of interface. Other 
interfaces such as the Channel-Main Storage interface, 
or CPU-Main Storage interface, may contain in. high 
degree of data manipulation and buffering fun.ctionB. 
The CPU-Main Storage interface can be conside:red as 
including the definition of almost the entire: CPU 
instruction set. 
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Figure 10: Layered structure for an Interface 

4.7 Further development. 

The previous discussion of the structure of an 
interface suggests a sequence in the development of 
the layers, according to the sequence of the sections 
4.1 through 4.6. This development is based on a 
strategy of successive definition. First the architec
ture of the total interface is determined, and its 
partitioning and dispersion over the related architec
tures. Next the architecture of the central message path 
is determined, and finally the architectures of the 
individual relational functions. Though this procedure 
is a useful guideline, a practical application often 
requires a substantial number of iterations through 
this sequence, due to the high dependency among the 
layers. 

A further substructuring per layer may result in 
either the development of sublayers per layer (extended 
horizontal partitioning) or a partitioning of a layer 
into functions which are not or only slightly related 
(vertical partioning). The previous discussions have 
already used the vertical partitioning by interpreting 
each layer as a class of functions, and showing 
examples of such functions. Much is dependent on the 
possibility of defining a function first as an indepen
dent entity, and next of establishing the linkages to 
and from other functions. As is true for the vertical 
partitioning, the extended horizontal partitioning may 
also provide more clarity in the specification of the 
interface, The protocol function of figure 6 shows what 
type of operations may be sequenced. The way these 
operations are organized in detail can be specified in 
a lower protocol layer. Complex data transmission inter
faces may build up their transfer layer as a stack of 

Local function A 

n•o ______ ._, __ .._ __________ _. 

a n Transfer.__ ___ __. 

Central message path 

1-------

Architecture 
B 

L_ "T - -
J 

Figure 11: The Interface from the perspective of architecture A. 
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sublayers. Such a sublayer, and all that it encloses, 
may be interpreted as the central message path of the 
transfer layer that is just one level higher. An 
opposite development also occurs frequently: variables 
pass a layer unchanged. 

The structure so far developed for the interface 
is shown in figure 11 from the perspective of an 
individual architecture. Each box in the figure repre
sents a function, that exists in parallel with the other 
functions and is related with them via the exchange of 
variables. This horizontal and vertical structuring is 
different from the structuring in which functions on a 
lower layer are used to implement an abstract machine 
on a higher layer [10]. 

5. What is a standard interface 

As stated, a system can be understood as a collec~ 
tion of interfaces (figure Sb) as well as a collection 
of architectures (figure Sa). This viewpoint is signifi
cant when an interface is defined first, and the asso
ciated architectures later. This happens with a so called 
standard interface. A standard interface, such as a 
Channel-to-I/0 interface, is always defined to meet many 
different architectures, e.g. printers, tape units, disc 
units, display devices, architectures that still have to 
be invented, etc. in different quantities and configura
tions. At the time of the definition of the standard, the 
current application area is known, and there is a rough 
estimate of the characteristics of future applications. 
Definition of a standard to include all current and 
future applications is not only impossible, it is also 
highly inappropriate since it loads anyparticular applica
t~on with ~he overhead of a multiplicity of unused applica
tion functions. Instead the standard is defined to suit 
all requirements of current and future applications with
out containing the specific functions of individual 
applications. The standard is by definition incomplete. 
Consequently, when the standard is used in a particular 
application, each relational function has to be extended 
with application dependent functions. Those application 
dependent functions form yet another layer around the 
source and sink layer of the standard interface, and 
are designated 'Application' in figure J2a. 

/. - - ....... 
Local function ' 

\ 

Figure 12a: Application of a 
Standard Interface 

Standard 

Interface 

Figure 12h: Partitioning of the 
.Appl I cation layer. 

The consequence of this structure is that the 
variables exchanged among the application functions are 
unknown, i.e. transparent to the standard interface, and 
yet pass all layers and the message path. Since we want 
the function of the standard te remain invariant with 
each application, it implies that the standard has to 
provide for the space and time for the exchange of those 
variables. If on the level of the central message path 
the available space is to be defined in terms of avail
able code elements, the definition of the available space 
at the level of the source and sink functions has to be 
in terms of the same number of code elements, since the 



of main memory contents, such that computations can 
proceed in an uninterrupted manner. 

As discussed in [14], a space-time tradeoff exists 
regarding temporary results. Since each array opera
tion consists of a startup time and an execution time, 
some time is wasted due to additional startups, when a 
large array has to be operated upon in parts. Addition
ally, there exists a memory management overhead in al
locating space for temporary results. 

A straightforward solution to the above problem is 
the 11 elimination 11 of intermediate array results, with 
the consequent saving of memory accesses and space [16]. 
This scheme, which has been implemented at the scalar 
level in the IBM 360/91 [17], is considered in the con
text of the SCR design for arrays of data, as the fol
lowin~ two schemes: 

(a) The storing and fetching of temporary results 
is avoided by transmitting them directly among the re
spective arithmetic units. This scheme can be extended 
to sequences of assignment statements having common sub
expressions and to the case where the final result of 
an array expression is the input to another one. 

To weigh the attractiveness of this approach, we 
evaluate the relative saving in memory accesses when 
an array assignment statement, involving n binary oper
ators is evaluated. Denoting the number of array ele
ments by t, customarily 3nt memory accesses would be 
required, while the proposed scheme requires (n+2)t 
accesses; hence 2(n-l)t accesses are saved. Given that 
the probability of the occurrence of an arithmetic as
signment sta~ement ~ith n (n>O) binary op~rators is Pn 
and postulating a fixed mean array size (t) for array 
expressions of varying complexi.1Y, then the relative 
saving in memory accesses is (2n-2)/3n, where n is the 
mean value of n. 

(b) Memory accesses are saved by concurrently ex
ecuting operations involving the same input operands. 
An example of the relative saving in memory accesses 
using this scheme is given in Section 2.4. 

The use of variables in a sequence of array as
signment statements of a program can be represented as 
a directed acyclic graph, which will be called the data 
digraph. Each node in the data digraph corresponds~ 
an input variable or the generation of a result (per
manent or temporary). The links determine variables 
or temporary results, which are utilized in generating 
a new result. The data digraph can then be manipulated 
(see Section 2.5) to determine sets of operations whose 
simultaneous execution minimizes memory accesses. Such 
sets of operations, which have to be executed in a 
single step by the SCR, constitute a task. 

To illustrate the previous discussion, we consider 
the multiplication of two vectors with complex data 
types: 

A.B = (a+a'i) · (b+b'i) = (ab-a'b') + (ab'+a'b)i 
Figure l gives the data digraph corresponding to 

this computation. In this case the relative saving in 
memory accesses, when all operations are performed in 
one step is 66.7%. 

2. The SCR: Functional Description 

2.1 Operating Environment of the SCR 

The SCR is intended to operate in conjunction with 
a multiprogramming/multiprocessing computing system, 
whose interfaces with the SCR are discussed here. 

The computing system consists of several Pro9ram 
Processors (PP's), which execute user programs an 
perform OS functions. The PP's and the SCR share a 
high-bandwidth main memory by means of a main memory 
cont ro 11 er. The ma i n memory is 1 a rge enough to a 11 ow 
multiprogramming. The PP's are equipped with local 
memories, thus relieving the main memory from excessive 
PP accesses. Programs executed by the PP's have spe-
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cial provisions for specifying array operations and 
while executing user programs, the PP's relegate array 
operations to the SCR. However, scalar operations and 
also array operations that cannot be vectorized (see 
[15] for examples) are handled directly by the PP's. 
The SCR has local autonomy and requests for c:omput;ation 
or tasks, which the SCR receives from various PP 1 s are 
enqueued in the SCR and assigned to execution based on 
local self-optimization considerations. 

2.2 Functional Organization of the SCR 

The SCR design is aimed toward the major goals of 
achieving fault-tolerance ("graceful degradation") and 
of making efficient use of main memory bandwidth. 

The approach employed to preserve main memory band
width is to allocate several Arithmetic Processors (AP's) 
to the execution of a task such that temporary results 
are transmitted directly from one AP to another*. Since 
rather high bandwidths of data transmission are in
volved, an Interconnection Network (IN) is used to 
transmit intermediate results among the AP's. Addition
ally, due to the high data transfer rates at which ar
ray operands are to be transmitted between tlhe main me
mory and the SCR, dedicated Address Generators (AG;' s) 
are assigned to each array operand. 

In order to achieve fault-tolerance and high avail
ability, a 11 pooling 11 concept is used for the various 
subsystems of the SCR. In the case of AP's, the mean 
AP requirement for a single task (as generated by a pro
gram translator) is smaller than the total number of 
AP's. During program execution, a subset of the avail
able AP's (under some constraints due to the IN) is as
signed to the execution of a task. Several tasks can 
be executed concurrently in the SCR. The binding of pro
gram requests to the SCR elements is deferred until the 
time of execution. At that time it is performed clyna;.. 
mically taking into account the inventory of available 
elements. Consequently, system operation can continue 
with fewer elements (1n "degraded mode") after failures 
of system elements occur. 

Figure 2 gives a block diagram of the SCR and its 
interfaces with the computing system. The SCR consists 
of the following subsystems: 

(a) A pool of m AP's (Arithmetic Processors) which 
access the main memory controller by means of a !1_emory 
Interface Unit (MIU). The AP's are high bandwidth, · 
pipelined arithmetic units capable of performing basic 
arithmetic operations generating elementary results 
(sums, products, etc.), as well as some common matrix 
operations such as the inner product (it is considered 
to be a nonelementary result). The internal structure 
of the AP's will not be discussed here, but we postu-
1 ate that once an AP is set up by an externatl command, 
it proceeds autonomously with the assigned operation. 
An Input Switching Unit (ISU) whose function is des
cribed in (c) below is associated with each AP. 

(b) The MIU contains a pool of k AG's (address 
generators) which generate the addresses of data ele
ments to be transmitted to or from main memory. Each 
AG is associated with a buffer memory to mask the vari
ation in main memory response t:ime. High bandwidth 
buses are used to transmit data and addresses between 
AG's and the main memory controller. The operatfon of 
AP and AG units is overlapped, such that the AG's fetch 
input operands in lookahead mode into the buffers, be
fore the AP's operate upon them. 

(c) The IN (interconnection network) provides da
ta communication links among the AP 1 s according to the 
pattern described in Section 2.5. The ISU associated 
with each AP se 1 ects the s pee i fi ed ·inputs from the set 
of buses originating from the AG's and other AP's (the 
IN) according to task requirements under external con
trol. 

(d) A Switchin~ Network (SN) is used to dynamic
ally assign AG's toP's. The motivation and certain 
*A variation of this approach is discussed in Section 2,, 



advantages of adopting this scheme are discussed in 
Section 2.4. 

(e) The Scheduler in addition to task scheduling, 
controls PP-SCR communication. The requests for com
putation ( 11 tasks 11

), which the SCR receives from various 
PP 1 s a re enqueued· by the Scheduler and s 1 ated for exe
cution based on the availability of the SCR elements 
requested by the task-. Upon the completion of a task, 
the Scheduler notifies this event to the program which 
originated the task. Task scheduling is discussed in 
more detail in Section 3.1. · 

(f) The Control Unit (CU) performs the actual set
up of a task, which is defined by the Scheduler. The 
CU generates a control vector, which determines the 
hardware configuration of the AP's and the AG's, in 
addition to initializing certain registers internal to 
these units, for the duration of a task. In other 
words, this is a virtual processor-memory-switch sys
tem [18], where the desirable configuration can be 
achieved by means of static (residual) microprogramming. 
After task setup a computation proceeds independently 
from the CU. The CU attention is required when an 
arithmetic exception or hardware fault is indicated. 
The CU communicates the status of failed units to the 
Scheduler, which updates the SCR configuration tables 
accordingly. 

In the following sections we discuss tradeoffs 
that arise in implementing such a design. 

2.3 Issues in Utilization Arithmetic Processors in 
Tandem 

Although we consider homogeneous AP's, their rate 
of execution may differ in performing basic arithmetic 
operations of varying complexity. Here, we address the 
issue of matching the bandwidth of pipelined units, 
which have to be connected in series to execute a task. 

When we define the delay in one pipeline segment 
as one cycle, then for some basic operations, such as 
addition and multiplication, the AP's generate one ele
mentary result per cycle. The execution rate for more 
complex basic arithmetic operations, such as division, 
is a multiple of the cycle time. We also assume that 
the delay due to the IN is fixed and equal to one cycle 
(see also Section 2.5). 

Since we are dealing with deterministic queueing 
systems operating in tandem, the provision of buffers 
between AP's to hold unprocessed intermediate results 
doesn't improve performance and throughput is deter
mined by the execution rate of the 11 slowest 11 AP*. 
The following alternatives are to be considered in 
operating several AP's in tandem: 

(a) Control the inflow rate of array data, such 
that it matches the bandwidth of the slowest AP. This 
a~proach results in a potential waste of memory band
width, as well as the underutilization of the non
bottleneck AP's. 

(b) Only arithmetic operations which are execu
table at the same rate should constitute a task. A 
disadvantage of this scheme is the fact that temporary 
results generated due to this constraint have to be 
saved in main memory. An advantage of this scheme is 
the potential simplification of control. 

(c) Design the AP's to generate one elementary 
result per cycle, regardless of the complexity of the 
basic arithmetic operations to be performed. The draw
back of this approach is that the additional hardware 
is not justifiable for infrequent and complicated oper
ations. 

(d) Use multiple AP's in parallel, in order to 
compensate for the low execution rate of complicated 
arithmetic operations. A disadvantage of this approach 
is the additional control requirement, as well as com
plications in th~ interconnection schem~ 
*Such buffers, wen introducea in the I~D, can be used 
to delay the inputting of operands into an AP. 
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To simplify this discussion, ft is assumed in the 
remainder of this paper, that the set of basic arithme
tic operations are executed at the same rate. However, 
a more careful study of the above-mentioned tradeoffs is 
required for a design decision. 

2.4 The Memory Interface Unit 

In this discussion we consider an AP which has two 
operand ·inputs and one output. Then the permanent 
(static) association of three AG's with each AP reduces 
the AG utilization due to the following: 

(a) The capability of directly passing intermedi
ate results among AP's obviates the need to access the 
main memory for them. 

(b) Scalar variables occurring in an array expres
sion are treated as "immediate" operands and can be re
plicated by the AP's. 

In considering the dynamic sharing of the AG's 
among the AP's, we face the following tradeoffs: 

(a) The number of AG's can be reduced substanti
ally. At this point we estimate the saving in the num
ber of AG's when array expressions inv.Q_lving binary 
operators are considered. Given that r AP's are re
quired on the average by each task, then there are 
Lm/rJ tasks in the system, each requiring r+2 AG's for 
their execution, and the number of AG's saved is: 
3m - (lm/rJ)(r+2) ~ 2m(l-l/r). For r = 2, m AG's are 
saved, which is a considerable reduction in system hard
ware. A more accurate approach to determine the number 
of AG's is given in Section 3.2.4. 

(b) The AG's can be used independently for memory 
remapping functions (e.g., transposing a matrix) or ini
tialization of arrays (e.g., setting the elements of a 
matrix to zero). To remap a data structure, two AG's 
are used, one for fetching the data and the other one 
for storing. This approach, of course, requires a means 
to interconnect the AG's. Memory remapping operations 
usually precede certain arithmetic operations, for ex
ample, in matrix multiplication, we may need to trans
pose the second matrix in order to realize efficient 
columnwise fetching of the second matrix during matrix 
multiplication. 

(c) There is a potential gain in the reliability 
of the system due to functional modularization. On the 
other hand, the unreliability of the SN associating the 
AP's and the AG's, its cost, and the overhead required 
for control require attention. The generality of the 
dynamic association provided among the AP's and the 
AG's is affected by hardware technology (cost, relia
bility, speed), as well as the issue of scheduling and 
resource utilization. 

(d) It was suggested in Section 1.4 to save memory 
accesses by concurrently executing operations involving 
the same input operands. This scheme can only be real
ized when an AG in charge of accessing an array can be 
associated with multiple AP's simultaneously. In the 
case of matrix multiplication, this approach results in 
considerable savings in memory fetches. We consider 
the case when the multiplication of two nxn matrices is 
performed using p AP's; then one row of the first ma
trix can be multiplied simultaneously by p columns of 
the second matrixt. In this case, a single AG is allo
cated to fetch the row vector and the number of memory 
fetches is n3(1+1/p) versus 2n3 in the conventional 
scheme (p = 1). The saving in memory accesses is 37.5% 
for p = 4 and approaches 50% for p = n. 

While a more detailed.study is under way to deter
mine the SN design, for the purpose of this discussion 
the SN is assumed to be a crossbar switch, the implica
tion being that there are no restrictions in associat
ing AP's and AG's. The crossbar switch consists of a 
single bus per AG against three buses per AP, two of 
which correspond to !SU inputs, while the third one is 
the AP output. 
tThe inner product operation is used. 



2.5 The Interconnection Network and Task 
Characteristics 

The function of the IN is to provide data communi
cation links among the AP 1 s. The IN is a passive sub
system and the actual line switching is performed in the 
ISU 1s under CU control, as part of task setup. The fol
lowing criteria are used in synthesizing the IN: 

(a) The available interconnection patterns should 
be suited to the most common instances of computation 
that arise. Less common cases are transformed to di
rectly executable form before execution. 

(b) The utilization of AP 1s should not be drasti
cally reduced due to limitations imposed by the IN. 
This underutilization, which manifests itself in the 
form of increased response time in executing tasks, is 
due to the fact that the multiple AP's required by a 
task should be able to transmit intermediate results 
directl,y to each other. 

(c) The AP 1 s should be interconnected in a manner 
that facilitates scheduling. A homogeneous interconnec
tion is then superior to a nonhomogeneous one. 

(d) The IN should accomodate undisrupted opera~ion 
when failures in the system occur. Due to the relative 
hardware complexity of the AP 1 s with respect to the IN, 
we primarily consider AP failures. The protection of 
the IN is to be considered separately. The degradation 
in system performance upon AP failures then should cor
respond to the actual loss in computational capacity. 

{e} The overall operation of the SCR is simplified 
when the delay introduced by the IN in transmitting data 
is fixed. 

Assuming that dedicated buses are used in the IN to 
satisfy criterion (e), we initially use criterion (a), 
task characteristics, to design the IN. The design thus 
obtained will be evaluated and modified (if necessary) 
to satisfy the other criteria. 

If the input nodes of the data digraph (as defined 
in Section 1.4) are omitted, we obtain a digraph which 
reflects the interconnection requirements for a sequence 
of assignment statements. Generally, due to an insuffi
cient number of AP 1 s and/or limitations in the IN, it 
will not be possible to perform the sequence of computa
tions in one step. Hence, we face the issue of parti-
tioning the data digraph. . 

In the data digraph, we differentiate between links 
corresponding to the transmittal of intermediate and 
permanent results. Since permanent results have to be 
stored in main memory, the cost in memory accesses of 
cutting a link corresponding to the transmittal of a 
temporary result is twice that of a permanent result.or 
input variable. Additionally, when we limit the maxi
mum number of operations allowable in a task, then under 
certain restrictions, an optimal partitioning procedure 
exists, which minimizes the cost of links joining the 
various subsets of the data digraph [19]. 

Based on the above discussion, the following scheme 
is adopted to design the IN and to determine the optimal 
task size. First a static analysis of a set of 11 typical11 

programs is performed by partitioning their digraph for 
different maximum task sizes. Then we determine the 
task size, which, while maintaining memory accesses at 
a low level, requires an IN of moderate complexity. 

To illustrate the concept, we consider the design 
of an IN, when the interconnection digraph corresponding 
to tasks has at most four nodes and five links. This 
means that a task consists of at most four arithmetic 
operations and not more than five results are trans
mitted among AP 1 s. Form AP 1 s, an IN where the output 
of AP[i] is connected to the ISU of AP[(i,:!:.l)1lU2.9m] and 
AP[(i_:!:.2)Q!Q.2m] then satisfies the interconnection.requ~re
ment. Figure 3 illustrates the AP 1 s and the IN in this 
case. This illustrative IN will be further discussed 
in the remainder of this paper and its properties will 
be further investigated. 
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An example (taken from [15] and translated into 
APL) is given in Figure 4(a) to illustrate the mapping 
of task {program requirements into the SCR h,ardware. 
All variables are arrays of the same size (l). The 
d'ata and the interconnection digraph for this task are 
given in Figures 4(b) and 4(c) and Figure 4(d) is a 
possible setup for the task. Note that 11Y11 is fetched 
by a single AG and channeled simultaneously to three 
AP's. 

2.6 The Coordination Issue in the SCR 

In Section 2.2 it was noted that after the CU sets 
up a task for execution, the AP 1 s and the AG 1 s proceed 
autonomously with its execution. This section describes 
the coordination of the operation of a set of AP 1 s and 
AG 1 s which are assigned to the execution of a task. 

During the execution of a task, the next set of 
input operands must be placed into the buffer before an 
AP may start to operate upon them. To denote the pre
sence of operands in the buffer, indicators are associ
ated with each location in the buffer. The AP 1 s as
signed to a task, start operating on the next set of in
put operands, when all respective indicators indicate 
readiness. However, this approach is expensive in terms 
of hardware and provisions are needed to handle the in
terspersed vacuous results that would be generated by 
the AP 1 s. 

A reduction in hardware and control complexity is 
achieved by using multiple buffers associated with each 
AG and assigning a single indicator to each buffer. In 
this case, after operating on the contents of a set of 
buffers in one burst, the set of AP 1 s will ·immediately 
switch to the next set of buffers, if they are ready; 
otherwise the AP 1 s are idle. However, the situation 
wi 11 arise infrequently if the total comput,ati ona l band
width is matched to the main memory bandwidth and input 
operands are mapped in the memory in a mann1er whi.ch fa
cilitates their access. The first scheme outperforms 
the second one with respect to overall executton time 
when idling occurs. Here we face a tradetiff between 
complexity of control and delay in execution. 

A similar problem arises when a computation is 
halted because an output buffer is full. In general, a 
set of AP 1 s executing a single task proceed with their 
operation, when the next set of buffers associated with 
their inputs are full and those associated with their 
outputs empty. This scheme can then be implemented by 
distributed control, where the AP 1 s sense the state of 
certain indicators (as determined by the task), before 
proceeding to operate on the next set of operands. 

3. Task Scheduling in the SCR 

3.1 Task Characteristics 

As discussed in Section 2.1, tasks originating at 
the PP 1 s are enqueued in the SCR and then executed ac
cording to a predetermined scheduling discipline. Tasks 
sent by a PP may be independent, in which case they can 
be executed concurrently; or there may be precedence 
relationships among tasks, which are observed by the 
Scheduler. In this discussion only independent tasks 
are considered. 

Tasks sent by the PP 1 s contain enough information 
for their scheduling as well as setup. A computational 
task specifies the following: arithmetic operations to 
be performed, variables or 11 pseudo-variabl1es 11 [6] in
volved in the operation, the interconnection among AP 1 s 
for transmitting intermediate results, and the delay 
which should be introduced in the ISU in inputting cer-
tain operands to the AP. 

The AP requirement of a task is detenmined by the 
number of arithmetic operations. The AG requirement is 
similarly determined by the number of array operands to 
be transmitted to or from main memory. The i nte!rconnec
tion requirement then poses a problem. In the general 



case, we consider a processor digraph, where the nodes 
correspond to AP's available for task allocation and the 
links in the graph correspond to the IN lines among 
those AP's. In order to schedule a task, we must find 
a subgraph of the above graph in which the interconnec
tion digraph of the task can be imbedded. On the other 
hand, due to the regularity of interconnections in the 
illustrative IN, the above approach {which is similar to 
finding isomorphic graphs) can be avoided by transform
ing the interconnection requirement to an AP proximity 
requirement. Due to the large number of cases involved 
and space limitations, we treat this issue by consider
ing two examples: 

{a) F + {{{{A+B)+C)+D)+E) can be evaluated by as
signing AP's which are at most two apart. If the expres
sion is rewritten as: F + {{{A+B)+{C+D))+E), then at 
least three contiguous AP's are required to execute the 
task. Note that the total latency in the pipeline has 
been reduced from four to three levels. 

{b) X + {A+B) x (A-B); y + {A+B) ~ {A-B) can be 
executed when four contiguous AP's are allocated to the 
task. 

Due to the unavailability of statistical data char
acterizing tasks as discussed above, the queueing char
acteristics of the system are studied in the next sec
tion under postulated task characteristics. 

3.2 Evaluation of Queueing Characteristics 

3.2.l The Single Resource System 

We consider a queueing model of the SCR system, 
where tasks require multiple AP's for their execution 
and constraints due to other resources are not consi
dered [20]. In the open queueing system, the task ar
rival process is Poisson with rate A. The input stream 
consists of tasks with unequal processor requirements 
{given by the vector R). Tasks in different task 
classes (a task class is determined by the AP require
ment) occur with fixed probabilities (.given by the vec
tor F). All tasks are enqueued in a single queue in the 
order of their arrival. The processing time distribu
tion is exponential with rate µ. 

For some realistic task characteristics, increasing 
the number of AP's over ~{R) under a fixed total proc
essing capacity {to be denoted by C which is set to 
unity for normalization purposes) results in improve
ments in the mean response time characteristic for high 
utilization factors. This is due to the reduction in 
unutilized capacity associated with idle processors, an 
inevitable occurrence under nonpreemptive scheduling 
disciplines. Additionally, a set of unbiased scheduling 
disciplines {with the exception of FCFS) considered in 
[20] were observed to have a close mean _r.esponse time 
characteristic once m is increased over r (mean AP re
quirement of tasks), under fixed total processing capa
city. The first-bit (FF) scheduling discipline, which 
inspects the queue (waitlist) from head to tail and al
locates the first executable task, is employed in this 
discussion due to the simplicity of its implementation. 

A simulation program was developed to determine the 
queueing characteristics of the SCR (see [21] for de:_ 
tails). The normalized mean response time_graph (µCT/m) 
versus the normalized arrival rate (fn = Ar/µ) as ob
tained by the simulation program is given by graph (a) 
in Figure 5, for the following set of system and task 
characteristics: m = 8; R = (1,2,3,4) and F = (0.5,0.25, 
0.125,0.125). This graph will serve as a benchmark in 
further sections. 

3.2.2 The Effect of the IN on Performance 

Here we use the simulation program to determine the 
effect of the IN on the mean response time characteris
tic. 

Instead of generating the interconnection require
ment of tasks individually, the following approach was 
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taken :in order to keep the simulation cost down. The 
system was subjected to the same workload twice, with 
the following restrictions on task assignment: 

(a) Only contiguous AP's can be allocated to the 
execution of a task. 

(b) No two neighboring AP's allocated to the exe
cution of a task can be more than two AP's apart. 

The mean response time graphs which are obtained 
from the simulation program under restrictions {a) and 
(b) provide upper and lower bounds to the mean response 
time characteristic and are given by ~raphs (bl) and (b2) 
in Figure 5. Note that for a high utilization fac- · 
tor (p = An = .9) the increase in mean response time is 
about 10%, which indicates that the IN design satisfies 
criterion (b) in Section 2.5 for the assumed task char
acteristics. 

3.2.3 Operation in Degraded Mode 

In this section we study the performance of the 
system when AP failures occur. First we note that the 
Scheduler need not distinguish between a busy and a 
failed AP. However, since a failed AP remains 11 busy 11 

indefinitely, provisions are needed in the IN to bypass 
a failed AP. 

Graphs (cl) and (c2) in Figure 5 give the upper and 
lower bounds to the mean response time characteristic 
for a single AP failure. Note that while the computa
tional capacity of the system has been reduced to C = 
.875, the. mean response time increase (the average of 
cl and c2 values is considered) is about 35% when An·= 
.6. On the other hand, if we consider a seven AP sys
tem with C = .875, then the mean response time increase 
is only 24% over the eight AP system for An = .6. This 
discrepancy in mean response time degradation indicates 
that criterion (d) in Section 2.5 is not satisfied and 
performance can be improved by providing additional (re
dundant) links in the IN. 

Consideration of double AP failures in the system 
makes the inadequacy of the IN further evident. For 
example, if the two AP failures are four apart (which 
occurs in 4 out of 28 cases when m = 8), no task re
quiring four contiguous AP's can be allocated. However, 
system o~eration is possible in other cases and graph 
(d2) in Figure 5 gives the lower bound to the mean res
ponse time characteristic when two contiguous AP's fail. 

Based on the above discussion, we add· additional 
links to the system. Provided that (i_:!:.3) me.Qui links are 
added to the system, then for the task characteristics 
under consideration, a single failed AP is completely 
masked. The failure of two adjacent AP's would then 
correspond to a single AP failure in the original IN 
design. 

Another method, which avoids a large degradation in 
themean response time characteristic upon AP failures, 
is to reduce the effect of AP failures on processing 
capacity by increasing the number of AP's under fixed 
total processing capacity. There are two disadvantages 
to this scheme: (1) increasing the number of AP's be
yond a certain point results in increases in mean res
ponse time; (2) additional hardware is required in re
lated subsystems when the number of AP's is increased. 

Finally, heuristic approaches can be used to im
prove the performance of the system for given task char
acteristics. For example, a nine AP system with the 
original IN will tolerate all two AP failures and a con
siderable improvement is then achieved at the cost·of 
one extra AP. 

The task during whose execution a hardware failure 
occurs, is reenqueued for execution, given that its in
put operands were left intact. 

3.2.4 The .System with Two Resources 

In the single resource system (Section 3.2.1), it 
was postulated that the number of AG's is always ade
quate, such that no task has to wait for this resource. 



Here we consider the case where the AG 1 s, in addition 
to the AP 1s are considered for task scheduling and 
there are no restrictions in associating AP 1 s and AG 1 s 
for task execution (see Section 2.4). 

In order to determine the number of AG 1 s, when the 
number of AP 1s and task characteristics are fixed, such 
that the performance of the system doesn 1 t degrade when 
the second resource is introduced, the following two 
approaches are considered: 

(a) Determine the mean response time of the sys
tem under a given scheduling discipline and load level 
(arrival rate), while increasing the number of AG 1 s (a 
parameter in the simulation program) until the relative 
improvement in mean response time with respect to the 
single resource system is sufficiently small. A dis
advantage of this approach is the high cost of simula
tion as well as the fact that the result depends on the 
load level and.the scheduling discipline. 

(b) This approach is independent of the schedul
ing rule and is based on the argument that the through
put bound of the single resource system shouldn 1 t be re
duced, when the constraint due to the second resource 
is introduced. The throughput bound is defined as the 
smallest input rate for which the system is guaranteed 
to saturate regardless of the scheduling discipline, 
which may be preemptive. The throughput bound for the 
two resource s1stem for given system resources and 
task characteristics can then be obtained by a simple 
extension of the linear programming formulation given 
in [20]. 

For the task characteristics considered in Section 
3.2.1, and assuming that each task requires two more 
AG 1 s than AP 1 s (this is true for any assignment state
ment involving binary operators), the second approach 
was used to determine that at least eighteen AG 1 s are 
required for eight AP 1 s to maintain the throughput 
bound at the sarn~ level. 

In genera 1 , the two approaches. complement each 
other as follows. The second approach {perhaps en
hanced by a utilization factor argument) is used to nar
row down the search space and determine a tentative num
ber of processors for the 11 second 11 resource. This num
ber is then used to determine if the performance of the 
two resource system is satisfactory for the scheduling 
discipline under consideration. 

In the above case, the performance of the system 
was determined to be satisfactory under the first-fit 
scheduling discipline (modified for two resources), 
when eighteen AG 1 s were provided. 

3.3 Dynamic Versus Static Scheduling of Tasks 

In this section we compare the SCR system with the 
four-pipeline version of the ASC [5]. These two sys
tems have the following differences: 

(a) In the ASC, the pipelines are available only 
to the program executing in the central processor. In 
the SCR system, any program executing in the PP 1 s can 
generate tasks for the SCR. While it can be projected 
that due to resource sharing, the AP utilization will 
be higher in the SCR, this advantage needs to be 
weighed against the overhead in time and hardware to 
implement the SCR scheme. 

(b) Since there are no provisions in the ASC to 
transmit intermediate results, only independent opera
tions can be executed simultaneously, while the SCR 
performs operations at the task level. To illustrate 
this point, we consider the execution of the sequence 
of assignment statements given in Figure 4(a). The 
FORTRAN optimizing compiler developed for the ASC will 
minimize the schedule (the maximum finishing time for 
the set of operations) by breaking down a computation 
into several parallel segments if required [15]. The 
schedules for the ASC and the SCR systems are given by 
Figures 6(a) and 6(b), respectively*. Given that all 
*It is assumed that all basic arithmetic operations 

all arrays have .t elements and denoting the startup 
time by E (the startup time is not shown explicitly in 
the diagrams) then the execution· time in the 11 modified 11 

ASC is .t+l2E versus .t+4E in the SCR. 
(c) As was noted in (b), the objective of the 

ASC 1s FORTRAN compiler is to speed up the execution of 
the program executing in the central processor, while 
the objective in the SCR is to speed up the execution of 
the set of programs executing in the PP 1 s. Hence, it is 
undesirable to speed up the operation of a single pro
gram at the expense of other programs in the system. 
However, based on more careful analysis, it may prove 
advantageous to break down computations of arrays whose 
size exceeds a certain threshold value. 

(d) In the case of a pipeline failure in the ASC, 
although operation continues with the pipe disabled, the 
schedule generated by the FORTRAN compiler loses its· op
timality and there is a need to recompile the program 
if optimal execution is desired. As described earlier, 
the SCR system is less sensitive to AP failures. 

These potential advantages of the SCR over the ASC 
system provide further motivation for an in-depth study 
of the suitability of the SCR as a special purpose array 
processor. 

4. Conclusion 

This paper presents our current results on the SCR, 
in a design study concerned with the evolution of a 
fault-tolerant hierarchical computing system. While ad
ditional work is required to evaluate the quality and 
the completeness of the proposed SCR design, the design 
can be considered as a contribution to the series of 
novel architectures addressing themselves explicitly to 
efficient solutions for extensive numerical computing 
requirements. 
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Abstract 

The abstraction of a computer system as a set of 
asynchronous communicating processes is an important 
system concept. This paper indicates how the concept 
could be supported at a low hardware level. A new 
inter-process communication mechanism called a mailbox 
is introduced. Examples of its use as a programming 
tool are given. This is followed by a description of 
hardware features that use this mechanism as the basis 
of communication between the components of a complete 
system. These features include processor-sharing 
hardware capable of handling process selection and 
switching with high efficiency. It is also indicated 
how these features can take the place of conventional 
input/output structures. 

1. Introduction 

The abstraction of a computer system as a set of 
asynchronous communicating processes [l] is a concept 
which is widely accepted and used by present-day 
programmers. In fact, this abstraction is now recog
nized to the extent that most modern systems support 
it at either a low-level software (e.g., [2,3]) or 
firmware (e.g., [4,5]) level. Because it is becoming 
increasingly economical to implement widely-used 
programming features in hardware, consideration should 
be given to low-level hardware support for this 
important abstraction. Much can be gained by going to 
the basic hardware level, as this removes the restric
tion of simply implementing sequential algorithms, as 
is the case when firmware or software features are 
superimposed upon a conventional hardware structure. 
We shall therefore propose new low-level features 
which would exist, for example, at the machine in
struction level of a minicomputer, or, in a larger 
machine, at a level below firmware which implements 
more complex functions. These features consist of the 
following: 

a) Mechanisms for controlling inter-process 
communication and synchronization. These 
facilities should provide a programmer with 
operators capable of efficiently emulating 
familiar programming language synchronization 
primitives (e.g., semaphores [6], monitors 
[7]) and solving common synchronization 
problems. They should not need to differen
tiate between software processes running 
internal to a CPU and external processes 
based on peripheral devices or other CPU's. 
This generality will allow input/output 
handling and multiprocessing to be incorpor
ated in a natural way. 

b) Facilities for handling the sharing of a CPU 
among a number of logical processes. Process 
selection and switching should be automatic 
and fast; however, there should be sufficient 
flexibility for scheduling policies to be 
determined under program control. 

* This research was supported in part by grant A-5192 
from the National Research Council of Canada. 
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The combination of these features should relieve 
the programmer from the well-known problems associated 
with the conventional interrupt mechanism. It is 
essential that time overheads, especially in process 
switching, be kept low in order to compete with more 
conventional input/output structures. An attempt will 
be made to restrict these proposals to features whose 
implementation in current or foreseeable technology 
would be cost-effective, even for application in 
machines down to the minicomputer scale. 

This paper will concentrate on the hardware 
aspects of these features, and only brief examples of 
their role in programming will be given. The program
ming aspects will be discussed further in a future 
publication. For clarity and consistency, Pascal 
notation [8] is used throughout for the description of 
all hardware and software concepts and algorithms. 

2. The Mailbox Mechanism 

The concept of a low-level mailbox mechanism has 
been discussed by Spier [9] . He defined the basic 
characteristics of any interprocess communication 
mechanism, then introduced a single bit "mailbox" as 
the "most elementary communication mechanism which 
would satisfy all of the requirements". His mailbox 
was capable of transmitting, after initialization, one 
one-bit message from a sender process to a receiver 
process. We add practicality to this mechanism with 
the following two extensions: 

a) It is made reusable so that it can pass a 
stream of messages. 

b) A data-carrying capability is added so that a 
message can convey a word of information. 

A mailbox can now be considered as possessing 
both a state (full or empty) and contents. In Pascal 
notation, mailbox can be defined as a structured type: 

~mailbox record 
--state: (empty_, full); 

contents: word 
end 

The sending and receiving operations on mailbox m can 
be described respectively as PUT value AT m interpret
ed as: 

repeat until m. state = empty; 
m.state := fuU; 
m.contents := value 

and GET value AT m interpreted as: 

repeat until m. state = fuU; 
m.state := empty; 
value := m.contents 

It must be stipulated that, following a successful 
until test, the mailbox should be inaccessable to 
other processes until the assignment operations are 
complete. This mechanism guarantees that every mes
sage sent by a PUT operation will be received by 
exactly one GET operation. 

This mailbox has considerable value as a low
level programming tool for general synchronization 



problems. We present here two brief examples of the 
use of the mechanism in programming-- the implementa
tion of semaphores and queues. 

2.1 Semaphores 

The binary semaphore is an important tool as it 
has been used widely in published solutions to many 
interesting synchronization problems. It has also 
been shown [7] to be a suitable mechanism for imple
menting monitors. Wirth [10] pointed out that a 
general semaphore corresponds to a message queue which 
passes only null messages. A similar concept is used 
here to implement a binary semaphore using a single 
mailbox. We consider semaphore as a type: 

~ semaphore = mailbox 

and define the operations on semaphores as P(s), 
implemented as PUT AT s, and V(s)f implemented as GET 
AT s. The null value arguments of the PUT and GET 
instructions indicate that the mailbox contents field 
is unused. 

With this implementation, the mailbox fuU state 
corresponds to a semaphore value <l, while the mailbox 
empty state (the natural initial state) corresponds to 
a semaphore value of 1 (the natural initial state for 
a mutual exclusion semaphore). A small inconsistency 
in this implementation is that, strictly, it should be 
illegal to attempt to execute a V-operation on a bin
ary semaphore with value 1. Rather than detect such 
an attempt as an error, the mailbox mechanism will 
cause the violating process to be delayed until the 
next P-operation. If the semaphores are used correct
ly (as in compiler-generated code), the inconsistency 
will not arise. 

2.2. Queues 

The mailbox mechanism also provides for a simple 
implementation of FIFO queues of known maximum length, 
as require.d for. buffering message streams between 
processes.. This queueing problem has also been refer
red to as a bounded buffer producer/consumer problem 
[6,. 7]. 

A queue of maximum length k words is implemented 
as an array of k mailboxes, all initially empty. An 
in-pointer and out-pointer initially point to one of 
these locations. A queue of maximum length k can 
therefore be described as the structured type: 

type queue [k] = record 
----st'Ore: array [l .. k] of 

mailbox; 
in, out: 1. .k 

end 

For a queue q two operations are defined. The opera
timi for a producer process to append a word to the 
tail of the queue is APPEND word TO q which can be 
implemented as: 

with q do begin 
- PUT word AT store [in]; 

in := if in < k then in + 1 
-else 1 

end 

The corresponding operation for a consumer process to 
remove a word from the head of the queue is REMOVE 
word FROM q implemented as 

with q do begin 
-- - GET word AT store [out]; 

out := if out < k then out + 1 
-else 1 

end 

If there is only one producer process and one 
consumer process operating on the same queue, the 
above will be correct without any need for semaphores 
or indivisible operatiqns. Whenever the consumer 

114 

process attempts to remove a word from an empty queue 
it will automatically be blocked until the queue is no 
longer empty. Conversely, if the producer process 
attempts to append a word when all k locations are 
full, it will be blocked until the consumer removes a 
word. In the case of more than one producer process 
for the same queue, it is necessary to enclose the 
APPEND code in a critical region guaranteeing mutual 
exclusion between producers. A similar modification 
applies to the case of more than one consumer. 

3. Mailbox Memory 

We now present a proposal for a hardware imple
mentation of mailboxes which enables them to be used 
as the basis of communication between the co1J1ponents 
of a complete system. For this purpose, a physical 
processor is considered to be any CPU, or any hardware 
device which logically communicates directly with a 
CPU process. This includes input/output channels and 
some peripheral devices. In general, a physical pro
cessor may be capable of supporting more than one 
logical process. The principal path of communication 
between physical processors is mailbox memory (an 
array of mailboxes) . A possible system configuration 
is illustrated in Figure 1. This shows all physical 
processors connected to a common bus which is managed 
by a mailbox memory controller. Firstly, the mailbox 
memory and the controller will be described,, assuming 
that each physical processor supports only one logical 
process. The following section will discuss compat
ible hardware features for efficiently handling the 
sharing of a physical processor. 

Mailbox memory consists of a number of addres
sable locations, with word size typically one or two 
bytes. Any mailbox location may be in either a f'uU 
condition, in which case its contents represent' some 
meaningful va~ue, or an empty condition in which the 
contents are undefined and inaccessable. An addition
al bit for each word indicates a fuU or empty state. 
Since these state bits are accessed more frequently 
than the complete words, they can profitably be 
retained in separate higher-speed memory devices. 

The mailbox memory controller receives PUT and 
GET requests on the bus, each request specifying a 
single mailbox memory address. These requests origin
ate from either explicit CPU instructions, or from 
device interfaces. All are handled identically. The 
PUT operation applied to an empty mailbox causes a 
value to be passed from the processor and stored in 
the location, the state of that location then becoming 
fuU. Conversely, a GET operation on a fuU maHbox 
causes the contents of that location to be passed to 
the processor and the location assumes the empty 
state. The read operation on mailbox contents is 
allowed to be destructive. 

Any attempt to execute a PUT operation on a fuU 
mailbox, or a GET operation on an empty mailbox 1:::auses 
a BLOCK signal to be sent back to that processor. 
That processor then.enters a mode where it monitors 
the bus waiting for a WAKEUP signal for that particu
lar mailbox. Whenever a PUT or GET operation is suc
cessfully executed, a WAKEUP signal is broadcast on 
the bus together with the address of the mailbox 
involved. When a blocked processor eventually detects 
the appropriate WAKEUP signal, it then reissues the 
original PUT or GET request. 

The activity of the mailbox memory controller in 
processing PUT and GET bus requests can be described 
as the following indivisible sequence: 

whi 1 e true do 
begin 

receive op for mailbox m from processor p; 
state := m.state {Retrieve the state bit}; 
if (op = GET) A (state = fuU) then_ 



begin {Successful GET} 
---generate WAKEUP (m); 

m.state := empty; 
valu~ := m.contents; 
transfer value to processor p 

end 
else if (op = PUT) A (state = empty) then 
begin~{Successful PUT} 
---generate WAKEUP (m); 

m.state := full; 

end 

transfer value from processor p; 
m.contents :=value 

end 
else generate BLOCK (p) {Unsuccessful 

PUT or GET} 

An essential feature of the mailbox memory con
troller is that it can be processing only one PUT or 
GET request at any time. Hence there may be times 
when more than one of the processors are competing for 
access to the controller. It will be assumed that 
such competition is resolved on a priority basis, as 
with conventional bus conflict resolution. 

4. Processor Sharing 

When the physical processor is a CPU, special 
provision must often be made for sharing it among a 
number of internal·processes, each being an instance 
of execution of a machine program. These internal 
processes must be able to communicate with each other, 
as well as with external processes, via mailbox memory. 

4.1 Process Status Table 

Assume that a physical processor may support a 
maximum of N internal processes. Each such process is 
assigned a unique identifying number. in the range 
[O, N-lJ, this number being an index into a hardware 
process status table. The organization of this table 
is shown in Figure 2. Naturally, only one process is 
executing machine instructions at any time, and the 
identifier of that process is held in a hardware reg
ister denoted the current process register. For every 
process, the status table contains a bit to indicate 
ready/blocked status, and a register containing a 
priority value. These entries are used by a despatch
ing mechanism which, when enabled, loads into the 
current process register the identifier of a ready 
process selected according to priorities. This des
patcher will b~ discussed in more detail later. 

Each internal process is assumed to have its own 
partition of memory for storage of local data. Each 
process also has its own set of CPU registers, includ
ing program counter and memory bounds registers. The 
register sets for all processes can be implemented in 
a high-speed random access memory configuration. When 
accessing this memory, the most significant portion of 
the address is obtained from the current process reg
ister, so context switching between processes simply 
involves changing the contents of that register. 
Therefore, the only time overhead in process switching 
can be the despatcher delay, which will be discussed 
later. To briefly support the feasibility of this 
feature, it should be pointed out that the value of N 
for a 16-bit minicomputer could reasonably be of the 
order of 16. With 8 CPU registers this would require 
a high-speed random access memory of 128 16-bit words. 
This is not an unreasonably expensive item in current 
high-speed logic technology. 

The execution of a PUT or GET machine instruction 
causes the processor to issue an appropriate PUT or 
GET request to the mailbox memory controller. If the 
request can be satisfied directly, the appropriate 
data transfer is made and execution of the same pro
gram continues. If, however, the request cannot be 
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satisfied and the BLOCK signal is returned, the 
status of the current process is set to blocked and the 
program counter is not incremented. In each process 
status table entry there is an additional word of suf
ficient length to hold a mailbox address. When a pro
cess is blocked, the address of the mailbox at which it 
is blocked is entered in that word. After blocking of 
a process the despatcher is invoked, causing the pro
cessor to switch to a new process. 

To handle WAKEUP signals, the processor has an 
asynchronous mechanism which continually monitors the 
bus for any WAKEUP signal. On every such signal, this 
mechanism searches the process status table for proces
ses which are blocked at that particular mailbox, and 
if any are found their status bits are set to ready. 
Also, a processor flag is set, indicating that the 
despatcher should be invoked at the first opportunity. 
For fast execution of the wakeup phase, it is apparent 
that the "blocking mailbox" words of the process status 
table could be configured as an associative memory. 
For a system with N = 16 and a maximum of 1024 mailbox 
words, this would call for a relatively inexpensive 16-
bit by 10-bit associative memory. 

The "wakeup" time can actually be as long as one 
mailbox contents access time with zero effective time 
cost. This is because every WAKEUP signa'i is followed 
by a mailbox contents access. If the PUT or GET opera
tion involved was initiated by this processor, then the 
processor will be delayed anyway until the completion 
of that access. If the operation was initiated by some 
other processor, then the "wakeup" can completely over
lap program execution. It is impossible for the pro
cessor to commence executing a PUT or GET instruction 
until the previous mailbox operation is completed, so 
there is no possibility of "block" and "wakeup" modif
ications of the process status table clashing, provided: 

a) the time for the table adjustment following a 
WAKEUP signal is less than a mailbox contents 
access time, and 

b) the time for the table adjustment following a 
BLOCK signal is less than a mailbox state bit 
access time. 

It is clear that a CPU must have special process 
management instructions for initiating, terminating, 
and supervising internal processes. There must at 
least be instructions to enable a process to modify 
the register contents of another process (for initial
izing the program counter and memory limits), to set 
or clear ready/blocked flags, to suspend another 
process by forcing it to block at a dummy mailbox, and 
to initialize mailbox states to empty. Access to these 
instructions should be restricted to nominated super
visory processes. There is also a need for instruc
tions to change process priorities. To maintain flex
ibility in scheduling, it appears that access to these 
instructions should be relatively unrestricted. 

4.2 Despatcher 

The purpose of the despatcher is to examine all 
priority :registers and ready/blocked flags of a pro
cessor, and load into the current process register the 
identifier of some ready process whose priority is no 
lower than that of any other ready process. If no pro
cess is ready, it must generate the signal CPUIDLE 
which inhibits processing. The despatching activity 
ne·ed only be carried out after a change has been made 
to the process status table, i.e., after a recognized 
WAKEUP signal, a BLOCK signal, a change priority 
instruction, or a process management instruction. A 
synchronization problem arises as the recognition of 
WAKEUP signals is not synchronized to the basic pro
cessor cycle, as the other activities are. In resolv
ing this problem, it should be stipulated that, when 
the mailbox memory controller broadcasts a WAKEUP 



signal, it should not have to wait for responses from 
processors (i.e., a processor simply "absorbs" a WAKEUP 
signal). Nor should the speed of the mailbox memory be 
severely restricted by possible excessive delays on the 
part of processors in reacting to wakeup signals. For 
this reason, it appears sensible to synchronize des
patching to the processor and provide the despatcher 
with storage to take a "snapshot" of the ready/blocked 
flag status whenever it is invoked. On receipt of any 
WAKEUP signal, the processor wakeup mechanism then has 
only to execute an associative search and set any 
required ready flags. It is then capable of immediate
ly accepting another WAKEUP signal. When the despatch
er is about to commence its cycle, it latches in the 
current values of the flags and uses the latched 
values. Further WAKEUP signals can then be accepted 
while the despatcher is operating, although any process 
made ready by such a signal cannot run until after the 
subsequent despatcher cycle. 

The next consideration is the possibility of hav
ing despatching overlapping normal processing. Assume 
that the despatcher is invoked at the end of any in
struction cycle in which the process status table was 
modified, either by the instruction itself (which may 
have caused a BLOCK, changed priorities, set or cleared 
ready/blocked flags, etc.) or by the recognition of 
WAKEUP signals during that period. In the simplest 
implementation (no overlap), a new instruction cycle is 
not commenced until the despatcher cycle completes. 
All despatching time therefore becomes processing over
head. Another approach is to permit processing of new 
instructions to continue while the despatcher is still 
operating. For obvious correctness reasons this cannot 
be done following a BLOCK signal or some process man
agement instructions, but it may be possible to delay 
process switching if the only table changes that have 
been made since the last despatching cycle have been 
caused by priority changes or WAKEUP signals. If this 
is done, the effects of priority changes and wakeups 

.will be delayed for a limited number of instructions. 
This will not normally affect correctness. 

There exist a variety of possible methods for 
implementing the despatcher, e.g., sorting networks 
[11), associative memory [12), or microcoded sequential 
algorithms. To estimate the achievable speed of a 
despatcher, consider a simple combinatorial network 
implementing the required function. This is basically 
an N-way p-bit digital comparator, where p is the num
ber of bits of each priority register. A fast practi
cal configuration is a tree structure of two-way 
comparator elements as illustrated .in Figure 3. The 
function of each comparator element is to compare two 
input priority values, and output both the higher of 
the values and the identifier of the process having 
that higher priority. At the lowest level, the 
priority lines must be gated with the corresponding 
ready flags to ensure that only processes with ready 
status are considered (assume priority 0 is equivalent 
to blocked status) . 

Assuming N processes, the delay time for this 
circuit will clearly be flog 2 NlT, where T is the delay 
of a p-bit comparator. This comparator is equivalent 
to a p-bit subtractor, and it can be shown that an 
achievable delay for such a circuit is 2 + 2flogFpl, 
where F is the maximum permissible fan-in. A large 
range of priority values may be desirable for imple
menting, for example, several of Hoare's algorithms 
[7]. Assuming pup to 16, F = 4, and a gate delay of 
20 nsec., this would give T = 120 nsec. For a proces
sor supporting 16 processes, the total despatcher delay 
w<:.1ld be 480 nsec. , i.e. , of the same order as a memory 
cycle time. 

d.3 Process Modules 

J\i1 important system parameter is N, the r.1aximum 
: :" .. ~te·c of processes supported by a CPU. It is 

116 

•essential that N be sufficiently large for any given 
application, but not be excessively large because of 
the high cost in wasted register sets, associative 
memory, etc. It should therefore be a highly flexible 
parameter. One way of achieving this is the usEi of a 
modular hardware structure, where each of :m modules 
contains the registers, status table, associative 
memory, and section of the despatcher for n proc:esses, 
where N = mn. Any particular machine can then be 
built with as many modules as required for the partic
ular application, and machine capability can be expan
ded as required by adding modules. 

With this modular approach, the tree structure 
model of the despatcher (Figure 3) is no longer accep
table. To estimate achievable despatcher speed, 
consider, therefore, an array structure as shown in 
Figure 4. In this array, each A element is a 2-·way p
bi t comparator, and each B element is an n-way p-bit 
comparator. The time delay in an A element will be T, 
and in a B element will be flog2nlT. The total des
patcher delay will therefore be the basic delay in B 
elements plus the time for the result to propagate 
through the A elements, i.e., (flog2nl + m)T. Hence, 
for speed reasons, n should be large relative to m; 
however, for flexibility n should be small. In a 
realistic situation n might be 4 or 8. (It is, in 
fact, possible to combine modules of different n in 
the same system.) ~ 

Assuming a value of n = 4 and all other para
meters the same as for the despatcher discussed pre
viously, the total delay for a modular despatcher 
would be 720 nsec. which is still an acceptable value. 

5. Input/Output 

In conclusion, we shall demonstrate the role of 
the proposed hardware features in the driving of 
conventional input/output devices. 

Consider, firstly, the class of devices whose 
basic unit of data transfer is no more than a few 
bytes. The class includes keyboards, teleprinters, 
paper tape equipment, real-time clocks, process con
trol interfaces, etc. As was shown in Figure 1. these 
devices can be configured so as to communicate direct
ly with the mailbox memory controller by PUT and GET 
bus requests. From a system point of view each device 
can therefore be considered to be executing an inter
nal program containing PUT and/or GET statements. 

For example, an output device such as a tele
printer may be considered to be executing the program: 

while true do 
begin 

end 

GET characater AT teZeprintout; 
print character 

where teZeprintout is a mailbox dedicated to that 
device. A CPU process can then send a character to 
the teleprinter by executing the single instruction 
PUT character AT teZeprintout. Output to the tele
printer could be buffered using the FIFO queue mechan
ism as follows. Assume a queue printqueue of suffi
cient maximum length, then the main process code for 
emitting a character is APPEND character TO print
queue. An additional CPU buffer process e,xecutes the 
following program: 

while true do 
begin 
--yjEi'vJOVE nextchar FROM printqueue; 

PUT nextchar AT teZeprintout 
end 

This process effectively takes the place of a conven
tional device interruot service routine. For effi
cient device operatio~ it should, of course, have a 
relatively high priority. 



Input devices can be handled similarly. For 
example, a keyboard may be considered as executing the 
following program: 

while true do 
begin 

receive character from operator; 
PUT character AT keyboardin 

end 

A CPU process then receives a character from the key
board by executing the instruction GET character AT 
keyboardin. It is assumed that if the device is in 
its blocked internal state it is incapable of accept
ing another character from the operator, e.g., the 
keyboard is locked. Again it is possible to buffer 
the device using the FIFO queue mechanism and a dedi
cated CPU buffering process. 

Special consideration must be given to devices 
such as disks which require high-speed transfers of 
large blocks of data to or from conventional memory. 
With these transfers it would be unrealistic to pass 
a.11 data through mailbox memory, so we assume the 
existence of some form of channel which controls the 
direct transfer of blocks of data between the device 
and conventional memory. However, certain communica
tions between the channel and CPU processes will be 
passed via mailbox memory. These include requests for 
transfers, notification of completion of transfers, 
and notification to the CPU of any error conditions. 
A CPU process initiates a transfer by depositing an 
appropriate message in a dedicated mailbox known to 
the channel. Several processes can thereby share the 
device with conflicts being automatically resolved on 
a priority basis at that mailbox. To wait for the 
completion of its transfer, a process waits for a 
response from the channel at another dedicated mail
box. To handle error conditions, a convenient ap
proach is to have channels and devices report all 
error conditions to special CPU processes dedicated to 
handling such conditions, rather than report them to 
the process requesting the transfer. Each special 
process waits at a mailbox for notification of an 
error and can take any required action (e.g., notify 
the operator). It then responds to the channel that 
it should either repeat or abort the transfer. It is 
possible to share the same error-handling process 
among a number of channels and/or devices. This 
provides a very convenient way for handling similar 
error conditions at different devices; for example, 
all console display messages regarding device states 
can now originate in the one process. 
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- Abstract -

A potential customer exam1n1ng computer graphics 
systems including a random positioning and 
refreshed CRT needs a lot of time and effort to 
form an opinion of the various marketed systems. 
To him not only systems appear very different, but 
also manuals are often cryptic and equivocal. In 
addition, graphic packaJes supplied by manu
factures naturally take adventage of specific 
capabilities of the hardware and try to bypass 
their deficiencies. As a consequence, it is nearly 
impossible to run on a display system application 
programs which are written for another system. 

Questions that drive from this situation are: 
what, of what nature, and where are these 
differences among display systems. 

A prerequisite to investigating the differences 
among display systems is a uniform description. A 
notational system covering both the physical 
structure and the program level was given by BELL 
and NEWELL in form of Processor-Memory-Switch 
(PMS)- and Instruction-Set-Processor (ISP)
notation. These notations have been applied to a 
number of historic (ESL Console, DEC 338, IBM 
2250, Evans and Sutherland LOS 1) and present 
(Adage AGT 400,IDIIOM/II, IMLAC PDS-4, LUNDY 
System 32, The Picture System, Vector General) 
display processors. 

The historic evolution of display systems is 
characterized by MYER and SUTHERLAND using the 
term 11 wheel of reincarnation 11 . A full rotation of 
this wheel is passed when another level of 
computer peripheral is added to the system, 
further removing the display CRT itself from the 
central processor. This evolution will be shown 
at presentation time with idealized systems at 
each stage described in PMS-notation. 

In the fifties display devices were tied 
directly to the central registers of the host 
computer. In the early sixties a data channel was 
included as a link between the display device and 
the host or central computer. This channel soon 
was developed into a display processor which in 
turn became a full-fledged mini-computer with some 
graphic features. In the late sixties and early 
seventies this potentially never-ending cyclical 
process of nesting levels of graphics computer 
power stabilized somewhere around two full 
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rotations of the 11 wheel 11 by the design of 11 stand
alone11 and 11 intelligent 11 satellites. 
On the first plance the ISP-description of a 
display processor does not disclose a taxonomical 
scheme. Because of the great number of graphical 
functions implemented in the various - and 
sometimes sophisticated - processors, the ISP
description certainly becomes rather bulky. But it 
is exactly this volume which necessitates that an 
unequivocal language like ISP be applied to the 
display hardware. 

A look at the functional level of a display 
processor shows that certain characteristics 
shared by a group of instructions :r:,iist so that a 
classification throughout all descriptions is 
possible. There is one set of i~structions 
controlling the display processor, another set 
handling references, and a third set driving 
graphic generators: 

1) instruction group computing (igc) 
2) instruction group addressing (iga) 
3) instruction group graphic (igg) 

An instruction group covers a number of functions 
each including a number of instructions. 
This hierarchy forms an instruction tree which 
clarity is further enhanced by unifying the diverse 
instruction identifications provided by manu
factures. The attached figure shows an instruction 
tree derived from the ten examined display systems. 
The major differences between the examined display 
systems concern discipline, which is the 
specification of a function, and significant 
achievements in computational power, especially 
with respect to transformation and clipping 
hardware. 

On the functional level the systems appear more 
alike than on the discipline level. Essentially, 
no basic changes occured in terms of geometric 
primitives beside circle and reflection generation 
available in a few commercial systems. 
The resemblance on the functional level might be 
the key to achieve standards for display systems. 



Instruction Tree of Display Processors 

igc 

isp.display iga 

igg 

mode-control 

interrupt 

modify-P.display ------1 

references 

transi~ional-storage ---1 

storage 

storage-control 

geometric-primitives~ 

text-primitives ----4 
transformations 

morphologic
transforms 

120 

stop 
run 
no-operation 
set-P.display-modes 
set-P.display-controls 
set-console-modes 
set-console-controls 
initial-stack-mode 

P.display 
console 
timer 
program 
picture 
track/inking 
console-unit 

multiple-load 
addressed-load-single 
change-single 

pop 
jump 
conditional-jump 
jump-to-subpicture 
cond-jump-to-subpicture 
multiple-jump-to-subroutine 
jump-return 

push 
single-instancing 
multiple-instancing 

write-single 
write-multiple 
write-picture 

buffer-modes 
addressing-modes 
algorithmic-modes 

point 
vector-2d 
vector-3d 
graph-vector 
simple-figures 
simple-curves 
curves 

character 
symbol 
raster-array 
transformations 

linear-geometric
transformations 

non-1 inear-geometric
transformations 

intensity-change 
bl ink 
l i nestructures 
colors 
shading 



RECENT RESULTS 

TRAVERSING BINARY TREE STRUCTURES WITH SHIFT REGISTER MEMORIES 

W. E. Kluge 
Gesellschaft fur Mathematik 

und Datenverarbeitung mbH Bonn 
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Germany 

The paper proposes a tree-structured shift register memory in which traversals of binary data tress in pre
or end-order are performed as sequences of two non-cyclic data permutations which move the data tree relative to 
a unique access port that is located in the root node of the memory tree. These two permutations, denoted A and 
B, emulate elementary traversal steps. Permutations A correspond to traversals between nodes of an even tree 
level and the next higher odd level, permutations B correspond to traversals between nodes of an odd tree level 
and the next higher even level. Traveling from a node to its left successor requires one permutation, traveling 
to its right successor requires two identical permutations in succession. Three identical permutations in suc
cession perform a counter-clockwise cyclic traversal within a subtree which comprises a (root) node, its left 
successor node and its right successor node; i.e. subsequences AAA and BBB yield identity. Accordingly, if the 
conventional address assignment of trees applies, then the permutation (traversal) sequence that is effective on 
the memory corresponds to the address of the node that is actually being visited. Starting to the right of the 
most significant '1' bit in the address code and proceeding in the order from left to right, a 'O' corresponds to 
one permutation and a '1' corresponds to two identical permutations; the permutation is A if the bit position is 
even, and B if the bit position is odd. Thus, the state of permutation may be identified by the address code. 
The permutation sequence that traverses the data tree is generated from single control bits, associated with 
every node of the data tree, which distinguish between branch nodes and leaf nodes. Whenever a branch node is 
being visited, then the permutation to be executed next changes with respect to the preceding permutation. When
ever a leaf node is being vfsited, the next permutation remains the same as the previous one. 

ARCHITECTURAL SUPPORT FOR SYSTEM PROTECTION 

Eduardo B. Fernandez, Rita C. Summers, and Charles D. Coleman 
IBM Los Angeles Scientific Center 

Los Angeles, California 90067 

A set of architectural extensions, involving hardware/software interaction, is proposed to constrain the 
execution-time behavior of application and higher authority programs, running in a CPU of the type of IBM System 
370. The extensions consist of the addition of a new state to the previous supervisor and problem states, en
forcement of disciplined transition between states, hardware distinction of four data types, and a set of rules 
that enforce the structure of processes operating in this environment. Application of the extensions to a shared 
data base shows that the protection of the operating system under which it runs can be enhanced significantly, 
with respect to errors or attacks from the users of this data base. 

THE DESIGN OF A USER-PROGRAMMABLE DIGITAL INTERFACE 

James W. Gault 
Electrical Engineering Department 

North Carolina State University 
Raleigh, North Carolina 

Alice c. Parker 
Electrical Engineering Department 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

An interface for digital computers and peripherals is described in this paper. The design process is traced, 
beginning with the definition of the problem environment, and the derivation of primitive interfacing functions. 
The functions are associated with four functional classes; data input/output, data storage, data manipulation, 
and control. Interface capabilities range from control over the synchronization 0f input and output pulse data 
to control over the data word widths acceptable. System limitations include technical, timing, and synchroniza
tion problems. The interface is modular, generalized, and user programmable. The control is contained in two 
levels: a user microprogram, and a read only nanoprogram. 
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SELECTION SCHEMES FOR DYNAMICALLY MICROCODING FORTRAN PROGRAMS 

Philip S. Liu 
Department of Electrical Engineering 

University of Miami 
Coral Gables, Florida 33124 

Frederic J. Mowle 
School of Electrical Engineering 

Purdue University 
West Lafayette, Indiana 47907 

The objective of the present study has been to investigate possible methods to reduce a program's execution 
time by detecting and converting automatically the more frequently executed program parts, mostly inner loops, 
into microcode. The methods proposed were static loading of inner loops, selective loading of inner loops, over
lay of inner loops, and user-aided scheme. Using Fortran programs as the test programs, a simulation program was 
written to measure the gain achieved by each method. A final gain between 1.587 and 4.76 was achieved by the pro
posed methods for memory speed ratios between 3 and 8. It was found that 90% of the final gain of the test pro
grams could be obtained with writable control memory requirements that were less than 40% of the final requirement. 

SYSTEM DESIGN OF A GRAMMAR-PROGRAMMABLE HIGH-LEVEL LANGUAGE MACHINE 

Serge Fournier and Ming T. Liu 
Department of Computer and Information Science 

The Ohio State University 
2036 Neil Avenue 

Columbus, Ohio 43210 

An architectural concept called Grammar-Programming is introduced which allows computers to be constructed 
that can directly execute a variety of high-level languages. Representing an intermediate level between the basic 
hardware/firmware functions of ordinary computers and the software operations of language translators, it is shown 
how grammar-programs can be constructed which specify the syntax and semantics of various programming alnguages. 
The Grammar-Programmable Machine (GPM) then uses these specifications to process directly the users' high-level 
language programs. In the Ph.D. dissertation* upon which this abstract is based, a model is first developed for 
representing the syntactic and semantic characteristics of context-free language generators, and an automaton 
called a Syntax Network (SN) is constructed. Next a simple, statement-directed language is introduced to express 
the states of the syntax network and to define the actual grammar-programming language. A simulator is then imple
mented which is used to test the grammar-programs written for ALGOL and SNOBOL. Finally, the architectural organ
ization for the Grammar-Programmable Machine is described at the register-transfer level. By taking advantElge of 
its intermediate position between software compilation and hardware interpretation of high-level languages, the 
Grammar-Programmable Machine is able to emphasize the best features of both techniques and to achieve a potential 
that neither can reach individually. 

-l< 
Serge Fournier, The Architecture of a Grammar-Programmable High-Level Language Machine, Ph.D. dissertation:, 

Department of Computer and Information Science, The Ohio State University, June 1975. 

SMS 101 - A STRUCTURED MULTIMICROPROCESSOR SYSTEM WITH DEADLOCK-FREE OPERATION SCHEME 

Ch. Kuznia, R. Kober, H. Kopp 
SIEMENS AG 

D 8000 Munchen 70 
Hofmannstr. 51 

Germany 

The presented multimicroprocessor system has been designed to treat certain problem classes such as la:rge 
systems of differential equations or online process control. It consists of a main processor and an arbitrary 
number of modules, each with a microprocessor, a private memory and a communication memory. The most chara·~ter
istic features of the SMS 101 organization are: 

- a phase structured interaction scheme (PSI-Scheme) which simplifies organizational problems 
- a data communication concept, that replaces common memory by simultaneously storing data in distributed 

memories. 

A first realization of the system comp"J;ises eight modules, but the organization allows an extension up to several 
hundreds of modules. Thus with present day technology a computing capacity can be achieved which is 2 or 3 mag
nitudes higher than that of conventional computers. 
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THE DESIGN OF A MULTI-MICRO-COMPUTER SYSTEM 

s. H. Fuller, D. P. Siewiorek and R. J. Swan 
Department of Computer Science 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania 15213 

Continuing advances in semiconductor technology now makes practical the construction of multi-micro-processor 
systems with tens to hundreds of processors. We are currently involved in the design and construction of a multi
micro-processor system to experimentally investigate the problems of building and programming systems with a large 
number of processors. The LSI-11 microcomputer is the basic "computer module" that provides processing power and 
primary memory. The interconnection scheme between the computer modules allows the processors to cooperate in a 
true multiprocessor fashion: they can share and efficiently access all of primary memory. A number of working 
groups are now investigating the central problems facing the design and successful application of reliable multi
micro-processor systems and these problems will also be discussed. 
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DESIGN AND SIMULATION OF THE DISTRIBUTED LOOP COMPUTER NETWORK (DLCN) 

Cecil C. Reames ~nd Ming T. Liu 
Department of Computer and Information Science 

The Ohio State University 
2036 Neil Avenue Mall 
Columbus, Ohio 43210 

Summary 

The primary goals of this paper are two-fold: 
1) to present the design and hardware implementation 
of the interface transmitter for the Distributed Loop 
Computer Network (DLCN), using a novel shift-register 
insertion message transmission mechanism, and 2) to 
discuss simulation results comparing DLCN with Pierce 
and Newhall loops, which verify earlier claims as to 
DLCN's superior performance. 

I. Introduction to DLCN 

The Distributed Loop Computer Network (DLCN) is 
envisioned as an integrated hardware/software/communi
cation system that is to be designed and operated with 
distributed control. The goal for the network is 
to provide efficient, inexpensive, reliable, and 
flexible service to a localized community of semi
autonomous users in an environment of constantly 
changing user demands and requirements. Previous re
search concerning DLCN concentrated attention on the 
communication network, as it was felt that existing 
loop networks made rather inefficient usage of the 
loop communication channel. Accordingly, the authors 
designed a novel message transmission mechanism for 
DLCN which is much more efficient and sophisticated 
than those in current use [12,13]. Implemented in the 
loop interface hardware, the new shift-register inser
tion mechanism has the following important characteris
tics: 1) concurrent and direct transmission of 
variable-length messages onto the loop is possible; 
2) hardware buffering of incoming messages by the 
interface permits nearly immediate access to the loop 
for locally generated messages, thus greatly reducing 
queueing and total transmission times; and 3) automatic 
regulation of loop message traffic is provided, all 
accomplished in a completely distributed loop network. 

II. DLCN Interface Transmitter Design 

A loop network is composed of a high-speed digital 
communication channel (1 to 10 megabits per second), 
arranged as a closed loop to which computers, terminals, 
and other peripheral devices are attached through loop 
interfaces (see Figure 1). Messages from a sender are 
put onto the loop by their interface, then travel 
around the loop from interface to interface until 
removed by the interface for the addressed receiver. 
Thus, the design of the loop interface and the trans
mission mechanism it incorporates are of extreme 
importance in the operation of a distributed loop net
work. 

The loop interface can be logically partitioned 
into message receiving and transmitting sections (see 
Figure 2). The design of the interface receiver is 
fairly simple. It accepts incoming messages from the 
loop, checks their destination address fields, and 
either delivers them to the input buffer of the 
attached component if they are addressed to it or 
passes them on to the interface transmitter for relay
ing to the next interface. The function of the 
transmitter is to place messages onto the loop, both 
incoming messages relayed from the receiver and newly 
generated messages from the local attached component. 
The mechanism incorporated in the interface transmitter 
must be capable of merging these two message streams 

124 

onto the loop without interference and without the use 
of centralized control. 

Figure 1. A Distributed Loop Computer Net\"Ork 
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Newhall and Pierce Transmission Mechanisms 

Two transmission mechanisms are in common use to
day for loop systems. In the Newhall loop [2,3, 14], 
a round-robin control passing token circulates around 
the loop and allows only one interface at a time the 
opportunity of transmitting. The selected interface 
may place one or more arbitrary length messages onto 
the loop, or may simply pass thEi control tok<Em on to 
the next interface downstream. In the Pierc·e loop 
[10,11), communication space on the loop is divide:d 
into one or more fixed-size slots. Messages are also 
divided into frames or packets, so that each packet 
will occupy one slot on the loop. The transmission 
mechanism is as simple as waiting for the beginning 
of an empty slot and filling it with a packet. 

Both of these transmission mechanisms are simple 
to implement but suffer from certain inherent short
comings. The control passing mechanism limits message 
transmission to just one interface at a time and thus 
results in very inefficient loop channel utilization 
and long message delays. Dividing messages into 
packets introduces other problems. Not only is there 
delay in waiting for an empty packet to arrive, but 
considerable communication space is wasted when divid
ing variable-length messages into fixed-size packets. 
In addition, all the facilities required for conv1~rt
ing messages into packets and back again - dlisass1~mbly, 
sequencing, buffering, and reassembly - must: be 
provided by the loop interface or attached compon10\nt. 
Thus, neither mechanism makes very efficient usage of 
the loop. 



DLCN Transmission Mechanism 

With the elimination of these faults in mind, a 
third transmission mechanism was developed by the 
authors for use in DLCN [8,12,13]; a somewhat related 
concept, although not nearly as sophisticated, was 
independently proposed by Hafner [6]. Called the 
shift-register insertion technique for the transmission 
of variable-length messages, it combines the best 
features of the two aforementioned mechanisms. This 
new mechanism makes possible the concurrent generation 
and direct transmission onto the loop of arbitrary 
length messages in a completely distributed network. 
A model of the mechanism and a detailed explanation of 
how it operates have been published before [12], so 
the explanation given here will be somewhat sketchy. 

The loop transmitter must accept the two streams 
of incoming relayed and locally generated messages 
and must transmit both streams onto the loop without 
mutual interference. Conflicts, which might other
wise occur because of the simultaneous arrival of 
messages from both streams, are resolved by delaying 
the incoming relayed messages in a variable-length 
shift register located in the loop interface. Thus, 
as long as delay buffer space is available in the 
interface, the transmission of locally generated 
messages can have priority over the relaying of in
coming messages, as the latter can be delayed if 
necessary. Of course, the amount of delay (worst 
case upper limit) and thus also the length of locally 
generated messages cannot exceed the size of the delay 
buffer. 

The interface transmitter (see implementation in 
Figure 3) operates in one of two modes: relay and 
transmit. In relay mode (M=O), incoming messages are 
passed through the delay buffer (DB) and back onto 
the loop. The amount of delayed data in the buffer 
(indicated by counter DC) does not change while in
coming messages arrive but decreases when no traffic 
is incoming. In transmit mode (M=l), locally generated 
messages (from DB) are put onto the loop. In this 
mode the amount of data in the delay buffer increases 
when incoming messages arrive and remains constant 
otherwise. The switch from relay to transmit mode 
(requested by RDY being set) can occur when both the 
following conditions are met: 1) the relaying of an 
incoming message is not in progress, and 2) the 
available space in the delay buffer is at least as 
large as the message to be transmitted. 

Properties of DLCN Mechanism 

The superior performance of DLCN's transmission 
mechanism can be largely explained by the existence 
of the interface delay buffer and by the ease with 
which the two above conditions for message transmission 
can be met. DLCN does not have to wait for a control 
token or an empty packet to arrive before sending a 
message. Assuming buff er space at least as large as 
the message to be transmitted is available, DLCN can 
insert a locally generated message onto the loop at 
the end of relaying any incoming message. Subsequent 
incoming messages (if any) can be temporarily delayed 
in the interface buffer until transmission of the 
local message is completed. 

Thus the DLCN transmission mechanism minimizes 
the time a message must remain queued waiting to get 
onto the loop, at the possible expense of transmission 
time once on the loop. As the simulation results to 
be presented in the next section will conclusively 
verify, total message transmission time and queueing 
time are both substantially reduced by this method, 
together with average and maximum queue lengths. 
These latter facts mean that attached components can 
get rid of generated messages quickly and do not 
need large output buffers for queueing many messages. 
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Having partially filled delay buffers at each 
interface which can absorb small fluctuations tends 
to have a stabilizing effect on performance. Further
more, the finite si~e of each delay buffer automati..
cally regulates the amount of traffic which can be put 
onto the loop by any interface, as delay buff er space 
must be available before transmission can occur. 
However, whenever delay buffer space is available, 
nearly immediate access to the loop is guaranteed, 
regardless of other message traffic already on the 
loop. All these factors taken together mean that 
message delays are smaller and that more efficient 
utilization of the loop is achieved. 

III. Simulation Results 

Mathematical analysis of DLCN as an open queueing 
system with cyclic feedback will be attempted in 
future research (see Figure 41 but the difficulty of 
this task suggested that a simulation study would be 
more appropriate for preliminary verification of 
performance claims. Accordingly, simulation models 
were written in the GPSS/360 language for all three 
networks - DLCN, Pierce, and Newhall - so that 
relative performance could be more easily judged. The 
primary quantities of interest in this study were 
total message time and queueing time, although 
many other quantities were measured dur.ing the 
simulation. It is probably best to list all times 
which will be discussed and give their precise 
definitions: 

1) 

2) 

3) 

4) 

queueing time - time elapsed f rofu message 
generation until placement on the loop by the 
transmitter; 
transmission time - time elapsed from message 
placement on the loop until the last charac
ter is received and removed from the loop; 
acknowledgement time (DLCN only) - time 
elapsed from generation of the acknowledgement 
message at the receiver until the last 
character is received at the transmitter; 
total message transmission time - sum of 1) 
and 2) only for Newhall and Pierce loops; 
sum of 1), 2), and 3) for DLCN. 

Characteristics of All Simulation Models 

The general characteristics of all three networks 
modeled were the same. Each consisted of 6 nodes, 
with each message source being an identical inde
pendent Poisson process. Messages produced at each 
node were uniformly addressed among the other five 
nodes, so that message traffic was entirely symmetric 
and random. Message data lengths were exponentially 
distributed with a mean of 50 characters; 9 additional 
characters of header information were added to each 
message or packet produced. All timing was in 
arbitrary character ... time units, so that no particular 
line rate was assumed. Propagation delay on the 
communication channel itself was ignored, while 
each interface contributed 2 units of delay: 1 unit 
in the receiver for address checking and 1 unit in 
the transmitter. While these assumptions are some
what unrealistic, most are fairly standard, and it is 
hoped that their simplicity will aid in later mathe
matical analysis of DLCN. 

Special Features of the DLCN Model 

The simulation models for the Pierce and Newhall 
loops were kept simple and unsophisticated. However, 
several special features were modeled for DLCN in 
order to correspond more closely to the situation 
expected in a real network. For example, a 6-
character acknowledgement message which can be 
embedded in each data message and returned to the 
transmitter to indicate acceptance, error, or receiver 
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TABLE I 

DLCN SIMULATION TIMES 

IA line queueing time transmit time acknowledgement total time delay time * 

~ usage mean dev mean dev mean dev mean dev mean dev 
3600 .056 2.1 14.3 58.6 47,8 13 .7 12.8 n.5 51.l 10.9 29.8 
1500 .138 6.4 25.S 61.3 50.1 19.1 26.5 86.7 61.8 12.5 32.3 

900 .235 12.2 38,3 67.8 64.2 24.0 35 .6 103.9 83,3 14,7 37,3 
600 .365 19,4 45,9 79,6 78.3 37.1 59.2 136.1 113.8 19.8 42.6 
480 ,474 30.1 65.2 102.1 124.6 42.2 57,5 175.2 163.4 25.2 55.9 
420 .543 39,9 84.2 115.1 145.3 55.1 6$,7 210.2 193.4 30,4 63.0 
342 .677 64.2 145,9 150.8 206.4 81.8 97.4 297.7 279.0 42.9 86.6 
300 .759 101.6 222.1 210.3 334.0 91.J~ 93 .1 401~.o 450.0 56.6 130.9 
270 .844 181.5 504.0 332.7 659.0 132,4 122.4 648.4 903.0 89.6 242.8 
240 .937 303 .1 606.0 468.9 805.0 176.8 139.9 900.6 1061. 131.2 353.0 

*delay time is for each interface visited 

TABLE II 

PIERCE AND NEWHALL SIMULATION TIMES 
Pierce Loop 

* 
Newhall Loop 

IA line queueing time total time IA line queueing time total time 

~ usage mean dev mean dev ~ usage mean dev mean dev 
2700 .09s 10.9 38,3 115.2 79,3 2100 .153 15.J 32,9 77,8 55,9 
1800 .147 18.7 53,3 12h.4 94,7 1500 .183 21.1 45.1 84,4 66.4 
1200 .200 27.9 71.5 133. 7 109.6 900 .242 38.6 65.0 101.0 78.3 
900 .293 47,1 103,3 152.1 133,4 600 .328 75.5 111.3 137,7 120.J 
720 .J67 69.1 111.J 174.1 142,9 480 .378 135.2 204.9 198.5 210.1 
600 .430 74.9 123.3 180.9 152.2 420 .424 283.6 343 .o 346.5 3h3.0 
540 .479 119.1 194.3 215.3 212.9 360 .487 611.6 558.0 675.4 559.0 
480 .513 148.4 259.0. 251.8 263.0 330 • 518 3210. 2230. 3269 . 2231. 
420 • 633 215.6 271.0 326.1 299.0 JOO .511 6564. 4384 • 6632. 4384. 
360 .717 257.7 317.0 365,3 342.0 
330 .762 360.9 455.0 463 .7 457,0 
300 .801 587.2 661.0 690.7 686.o 

* 270 .935 1412. 1329. 1511. 1357. queueing time per packet, not per message 
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busy has been proposed for DLCN [8] and was included 
in the simulation model. A receiver error rate of 1 
character in 10,000 was then modeled, with messages 
received in error being retransmitted until accepted. 
A receiver busy period of 5 time units after accepting 
each message was also modeled (to correspond roughly 
to component processiµg time), with messages received 
during that busy interval being rejected and retrans
mitted. Finally, messages were randomly assigned 
priorities of 0 (lowest) to 7 (highest), with acknow
ledgement messages always having priority 7; these 
priorities were used in determining if the relayed 
incoming or the locally generated message should be 
transmitted first, rather than always giving priority 
to the local message. 

Details of Each Simulation Model 

In the DLCN simulation model, the size of each 
interface's delay buffer was changed from 256 to 512 
characters. This change was necessary because the 
truncated exponential distribution used allowed message 
lengths of up to 500 characters, and the delay buffer 
must be at least as large as the longest message to 
be transmitted. The amount of data in each delay 
buffer was tabulated every 20 time units in order to 
obtain the distribution of buffer contents and of de
lay time. 

For the Pierce model, a packet size of 72 charac
ters (including the 9 characters of header information) 
was initially tried. Further simulation, however, 
showed that the optimal packet size (that which mini
mized total message transmission time) was only 36 
characters. Since the number of packets in a message 
is geometrically distributed [l], the optimal packet 
size can also be calculated by minimizing the 
product of mean number of packets per message and 
packet size; so doing gives an optimal packet size of 
36.28 characters, which agrees nicely with the simu
lation result. It was decided to place just one 
complete packet on the loop, as has been done in prior 
simulation studies [1,7], for this minimizes packet 
transmission time. Since the 6 nodes together intro
duce only 12 units of delay, a delay box of 24 time 
units was placed between the last and first interfaces 
so as to form an entire packet interv.al of 36 time 
units. 

Two possible schemes for the control passing 
mechanism were investigated in the simulation modeling 
of the Newhall loop. In the first method, all 
messages in the queue of the selected interface were 
transmitted one by one, the control token being passed 
only when that queue was empty. In the second method, 
the control token was passed after only one message 
from the queue was transmitted, whether other messages 
remained in the queue or not. Method one led to 
longer queue lengths, but in all cases gave shorter 
total message transmission times, and thus it was 
adopted for the Newhall simulation model. 

Comparison and Evaluation of Simulation Results 

Tables I and II present the simulation quantities 
of primary interest. The message interarrival time 
for each source (node) is given, together with the 
average utilization level of the interface transmitter 
(which is effectively the same as the communication 
channel or line load level). All other entries are 
mean times as labeled and their standard deviations. 

Figure 5 shows a graph of mean total message 
transmission time (both including and excluding 
acknowledgement time for DLCN) versus mean source 
arrival rate for all three networks. Figure 6 shows 
the percentile distribution of total transmission time 
for all three networks {emphasizing DLCN's perfor
mance) and gives an indication of worst-case behavior. 
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Notice that at low levels of loop channel utilization, 
the performance of the Newhall loop closely approaches 
that of DLCN. As the traffic level increases, 
however, the Newhall loop soon falls far behind. A 
little thought as to the operation of the control 
passing mechanism in the Newhall loop explains why. 
If all message queues are empty (or nearly so), the 
control token will circulate around the loop every 
12 time units (thus the minimum line utilization is 
.083, not O), and the mean queueing time will be 5-1/2 
time units. Compare this result with DLCN, which 
does not have to wait at all unless an incoming 
message is being relayed (and then only to the end of 
that particular message). For DLCN, the situation 
does not change as the traffic load increases, but 
for the Newhall loop, the control token is delayed 
more and more and takes longer and longer to make 
a complete circuit. Yet even if one transmitter is 
active at all times, the mean line utilization can 
only be about 50% (since on the average, messages 
only travel halfway around the loop before being 
received). 

At low levels of line utilization, the Pierce loop 
does not fare as well as either DLCN or the Newhall 
loop. The reason for this fact is that a message 
always has a mean wait of half the packet interval 
(17-1/2 time units) and must then be transmitted in 
several packets (the mean measured was 2.36 packets 
per message, which agrees closely with analytic 
calculations [1,7]). At higher traffic levels, 
however, the performance of the Pierce loop is better 
than that of the Newhall loop, for the packet 
mechanism can allow two or more transmitters to be 
active concurrently (even with a single packet), as 
long as each transmitter finds the packet empty when 
it arrives. DLCN, of course, is better than either 
network, for it does not have to divide a message 
into packets and does not have to wait for a control 
token or an empty packet to arrive. It is interesting 
to note that even if the time required for an acknow
ledgement message to return to the transmitter is 
include.cl in DLCN's total time, it still performs 
better than the Pierce loop at all traffic loads and 
better than the Newhall loop except at very low 
utilization levels. 

For the Pierce and Newhall loops, the average 
transmission time on the loop is the same for any 
traffic load (measured by simulation as 46.7 time 
units per packet for the Pierce loop, 63.0 time units 
per message for the Newhall loop). For DLCN, however, 
since messages may be delayed during transmission, 
the mean transmission time does increase significantly 
with higher traffic loads (as shown in Table 1). So 
why does DLCN give better overall performance than 
either of these other networks? The answer lies in 
an examination of the queueing time spent by a 
message waiting to be transmitted onto the loop. 

Figure 7 is a graph of the mean queueing times 
for each of the three networks. In the case of the 
Pierce loop, the times are for packets, not messages, 
and reflect the fact that when a message is being 
divided into packets, one packet is formed and added 
to the transmission queue at the start of each packet 
interval, until the proper number of packets have 
been generated. Notice the extremely small queueing 
times for DLCN as compared with the other two networks. 
Maximum and average queue lengths are similarly 
smaller for DLCN, since messages can get onto the 
loop so quickly. This very small queueing delay for 
DLCN more than offsets the increased transmission time 
and leads to its superior overall performance. 

The gain in performance for DLCN is primarily due 
to the hardware delay buffer in each interface and 
to the fact that it only delays incoming messages by 
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the minimum amount necessary. Figure 8 shows graphs 
of the average contents of a delay buffer and the 
average message delay experienced, both plotted versus 
line utilization. Surprisingly, both graphs are 
rather flat and increase only slowly until very high 
load levels are reached. In fact, the simulation 
showed that a message almost never had to wait for 
available delay buff er space until a line utilization 
of .75 was reached. Even at a line load of .85, 
only 5% of the messages had to wait for delay buffer 
space to become available. Thus the delay buff er 
accomplishes very nicely the task for which it was 
designed. 

Much additional simulation work has been done in 
studying the effects of variation of parameters, such 
as buff er size, mean message length, message length 
distribution, message priority, message arrival 
distribution, etc. Because of limited space, the 
results of all these studies cannot be presented here. 
However, the DLCN simulation model has proved to be 
fairly insensitive to most parameter variations, and 
no unexpected changes in behavior have been observed. 

IV. Conclusions 

An implicit goal in the design of DLCN and its 
new transmission mechanism was the desire to make 
more efficient utilization of the loop communication 
channel. At the same time, it was felt that control 
of the network should be completely decentralized 
and distributed. The hardware implementation given 
for the interface transmitter and the simulation 
results presented for its performance have shown 
that both of these goals have been successfully 
accomplished. 

These two goals of efficiency and distributed 
control have been extended and adopted as the design 
philosophy of the Distributed Loop Computer Network. 
DLCN is intended to be an integrated hardware/soft
ware/communication system which uses distributed 
control to provide efficient, inexpensive, reliable 
and flexible service to its users. As the results 
presented in this paper and elsewhere indicate, much 
of the work needed in the hardware and communication 
areas has now been performed. Attention is therefore 
turning to the software and the design of the Distri
buted Loop Operating System (DLOS). A preliminary 
investigation of the design requirements for the low
level network software has already been carried out 
[8]; the areas of distributed process control and 
data base management are now being studied. Further 
research in these areas, ultimately leading to 
complete specification of the structure of DLOS and 
to implementation of a prototype version of DLCN, 
will be the subject of future papers. 
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DISTRIBUTION OF FUNCTIONS AND CONTROL IN RPCNET 

Paolo Franchi 
IBM Scientific Center, Pisa, Italy 

Summary 

This paper describes the general characteristics 
and architecture of RPCNET, a distributed computer net
work for use in the Education and Research area which 
is being developed in Italy. This project is a joint 
undertaking of the National Research Council, IBM 
Scientific Center and a number of Universities and 
Research Institutes. 

In order to match the variety of needs and 
contraints inherent in the environment in which the 
network must be developed and made operational, a 
functional rather than a system approach has been 
followed in the designing of the Network. The present 
architecture includes some modifications to the 
original design which were necessary in order to 
establish a more definite boundary between applications, 
interface and communication subnetwork. 

The mapping of these functions into physical 
components is also presented as well as some types of 
applications. 

1. - Introduction 

1be REEL Project was formally established in June 
1974 as a cooperative effort among the IBM Scientific 
Center of Pisa, the Computing Center of the University 
of Padova and CNUCE, the Computing Center of the 
National Research Council. Other partners, such as the 
University of Torino, CSATA (the Center for Advanced 
Technology Applications of Bari) and CNEN, the 
National Council for Nuclear Energy (Bologna), joined 
the Project later. 

The objective of this cooperation is to study a 
networking solution for the Italian scientific 
community. More specifically, purpose of the Project is 
to provide Computing Centers in the Education and 
Research area with a sensible way of sharing their 
computational resources, such as application programs, 
data sets, compilers and programming subsystems. 

This objective should be attained without causing 
unnecessary intereference with the normal activity of 
the Centers and at the same time minimizing additional 
hardware and softwa~ requirements. For this reasons 
the basic features of RPCNET (!EEL !reject ~omputer 
NETwork) are: distributed control topology, dynami
cally variable configuration and nonhomogeneous nodes. 

In order to satisfy this requirements the initial 
design of the Network [l] was based on a classical 
structure where each node was composed of one Front 
End Processor (FEP) and one or more Hosts. The 
communication functions could also be performed by a 
Host subsystem ("logical FEP") at the partners' sites 
where a physical FEP was not available (2]. On the 
other hand, the physical FEP, rather than the Host, 
appeared to be a suitable residence for some types of 
applications (for instances, terminal supports). 
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This approach allows a maximum flexib il:i. ty in the 
logical and physical configuration of the Network, but 
tends to vitiate the original concept of FEP and Host. 
Moreover, using this approach, it is much moire difficult 
to define and design a neat boundary between the 
communication subsystem and the application interface. 

Therefore, when these problems became eYident 
during the development of the Project, a critical 
revision of some points became desirable. After this 
analysis, the architecture of RPCNET was partially 
revised, concentrating on the distribution o:f functions 
and control. 

This revised design is the subject of this paper. 
For the sake of convenience in this presentation we 
have borrowed some concepts and terms from the IBM 
Systems Network Architecture [3]. 

2. - Basic Elements 

The general structure of RPCNET is defined in terms 
of two types of physical entities: 

"Network Node", 
"Network Connection", 

and one type of logical entity: 
"Network Table". 

A Network Node (or simply "Node") is any dat.a process
ing system, including one or more physical p:t:'ocessors, 
which is able to perform a minimum subset of the 
functions defined as "Node Functions", and which i.s 
described by a state vector in the Network T<able. 

Network Connection is any duplex communication 
channel which connetcs two Nodes and whose activity 
state is reported to the Network Table. 

The Network Table is a representation of the 
static and dynamic topology of the Network in terms of 
Network Connections and Nodes. A subset of information 
contained in the Network Table is stored in •each Node 
and is continuosly updated by the system. 

The Node Functions are composed af thre1e 
functional sets (Fig. 1): 

"Communication Functions" 
"Interface Functions" 
"Applications" 

The Communication Functions is the minimum subset of 
these functions which is necessary to qualify a da.ta 
processing system as a Node of RPCNET. The Communication 
Functions of any one Node in cooperation with the 
Communication Functions of the other Nodes will result 
in a single functional unit which is called the "Common 
Network" ('Fig. 1). 

Applications can access the Common Network only 
by means of a set of functions called Interface 
Functions. The Interface Functions of any one Node! 
cooperate with the Interface Functions of the other 
Nodes and with the Common Network. The resulting 
functional unit is called the "Communication Syste!m11 

(Fig. 1). 
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Fig. 3. Multiprocessor Nodes: (a) "Host and FEP Node"; (b) "Multiple Host Node"; (c) "Value Added FEP Node". 
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Applications of the Network are users of the 
Communication System. The Applications functional set 
can be empty without altering the Communication System. 
Similarly, no Interface Function is necessary to make 
the Common Network operational. 

The Common Network is a general purpose packet 
switching system for moving unrelated data units called 
PIUs (!'._ath ..!_nformation ~it) from one location to 
another one. 

3. - Communication System Control 

As far as the activity of the Communication System 
is concerned, the control functions in each Node are 
performed by two network addressable components: 

11!!_etwork ~ervices ~anager" ( NSM), 
11£omrnon !'!,etwork ~anager (CNM). 

In each Node there is one and only one CNM and one, 
several or, in certain cases, no NSMs. 

CNMs share the control of the Common Network in a 
equihierarchical way. That is, the Common Network works 
as a symmetrically distributed control machine whose 
control elements are the Common Network Managers. 

NSM supervises the network activities of the 
Applications, namely, providing them with a "Network 
Environment''. The capability to contact other 
Applications is a specific service offered by this 
environment. NSMs share the control of the "Interface 
Functions Layer" of the Communication System (Fig. 1). 

The way in which CNMs define the logical 
configuration of RPCNET is largely independent of both 
the physical layout of the processors to be included 
in the Network and of their interconnections. 

In other words, the creation of CNMs should be 
considered as a sysgen option of the Communication 
System. In Fig. 2 the two cases of a single processor 
Node are shown. Figure 3 represents some examples of 
multiple processor Node. In this latter case, the 
connection between processors belonging to the same 
Node is considered as an "Internal Connection" and is 
not included in the architecture of RPCNET. Conversely, 
all the communication channels which link processors 
supporting CNMs are considered as Network Connections. 

Each Application is supervised by one and only 
one NSM, which must be the NSM residing on the same 
physical processor which supports the Application. 

4. - Information Exchange 

In addition to the NSM and CNM a third type of 
network addressable unit exists, called the "Logical 
Channel Termination" (LCT). The "Logical Channel" is 
the basic facility by which two Applications can trade 
information across the Communication System. Two LCTs 
exist for each Logical Channel. 

The port through which an Application can access 
the network facilities (network services and logical 
channels) is called "~ogical Qni t 11 (LU). Several LUs 
can be requested by and dedicated to a single 
Application. Each LU is controlled by one Application 
and by one NSM. LUs belong to the Interface Functions 
Layer. 

Two LUs can communicate with each other either• 
by means of the corresponding NSMs or through a Logical 
·channel, that is a pair of LCTs. This latter type of 
activity is called a "Session". A Session involves a 
pair of LUs and a pair of LCTs for a certain period of 
time. Multiple Sessions between LUs are not allowed. 
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In Fig. 4 the possible exchange of information 
between network addressable uni ts are shown. The unit 
of information which flows from a network addressable 
unit to another one through the Common Network is 
called ~asic ..!_nformation Qnit (BIU). BIUs are sub
divided when necessary, and mapped into PI Us before 
entering the Common Network. The maximum length of a 
PIU is a constant of the Common Network. 

The size of the BIUs exchanged between two NSMs or 
between two CNMs is predetermined so that these BIUs do 
not necessitate segmentation. The upper bound on the 
size of BIUs exchanged either in-node or exch.anged 
between remote LCTs is the same. 

A network addressability exception (monosegment 
BIU) is generated by the NSM or CNM of the destination 
Node or by a CNM of an intermediate Node when the 
destination LCT, NSM or CNM is not reachable I( Fig. 4). 

5. - Transmission Header 

The .:!:_ransmission !!_eader (TH) is that part of a 
PIU which provides addressability, identification and 
sequential order of the BIU or BIU segment carried by 
the PIU as its text part. The network addressE!d of 
CNM, NSM and LCT is shown in Fig. 5. These addresses 
are carried as E_es tination ~ddressed £.ields ( DAFs) and 
Qrigin ~ddress !_ield (OAFs) by the PIUs. 

Two main types of PIUs are defined, each type 
being identified by a !_ormat IDentifier (FID): 

"In-session" (FID:::l), carrying a segment of a 
multisegment BIU; 
"Out-of-session" (FID=2), carrying an entire o:r' 
non-segmented BIU. 

In both types a E_ata £ount £.ield (DCF) contains the 
binary count of the bytes in the !3IU or BIU se1gment 
carried by the PIU. 

In a FID=l type PIU a ~equence !'!,umber £.ie,ld (SNF) 
contains the sequence number of the BIU within the 
Session, and a ~e.§_ment !!umber (SGN) contains the order 
number of the segment within the BIU. 

In a FID=2 type PIU the corresponding fields 
contain a !equest IDentifier (RID) which identifies any 
Request and an ~ct ion £ode (AC) which indicates to the 
receiving CNM or NSM the meaning and use of the 
associated BIU. 

6. - Access to the Communication System 

The application can access the Communication 
System by using a defined set of functions and services 
which are provided by the Interface Functions Layer. 
These functions and services can be invoked following 
the specifications of a Macro Language (RNAM) define1d 
for RPCNET. 

In the first step (OPENLU) an Application asks the 
Communication System for one or more LUs. Cont.act wi.th 
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Fig. 4. Information exchange between network addressable units. 

the local NSM is then established and the Application 
becomes addressable, through its LUs and NSM, from the 
Communication System. 

At this point the Application can send a message 
to (MESSAGE) and receive a message from other 
Applications, can make enquiries (ENQUIRE) about the 
state of availability of other Applications, and can 
establish a Session (BIND) between one of its LUs and a 
remote LU. This Session can be established only if the 
remote Application has issued the INVITE macro. 

All these services are provided by the local NSM, 
which has permanent contact with the remote NSMs. 

Once in Session, two Applications can exchange 
information through LCTs, without the intervention 
of their NSMs. An Application can receive (RECEIVE) and 
send (SEND) BIUs, following preestablished rules of 
data flow or breaking (BREAK) these rules. 

In-session BIUs are composed of two parts: the 
Request/Response Unit (RU) which is transparent to the 
Communication System, and the !equest/Response !:!,eader 
(RH), which is built by the Communication System on 
the basis of a parameter list provided by the Applica
tion. On the receiving side, the RH is checked by the 
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Communication System and passed to the Application as 
an end status condition of RECEIVE macro. 

At the end of a Session, NSM is again invoked to 
close the Session (UNBIND) and release the LU (CLOSELU). 

A specific set of logical rules for exchanging 
data in the framework of a Session, implemented on an 
RNAM language program, is called a "User Protocol". User 
Protocols are not included in the architecture of 
RPCNET. Each Application develops its own User Protocol 
in order to communicate with other Applications. 

7. - Node Structure and Data Flow 

Figure 6 shows the internal structure of a Node 
which corresponds to the case of the one processor Node 
illustrated in Fig. 2a. 

The modification necessary to account for other 
cases described in Fig. 2 and Fig. 3 are obvious. In 
Fig. 6 the dashed arrow between NSM and CNM represents 
an in-core communication. This connection does not exist 
when the upper and lower part of the Node communicate 
through an Internal Connection. In this case the 
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communication task is taken over by the Upper and Lower 
components of the Packet Switcher. 

The ,!:!etwork ~onnection !:!_andler controls and hand
.tes Network Connections such as BSC or SDLC Data Links 
and Channel Attachments. Each Network Connection is 
,'epresented by a .!:!etwork ~onnection ~lement (NCE) to 
which outbound PIUs are 'enqueued. 

The Network Connection Handler keeps idle Data 
Links in an active state by sending special empty 
frames called Hello message. 

Each change in the Network Connection state is 
reported to CNM which is :responsible for the 
reconfiguration of the Common Network and the updating 
of routing tables. The reconfiguration mechanism 
[1,4] is based on the flooding technique, which 
allows broadcasting of vital information in the most 
reliable way. 

The Common Network Operator is conceived of as a 
non-automatic extension of the CNM. In the testing 
stage of the Network, the role of the Common Network 
Operator should be gradually reduced and its functions 
partially taken over by the CNM. 

In the meantime an Qperator £ommand ~rocessor 
(OCP) allows the operator to issue commands such as: 
start and stop of Network Connections, display and 
modify Network Tables, message sending to other 
operators, displaying Packet Switcher queues and so on. 

The ~acket ..§_witcher (!!ewer and ~per component) 
routes outbound PIUs to NCEs and inbound PIUs to the 
CNM, NSM or Session Handler. 

The Session Handler takes care of the segmentation 
of out-bound, In-session BIUs and the reassembling of 
inbound, FID=l PIUs. It also performs some functions of 
In-session data flow control. Each session is 
represented by a Logical Channel Element (LCT); LCTs 
have a one-to-one relationship to the local LUs as well 
as remote LCTs and LUs. 

The Network Access Controller not only manages the 
contact point of the Applications with the Communication 
System, but also allocates and deallocates LUs, 
translates Communication Vectors (CV) into RH and 
viceversa. This component performs also the cross flow 
control of BIUs to/from Session Handler, to/from 
Application and to/from NSM. 

The Network Services Manager supports the Out-of
session activities of the LUs and provides them with a 
Network Environment. The functions of this environment 
are the already mentioned MESSAGE, ENQUIRE, BIND, 
INVITE and UNBIND functions. 

The NSM receives from the CNM all the information 
concerning changes in Common Network states which may 
affect the normal operation of In-session activities. 
This information is namely reachability of remote Nodes 
and availability of their NSMs. 

The Network Services Operator can issue commands 
such as: start and stop Applications, enquire about 
number and level of activity of LUs and LCTs, etc. Also 
the functions of the Network Services operator will be 
gradually reduced and taken over by the NSM. 

8. - Implementation and Applications 

The systems which have been considered in the REEL 
Project for the implementation of Nodes are: VM370, 
OS/VS systems and System/7, 

Three types of Network Connections have been 
considered: the System/7-370 Channel Attachment (RPQ 
D08112), which is also used for Internal Connections; 
BSC Data Links between System/7 (equipped with TPMM, 
RPQ 008011) and OS/VS, VM370 systems equipped with the 
Transmission Control Unit (TCU) of the 370x series in 
emulation mode. Between two Systems/7s BSC and SDLC 
Data Links have been considered. 

Besides the implementation of the Communication 
System, the project plan includes four Applications, 
which should allow testing of the entire system. These 
Applications are: the emulation of the 2702 TCU and the 
support of 2741 Terminal (System/7); the access to the 
OS/VS and VM370 Spool System (System 370). 

Due to the fact that User Protocols are not 
included in the architecture of RPCNET, an Application 
can communicate only with another Application which 
uses the same User Protocol. In this project, two 
different User Protocols have been defined: the 
"Interactive Session Protocol" and the "Spool-to-spool 
Session Protocol". 

An alternative approach was considered where a 
very general User Protocol would match the variety of 
possible network Applications. However this has been 
judged too expensive. 
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Abstract 

With rapidly developing microprocessor 
technology, we can anticipate an entire micro
computer being contained on a single, low-cost 
L~I chip. It will be technically and economi
cally feasible to interconnect thousands or 
millions of these microcomputers to form a 
very large and powerful machine -- a Mega
Micro-Compute~ (MMC) • This paper defines a 
system of interlocking buses allowing dense 
message flow within an MMC. Each microcomputer 
shares two buses; each bus is shared by six
teen computers. There is a simple algorithm 
for optimal routing of messages. Data activity 
on each bus is analytically determined as a 
function of network size and the spatial dis
tribution of messages between nodes. MMCs are 
about equally efficient whether connected by 
buses or by Pierce rings. For equal line 
costs, an MMC can allow 200 times denser 
message flow than a million computer network 
structurea like Illiac IV. 

1. Introduction 

Single LSI chips already can contain 
either 16K bits of memory or sophisticated 
microprocessors. Within a few years, both the 
memory and logic of a complete microcomputer 
will be combined on a single LSI chip. Micro
computers of at least the power of a PD?-8 
snoula cost only a few dollars. 

There already is much interest in high 
speed computers built as networks of micro-

1 2 3 computers. ' ' Commercial production of an 
array of 512 Intel 8080 microprocessors has 

recently been announced. 4 Fast network com
puters are needed for weather modeling and 
satellite aata reduction. 

'l'his paper presents a communication 
structure for efficiently linking thousands or 
millions of microcomputers to form a Mega
Micro-Computer (MMC). 'l'he most difficult prob
lem in MMC design is allowing for frequent 
messages among processors. By presuming 
messages are generated at the same rate 
throughout an MMC, this paper analyses message 
delays and local differences in communication 
line activity inherent to network topology. 

2. Characteristics of MMC Components 

This pape.r assumes that each microcompu
ter in an MMC has a 16-bit CPU, 16K to 64K 
worcis of 16-bit RAM, and two bus port con
trollers, all on a single chip. Each port is 
capable of both input and output access to its 
shared, external communications line. Each 
microcomputer node can process its CPU task 
and two port messages concurrently. Most 
messages receivea at a node are just relayed 
from one bus to another on the way to a 
different node .. 

'l'he shared communication lines linking 
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microcomputers will be called buses in this 
paper. Each message is presumed to contain 
destination information, to have exclusive use 
of each bus on its route for activation time 
Ta, and to be relayed to another bus only 
after delay time Td. The bus times Tel and Td 
are constant throughout the network. All 1:::on
nections within an MMC are local enough that 
propagation delays are almost insignificant. 
This paper assumes that activation time Ta is 
short enough that bus access delays can be 
ignored. A bus is said to be overcrowded if 
messages try to access it more rapidly than 
once every Ta. One measure of network activity 
tells the minimum global intermessage~ intc~rval 
that avoids local overcrowding. 

This paper does not specify exac:t mei:;
sage protocols nor distributed line control 

methods, such as discussed by Nisnevich. 5 

Digital communications techniques suc:h as the 

buffer and forward loops of Pierce6 (multiple 

messages, fixed length), Newhall 7 (one m~s
sage, variable length), or Reames 8 (multiple 
messages, variable length) or such as the fast 

time division multiplexing Collins-system9 may 
be used instead of buses. The times Ta and Td 
can be adjusted by factors of 1/N and B, where 
N is the number of simultaneous messages and B 
is the number of buffering nodes on each line. 

3. Nested ~roups of Computers Shari~~ 

Microcomputer nodes in an MMC network are 
assumed to lie regularly spaced in a toroidal
ly continuous, plane square of side=(2S+1). 
The x or y distance between adjacent nodes is 
1. Buses connecting the nodes logically sub
divide the physical space into nested square 

2 3 (J+1) groups of 16, 16 , 16 , .•• , 16 computers, 
as shown in Figure 1. Spanning but not leaving 

each 16(i+ 1>-group are level-i buses 
("i-buses"), each connected once in each inner 

16i-group. Each complete bus in the network, 
regardless of level, is shared by exactly 16 
regularly spaced computers. The higher thet bus 
level, the wider the physical spacing between 
connections. The smallest are the level-0 
buses, one local to each 16-group in the net
work. Level-J buses are the longest, ·each 
spanning the entire network. Buses near the 
edges of the MMC square may be incomplete, 
with fewer than 16 connections. 

In Figure 1, the single, double, and 

triple lines demarcate 16 1-, 162-, and 16 3-
groups respectively. Nodes appearing in 
Figure 1 are connected to 24 different 
0-buses, 16 1-buses, 64 2-buses, 48 3-buses, 
and 24 4-buses. However, only one 1-bus, one 
0-bus and parts of a 2-bus and another 1-bus 
are explicitly shown. 

Each node is connected to two buses, one 



local and the other higher level. The numbers 
in Figure 1 give the level of the non-local 
bus shared by each node. Since the highest 
bus level(J) is 4, the MMC network in Figure 2 

contains 1 million (16 5) computers. The nodes 
marked with an X would be wired to level-5 and 
higher buses in larger MMCs. 

2 1 3 
1 2 1 4 
1 2 1 3 
1 2 1 x 

Figure 1 Logical Groups of Computers Showing 
Levels of High Buses Shared By Some 

Nodes of a 16 5 (=10 6 ) Micro-Computer 
Network for Highest Level (J)=4. 

The hierarchy of overlapping buses re
organizes the physical plane of MMC nodes into 
a (J+1)-dimensional hypercube of side=16. Each 
node has a (J+1)-place hexidecimal index, or 
hyperspace address. Level-i buses run parallel 
to the i-th hyperdimension axis; the indices 
of nodes on the same i-bus differ only in the 
i-th place. The 3-place indices in Figure 2 

allow addressing of 4096 (=16 3 ) computers in a 
network with buses of levels 0 through 2. Each 
node index in Figure 2 is subscripted by its 
high bus level. 

The allocation function ALLH(n) deter
mines the level of the higher bus connected to 
node n. ALLH(n) is the least i for which 

n mod 2i = 2i- 1-1. It gives the position of 
the rightmost 0 in the binary representation 
of n. ALLH(01F)=ALLH(011111)=6 and ALLH(OOA)= 

ALLH(1010)=1. For the fraction 1/2J of the 
nodes whose ALLH value exceeds J, either the 
higher bus port is left disconnected or it is 
connected to some extra J-bus. 

4. Message Routing In an MMC Network 

Messages between computers not sharing a 
bus must be relayed through intermediate 
nodes. There is a simple algorithm to select 
a route using the fewest buses. It is equiva-

lent to that of Pierce6 for multiple ring 

systems. Unlike Brandenburg•s 10 scheme for 
Pierce rings, no directory is needed. Only the 
current and final node addresses are needed. 
The path length varies as log(Dn), where Dn 
is the absolute difference between the two 
node indices. 
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The MMC routing algorithm is as follows: 
1. The final destination is the immediate des

tination. 
2. If the current and final addresses are 

identical, the message has arrived. Other
wise if the current and immediate addresses 
differ leftmost in the i-th hex position, 
an i-bus is needed. 

3. If the current node is on an i-bus, then 
relay the message to the node with the same 
i-th address place as the immediate des
tination. Repeat from step 1. 

4. Otherwise, overwrite the lower i bits of 
the current address with the high i bits of 
the pattern 011 ••• 1 to find the nearest 
node on an i-bus. Make this i-bus node the 
immediate destination. Repeat from step 2. 

4881 

48C1 

4C01 4C12 4C21 4C3x 

4C41 4C52 4C61 4C7x 

4C81 4C92 4CA1 4CBx 

4CC1 4CD2 4CE1 4CFx 

-BUS 
8001 8012 8021 803x 

8041 8052 8061 807x 

8081 8092 80A1 80Bx 

80C1 80D2 80E1 80Fx 

84o1 8412 8421 843x 

8441 8452 8461 847x 

8481 8492 84A1 84Bx 

84C1 84D2 84E1 84Fx 

4981 4992 49A1 49Bx 

49C1 49D2 49E1 49Fx 

4D01 4D12 4D21 4D3x 

4D41 4D52 4061 4D7x 

4D81 4D92 4DA1 4DBx 

4DC1 4DD2 4DE1 4DFx 

850i 8512 8521 

8541 8552 8561 

8581 8592 85A1 

85C1 85D2 85E1 

883x 8901 8912 8921 893x 

887 x 8941 8952 8961 897 x 

88Bx 8981 8992 89A1 89Bx 

88Fx 89C1 89D2 89E1 89Fx 

Figure 2 Bus Path From Node 48F to Node 81F in 
Part of a Network of 4096 
Computers With Bus Ports Higher 
Than J=2 Unattached(X). 

LOCATION CU IMMEDIATE GOALCG> DECISION 
4 8 F 8 1 F 

0100 1000 1111 1000 0001 1111 2-BUS NEEDED 
2-BUS NOT AVAILABLE 

4 8 D 
0100 1000 1101 NEW SUB-GOAL 

0-BUS TRANSFER ON 0-BUS 
4 8 D 8 1 F 

0100 1000 1101 1000 0001 1111 2-BUS NEEDED 
2-BUS TRANSFER ON 2-BUS 

8 8 D 8 1 F 
1000 1000 1101 1000 0001 1111 1-BUS NEEDED 

1-BUS NOT AVAILABLE 
8 8 A 

1000 1000 1010 NEW SUB-GOAL 
0-BUS TRANSFER ON 0-BUS 

8 8 A 8 1 F 
1000 1000 1010 1000 0001 1111 1-BUS NEEDED 

1-BUS TRANSFER oN 1-BUS 

8 1 A 8 1 F 
1000 0001 1010 1000 0001 1111 0-BUS NEEDED 

0-BUS TRANSFER ON 0-BUS 

8 1 F 8 1 F 
1000 0001 1111 1000 0001 1111 ALL DONE 

Table A Routing From Chip(48F) To Chip(81F) 



This algorithm uses primary bus moves to 
transform the message origin address into the 
destination address, one hex place at a time, 
higher places first. Interposed before each 
primary move are secondary bus moves to reach 
a node on the primary bus. Since each node is 
on only one high bus, at least a 0-bus secon
dary move is needed after each. 

Figure 2 shows the buses used by a mes-
s age from node 4 SF to node .S 1 F. The nodes sub
scr ipted by X are not connected to any high 
bus. ·Table A lists the algorithm steps needed 
to send the message as shown in Figure 2. 

5. Message Activity Rates On Buses 

One can analyse message activity on MMC 
buses if all nodes generate messages at the 
same rate M and distribute them over the plane 
with the same annularly synunetric function 
MDEN(r), where r is the maximum X or Y dis
tance between the sending and receiving compu
ters. Because of these homogeneity assump
tions, all MMC buses at the same level are 
equally active. Bus activity differs from 
level to level because of secondary moves on 
low buses and because of high bus moves for 

l
long distance messages. A detailed analysis of 

1

MMC bus activity has been developed else-

where 11 and is summarized below. 

The calculation of a precise expression 
for activity on each MMC bus requires summa
tions over all messages from one computer and 
over all computers in the network. The space 
around the central computer (O,O) of a (2S+1)
square MMC can be covered by concentric square 
annuli of distance r from the center, for 
1<r<S. Because MDEN symmetry is assumed, 
messages from the central node to nodes on the 
same r-annulus are equally frequent. 

The probability that a message from (O,O) 

to (x,O) exits from a 16i-group is 

min(1,x/4i). The probability than an i-bus is 
the highest needed for a message from (O,O) to 
(x,y) on the r-annulus 

Define: 

=(x+y)/4i-xy/16i, if r<4i; 

=1 I if 4i<r. 

POLY (r ,i);; (r-4i) (r/2-4i) /16i 
for O~i<J, 1~r~S; 

=:1, for i=J, 1<r<S; 
=:o, otherwise.- -

The expected nwnber of high i-bus uses 
because of one central message to some node on 
the r-annulus 

=POLY(r,i+1)-POLY(r,i), if r~Bi; 

=POLY(r,i+1) 

Summing over all r-annuli, the expected 
rate of high i-bus uses from all central 
messages is: 
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4i+1 

MHIX(i) 8M l r•MDEN(r)POLY(r,i+1) 
r=1 

4i 
-SM I r•MDEN(r)POLY(r,i), 

r=1 

for O~i~.:r; 

=O , otherwise. 

Two hex indices differing in their I-th 
place, have a 15/16 probability of differing 
in any lower place. A message requiring a high 
I-bus use has a (1-1/16) probability of re
quiring a primary i-bus use, for O<i<I. For 
the ALLH defined in this paper, every use of a 
bus on levels (4i+1) to (4i+4) must be set up 
by a secondary use of an i-bus. 

Denoting a move on an i-bus by the vector 
MVi and the vector sum of moves resulting from 

a high i-bus move by HIMVi' the scalar count 

BUSE(i) of all i-bus uses is implicitly de
fined by 

J J 
l BUSE(i)*MV.=: l MHIX(i)*HIMV., 

i=O 1 i=O 1 

with BUSE(i)=:O, for all i>J. 

By equating the coefficients of c~ach MV i, 

it can be shown that 

4i+4 
BUSE(i)=MHIX(i)+MBAC(i+1)+ l MBAC(k), 

k=4i+·1 

with MBAC(i)=:BUSE(i)-MHIX(i)/16, for all i. 

Since each bus is shared by 16 computers 
and all buses on the same level are equally 
active, the expected rate of activity of each 
i-bus from all messages is 

BACT(i)=16•BUSE(i)/BCON(i), 

where BCON(i) is defined as the fraction of 
nodes connected to some i-bus. For the! ALLH 
defined previously, 

BCON(i)=2-i, if O~i<J; 
=2-J, if i=J and higher ports unused; 

=2-(J- 1), for i=J and higher ports 
used for J-buses. 

The only factor needed for a closed form 
expression for BACT(i) is the exact form of 
MDEN(r). Defining MDEN(r) for a given network 
depends on knowing the computation tasks bE::!ing 
performed. However, 'we can select a class of 
MDEN distribution functions which cove1r thE::! 
range of likely message distributions: 

s 
MDENP(r)=C/Pr, where C=1/ l (Br/Pr). 

r=1 

MDEN 1 (r) is uniform, modeling a random 

access memory with no locality. MDEN 2 (r) 

decays so rapidly with distance that 99% of 



all messages reach the nearest 360 neighbors 
of any node; for P=8, 99% reach the nearest 
48. 

6. Message Transmission Efficiency 

Two measures, MDLY and MINT, of MMC mes
sage transmission efficiency are derived from 
BUSE(i). MDLY, the average message delay, is 
proportional to the average number of buses 
used to relay a message: 

J 
MDLY=Td l BUSE(i)/M. 

i=O 

MINT is the minimum interval allowed be
tween messages from the same computer so as 
not to overcrowd the busiest bus: 

MINT=Ta•max BACT(i)/M 
O<i<J 

The larger MINT is, the less frequently com
puters may communicate. 

In general, message density functions 
such as MDEN 2 and MDEN 8 greatly localize 

messages, causing most to use only low level 
buses. All destinations are equally likely for 
MDEN 1 • Since most nodes are distant, the 

average message for MDEN 1 uses high level 

buses nearly as often as low level buses. 

Table B shows values of the measures MDLY 
and MINT for MMC networks containing from 25 

to one billion (10 9 ) computers. Delay and in
terval measures for networks of more than 1000 
computers are nearly constant for local dis
tributions. For problems with only local mes
sages, a unit message is delayed only 2 Td 
times and millions of computers can each send 
messages as often as -once every 24 Ta times. 

J 
~N8"'C/8R MDEN2•c12R f1DEN1 •C/l R 

NETSIZE T~~~ ~LfD Ml~T MDLf MINf MDLf MI~T 
IN A IN i> IN· A IN D IN A 

25 l 1.8 21.6 1.9 22.8 2.0 23.4 

1089 2 2.0 23.6 2.8 29.8 4.3 41.3 

4225 3 2.1 24.l 2.9 30.8 5.5 58.4 

25921 3 2.1 24.1 2.9 30.8 6.3 60.0 

1002001 4 2.1 24.2 3.0 31..l 8.4 120.0 

25010001 6 2.1 24.3 3.0 31.3 14.0 474.0 

1024064001 7 2.1 24.3 3.0 31.3 18.7, 960.0 

Table B Delay and Interval Measures For 
Messages Distributed Locally {MDEN8 , 2> 

And Widely (MDEN 1) if BCON(J)=2-(J- 1) 

For uniform distributions, maximum activ
ity occurs on the next to highest (J-1) bus 

J-1 and requires MINT about equal to 15*2 • 
Average message delay increases roughly 
linearly with J. Almost all problems require 
no worse than uniform message distribution 
over a network. In even a randomly accessed 
network of one million (106) computers, 
average message delay is only 8 Td and each 
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computer can send a message every 120 Ta. 

1..:..~(s) To Connect One Million Computers 

As a specific example, consider an MMC of 

one million (10 6) computers spaced 5 cm apart 
in a square array. The highest level (J=4) 
buses are less than 300 meters (6*1000*.05) 
long for a maximum propagation delay of 2 
microseconds (micsec) (at 15cm/nanosec.) Pre
sume the average message packet has 3 words 
(48 bits) of header addresses and 13 words of 
information for a ~otal of 16 words (256 
bits). 

7.1 MMC Networks With Buses 

First presume each shared communication 
line is a bus with 16 data lines and 4 address 
lines, each 1 Megabit/second (Mbs). Presume 
each message takes 2 micsec for propagation 
delay, 1 micsec for the addressed port to 
buffer each word and to pass it to its com
panion port, and a final 2 micsec for start
ing th~~ next relay. For a 16-word message, the 
bus times are Ta=18 and Td=20 micsec. 

For locally distributed messages (MDEN 8) , 

MDLY=2.1 and MINT=24.1. Once every 440 micsec, 
each computer can originate a 16-word message 
(208 bits of data) that will take about 42 
micsec to reach its destination. 

For widely distributed messages (MDEN 1), 

MDLY=8.4 and MINT=120.0. Each node must wait 
2200 micsec between 16-word message, each 
relayed for 170 microseconds. Because of the 
factor of ten difference in MDLY and MINT for 
million computer networks, the intermessage 
interval is about ten times the individual 
message delay if buses link the nodes. 

7.2 MMC Networks With Rings 

Alternately, presume each shared line is 
a 20 Mbs Pierce ring allowing up to 16 simul
taneous messages. Let each message be a 264 
bit block: 8 ring control bits, 48 address 
bits, and 208 data bits. Each port must have 
a fast (say, 50 nanosecond per bit) shift 
register through which all messages pass. The 
path delay for a message passing through an 
average of 8 buffers is 1-06 micsec 
(264*.050*8). Allowing 4 micsec extra for re
laying to another ring, the message delay Td 
is 110 micsec per ring. At saturation the ring 
can carry 16 simultaneous messages, yielding 
an effective line activation time Ta of 6.6 
micsec (106/16) per message. 

For local spread (MDEN 8) the minimum 

intermessage interval is 160 micsec and 
average message delay is 230 micsec. For wide 
spread (MDEN 1) the interval is 800 micsec and 

the delay is 925 micsec for a 16-word message. 
In a MMC network 256-bit messages can be 3 
times as frequent but each are delayed 5 times 
as long on rings as on buses. The ring delay 
can be decreased by using faster shift regis
ters. However, the delay and interval are 
much more nearly equal for rings. 

Ring linked structures require fast 
buffering in each node and ring synchroniza-



tion hardware. Short messages are as expensive 
as long. Because line messages pass through 
all nodes in a ring, open failure of a single 
node will break a ring but not a bus. In a 
bus structure, neighbors may route messages 
around a failed node. 

7.3 Solomon Networks 

For contrast, consider a SOLOMON-type 
network of one million computers each linked 

to its four neighbors as in the Illiac Iv12 • 
Since there are the equivalent of 4/2 links 
per SOLOMON node versus only 2/16 links per 
MMC node, each link must be 1.25 Mbs to have 
an average of 2.5 Mbs per node. To shift a 
256-bit message over one node takes 205 
micsec=Td=Ta. The average path length for 
MDEN 1 is 1000 nodes and for MD~N 8 is 2 nodes. 

For local messages, the message delay and 
interval are each 410 micsec; for widespread 
messages, they are 205,000 micsec. 

TYPE OF NETWORK lt!C NETWORK MMC NETWORK SOLOl1JN 
OF ONE Ml LLI ON GROUPED BY 16 GROUPED BY 16 NEAR-4 NETWORK 
U 06 > COMPUTERS WHH BUSES WITH PIERCE RINGS WITH LINES 
BusEs/CO>IPUTER 

0.125 IN NETWORK 0.125 2.000 

LOCAL INTERVAL· 
D1sTR1- MINT 

440 BUTION IN 160 410 

MDENs· MICSEC 

C/8R 
DELAY· 

MDLV 42 230 410 
IN MICSEC 

GLOBAL INTERVAL• 
DISTRI- MINT 2200 800 205000 BUT ION IN 

MDEN1 .. MICSEC 

CoN-
DELAY· 

MDLV 
STANT 170 925 205000 IN 

M ICSEC 

Table C Minimum Intermessage Interval and 
Average Message Delay For 256-bit 
Messages in Networks Linked With An 
Average of 2.5 Mbs of Input/Output 
Line Capacity Per Computer. 

The SOLOMON machine is about 2 times 
slower even for local messages and 200 times 
slower for messages distributed uniformly 
over one million nodes. Table C summarizes the 
differences in minimum intermessage interval 
and average message delay for the three net
work structures just described. 

8. Conclusions 

A hierarchically linked network of 
thousands or millions of microcomputers can 
form a very powerful, very flexible computing 
system. Groups of individual computers may 
dynamically partition or unite themselves to 
solve a changing mixture of many small or a 
few large problems. over a range of network 

sizes from 10 2 to 10 9 computers, grouping com
puters 16 to a bus provides an efficient 
tradeoff between minimum intermessage inter
val and average message path delay time. Mes
sages are transmitted much more rapidly and at 
lower cost in MMC networks than in SOLOMON-
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like networks. Because of myriad al te!rnat«~ 
paths, grouped networks can bypass failed 
components. The advent of truly parallel 
mega-micro-computer networks will introduce 
new fields of basic algorithms, opera.ting 
systems, and machine architecture. 
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Abstract 

A computer architecture is proposed which uses a 
hardware implemented descriptor system to ,provide 
facilities for explicit data typing, memory relocation, 
and access protection at the data element level. The 
problem of having to fetch descriptors for every operand 
access is overcome by storing descriptors in small fast 
memories of various types. The resulting machine runs 
simple languages (such as FORTRAN) as fast as con
ventional architectures, and offers significant speed 
improvement for languages using complex data types 
(such as data management systems). The cost of the 
descriptor storage hardware is shown to be modest, so 
this architecture would be suitable for machines as 
small as a large minicomputer. 

Introduction 

A descriptor architecture is a computer organiza
tion in which data descriptions are explicitly stored and 
interpreted by hardware. That is, for each data field, 
there is a word or two of memory, called the descriptor, 
which defines the mode, precision, access protection, 
location, and structure of the data. The descriptor is 
read each time the data field is accessed, so the hard
ware has significant information with which to better 
carry out the operation to be performed. The use of 
descriptors potentially provides many important im
provements in computer design in two categories: (1) 
decreases software costs due to better diagnostic 
tools and simplified programs, and (2) more efficient 
memory management in terms of mechanisms for memory 
protection and for data relocation. 

Descriptors have been used in some form on several 
machines, most notably on Burroughs systems 3 

'
4 

, 

have been used in many software systems, and 
have been investigated in the literature with regard to a 
number of applications. Comprehensive discussions of 
uses and potential uses appears in [l] and [2]. A 
characteristic of previous descriptor designs, however, 
is that the descriptor was used for only one or two of 
its several possible uses, and thus the overhead of 
storing and accessing the descriptors was not always 
justified by the benefits of their use. The investigation 
described here focuses on the possibility that a 
machine designed specifically to utilize descriptors can 
minimize their overhead memory costs through good 
hardware design and still retain the ability to use 
descriptors for enough different functions to achieve 
significant performance gains. A research computer is 
now under construction at The University of Texas at 
Austin for the purpose of testing those possibilities. 
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Descriptor Utilization 

The various uses for descriptors are summarized 
here, to indicate the type of facilities needed. 

Data Type Information 

Descriptors provide explicit identification of 
operand data type, which permits operators to adapt to 
the operands supplied. Descriptors are particularly 
useful when working with a wide range of data types, 
and/or dynamic data types, especially as appear in 
data base management. It is desirable to have the 
ability to build hierarchies of descriptors to describe 
complex data structures. A criterion of a good descrip
tor system would be its ability to run type-tolerant 
Languages such as APL in compiled rather than inter
preted form. 

Address..!Qg 

Memory addresses appear in the descriptors, so 
only descriptor identifiers appear in instructions. This 
serves both to reduce instruction lengths, and to put 
memory addresses into a compact fixed format so that 
hardware aid for memory allocation and relocation is 
more easily achieved. A good descriptor implementation 
should be able to support a dynamic segment relocation 
system with substantially less addressing overhead 
than occurs in a paged virtual memory system. 

Protection 

Descriptors can serve to restrict the type of 
access and the range of access for individual variables. 
They have many of the properties associated with 
"capabilities," which are receiving increasing interest 
for protection purposes at the operating system level 6 

• 

Previous implementations 6 
'

7 have used capabilities at 
the segment level, but this is too coarse of a resolu
tion for many applications such as data management. 
An objective of a descriptor implementation is to pro
vide efficient hardware support fora capability based 
protection system extended down to the Level of pro
tecting access to individual variables. 

This above set of objectives, to be achieved 
simultaneously, requires an elaborate descriptor 
system which contains information describing variables 
at the segment (relocation) Level, at the protection 
field Level, and at the Level of components in data 
structures. Further, every operand access must be 
carried out through descriptors. The implementation 
problem is that some variable accesses may require 
several descriptor accesses, giving unacceptably high 
execution time overhead. This paper investigates hard
ware solutions to this problem, utilizing small fast 
memories to store descriptors. 



Descriptor Addressing Requirements 

The objective in building a descriptor-oriented 
machine is to provide a mixture of hardware and micro
coded firmware to manipulate complex data structures 
at the machine language level. This requires the 
facility to carry out rapidly a sequence of descriptor 
interpretatons for each machine language instruction. 
A principal source of possible inefficiency is in ad
dress computation, both for accessing data in memory 
and ·for identifying descriptors in a high-speed descrip
tor storage unit. 

For these purposes, we presume that memory 
space is utilized in segments, so that a segment is 
defined to be a continuous memory space allocated as 
one unit. No restrictions are placed on segment con
tents, which may be mixtures of data types, code, and 
descriptors. Segment addressing is hoped to be of 
sufficient flexibility and efficiency so that a computer 
system could use segments as a basic memory alloca
tion unit, or could use the segmentation system on top 
of a paging system. 

For purposes of this discussion, assume that 
descriptors are segregated within segments (e.g., all 
descriptors for a segment appear in the first locations 
of the segment). Descriptors must contain at least the 
following set of abilities, to provide a flexible 
addressing system: 

To access data: Segment ID, relative address 
displacement 

To access descriptors: Segment ID, descriptor 
number. 

Segment ID is an identifier which selects a unique 
segment, but whose exact coding will vary substan
tially from system to system. Segments addressed will 
typically be: (1) the segment in which the descriptor 
resides, (2) the segment in which an actual parameter 
list (from a routine which called the present routine) 
resides, and (3) arbitrary segments in which global 
variables, other procedures, and Large data structures 
might reside. 

Descriptors are viewed as occurring in two 
general usage categories: 

(1) Directly accessed, which include descrip
tors for data elements which have explicit 
variable names (with proper data organiza
tion these can be few in number; perhaps 
about ten for a FORTRAN subroutine when 
variables of common type are listed as a 
vector under one descriptor). 

(2) Indirectly accessed, which define the de
tails of data structures, parameter lists, 
etc. (these hardly exist in FORTRAN, but 
might number in the hundreds for a procedure 
in a data-structure oriented Language). 

These two types are distinguished for purposes of 
efficiency in access. 
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The descriptor-based addressing system is pre
s urned to sup port very efficient memory relocation 
capabilities. A segment must be able to be loaded in 
an arbitrary memory Location, and perhaps be able to 
be moved dynamically while a program is running. This 
requires that absolute memory addresses be treated 
carefully. In particular, each segment's absolute 
address should appear in a small fixed number of places 
in the system, so that when the segment moves few 
addresses. need to be changed. 

An important restriction on the system addressing 
is that no program be given access to unauthorized 
addresses, which means to unauthorized descriptors. 
Thus, when switching from one program to another, care 
must be taken to block access tci any stray descriptors 
remaining in the descriptor storage unit. The memory 
protection features potentially offered by a de~scriptor 
system can be preserved if a program can a cc es s only 
those descriptors specifically allocated to it. 

The above paragraphs describe a basic set of 
properties characterizing a descriptor-oriented system. 
The remaining sections of this paper will attempt to 
demonstrate that these properties can be efficiently 
implemented at the machine language level. 

Hardware Facilities 

The strategy proposed for descriptor handling is 
to keep the most frequently accessed descriptors in 
small fast buffer memories, so that average descriptor 
access times can be kept small. It is concei.valbe that 
this descriptor memory could be organized as a single 
content-addressable memory (CAM), but speed and cost 
are improved if other accessing methods are used as 
well. The descriptor buffer memory would best consist 
of the following three component memory typE!S. 

A random access memory is used to store the 
directly accessed descriptors for the presently act:Lve 
procedure. The RAM can be addressed directly by 
descriptor number, since these numbers can be 
assigned consecutively by a compiler. The RAM could 
be block-loaded upon program entry, since the 
descriptors would be in a contiguous main: memory area. 
Block Loading would utilize the rapid block transfer 
capability (provided by interleaving), which is increas
ingly common even in small computer memories, to Load 
the RAM much faster than if descriptors were loaded 
piecemeal. The RAM can be small, not more than 64 
words, so it can be quite fast. 

A La st-in-first-out stack is used for procedure 
linkage. The top stack element contains the descrip
tor for the actual parameter list, which in general will 
point to another segment. The top element is us eel for 
most parameter references, but other stack elements 
must be kept accessible in case a parameter is passed 
from procedure to procedure. Implementation of a 
stack is very simple with a few RAM memory chips and 
an up-down counter to indicate stack top. The over
flow problem is best handled, in small machines, by 



providing an adequate stack size (say 64 locations) and 
issuing an error message if the stack ever fills up. 

A content addressable memory is used for all 
other descriptors. The CAM is addressed by the two
tuple [segment number, descriptor number}, which 
typically might be 2 0 bits of address, so a RAM is not 
feasible. The necessary size of the CAM varies with 
application: FORTRAN-like languages will rarely use it; 
languages using extensive data structures or global 
variables will need large quantities. An initial ex
perimental value of 256 locations has been selected for 
evaluation. That size is too big to build a real 
associative memory within a reasonable budget, so a 
RAM with hash-coded addressing is used instead. The 
result is an average read time of around 300 nsec., 
which might not be enough faster than an access to main 
memory to justify its costs (about $600. 00 product cost) 
except in larger systems. The nature of the use of the 
CAM is such that its omission would not fatally cripple 
a descriptor machine (as discussed in the conclusions 
section). 

In addition to the descriptor storage mechanism 
described above, a fourth memory, to store segment 
base addresses, is used. This would be a RAM, 
addressed by segment number, which contains the 
absolute machine address at which each active segment 
is stored. This approach keeps the absolute addresses 
out of the descriptors, thus reducing their length and 
simplifying relocation procedures. The number of base 
registers thus provided could be 64 or 256 with little 
difficulty. If the segment identification numbers exceed 
eight bits, then probably a segment name mapping 
system would be added as discussed below. 

The important point to notice from the above 
discussion of hardware facilities is their moderate 
cost. Without the CAM, the system costs roughly 100 
integrated circuits, which is equivalent in cost to about 
4K of 32-bit semiconductor memory. Adding the CAM 
would double that. This then would be not too expen
sive to add to a medium-sized minicomputer (or larger) 
system. 

Operand Addressing 

The normal operation of operand address inter
pretation follows this sequence: 

(1) When an instruction is fetched, it specifies an 
operand by descriptor number. 

(2) The descriptor is fetched from the descriptor 
RAM, and it specifies segment number and displacement 
for the variable. 

(3) The segment number is used to fetch a base 
address from the base register memory, which is added 
to the displacement to give the full memory address of 
the operand. 

This sequence requires perhaps 300 nsec. in conven
tional TTL logic, which would decrease instruction exe
cution rates by 10% to 40% in typical minicomputers 
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designs (hopefully compensated for by requiring fewer 
instruction executions). 

In more complex data structures, including 
parameter lists, a descriptor may point to another set 
of descriptors, not necessarily in the original segment. 
These secondary descriptors would be accessed from 
the CAM. The first access to each secondary descrip
tor will not find it in the CAM, so it will have to be 
written there after fetching it from main memory. The 
unsuccessful CAM access may take about two main 
memory cycles, but should happen only once per 
descriptor, unless the CAM is fairly full of active 
descriptors, or unless that routine is swapped out in a 
multi-user system. 

One type of descriptor can be given special 
treatmEmt. This is the indirect pointer descriptor which 
serves only to point to another single descriptor. It is 
useful for crossing segment boundaries, mapping non
contiguous descriptor sets into contiguous descriptors, 
and providing a data element with several access paths 
having different access restrictions. Whenever such a 
descriptor is found, its target descriptor is substitued 
for it in the descriptor storage RAM. That is, for a 
given descriptor number, there will exist different 
contents in the RAM than appear in main memory, but 
functionally the two forms are equivalent. This 
provides the benefit that each time that variable is 
accessed after its first access, a level of indirection 
is bypassed (and a CAM location is saved). 

Of course care must be taken that this dynamic 
binding of variables does not produce unauthorized 
access paths for a program .. For example, if an in
direct descriptor is pointing to a procedure's parameter, 
and if the parameter descriptor is substituted for the 
original indirect descriptor, that binding mµst be 
broken if the procedure is exited and re-entered with a 
new parameter; if the old s ubstitued descriptor is still 
existing in descriptor storage, the procedure may pick 
up the wrong parameter. There are three such problems 
to consider here: 

Relocation. If absolute memory addresses 
appeared in descriptors, then descriptor substitutions 
would have to be unbound whenever a segment was 
moved. The design proposed here segregates memory 
addresses from the descriptors at all times, so no 
such problem arises. 

Parameters. As shown in the example above, 
care must be taken when exiting procedures to unbind 
all parameter linkages. This is done by erasing all 
descriptor RAM contents upon exit. It is not efficient 
to erase the CAM each time a procedure is exited, so 
desCriptor substitution is not permitted in the CAM. 

_Protection. When a sequence of descriptors is 
traversed to arrive at a variable, the resulting type of 
access permitted may not be less restrictive than that 
specified by any des cri pt or on the pa th. Therefore, 
when a target descriptor is substituted in RAM for an 
indirect descriptor, the resultant access restriction 
must be as restrictive as the more restrictive of the 
original two descriptors. 



It appears feasible to permit modification by substitu
tion of descriptors in the dynamic stored form, provided 
the above restrictions are followed. 

Segment Addressing 

The base register storage system has the 
objective of providing low cost dynamic memory relo
cation capabilities, while removing some troublesome 
addressing problems from the descriptor storage pro
cess. This is a segment address mapping system in
tended for systems where memory is allocated by seg
ments. It would also be useful in paged systems, to 
translate segment names into a more convenient 
address range so that virtual addresses within the 
computer are kept at a manageable length. The follow
ing discussion described two systems, a full virtual 
memory system and a very simple mapping system, 
which both use the same hardware facilities. 

The virtual memory system presumes long 
segment names, and a software controlled segment 
table to map these names into memory addresses. This 
table is very slow in access time, so hardware is 
provided to minimize the number of accesses. 
Specifically, the base register memory is used to hold 
addresses of all active segments, using the following 
strategies (summarized in Fig. 1): 

Register Assignment. Base registers are 
assigned sequentially, using a hardware counter, 
whenever a new segment is activated. The assigned 
base register holds the segment's memory address or 
an indication that the segment is not available in 
memory. 

MAIN MEMORY 

INSTRUCTION 

DESCRIPTOR# 

DESCRIPTOR SET 

DISPLACEMENT SEGMENT NAME 

SEGMENT TABLE 

SEGMENT NAME SEGMENT # 
BASE ADDRESS 

jOPERAND 

DESCRIPTOR STORE 

DISPLACEMENT SEGMENT # 

PAGING 
MECHANISM 

OPERAND ADDRESSING 

Figure 1 
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Segment Table. This table in main memory 
must contain entires for all segments, indicat:lng file 
or memory location. When a segment is moved into 
main memory, a base reigster is assigned, and its num
ber is stored in the segment table. If the segment ls 
later relocated or swapped out, the base register is 
modified accordingly. 

Descriptor Contents. Descriptors in main 
memory will contain segment names as part of their 
address information. When a descriptor is first 
accessed, the segment table will be accessed to find 
the assigned base register number for the segment 
referenced. This number becomes part of the descr:Lp
tor in the descriptor storage mechanisms (RAM, CAM, 
and LIFO), so that each subsequent use of the variable 
requires only direct access to its base register. Thus, 
the segment table is accessed only once for e~ach fJlrst 
use of a descriptor. 

Register Reassignment. Since the register set 
is fixed and smaller than the number of possible seg
ments, eventually the end of the set is reached and 
previously assigned registers must be reassigned. 
Care must be taken that entries in the segment table 
and descriptor store do not still reference previous 
assignments of reassigned registers. The simplest 
algorithm is, upon reaching the end of the base 
registers, just to empty all base registers and erase 
a 11 as signed register numbers from the segment table 
and descriptor store. This requires that descriptors be 
stored with segment names intact, so that they can be 
relinked at any time. 

Thus, there exists a mechanism whereby a 
relatively short base register number is substituted for 
each active segment name. This permits use of a ran
dom access memory to store base registers (in place of 
the associative memory used in most virtual systems), 
which can therefore be made large enough in size to 
efficiently handle all active segments and yeit be 
moderate in cost. Such a system is pos siblE~ principal
ly because descriptors are stored in volatile form .in a 
separate storage mechanism, so operand segment ID' s 
can be modified dynamically as segment base register 
numbers change. 

An alternate usage of the same hardware 
apparatus produces a poor man's segmentation system 
of reasonable simplicity. If segment names are 
restricted in range to the size of the base register set, 
then the base registers can be set up directly by the 
system loader, and no runtime access to the segment 
table is needed. That is, the loader must worry about 
assigning and reassigning base registers to segments, 
but if the number of base registers is adequate this is 
not a complex job. The loader must identify segments 
and modify all inter-segment descriptors (except those 
for parameters) when a routine is loaded. Therea:Eter, 
the segment can be reallocated or removed with the 
only modification being to base registers. 

When this approach is compared to the base 
register system of conventional machines, two 
distinct differences are noted: 



(1) The number of base registers must be restricted 
in conventional machines because of the number of 
address bits which would be required in each instruc
tion.. By moving the base register designation into the 
descriptor, it may be given more bits since it is not 
retrieved from main memory so frequently. Consequent
ly, the number of base registers may be comfortably 
largEi in a descriptor machine. 

(2) The programmer need not assign base registers 
since the loader can perform this action. This is made 
easy by the large number of registers available, and 
because segment names appear only in a relatively few 
places in the code due to the descriptor structure. 

This level of relocation system appears quite feasible 
for small time-sharing systems. 

Procedure Entry 

Procedure entry and exit is frequently a time
expensive operation, so this process is worth special 
attention. In particular, any system of hardware 
support for dynamic address binding must be shown to 
be both efficient and accurate in handling parameters. 

State Switching 

When a new procedure is entered, the 
descriptor storage RAM must be loaded with the new 
descriptor set. To gain efficiency in state restoring, 
this RAM is duplicated so that the descriptor set of the 
calling routine is not lost. This permits rapid returns 
from the last issued procedure call, but other returns 
will require the RAM to be reloaded again. Available 
statistics9 indicate that 50% to 80% of procedure exits 
will not require RAM reloading. The other descriptor 
storage facilities pose less trouble. The LIFO stack 
automatically stores its state information so no special 
action is required. The descriptor CAM and base 
register set have contents which may be used by any 
routine which can address them, so they do not consti
tute part of a procedure's state. 

Parameters 

Actual parameters are organized as a contigu
ous list of descriptors in the calling routine. Since 
normally the correct set of data descriptors will not be 
contiguous, the parameter list descriptors will be 
indirect pointers to the true descriptors. The parameter 
list is pointed to by a parameter descriptor held in the 
LIFO descriptor memory. Thus, a parameter reference 
will require three descriptor fetches: one from the LIFO 
store to find the parameter list, a second (from the CAM 
on later accesses) to find the location of the actual 
descriptor, and a third (usually from ·the alternate RAM) 
which actually describes the data. While this is a long 
sequence, it will normally be fast. Note that this 
mechanism has no difficulties in the case where an 
actual parameter is itself a formal parameter. The 
:first such reference is slow, but on subsequent 
references the substitution for indirect descriptors 
permits many descriptor accesses to be bypassed. 
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The descriptors in the parameter list can con
tain access restrictions, to distinguish call-by-name 
from call-by-value parameters. This eliminates copy
ing of parameters in all cases, except called-by-value 
parameters in which might be modified by side effects 
of later procedure calls. 

The stack will contain the conventional 
linkage information to the calling routine, namely the 
return address and pointer (descriptor) to the para
meter list. This information does not get stored in 
main memory, so the stack must be protected against 
erasure. Interior elements in the stack can be access
ed, so the passage of parameters from one routine to 
another can be handled easily. The choice of a stack 
mechanism, rather than stodng linkage information in 
main memory, is based on cost. It reduces control 
costs, and is itself not particularly expensive using 
existing memory circuits. 

In summary, then, the procedure mechanism is this: 

(1) Upon entry, the parameter descriptor and 
return address from the call are pushed onto the stack; 
the descriptors for the new procedure are loaded into 
RAM storage. 

(2) Parameter references are indirect through the 
top stack element, and thence indirect through a para
meter list descriptor to the data descriptor; the la st 
descriptor may itself be a formal parameter, which 
lengthens the initial access time but causes no control 
problems. 

(3) Procedure exit consists of popping off the top 
stack element, but no special actions are required on 
other storage elements. 

This procedure mechanism appears to be sufficient to 
eliminate run-time software exc~pt in special instances. 
The apparatus established to reduce the overhead of 
descriptors access serves also to reduce the overhead 
of indirect parameter a cc es s, so parameters need not 
be copied into the called routine. In addition, 
dynamic relocation is not obstructed, so that the 
calling routine can be relocated during procedure exe
cution without affecting parameter access. 

Conclusions 

The above described system is presented as a 
feasibility demonstration that the use of dedicated 
small fast local memories can reduce the overhead of 
descriptor processing sufficiently to make it as fast as 
more conventional instruction processing. Instruction 
execution times are increased perhaps 25% due to 
longer operand interpretation processing. Procedure 
entry requires a block transfer of descriptors, which 
takes perhaps the equivalent time of two to four 
instrucUon executions, in a interleaved memory 
system. Each parameter accessed for the first time 
requires two extra memory cycles. These time costs 
are offset by the saving in run-time procedure software 



execution, by reduced operating system code for reloca:.. 
tion, and by reduced instruction size. The la st effect 
is significant since typically eight bits can be elimi
nated from 32-bit memory reference instructions, and 
this represents a 25% reduction in memory bandwidth 
requirements (e.g., the 16-bit base plus displacement 
of a IBM 370 instruction could be replaced by a 8-bit 
descriptor number). 

It appears that FORTRAN level languages will 
break even or run slightly faster on the architecture 
proposed, but extensive testing will be required to 
verify the exact savings. This would indicate that the 
addressing flexibility inherent in a descriptor system 
does not need to penalize execution of simple 
languages. 

On the other hand, operand fetches would be 
slower foF type-tolerant languages such as APL and 
data management systems. Systems with richer type 
structures and w.ith dynamic variable sizes will use 
more descriptors, most of which are used infrequently 
(e.g., a descriptor giving the length of a field in a 
particular file record). These secondary descriptors 
will cause frequent fetches from the CAM or main 
memory, and thus will cause longer instruction inter
pretation times. It should be observed, however, that 
these secondary descriptors perform functions which 
are not directly available in conventional machines, so 
accessing and interpreting a secondary descriptor 
replaces a software action in present language imple
mentations. Thus, even if no CAM is provided and 
every secondary descriptor reference requires a main 
memory access'· the proposed architecture will run 
these high-Uel.lel languages significantly faster than a 
conventional machine of equivalent technology. 

The implementation proposed here is an 
example of a necessary trend in computer architecture 
today, namely extension of the memory hierarchy down
ward through use of small fast memories. This system 
uses dedicated functional memories rather than or in 
addition to general usage cache-type buffers. Use of 
a dedicated memory is made more valuable by the 
descriptor format, because it segregates frequently
used address information into a compact fixed-format 
area (the descriptor set). This strategy of using 
descriptors to isolate critical machine language data 
appears to be a promising way to achieve increased 
use of hardware to replace low-level software. 

Acknowledgement 

This research was support under National 
Science Foundation Grant GJ-42514 and Joint Services 
Electronics Program Contract F 44620-71-C-009 l. 

Bibliography 

[l] Feustal, E. A., "On the Advantages of Tagged 
Architecture, " IEEE Trans. on Computers, 
C-22 (July 1973), pp. 644-656. 

[2] Iliffe, J. K., Basic Machine Principles, 2nd 
ed., Macdonald/American Elsevier, 1972. 

146 

[3] 

[4] 

[5]: 

[6] 

[7] 

[8] 

[9] 

Burroughs B6500 Information Processing Systems 
Reference Manual, Burroughs Corp., Detrolt, 
Mich., 1969. 

Wilner, W. T., "Design of the Burrough Bl 700" 
AFIPS Conference Proceedings, Vol. 41, FJCC 
1972, p. 489. 

Proceedings of the International Work~~ 
Protection in Operating Systems, IRIA, Paris, 
France, August 1974. 

Shepherd, J., "Principal Design Features of the 
Multi-Computer (The Chicago Magic Number 
Computer)," ICR Quarterly Report, No. 19,. 
Institute for Computer Research, University of 
Chicago, November 1968, sec. lB. 

England, D. M., "Architectural Features of 
System 250," Plessey Telecommunications 
Research, Ltd., Ta plow Court, Taplow, M<3iden
head, Berkshire, England, 1972. 

Linden, T. A., "Capability-Bas~d AddressJlng to 
Support Software Engineering and System 
Security," Proc. Third Texas Conference on 
Computing Systems, November 1974, p, 8/5. 

Batson, A. P., Brundage, R. E., and Kearns, 
J. P., "Design Data for Algol-60 Machines," 
Third Symposium on Computer Architecture, 
Clearwater, Florida, January 197 6. 



TAGGED ARCHITECTURE AND THE SEMANTICS OF PROGRAMMING LANGUAGES: EXTENSIBLE TYPES 
by E .A • Fe us te 1 t 
Rice University 
Houston,Tx. 

Keywords: Progranuning languages, computer architec
ture, step-wise refinement 

Abstract, 
This research note suggests that before we design 

hardware or software for the task of problem solving, 
we re-evaluate the task of problem solving in terms of 
the linguistic constituents which will be required and 
the manner in which these linguistic constituents will 
be combined. Utilizing the principles of composition 
and abstraction-to-specifics, we conclude that all 
data and programs might be realized in a structured 
format called messages. We conclude with a few pre
liminary thoughts and questions as to how an architec
ture designed for such structured operands and opera
tors might be designed. 

Introduction 
A premise of these preliminary thoughts is that 

there are many problems which we want to solve by 
computer whose solutions are currently beyond the 
state of the art. The principal reason for this sit
uation appears to be that the complexity associated 
with preparing a computer solution combined with the 
complexity of the problem makes the complexity of the 
task beyond our ability to solve the problem (l]. 

Numerous techniques have been advocated for reduc
ing the complexity of the problem of producing a com
puter solution. Software techniques include debug
ging (2,3,4], structured programming, step-wise 
refinement (5,6], proving programs, data abstraction 
[7], and very high level languages [8,9]. Hardware 
techniques include high level language machines (10] 
of which SYMBOL [11] is best known, and tagged archi
tecture (12,13]. 

We will pursue the assumption that we should re
evaluate the entire hardware-software interface as 
seen by the problem solver to establish a gestalt of 
problem solution by computer (14]. It would seem 
appropriate to attempt to retain as many features of 
a natural language solution of the original problem 
as is possible rather than to limit the solver in an 
artificial manner as is done by so many hardware-soft
ware-interfaces to solvers in today's computational 
envirorunents. We thus pursue the solver's artificial 
language and the eventual language of the machine from 
the linguistic viewpoint, attempting to find a repre
sentation for his problem which will be closely 
matching the problem in structure and language. Only 
after we have done this will we evolve a language for 
programming and a mechanism for the evaluation of 
programs. 

The Requirement for an Abstraction
to-Specifics Methodology 

The principal requirement for a progranuning tool for 
the solution o~ complex problems is an abstraction
to-specifics methodology, a step-wise refinement 

t This work was supported in part by National Science 
Foundation Grants: GJ3647 and DCR72-03609A01. 
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method. This methodology requires that each succeed
ing refinement of an abstraction (lower level) be func
tionally isolated from higher levels and dependent 
only on constituents selected from lower levels of 
abstraction or from a level parallel to itself. 

Although it might appear that at any level we should 
only be able to refer directly to the next level with
out recourse to constituents at even lower levels (as 
found in the T.H.E. operating system (15]), if we are 
to reflect the linguistic processes in which we analyze 
the problem in a direct manner, we must permit a down
ward directed graph model of abstraction of connected 
constituents instead of an onion model of layered 
connecti.ons. 

The methodology which we wish to select is to give 
us the necessary freedom to deal with the real issues 
of solvi.ng the complex probelm. It should allow us to 
reflect the solution to this problem in a transparent 
manner--that is, the methodology used to solve the 
problem should not add unduly to the complexity of the 
total solution. The use of the abstraction-to-speci
fics methodology permits us to ignore detail (tempor
arily) while we pursue the space of possible solutions 
utilizing higher level abstractions. 

After we have found abstractions representative of 
the class of solutions which we desire, the method
ology should provide a structure wherein the detailed 
solution may be generated in successive specification. 
It is desirable that the structure bear the weight of 
detail at each level, permitting us freedom in dealing 
with the implementation of each first level abstrac
tion in a group of second level abstractions, etc. 

One methodology of great utility is the treatment of 
all computational entities as messages. Messages may 
represent names of objects, functions on objects, pro
cedures to be carried out, the objects themselves, and 
homogeneous and non-homogeneous groupings of objects. 
In the sequel we will make some preliminary conunents 
on their use, flexibility, and implementation. 

The Constituents of Computation 
A most important prerequisite to our use of an ab

straction is the ability to name it and to refer to it 
by the name or names chosen for its use. The notion of 
name permits us to refer to an object such as an oper
ator, an envirorunent, a function, and a datum in an 
abstract way without being concerned with the represen
tation or the details of its implementation or access. 
We will next discuss several desired features of names. 

At the minimum we must be able to directly associ
ate a name with the object to which it is permenently 
bound. In addition however we wish to be able to 
reference an object by naming the name of an object 
(indirect reference) or alternatively an alias for a 
direct reference or an indirect reference. Although 
a permanent binding is sufficient, we would prefer to 
permit a dynamic binding so that we might manipulate 



the structure of our universe of discourse and ease 
the task of the composer of each abstraction. Finally 
we wish to be able to specify attributes and proper
ties associated with each name in a manner similar to 
the property or.attribute lists in LISP. Such proper
ties might include type information, copy rights, ac~ 
cess, sharing, use, and environmental information. 

Names refer to objects of different types which may 
be manipulated in manners consistent with their prop
erty lists. We prefer the notion that data may be ob
tained functionally [16]. That is, there should be no 
distinction between information which is retrieved as 
the result of a function call or from accessing the 
object associated with a name. Functions on the other 
hand may be manipulated, created, destroyed, and aces
sed a.s data--although not in the same manner as done 
o~ the von Neumann machine. Further we feel that data 
should derive its properties from the chain of attri
butes taken from the chain of names which access it 
and not from the representation of the data itself. 
Thus atomic data and functions are but packets of in
formation to be interpreted by the viewpoint provided 
by the accessing symbol. Names may also be used to 
refer to packets of information clustered together, 
collectively, individually, or by some subset prop
erty. We observe that the notions which we have out
lined above are little different from the way in 
which language permits the use of abstraction. 

As in conventional mathematical notation, we would 
choose to have polymorphic operators and functions 
whose meaning is determined by the attributes (in
herited or direct) of the names with which they are 
associa tedvariadi.cally in prefix, suffix, or infix 
notation. Thus the symbol for an operator is merely 
a name for an abstract procedure whose function is 
semantically determined by the tupe of its arguments 
and which may have a dynamic meaning dependent on the 
state of computation. It must be possible to specify 
the binding of operators to their parameters, formal 
and actual, and to create closures representing Curied 
functions. we assume that any operator may be recur
sive, may create new operators and environments and 
may be self destructive. 

Extended classes of data and operators may be com
posed by encapsulation [18] through indirect or direct 
reference on previously defined objects and operators. 
Since data and operators are treated identically, no 
distinction is to be made between abstractions con
taining procedures, data, or mixtures of both. Such 
compositions will normally be copies of original con
stituents unless sharing is specified as an option 
[19]. Since names are compound objects themselves, we 
choose to eliminate the distinction between name and 
object and represent the closed metalanguage thus de
fined as typed packets which we will call messages. 

The mechanism which we have chosen for the repre
sentation of problem solutions appears to be quite 
general. Yet it so resembles the necessities of the 
language which we will use to solve the complex prob
lems, that the difficulties of specifying a solution 
may be minimized. Thus we are led to a consideration 
of how such a message computer might be organized. 

The Message 
One informal view of a message is that of a memoran

dum as utilized in an office environment. The message 
contains information about who is to receive it, who 
sent it, and the date that it was sent, the topic to 
be discussed, and the body of the message. It may 
contain other information including a routing list, 
access information, and a memorandum reference number. 
The latter identifies it in case of the need for a 
reply or comment. 

In the same manner, a message in a computational sit
uation consists of separate parts, each of which may be 
messages. A header is followed by a sequence of mes
sages which is followed by a trailer. The header may 

148 

indicate the process which is to receive the message 
as well as indicating the number of messages in th1~ 
sequence and their relative position within the body 
of the message or it may indicate the purpose for the 
inclusion of some or each of the messages in the 
sequence. 

Several points are worth noting about the definition 
of messages. First a message is defined recursively 
in that a message may contain a sequence of messages. 
This sequence must be finite and may be empty. The 
latter sequence indicates a null object of a certain 
type. Second, the definition of a message implies 
the possibility of a nested set of potentially nested 
messages. This nesting property corresponds naturally 
to the conventional notation for block structured 
languages, to the structuring methods in most lan:
guages for data, and to the structure of most file 
systems. Third because of the fact that indirect 
references may be imbedded within a message objects 
may share each others components or refer recursively 
to themselves. In conventional programming languages 
this notion corresponds to procedure calls in the 
procedural part of the language, to pointers in the 
data structure part of the language, or to cross
references within a dictionary system. 

The use of the message as defined above may be shown 
in an informal manner by comparison to a memorandum 
and its effect on the employee receiving it. The 
memorandum may contain orders for the immediate execu
tion of a certain procedure at an assigned priority. 
It may indicate that a procedure parameterized by one 
or more other memoranda are to be executed. Or it may 
be a procedure whose execution is conditioned on some 
other external event (a deferred procedure) •. Alt1ar
natively it may be regarded as a conveyance of data 
from the sender to the receiver in which case it may 
be put in a file of messages under its reference head
ing for further use. 

Let us assume that the actor process [20] receives 
a message. After examining the header, it may exe
cute the process described in the message immediately. 
It may evaluate parameters of the message from one or 
more separate environments and then execute the pro
cedure. It may file the message for future reference 
and/or execution under a name it generates or one it 
obtains from the message itself in an environment 
which is specified internally or externally. 

The Implementation 
In this research note, we do not propose a concrete 

realization of the architecture which implements the 
message concept. (A design is in progress.) we do 
speculate on some of its characteristics and invi.te 
discussion from the research community. 

It seems likely that such a system architecture 
could consist of several specialized computers in the 
same manner as SYMBOL does. One computer might manage 
the space of names for a given environment and would 
be responsible for the process which map a name to 
an object and which determine the inherited attributes 
from the name chain., A second computer might manage 
the mapping of the physical representation of thEi ob
ject into the virtual message space and would be r.e
sponsiblefor dictionary maintenance. A third com
puter might be responsible for marking messages to be 
deleted and doing garbage collection in virtual 
message space. A fourth computer might be responsible 
for message transport to external devices a.nd a fifth 
for internal transport and pipeline management. A 
sixth computer might perform type checking on argu
ments of procedures. A seventh might be involved in 
the evaluation of function, perhaps using several 
functional units in a dataflow scheme. An eighth 
might be used for copying messages. A ninth might be 
used for I/O and dynamic changes in represEmtation 
from internal form to external form. And so on. 

One question which arises is what method should be 



used to store message information. Our preference 
would be for a bit serial· store organization because 
of the implkit assumption that messages may be of 
variable length. BORAM, magnetic bubble memory, or 
charge coupled device memory might be used, organized 
in a parallel manner so that different messages might 
be accessed simultaneously. After selection of numer
ic components such as numbers, vectors, and arrays 
from a larger message, the resulting representations 
would probably be stored in a local operand cache, 
organized in word format for use by parallel arithme
tic units. 

A n~jor advantage of the associative mapping scheme 
for names to objects is that the names now convey 
type information and representation information which 
facilitate easy manipulation of and scheduling for the 
flow of operand streams. Names and their associated 
structural information and procedure references may be 
held in a smaller, faster storage unit. Name lookup 
may be overlapped with computation. 

It seems quite likely that a message machine will 
consist of many specialized components designed to 
optimize handling of specific types of messages such 
as procedures, queues, arrays, etc. and that the 
'1.11 .. ~'r. of such compoµents would increase for high per
fo ......... :.ice machines and be smaller on intermediate 
performance machines. The design of the canponents, 
their interconnection, and their interaction promises 
a new era in development of computing machinery. 
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Abstract: 

The performance of a high-level language machine 
will depend upon the characteristics of its workload. 
Equally, the design for such a machine should be 
guided by some understanding of the work which it will 
be called upon to perform. We present here some be
havioral properties of a large Algol-60 program in 
terms of the requests they represent for the various 
processing resources of an Algol-60 machine. The 
data provide insight into the behavior of such 
machines, particularly with respect to dynamic memory 
requirements and the procedure activation rates 
associated with direct Algol-60 execution. The data 
can thus be of value to designers of high-level lan
guage machines in view of their implications for the 
performance of such systems. 

1. Introduction 

The syntactic rules of a high-level language to
gether with their semantic interpretations serve as 
functional specifications for a high-level language 
machine. That is, these rules prescribe the ultimate 
results which must be achieved as a result of the in
terpretation of source-language programs by the 
machine. However, these rules do not provide guidance 
to the machine designer as to how to best implement 
such a language interpreter. Many linguistic con
structs are used only rarely, whereas others may be 
frequently encountered and would merit extra attention 
in the design process so as to assure acceptable per-

formance levels for the complete system. Knuth 1 s 1 

studies of a large sample of Fortran programs, for ex
ample, shows that certain statement types are much 
more conunon than others. Moreover, the 'static' 
characteristics of the syntactic rules cannot provide 
a designer with the information he needs to visualize 
the time-dependent behavior of a machine as it is 
exercised by actual source language programs. For 
example - if the majority of procedure calls in 
practice involve only a limited amount of computation 
before procedure exit, then it would be advantageous 
to provide a fast implementation of the procedure 
call and exit mechanism, whereas if the opposite 
characteristic were typical of real programs (i.e., 
procedures had long lifetimes), then the details of 
the design of the calling mechanism would have only 
a limited effect upon system performance. Another 
1~xample can be found in the memory requirements of 
programs, such as the depth of the pushdown stack 
required for a stack-based Algol-60 machine. The 
syntax of Algol-60 gives no clue towards a maximum 

tThis research was supported by NSF Grant GJ 1005 
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stack depth to build into the machine, save infinity 
of course! Since any sensible and practical design 
must satisfy the maxim "don't make all the users 
pay for what only 1% of them need", then clearly the 
designer of a high-level language machine should 
start with some idea of the characteristics of the 
workload which is to be interpreted by his design. 

The workload for a high-level language machine 
is, of course, source-language programs and their 
data. The literature contains little experimental 
information on the characteristics of symbolic high-

level language programs. As mentioned earlier, Knuth
1 

collected information on the prevalence of certain 
statement types in Fortran programs, and also a 
limited amount of data on some dynamic properties of 

2 3 
a few programs. Two of us ' have described in de-
tail the dynamic behavioral properties, at the source
language level, of a sample of Algol-60 programs. 
These programs were small-to-medium in size, with 
fairly short execution times, and were selected from 
a collection of production jobs for scientific/ 
engineering applications. In contrast, we present 
here the results of a study of a rather large Algol-60 
program. In fact, the Algol program whose execution 
characteristics we describe here is the Algol-60 
compiler for the Burroughs B5500, with a fairly 
large Algol program as its input data. 

2. Conceptual Resource Model 

The results we shall present are discussed in 
terms of a simple resource model of the Algol-60 
machine. We identify four separate and distinct re
sources - an arithmetic/logical processor, a string 
processor (i.e., a processor which performs character 
manipulation functions), a virtual memory processor, 
and an input/output processor. Any executing Algol-
60 program can be represented as a sequence of re
quests (which we term an execution trace) for the 
services of the various processors. This execution 
trace is the input to the abstract representation of 
the Algol-60 machine, shown in Figure 1. A detailed 
description of the syntatic and semantic characteris
tics of the execution trace can be found in Brundage's 

thesis4 . The only new addition to the model described 

in our earlier work2 ' 3 is the addition of the string 
processor, which has been included to facilitate 
description of the significant amount of string mani
pulation involved in our current example, when the 
program executing on the Algol machine is a language 
translator. The operation of the abstract virtual 
machine in Figure 1 can be visualized as follows: 
The execution trace, representing the stream of re
source demands made during process execution, is 
input to the interpreter, which directs the resource 
requests to the appropriate processor. 

We next specify the measurement units for the 
resource model. We have chosen to define time in 
units of work performed by the computational and 
string processors. In the model, requests for 



Virtual 
Memory 
Processor 

~~ 
String 

Execution Processor 

Trace --- • ~ 

- Interpre.ter ~ Arithmetic/ 
Logical -- Processor ~ .._ 

Input/Output 
Processor 

Figure 1 Algol Process Machine 

service by the input/output processor or the virtual 
memory processor in the execution trace do not 
"consume" time but they do signify that the arithmetic/ 
logical processor (or string processor) has been 
halted because of a request for service by a different 
processor. Thus the process is blocked from using the 
arithmetic/logical processor until this request has 
been satisfied. Memory requests are specified in 
"words", which correspond in general to the cells of 

Johnston's contour model
5

• 

3. Measurement Technique 

The hardware and software of a Burroughs BSSOO 
were modified to permit the acquisition of a magnetic 
tape of execution events with each event precisely 
time-stamped. A software-controlled hardware counter 
was constructed and the 1 MHz clock pulses of the 
BSSOO processor were input to this counter, which 
could be started, stopped, read, and reset under pro
gram control. The BSSOO Algol compiler and the 
operating system were modified such that each event 
of interest during execution of an Algol program 
caused a time-stamped event record to be written on 
magnetic tape. This trace tape was used, in conjunc
tion with an inverse symbol table, to generate 
symbolic trace tapes which were processed to obtain 
the results presented here. More complete details 
of the technique for data collection and reduction 

are described elsewhere
2

'
4

• All.times given in the 
results are fat the BSSOO equivalent of our computa
tional processors and do not include time normally 
spent on that real processor for virtual memory al
location or for I/O processing. These activities 
were deleted during processing of the raw trace data 
to permit presentation of the results in terms of 
the abstract machine of Figure 1. 

4. Results 

The BSSOO Algol compiler, the source language 
program executing on the Algol machine in this ex
periment, is a large and complex program. It contains 
around 12,000 lines of Algol code, and has over 250 
Algol blocks. When this program was executing in 
the experiment described here, there were 37,261 
block/procedure entries, compared with 28,911 of 

these in the 34-program sample described earlier
2

•
3 

by two of the authors. In addition, there were 
22,875 distinct activations of the string processor. 
This effect was not included in the earlier results 
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since the programs in that sample performed little. 
character manipulation. 

The results presented earlier for the 34-
program sample consisted of 23 distinct distributions, 
and it is clearly impossible to present all of these 
here. Rather, we will direct our attention to those 
execution characteristics which are most evidently 
germane to the designer of an Algol-60 machine, and 
the characteristic statistics for the distributions 
of these values are presented in Table 1. 

Two important machine resources are processors 
and memories. We first discuss some of the data on 
the memory demands made on the Algol' machine. The 
first line of Table 1 shows the statistics for the 
distribution of sizes of program segments called during 
execution. The most interesting characte.ristic of 
these code segment size distributions is the fairly small 
size of most code segments. The experimental results 

for the sample of user programs 2 are not markedly 
different. The user sample had mean and median of 
38.7 and 23 words, respectively, as compared to 90.8 
and 14 words found in this experiment. Since a pro
gram segment must be brought into executable memory 
before it can become the site of execution, the 
relatively small sizes of the segments have definite 
implications for the design of the virtual me1rnory 
subsystem for an Algol-60 machine. For a page-base!d 
design, for example, it would seem prudent to keep 
page sizes down to something rather smaller than the 
current fashion of lK words to avoid excessive inte~r
nal fragmentation of executable memory. 

Another consequence of a procedure call is that 
space must be allocated for its contour data segment. 
Most Algol-60 implementations store this in a push-
down stack. Line two of Table 1 shows the statist:Lcs 
for contour data segment sizes for the 134 distinct 
blocks/procedures activated during this experiment. 
The distribution has 37,261 events (more than the 
33,184 program segment activations because of recur
sive procedure calls, which generate a new contour 
data segment for each recursion), and the mean and 
median are 6.96 and 2.5 words respectively. These 
figures indicate the amount of stack space associated 
with procedure calls, and do not include storage for 
the elements of arrays declared locally to the block. 
Recursive procedure calls accounted for 11% of the. 
sample. 

Once a procedure has been entered it has a 
certain active lifetime before it is finally exite~d, 
and line three of Table 1 shows the statistics of the 
lifetime distribution for all contour data segments. 
The mean of around 8 ms., and median of 0.75 ms. are 
those measured on our BSSOO 1 MHz equivalent of the 
arithmetic and string processors of Figure 1, and 
should be modified appropriately for a processor with 
a different execution speed. These block lifetim1as 
are very short, and in fact 50% of the lifetimes of 
all procedure activations are less than 0.35 x lo-4 
of the total processor time of the experiment. Block 
lifetimes are not in general equal to the p1::ocessor 
time consumed while control resides in that block 
(the outer block, for example, has a lifetime equal 
to the total processor time) and we shall later pro
vide much stronger evidence of the preponderance of 
short-lived, short execution-time procedures in the 
workload of the Algol machine. 

The dynamic distribution for the block execu
tion times - i.e. the processor time consumed while 
control resides in each activated block, is described 
by the statistics of line four of Table 1. The mean 
of this distri.bntion at 0. 5 7 ms. is considerably 
smaller than that of the block lifetime distribution, 
as would be expected, but the median of 0.34 ms. is 



Variable 

Program Segment Size (words) 

Contour Data Segment Size (words) 

Contour Lifetime (milliseconds) 

Block Execution Time (microseconds) 

Contour Transition Interval (microseconds) 

Block Execution Time/Block Lifetime 

String Processor Burst Time (Microseconds) 

Sample 
Size 

33,184 

37,261 

37,261 

37,261 

74,521 

37,261 

22,875 

Median Mean 

14 90.8 

2.5 6.96 

0.75 7.94 

344 566 

140 282 

1.00 0.64 

235 330 

Std. 
dev. 

185 

9.75 

250 

1322 

509 

0.33 

246 

Table 1 Summary Statistics for Measured Variables 

not greatly different from the median of the lifetime 
distribution. This suggests that a large number of 
the procedures activated are simple, in the sense that 
they make no calls on other procedures, and we explore 
this hypothesis explicitly below. The most outstanding 
feature of the block execution times is their short 
duration. The mean of 566 µs represents the execution 
of only around 50-100 B5500 instructions per procedure, 
and thus it is clear that for this particular workload 
the Algol machine needs an efficient implementation 
for the procedure activation mechanism. The results 

3 
from the 34-program sample reported earlier are not 
in conflict with this observation - although the 
mean found there was 17.7 ms. with a standard devia
tionof 1260 (the distribution was highly skewed), the 
median was found to be 0.63 ms. One is tempted to 
ascribe the smaller mean for the Algol compiler to 
the fact that it was written by very expert programmers 
who used structured programming techniques (in 1966 
or so) long before that term arrived in the world of 
computing. Equally, we point out that extensive mod
ularization of programs into small procedures can im
pose severe execution speed penalties if the procedure
calling mechanism is inefficiently implemented. Taking 
the present results for the Algol compiler we see 
that a procedure activation time of 50 µs represents 
10% of the total execution time. The median proce
dure execution time was 0.16 x lo- 4 of the total 
processor time for the sample. 

Another indication of the importance of the pro
cedure entry and exit mechanism is seen in the distri-

bution of contour-transition intervals3 •5 . A contour
crossing event is either the entry to or exit from a 
procedure or block. Each such event, in terms of the 
abstract machine of Figure 1, involves a call on the 
virtual memory processor for allocation or de
allocation of a contour data segment. In more practi
cal, current systems it corresponds to a call on the 
procedure entry or exit mechanism, since there are 
only a very few non-procedure blocks in the sample. 
The mean of around 280 µs, and median of 140 µs, (line 
five of Table 1) illustrate even more forcefully the 
important effect on performance of the design of 
this feature of a high-level language machine. 

The values obtained when each block execution 
time is divided by its lifetime will be unity only 
for "simple" procedures, i.e. those which make no 
calls on other procedures. We see in line six, Table 1 
that around 50% of all procedure activations were of 
that type. The standard "intrinsic" procedures of 
the Algol compiler (such as ABS, SQRT, etc.) were 
treated as if they were in-line code and calls on them 
are not included as procedure activation events. The 

relatively large number of such simple procedures in
dicates that some performance improvement might be 
obtained by designing a special simple mechanism for 
their implementation. The corresponding figure for 
the sample of 34 user programs reported earlier was 
that 80% of all procedure calls were of this simple 
type. 

In the final line of Table 1 we present the 
statistics for the durations of bursts of activity on 
the string processor. Our execution traces were~such 
that the string processor is always called from the 
arithmetic/logical processor, and the string processor 
times are included in the block execution times de
scribed above. The 37,261 block activations contained 
22,875 calls on the string processor for string ma
nipulation activities (corresponding to entries to 
"character mode" on the Burroughs B5500 processor), 
and these string manipulation bursts had a mean dura
tion of 330 µs, with a median of 235 µs. The large 
number of calls for such services, and the fact that 
they account for over a third of all the processing 
time, illustrates the utility of sophisticated string 
manipulation facilities in language translation. 

5. Concluding Remarks 

The results presented here can serve as useful 
information to the designer of an Algol machine, 
whether this be in the form of a· complete hardware 
system or through the more conventional software
hardware combination in use today. The general 
characteristics of the data are not in conflict with 

the results presented earlier2 •3 for a sample of 34 
user-written production programs, though there are 
some interesting differences which we shall comment 
upon later. Perhaps the most outstanding result, for 
the designer of a high-level language machine, is the 
crucial importance of the procedure entry and exit 
mechanism. It seems clear that procedure activation 
occurs at such frequent intervals that close attention 
should be given to the design of this feature of an 
Algol machine. Moreover, the frequency of activation 
of "simple" procedures is so high that it may well be 
worthwhile to provide a special mechanism for such pro
cedure calls. In the user program sample, where 80% 
of all procedure activations were of this type, there 
were in addition an unknown large number of calls on 
standaLd procedures such as SIN, SQRT, etc. which 
would considerably increase this effect. It may be 
inexpedient to implement all procedure calls with a 
generalized Algol-60 facility. 

The block execution times for the Algol compiler 
execution presented here have a distribution which is 

153 



much less skewed than that found for the sample of 
user programs. While this is partially due, no doubt, 
to the fact that only one program is involved here 
(though written by several programmers), we feel that 
programming style is a major contributing factor. 
The Algol compiler is a well-modularized, sophistica
ted program written by very experienced programmers, 
and one is tempted to call it "structured". It is, 
therefore, probably no accident that the rate of pro
cedure entry and exit events is S·ignificantly higher 
for this program than was found for the sample of user 
programs. If programmers of the future are going to 
be using structured programming techniques, at least 
in the sense of writing highly modularized programs, 
then our results indicate that designers of new 
systems must give especially careful attention to the 
implementation of procedure entry, parameter transfer, 
and procedure exit mechanisms to ensure high perfor
mance. 
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ABSTRACT 

This paper gives a summary of the research which led to 
the design of the cache memory in the DEC PDP-11/70. 
The concept of cache memory is introduced together with 
its major organizational parameters: size, associativ
ity, block size, replacement algorithm, and write strat
egy. Simulation results are given showing how the per
formance of the cache varies with changes in these pa
rameters. Based on these simulation results the design 
of the 11/70 cache is justified. 

Introduction 

One of the most important concepts in computer systems 
is that of a memory hierarchy. A memory hierarchy is 
simply a memory system built of two (or more 1

) memory 
technologies. The first technology is selected for fast 
access time and necessarily has a high per bit cost. 
Relatively little of the memory system consists of this 
technology. The second technology is selected for low 
per bit cost and necessarily has a slow access time. 
The bulk of the memory system consists of this technol
ogy. The use of the hierarchy is coordinated by user 
software, system software, or hardware so that the over
all characteristics of the memory system approximate 
the fast access of the fast technology and the low per 
bit cost of the low cost technology. An example of a 
user software managed hierarchy is core/disk overlaying; 
and of a system software managed hierarchy is core/disk 
demand paging. The prime example of a hardware managed 
hierarchy is a bipolar cache/core memory system. 

Until recently the concept of cache memory appeared only 
in very large scale, performance oriented computer sys
tems such as the IBM 360/85 [1,2] and 370 models 155 
and larger. Recently a small cache was announced as an 
option for the DG Eclipse [3J computer system. A lar
ger, internal cache memory is part of a recently an
nounced DEC PDP-11 family computer system:the PDP-11/70 
[4] • The content of this paper is a summary of the re
search done on the feasibility of using a bipolar cache/ 
core hierarchy in PDP-11 family computer systems. 

Cache Memory 

A cache memory is a small, fast, associative memory lo
cated between the central processor (Pc) and the primary 
memory (Mp). Typically the cache is implemented in bi
polar technology while Mp is implemented in MOS or mag
netic core technology. Stored in the cache are address
data (AD) pairs consisting of an Mp address and a copy 
of the contents of the Mp location corresponding to that 
address. 

The operation of the cache is as follows. When the Pc 
accesses Mp the address is first compared against the 
addresses stored in the cache. If there is a match the 
access is performed on the data portion of the matched 
AD pair. This is called a hit and is performed at the 
fast access time of the cache. If there is no match -
called a miss -- Mp is accessed as usual. Generally, 
however, an AD pair corresponding to the latest access 
is stored in the cache -- usually displacing some other 
AD pair. It is the latter procedure which tends to keep 
the contents of the cache corresponding to the Mp loca-
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tions most commonly accessed by the Pc. Because pro
grams typically have the property of locality, that is, 
over short periods of time most accesses are to a small 
group of Mp locations, even relatively small caches 
have a majority of Pc accesses resulting in hits. The 
performance of a cache is described by its miss ratio 
the fraction of all Pc references which result in 
misses. 

Cache Organization 

There are a number of possible cache organizational pa
rameters. These include: 

1. The size of the cache in terms of data stor
age. 

2. The amount of data corresponding to each ad
dress in the AD pair. 

3. The amount of data moved between Mp and the 
cache on a miss. 

4. The form of address comparison used. 

5. The replacement algorithm which decides 
which AD pair to replace after a miss. 

6. The time at which Mp is updated on write 
accesses. 

The most obvious form of cache organization is fully 
associative with the data portion of the AD pair cor
responding to basic addressable unit of memory (typi
cally a byte or word) as indicated by the system archi
tecture. On a miss this basic unit is brought into the 
cache from Mp. However, for several reasons, this is 
not always the most attractive organization. First, be
cause procedures and data structures tend to be sequen
tial, it is often desirable to bring into the cache on 
a miss a block of adjacent Mp words. This effectively 
gives instruction and data prefetching. Second, be
cause of associating a larger amount of data with an ad
dress, the relative amount of the cache storage which 
is used to store data is increased. The number of 
words moved between Mp and the cache is termed the block 
size. The block size is also typically the size of the 
data in the AD pair2 and is assumed to be that for this 
discussion. 

In a fully associative cache any AD pair can be stored 
in any cache location. This implies that for a single 
hardwarE~ address cdmparator the Mp address must be com
pared serially against the address portions of the AD 
pairs (which is too slow). Alternatively there must be 
a hardware comparator for each cache location (which is 
too expensive). An alternative form of cache organiza
tion which allows for an intermediate number or compara
tors is termed set associative. 

A set associative cache consists of a number of sets 
which are accessed by indexing rather than by associ
ation. Each of the sets contains one or more AD pairs 
(of which the data portion is a block) • There are as 
many hardware comparators as there are AD pairs in a 
set. The understanding of the operation of a set associa
tive cache is aided by Figure 1. The n bit Mp address 



is divided into three.fields of JI,, i, and b bits. As,... 
sume that there are 2i sets. The i bit index field se-
lects one of these sets. The A portion of each AD pair 
is compared against the JI, bit label field3 of the Mp ad
dress. If there is a match,the b bit byte field se
lects the byte (or other sub unit) in the D portion of 
the matched AD pair. 

If there is no match Mp is accessed and (generally) a 
new AD pair is moved into the cache. Which of the AD 
pairs to be replaced in the set is selected by the re
placement algorithm. Typical replacement algorithms are 
first in, first out (FIFO); least recently used (LRU), 
or random (RAND) • 

~------ -------------·----- -·- n ·····-----------------------1 

~----- f-----+-------- i--------f--b·---1 

Figure 1 Address fields for a Set Associative Cache 

There are two limiting cases of the set associative or
ganization. When the number of sets is the cache size 
in blocks, only a single hardware comparator is needed 
and the resulting organization is called direat mapped. 
It is the simplest form of cache organization. When 
there is only one set, clearly a fully associative 
cache results. 

So far in the discussion there has been no distinction 
made between read and write accesses. When the Pc makes 
a write access, ultimately Mp must be updated. There 
are two obvious times when this can be done. First is 
at the time the write access is made. Both Mp and the 
cache (if there is a hit) are updated simultaneously. 
This strategy is termed write-through. Alternatively, 
onlv the cache can be updated on a write hit and only 
when the updated AD pair is replaced on some future 
miss is Mp updated. This str~~~~Y is termed write-back. 
The choice between these two strategies involves sys
tems considerations which are beyond the scope of this 
paper. 4 

There are other possible asymetries in the handling of 
reads and writes. One possibility is that after a 
write miss an AD pair corresponding to that access is 
not stored in the cache. This is termed no-write-allo
cate. The alternative is of course termed write-allo
cate. 

Cache Memory Simulation 

The understanding of memory hierarchies (and programs) 
has not reached the point where cache performance can 
be predicted analytically as a function of cache organ
izational parameters. As a consequence the studying of 
cache memory behavior is done through simulation. 
(Some cache simulation results for other computer ar
chitectures are reported in [2, 5, 6, 7]). For the 
purposes of this study a two part simulator was con
structed. 

The first part was a PDP-11 simulator. This is a PDP-11 
program which rtuls other PDP-ll'programs interpretively. 
A variety of properties of the interpreted programs can 
be collected including the sequence of Mp addresses 
generated. The latter is termed an address trace. The 
address trace is processed by the second part, the 
cache simulator. This is parameterized by cache organ
ization and determines the miss ratio for a given ad
dress trace. 
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Cache Simulation Results 

Since the performance of cache memory is a function not 
only of cache organization parameters but also of the 
program run, it is desirable to run cache simulations 
with a wide variety of programs. Multiplying thesei by 
a wide variety of a cache organizational parameter::; to 
be simulated resulted in a considerable1 amount of simula
tion data of which only the highlights are reported 
here. 

The first experiment was to determine the approximate 
overall size of the cache memory. Plots of the miss 
ratio against cache size for several programs5 are given 
in Figure 2. (All sizes in both the figures and the 
discussion are 16 bit PDP-11 words.) A block size of 
two and a set size of one were held constant. In qen
eral the miss ratio falls rapidly for caches up to 1024 
words and falls less rapidly thereafter • 
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Figure 3 depicts the effect of set size (associativity) 
on cache performance. In order to clarify the results, 
Figures 3 through 6 only contain simulation data for a 
single program (the Macro assembler) which had the 
highest miss ratio in Figure 2. As expected a larger 
set size reduces the miss ratio. The largel3t improve
ment occurs in going from set size one to s1:!t size two. 
Although not shown, even going to fully associative has 
little further effect on the miss ratio. 

In Figure 4 the impact of block size is shown. Espe
cially in smaller caches,going to a larger block signi
ficantly reduces the miss ratio. This is a result of 
a smaller cache depending more on the prefetching ef
fect for its performance. 

The effect of write allocation and replacement algo
rithm is given in Figure 5. For the program comddered 
there is negligible performance difference across the 
different strategies. 

In Figure 6 the effect of periodically clearing the 
cache is depicted. This approximates the E!ffect on the 
cache of rapid context switching in that when a new 
program is brought in the cache appears "clear" to it. 
Even completely clearing the cache every 300 Pc accesses 
only degrades the miss ratio to 0.3. This represents 



a worst case condition that would be unrealized in prac
tice. For example the "new program" brought in every 
300 Pc references might be an interrupt handler. Any 
program running that often would typically find that 
the cache always contained information relevant to it. 
Indeed for the cache organization given it is impossible 
in 300 accesses to significantly clear a 1024 word 
cache. 

Conclusions 

The performance goals of the PDP-11/70 computer system 
required the typical miss ratio to be 0.1 or less. An
alysis of the preceding data with emphasis on the 
breaks in the curves suggested that the optimal organi
zation was a cache size of 1024 words, block size of 
two words, and a set size of two. Since the data sug
gests that replacement algorithm and write allocation 
strategies have negligible effect, a no-write-allocate 
strat~gy and a random replacement algorithm were se
lected. 

.2 

Cl) 
Cl) 

i: 

,l 

BLOCK SIZE = 2 

~--------.. CACHE SIZE 512 

'l_____,,___,__~-... "------- -. 1024 
---------. 2048 

2 4 
SET SIZE 

Figure 3 Effect of Set Size on Miss Ratio 

.2 
\~SET SlZE •I 

~ CACHE SIZE 512 

~ 1021J ------. _____ 
2048 

4 

BLOCK SIZE 

Figure 4 Effect of Block Size on Miss Ratio 

157 

Cl) 
Cl) 

.1 

i: .05 

Figure 5 

0.3 

0 

~ 
c::: 0.2 e::: 
C/) 

~ 
L 

0.1 -

Figure 6 

REFERENCES 

NO ALLOCATE 

ALLOCATE ON WRITE 

FIFO RAND LRU 

CACHE SIZE 1024 

SET SIZE 2 

BLOCK SIZE 2 

Effect of Replacement Algorithm and 
Write Allocation on Miss Ratio 

CACHE SIZE 10211 

BLOCK SIZE 2 

SET SIZE 2 

\ 

300 3000 30000. 

CLEAR liJTUNAL (/ICCESSES) 

Effect of Clear Interval on Miss Ratio 

1. Conti, C. J., "Concepts for Buffer Storage", Compu
ter Group News, Vol. 2, No. 8, March 1969. 

2. Conti, c. J., Gibson, D. H., and Pitkowsky, s. H., 
"Structural Aspects on the System I 360 Model 85, 
I. General Organization", IBM Systems Journal, 
Vol. 7, No. 1, 1968 . 

3. Ealipae Computer Systems, Data General Corp., 1974. 

4. PDP-11/?0 Proaessor Handbook, Digital Equipment 
Corp., 1975. 

5. Meade, R. M., "On Memory System Design", Proceedings 
of the Fall Joint Computer Conference, 1970. 

6. Bell, J., Casasent, D., Bell, G. G., "An Investiga
tion of Alternative Cache Organizations", IEEE 



Transactions on Computers, Vol. C-23, No. 4, April 
1974. 

7. Gibson, D. H., "Considerations in Block Oriented 
Systems Design", Proceedings of the Spring Joint 
Computer Confe.rence, 1967. 

NOTES 

1. Memory hierarchies can of course consist of three 
or more technologies. Discussion and analysis of 
these multilevel hierarchies is a fairly obvious 
generalization of the discussion and analysis given 
here. 

2. In a few complex cache organizations such as that 
in the IBM 360/85 the size of the D portion of the 
AD pair (called a sector in the 360/85) is larger 
than the block size. That potential level of com
plexity will be ignored in this discussion. 

3. Note that in a set associative cache only the label 
field must be stored in the cache AD pair -·· not 
the entire Mp address. 

4. For the PDP-11/70 system,write-through was chosen. 
The main impact of this is that each write access 
as well as each read miss results in an Mp access. 
Data suggests that in PDP-ll's about 10% of Pc ac
cesses are writes. 

5. These programs are system and user programs running 
under the PDP-11 DOS operating system. They in
clude the Macro assembler, FORTRAN compiler, PIP (a 
file utility program), and FORTRAN executions of 
numerical applications. The range of miss ratios 
is typical for the much wider group of programs ac
tually simulated. Indeed the miss ratio for the 
Macro assembler for a given cache size was the worst 
of any program simulated. 

158 
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Sununary 

A pipeline is defined to be a collection of re
sources, called segments which can be kept busy simul
taneously. A task once initiated, flows from segment 
to segment for its execution. A collision occurs if 
two or more tasks attempt to use the same segment at 
the same time. 

The collision characteristics of a pipeline with 
respect to a schedule of task initiations are investi
gated, A methodology is presented for modifying the 
collision characteristics with the insertion of delays 
so as to increase the utilization of segments and hence 
the throughput under appropriate scheduling. 

I. Introduction 

Pipelines are becoming increasingly connnon in many 
computers, sometimes for achieving high speed computa
tion at a lower cost than would result from simply 
using higher speec electronic components. However, in 
most cases it is used because of a better performance 
per unit cost over other architectures. A pipeline as 
defined here is a collection of resources called 
segments which can be kept busy simultaneously. A task 
once initiated, flows from segment to segment for its 
execution, in a predetermined manner. The effective
ness of the pipeline lies in the fact that a task can 
be initiated before the completion of some previously 
initiated tasks resulting in high performance and 
segments can be special rather than general purpose 
resulting in low cost. We term a pipeline in which 
all the tasks have identical flow patterns, a single 
function pipeline. In a multifunction pipeline there 
are two or more distinct possible flow patterns and 
each task uses one of these flow patterns. Each flow 
pattern is identified by a function name and it can be 
displayed in a reservation table, such as Figure 1 and 
6. Rows correspond to segments 'and columns to units of 
time. A function name, denoted by a single capital 
letter, is placed in row i and column j (cell (i,j)) if 
after j units of execution a task with that function 
name requires segment i. We shall consistently use X 
as a function name in single function pipelines. Fig.6 
is a reservation table of a multifunction pipeline with 
two distinct flow patterns for two functions A and B. 

In our model we assume that a task once initiated 
must flow synchronously without preemption or wait. 
There is no restruction on the flow patters, however. 
In Fig. 1, multiple X's in a row may indicate either a 
slow segment or segment reusage (feedback). Multiple 
X's in a column indicate parallel computation. It is 
the reusage of a segment which poses a problem, namely, 
two or more tasks may attempt to use the same segment 
at the same time, resulting in a collision. However, 
in multifunction pipelines even without any reusage, a 
collision may occur because of two or more independent 
and distinct flows of tasks. 

In previous work, the central problem treated is 
to schedule the tasks in a given pipeline so as to 
achieve high throughput without causing any collision. 
This problem was first investigated in [l]. Subsequent 
work on this problem is reported in two doctoral 

t This research was supported in part by the National 
Science Foundation under Grants GJ-35584X and GJ-40584 
and in part by the Joint Services Electronics Program 
(U.S.Army,U.S.Navy, and U.S. Air Force) under Contract 
DAAB-07-72-0259. 
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theses [2,3]. An overview of some related results and 
a more comprehensive bibliography can be found in [4]. 
Our investigation is from a different perspective and 
seeks a methodology for modifying the reservation table 
of a given pipeline so as to increase the utilization 
of segments and hence the throughput under appropriate 
scheduling. 

The pipeline utilization is limited by its colli
sion characteristics which are a result of the usage 
patterns of the segments. One way of modifying usage 
pattern is by segment replication. Another way is to 
remove our assumption regarding the waiting of a task 
between two steps and provide internal storage buffers 
which allow variable delay between segments [4]. Still 
another way of changing a usage pattern is by insert
ing noncompute segments, which simply provide a fixed 
delay between some computation steps. It is the modi
fication of a pipeline by the use of noncompute seg
ments which is the concern of this paper. It is assum
ed that any computation step can be delayed by insert
ing usage of a noncompute segment, where each X in the 
reservation table is considered to be a computation 
step. 

We shall first consider single function pipelines 
for ease of understanding, since the notational com
plexity of multifunction-PiPelines is considerable. 

II. Single Function Pipelines 

We start by investigating some collision charac
teristics of a single function pipeline (referred to 
simply as pipelines in this and the following section). 
A usage interval of a segment is defined to be a time 
interval between two reservations (X's) of that seg
ment by a single task. For example in Fig. 1, all 
usage intervals of s0 are 2, 3 and 5. Let ! be the 

set of all usage intervals of a pipeline; e.g., 
[•{l,2,3,5} for Fig. 1. Clearly any two tasks will 
cause a collision if and only if they have the same 
initiation time interval as one of the usage intervals. 

A sequence of task initiations can be completely 
described by a sequence of initiation intervals be
tween successive tasks (also known as latency), For 
example, task initiations at time instants O, 3, 5, 9 
and 12 can be described by the latency sequence 
(3,2,4,3). An initiation interval of 0 is not permis
sible. Let G be the set of all initiation intervals 
(not just th~ intervals betw;;;n successive initiations) 
of a latency sequence. Thus Q for the latency sequence 
(3,2,4,3) is {2,3,4,5,6,7,9,12}. 

If a subsequence of latencies appear periodically 
in an infinite sequence, it is termed an initiation 
cycle. Thus a cycle (2,3,2,5) implies an infinite 
initiation sequenc~ (2,3,2,5,2,3,2,5,2,3,2,5,2, ..• ). A 
constant latency cycle is a cycle with only one latency 
latency; e.g., cycle (4). Let the period, p, of a 
cycle be defined as the sum of the latencies in the 
cycle. Thus the period p of cycle (2,3,2,5) is 12 and 
p of cycle (4) is 4. The average latency, £a of a 

cycle is the average of the latencies of the cycle. 
For example, £a for cycle (2,3,2,5) is 12/4•3. This 

implies an average initiation rate of one task every 
3 time units. 

The initiation interval set Q of a cycle is simply 
the set Q of the infinite initiation sequence implied 
by the cycle. Thus Q={4,8,12,16,20 ••• } for cycle (4) 
and for cycle (2,3,2,5) Q is {2,3,5,7,9,10,l2,l4,15, 
17,19,21,22,24,26, ••• }. Let G mod p be the set formed 



by taking modulo p equivalents between 0 and (p-1) of 
the elements of G, For cycle (2,3,2,5) with pml2, 
Q mod 12=[0,2,3,S,7,9,10} and for constant cycle (4) 
with p=4 Q mod 4=(0}. It can be shown that Q and 
G mod p of a cycle have the following simple properties, 
~emembering that 0 is not a permissible initiation 
interval. 

Pl.a. if g~O then g E Q mod p => g+ip E Q Vi?_O 

b. 0 E Q mod p and ip E Q Vi~l always. 

P2.if g ~ 0 then g E Q mod p <=> (p-g) E Q mod p. 

It is useful to introduce the set M, the comple
ment set of Qin .&..• the set of positive integers. 

Clearly H mod p = Z -G mod p. Where Z is the set of - -p- -p 
integers modulo p. Then the following is a direct 
consequence of P2. 

P3. h E tl mod p <=> (p-h) E li mod p. 

An initiation interval between two tasks is said 
to be allowable w:ith respect to a. pipeline if these 
tasks do not colUde in the pipeline. A cycle is al
lowable with respect to a pipeline if all its initia
tion intervals are allowable. CoP,versely, we also say 
that a usage interval or a pipeline is allowable with 
respect to a cycle if no collision occurs. A collision 
occurs in a pipeline when a cycle. is followed iff (if 
and only if) some initiation interval of the cycle 
equals a usage interval of the pipeline. Thus a cycle 
is allowed by a pipeline iff there are no elements com
mon between the usage interval set, F, of the pipeline 
and the initiation interval set, Q, of the cycle; i.e.' 
iff F n G = ~, or equivalently, iff F c H. Thus H, the 
complement set of Q can be described-as the set of al
lowable usage intervals with respect to the given cycle. 
By using the property Pl of G, tQe allowability con
dition can be reduced to the-following theorem. 

Theorem 1: A cycle with period p and initiation 
interval set G is allowed by a pipeline with usage 
interval set !, iff (f mod p) n (Q mod p) = 2_. 0 

A constant 
mod p is always 

Corollary 1. 1 : 
pipeline iff no 
of ;,. 

latency cycle (t) has p = ;,. Its Q 
[OJ and hence the following. 

A constant cycle (t) is allowed by a 
usage interval is an integral multiple 

It is helpful to look at the allowable usage in
terval set H to see what allowable pipelines can be 
constructed-for a given cycle. Let a row which has an 
X in each of columns t 1,t2 , •.. tk be denoted as row 

[t
1
,t

2
, ..• tk}; e.g., the 2nd row.of Fig. 1 is row fl, 

2 ,4}. A pipeline is allowed by a cycle if all its rows 
are allowed. To construct an allowable row we can 
start by placing an X in some column i. We can place 
another X in some column j, only:if the usage interval 

li-jl E g; a third X in some column kif Ii-kl and 
j-k E g, and so on. 

However, it is convenient to restrict the column 
numbers to be between 0 and (p-1), and still retain all 
the useful information. For this, let us define two 
elements i, j E ~'to be compatible if li-jlEtl mod p. 

The use of the absolute quantity can be avoided by 
using property P3 of li mod p. Thus we have the follow
ing lenuna. 

Lenuna 2.1: Two integers i,jE Z are compatible iff -p: 
( i- j ) mod p E li mod p. D 

Using the definition of compatibility or the above 
lenuna we can form all the compatibility classes on the 
elements of z , given a cycle. A compatibility class 

-p 
is one in which each element is compatible with every 
other element in the class. We need to form only the 
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maximal compatibility classes. A maximal ~npatibility 
class is not a subset of any other compatibility class. 
--If [z1,z2 , ••. zk} is a compatibility class with 

respect to some cycle then the row [zl'z2, ... zk} is al

lowed by that cycle. This is because by the definition 
of compatibility all usage intervals lzi-zjl are al-

lowable. In this way we can produce only a limited 
number of allowable rows. However, with the use of' 
property P3 and Lemma 2.1 it is possible to construct 
other allowable rows as follows. 

Theorem 2: Given a cycle with period p, the following 
rows, and only those rows, are allowed by th1~ eye le: 

row [z1+i1p, z2+i2p, .•• J V integers i 1,i2, ... 

and V compatibility classes [z1,z2, ... J of 

the cycle. 0 

Consider a problem in which a pipeline, character
ized by its usage interval set, is given and one has 
complete freedom in choosing an allowable inltiation 
sequence. Bounds on the minimum average lat1~ncy of 
such sequences and a branch-and-bound algorithm to 
discover a minimum average latency allowable cycle are 
reported in [l] and [4]. Minimum average latency 
cycles maximize segment utilization, where utilization 
is measured as the percent of time the segment remains 
busy. 

Here we consider the reverse problem. :Namely, a 
cycle is given and one has complete freedom :in choos
ing any allowable usage pattern. While the :9olution 
to the former problem is useful for scheduling a given 
pipeline, the solution to this problem is useful for 
designing a pipeline for a given schedule. Theorem 2 
completely characterizes the entire class of allowable 
pipelines. We shall soon see that it is possible to 
put an upper bound on segment utilization with the: 
help of the compatibility classes. To achieve maximum 
utilization of a segment for a given cycle, we must 
increase the number of usages per task; i.e., increase 
the number of X's in a row. Theorem 2 gives all pos
sible allowable rows and it implies that the maxin~m 
number of X's in any allowable row is equal to the: 
size of the largest compatibility class. Thus the: 
maximum achievable utilization of a segment with 
respect to a given cycle is the ratio of the size of 
the largest compatibility class to the average lat:ency 
of the cycle. 

Example 1: For cycle (1,9), p=lO, average latency 
i,a=5, Q mod 10 = [0,1,9} and hence tl mod 10 = [2,3,4, 

5,6,7,8}. The maximal compatibility classes contain
ing 0 are [0,2,4,6,8}, [0,2,4,7}, [0,2,5,7}, [0,3,5,7}, 
[0,2,5,8}, [0,3,5,8}, and [0,3,6,8} of which the larg
est has size equal to 5. Note that classes contalning 
0 are sufficient to characterize all classes since a 
constant may be added modulo p to all elements of a 
compatibility class to produce another compatibil:f.ty 
class. Thus by Theorem 2, no allowable row has more 
than 5 X's. This implies that the maximum possible 
segment utilization with cycle (1,9) is 5/5=100%. D 

Example 2: For cycle (2,3,7), p=l2, i,a=l2i3=4, 

Q mod 12•[0,2,3,5,7,9,10} and hence tl mod 12=[1,4,6,8, 
11}. The maximal compatibility classes containing 0 
are [0,1}, [0,4,8}, [0,6}, and [0,11} of which the 
largest has 3 elements. Thus the maximum number of 
X's in any allowable row is 3 which in turn implies a 
maximum segment utilization of 3/4•75%. In other words 
no allowable pipeline for cycle (2,3,7) has a segment 
which is busy more than 75% of the time. 0 

Among cycles with same i,a' those which allow a 

high utilization and hence more economical realization 
are clearly preferable. Furthermore they offer more 



flexibility in pipeline de-sign. Let us define a cycle 
to be perfect, if it allows a 100% segment utilization; 
e.g., cycle (1,9) of Example 1. Unfortunately we can
not test the perfectness of a cycle without forming 
the compatibility classes. However, we know a special 
class of perfect cycles which are of considerable 
interest in single function pipelines. 

Theorem 3: All constant latency cycles are perfect. 

Proof: For constant cycle (t), Q mod p=[O} and thus 
!! mod p=fl,2 ... (t-1)}. One can verify that [0,1,2, ..• , 
(t-1)} is a compatibility class with t elements. Hence 
the upperbound on the segment utilization is 
/,/ t = 100%. 

III. Noncompute Segments 

0 

In this section we consider the addition of non
compute segments to a pipeline to make it allowable for 
a given cycle. The effect of delaying some computation 
step can be displayed in a reservation table by writ
ing a 'd' before the X which is being delayed. Each d 
indicates one unit of delay called an elemental delay. 
In the absence of any other information on precedence, 
we must assum~ that all the steps in a column must be 
completed before any steps in the next column are 
executed. Therefore, if the steps in column 2 of Fig. 
1 are unevenly delayed, we must store the output of 
some steps so that all the outputs are simultaneously 
available to the steps in column 3 of Fig. 1. The 
effect of delaying the step in row 0, column 2 (x02 ) 

of Fig. 1 by 2 units and x22 by 1 unit is shown in 

Fig. 2. The elemental input delays d1 , d2 , and d3 
require the elemental output delays d

4
, d

5
, and d6 . 

Now given some integer i between 0 and (p-1), we are 
in a position to delay any step arbitrarily such that 
the step occurs in a column number equivalent to i 
modulo p. Thus given a cycle, we can make any row of 
a given reservation table to look like one of the rows 
of Theorem 2; provided of course, the row does not 
have more X's than the size of the largest compatibil• 
ity class of the.cycle. Hence we have the following 
theorem. 

Theorem 4: For a given cycle, a pipeline can be made 
allowable by delaying some of the steps, iff the 
number of X's in each row of the reservation table is 
less than or equal to the size of the largest compati
bility class of the cycle. 0 

Corollary 4.1: For a given constant latency cycle (t), 
a pipeline can be made allowable by delaying some steps, 
iff there are no more than t X's in each row of the 
table. 0 

An important implication of Corollary 4.1 is that 
by adding elemental delays to a pipeline one can always 
fully utilize a single function pipeline with the use 
of a cycle with constant latency equal to the maximum 
number of X's occurring in any single row of the reser
vation table. Full utilization of a pipeline here, 
means that at least one segment is busy all the time. 
Thus the maximum achievable throughput of that pipe
line iB attained. Of course complete redesign or 
replication of selected segments to reduce the number 
of X's in a row may allow higher throughput. 

Example 3: The reservation table of Fig. 1 is to be 
made allowable with respect to cycle (1,5). The re
sulting table appears in Fig. 3. For cycle (1,5), 
p=6, Q mod 6=[0,1,5} and hence !! mod 6=[2,3,4}. The 
maximal compatibility classes containing 0 are: 
[0,2,4} and [0,3}. The first row of Fig. 3 is row 
[0,2,10}, which resulted from the class [0,2,4} by 
constructing row [0,2,4+p} as per Theorem 2. The 
second row, [1,3,5} results from class [0,2,4} and the 
third row, [2,4} results from class [2,4} c [0,2,4}. 

Thus all the rows are allowable. 0 

Once we have a modified table, we need to assign 
the elemental delays to noncompute segments. Noncom-

• pute segments are physical resources like any other 
segment and may be shared by various elemental delays 
for their efficient utilization. Two elemental delays 
di and dj are defined to be compatible if lti-tjl 

mod p E !! mod p. Where t 1 and tj are labels of the 

columns in which di and dj appear. Clearly, if di and 

d are compatible, they can share one noncompute segment 
j 

because the usage interval lti-tjl is allowable. Using 

the above definition we can form the maximal compatibil
ity classes of all the elemental delays present in the 
solution. All the elements of a compatibility class 
can share a single noncompute segment. Now the problem 
reduces to the standard covering problem; i.e., finding 
the minimum number of compatibility classes which cover 
all the elemental delays. 

Example 4: The set of elemental delays of Fig. 3 is 
<d 1,d2 ,a3,d4 ,d5 ,d6,dj>· Their corresponding column 

numbers are <3,6,7,8,9,2,3>. For cycle (1,5), !! mod 6 
is [2,3,4} (from Ex. 3). Thus [d 1,d

2
}, (d

1
,d3}, (d2 , 

d4}, [d2 ,d5}, [d2 ,d6}, [d2 ,d7}, [d3 ,d5}, [d3 ,d7} are 

the maximal compatibility classes. Noting that the 
subsets of maximal compatibility classes are compati
bility classes, one of many possible minimal cov~rs is 
[d1 ,d

2
}, [d4}, [d

5
}, [d6}, [d3 ,d

7
}. Thus 5 noncompute 

segments are required. The assignement above is shown 
in Fig. 4, where s3 through s7 are noncompute segmentsq 

Besides reducing the number of noncompute segments 
in a solution, it is also important to reduce the added 
execution delay. The execution delay of a task in Fig. 
1 is 6 units while in the modified table of Fig. 4 it 
is 11 units. In situations where it often becomes 
necessary to empty the pipeline; e.g., due to logical 
dependancies among tasks, the execution delay of a task 
can become an important parameter in determining the 
overall throughput. Therefore, we shall take the added 
execution delay as the objective function to be mini
mized. Now the problem of making a pipeline allowable 
can be formulated as follows. 

Let: I and J be the number of rows and columns in 
the given reservation table. Let dij and dlj be the 

number of elemental delays to he.inserted respectively 
at the i.nput and output of a step Xij of the reservation 

table. If no X occurs in cell (i,j) of the table then 
d and d' are defined to be zero. Some other di. ij ij J 
can be set to zero if it occurs between two consecutive 
computation steps which are indivisible. Let D be the 
added execution delay. Then the problem can be formal
ly stated as: 

Minimize D = I ( max (d . )\ 
O::d<J 0$.i<I iJ ') 

subject to the constraints, 

integer dij ~ O. . \ 

[ ( c - b )+cl 'b +cl + L ( max 
a ac h<J<c \0$.i<I 

E !! mod p. 

for each pair <Xab'Xac> with c > b. 

mod p 

where, g is the set of allowable usage intervals with 
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Figure 4. Assignment of elemental 
delays to noncompute segments 

Figure 6. Reservation table .for 
a multifunction pipeline 

FP-4689 

Optimum solutions are: 

cycle (2). ll mod 2 = [l} 

Added delay: 

Constraints: 

(i) [2 + max[d00 ,d10} - d00 + d02 + d11} mod 2 E [l}. 

(ii) [l + max[d00 ,d10} - d10 + d11} mod 2 E [l}. 

1. doo • d10 = d11 = o. do2 = 1. 

2 · doo = d11 = do2 = 0 · dio = 1 · 

Figure 5. Making the pipeline allowable for cycle (2): 

A branch-and-bound search for optimum solutions. 
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ON-LINE ARCHITECTURE TUNING USING MICROCAPTURE 

A~ M. Abd-Alla and I.ra.ird H. Moffett 
The George Washington University and 

the Naval Research Laboratory 
Washington, D.C. 

ABSTRACT 

The modification or tuning of the micro
code in a computer that utilizes a writable 
control store is one method whereby a program's 
execution time can be improved. A method for 
automatically performing a microcode tuning 
or synthesis has been developed by Drs. Karl
gaard and Abd-Alla and is discussed in detail 
in [l]. Presented is an extension of this 
effort which allows the microcode tuning to 
be performed on-line on program loops. This 
is accomplished by gathering data on charac
teristics of the program during its execution, 
utilizing this data to generate the informa
tion required to tune the microprogram, initi
ating the on-line tuning procedure, and trans
ferring to the tuned routine to complete the 
execution. 

INTRODUCTION 

The primary effort in utilizing user 
microprogrammed machines is usually to write 
a microprogram that performs in a manner 
similar to an assembly language macro. This 
is usually done because the user requires 
greater throughput for his program than the 
standard microcode allows. This remicro
programming to increase throughput (or 
tuning) is performed manually. The general 
steps required to perform this tuning are: 

.(1) Identify segments of the microcode 
which permit possible optimization 

(2) Create a new micro-routine which 
performs the same function of the chosen 
microcode segment so as to improve machine 
performance 

(3) Load the new micro-routine into 
the machine and communicate these archi
tecture changes to the system programs so 
that the new architecture can be utilized. 

A method for automatically performing 
microcode tuning or synthesis has been 
developed by Abd-Alla and Karlgaard [l] • 
Although this method is general enough to 
be applied to many user applications, it 
requires considerable overhead which prohibits 
its use for real time applications. This 
paper is an extension of the microcode tuning 
effort to allow the tuning of program loops 
to be accomplished "on the fly" during run 
time. The technique itself is entitled 
"Microcapture Timing" where microcapture 
refers to the capturing of the program loop 
and tuning refers to the remicroprogramming 
of the machine. To date there is no other 
method known to the authors that performs 
architecture tuning on-the-fly. 
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The following sections present briefly: 
the tuning algorithm developed in [l], the 
drawbacks of this method for real-time appli
cations, a method for performing the trace to 
generate the required statistics, an approach 
to performing the actual synthesis, and future 
efforts to be performed by the authors in 
examining the utility of this tuning method. 

Heuristic Synthesis Algorithm 

A synthesis procedure was presented [l] 
whereby the time required to perform operations 
in a program loop could be reduced. Basically 
this method required a trace of the program in 
order to gather data concerning the program 
operation. This data would enable one to detect 
the presence of loops, the number of times a 
specific memory location has been addressed 
within the loop, and whether that address was 
an instruction or an operand location. Then, 
as shown in Fig. 1, from statistics generated 
from the collected data the loop boundaries 
were determined and the most of ten used memory 
locations holding data referenced within the 
loop were determined. Those were placed in 
the GP microregisters and a new set of micro
instructions were created which utilized a 
microoperation stream equivalent to a register
to-register stream. After the loop was completed, 
a restore operation was performed. The 
synthesized microcode, along with the preload 
and restore operations, would then be called 
by a macro developed by the assembler or compiler. 
When this internal macro was called during program 
execution, the GP micro registers would be pre
loaded, the tuned microcode for the loop executed 
and the system restored for a continuation of the 
rest of the execution. This method has shown 
loop execution to be increased by a factor of 8 
for a data movement program. Several drawbacks 
to utilizing this procedure in this manner are 
that: (a) A trace program to generate usage 
data increases the amount of overhead for the 
program, (b) A program to generate the statistics 
must be run prior to selection of the data to 
be placed in the GP microregisters, (c) The 
synthesis is performed in software rather than 
by a microprogram. 

The Trace and Statistics Generation 

If one can perform a trace which does not 
increase the program execution overhead and can 
generate the statistics as the program is 
operating, then two major hurdles have been 
removed. This would allow the algorithm to be 
truly automatic. An approach to accomplishing 
this is to perform the trace and statistics 
calculation in hardware. This may seem very 
difficult at first but a relatively simple 
scheme for accomplishing this is described 
below. 



Based on a study of programs performed 
by IBM on the IBM 360 the average number of 
assembly language instructions in a program 
loop is 8 [2]. Therefore, if we examine 
every location as it is accessed and maintain 
a file of the last 16 or 24 locations used, 
we will encompass most program loops. These 
16 or 24 file locations will contain the 
address of the instruction plus the address 
of any operands the instruction may utilize 
during its execution. The statistics that 
are required for each location accessed 
during the execution of the loop are the 
number of times the location is accessed, 
determination of whether that location con
tained an instruction or an operand, and the 
determination of whether or not it is jump 
instruction. 

This can be accomplished by the use of a 
content addressable memory (CAM) and a high 
speed random access memory (RAM) used in con
junction with the microstore. See Fig. 2. 
The basic approach is as follows: as the 
computer reads an instruction from memory, 
the Content Addressable Memory is simultane~ 
ously searched using the location being 
addressed, i.e., contents of program counter 
as a target. 

If there is a match, a flag in the CAM 
would be set corresponding to a repeated 
location. For each CAM word there is a 
corresponding word in the random access 
memory. Contained in that word is: (a) the 
count or whether that location has been 
recently addressed, (b) whether or not it 
is a jump instruction, (c) whether it is 
an instruction or an operand, (d) whether 
the instruction contains an indirect address, 
and (e) computer status information. The 
accessed RAM data is compared to 110 (count, 
jump and no operand) and if it is equal, the 
synthesis phase may be initiated. If it is 
not equal to 110, the count field is set to 
1 and the word is stored back in the RAM 
location. 

If there is no match, then the next avail
able space in the CAM is loaded with that 
addressed location. (This space is determined 
by the CAM/RAM address counter which is modulo 
the number of words in the CAM.) The corre
sponding location in the RAM has its count 
set to 0 and its jump, operand, indirect and 
status locations set accordingly. 

Whether the accessed location is an 
instruction or operand location can be deter
mined by the computer phasipg. To determine 
if it is a jump instruction or if the instruc
tion contains an indirect address either the 
instruction decoder has to set a flag or it 
can be determined in the microcode. The status 
information can be determined by examining 
the pertinent flip-flops and registers. This 
hardware will then generate the loop statistics 
required for synthesis. Notice that the above 
hardware will require the loop to be computed 
twice with the standard microcode before the 
synthesis phase of the tuning process begins. 
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Performing The Tuning 

The next phase of the tuning process is 
the actual synthesis of the new microcode. In 
selecting the synthesis method, one must 
remember that the execution of the synthesis 
program is pure overhead. This "wasted" time 
will not be made up until several executions 
of a given loop in the application program 
have been performed. Because of this fact, 
the authors found it necessary to perform the 
synthesis algorithm by microprogram rather 
than by software. 

There are several basic approaches to the 
tuning which may be utilized. One is the 
synthesis of a new microprogram to execute the 
loop as performed in [l] • The primary dif:fi
cul ty with this method for run time utilization 
is the large amount of time that would be 
required to perform the deletion and creation 
of new microinstructions. Also, new micro
instructions would have to be added that would 
allow manipulation of its own memory contents 
and specific bit generation and deletion facil
ities. 

As a basis for determining the time it 
would take to perform the synthesis routine 
described above, a modified HP 2100A was 
chosen. This machine is a modified version 
of the HP 2100 Computer. One of the modifi
cations which is essential is the ability to 
lead the microstore with microcode commands. 
It was assumed in the modification that the 
procedure and the tuning for loading the micro
store from a microprogram was different than 
loading the microstore from software. Thei 
technique used would load the load buffers 
directly using special yet simple additional 
hardware. It would then require approximcLtely 
2 microcycles to load the microstore under 
microprogram control. To write a new micro
program for each instruction requires either 
a microprogram that has a file of microprograms 
that would utilize general purpose micro
registers or an analysis microprogram that 
would modify each microinstruction as it was 
executed. This latter approach is prohibitive 
due to the amount of micro accessing and 
storing required and the difficulty (new 
microinstructions required) in modifying the 
subfields that require modification. The 
former approach would require a rather large 
microprogram and would still have the diffi
culty of modifying the subfields to place the 
proper microregister in the instruction. Either 
of these methods would force the synthesis 
routine to take too long. The number of times 
through the loop would have to be large in 
order to benefit from the tuning. 

A modification of this method which would 
reduce the synthesis time significantly is not 
to create or delete microinstructions but to 
leave the instructions as they are, link them 
together and remove the instruction access. 
This can be effectively performed by using a 
pointer list approach. This approach would 
have a microprogram that would create a list 
of pointers. These pointers would contain the 
address of the initial microinstruction for 
each machine instruction in the loop and the 
address of the operand to be fetched from 
memory as the actual instruction would. This 
pointer list would be a series of jump instruc-



tions that perform two specific tasks: 
(1) load the address of the operand into the 
appropriate microregister as the initial 
accessing of the instruction would have done 
and, (2) jump to the proper address in micro
store to initiate the execution of the micro
instructions. The formation of these jump 
instructions would be performed after the 
instruction fetch and before the execution of 
each instruction. As one can observe, the 
microinstructions in the pointer list routine 
would be similar (a jump instruction) ; only 
the data would be changed. The improvement 
using this synthesis method is the difference 
between accessing an instruction in main 
memory versus accessing an instruction in the 
microstore. 

The formation of the pointer list then 
is the synthesis routine. The synthesis 
routine is initiated after having received 
the "go ahead" signal from the microcapture 
hardware. It performs the following functions: 
(i) permits normal access of the machine 
instruction, (ii) transfers the operand 
address from the microregister that it was 
loaded into the proper segment of the micro
store register (general purpose register in 
most machines with writable control store), 
(iii) transfers the address as determined by 
the instruction decoder or mapper to the 
proper segment of the microstore load register, 
(iv) places the proper instruction bit pattern 
into the microstore load register, (this bit 
pattern is the same for every instruction in 
the pointer list) , (v) load the micro
instruction into proper location in the micro
store, and (vi) execute the instruction as 
usual. The synthesis procedure terminates 
when the synthesis of the returning jump is 
performed. Some of these functions can be 
performed in hardware under microcode command 
and others can be performed by microcode. As 
can be seen, the savings here is in the time 
to perform the synthesis. 

During execution of the loop under 
pointer list control the program counter is 
incremented when the pointer list is reac
cessed and reset to the initial loop address 
when the returning jump is performed. Any 
conditionals interior to the loop increment 
the program counter naturally. The loop 
execution is terminated when the program 
counter does not match an instruction address 
in the CAM. The contents of the program 
counter is the address of the next instruction 
that is accessed from main memory. 

The pointer list algorithm can be modified 
one step further with only a small increase 
in overhead. By using the additional micro
registers that are not used by the standard 
microinstruction set, or by including special 
registers in the microcapture hardware, further 
improvement can be made to the performance of 
the pointer list approach. During the last 
step of the synthesis procedure (when the 
instructions are being executed) , if the 
count in the microcapture hardware of that 
memory access location is 1, then load the 
operand into a special register. Now each 
time that location is accessed, its data are 
fetched from the special register rather than 
main memory. This will require additional 
provisions in the hardware to keep track of 
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the mapping between the memory locations of 
the operands as referenced by the instructions 
and the corresponding special registers. 
Prior to each main memory access, during loop 
execution, a CAM search is performed to deter
mine if the data being accessed is in a 
special register or in main memory and the 
memory access microinstruction is altered if 
necessary. The method used in the simulation 
was to expand the number of bits in the RAM 
in order to place the operand in the RAM. 

Performance Analysis and Simulation 

The cost of the microcapture archi
tecture tuning is the time required to actually 
perform the synthesis, the restore for contin
uation and the additional hardware required 
for statistics generation. The question 
immediately arises as to the trade-offs in 
the implementation. If it can be shown to be 
throughput effective, then the additional 
hardware is justifiable. To determine this 
requires some analysis, a detailed simulation 
of the scheme and an investigation into 
typical loop profiles. 

To begin with a determination of the 
crossover point between performing the 
algorithms and not performing the algorithm 
in an operating situation is required. 

A simple analysis to determine the cross
over point is presented below. Let us assume 
for simplicity that the time to perform the 
synthesis is directly proportional to the 
number of instructions in the loop. 

Let tn = time required to perform the 

synthesis; the loop is executed once as the 
synthesis is being performed. 

Let t 1 = time to execute the loop once 

using unsynthesized instructions. 

Let t 2 = time to execute the loop once 

using the synthesized instructions. 

Also assume t = bt n 1 where b > 1 and 

tl = at2 where a > 1. 

Let y = number of cycles through the loop. 

Now let us examine two specific cases: 

Case 1 y = 2 

Since two cycles are required before the 
synthesis begins, then no time is gained or 
lost. 

Case 2 y > 2 

The time to execute the loop y times with no 
tuning is t 1y and the time to execute the 

loop y times using the algorithm is 

(1) 



To determine the break-even point: 

or y = 2 + ab - 1 
a - 1 

(2) 

(3) 

To determine the values a and b will 
require a simulation. Let us take an example. 
Let the execution improvement be two hence 
a = 2 and the time to synthesize relative to 
regular loop operation be a factor of 5 
hence b = 5, then 

2 + 2 x 5 - 1 = 11 times y = 2 - 1 ( 4) 

through a loop before improvement occurs. So 
if the average number of times through a loop 
(which references a number of locations in 
the CAM) is greater than 11 the method is 
useful. 

The simulation of both of these synthesis 
techniques were performed on the HP 2100A for 
two programs: a data move program in which 
data is moved from one area of core memory to 
the other, and a linear search program where 
the target is sequentially stepped through 
the memory locations containing the data 
being searched. The basic timing results are 
shown in Figures 3 and 4. 

As one can observe the crossover between 
time on the standard HP 2100A and the HP 2100A 
with the pointer list technique employed is 
4.0 times through the loop for the data move 
program and 4.3 for the linear search. Further 
modification of the pointer list technique to 
incorporate the special registers for repeated 
operands gives a crossover of 4.0 for the data 
move and 4.1 for the linear search. The per
cent improvement in per loop performance is 
given in the table below. 

Pointer List 

Modified Pointer 
List 

Data 
Move 

55 

98 

Sequential 
Search 

86 

150 

Notice that in the linear search simulation the 
entire synthesis phase had not been complete 
when the target had been located. Likewise, 
although to a lesser extent, with the data 
move because the return jump was not executed. 
Making a linear approximation to the graphs 
in Figures 3 and 4 at the synthesis point and 
substituting these approximations into the 
analytical equations yields a crossover of 
3.98 and 4.3 for the data move and sequential 
search respectively for the pointer list 
technique. Similarly for the modified pointer 
list technique we obtain 3.99 and 4.2 as the 
crossover points. 

Cache Versus or in Combination with Microcapture 

To compare the performance of these two 
architectural techniques in the execution of 
small loops the data move and the linear search 
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programs were analyzed. This analysis was 
based on the HP 2100A simulation using a 
faster memory. The assumptions madei for 
this analysis are: the HP 2100A operation 
remains the same, the cache memory cycle 
time is equal to two (2) microcycles, and 
the percentage of bits on the cache is 100. 
Figures 5 and 6 show the difference.between 
the HP 2100A using microcapture techniques 
and the HP 2100A using a cache memory. 

It is also interesting to investigate 
using the two techniques in combination with 
one another. Figures 7 and 8 show the 
performance improvement that can be gleaned 
by using these techniques together. 

There are three primary areas for trade
of f s between the two techniques. These areas 
are performance when executing loops, types 
of systems each can be used with, and the 
cost of implementing each technique. 

A performance comparison can be mad1:i by 
examining Figures 5 and 6. The crossover 
point between the cache and the modified 
pointer list is 10.0 times through the loop 
in one case and 15.7 times through the loop 
in the other. For the microcapture tuning to 
be better than the cache requires the avc3rage 
number of times through captured loops to be 
greater than 10 or 15. 

In order for a computer system that 
utilizes a cache memory to be easily imple
mented and produce a relatively high hit/miss 
ratio, it has to be able to move the data 
into its cache memory in blocks rather than 
as single instructions. This requires the 
computer to have a paged memory management 
system. Typically computers that have p.aged 
memory systems are relatively expensive 
($75,000 and up). This limits the usage of 
a cache to larger systems. The microcapture 
tuning technique, on the other hand, can be 
utilized in any level of computer system. 

The third area, cost of implementation, 
is important due to the order of ma~Jni tude 
difference between the cost of the two 
techniques. A 1024 word 16 bit/word cache 
memory costs approximately $2,500 while the 
cost of implementing the microcapture hard
ware is about $300. 

From an examination of Figures 7 and 8 
it is evident that a performance improvement 
can be gleaned if the two techniques are used 
in conjunction with one another. S:Lnce the 
performance improvement is present and the 
cost of including microcapture in a system 
which uses cache memory is very small, it is 
reasonable to use the two techniques in 
combination. 

SUMMARY AND FUTURE EFFORTS 

To determine the usefulness of these 
tuning methods, typical loop profiles in 
programs should be analyzed. This would 
include the determination of the "average" 
number of instructions per loop and the 
"average" number of times a single loop is 
executed in a given environment. If this 



"average" number of times through a small loop 
is larger than the crossover, then the 
synthesis procedure is a useful technique 
because of the definite throughput improve
ment. 
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SEGMENT-SEQUENTIAL STORAGE 
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The Context-Addressed Segment-Sequential Storage 
( CASSS) described-in this paper pro vi des a solution to 
the problem of data retrieval from a large, nonpreor
ganized file. It provides this capability entirely by 
hardware, eliminating the need for special data struc
turing solely for the purpose of reducing search time. 
The major features of the architecture of a character
oriented CASSS system are described, including the 
basic hardware configuration selected to implement such 
a system and the set of search instructions chosen to 
provide a wide variety of search operations useful in 
information retrieval. Of particular importance in 
this application is the method of quasi-parallel 
instruction execution, which allows a full string 
search of the entire data base in a single cycle of 
the sequential storage device used. 

Introduction 

Conventional information retrieval systems limit 
-the user to a search capability restricted in either 
the flexibility of the search that can be conducted or 
in convenience in access to the system. The direct 
search--comparison of the contents of an entire file to 
a search criterion--provides the most comprehensive 
capability. However, the time required for transfer of 
the entire data base to core storage for search limits 
this technique to applications where a number of 
queries can be accumulated and processed in a single 
batch operation. Conventional on-line data retrieval 
systems obtain the shorter search time needed by 
augmenting or restructuring the file (e.g., indexes and 
inverted files). This limits the possible searches to 
those supported by the particular file arrangement 
chosen and compounds the problem of file maintenance. 

Earlier special-purpose hardware systems for 
information retrieval relied upon keywordsl,2 or 
summary records.3 More recently proposed systems4,5,6 
provide a sophisticated search capability that just
ifies the term context-addressing rather than content
addressi ng. Since the storage structure of these 
systems consists of sequentially accessed storage 
(e.g., disc tracks), the system is referred to as a 
f_ontext-~ddressed ~egment-~equential ~torage (CASSS). 

CASSS Organization 

The data structure used in the CASSS system is a 
one-dimensional array of words called a file. From the 
software viewpoint, collections of words related in 
some way are stored together in a contiguous section of 
the file called a record. Figure l shows how a file of 
mixed-size records is mapped into a linear list and 
then divided into segments to match the storage struc
ture. The function of search and retrieval operations 
is to examine all records to determine which ones 
satisfy a search criterion and to transfer those 
selected to the core storage of the host computer. 

The basic architectural element in the system is 
the cell, consisting of a storage segment and its 
associated processor. Figure 2 shows a block diagram 
of the system. Each cellular processor, under command 
of the common controller, can perform a search of its 
entire storage in a single rotation of that storage. 

The controller is used to broadcast instructions to 
the cells and to provide the other functions needed to 
interface the CASSS sys tern to its host computer. 

RECORDS SEGMENTS DISC I 
TRACKS : 

• I 

~}~{~}~()1-
SOFTWARE MAKEUP HARDWARE PLACEMENT 

Figure 1. Storage of Records as Segments 

CENTRAL PROCESSOR 
INPUT/OUTPUT CHANNEL 

BROADCAST/COLLECTOR BUS 

Figure 2. System Block Diagram 

This organization offers advantages other than 
its rapid search capability. It can simplify the soft
ware support needed by eliminating the need for multi
level mappings both from high-level retrieval languages 
to machine language and from user-oriented view of data 
to machine-dependent ~torage structures.7 The simi-
1 ari ty between the procedure used to specify a query 
using a high-level language and the execution of the 
hardware instruction set in a CASSS system has been 
demonstrated.a 

Character-Oriented CASSS 

This paper describes a CASSS architecture for 
the handling of data stored in their natural form {the 
character strings familiar to the user) rather than 
~needed in some manner to enhance retrieval operations. 
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It allows retrieval of information from a file that is 
not necessarily preorganized by retrieval operations 
that are not necessarily planned before the file is 
created. This does not preclude special file organ
izations or search methods, but it does dictate a set 
of choices in the architecture that are different from 
systems that are limited to more organized data struc
tures or search methods. The major features of this 
design are the organization of the cellular processor, 
the instruction set and a means of executing instruc
tions in a quasi-parallel manner, and the I/O sub
system that provides autonomous retrieval of selected 
records. 

Processor Design 

The design of a cellular processor to perform 
string search operations is a compromise between the 
full string search capability of SNOBOL4 and what is 
both useful in searching large data bases and practical 
to implement by a sequential search. The design steps 
consist of selection of a data representation method 
and a hardware configuration to perform the search. 

Data Representation 

The choice of the character as the atom of 
information to be stored requires a suitable alphabet 
for data representation and to provide extra code 
combinations not in the data set for control functions 
needed in implementing the search algorithms. The 
Extended Binary-Coded-Decimal Interchange Code (EBCDIC) 
suggests 1tself for th1s purpose, but any character 
code with unassigned combinations could be used. The 
extra codes are needed to replace control functions 
that were handled in previous CASSS systems4,5,6 by 
flag bits appended to each word. Flag bits were 
appropriate where the word being stored was relatively 
long and the flag bits occupied very little of the 
total storage. However, flag bits appended to each 
code in the 8-bit character representation of data 
result in a 12.5 per cent increase in the hardware 
required. 

Character Marking 

The most restrictive change caused by the use of 
control codes instead of flag bits is the marking of 
characters during search. The process of searching all 
records in storage and marking those that satisfy a 
query is performed in steps by marking individual 
stored characters that satisfy some criteria. Char
acters are marked by substituting a mark symbol, 
designated !i1, for the character code. The companion 
operation of unmarking a character previously marked is 
accomplished by reversing the substitution process. 
The comparand character for each search conducted is 
placed in a register for temporary storage at the end 
of the search cycle. During the next cycle; while the 
search and mark operation is being performed, the 
characters marked on the previous cycle are unmarked 
by substituting the character held in the temporary 
storage. This substitution method limits each indiv
idual search instruction executed to the marking of 
one specific character, but the saving in storage cost 
by avoiding an extra bit in each character far out
weighs the effect of this restriction. 

processor Organization 

Figure 3 shows a block diagram of the search 
portion of the cellular processor. Details of the 
search instructions, presented in the next section, do 
not alter the basic configuration. The dotted boxes in 
the block diaqram represent connections to other parts 
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of the cell, and the solid boxes represent the func
tional elements required to execute the search instruc
tions. Table I indicates the purpose of each block. 
Instruction execution consists of circulattng the data 
and rewriting them in the sequential storage. When 
marking or unmarking of a character is called for, 
the appropriate symbol is substituted into the recirc
ulation loop. 

_C 
r ORIGIN 1 
1 

SIGNAL 1 

'- - - - _J 

OPERATION 
DECODER 

WR I TE 
LOGIC 

CODE 
GENERATORS 

CODE 
DETECTORS 

_c WORD 
REGISTER 

rMRITE1 

I HERD 1 

L - - .J 

Figure 3. Instruction Execution 
Portion of Cellular Processor 

Table I 
Processor Functional Elements 

r READ 1 

I HERD I 
L - - .J 

Timing lli~· The timing signal provides a series of clock pulses for the 
entire processor. These clock pulses are synchronized with the data from 
external sources. 

~ri~in llinal. The origin signal provides an output that is true ("l") only 
urrng t!lefirst data bit available from the sequential storage. 

Read Head. The read head provides the serial data stream representing the 
lriToriilatTon in the sequential storage. 

Write Head. The write head enters the serial data stream provided at its 
TriPUt Tiito. the sequential storage. The positioning of the heads is such that 
the data entered into storage replace the data currently available in the 
word register. 

~~~!r~h~~o~P~~s 3~:t i ~~t~~c~!o~0 ~~ ~~d e~~c~~:~a~~n~~!is i ~~i ~~t~~e~~~i on 
character being searched for. 

Time Decoder. The time decoder provides eight separate pulses, defining the 
eTghtDTtfiltervals during the serial processing of a single character. 

Code Genera tors. The code genera tors produce a serial 8-bit code corresponding 
to ea~ symbol that must be recognized by the processor. 

Code Detectors. Code detectors provide recognition of each of the special codes. 

~a~~~~ s~:~ ~g ~~~c:~~~d r~~i ~!e~x~~~~!~e~e~o~~ei~h~~:~t~~ ~~~{ ti~n a:~~~ the 
storage. 

~~m~:~~~~e~e~~~ ti~. se~~:n~~~~a~~~~a~::i s i~r r!~e~~:~ ~~s h~~~uih~r~~a~~~ter to 
instruction operand during the first character time and recirculates its 
contents during other character i nterva 1 s. 

iheP~~:~~ oE~9 
J ~!~~~ct i~~. te7~o~:~~i ~=~i ~ i~r i ~~u~s~~o~0 t~~ 1 ~o~~: r~~~P~~~~~ t!~om 

during the first character time and recirculates its contents during other 
character intervals. 

Equality Q.~. The equality detector compares the input to the comparand 
reg1 s ter to the input to the word register. 

Write '=.Q.gi"-. The write logic connects the appropriate code generators, the 
temporary register, or the word register to the write head. 

Control. !:.Q.gj_£. The control logic consists of an instruction decoder and the 
logic nece!;sary to provide control signals to the other elements in the cellular 
processor. 

Search Instructions 

The format of the search instructions used in 
the character-oriented CASSS system is a character 
string. The first character denotes the instruction 
code, and succeeding characters specify the operand. 



The elementary search instructions have a single
character operand; the more complex instructions have a 
variable-length operand. Table II gives a description 
of the search instructions selected for search of non
preorgani zed data bases. A more formal instruction 
definition in APL notation is available in a report.9 

Table II 
Description of Search Instructions 

The following instructions mark each stored character that satisfies the 
conditions g1 ven and unmark any previously marked characters that do not 
sat1 sfy these conditions. 

• Mark Character 
MC C 

• String Search 
SS C 

• Ordered Search 
OS C 

•Ordered Field Search 
OF Z C 

•Move Mark 
l+I 08 ~ C 

•Inequality Search 
IS Z C1 c2 ••• CN Z 

Matches the comparand C. 

Matches the comparand C and fol lows 
inmediately a- character marked by the 
previous search. 

Matches the compa rand C and fo 11 ows a 
character in the same record marked by 
the previous search. 

Matches the comparand C and fol lows a 
character in the same record marked by 
the previous search with no 1 nterveni ng 
end-of-field code Z. 

Matches the comparand C and fol lows a 
character in the same record marked by the 
previous search by exactly D characters 
(where D is specified by Da Db treated as 
a bi nary number). 

Matches the de 1 im1ter specified by Z and 
follows a numeric string that: (1) follows 
inmediately a character marked by the 
previous search, and (2) satisfies the 
comparison ( < .~.~. 'I,?_,>) 

The following instructions add the quantity C1 C2 ... CN treated as a binary 
to the contents of the first threshold accumulator if the conditions shown are 
met. They unconditionally unmark all previously marked characters. 

•Threshold Addi ti on The record was marked by the previous search. 
TA N C1 C2 ... CN 

•Threshold Prime The record was not marked by the previous search. 
TA N Cl C2 ... CN 

The following instructions compare the contents of the threshold accumulator 
designated to the comparand c1 c 2 ... CN according to the comparison option 
(<,~1 =,f,?_») specified and perform the additional functions indicated. 

•Threshold Test If the comparison between the comparand and the 

TT N cl c2 ... CN i~~~!m!~~e~~~l~e~~~~m~~~!~~o;~ ~~~~~~~:~~~by 
one. Reset the first accumulator to zero. 

•Threshold Compar1! If the comparison between the comparand and the 
TC N C1 C2 ... CN second threshold accumulator is successful, mark 

the !!_1 symbol fol lowing the second accumulator. 
Reset the second accumulator to zero. 

Elementary string searches are performed using 
the first three instructions in the list. For example, 
the search for the string $ABC$DE$, where $ represents 
an arbitrary string including the null string, is done 
by the instruction sequence: MC A, SS B, SS C, OS D, 
SS E. Execution of this program leaves the E in each 
string in storage that matches the input string marked. 

The next three instructions in the list are 
designed for use where the user knows the data format. 
These instructions allow the progranmer to locate 
fields within a record that are identified by a header 
or are a fixed number of characters from some other 
field that can be located. The Move Mark (MM) and 
Inequality Search (IS) instructions iTlustrate the 
effect of the limitation imposed by the substitution 
method of marking characters. It is not possible to 
move the mark ahead by a fixed distance--the marking 
must be limited to a specific character. Similarly, a 
numeric string to be marked if it meets some arithmetic 
comparison (<,<,=,~,>,>)must be followed by a known 
delimiter, allowing the marking to be restricted to 
a specific character. Any non-numeric symbol in the 
data alphabet may be used for the delimiter. The 
characters within the comparand field for the IS 
instruction must be numbers. 
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The threshold instructions provide the capa
bility to evaluate retrieval criteria based upon some 
Boolean or threshold function of individual string 
searches. This feature requires the addition of two 
accumulators, designated A1 and A2, respectively, at 

the end of each record. A control symbol, designated 
~l' is placed before, after, and between these accumu-
lators to allow the processor logic to locate them. 
The first accumulator, with its associated threshold 
instructions, allows evaluation of any linearly sepa
rable threshold function of individual string searches. 
The second accumulator, with its associated instruc
tions, allows evaluation of any m-out-out-n function of 
the functions evaluated using the first accumulator. 
This capability allows efficient evaluation of a wide 
range of search functions of interest in information 
retrieval. 

Search Example 

Use of the instructions is best illustrated by 
an example. Assume a file made up of personnel 
records, with the arrangement of the first nine fields 
as shown in Table III. Let the problem be retrieval of 
all records that satisfy the following criterion: 
{(Name: Julia Smith) OR (Maiden Name: Julia Jones) OR 
((Name: ..... Smith) AND (City: Gainesville, Florida)) 
OR ((Maiden Name: ..... Jones) AND (City: .......... . 
Florida))) AND ((No. Dependents: .::. 4) OR (Sala~y: 

> 150. 00)). 

Table III 
Field Allocation within Each Record 

Delimiter Field Use Field Length 

.QI Social Security No . 9 characters 

Name Variab'le 

/l I Street Address Variab"le 

/2/ City, State Variab"le 

/3/ Zip Code 5 char.1cters 

Date of Birth 6 char.acters 

Mai den Name Variable 

/4/ Salary Vari ab 1 e 

/5/ No. Dependents Variable 

/6/ 

Let a set of Xi's, where l ..::_ i.::. 6, represent 
the truth value of the individual string searchE!S. The 
search function is (X1 v x2 v x3 v x4) A (X5 v x6). It 
can be implemented by the appropriate set of string 
searches followed by threshold operations. Table IV 
shows how the threshold instructions are lJlsed in the 
search program. Execution of this program causes all 
records that satisfy the query to be marked in the 
delimiter following the second threshold atccumu·lator. 

Table V shows a section of the complete program. 
It illustrates the method of locating the field de-
1 imiters and moving the mark over fixed-length fields 
to reach the field to be searched. 

Quasi-Parallel Instruction Execution 

Since each instruction performed by the CASSS 
system requires a search of each record in storage, 
the execution time for a single search instruction is 
at least the time required to traverse all records. 



INST. 

14. TA 

30. TA 

58. TA 

77. TA 

78. TT 

83. TA 

88. TA 

89. TT 

90. TC(IT) 

INST. 

I. MC 

2. MM 

:3. SS 

4. SS 

!). SS 

6. SS 

7. SS 

II. SS 

9. SS 

10. SS 

11. SS 

12. SS 

13. SS 

14. TA 

15. MC 

16. SS 

17. SS 

18. ,..., 

19. SS 

20. SS 

21. SS 

Table IV 
Use of Threshold Instructions 

COMPARANO REMARKS 

(String Search for X1) 

1,1 Add one to first threshold accumulator in those 
records where search is succsssful. 

····· (String Search for X2) ····· 
1,1 Add one to first threshold accumulator in those 

records where search is successful. 

. . . . . (String Search for x3) ..... 
1,1 Add one to first threshold accumulator in those 

records where search is successful. 

..... (String Search for x4 ) ..... 
1,1 Add one to first threshold accumulator in those 

records where search is successful. 

1,1 Add one to second threshold accumulator in those 
records where the first accumulator holds at least 
one. 

..... (String Search for X5) ..... 
1,1 Add one to first th res ho 1 d accumu 1 a tor in those 

records where search is successful. 

····· (String Search for X6 ) ····· 
1,1 Add one to first threshold accumulator in those 

records where search is successful. 

1,1 Add one to second threshold accumulator. in those 
records where the first accumulator holds at least 
one. 

1,2 Transfer to core storage the identifier for each 
record for which the second threshold accumulator 
holds at least two. 

Table V 
Search Program Example 

COM PA RAND 

!!.1 

10,0,"J" 

"U" 

"L" 

"!" 

"A" 

"S" 

"M" 

"!" 

"T" 

"H" 

"/" 

l,l 

"/" 

"3" 

"/" 

12 ,0, "J" 

"U" 

"L" 

"!" 

REMARKS 

Mark start of each record. 

Locate and search first character in name field. 

Continue name search. 

Comp 1 ete name search. 

Add one to first threshold accumulator in 
those records where search is successful. 

Begin second search sequence. 

Mark beginning of zip code field. 

Locate and search first character in maiden 
name field. 

Continue maiden name search. 
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However, it is possible in most circumstances to 
execute several search instructions during one sequen
tial storage cycle. Though this adds to the cost of 
the cellular processor, it results in an "effective" 
implementation. The quasi-parallel execution of k 
instructions results in a k-fold decrease in search 
time with only a small increase in processor hardware. 
Without this feature, the character-oriented CASSS is 
not practical. A search rate limit of one character 
per sequential storage cycle is too slow to be useful. 
For example, the search program for the sample problem 
above would take almost 100 storage cycles it if were 
executed one instruction per cycle. Quasi-parallel 
instruction execution reduces the time required to six 
storage cycles. 

The string matching that is characteristic of a 
typical search program makes quasi-parallel execution 
possible. Each string search program begins with an MC 
instruction and executes a sequence of comparison 
operations. The search ends by marking the character 
at the end of the desired string or by using the result 
of the string search to increment the threshold accu
mulator at the end of the record. An example of such a 
program is the task of incrementing the first threshold 
accumulator in those records that contain the string 
$AB$CD$. 

The program to perform this search is: MC A, 
SS B, OS C, SS D, TA 1,1. Fi$ure 4 shows the diagram 
of a sequential machine in which the states indicate 
the instruction to be executed next~ At each step, 
the machine considers only three comparands: (1) symbol 
!!.1 to determine whether the TA instruction must be 
executed, (2) the comparand of the instruction being 
executed, and (3) the comparand for the previous MC or 
OS instruction. In other words, the only possible 
options during the search of the data are: (1) to end 
the string se.arch because the end of the record has 
been reached, (2) to continue the search of a contig
uous string of characters satisfying the search, or 
(3) to reinitiate the string search from the beginning 
of the comparand string to be matched. 

Figure 4. Instruction Selection 

There are two limitations upon the quasi-
paral lel execution of instructions. The first is that 
parts of two different string searches cannot be 
executed together. This restriction is made part of 
the logic of the cellular processor. The second 
restriction is data dependent and cannot be solved by 
hardware. If a string used as comparand is embedded 



in a stored string such that its occurrences overlap, 
only the first of these stored strings is marked by 
the string search. For example, the string ABABAB 
contains the string ABAB twice, but the search for the 
string ABAB using quasi-parallel execution of instruc
tions will detect only the first occurrence of that 
string. 

Fortunately, the problem of embedded strings 
does not occur in the major applications of the CASSS 
system. In those cases where it is a problem it can 
be corrected by programming. A dummy instruction is 
added for this purpose. Its only function is to signal 
the hardware to perform instructions before and after 
the dummy instruction on separate storage cycle. In 
the case of the string search ABAB, a dummy instruction 
inserted in the middle of the search instructions 
causes the search for the first AB to be separated from 
the search for the second AB. The result is that the 
string ABABAB in storage is marked after each occur
rence of the string ABAB. 

Correct results in searching for embedded strings 
can be guaranteed by breaking the string to be 
searched into substrings such that no substring repeats 
its initial character. This algorithm is not imple
mented in hardware because it is not an 11 effective 11 

solution to the problem for all applications. For 
example, the search program for the sample problem in 
the previous section can be performed correctly in six 
storage cycles (one cycle for each separate string 
search to be evaluated}, but implementation of the 
above algorithm divides the search so that it takes 15 
storage cycles. The choice of how to break the strings 
is left to the programmer, becaase efficient program
ming depends upon a knowledge of the data base. For 
applications other than text editing, the programmer 
can probably do a more efficient search than that 
obtained by direct application of the algorithm that 
guarantees correct search of any possible storage 
contents. 

Data Transfers 

The character-oriented CASSS system uses the I/0 
techniques common to third-generation computers. The 
interconnection to the host computer consists of"a 
low-speed I/0 channel for transfer of search instruc
tions and a direct port to core storage for high-speed 
data transfer. The I/0 subsystem provides the capa
bility to read, replace, or modify either entire 
records or portions of records. Data transfers, once 
initiated by a command from the host computer to the 
CASSS system, are executed without further intervention 
by either the computer or the search execution portion 
of the CASSS system. 

Marking Records for Transfer 

The semi-autonomous transfer of data requires 
the addition of several character positions in each 
record immediately after the record delimiter code. 
The first two positions hold a binary number repre
senting the record length, and the next one or more 
character positions provide one-bit control flags for 
each high-speed data path provided. Once a record is 
marked, the transfer is performed and the flag is reset 
by the I/O controller. The transfer paths share the 
common entry port to core storage and thus do not 
operate in para ·11e1 . However, each transfer pa th has 
the characteristics of a channel and will be referred 
to as such. The number of channels, and thus the 
number of control positions in the record header, is 
made optional to fit the particular use. 

The major problem in record retrieval is moving 
the mark that is entered in the record contents by the 
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search operation to the beginning of the record. This 
is a backward-marking operation that cannot be done by 
sequential storage. The simplest way to acc:omplish 
it is to provide a bit-per-record random acc:ess 
storage, but this is inefficient use of storage in a 
system that holds a large number of records. Instead, 
this design takes advantage of a characteristic of the 
search problem--the number of records to be marked is 
much less than the number of records stored. There
fore, it is less costly to store complete iclentif·iers 
for the few records than to store one bit for each 
record. 

Three alternatives for providing this storage 
suggest themselves: (l} adding several words of storage 
within each cell, (2) providing a single storage shared 
by all cells, and (3) using an assigned buffer area in 
the central computer's core storage. The last method 
is selected because of its flexibility. The number of 
records retrieved by a search is likely to vary widely 
for different cl asses of retri eva 1 problems.. The first 
two methods require that storage hardware bi~ sufficient 
to satisfy the type of search that retrieves the most 
records. A buffer area in core storage can be altered 
in size according to the class of problems being 
solved. 

A record can be identified by either its 
position within the file (e.g., the 29th record) or by 
its phys i ca 1 1 oca ti on (e.g. , the 10th record in the 3rd 
cell}. The former method is the one selected, because 
it uses a file characteristic rather than a storage 
characteristic. The record number is useful in refer
ences between records, even in a dynamic situation, 
whereas a physical location is not. 

Use of the record number imposes the burden of 
translating between record number and physical location 
upon the cellular processor. Three registers are added 
to each cellular processor for this purpose. These 
registers hold: (1) the first record in the cell, (2) 
the last record in the cell, and (3) the record most 
recently processed by the cell. The last register is 
used for encoding record location to record numbe!r, and 
the firt two allow the cell to recognize those iden
tifiers that refer to its contents. 

The marking of records for transfer is done in 
two steps. The first step is performed by the last 
search instruction in a sequence. The Identifier 
Transfer (IT) option is added to each of the search 
Tnstructions to cause the identifier for each rec:ord 
marked by the instruction to be transferred to core 
storage. When this option is selected, the normal I/O 
transfers are interrupted while the instruction is 
being executed. As each cellular processor performs 
its search operation, it sends the identifier for each 
record it marks to the I/0 con troll er. 

The transfer of record identifiers is much 
faster than the transfer of the records themselves for 
two reasons. First, the amount of data to be trcrns
ferred is much less, so that fewer overlaps occur. 
Secondly, each cell provides temporary storage of the 
identifier it is trying to transmit for the length of 
time it takes to process the next record. Only in the 
case of sustained occurrence of overlaps does the 
identifier transfer take more than one cycle of the 
sequential storage. 

Record Retrieval 

The Input-Output (IO} instruction selects a 
channel for transfer of records indicated by the 
references in core storage and initiates the transfer 
by marking the selected records at their begining. 



Only the part of the operation concerned with re
trieving the identifiers from core storage and routing 
them to the proper cells is considered here. The other 
aspects of the IO instruction are essentially like 
those used with a conventional disc controller. 

The transfer of record identifiers from core 
storage begins by temporarily halting any normal I/0 
transfer that might be in progress. The identifier 
block in core storage is then broadcast to all cells, 
starting with the first word in the block. The broad
casting is done one word at a time, with the controller 
waiting for a reply before sending the next word in the 
sequence. The cell that holds the indicated record 
(readily determined since each cell has a register to 
hold the upper and lower record numbers stored in its 
segment) accepts the information and sends a reply 
signal. The cell uses this information to mark the 
record indicated in the appropriate I/0 flag bit the 
next time it becomes available from sequential storage. 
The execution of the IO instruction is complete when 
the channel for transfer is established and all records 
to be transferred are marked in the flag bit for this 
channel in the record header. The transfer itself then 
proceeds in parallel with other operations b~ing 
performed by the CASSS system. 

Summary 

The CASSS architecture that has been developed 
provides an effective solution to the problem of re
trieval of information from large files that are not 
necessarily preorganized. It allows implementation of 
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Abstract 

Since conventional computers are straining to handle 
the increased size and sophistication of non~numeric 
processing (data management, information retrieval, 
artificial intelligence), a new class of non-numeric 
architectures is evolving. The segment sequential ar
chitecture is one of these. Further development of this 
architecture requires new techniques for multiple cell 
operation and intercell communication to handle control 
and search operations. This paper describes such tech
niques for instruction fetching, operand recall, string, 
set and tree context searching, and pointer transfer. 
It is expected that combinations of these techniques 
will appear in :Euture architectures that are needed for 
non-numeric processing. 

1. Introduction 

Recognizing a need for non-numeric processors to 
support large data bases, several investigators have 
been striving to develop suitable architectures: Fuller, 
et al.,1965,2 Parham, 1972, 6 and Healy et al., 1972.3 
Several systems have been proposed,1,3,4,5 and two of 
them - CASSM at the University of Florida and RAP at the 
University of Toronto8 - are presently being developed. 
These systems all make use of sequential memory orga
nized as· segments associated with simple processors. 

In the segment sequential architecture, 3 fixed 
length words are organized into variable length records, 
which are packed into a single file. See Fig. 1. The 
programmer can consider this data to be in a single 
file. •However, the file is broken into equal length 
segments of words, and each segment is stored on a sepa
rate disc. track, CCD shift register, or magnetic bubble 
memory.. In the following discussion, the terminology 
appropriate to· discs will be used. A "microprocessor" 
and. associated segment of memory are here called a cell. 
A one-dimensional array of cells can search the file in 
parallel in one cycle of the disc, as each cell operates 
on tlJ.e, first word in its segment, then the next word in 
the segment, and so on. See Fig. 2. 

The segment. sequential architecture is claimed to 
be particularly suit.able for non-numerical processing 
because the software can ignore the location (unit, sur
face, track, sector, etc.) of words on the disc, and 
can process the information where it is on the disc. 
In addition the hardware can simultaneously process 
words on different disc tracks so that arbitrarily large 
data bases can be searched in the same time it takes to 
search one segment. These two features make the architec
ture very attractive for data management systems, which 
account for a very large share of day-to-day work done 
on computers. For a discussion of further advantages 
of such disc systems, see [9,10). 

It should be noted that a segment can contain sev
eral records, and a record can span several segments. 
The latter problem requires some intercell communication 
so that records can be searched as a whole, for example 
to find all sets that contain words a and b, even if a 
and b are on different segments. 

tThis paper was supported by NSF Grant GJ-43225. 
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We suggest that the non-numeric procE~ssor has 
evolved at this point to about where the numeric proces
sor had evolved in the early forties. ThE~ development 
of techniques for random access memories :Ln 1943 had to 
predate the development of the von Neumann architecture. 
This paper presents a number of techniques for intercell 
communication. It is intended to provide the kind of 
background that the random access memory provided to 
the von Neumann architecture. Based on some of these 



techniques and others yet to be developed, a general 
purpose architecture for non-numeric processing should 
emerge, to be widely used in data management systems. 

In this paper, implementations for five techniques: 
instruction fetching, operand recall, string and tree 
searching and pointer transfer are presented for multi
ple segment systems. Further techniques for input and 
output in multiple segment systems are presented by De 
Martinez. 1 Here, each technique is presented as in
dependently as possible from the others so that a sub
set of the techniques can be used in any future archi
tecture. However, they are so ordered that simple con
cepts presented first will help explain more subtle con
cepts given later. Generally, the techniques are first 
presented for a single segment where they are easy to 
describe. Then the more complex multiple segment case 
is considered. 

For purposes of discussion, the following conven
tions and definitions are used in the rest of this paper. 
Fixed length words are divided into data and tag7 fields. 
The tag field is used not only to identify word types 
as data, instructions, operands or erased words, but 
also tag bits are used to mark successful searches, and 
so on. Data words are organized into records, whose 
first word is especially tagged to be a delimiter word. 
These records are organized, later in the paper, as 
nodes in a tree. The file is divided into segments, as 
depicted in Fig. 1, such that, the topmost segment con
tains the first record(s). As Fig. 2 shows, the cell 
that contains each segment communicates to its next 
upper and next lower neighbor, and to a common buss for 
I/O. The ordering of records is thus retained by the 
order of segments and the order within each segment. The 
searching and rewriting of words from top to bottom on the 
segment is called the scan, and the time after the bottom 
word is processed, before the top word is again proces
sed, is called the gap. A cycle is a gap plus a scan. 

Generally, an instruction, such as "Search for A" is 
conducted in one or two cycles. The first cycle is exe
cuted in the main processor (Fig. 2) while the second cy
cle is executed in the post-processor if necessary. These 
are concurrent so that the post-processor completes execu
tion of instruction i while the main processor executes 
instruction i+l. This permits the processor effectively 
to execute one instruction per cycle. The post-proces
sor operation is logically complete just before the 
operation done by the main processor. (In practical 
systems using garbage collection, delays are necessary 
between post-processor and main processor.) 

2. Fetch-Cycle-Equivalent Operations 

Analogous to the fetch cycle operations of fetching 
an instruction and recalling an operand in a standard 
computer, the segment sequential architecture utilizes 
techniques described below. During one cycle of the 
disk, one instruction in the common register is executed 
on the data in all tracks simultaneously. A second word 
may or may not be required as an operand in the 0 regis
ter 'for the instruction. The instruction and operand, 
if needed for the current cycle, are fetched in the 
previous cycle. 

2.1 Instruction Fetch 

Some words on the disc are especially tagged to be 
:instructions, in distinction to data or operands, and 
some of these are further tagged from time to time as 
active. It is possible to append active instruction 
words onto the bottom of the disc from an external com
puter, or to activate instructions already on the disc 
a:s a result of searching data on the disc. Among all 
active instructions, the topmost is fetched to be the 
:instruction for the next cycle, and is deactivated. By 

other means, several consecutive instruction words can 
be activated during one cycle, to be fetched one at a 
time later. More generally, active instructions 
scattered throughout the disc will be fetched one at a 
time. Note that this is an instance of a general case 
of first-in-first-out order (FIFO order) because words 
can be appended at the bottom and used or removed from 
the top of the memory (disc) • 

2.1.1 Single Track. For single-track case, the 
problem is to take instructions from the track in FIFO 
order. This is done by saving the first active instruc
tion word encountered in a scan and then marking that 
word as inactive so the next active word will be taken 
on the next scan. 

This technique requires a buffer register F.B and 
a flip-flop F.FULL. F.FULL is cleared at the beginning 
of each cycle. As long as F.FULL is clear, words from 
the disc are loaded into F.B. Each word that enters 
the main processor is checked to see if its tag indi
cates an active instruction and F.FULL is clear. If 
they are, the instruction is marked inactive and F.FULL 
is set. Thereafter, this prevents any succeeding words 
from being chosen. At the end of the scan the copy of 
the inst:r:uction word retained in F.B is sent to the !
Register, where it will be decoded as the instruction 
for the next scan. During that cycle, another instruc
tion is to be fetched. F.FULL is cleared during the 
gap time, to prepare for the next scan. 

2.1.2 Multiple Track. The multiple track system 
must fetch the topmost active instruction in the entire 
disc. Consider a two-track disc in which the. upper track 
(higher priority) has an active instruction A near its 
bottom and the lower order track has an active instruction 
B near its top. Word A should be fetched and deactivated 
even though the two processing elements will meet B 
first as they scan the tracks. Means to save at least 
word A, and to deactivate only word A are required. 
The proposed strategy is to save the topmost instruc-
tion within each segment as before, but not to deactivate 
it. The location within the segment of the "fetched" 
word is also saved as the word is "fetched" on each 
track separately. During the gap, a priority circuit 
determines the top cell that fetched an instruction. 
That instruction is sent to all cells, and in the 
following cycle, that cell deactivates its "fetched" 
instruction. 

This technique requires F.B, F.FULL as before, a 
word counter WCT, two word-count-save buffers F.WCT.B 
and F. WC'I', in each cell and' a conventional hardware 
priority circuit (like an I/0 priority circuit) between 
cells. (See Fig. 3.) In each cell, F.B and WCT are 
initially cleared. WCT is incremented as each word is 
scanned. The topmost instruction in each cell is found 
as in the single-track case by saving the first active 
instruction word in F.B and the word count WCT in 
F.WCT.B, then setting F.FULL. During the gap, F.FULL 
is used a.s an indication of 'instruction found' for in
put to a priority circuit which decides which cell with 
F.FULL set is the highest. This topmost cell sends its 
instruction from its F.B to the I-Registers in all cells 
and its F.WCT.B to its own Post-Processor's F.WCT (so 
that the instruction on that track will be deactivated 
in the next cycle) • Other cells load a very large num
ber (11 ••• 1 >> max(WCT)) into F.WCT (so that no work 
will be deactivated) • Deactivation will be done when 
F.WCT is equal to WCT in the Post-Processor. All lower 
order cells which found instructions are prevented from 
transferring their F.B to the I register in all cells, 
and their F.WCT will never equal WCT, so those lower 
instructions remain active for the next cycle. Finally, 
all F.FULL's are cleared, and the segment is ready for 
the next scan. 
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Figure 3 -- Instruction Fetch Logic 

2.2 Oper~nd Recall 

A collection of words on the disc are especially 
tagged to be a stack of operands in distinction to data 
or instruction words. New operands are generally pushed 
onto the stack on the bottom. If an operand is required 
by an instruction, one word is popped from either the 
top (FIFO order) or bottom (LIFO order) of this stack. 
Popping an operand from the top of the stack can be 
similar.to fetching an instruction. Identical but 
separate hardware is used, except that the operand 
word is actually erased from the disc rather than merely 
deactivated. However, popping the bottom word on a 
stack requires different techniques. In the following 
section, techniques are presented for popping either 
the top or bottom word of a stack, using the same hard
ware. 

2.2.1 Single Track. While the instruction is 
being fetched, it is not yet known whether an operand 
will be needed. Nevertheless, an operand is saved but 
not erased. When the instruction.is decoded and an 
operand is indeed required, the last-found operand is 
actually erased from the disc. If the operand is re
called from the top, one must save only the first 
stack word. If the operand is recalled from the bottom 
of the stack, one keeps saving all stack words. In the 
end, the bottom stack word is the word that was last 
saved, and it will be used as the operand in the next 
cycle if it is needed. 

These techniques require the word counter WCT and 
save registers O.B, O.WCT and O.WCT.B, as well as flip
flop O.FULL. Initially, O.FULL is cleared, and is set 
when a stack word is found. Similar to multiple track 
instruction fetching, when an operand word is found it 
is loaded into o.B and WCT is put in o.WCT.B uncondi
tionally if LIFO order is used, or conditionally on 
a.FULL being clear if FIFO order is used. The recalled 
operand is now in O.B and its locatioh is in O.WCT.B. 
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During the gap if the operand is found to b(e needed in 
the next instruction, it is transferred to the operand 
register O, while O.WCT.B is transferred to O.WCT in 
the Post-Processor, otherwise a very large number is 
put in O.WCT. In the next cycle, the word :image on 
disc is era~ed by the Post-Processor if O.WCT equals 
WCT. 

2.2.2 Multiple Track. By simple extension to 
the previous techniques, the multiple track case can 
be handled. A priority network identical to that used 
by the instruction fetch is used to locate the topmost 
cell with an operand for the FIFO case. A mirror
image priority network is used to locate th<e bottom
most cell with an operand for the LIFO case. If an 
operand is required, the operand in O.B in the cell 
chosen by the priority network is loaded into 0 in each 
cell, and O.WCT.B is loaded into O.WCT. In all other 
cells, or if no operand is required, a very large num
ber is loaded into O.WCT. 

3. Content and String-Context Searches 

A search instruction may look for a word which 
compares with the operand of the instruction. Th.is is 
the basic content addressing mode of most associative 
memories. As a result of such a search, all words that 
satisfy the search are marked by setting a tag bit, and 
"other words are unmarked by clearing this tag bit. It 
would be possible later to find the marked words and 
output them or rewrite part of them. 

Alternatively, this mark can be passed, like a 
token in a relay race, from one word to low(er words to 
find a string of consecutive words. Suppos•e one wishes 
to rewrite any word on the disc that follows a pair of 
words, "a" and "b". One first searches for every occur
rence of an "a" in a word, marking that word. In the 
next instruction, one marks only all words that have a 
"b", and that are preceded on the disc by a previously 
marked word. In the final instruction, one rewrites 
all words that are preceded by a previously marked word. 
Note that searching is conducted in the context of a 
data structure, a string of words. In one v-ariation of 
this operation (ordered set search) , the string on the 
disc can have extra words, i.e. , the word s•equence axyzb 
would satisfy this search. In another variation (in
verse ordered set search) the string on the disk can 
have fewer words, i.e., the word sequence "a" alone 
would satisfy the search. Various combinations of these 
string searches can be used to recognize some misspelled 
words, recognize patters, and so on. These operations 
are easily carried out in a segment sequential architec
ture as we describe below. 

3.1 Content Searches 

As indicated previously in Fig. 1, all words are 
fixed length and stored serially. Under no condition 
is a word stored partly on one track and partly on an
other. Numbers are stored least significant bit first. 
The•tag bit M that identifies marked words can be the 
last bit of each word on the disc. 

An equality comparison can be made using a JK 
flip-flop S.T, which is initially set for each word. 
As each word is scanned serially, the corresponding 
operand bits and data bits from the disc arE~ compared 
through an exclusive-OR gate to the K input, to clear 
S.T if they differ. At the end of the word, S.T is 
loaded into M and is then set for the next word. An 
arithmetic inequality test can be done with a serial 
subtracter. Bits can be ignored (masked out) by dis
abling the clock to S.T or the carry flip-flop of the 
subtracter when such bits enter the comparator or by 
ORing mask bits into both inputs to the comparator. 
Considerable flexibility is obtained when the word is 



divided into fields (e.g., tag, name, value fields) and 
separate comparator checks ·each field. At the end of 
the word, combinational logic is used to load the tag 
bit M, based on the results of the various comparators, 
and on the instruction bits that select various search 
options. Some of the search options are discussed 
below. 

.3.2 Search Next 

A search next is a search for a word satisfying 
some basic criteria which immediately follows a word 
satisfying some previous criteria (indicated by the 
mark on that word) • The string search indicated in 
Section 3 is performed by first searching for and marking 
(setting M-Bit) of all words containing "a" as described 
in Section 3.1; then performing, on the next cycle, a 
search for all words containing "b" which immediately 
follow a marked word (i.e., one with "a") as we describe 
below. 

3.2.1 Single Track. Herein, a dual rank flip
flop S.LAST is used to indicate the state of the mark 
bit of the previous word encountered. The data word it
self is searched as in 3.1. S.LAST is cleared at the 
start of a cycle. At the end of each word, S.LAST is 
cleared if the comparator outputs a zero at the end of 
the word~ then this value is exchanged with the tag bit 
M of that word. 

3.2.2 Multiple Tracks. The only difference be
tween this and the single track case involves the value 
of S.LAST at the beginning of each cycle. Previously, 
the topmost word of the track had no predecessor, but 
now it is preceded in the segment by the last work on 
the track above this one. Clearly, only the topmost 
cell will initialize S.LAST to zero. All others will 
initialize their S.LAST to the final value of tag bit M, 
which has been put in S.LAST, in the next lower cell. 
That is, the S.LAST values of all the cells will shift 
down one cell with a zero filling on the top. 

This is a simple instance of a technique here 
called precomputation. Until the instruction has actually 
been selected at the end of a cycle, it is not known 
whether it will, in fact, be a SEARCH NEXT instruction. 
However, if it is, one must already have the last M bit 
in S.LAST ready to pass to the next cell. That is, the 
value in S.LAST must be precomputed and available for a 
SEARCH NEXT instruction; it must be computed in every 
cycle whether it is needed or not. 

3.3 Search and Hold 

An inverted ordered set search can be implemented 
as a variation on the string search using Search Next 
instructions. It is only required to leave the tag bit 
M set to 1 if M became 1 (i.e., not to clear M until the 
end of the query) • In order to mix this type of search 
with conventional string search operations, it is useful 
to select only some words in file, by means of a tag bit 
H, so they retain their value of M if H is 1, as in the 
search and hold instruction, while other words load M 
each time as in the search next instruction if H is 0. 
By this means, it is possible for a record in the data 
base to recognize whenever a sequence of arguments of 
string search instructions has a pattern, such as "a" 
followed immediately by "b", followed somewhere in the 
record by "c". The word storing "b" has tag bit H set 
to 1. 

3.4 Search Lower in Record 

"b" after "a". This is clearly similar to a "search next" 
except that the desired word need not immediately follow 
the previously marked word. This search is usually 
modified by taking records intp account: the word "b" 
must be after "a" but in the same record as "a", not in 
a lower record. Records are separated by data words 
that are especially tagged as deli.miters. We must find 
"b" after "a" with no delimiter words in between. This 
type of instruction can be used in ordered set searches 
discussed in Section 3.1. It is also the basis for 
"forward marking" since the word "b" is located for
ward on the disc as the head scans the disc. It will 
be contrasted to "backward marking" in Section 4. 

3.4.1 Single Track. The problem is simply one of 
recording for each cycle the fact that a word with its 
match bit. set has been encountered after a record de
limiter has been passed. 

Herein, a flip-flop S.ABOVE is initially cleared 
and is cleared whenever a delimiter is found. It is 
set when a word is encountered that had tag bit M=l. 
M is simultaneously loaded with 1 if the content search 
comparator gives a 1 and the value of S.ABOVE was a 1 
just before the word was encountered; otherwise it is 
cleared. Next, each word is examined to see whether it 
is a record delimiter; if it is, then S.ABOVE is cleared. 

3.4.2 Multiple Tracks. Operation within the track 
can be similar to the single track case if S.ABOVE is 
properly initialized. However, whereas the forward mo
tion in a single disc track automatically propagates 
the M bit lower in the record, with multiple tracks it 
is necessary to propagate this bit to an indefinite num
ber of lower cells up to and including the first one 
that has any delimiter.s in it in order to initialize 
S.ABOVE. Thus, it is necessary to know if any M bits 
between a delimiter and the end of a track are set, re
cording this in a flip-flop S.FOUND, and also to know 
if any delimiters had been found on a track, recording 
this in a flip-flop S.DELIM. Propagation is easily 
accomplished by a carry lookahead circuit (using, say, 
74182's) propagating "carries" from higher to lower 
cells. S.FOUND and the complement of S.DELIM are input 
to the generate and propagate of the carry lookahead, 
and the "carry" is loaded into S.ABOVE. This initializes 
S.ABOVE so that the operating continues as in 3.3.1. 

It should be noted that this same carry lookahead 
circuit is capable of being time-shared by many functions, 
some of which have just been mentioned. By setting all 
propagates to zero, the generate' in each cell goes to 
the next lower cell, and only that cell. This was used 
in the search next operation. This circuit can also be 
used as the priority circuit to find the lowest cell 
with an operand-LIFO order. A carry lookahead circuit 
in the opposite direction, discussed later, can also be 
used to fetch instructions and obtain FIFO operands. 

3.5 Burst: String Searches 

The string searches discussed in the previous sec
tions require one cycle per word in the query. This 
creates a serious bottleneck. The following technique 
is capable of searching for strings of arbitrary length 
n in two cycles in most cases. However, an n word ran
dom access memory is required to store the words of the 
query. This algorithm is analogous to the string search 
algorithm commonly used in software: first search for 
just the first word of the string; when it is found 
search for the rest of the string. 

3.5.1 Single Track Implementation. This algorithm 
This search consists of searching for and marking requires an n memory B.M, a memory address register B.A, 

each word satisfying some condition which occurs after flip-flops B.LEFT and B.BUSY and a tag bit F on each 
(lower in the record) a word. which satisfies some previous word. In the first cycle, the first word of the string 
condition. For example: search for all occurrences of B.M. [0] is compared against each word on the disc, 
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setting F if a match is found and clearing F otherwise. 
At the beginning of the second cycle, B.LEFT and B.BUSY 
are cleared. In the second cycle, when a word is found 
with F=l and a burst search is not in progress B.BUSY is 
O, F is cleared, B.BUSY is set, and a burst search is 
initiated as follows. As successive words appear after 
the first word, words B.M[l), B.M[2], ••• are read by 
means of B.A and compared one at a time against the 
successive words read from the disc. The burst search 
is terminated and B.BUSY is c'ieared if either a mismatch 
is found or all the words match. In the latter case, 
the string is found and the algorithm is successfully 
completed. In the former case, a burst search is ini
tiated whenever the next word is found with tag bit F=l. 

Note that a word with F=l may be encountered in 
the middle of a burst search. If this occurs, B.LEFT 
is set. If B.LEFT is set at the end of a scan and no 
match for the complete string has been found an extra 
scan is requested. Extra scans are requested until a 
match has been found or B.LEFT is clear at the end of a 
scan. The search terminates unsuccesully if B.LEFT is 
clear and no match for the complete string is found. 

3.5.2 Multiple Track Implementation. A priority 
circuit and intercell communication to initialize B.BUSY 
are required for multiple track operation. Only one 
random access memory B.M is needed. Cells get access 
to B. M by means of the priority circuit which sets B. BUSY. 
The first cycle, comparing B.M[O] against all words and 
setting tag F, is done as in the single track case. 
B.BUSY is cleared at the beginning of the second cycle 
only, and B.LEFT is cleared at the beginning of the 
second and later cycles. In the second (and successive 
cycles), it is possible that a word with F=l will be 
met in more than one track at the same time. A priority 
circuit is used to initiate a burst search (set B.BUSY 
and clear F) in only the prior track. The other track 
will set B.LEFT to request a burst search in a later 
cycle. It is also possible that a string will overlap 
tracks. This is indicated when B.BUSY is 1 at the end 
of a scan. The flip-flops B.BUSY are simply shifted 
down one cell at the end of each scan to continue the 
search. If B.LEFT or B.BUSY is 1 at the end of a scan, 
another scan is requested. 

4. Set and Tree Context Searches 

The content and string context searches described 
in the last section provide basic information retrieval 
functions. They are not sufficiently powerful for most 
information retrieval applications, however. As before, 
we are assuming that a collection of words is organized 
as a record, and that the first word in the record is 
tagged as a delimiter. It is at least necessary to 
organize the records as unordered sets having an inde
finite number of words. It should be possible, for 
instance, if two words "a" and "b" are in such a set, to 
search for "a" and then change "b", whether "a" is 
higher than "b" or "b" is higher than "a" in the file. 
Note that the ordered set search operations could only 
do this if "a" was higher than "b" on the disc. The 
operation of forward marking used in ordered set searches 
must be mated with some techniques for backward marking. 

It is also quite useful to search these unordered 
sets for a subset of words given by the operands of some 
search instructions. A mark bit is needed for the set 
as a whole to indicate if the set is a successful candi
date for continuing a string search. This bit can be 
maintained in the delimiter word at the beginning of the 
record. (Actually, a stack of bits in the delimiter is 
maintained to permit logical operations on the results of 
searches.) Then, the results of searches are uniformly 
sent to the delimiter word, using backward marking which 
will be discussed below, and this result is available to 
affect further searches or modify instructions in the 
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record by means of forward marking techniqu·es similar 
to those used for search lower (Section 3.4). This 
technique can be used for unordered set searches and 
for modifying words in the set without regard to their 
order. 

The solution to this problem can be generalized 
to handle tree data structures. Tree structures 
naturally handle such data management problems as are 
found in corporations, armed forces, or libraries. We 
shall consider the extension to backward marking to 
handle searches in trees as well. 

4.1 Backward Marking 

The general problems is that for every record, 
the successful result of a comparison between an operand 
and any word in it should be stored by setting a bit in 
the delimiter. If ·one or more words in a record satisfy 
the comparison, then the result stored in the delimiter 
should be 1, but if no words satisfy the comparison 
the result should be 0. 

4.1.1 Single Track. For a record contained 
entirely within a segment, the problem is simply one of 
getting the result of a search in a word in the 1~ecord 
stored into the delimiter word that has already been 
passed in the segment. 

Implementation of this function uses a delimiter 
counter M.DCT and a 1 x n random access memory RAM 
where n is the maximum number of records possible on 
the disc segment. M.DCT is able to be used as an ad
dress to read or write in RAM. Each bit in the RAM is 
a carrier for each record whereby it is set in one 
revolution in the main processor by the result o:E a 
comparison on data words, and is unloaded into the de
limiter word and cleared in the next revolution :i.n the 
post-processor. Initially, M.DCT is cleared, and it is 
incremented each time a word with a delimiter ta9 is 
encountered. Thus, the ith bit of RAM is addressed for 
reading or writing as words in the 1th record are en
countered. During a backward marking instruction, if a 
comparison between the comparand and a word met on the 
disc is satisfied, the bit RAM [M.DCT] is written with 
a 1. In the next revolution in the post-processor, the 
bit RAM [M.DCT] is copied into the mark bit in the de
limiter word and is cleared. Note that if two successive 
backward marking instructions occur, the reading and 
clearing of the RAM in the post-processor due to the 
first instruction occurs simultaneously with the writing 
of the RAM in the main processor; however, the reading 
and clearing is logically performed immediately before 
the writing. 

4.1.2 Multiple Tracks. As with the search lower 
operation, this operation should permit a record to 
overlap multiple tracks. The operation takes place over 
two cycles as in the single track case except that 
S.DELIM (see 3.4.2) is set in the first cycle if any 
delimiters are found. Note that after the first cycle, 
if one or more tracks contain a continuation of a record 
begun on a track to the left, the result of the com
parison is automatically put in bit zero o:E the RAM, and 
note that at this time, M.DCT of the cell to the left of 
this continuation tracks (the cell containing the de
limiter for this record) still points to the RAM bit 
which is associated with the record spread over these 
tracks. It is only necessary to put the OJR of these 
bits into RAM[M.DCT] of the cell to the left. From 
there, it can be distributed to the rest of the record 
by forward marking. 

A carry lookahead circuit can transfer these bits. 
It propagates from lower to higher cells. 'rhe complement 
of the delimiter indicator S.DELIM is the "propagate", 
the bit RAM[O] is the "generate", and the "carry" is 



put into RAM[M.DCT] at the end of the first cycle of a 
backward mark operation, before M.DCT is cleared for 
the next cycle. 

4.2 S-Q Tree Search 

By simple extension to forward and backward marking, 
an S-Q search of a tree can be conducted. The records 
of the previous searches are here considered to be nodes 
of a tree. The S-Q search refers to searching particu
lar nodes of a subtree of some larger tree. Typically, 
a tree will have several subtrees defined within it. 
The subtree consists of some node (marked S) and all of 
its descendants. Within the subtrees, some nodes are 
marked as being qualified for a search (Q-nodes) • A 
well-formed tree has no Q above S and no S above s. The 
S-Q search is a search of all of the qualified (Q) nodes 
of a subtree; the results are stored in a bit of the S
node of each subtree--rather like a backward marking of 
nodes. 

In what follows, we will assume that the tree is 
stored in left list matrix order, somewhat like putting 
a tree structure into an outline form like that used in 
writing this paper. For example, the tree below would 
be stored as: 

A B D E F c I H G K L J node 

s Q Q Q Q s Q mark 

Fig. 4 

From the way the tree is stored, if the S and Q 
nodes have been marked (as we discuss later) and are 
well-formed, it is clear that this search will be analo
gous to the backward marking in that each S-node is 
marked with results of a search of words between it and 
the next S-node. The major difference will be that the 
search is confined solely to qualified nodes (Q-nodes) . 
A bit will not be set in: the RAM when a comparison be
tween the operand and a word unless the word is in a Q 
node. As before, the search results will be ORed into 
a RAM, and the Post-Processor will mark the appropriate 
word. Now, however, the RAM is addressed by a count of 
S-node delimiter words. That is, M.DCT is incremented 
only when a delimiter of an S node record is encountered. 
lilso, the multiple track case requires an identical carry 
lookahead circuit. However, the propagate bit from each 
cell is from a flip-flop which is set whenever the de
limiter or an s record is met. 

The implementation-of this technique requires tag 
bits S and Q in delimiter words which can be set or 
cleared; S=l indicates that the node which this delimi
ter word begins is an S node. It required, for the 
multiple track case, the flip-flop S.DELIM, which is set 
i.f a delimiter of an S ~ecord is met, and its complement 
is input to the propagate of the carry lookahead. Also, 
a flip-·flop M.Q is needed to indicate that the record 
we are in is a qualified record (Q record). M.Q and 
S.DELIM are initialized and run as in the search lower 
operation, and backward marking is done as in set 
searches, using delimiters of S nodes to control S.DELIM 
and set searches. 

4.3 Establishing S and Q Bits 

In order to utilize the general S-Q tree search, 
one must set the S and Q bits. It is possible that each 
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delimiter word will have a unique code word, so that 
content addressing can be used to find the delimiters 
and rewrite the S and Q tag bits. However, herein, we 
describe techniques whereby S and Q bits can be "walked" 
through the tree structure to their final location for 
an S-Q search, in a manner similar to the CDR-CAR opera
tions in LISP. This adds another dimension to the 
searching capability of the machine, particularly with 
regard to artificial intE:!lligence. 

Herein, it is assumed that each node has a level 
number (equal to the number of nodes in a chain be
tween H: and the root of the tree) and a name. These 
can be stored in the delimiter of each node. In the 
following discussion, we need only look at the level 
and name in the delimiter words. We shall now ignore 
the data words within the records. For any node, its 
ancestors are nodes between it and the root of the tree, 
its descendants are nodes in the subtree below it and 
its sons are nodes immediately below it in its subtree, 
following terminology from the "family tree". It is 
necessary to be able to identify ancestors, sons and 
descendants of any node, particularly an S node and a 
Q node. Then, one can search for a node, using content 
searching for the name of the node, which is the son of 
an S node, erasing the old S bit and setting S in the 
son or sons that satisfy the search. A sequence of such 
searches is analogous to CDR-CAR operations in LISP. 
However, unlike LISP, trees other than binary trees can 
be used, more than one son can be marked, and any 
ancestor or any descendant that satisfies the content 
search can be marked. 

In the following discussion, S marks will be moved 
about in the tree. Q marks can be m9ved about in simi
lar fashion. We will assume that before the operation, 
the tree is well formed. The son and descendant searches 
are shown first. The problem is to identify nodes that 
are in the subtree of nodes that were marked with S=l. 
The ancestor search is the inverse of the descendant 
search; the potential ancestor must be uniquely identi
fiable by content addressing and the subtree of that 
node is then checked to see if it has an S node. If so, 
the potential ancestor is finally marked. 

4.3.1 Single Track. The implementation of son 
and descendant searches requires a save register M.L to 
save the level of an s node, and a flip-flop M.D to 
indicate that the delimite15being examined are in a sub
tree of an S node. M.D is initially zero. It will be 
used, together with the comparator, to find new de
limiters to set S=l. The node delimiters wil~ each con
tain a level number and a unique name in specific fields 
and some will be marked in a particular bit (S-bit) as 
being S-nodes. If we assume that the hardware is told 
only whether it should look for son or descendant of an 
S node, then it will firsthave to search for any S-node 
and when it is found, set M.D, record its level number 
(LEVEL in M.L). Then it will have to compare level num
bers LEVEL of a succeed]J"ig node to M.L: for son, the 
comparator must check for LEVEL = M.L + 1, for descen
dant, LEVEL > M.L and to indicate when the subtree is 
left, M.D is then cleared \vhen LEVEL < l'LL. 

The ancestor search requires the use of the RAM 
and M.DCT counter because it is a backward marking 
operation. M.L and M.D are used as in the previous sec
tion. It is necessary to be able to identify potential 
ancestors (PA 1 s) by content addressing alone, and such 
PA's must be well formed (i.e., no PA is in the subtree 
below another PA) • Two cycles are required for this 
operation~ M.DCT and M.D are initially cleared. When 
a PA is found, its level is put in M.L and M.D is set. 
M.D is cleared when a delimiter with level LEVEL < M.L 
is found. If an S node is found while M.D is 1, then 
RAM[M.DCT] is set. In the next cycle, M.DCT is cleared 
and incremented as before; S bits are first cleared, 
and RAM[M.DCT] is put into each S bit of delimiter word. 



4.3.2 Multiple Tracks. If a tree is stored over 
several tracks (Fig. ~), then the immediate hardware 
problem is one of intercell communication. The subtree 
may cross cell boundaries, and each cell needs to know 
at the start of the cycle if it is starting in the 
middle of the proper subtree with S=l to determine if 
it is a descendant, or a subtree of a PA to determine 
if the PA is an ancestor and it needs to know if it is 
a son. In terms of the hardware outlined for the single 
track case, this means properly initializing M.L and 
M.D. 

Because trees are well formed and stored in left
list order, it is possible to acquire information to 
initialize M.L and M.D on a single cycle immediately 
before the actual operation cycle. It can be shown 
that the cell which contains the end of the subtree can 
be found by obtaining the minimum level number LL within 
each cell. If a subtree consists of a given node at 
level M.L and all of its descendants, then clearly any 
cell which contains the end of the subtree must have a 
node of level L ~ M.L. Thus, LL ~ M.L. 

The hardware problem is one of detecting in one 
cycle the 1owest level numbers of each track. At the 
end of this cycle and before the start of the operation 
cycle, this information can be used to compute the ini
tial values for M.D and M.L for each cell. 

This technique requires the register M.L and flip
flop M.D discussed before a flip-flop S.DEL and a re
gister M.LL to hold the least level and a propagate cir
cuit. The operation takes two cycles. In the first 
cycle, M.LL is first set to a large number, then loaded 
with min (M.LL,LEVEL) where LEVEL is the level of each 
delimiter encountered. Meanwhile, S.DEL is initially 
cleared, and is set if an S node is found for son or 
descendant searches, or if a PA node is found for ances
tor searches. M.L and M.D are computed as in the single 
track case but no S bits are changed yet. At the end 
of this cycle, assuming the tree is well formed, it is 
only necessary to send M.L of any cell with M.D = 1 to 
all lower cells down to and including one with S.DEL = 1. 

This can be done using a carry lookahead circuit, 
sending one-bit of M.L at a time through the generate 
to the carry and to M.L, where the complement of S.DEL 
is the propagate signal. M. L is correctly initialized 
this way. To initialize M.D, M.L is compared to M.LL, 
and the signal which is one if M.L > M.LL is the pro
pagate, M.D is put into the generate and the carry is 
put into M.D. Now that M.L and M.D are initialized, 
the second cycle is executed as in the single cycle case 
and S bits are now changed as in that case. 

5. Pointer Transfers 

A means to store point~rs and to efficiently trans
fer signals via these pointers is invaluable for asso
ciative nets and other data structures. Each record in 
the data file is assigned a logical address LA equal to 
the number of records above it. A pointer from record 
"A" to record "B" is implemented by storing the LA of 
"A" in a word in "B". In its simplest form transferrirll::J 
of pointers means that, as several records are marked, 
all records pointed to from such marked records will 
become marked. A second form is where pointers are re
flected. This means that, as several records are marked, 
all records that point to a record which is also pointed 
to by such marked records will become marked. It should 
be noted that pointer reflection is tantamount to a mas
sive parallel content search. It is capable of higher 
performance than any other technique described in this 
paper. These forms are modified by content and string 
or tree context addressing to make them useful. How
ever, in the ensuing discussion attention will be fo
cused on the transferring of pointers and the reflection 
of pointers. 184 
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Figure 5 -- A TREE STORED OVER SEVERAL TRACKS 

Pointer transfer means herein that several words 
in the data base storing pointers have been markeid as 
source pointers, and all records which have logic:al 
addresses equal to the value of any of these marked 
words are to have their delimiters marked. Pointer re
flections means herein that several pointer words have 
been marked as source pointers, several words ha,re been 
marked as sink pointers, and wherever a sink pointer is 
equal to any source pointer, the sink pointer should be 
further marked. 

5.1 Single Track 

These techniques utilize the association of each 
record with a random access memory bit. A RAM and de
limiter counter M.DCT are used. Initially the RAM is 
clear. In the first cycle, as a source pointer with 
bit value POINT is encountered, RAM[POINT) is set. For 
pointer transfers, in the second cycle, M.DCT is ini
tialized to zero and is incremented as each delimiter 
word is met. RAM[M.DCT) is read out and marks the de
limiter word. For pointer reflections, as each sink 
pointer with bit value SINK is encountered, RAM[SINK) 
is read out and marks the sink pointer word. After 
each such operation, RAM must be cleared. 

5.2 Multiple Tracks 

In multiple track systems, the RAM bit in the ap
propriate cell has to.be set or read, and memory access 
conflicts have to be resolved. We posit an ove:i:~all 
virtual random access memory RAM' which is storeid in 
the RAMs in each cell. Each record is associated with 
a logical address LA' equal to the number of rec:ords 
above it in the file. RAM' [LA') is associated with the 
LA'th record. Yet on each track the logical address LA 
is defined for each record as before, as the number of 
records above it on the track. As before, RAM[LA) is 
associated with the LAth record. Note that thiB permits 
the second part of a pointer transfer operation to be 
done exactly as it was for the single track cas1:!. The 
conversion from LA' to LA is quite simple: if 'rD. is 
the total count of delimiters on cell i then on tlie ith 

j-1 
cell LA' is LA + L TD. • Then to read or wri b9 RAM' [LA': 

i=l 1 



it is necessary to locate the cell it is in and to de
termine LA. To do this, one feeds LA' into the left in
put of the leftmost cell, and each cell subtracts TD. 
from what.is input on the left, outputting it on the1 

right to be input on the left of the next lower cell. 
The leftmost cell that outputs a negative number uses 
the number put into it, a positive number, as LA to 
read or write RAM[LA]. 

Note that only one bit at a time can be read or 
written in RAM'. It may happen that two cells may en
counter a source pointer at the same time. Although 
this should occur very rarely, it creates a memory ac
cess conflict because it may require setting a bit in 
two different locations of RAM' using two different 
values of LA' at the same time. A buffer register can 
store LA' in the two cells so that·both can be used as 
addresses at. successive time slots. Nevertheless, these 
buffers may be full when a source pointer is encountered. 
Thus, it is necessary to mark source pointers, deleting 
the mark when the pointer is actually transferred. If 
any pointers are still marked at the end of a cycle, an 
extra cycle is required to transfer these remaining 
pointers. It is expected that all source pointers can 
be recorded in the RAM in a few cycles for either 
pointer transfer or reflection, and that all pointers 
can be read from the RAM in a few cycles for pointer re
flection. 

'I'he implementation of these techniques requires the 
RAM in each cell, register M.TD; counter M.DCT flip-flop 
M.LEF'I', tag bits SR and SK on pointer words to indicate 
source and sink pointers, or priority circuit, a one 
bit buss B and a special adder between cells. For an 
arbitrary number of cells, a serial tree adder provides 
a practical adder. See Fig. 6. The adder cell is shown 
in Fig. 6a. Numbers are fed serially, least significant 
bit first, through a, d and f. c is just a, e is a+d 
a.nd b is d+f. Note that in a tree constructed from such 
cells as shown in Fig. 6b, any downward-directed link 
qenerally has the sum of all values to the left of it, 
and any upward-directed link has the sum of all values 
below it. The bottom nodes connect to the processing 
cells. that contain the RAM and disc tracks discussed 
earlier. Note that sums are accumulated from left to 
right .in these cells. For instance, D is A+B+C. If A 
is the logical address LA', and Band Care the negatives 
of their delimiter counts (-TD.) then Dis LA. 

1 

c f 

e 

a) CELL b) NETWORK 
Figure 6 -- A TREE .ADDER 

Pointer transfer is accomplished as follows. SR is 
set on source pointers and M. DC'I' has the number of de
limiters in each track, as in the backward marking opera
tion. The negative of M.DCT is put in M.TD. RAM and 
M.LEFT are cleared. If one of the cells meets a source 
pointer and the priority circuit finds that it is the 
prior one (leftmost) having a source pointer, then tag 
b:Lt SR is cleared, the value of this word LA' is put 
into the top of the tree (at location A in Fig. 6b), 
and M.TD is put into each bottom input to the tree 
(locations B, C, etc. in Fig. 6b). The bottom outputs 
(location D, etc.) are collected. If the next right 
cell ha:3 a negative value and this cell has a positive 

value, then that value is us.ed as LA to set RAM[LAl. 
If another cell finds a source pointer and is unable 
to send it out because the priority circuit prevents it, 
tag bit SA is not cleared but M.LEFT is set. At the 
end of the cycle, if any cell has M.LEFT = 1, then 
another cycle is used to send out remaining pointers, 
and M.LEFT is initially cleared for this cycle. This 
continues until all source pointers are sent out CM.LEFT 
is zero in all cells). In the final cycle, the bits in 
RAM are put in the delimiters using M.DCT as in the 
single track case. 

Pointer reflection is similarly handled. First, 
source pointers are transferred as above. When all 
source pointers are transferred, sink pointers are 
selected just as source pointers, their LA's are trans
lated, and the bit RAM[LA] read from the selected cell 
is output on a buss B, to the cell containing the sink 
pointer, where it is written. 

6. Summary 

We have developed implementations for some basic 
segment sequential functions. As mentioned at the 
beginning, however, these functions do not constitute a 
complete set of primitive functions for data base 
storage and management. The concepts of word insertion 
and deletion, collect.ion (of words which satisfy search 
criteria), and garbage collection (packing of unused 
words to eliminate fragmentation) have .not been men-

1 tioned here~ but are discussed by De Martinis., et al. 

All of these concepts were developed for use in 
the CASSM system at the University of Florida, but this 
system i~i intended to be a research vehicle for de
termining just which of these concepts will prove to be 
useful for specific applications. The basic functJons 
and their implementations are presented independently 
here in the belief that they will prove useful in the 
design and implementation of further systems with 
specific applications. 
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Abstract 

A Self Managing Secondary Memory (SMSM) organiza
tion is proposed herein, in which hardware directly 
assists the storage, retrieval and management of arbi
trary length records on such devices as fixed head 
discs or charge coupled devices (CCD's). This paper 
emphasizes some of the techniques used to implement an 
SMSM system. 

In an SMSM, fixed length words are organized into 
variable length recor·ds, and these records are packed 
into a file. The first word of the record, a label, 
can be associatively addressed to mark the record. 
Marked records can be output, erased, or a word or a 
collection of words can be inserted after the label of 
such records. Erased words are shifted to the bottom 
of memory as data words are packed upward, so t~at new 
records or extensions of old records can be inserted at 
the bottom of the file. In this system, although the 
file appears to be a single one dimensional array of 
words, it is actually stored on a number m of n word 
circular access memories, such as CCD's or tracks of a 
fixed head disc. Larger systems are implemented by 
increasing m. The access time for the entire system 
depends only on n. 

This architecture is self-managing in that no 
directories are kept, nor is software garbage collec
tion or allocation necessary. The hardware replaces 
these functions. This appears to be a desirable direc
tion for secondary memory architectures to develop, 
with special application to their use in computer 
networks. 

This paper discusses techniques for implementing 
an SMSM. These techniques were developed as part of 
the Context Addressed Segment Sequential Memory (CASSM) 
system. This paper therefore also describes that part 
of CASSM that, by itself, forms a useful SMSM. It is 
hoped that these techniques will be useful in the de
velopment of a new class of irttelligent secondary 
memories to me.et present and future needs of computing 
systems. 

I. Introduction 

A traditional secondary memory system represents a 
very large part of the global investment in a computer 
system. The smaller the computer, the bigger the cost 
of the secondary memory .. is with respect to the global 
cost. Since the secondary memory is a "passive" element 
with respect to the data processing, part of its cost is 
in the software needed for the managing system. Tradi
tionally, a sequential secondary memory, such as a fixed 
head disc, is treated as a random addressed memory. 
Fixed length words are organized into fixed size tracks 
and sectors, and are located by track, sector, surface 
and unit addresses. The software maintains a directory 
to map the name of a variable length record into the 
address(es) of sector(s) where it is stored. Garbage 
collection software also collects unused space from time 
to time. However, as hardware costs drop, it is feas
ible and attractive to put some processing logic on each 
head of a fixed head disc, or on each charge couple 
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device (CCD) memory to assist these softwarE~ functions. 
By replacing random addressing by content addressing of 
a label in each record, the records do not have to be 
tied down to tracks. Several short records can be put 
on one track, or a long record may be put 011 several 
tracks. Each ·record will have a label word, and the 
record will be located by its label. Since sever·al 
records with the same label will be retriev1ed together, 
there is no need f~r linking such records i·n the direc
tory. In effect, the "directory" is stored with the 
data by means of the labels. Moreover, since the 
records are not tied down to tracks, words in records 
can be moved from one track to another as hardware 
automatically collects garbage. words into. one ania 
where large records can be input. The memory is self 
managed to efficiently store variable length records. 

A self-managing memory has three attractive fea
tures. Whereas, in a conventional system, loss of the 
directory will usually cause loss of all the data, 
since the "directory" is stored with the data in this 
system, the directory is only lost when thei data is 
lost. This system can be more fail-soft. Whereas, in 
a conventional system, the directory may bEl so large 
that it is stored on the disc and two accesses are 
required to get the directory first and then the data, 
in this system, it is not necessary to ret1cieve the 
directory. This feature saves the time required for one 
access to the disc. Moreover, it does not require the 
computer to store and search the (large) d:lrectory in 
its primary memory. This is a very attractive feature 
for small computers that do not have much memory. 
Finally, whereas, in conventional systems used with com
puter networks, long protocols are required to gain 
access to the directory, in this system the only require
ment is the establishment of unique labels and the pass
ing of these labels between cooperating processEis. For 
example, it would be reasonable to initially apportion 
groups of labels to each of the processes, which indi
vidually assign them upon execution of the UNIQUE func
tion (6) to records created by the process. Eac:!h pro
cessor gains control of the disc in a simple way, such 
as a hardware priority circuit. It uses the label to 
access the record. Cooperating processes need only have 
the label to access the same record. 

In the design of the Context Addressed Seg1111ent 
Sequential Memory (CASSM) system (1, 2, 3), sev,eral 
techniques have been developed that allow automatic man
aging of variable length records stored on a segment
sequential memory system such as a fixed head disc. 
These operations include: garbage collection, insertion 
of single word,s or blocks of words. in a r1acord input of 
records at the end of the file, and several modes of 
outputting data. While these techniques were developed 
for a more powerful machine capable of searching rela
tional, hierarchical and network data basies, these tech
niques in themselves make up a useful self-managing 
secondary memory system. The purpose of this paper is, 
then, twofold: 1) show those techniques of the~ CASSM 
system that relate to input, output and garbage! collec
tion as part of the series of papers on CASSM; and 2) 
cast these techniques in a self-contained paper. that 
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shows how a relatively simple self-managing secondary 
memory can be constructed with the desirable features 
given above. It is hoped that this paper will show 
such techniques as will be useful in the development of 
a new class of intelligent secondary memories to meet 
present and future needs of computing systems. 

2. §ystem Description 

In this section, the software view of the file 
structure is presented first. Then operations on the 
file are presented •. Finally, the block diagram of the 
syste:Iil and construction of the cell are outlined. 
While this section describes the architecture of an 
SMSM, it must be emphasized that this architecture is 
presented only as a vehicle to describe the technique~ 
developed in later sections,in a more cohesive form. 

2.1 Word and File Structure 

Figure 1 shows the basic word structure. Each 
word is fixed length, and consists of two fields: TAG 
and DATA. The TAG field (7) is used to distinguish the 
several types of words that may exist· simultaneously in 
the system memory and mark words for processing. The 
DATA field stores the actual data of the word. Figure 
2 shows, in its left half, the basic software file 
structure. RECORDS consist of a variable number of 
words, the first of which is a label for the record. 
All the records are packed together to form the FILE. 
Note that only one FILE exists in memory. Unused words 
"below" the FILE are available for storing new records. 

TAG 

DL 0 x c LABEL 

DT 1 0 c DATA 

GB 1 1 0 Don't care 

EOF 1 1 1 Don't care 

Figure 1. WORD STRUCTURE 

::1J/l j~ 
SEGMENTS 

• TWARE MAKEUP HARDWARE PLACEMENT 

gure· 2. STORAGE OF DATA 
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For the purpose of searching operations and gar
bage collection, the TAG field must differentiate, at 
least, between the following types of words: 

a) Data (DT): This word identifies an actual data 
word-:--For the purpose of this paper it will be consid
ered that data words consists only of a fixed length 
string of ASCII characters. 

b) Delimiter (DL): This word marks the start of a 
logical record within the file. A record is defined as 
the block of contiguous delimiter and data words, start
ing with a delimiter, up to but not including the next 
delimiter. 

c) Garbage (GB): This word is to be deleted by garbage 
collect:lon hardware. 

d) End of File (EOF): All words below the file are EOF 
word;. The ;emory is empty if filled with EOF words. 

The tag bits, X and C, are used to mark delimiter 
and data words for input or output. These are discussed 
in the next section. 

2.2 Operations on the File 

ThE~ general operations on the file are discussed 
first. Then, an "instruction set" of input/output com
mands is presented that implements these operations. 
The general operations are input, output, and deletion 
of records. 

The normal technique for inputting new records is 
to put them at the end of the file. An input command 
exists for this type of input. There is a command to 
initialize the memory by filling it with end-of-file 
(EOF) wc>rds. The memory can then be filled by input
ting at the end of file. It is sometimes possible to 
add new words to an existing record with label L by in
putting a new record with label L at the end of file. 
However, it is occasionally necessary to input a single 
word or a block of words at the beginning of an exist
ing record. Two input commands are provided for such 
cases. There is a command to mark delimiters with label 
L to prepare for inputting single words or blocks of 
words below such marked words. 

Output is generally accomplished by a command that 
sets the collection bit C in all delimiter or data words 
in a record or records that are to be output and selec
ting three options for the mode of output. This can be 
done in one revolution. The words are output later. 
As collection words are output, the first mode of the 
output instruction can cause the SMSM to merely clear 
the C bit in such words, to leave the word in place but 
prevent it from being output again until the C bit is 
set aga:l.n (SAVE) or to delete the word (DELETE). The 
SAVE mode can be used when the memory is storing per
manent files. The DELETE mode can be used when the 
memory :l.s being used as a spooling device. Words can be 
deleted as they are used. Unfortunately, there is no 
way in a multiple segment system to quickly output words 
from many records in the same order that they are stored 
in the file. The output is controlled by a second mode 
which may be RANDOM, DELIMITED, ORDERED, or UNIQUE. The 
RANDOM mode outputs words quickly (essentially in one 
disc revolution) but they appear in a different order 
than they are in the file. The DELIMITED mode outputs 
words in a record in the same order as they are stored 
in a record, but the records may be output in a differ
ent order than they appear in the file. Output in this 
mode takes somewhat longer time than in the RANDOM mode • 
The ORDERED mode outputs words in the same order as they 
appear in the file. For such multiple track systems, 
this output mode takes as many revolutions as there are 
tracks that contain words to be output. (Note that for 



outputting single records, this mode can be quite fast.) 
Finally, the UNIQUE mode, which is an important output 
mode in sophisticated systems like CASSM, outputs words 
in ordered mode but does not output a word if that same 
codeword were output already. 

There is a possibility that two output commands can 
be executed sequentially so that collection words from 
both commands may be outputting together. This may be 
deliberate or it might be unacceptable. A third mode 
of the output command (MGC, WTC) can halt the process
ing of the command until all collection words are out
put (wait for collection, WTC) or execute the command 
regardless of whether collected words will be mixed 
together upon output (merge collection, MGC). 

In addition to the output command, there is•a 
command to cancel all output by clearing the C bits. 
It is useful, especially when output is done in the 
DELETE mode, so that the computer receiving words from 
this memory can stop output when its input buffer is 
full. 

Garbage collection is accomplished by a command 
that changes data or delimiter words into garbage words. 
Such words migrate to the bottom of the file, where they 
become end-of-file words. 

The user sees only a one dimensional file of fixed 
length words, arranged into variable length contiguous 
word records that have a delimiter word (DL) which has 
a label word stored at its beginning. For the simplic
ity of presentation, we pr9pose the following colllllands, 
although more complex commands would undoubtably im
prove. the performance of the machine. Herein, Lis a 
code word to be compared against labels, and B is a full 
word, including tag bits. These commands are supplied 
by meru-rs of a direct memory access (DMA) input channel 
from a small or large machine, or a computer network. 
An output DMA channel is implicitly controlled through 
the input DMA channel. 

Erase Memory, EM 

The entire memory is filled with words with tag EOF 
(end of file). 

Input at End of File IE B 

The word B replaces the first EOF word, thus being 
appended to the end of the last record. A rapid suc
cession of such commands can append many words to the 
bottom of the file in essentially one revolution of the 
disc. · 

Output record OR L ,~, m
2 

• m
3 

The record with label L is output using modes m1 , m2 , 
m

3
• This sets the C bit on all·worde in the record!i 

with label Land sets the output mode m1 , m2 , m1 . C 
marked words will be output later under modem1 l_SAVE, 
DELETE)-determines whether words that are output are 
deleted or not, m (RANDOM, DELIMITED, ORDERED, UNIQUE)
determines the oraer of output from multiple cell sys
tems, and m

3 
(MGC, WTC)-determines whether this command 

must be delayed until all previous collection words are 
output. 

Kill output KO 

All C bits in memory are cleared, thereby prevent
ing any more output. 

Delete record DR L 

The words in the record(_s) with label L are re..-. 
written with tag GB(garbage). 

188 

Mark label ML L,n 

The X bit is set to 1 in any delimiter word(s) hav
ing label L and is cleared in other delimiter words. 
The number n needs to be saved for block insertion to 
indicate the number of words in the block. 

Write label WL L 

The label L is written into the label field of any 
delimiter word that has X=l. 

·Input word IW B 

The word B is inserted immediately below any label 
marked with X = 1, and X is cleared. All words below 
the label with X=l are moved down one word in the file 
to make room for B. 

Input block IB B 

The word B is inserted into the block after the 
label marked with X = 1, and X is cleared. Only one 
delimiter word in memory may have X = 1 whe:n this in
struction is executed. A rapid succession of such 
commands can insert a block of words into the disc in 
(essentially) one revolution of the disc. 

Clearly, an I/O program can be written using the 
I/0 commands given above. For instance, to add a new 
record consisting of delimiter word B

1
, and. data words 

B
2 

and B
3 

to the file, one executes 

IE 

IE 

IE 

In the next section, the implementation and. timing of 
these commands in a cellular system is cons:iderecl. 

2.3 System Implementation 

In a content addressed system, a high degree of 
parallelism for data processing and overall operations 
is possible and desirable. Systems with such archi
tectural characteristics have been presente:d in 
[l, 2, 5]. Based on these ideas an outline of the 
basic architecture for the SMSM follows: 

a) The system will consist of a linea~r array of 
identical cells in which each cell communic:ates direct
ly with its two neighbors and with a common I/0 bus 
(see Fig. 3). The array will be considered vert:Lcal, 
using such terminology as top cell, next lower c1~ll, 

etc. 

b) Each cell consists of a segment of memory, to 
be implemented, for instance, with CCD's, and a logic 
section which is able to search, modify and rewr:Lte 
data, and perform input/output and managing operations 
(see Fig. 4). 

c) Last, a Control Module (COM), will control 
ali the common ope;ations-in all the cellst communi
cate to a computer or network via input and output DMA 
channels commands received from the compute!r to all the 
cells, where they are executed in parallel by all the 
cells. See figure 3. 

Within each segment of memory, the data is written 
in a bit-serial mode, and all the cells run on a common 
clock. In that way the data is shifted synchronously 
in all the memory segments. The data shifted out from 
memory is fed into the logic section, where~ it i:s 
processed, and then rewritten into the memory segment. 



Cell 1 

Cell 2 Computer 

Cell n 

FIGURE 3. SYSTEM STRUCTURE 

tNext upper cell 

1 
UPDATE 

1 
CCD SEARCH I/O Buss 

1 
I 

INPUT/ 
OUTPUT 

J 

Next lower cell 

FIGURE 4. CELL STRUCTURE 

As was noted in section 2.1, the words will be or
ganized in records, and each record may contain a 
variable number of words. The different records of a 
fil~ will be stored in the system in sequential order, 
starting with the top cell, and continuing with the 
next lower ones. In that way, variable length files 
are divided into equal segments, each one containing 
a number of words equal to the amount of valid data 
that can be stored in one cell memory. This is shown 
:ln the right half of Figure 2. E;ach cell memory may 
contain one or more whole records, or only part of a 
record, and a record may start in one cell and con
tinue in the next one. 

Within each cell, the memory segment is scanned. 
Thus, :t;:n all cells, the top word in each segment is 
read by each cell concurrently, then the next word in 
each cell is read, and so on. This process is here 
called a scan. After the last word has been read, a 
short gap occurs, and the first word of each segment 
is again read concurrently in each cell. The scan 
and gap together form a memory cycle. Note that the 
cycle time is dependent upon the number of words in a 
segment, but that the size of the memory can be ex
tended indefinitely by adding more cells without in
creasing the size of the segment. 

The following commands wait until the beginning of 
each scan and last throughout a scan: EM, OR, KO, DR, 
ML, WL and IW. However, the command OR will also 
have to wait until the last output is complete (all C 
bits are zero) if mode m3 is WTC. The IE and IB 

connnands wait until some segment finds the first EOF 
word, or X=l delimiter, respectively, but a rapid 
succession of such connnands can be executed to write 
words one after another into the memory after this. 
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Note that the OR and KO commands control the sys
tem output direct memory access channel, and that the 
DR connnand controls the garbage collection system. 
These systems operate concurrently with the input 
channel to achieve a degree of speedup in the SMSM 
architecture. 

The logic section within each cell contains sever
al different modules that perform specific functions 
on the data as it is shifted through them. The func
tions performed in these modules, and a simplified des
cription of the logic in each module, will be dis
cussed now. 

The search for a given word, and the modification 
of the matched ones takes place in the search process
or module. Therefore this module must, at least, con
tain a one word length shift register where the data 
is held while it is being examined and possibly changed 
after it has been examined, an input to receive the 
operand from the COM module and a serial comparator. 
Several "flags" (or flip-flops) must be implemented in 
that module in order to store the results of matches 
when the operation to be performed must be extended 
to subsequent words of a record, or when that infor
mation is needed later on for other operations. In 
particular, delimiter words are searched by the ML 
command to set X=l in preparation for word or block 
insertion in that module. A flag is set to continue 
the IB command in a segment, and intercell links are 
provided to resume such IB commands on the next'.' lower 
cell when block insertion overlap several segments. A 
flag is set for the OR command to set the C bits in 
the delimiter and following data words to collect them 
for output. Similarly a flag is set for the DL command 
to change the delimiter and following data words to 
garbage words to prepare them for garbage collection. 
Intercell links and logic is provided to initialize 
these flags whenever a record overlaps two or more seg
ments so that the entire record is eventually marked 
for collection or made into garbage words. 

The I/0 nndule will handle input at the end of file, 
when the IE command is executed and all the modes of 
output. Other modes of insertion take place in the 
update modµle as explained shortly. 

To handle input at the end-of-file, the data to be 
input is provided from the input DMA (direct memory 
access) v:la the COM module and .buss as an operand of 
an IE command. A tag comparator for EDF words is im
plemented. A flag is set to mark the cell to deter
mine the highest cell having EOF words. The topmost 
·cell having EOF words will replace that word with an 
input w.or.d provided by an u:. coil)IIJ.and. As long as IE 
commands continue to be given, their operands are 
written in successive EOF words. 

The output hardware will detect words pre-marked 
for output, (C=l) and set a flag to mark the cell for 
priority purposes. Priority will be determined by the 
mode of output, as will be explained in section 5. 
The module of the cell that has priority will communi
cate via the COM module with the computer by means of 
the output DMA (Direct Memory Access) channel. 

Within the update module, garbage collection hard
ware deletes garbage words and shifts the valid data 
toward the top of the overall system memory, increas
ing the availability of space at the end of the sys
tem memory. Word and block insertion also take place 
within th:ls module. The update module will consist of 
a tag comparator for the detection of garbage words 
and words with X=l that define the place for insertion 
of words or blocks. 



As explained later, the garbage collection circuit
ry will need a two word shift register having taps on 
the input, middle and output, that provide the necess
ary slack to expand and contract the data stored in 
each cell memory. An up-down counter and associated 
control circuitry is needed to select the taps on the 
shift register. 

The COM module will have all the hardware needed to 
interface with the computer, a counter register which 
is loaded by the ML conunand, a subtractor to handle the 
block insertion and a shift register to provide com
parands to all modules for the OR, DL and ML con:anands. 
The words for word insertion or block insertion are 
provided by the input DMA by means of the COM module 
and buss as operands of IW or IB commands. 

Besides all the above mentioned hardware, each cell 
must be provided two extra registers that will hold 
the first and the last word stored in the CCD memory. 
These registers are used for the word shifting between 
cells in the garbage collection and word insertion op
eration. The implementation of some functions (e.g., 
serial comparison) is well understood and need not be 
further explained. However, the implementation of 
several processes deserve greater exposition. The re
mainder of this paper will focus on garbage collection, 
input and output, which are at the heart of a self
managing secondary memory. Garbage collection and word 
insertion, as proposed by Copeland et al [2] is ex
plained for multiple track systems, and input and out
put techniques are introduced. These will be treated 
in detail in the following sections. Further tech
niques for searching data in segment sequential memor
ies can be found in the paper by Bush et. al. [4]. 

3. Garbage Collection and Word Insertion 

Garbage is created when records are erased; or 
as we see later, when a block of words is inserted 
that is not equal to the size of a memory segment. 
Such garbage words need to be collected towards the 
bottom of the memory where they become EOF words to 
provide room for large records to be written. 

One of the ways of inserting limited amounts of 
data int9 existing records is word insertion. It is 
the inverse of garbage collection. It is discussed 
along with garbage collection because it interacts 
with that process. In the following sections, garbage 
collection, word insertion, and then multiple word 
garbage collection and insertion are considered. 

3.1 Garbage Collection 

As the result of processing, words are erased from 
time to time by changing their TAG field to "garbage" 
type words. Garbage words are automatically moved to
ward the bottom of the system memory, as good words 
are packed toward the top. 

In order to explain the basic mechanism of how 
the garbage collection words, a system with only one 
cell will be considered first. Figure 5 is a simplified 
schematic diagram of the update sub-module. The circuit 
consists basically of two one-worQ. shift registers SR1 
and SRz, a selector switch S and an up-down counter TC 
(tAp counter) having values +1,0 or -1, that controls the 
position of the selector. During the scan period, words 
are fed into the update module, and sent to the next 
module via the selector switch S. In the figure, the 
selector Sis shown in its 'normal' position (O). The 
positions +l and Wl are used mainly for word insertion 
that is explained in the next section. 

Input 

Output 

EC 

FIGURE 5. UPDATE MODULE 

Fig. 6 shows the data stored on the segment memory, 
where W1 to Wn is the fixed number of words processed 
during the scan period and contains the valid data stored 
on the cell memory, and bi-1 along with ti+l are the ex
tra words used for word insertion and garbage collection 
respectively. Since bi-1 is used for word insertion, it 
will not be considered in the discussion that follows. 
For a single cell-system, the word ti+l will always con
tain an end of file word (EOF). In a multiple cell sys
tem, the word, ti+l of the bottom cell will be an EOF 
word. 

At the eno of the gap, the selector S is always re
set to the normal position (0) by initializing TC to 0, 
so that there is one word delay between the output of the 

search processor and the output of the garbage collec
tion. If during the scan period, a garbage word is de
tected, TC is decremented by one, and S moved to the 
position '-1'; in that way the garbage word is deleted. 
However, at the end of the scan, the segment: will be 
short of one word, and ti+l will be considered as the 
last word of the scan. Since ti+l contains an EOF word, 
the result of deleting the garbage word will effectively 
shift it to the bottom of the memory, and convert it to 
an EOF word. 

CELL i-1 

M 
CELL i 

r; - - -1 
J'.!.2.. I bi-1 I 

! f 
f I 
I A I Wl A 
- - - - .J -W2 B 

W3 c 
W4 D 

r- - - -, 
Wn N -.i N 1 

Wi+l L "..<::~:+-~ 
CELL i+l 

FIGURE 6 DATA IN A CELL 
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For a multiple segment system, the memory space 
Wn+l in segment i contains a copy of the top valid word 
(W1) of the next lower segment i+l. To perform this, 
the first word W1 of every segment .is stored into a one 
word length register R at the beginning of each scan, 
and then the content of each register Ri is written on 
the previous segment at the end of the scan. The only 
exception is for the last segment, which always contains 
an EOF word in Wn+ , and the 'next lower cell' to it 
always loads an EOP word in the register. Figure 7a 
shows a stable situation for the data in W + and the 
one word registers Ri for the ith cell andnt~e bottom 
cell of a multiple cell system. 

In order to explain how the garbage collection words, 
consider first a case only one garbage word GB in only 
one segment, say segment i, and no word input (or other 
operations) is taking place. Before the garbage word 
appears, the data in the cells will be stable, and will 
look as shown in Figure 7a. La~er on, a garbage word 
is created, and Figure 7b is a 'snap-shot''at the be
ginning of the scan when the garbage word is going to 
be detected (Scan 1). During this scan, GB will be 
deleted from the segment i as explained for the case 
of one segment; the difference now is that the topmost 
word of segment i+l has been inserted as the last word 
of segment i. Figure 7c shows the situation at the 
end of Scan 1. We see the word Wn+l of segment i is 
now 'empty', and this condition is reflected by TC=-1 
for that segment. 

The fact that TC=-1 in segment i, will signal when 
word Wl is SRl in all cells, all the cells below cell 
i, to shift one word up during the next memory cycle. 
To perform this, TC is set to -1 in all the cells 
below cell i, and is set to 0 in all cells above cell i, 
and in cell i at the after Scan 1. At the beginning 
of the next scan (Scan 2), all the cells below cell i 
will not write word Wl but will write W2 in its place 
in the CCD memory. Being short a word, they will write 

Ri w I ai I 5J' I aj I 
Wl ai ai ai ai 

W2 bi G Ci Ci 

W3 Ci Ci di di 

W4 di di ei ei CELL i 

Wn ni ni ai+l 

Wn+l 
I ..... bi-i-1 I ai+l~ •_ a_!.~l_; I I 

I_ - - -' 
! __ - J - - - l from 

cell i+l 

Rn [3J KJ ~ ~ 
Wl a a a b n n n n 
w2· b bn b c n n n 

W3 c c c d CELL n n n n n 

Wn n n n EOF n n n 

Wn+l 
I 

EOF t 
I i I 

I I EOF l i EOF I 
...,_._ EOF 

!_ - - _, ~ - - - -~ -----' ,_ __ - --1 

(a) (b) (c) (d) 
STABLE SCAN l END SCAN 1 END SCAN 2 

FIGURE 7 GARBAGE WORD DELETION 
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the word ti+l from register Ri+l at the end of the scan. 
At the end of Scan 2, all the cells below cell i have 
moved one word upward, and an EOF word is inserted at 
the bottom of the last segment, see Figure 7d. 

Finally, we consider the anomalies encountered when 
more than one garbage word is found. Two garbage words 
can be encountered on the same cell. However, when the 
second garbage word is met, the tap is already in the 
-1 poaition, which prevents such a word from being 
picked up. It will be collected in a later scan. Two 
garbage words can be encountered in different cells, 
say cells i,j. This requires the lower cell, j, 
having a garbage word to send up a garbage word to 
cell j-1 in lieu of its word w1 , and initialize its TC 
to 0 instead of -1. The garbage word sent to cell j-1 
will be collected in a later scan. Finally, if a 
garbage word is met when a cell is shifting words up 
(scan 2 in Figure 7), the TC having been initialized 
to -1 at the beginning of the scan and not having been 
changed, the cell will not collect this garbage word 
until a later scan. 

If word insertion is taking place together with 
garbage collection, it will be possible to delete more 
than one word per memory cycle. The general case is 
explained after word insertion. 

3.2 Word Insertion 

In word insertion, the word B sent by the computer 
will be inserted right after any word that has X=l 
in an IW command. This is carried out in the garbage 
collection module, within the same circuit used for the 
deletion of garbage words (see Figure 5). 

A given cell will be able to insert a word if a 
word with X=l has just been passed and the selector S 
is at the -1 or 0 position. It should be noted that 
if the word with X=l is found on the bottom of one 
segment, a signal is sent to the next lower segment to 
enable insertion in its first word. 

For the description that follows, it will be 
considered that only word insertion is taking place 
(there are no garbage words), and the computer has a 
word ready to send. The mechanism for insertion within 
a cell is very similar to that of word deletion, but 
making use of the +l and Wl position of the selector. 

At the beginning of the scan when the word is to be 
inserted, the selector S will be at its normal position. 

·when the word with X=l is detected at SRl, the X bit 
is erased and a signal is sent to the computer which 
will feed the new word into the EC line, and the 
selector S is temporarily set to the Wl position to 
receive that word. In the meantime, the word in SRl is 
shifted into SR2. After the insertion the selector S 
will be in the +l position, and no further word in
sertion may be performed. This mechanism allows the 
insertion of one word per memory cycle in a cell. 

In a multiple cell system, if at the end of a scan 
period a cell has the condition TC=+l, the segment will 
have an extra word on it. During the next scan the 
shifting of one word toward the end of the memory must 
take place. The mechanism to perform the shifting is 
very similar to the one used for garbage collection, 
only that in this case, a word b. is shifted downward 
instead of upward. 

1 

To handle the word shifting in a multiple cell 
system, an exact copy of the last valid word (Wn) of 
the prev:lous segment is stored in register P at the 
beginning of each segment memory in W0 , as shown in 
Figure 6 (the only exception is the first segment in 



which, the data in W
0 

is irrelevant), This is done by 
writing the last valid word Wn of each segment into 
register Pi at the end of each scan period if S=O for 
that segment, and then writing the content of the 
register into W , before the beginning of the scan, on 
each subsequent 0 segment i+l. 

If at the end of a scan, cell i has the condition 
TC=+l, and all the cells below i have the condition 
TC=O, TC will be initialized to 0 in all segments 
above i and in segment i, while TC will be intialized 
to -1 in all cells below cell i at the end of the scan. 
This causes the word originally in W

0 
to become the 

word now in w1 • Note that at the beginning of the scan, 
W is in SRl while w1 is in both SR2 and the search 
p~ocessor. Changing TC from -1 to 0, causes the con
tent of W

0 
to become first word of the scan. The over

all effect of the above procedure is the shifting of 
one word toward the end of the memory in all the cells 
below cell i. At least one EOF word is needed at the 
end of the last cell in order not to lose data. If 
the EOF word does not exist, the system memory is full 
and the word insertion (or any other input) should be 
inhibited .• 

Finally, some anomalies can occur where two words 
are inserted at the same time. Like the garbage 
collection anomalies, if both words are in the same 
cell, or the lower cell is moving a word down, TC will 
be in the +l position so that the second word cannot 
be inserted. It must be inserted in a subsequent scan. 
The IW connnand may take several cycles to insert all 
words in this case. If more than one cell1 say cells 
i and j, have TC=+l at the end of a scan, the lower 
cell, u, will still have one too many words in it at 
the end of the next scan. The extra word not able to 
be put on the CCD memory is stored in register P. 
instead of the last word WN, so that it will be ~assed 
down to the next lower cell in the next cycle. 

3.3 Insertion and Deletion of More Than One Word 

It was assumed that only one operation was taking 
place in the description of the garbage collection and 
word insertion. However, the garbage collection 
circuit is active during the word insertion operation; 
which mean.s that both operations may take place during 
the same memory cycle. The fact that the word insertion 
and garbage collection are operations that complement 
each other will allow, when occuring together, to 
delete or insert more than one word per memory cycle. 

On a single track system, insertion can always 
take'place if there is enough room on the shift regis
ters SRl and SR2 to take up the slack; and conversely, 
garbage can be collected if deleting a word by moving 
the switch S does not move it beyond the shift register. 
This permits more than one word to be inserted or 
deleted per scan. For instance, if every other word 
was a delimiter word that has X=l ·enabling it for 
insertion and every other word was tagged as garbage, 
then all the erased words will be deleted and the word 
B will be inserted after every delimiter word, all in 
one scan. Note that the counter TC would oscillate 
between 0 and +l, for instance, as words are deleted 
and inserted. 

On a multiple track system, the operation during 
the scan is the same as for the single track system. 
Note that each cell autonomously can determine whether 
insertion or deletion is possible, looking only at the 
counter TC. 

During the gap, words w1 and W are exchanged 
between cells. This requires two ~dentical adder-like 
carry circuits :in place of the priority circuits. The 
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two carries correspond to control signals that cause 
the word to be shifted upwards in each cell, or down
wards. Note that if a cell has too many words, it 
should shift words downward cell by cell until a cell 
that is short of a word is encountered. Such a c1ell 
terminates the downward shift. Conversely, if a cell 
has not enough words then it should cause words b1elow 
it to be shifted up. This should cause a word to be 
shifted up one cell, cell by cell, until a cell is 
encountered that has too many words. Such a cell 
terminates the upward shift. 

The logic for multicell operation can be implemented 
by two chains of AND-OR gates through the chain of cells, 
or equivalently by 74182 carry lookahead generator 
chips, that implement two carry chains. "Carries" are 
propagated· from higher to lower cells in both easies. 
In terms of carry lookahead logic, if SW is 1 if a 
cell is short a word and EW is 1 if a cell has an 
extra word, then one carry lookahead has SW input to 
its generate and EW to its propagate and the~ second 
has EW input to its generate and SW to its propagate. 
Both propagate carries to lower cells. The carry out 
of the first one indicates a word is to be shifted 
upward and a carry out of the second indicates a word 
is to be shifted down. Except for the anomalies :indi
cated earlier for garbage collection and word insiertion. 
These carries simply initialize the counter TC to -1 
if the first carry is 1, or to +l if the second carry 
is 1, or to 0 if neither carry is 1. The anomali1es can 
be handled as indicated in the previous sections. 

This garbage collection technique can be extended 
to always either collect n garbage words or insert m 
words by using a counter TC that can go from +m to -n, 
coupled to an (m+n) tap shift register in a similar 
manner. A suitable scheme for transferring m or n 
words between cells in one step is not known; how1ever 
it is possible to transfer one word at a time using 
the scheme shown above. Also, it will be necessary to 
save the top n words and bottom m words on each track 
for possible transfer, and some care is required to 
locate the next word below one with X=l if this word 
appears on the top of a segment. 

4. Block and End Insertion 

Fast block insertion is possible in a multitrack 
system. However, it may create garbage words. Insertion 
at the end of the file is the fastest and cleanest 
method for inserting words. These techniques are 
described below. 

4.1 Block Insertion 

Block insertion input allows the insertion of a 
large amount of words, equal to an integer multiple 
of the number of words in a cell memory. The new 
segment is inserted below a word with the X bit siet 
and no more than one word with X=l is allowE~d, in the 
whole system memory, at the beginning of this input 
mode. 

To explain the mechanism used for the segment in
sertion refer to Figure 8. For simplicity, only a 
three segment system, with four words per SE~gment iS" 
shown, and exactly one segment is going to be ins1erted 
(segment HI J K). 

At the beginning, before the insertion, the system 
memory will look like shown in Figure Sa. Only one 
word exists with X=l (word b), and there is enough 
space for the insertion of the new segment (the last 
half of segment two, and all segment three is filled 
with EOF words). During the scan for the ML comma.nd, 
the word with X=l is detected, and at the end of the 



scan, the cell containing t~e X=l word is marked by 
setting a flip-flop. (Note that at the end of the scan, 
only one segment is marked since no more than one X=l 
word is allowed). At this point, if an IB command is 
taken, during the scan the cells below, and including 
the X=l cell wilL pass all their data to the cell 
immediately below (in the example of ,Figure 8, cell 
2 passes its data to cell 3, and cell 1 to cell 2). 
The cell with X=l, will rewrite its data up to the 
word with X=l, at which point the ~ bit is erased and 
a signal is sent to the computer to synchronously 
start the transmission of the new data. This data is 
sent to the X=l cell, and written on the memory, 
starting with the word immediately below the X=l word. 
This is shown in Figure 8b, which is a 'snap-shot' at 
the end of that scan. Note that at the end of the 
scan, the X=l word has moved to the next cell. In 
the next scan, the input is continued at the next 
segment (segment 2 in the example), and when the last 
word of the inserted segment is written the X=l word 
will disappear. This is shown in Figure 8c. 

~ 
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EOF 

EOF 
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8. Insertion of Block HIJK. 

If the amount of data to be inserted is greater 
than one segment, the shifting of the data in each 
cell to the one below, as explained above, should 
continue on each next memory cycle, and concurrently 
with the input of data, until there is enough space 
for all the new data. To handle this, a counter 
register is initially loaded with n, the amount of 
words that the computer will send for insertion, as 
provided by the ML instruction. The counter is 
decremented as words are input. The general algorithm 
to decide if the data has to be shifted, starting on 
the next cycle is: each time a scan has been completed 
in block insertion, the data will be shifted on the 
next scan if the content of the counter is greater 
than the number of words on a segment. The shifting of 
all data from each cell to the next lower cell will 
be done in all cells below the one that, at the end of 
the scan, had just inserted a segment, and the next 
lower cell will insert words as explained for the 
one segment insertion. 

If a block is to be input which is not a multiple 
of the number of words in a segment, the remaining 
words needed to fill out a segment are input as 
garbage. Garbage collection hardware must shift these 
garbage words to the end of the file. 

Finally, we note some abnormal conditions that have 
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to be considered. Before starting the data shifting, 
the availability of space is tested by looking if the 
first to last cell has at least one end of file word, 
and if this is not the case, the system memory will be 
considered full for block insertion, and the input should 
stop. Also, garbage collection is always inhibited 
during block insertion since the deletion and shifting 
of words may disturb the segment insertion. 

4.2 Input at the End of the File 

The input at the end of the file is handled by the 
input/output module and it is the normal input mode of 
the system. In this mode the words will be transferred 
from the computer and written at the end of the exist
ing file, starting with the first EOF (end of file) 
word found. To handle this input, the system keeps 
track of the cells with EOF words on it, and at the end 
of each scan the cells are marked by setting a flip-flop. 

A priority circuit determines the topmost cell with 
EOF words on it, and an input will start at this track 
and with the first EOF word in the track. Files are 
first created in the system using this mode of input. 

5. Output 

The output of words to the computer is handled by 
the input/output module. This module may be implemented 
in such a way that it is always active (like the garbage 
collection) since there is no conflict with other oper
ations in the system. In that way, words marked for 
output (words with the C bit set) will be sent to.the 
computer as soon as they are detected. Output is con
trolled by output modes provided by the OR command. 
If mode m1 indicates SAVE, when a word is output, the C 
bit is cleared. If mode m1 indicates DELETE, when a 
word is output, it is changed to a garbage word. 

The mode mz is used to assign the output priority 
to the different cells that have words with the C bit 
set. In the ordered mode, only one cell can output data 
in each cycle, starting with the topmost one with a word 
with C=l in the first scan, and continuing with the lower 
cells in an ordered fashion on each subsequent scan. In 
that way the data is sent to the computer in the same 
order as it is on the file. A flag stores the fact that 
words with C=l are still in a cell. The priority cir
cuit gives access to the topmost cell having this flag 
set. In each cycle, the memory is evaluated to find the 
topmost cell with collection words in it; this cell out
puts its collection words in the next cycle. If a cell 
has the output access, and the computer is not ready by 
the time a word with C=l is found·, the output will be 
held until the end of that scan (even if the computer 
signals ready before the end), and resumed on the same 
cell on the next scan in order to preserve the order of 
the wors. 

In the delimited mode, the order of the words is 
kept within each record, but the records are sent to the 
computer in random. In this mode, all the cells scan in 
parallel, searching for a delimiter with C=l. As soon 
as one or more cells find the cells that this condition 
the priority network locates the highest such cell. It 
sets a flag and gains access to the computer until the 
next delimiter word with C clear is found, at which time 
the scan for another delimiter with C=l is resumed in 
parallel in all the cells. However, if at the end of a 
scan, a given cell has the output control, meaning that 
a record starting in one cell and continuing to the next 
one is being sent out, then the output access will be 
passed to the next cell for the next cycle in order to 
keep the order within the record. 

In the random mode, all the cells are searched in 
parallel. As soon as one or more cells find a collection 
word, the priority circuit gives access, temporarily, to 
the topmost one, which outputs the word at this time. 
After the word is output, the search is resumed in paral
lel in all the cells. The same-procedure is repeated on 



each scan. This mode of output is the fastest, but the 
output is scrambled! 

In the unique mode, the output of data of dupli
cate words is prevented. In this mode, the cells will 
search in the ordered mode for words with C=l, but each 
time the cell with access to the computer finds just 
one word with C=l, it outputs only that one word. 
During the gap, this word is broadcast to all the 
cells in order to search for duplicate words within 
the ones with C=l. During the subsequent scan, the C 
bit erased if a match is found. During the same scan, 
after the C bit is possibly cleared, the cells search 
in the ordered mode for just one more word C=l, 
continuing as above. This mode allows the output of 
only one word per cycle, sent to the computer and 
broadcasted to all the cells at the end of the scan. 

6. Conclusions 

A collection of techniques for hardware manage
ment of a secondary memory have been described. Gar
bage collection and input and output techniques have 
been shown to be simple, even on a multiple track 
(segment sequential) memory. 

The techniques for managing secondary memory, the 
main content of this paper, were presented in the con
text of a very simple architecture. They can be em
bedded in more complex architectures, such as the CASSM 
architecture [3]. However, this simple architecture 
itself offers a secondary memory capable of storing 
arbitrary length records, accessing them without need 
for a directory, linking separate records automatically, 
spooling records so that they can be queued and output 
on demand, and collecting garbage words. The absence 
of a directory often saves one access time. In small 
systems, the directory need not be brought into the 
small primary memory. In networks, no protocols are 
needed to gain access to the directory. Finally, 
essentially no software is needed to manage the direc
tory or collect garbage. A self-managing secondary 
memory that uses techniques such as those suggested in 
this paper could be a new and useful type of secondary 
memory. 
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ABSTRACT 

The analysis in this paper shows a multiprocessor 
like c.mmp to have a factor of three to four cost/per
formance advantage over uniprocessor systems such as 
the PDP-10 when implementations using similar technol
ogies are considered. This comparison is shown to be 
very sensitive to memory prices and considerable atten
tion is given to normalizing memory costs between c.mmp 
and the PDP-10. 

An important part of this analysis is a comparison 
of the PDP-10 architecture with the PDP-11 architecture 
(i.e. the architecture of the processors of c.mmp). 
When the limited address space of the PDP-11 is not a 
problem, we see that to a close approximation it takes 
the same number of PDP-11 instructions (average length 
25 bits) as PDP-10 instructions (length 36 bits) to 
represent a program, 

While the comparison in this paper explicitly con
siders multiprocessor degradation factors such as mem
ory interference, it does not address the problem of 
writing software systems capable of taking full advan
tage of the multiprocessor structures. The comparisons 
in this paper are primarily ofcused on comparing the 
hardware structures of uniprocessors and multiprocess
ors. Work is now in progress at CMU that is attempting 
to evaluate the effectiveness of both individual multi
processor structures application programs and multipro
grammed systems operating on c.nunp. 

CONTENTS 
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2.1 Simple ·performance Parameters 
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3. Comparison of the PDP-10 and PDP-11 Processors 
4. C.mmp Multiprocessor Overheads 

4.1 Memory Interference 
4,2 Software Overheads 

5. Prices 
6. Price/Performance Comparisons and Summary 

1 • INTRODUCTION 

During the first half of the 1970's a surprising 
number of computer systems designed as an interconnect
ed set of smaller computers have been proposed and a 
nontrivial number of these systems have been built. 
Figure 1.1 [Baskett, 1975] helps to explain this spurt 
of interest in systems built with several small pro
cessors rather than a single larger processor. This 
figure shows the cost effectiveness of all the computers 
listed in Coro uter Review [1975], measured in Processor
Memory Bandwidth Dollar, as a function of the price of 

· the smallest configuration. Note that the $10,000 sys
tems (i.e. minicomputers) appear to be at least an 

* This work was supported in part by the Advanced Re-
search Projects Agency under contract F44620-73-C-0074 
which is monitored by the Air Force Office of Scientif
ic Research and in part by National Science Foundation 
Grant: GK-41070. 
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Figu:re 1.1. Cost/Performance as a Function of 
System Cost 

order of magnitude more cost-effective than the larger 
machines. There a number of apparent reasons for this 
phenomenon: 

1. Continuing advances in semiconductor technol
ogy favor the small processor. LSI (Large
Scale-Integration) memory and ALU chips have 
been able to dramatically cut the cost of pro
ducing minicomputers. Recent LSI advances 
such as the Intel 3000 bit-slic~ processing 
element [Intel, 1974] and the DEC LSI-11 will 
continue to drive down the price of minicom
puters. The larger processors that rely on 
specialized logic to speed up ALU functions, 
prefetch and buffer instructions, overlap in
struction execution, etc. are currently less 
able to exploit the present LSI technology. 

2. Economies of scale. A production line that 
produces on the orde~ of 10,000 minicomputers 
a year (or 105 to 10° microcomputers a year) 
will not have the overhead per computer that 
a production line has that produces 50 to 100 
(large uniprocessor) computer systems a year. 

3.. Pricing policies that bury the cost of soft
ware development for the large computer sys
tems in the price of the hardware. 

See [Bell et al., 1971] for another view of the reasons 
for the emergence of multi-mini-processors. 

The purpose of this paper is to try to take a more 
detailed, concrete look at the cost effectiveness of 
computer systems built from multiple, mini-processors. 



* Specifically, we compare C.mmp , the multi-mini-process-
or computer system that has been developed at CMU, with 
a standard, uniprocessor computer sys tern: the PDP-10. 
Discussion of the details of C.mmp [Wulf, et al., 1975, 
Wulf and Bell, 1971] and the PDP-10 [DEC, 1971] are not 
within the scope of this paper. The PDP-10 is a conven
tional uni-Pc computer system and C.mmp is structured 
as a canonical multi-processor computer system. It con
sists of up to 16 equal, asynchronous Pc's that share 
a large Mp. 

Manufacturer's specification sheets are vague at 
best and often (intentionally?) ambiguous. For this 
reason, whenever feasible we are collecting data rather 
than rely on published information. The uniprocessor 
that is used in this comparison in the PDP-10 (KAlO 
processor). We are using the PDP-10 not because it is 
necessarily the best example of a uniprocessor system 
but because we have two at CMU that are readily avail
able for us to measure and several problems exist that 
have been programmed for both the PDP-10 and C.mmp. 
Ideally, we will be able to expand this work in the 
near future to include processors of other manufactur
ers. 

The purpose of this report is limited to a compar
ison of the price/perform~nce of multi-Pc systems to 
uni-Pc systems. For this reason we are limiting the 
scope of this work to the central processors (Pc's), 
primary memory (Mp), and I/O channels (Kio's) or I/O 
processors (Pio's) of the computer system. Secondary 
storage units, terminals, and communication subsystems 
are excluded not because they are insignificant in cost 
or performance but because they are common to multi-Pc 
and uni-Pc systems and their structure is not directly 
affected by the fact there are one or many Pc's. On 
the other hand, both Mp and Kio's (or Pio's ) often 
need to be structured differently to interface with a 
uni-Pc or a multi-Pc processing element. 

A recent budget survey [McLaughlin, 1974] helps to 
put the scope of this report in perspective. Of the 
194 computation centers polled, only 39% of the budget 
was used for hardware purchases or leases; the bulk of 
the budget went to salaries and overhead. Of the money 
spent for hardware, about half was spent for central 
processors and main memory. The other half of the hard
ware money was spent on secondary storage, communica
tion costs, terminals, and unit record devices. 

In spite of the fact that the Pc/Pio/Mp subsystem 
of a conventional computing facility only comprises 
about one fourth the total operating costs, the asser
tion that a multi-mini-Pc system is more "cost-effec
tive" than a single, larger mini-Pc system has been 
argued for several years now. The most ovvious ap
proach to addressing this issue is to set aside costs 
common to both multi- and mini-Pc systems and examine 
the cost-effectiveness of changes in the computer's 
structures introduced by adding multiple Pc's. 

2. MEASURES OF PRICE AND PERFORMANCE 

2.1 Simple Performance Parameters 

The initial measures that we use in this paper for 
performance are: 

6 
• Instructions per second (units: 10 instruc-

tions/sec. Denoted as MIPS, ~illions of 
'{( 

We use the PMS (Processor-Memory-Switch) notation of 
Bell and Newell [1971] to describe computer systems at 
the "block diagram" level. C.mmp is a PMS acronym for 
a !!!_Ulti-!!!_ini-£rocessor fomputer system. Other fre
quently used PMS names include Pc for .£entral frocess
or and Mp for £rimary ~emory. 

Instructions fer §.econd) 

• Processor-Memory Bandwidth (units: 10
6 

bits/ 
sec.) 

The above two measures of Pc performance are less than 
ideal. However, they both have obvi.ous intuitive mean
ings, and they can be directly measured on operational 
systems. The following comments may help in our :lnter
pretation of these measures: 

2.1.1 The MIPS measure unfairly favors the smallv 
primitive machine. Clearly a simple 16 bits/word mini
computer executing 1 MIPS is not as powerful as ~ 1-
MIPS 36 bits/word computer. The individual operations 
being evoked on the minicomputer operate on less than 
half the number of bits than the larger word computer. ~ 
In addition, Pc's that incorporate such features as 
multiple general purpose registers, vector (or block 
move) instructions, or a rich set of data types (e:.g. 
the IBM 360 and 370 architecture) will have lower MIPS 
rates because of these features, but, in fact, are more 
powerful because of these features. 

2. 1.2 The Processor-Memory Bandwidth measur1e tends to 
give an unfair advantage to large word Pc's :relative to 
the smaller word minicomputers. A Pc that g1ets 64 
bits/fetch (e.g. the IBM 370/168) will often not use 
all 64 bits. In an extreme case it only wants a byte 
of information and the remaining seven bytes are simply 
discarded. On the other hand, a minicompute1r that only 
accesses 16 bits/fetch will not be as inefficient in 
its use of memory bandwidth. In fact, ~ low cost 
implementation of a processor (e.g. the IBM 360/30) will 
make more efficient use of its Processor Memory Band
width than a larger Pc. 

The above problems with MIPS and Memory Bandwidth 
suggest that we might do well to use both in any ciom
parison of minicomputers to larger computers and at 
least as a first order approximation use MIPS and Pro
cessor Memory Bandwidth as upper and lower bounds (re
spectively) of the power of the mini-Pc relative to the 
larger Pc. 

2.2 Benchmarks 

Because of these problems with MIPS and Processor
Memory Bandwidth, we will also use one other measure of 
Pc performance: benchmark (or kernel) programs. In 
other words, measure the execution time of the same 
problems on the various machines of interest. The main 
problems with this approach are that the results are 
often very problem specific -- and hence the need for 
many benchmarks -- and the fact it is very time-consum
ing to recode a set of given problems on the different 
machines of interest. However, there is sufficient: 
question with the accuracy of the MIPS and Processor 
Memory Bandwidth measures that several benchmarks have 
been developed for use in the comparison of C.mmp t:o 
uniprocessors. 

2.3 Mp Capacity 

The price of memory is a significant factor in the 
prices we will discuss below and yet none of the mea
sures of Pc performance are influenced by Mp size. 
Clearly a 10 MIPS Pc with 4K words of memory will have 
a better price/performance figure than a 5 MIPS Pc with 
3,000K words of Mp, but it is also just as cfoar the 
5 MIPS-3 Megaword system is the more powerful system. 
As the MIPS rate of a Pc is increased, it will need 
more Mp in order to have sufficient data to kE~ep it 
busy. This phenonema is captured by a piece of com
puter science folklore known as "Amdahl's Constant". 
It states that a balanced computer system needs 1 
Megabyte of Mp per Pc MIPS. Rather than arguei the 
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accuracy of Amdahl's constant, in the following analy
sis we will indicate both the performance of the Pc 
and the sizn of Mp in the systems we compare. When 
comparing a uni-Pc to a multi-Pc system we will vary 
the size of Mp over the range of practical configura
tions. 

Like Mp capacity, I/O bandwidth is not included in 
any of our performance measures, yet a system is in 
danger of being starved for data if the I/o channels 
have insufficient capacity. As with Mp capacity, we 
will simply state the I/O transfer rate capacity of the 
various systems and not try to develop formulas to in
tegrate I/O bandwidth into measures of Pc performance. 
(Aside: Another, lesser known "Amdahl constant" is 
that 1 bit of I/O is needed per instruction executed 
[Amdahl, 1970]. However, we won't pursue this idea any 
further in this report.) 

2.5 Measures of Price 

Our basic measure of price will be March, 1975 
retail prices. This measure has the attractive proper
ty that it spans different Pc architectures, Mp con
figurations, and I/O channel structures rather cleanly. 
However, we still must contend with the following 
tr~blesome details that conspire to blur our compari
son. 

2.5.1 The year a computer system is implemented in
fluences its cost-effectiveness as expressed in current 
retail prices. For example, there is no question that 
you receive more power (MIPS, Processor Memory Band
width, ••• ) per dollar today from a KLlO -- a PDP-10 
implemented in 1974 -- than from a KAlO -- a PDP-10 
implemented in 1966. In fact, the primary reason for 
reimplementing a given instruction set every two to 
five years is to get the improved price/performance 
available with the newer technology. 

2.5.2 Marketing strategies will distort prices some
what in order to hide software costs, encourage user 
acceptance, etc. Hence manufacturers' prices cannot 
be assumed to give too accurate a measure of the funda
mental cost of implementing the system. 

2.5.3 While we use retail prices whenever possible, 
some of the components of C.mmp are not commercially 
available and the only solid dollar figures we have 
are construction costs at CMU. As with the performance 
measures, rather than attempt to construct and justify 
an appropriate CMU cost to manufacturers' retail price 
coefficient, we will simply indicate which figures are 
CMU cost figures and which are retail prices. 

3. COMPARISON OF THE PDP-10 AND PDP-11 PROCESSORS 

C.mmp is implemented with PDP-11 Pc's as the cen
tral processing elements. Hence if we are to make any 
meaningful comparison between the PDP-10 and C.mmp, we 
need some measure of the relative power of these two 
instruction sets. In addition, we need both absolute 
and relative measures of the execution rates of the 
various implementation models of the PDP-10 and PDP-11 
architectures. 

used: 
To assist in this comparison, four benchmarks were 

PDE. This is a classic partial differential equa
tion solver that uses Liebmann's iteration method 
(i.e. simple relaxation). Two's complement inte
ger arithmetic is used and 16 bits of precision is 
assumed to be sufficient. PDE has been implemented 

in ;6L:tSS on both the PDP-1 0 and PDP-11 • On both 
machines we have an unoptimized and an optimized 
version. The inner loops of the optimized ver
sions are written in assembly language. 

L"'•. L-1• is an interpretative list processing sys
tem and the U< benchmark consists of a set of 
small programs that exercises the stack, list, and 
arithmetic facilities of L~'<. It is written in 
assembly language on both the PDP-10 and PDP-11. 

TECH. This is a chess playing program and is in
tended to represent a typical application in arti
ficial intelligence. To a first approximation, 
TECH is simply a tree-searching program that de
rives most of its power from alpha-beta pruning. 
Both PDP-10 and PDP-11 versions are written in 
BLISS. 

Integer Programming. A modified branch-and-bound 
procedure for linear integer programming problems. 
Both the PDP-10 and PDP-11 versions are written in 
BLISS. 

Table 3.1 gives the static comparison between the PDP-10 
and PDP-11 for these benchmarks. A number of interest
ing observations can be made from Table 3.1, but the 
most significant are: 

PDE 

L-l< 

TECH 

1. The ratio of PDP-11 instructions to PDP-10 in
structions needed to implement this set of 
benchmarks is nearly unity. 

2. The PDP-11 is able to represent these programs 
with 0.665 (about 2/3 the number of bits re
quired by the PDP-10. 

3. The average number of 16 bit words needed per 
PDP-11 instruction for this set of benchmarks 
is 1 • 62 

PDP-10 PDP-11 
PDP-ll ratios 
PDR-10 

words 
instr instr words instr instr words bits 
267 269 437 1 .62 1. 01 1.64 o. 728 

120 109 186 1 • 71 0.910 1.55 0.689 

2378 2429 3829 1.58 1.03 1 • 61 0.716 

Integer 744 560 882 1. 57 0.64 1. 18 0.527 
Prog. 

Average - - - 1.62 0.90 1.50 0.665 

Table 3.1. Benchmark Program Sizes 

Tables 3.2, 3.3, and 3.4 give information needed 
for a dynamic comparison of the PDP-10, specifically 
the KAlO, and the various PDP-11 models. Table 3.2 
gives the MIPS and Processor Memory Bandwidth for the 
KAlO. The most significant figure in Table 3.2 is the 
MIPS rate observed when the KA10 was compute bound 
running a general mix of programs (over 5*107 instruc
tions were counted). The fascinating aspect of this 
MIPS measurement for the KAl 0 is the observed degree of 
variability. For example, for the MIPS reading averaged 
over ·i sec., the mean is 0.342, but the standard devia
tion of 0.190; for the 10 sec. readings the standard was 
still 0.075. Therefore, a reasonable confidence inter
val (95~) surrounding our mean reading of 0.342 MIPS is 
(0.327, 0.357). 

Reading averaged over 10 second intervals (14 ob
servations) 
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Max: 0.480 MIPS 
Min: 0.224 MIPS 

Reading averaged over 1 second intervals (20 ob
servations) 

Max: 0.515 MIPS 
Min: 0.138 MIPS 

The MIPS and Processor Memory Bandwidth is given for 
the benchmarks to indicate how closely they match the 
actual averages seen by the general purpose programs. 

Benchmark inst. x 10
3
lsec. words _x 1 o3

lsec 

General Use 342 (data not available) 

PDE (optimized~ 332 484 

L* 289 491 

[Lunde, 1974] 312 (data not available) 

Table 3.2. PDP-10 (KAlO) Execution Rates 

Table 3.3 gives the execution rates for the 
PDP-11/20 and PDP-11/40. The principle conclusions 
are: 

3.4. MIPS: 11/20 = 0.18g; 11/40 = 0.34 (estimate) 
3.5. Pc-Mp Bandwidth (10 words/sec.): 11/20 = 0.470; 

11/40 = • 870 
(estimate) 

c.rrnnp Pc's 

PDP-11/20 PDP-11/40 
insl. X words X 

Benchmark 103 sec 1 o3lsec 

Job monitor 201 446 (2) (2) 

PDE 210 455 
(Optimized) 

L~'< 155 508 (2) (2) 

c.mmp Avg. 186 470 (2) (2) 

Relative Speed - 1. 0 - 1.85 
[O'Loughlin, 
1975] 

1PDP-ll/20's and PDP-11/40's are slightly slower on 
C.mmp than in standalone configurations because of de
lays in the crosspoint switch. 

2
At the time these measurements were conducted no 

PDP-11/40 was operational on C.mmp and these figures 
for the PDP-11/40 are estimates based on PDP-11/20 to 
PDP-11/40 measurements reported by O'Loughlin [1975]. 

Table 3.3 

Table 3.4 completes this dynamic comparison of the 
PDP-10 to the PDP-11 by showing the total execution 
times for the benchmark programs. In fact, it is pos
sible to estimate the PDP-11/20 to KAlO execution time 
ratio from the already discussed ratios of PDP-11 to 
PDP-10 instructions and PDP-11 to PDP-10 MIPS. Which
ever way it is computed, directly from Table 3.4 or in
directly from program sizes and MIPS rates, we find a 
ratio of throughput (benchmarks/second) of KAlO to 
PDP-11/20 throughput of 2.16 and a KAlO to PDP-11/40 
throughput ratio of 1. 17 (estimate) -- not far from 
unity. 
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1.ill..Q. 
Benchmark KA10 PDP-1ll20b:JA10 

PDE 124.7 186.4 1.49 

L'>'( 66 195 2. 95 

Integer Programming 30.0 61.4 2.04 

Average 2. 16 

Table 3.4. Benchmark Timings 

Before continuing, a few comments are m~eded on 
this comparison of the PDP-10 to PDP-11 inst1:uction 
sets. Most importantly, the comparisons in this sec
tion have not adequately accounted for the differences 
in data-types between the PDP-10 and PDP-11. The 
PDP-11 only has 16 bit integers and when we consider 
solving problems often encountered on the PDP-10 (and 
hence C.mmp) 32 or 36 bit integers will be rE~quired. 
The current PDP-11 instruction set will forcE~ us to 
emulate the manipulation of large integers via software 
routines. Another factor missing from this comparison 
is floating point numbers. Although the PDP-·11140 has 
a floating point option, it has floating point add (and 
subtract) times of 20 µ.sec., a floating multlply time 
of 20 µ.sec., and a floating divide time of 4i' µ.sec. In 
contrast, the KAlO has much faster floating point oper
ations: add (subtract): 5 µ.sec.; multiply: 11 µ.:sec.; 
and divide: 14 µ.sec. Hence, the PDP-11740 has an 
execution rate very close to the KA 10 for the: bas ii:~ 
operations, but is a factor of 3 to 4 slower for float
ing point operations. This shortcoming of the PDP·· 11/40 
needs to be studied in further evaluations of C.mmp. A 
factor that tends to downplay the significanc.e of this 
floating point comparison is that instruction mixeB of 
large, conventional Pc' s show that floating point :ln
structions rarely exceed lOc;b of the instruction mix, 
even for scientific computations [Stone, 1975, p. 540]. 
The PDP-11/45 executes floating point operations at 
about the same rate as the KAlO. In addition, the 
PDP-11/45 has both 32 and 64 bit floating point dat:a
types; comparable to the 36 and 72 bit floating polnt 
data-types of the PDP-10. 

Another important factor in comparing the PDP-· 11 
to the PDP-1 0 is that the PDP-11 has a much smaller ad
dress space than the PDP-10; in fact, the PDP-ll's 64K 
byte address space is less than 1/16th the address 
space of the PDP-10 (and 1/356th the 16M byte addre:ss 
space of the IBM 360-370). When we use the PDP-11 pro
cessor in a multi-mini-configuration we can expect a 
larger overhead to establish and maintain addressabil-
ity than we have historically experienced with the ~ 
PDP-10 or other conventional processors such as the 
IBM 360 and 370 Pc' s. The PDP-11 's poor suit.ability 
for applications heavily oriented toward large integers k

or large address spaces suggests that the above measure
ments comparing the 11 to the 10' s instruction set be 
viewed with caution. 

This addressing space problem for the PDP-11 (and 
minicomputers in general) has not been solved with the 
memory mapping units of either the PDP-11/40, 11/45, 
11/70, or c.mmp. In these cases the physical memory 
can be substantially larger than 64K bytes, but the 
immediately accessible address space remains 64K bytes: 
explicit loading of the memory mapping registers is re- ~ 
quired to give the Pc addressability outside its ..::-
"immediate virtual address space" of 64K bytes. 

4. C.mmp MULTIPROCESSOR OVERHEADS 

In the last section we attempted to establish a 
quantitative relation between the processing power of 
the KA 10 and the PDP-11/20 and 11/40 (the Pc' s of C.mmp). 



In this section we examine factors that affect perfor
mance as we connect the PDP-11 Pc's into a multipro
cessor configuration. 

4. 1 Memory Interference 

A number of studies have been conducted to deter
mine the amount of performance degradation that results 
when the Pc's of a multiprocessor contend for primary 
memory [Strecker, 1970; Bhandarkar, 1074; Bhandarkar 
and Fuller, 1974; Baskett and Smith, 1975]. Although 
the mathematical techniques used have differed among 
the studies, they give remarkably consistent results 
for the set of configurations that include actual and 
proposed c.mmp configurations: they all show degrada
tion factors of less than 101;6. The fundamental reason 
is that the Mp ports of c.mmp have a much higher band
width (2.5 Megawords/sec.) than either the PDP-11/20 
(0.47 Megawords/sec.) or the PDP-11/40 (0.87 Megawords/ 
sec.). Figures 4.1-4.2 show the Processor Memory Band
width for C,.mmp from a number of aspects. Figure 4.1 
Bhows the bandwidth as the number of Mp ports is varied 
from 1 to 16. The five PDP-11/20's, variable number of 
11/40's, is included since the actual C.mmp system at 
CMU now has five 11/20's and two 11/40's and will soon 
grow to a full 16 Pc system by adding nine more 
PDP-11/40's. The dotted lines show performance with no 
memory interference and no cache memories, the solid 
lines show the expected interference, and the lines 
with circles are the expected performance with 1024 
word cache memories that are being designed for the 
PDP-11/40's. These caches will only buffer read-only 
pages and the cache bit ratio is estimated to be 0.5. 
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4.2 Software Overheads 

At this point in the development of C.mmp and its 
operating system, Hydra, we have very little information 
on the extent of software overheads that must be in
curred because we must coordinate the execution of co
operating, asynchronous, parallel processes. What lit
tle hard data we do have is given in Figures 4.3 and 
4.4. Figure 4.3 shows the execution rate of the PDE 
benchmark as a function of the number of available Pc's 
on C.mmp. This figure exhibits the promising property 
that we get very nearly linear speed up as the number 
of Pc's is increased. In fact, the PDE benchmark is so 
easily decomposed it would have been a bit surprising, 
given we know memory interference is negligible for 
five ll/20's, if we had seen less than linear speed up • 

Figure 4.4 is probably a bit more useful. It shows 
the execution time of the PDE benchmark as a function of 
the number of processes the work has been divided among. 
Also on the graph is the time the PDE benchmark takes 
on a standalone PDP-11/20. We can see that for this 
benchmark C.mmp switching overheads and Hydra have in
duced an overhead of 25% when compared with the PDE 
benchmark run on a standalone PDP-11/20. Figure 4.4 
also illustrates the speed up in the PDE benchmark you 
would expect as the benchmark is decomposed into suc
cessively parallel processes in order to take advantage 
of the multi-Pc's. Another useful observation from 
Figure 4.4 is the slight upturn in execution time as the 
number of processes becomes very large. This is simply 
a measure of the overhead incurred as Hydra is required 
to manage more processes than can be usefully dispatched. 
The encouraging fact is that the incremental overhead in 
adding these processes is as small as it is. 
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5. PRICES 

5. 1 PDP-lO's 

Central Processors 

KAlO Pc (first delivery: 9/67): $130K 
Kil 0 Pc (first delivery: 5/72): $200K 
KLlO Pc (first delivery: 6/75 (est.))$250K 

(Measurements reported in this report are only for the 
KAlO; this is the only PDP-10 Pc available at CMU. For 
measures of Kil 0 and KLl 0 performa.nce we must depart 
from our objective of using actual measurements rather 
than manufacturers' published data and use DEC's pub
lished ranking of a KilO being 2.0 times a KAlO and a 
KLlO being approximately two times a KilO,) 

Primary Memory 

128K word, 4 port Mp module for 
either KAlO or KilO: 

256K word,, 8 port Mp module for KL 10: 

Data Channels (DFlO) 

DFlO (max. transfer rate: 
106 words/sec.): 

5.2 PDP-11 's 

Central Processors 

$110K 
$180K 

$ 14K 

PDP-11/20 (first delivery: 4/70): $ 9.95K 
(This is a 7/72 price. PDP-1"1/20 
no longer offered by DEC. TI1is 
price includes 4K words of Mp.) 

PDP-11/40 (first delivery: ?/72): $ 12K 
(This price includes 8K words of 
Mp.) 

Primary Memory 

16K word Mp module (with parity): $ 5.95K 

5 .3 C.mmp Specific Hardware (These are CMU cost:s rather 
than DEC pric:es.) 

16 Pc by 16 Mp Crosspoint Switch: $ SOK 
(First, and at present only, 16xl6 
switch cost $100K.) 

BK word Mp module (from Ampex): ~? 1.3K 

Processor Modifications to adapt PDP-11 Pc to C.mmp 

PDP-11/20: 
PDP-11/40: 

(Includes 1024 word cache.) 

$ 4K 
~) 5K 

1 3 4 5 6 7 8 9 1<1> 

NUMBER OF PROCESSES 

Figure 4.4. Running Times for PDE Benchmark 

20~10 data array 
10 iterations 
16-bit fixed point data types 
inner loop coded for speed 
supervisory program p'ed on a semaphore 

5.4 Primary Memory Prices 

In reasonably large quantities, it should be ex
pected that the price per bit of Mp should be indepen
dent of whether the memory is attached to a uniprocess
or or a multiprocessor and whether it is in 16 bi.ts/ 
word or 36 bits/word configurations. However, the 
prices given above are a bit at variance with this ex
pectation: 

KAlO, KilO Mp: 
KLlO Mp: 
PDP-11 Mp: 
c.mmp Mp: 

$110K/128K words = 2.3Bt/bit 
$180K/256K words 1.95.t/bit 
$5.95K/16K words = 2.32t/bit 
$1.3K/8K words 1.02~/bit 

Note that the C.mmp memory comes out significantly 
cheaper than either the PDP-10 or PDP-11 memory from 
Digital. There are two reasons for this: (1) the c.mmp 
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memory does not include the cost of the switch while 
the KLlO memory has an 8 port switch included and 
(2) add-on Mp manufacturers sell Mp modules at a lower 
price/bit than a mainframe manufacturer such as Digital. 
If we include the $SOK cost of the C.mmp switch in the 
cost of a 1 Megaword Mp constructed from the Ampex mem
ory modules, we get: 

[128 ($1.3K) +$SOK]/ Megawords= l.35p/bit. 

The difference between 1.35p/bit for C.mmp and 1.95p/ 
bit for the KLlO can be accounted for by the facts we 
are using the cost of the C.mmp switch rather than at
tempting to estimate its fair market price and the core 
memory itself is coming from Ampex rather than the 
mainframe manufacturer. In order to better understand 
the effect Mp prices have on our latter cost/perfor
mance evaluation, let us postulate a l.35p/bit Mp for 
the KL10. This gives us a price of $124K rather than 
$180K for 256K words of memory. 

6. COST/PERFORMANCE COMPARISONS AND SUMMARY 

It should be clear from the previous sections that 
while c.mmp is able to utilize most of the computing 
power from the PDP-11 Pc's, it cannot be justified 
solely on the absolute computing power it provides. 6A 
16 PDP-11/40 c.mmp has a Pc/Mp Bandwidth of 241 X 10 
bits/sec. 6while the CDC 7600 has a Pc/Mp Bandwidth of 
2180 x 10 bits/seg. end the IBM 360/195 has a band
width of 1185 X 10 bits/sec. [Computer Review, 1975]. 
The primary justification for constructing multi-mini
processors such as C.mmp stems from their cost/perfor
mance advantages over conventional uniprocessor sys
tems. 

CONFIGURATIONS PRICES 

Table 6.1 shows the performance, price, and sever
al price/performance measures for various representa
tive C.mmp and PDP-10 configurations. These figures are 
directly based on our discussions in the previous sec
tions. A prominent factor in the price of the Pc/Mp/ 
Kio computer subsystem is the cost of the Mp. However, 
none of the measures of performance we have discussed 
here includes the amount of Mp in the system. Hence 
column 2 i.n Table 6.1 shows the amount of Mp assumed 
and we include a Mp-Pc "balance index" to give a rough 
guide as to the amount of Mp relative to the computing 
power that: is provided. 

The cost of a bit of Mp should not be a function 
of whether it is used in a multi-mini-processor or 
whether it: is used in a uniprocessor system. However, 
for non-technical reasons current PDP-10 Mp is priced 
at 1.96p/bit while c.mmp Mp costs l.35p/bit. There
fore, two hypothetical PDP-lO's are included in Table 
6.1 that assume Mp is available for the PDP-10 at 1.35p 
per bit. 

Since the price/performance comparisons of Table 
6.1 are most sensitive to Mp configurations and prices, 
Figure 6. "I shows the price/ performance of C.mmp and the 
various PDP-10 systems as a function of Mp size and 
price. Note that as the price of Mp is increased, the 
fact that there is a single Pc-or a multi-Pc becomes 
irrelevant; the price of the system is determined by 
the size of Mp and the performance by the Pc MIPs. 
As Mp prices decrease, the cost of the Pc dominates and 
now we see that c.mmp becomes a factor of 4 more cost 
effective than the most cost-effective PDP-10. 

PERFORMANCE PRICE~PERFORMANCE 

inst./sec. Avg. Pc-Mp Max. I/O Mp/Pc 
Bandwidth Qndwidth ~lance Index Pc-Mp 

-2_ _X 103 
Megabits) u~egabit~ Megabits M22_ instructions[sec 1 bits[sec 

Pc M..Q.. Kio _(_MIPS_) sec. sec. MIPS dollar dollar 
Standard PDP-lO's 

KAlO 128Kw 2DF10's 130+110+28=26~ .342 !498x36=17.9 72 13.5 1.27 66.8 

KilO 256Kw 2DF10's 200+220+28=44~ .684 35.9 72 13.5 1.52 80. 1 

KLlO 256Kw 2Dfl 0 I~ 250+180+28=45E 1.37 71.8 72 6.74 2.99 157 

PDP-lO's with 1.35_,¢/biJ; 
~ 

KilO 256Kwl 2DF10" 200+125+28=353 .684 35.9 72 13.5 1.94 102 

KLlO 256Kw 2DF10'~ 2s o+ 125+2 8=403 1.37 71.8 72 6.74 3.40 178 

C.mmp Configura ions 
5 20's 512Kw - 70+83+50=203 .927 37.6 70 8.34 4.57 185 

5 20's lMw - 257+166+50=473 s.02 203 225 3. 18 10.6 429 
1 40' s 

6 40's lMw - 272+166+50=48~ 5.95 241 225 2.69 12.2 494 

6 40's 2M - 272+333+50=65~ 5.95 241 225 ~ 9.08 367 

Table 6.1. Price/Performance Figures for c.mmp and PDP-lO's 

The dotted lines in Figure 6.1 are for a hypothet
ical C.mmp in which the Pc's are not standard PDP-11 
processors but are Pc's constructed from Intel's I3000 
microcomputer chip set [Intel, 1974]. We estimate 

that an Intel 3000 Pc, and its as~ociated relocation 
registers, could be priced at $400U rather than the 
$17,000 now needed for a PDP-11/40 and its relocation 
registers. 
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flexibility in pipeline design. Let us define a cycle 
to be perfect, if it allows a 100% segment utilization; 
e.g., cycle (1,9) of Example 1. Unfortunately we can
not test the perfectness of a cycle without forming 
the compatibility classes. However, we know a special 
class of perfect cycles which are of considerable 
interest in single function pipelines. 

Theorem 3: All constant latency cycles are perfect. 

Proof: For constant cycle (£), Q mod p=[O} and thus 
H mod p=fl,2 .•. (£-1)}. One can verify that [0,1,2, ..• , 
(£-1)} is a compatibility class with £ elements. Hence 
the upperbound on the segment utilization is 
Mt = 100%. 

III. Noncompute Segments 

0 

In this section we consider the addition of non
compute segments to a pipeline to make it allowable for 
a given cycle. The effect of delaying some computation 
step can be displayed in a reservation table by writ
ing a 'd' before the X which is being delayed. Each d 
indicates one unit of delay called an elemental delay. 
In the absence of any other information on precedence, 
we must asslim~ that all the steps in a column must be 
completed before any steps in the next column are 
executed. Therefore, if the steps in column 2 of Fig. 
1 are unevenly delayed, we must store the output of 
some steps so that all the outputs are simultaneously 
available to the steps in column 3 of Fig. 1. The 
effect of delaying the step in row O, column 2 (x

02
) 

of Fig. 1 by 2 units and x22 by 1 unit is shown in 

Fig. 2. The elemental input delays d1 , d
2

, and d
3 

require the elemental output delays d4 , d5 , and d
6

. 

Now given some integer i between 0 and (p-1), we are 
in a position to delay any step arbitrarily such that 
the step occurs in a column number equivalent to i 
modulo p. Thus given a cycle, we can make any row of 
a given reservation table to look like one of the rows 
of Theorem 2; provided of course, the row does not 
have more X's than the size of the largest compatibil• 
ity class of the.cycle. Hence we have the following 
theorem. 

Theorem 4: For a given cycle, a pipeline can be made 
allowable by delaying some of the steps, iff the 
number of X's in each row of the reservation table is 
less than or equal to the size of the largest compati
bility class of the cycle. D 

CorollarY 4.1: For a given constant latency cycle (t), 
a pipeline can be made allowable by delaying some steps, 
iff there are no more than t X's in each row of the 
table. 0 

An important implication of Corollary 4.1 is that 
by adding elemental delays to a pipeline one can always 
fully utilize a single function pipeline with the use 
of a cycle with constant latency equal to the maximum 
number of X's occurring in any single row of the reser
vation table. Full utilization of a pipeline he~e, 
means that at least one segment is busy all the time. 
Thus the maximum achievable throughput of that pipe
line is attained. Of course complete redesign or 
replication of selected segments to reduce the number 
of X's in a row may allow higher throughput. 

Example 3: The reservation table of Fig. 1 is to be 
made allowable with respect to cycle (1,5). The re
sulting table appears in Fig. 3. For cycle (1,5), 
p=6, G mod 6=[0,1,5} and hence R mod 6=[2,3,4}. The 
maximal compatibility classes containing 0 are: 
[0,2,4} and [0,3}. The first row of Fig. 3 is row 
[0,2,10}, which resulted from the class [0,2,4} by 
constructing row [0,2,4+p} as per Theorem 2. The 
second row, [1,3,5} results from class [0,2,4} and the 
third row, [2,4} results from class [2,4} c [0,2,4}. 

Thus all the rows are allowable. 0 

Once we have a modified table, we need to assign 
the elemental delays to noncompute segments. Noncom-

• pute segments are physical resources like any other 
segment and may be shared by various elemental delays 
for their efficient utilization. Two elemental delays 
di and dj are defined to be compatible if lti-tjl 

mod p E R mod p. Where t 1 and tj are labels of the 

columns in which di and dj appear. Clearly, if di and 

d. are compatible, they can share one noncompute segment 
J 

because the usage interval lti-tjl is allowable. Using 

the above definition we can form the maximal compatibil
ity classes of all the elemental delays present in the 
solution. All the elements of a compatibility class 
can share a single noncompute segment. Now the problem 
reduces to the standard covering problem; i.e., finding 
the minimum number of compatibility classes which cover 
all the elemental delays. 

Example 4: The set of elemental delays of Fig. 3 is 
<d 1 ,d2,d3 ,d4 ,d5 ,d6 ,d-j>· Their corresponding column 

numbers are <3,6,7,8,9,2,3>. For cycle (1,5), R mod 6 
is [2,3,4} (from Ex. 3). Thus [d1 ,d2}, [d

1
,d

3
}, fd 2 , 

d4}, [d2 ,d5}, [d2 ,d6}, [d2,d7}, [d3 ,d
5
}, [d3 ,d

7
} are 

the maximal compatibility classes. Noting that the 
subsets of maximal compatibility classes are compati
bility classes, one of many possible minimal cov~rs is 
[d1 ,d2}, [d4}, [d5}, [d6}, [d3 ,d7}. Thus 5 noncompute 

segments are required. The assignement above is shown 
in Fig. 4, where s3 through s7 are noncompute segmentsq 

Besides reducing the number of noncompute segments 
in a solution, it is also important to reduce the added 
execution delay. The execution delay of a task in Fig. 
1 is 6 units while in the modified table of Fig. 4 it 
is 11 units. In situations where it often becomes 
necessary to empty the pipeline; e.g., due to logical 
dependancies among tasks, the execution delay of a task 
can become an important parameter in determining the 
overall throughput. Therefore, we shall take the added 
execution delay as the objective function to be mini
mized. Now the problem of making a pipeline allowable 
can be formulated as follows. 

Let I and J be the number of rows and columns in 
the given reservation table. Let dij and d~j be the 

number of elemental delays to be.inserted respectively 
at the input and output of a step Xij of the reservation 

table. If no X occurs in cell (i,j) of the table then 
d and d' are defined to be zero. Some other dij ij ij 
can be set to zero if it occurs between two consecutive 
computation steps which are indivisible. Let D be the 
added execution delay. Then the problem can be formal
ly stated as: 

Minimize D = L (max (d )\ 
09<J ~i<I . ij / 

subject to the constraints, 

integer dij ::::. O. \ 

[ ( c-b )+cl 'b +cl . + L ( max 
a ac h<j<c \~i<I 

E R mod p. 

for each pair <Xab'Xac> with c > b. 

mod p 

where, g is the set of allowable usage intervals with 
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respect to the given cycle with period p, and 

d' = max (d ) d 
ab O::;_i<I ib - ab 

The constraints result directly from Theorem 1. 
The term (c-b) i.s the usage interval which existed be
tween Xab and Xac before the insertion of any delays. 

The variable d~b is the number of elemental delays at 

the output of step Xab; dac is the number at the input 

of step Xac' The sununation term in each const~aint is 

the effect of inserted delays in the intervening 
columns between xab and xac' 

Since all the constraints are in modulo p arith
metic, dij need only take integer values between 0 and 

(p-1). Thus the solution space of the above problem 
is finite. This places an upper bound on the added 
execution time equal to (p-l)·J, where J is the number 
of columns in the reservation table. More.over, the 
objective function Dis nondecreasing in dij' These 

properties suggest the following branch-and-bound 
algorithm to find all minimum added delay solutions. 

Let the nuniber of X's in the reservation table be 
n and let the n variables, dij' be stored in any arbi-

trary order in a one dimensional array V. Let D(i) 
represent the value of the objective function for given 
values of V(l) through V(i), with V(i+l) through V(n) 
taken to be 0. 

Algorithm B: 
Bl. [Initialize] i~O; BOUND~(p-l)·J; 
B2. [Advance] i~i+l; V(irO; 
B3. [Check bounds and constraints] if (V(i)=p) or 

(D(i)>BOUND) then go to B6; if a completely as
signed constraint is violated then go to BS; 

B4. [Solution found?] if i<n then go to B2 else out
put the solution V(l) through V(n) and D(n); 
BOUND+-D (n) ; 

BS. [Try another value] V(irV(i)+l; go to B3; 
B6. [Backtrack] i~i-1; if i>O then go to BS else 

terminate the algorithm. 

The last value of BOUND is the minimum value of 
the objective function over all possible solutions and 
therefore the output solutions meeting this bound are 
all the minimum added delay solutions. If only one 
optimum solution is desired, the condition D(i)>BOUND 
in step B3 should be changed to D(i)>BOUND. 

A complete example with the constraints and the 
backtrack tree are given in Fig. S. The variables, 
dij, have been retained in the figure for simplicity. 

B is the variable BOUND, and '>B' indicates that the 
bound has been exceeded, and 'a' indicates that the 
constraint (a) has been violated. 

This algorithm is remarkably efficient in our 
limited experience. For example for one 20 variable 
problem with a potential 1014 nodes only 104.nodes were 
expanded and an optimum solution was obtained in 40 
seconds on an IBM 360/67. For a particular class of 
problems, the technique of [S] may be applicable to 
estimate the complexity of the algorithm. 

IV. Multifunction Pipelines 

Here we present the generalizations of most of 
the results and definitions of the previous two 
sections. The variables X and Y will be used in most 
of these results, where X and Y take function names as 
their values; the values need not be distinct. Let 
f.xy be the set of usage intervals of all <X,Y> pairs 

in the reservation table. This set can be formed by 
taking all pairwise distances between an X and a Y 
which appears to the right of the X in the same row. 
For example, for the reservation table of Fig. 6, the 
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sets of usage intervals are: ~=[l}, .EAB=[0,1,2,4}, 

,EBA=[0,2,3}, ,EBB•[2,3}. 

Similarly we define ~' the set of initiation 

intervals of all <X,Y> pairs of a cycle, to be the~ set 
which contains all intervals of a task of type X from 
a previously initiated task of type Y. A cycle ia 
described with latencies suffixed with the function 
name of the task being initiated with that latency; 
e.g., cycle (1A,1B,2A). The period pis the sum of 

the latencies. The initiation interval sets for <!ycle 
(1A,1B,2A) are: ~mod 4•[0,1,3}; QAB mod 4•[2,3}; 

QBA mod 4=[ 1, 2} ; QBB mod 4•[ O} . The propert:ie s Pl, P2 

and P3 can be generalized as follows. 

P4.a. if g,&O then g E .9.xx mod p => g+i.p E S~xx V:~O. 

b. 0 E QXX mod p and ip E QXX V~l, always. 

c. if Xr/:Y then g E .9.xy mod p => g+ip E S~XY V:~O. 

PS.a. if g,&0 then g E .9..xy mod P<=>(p-g)E £yx mod p. 

b. o· E QXY mod P<=> O E .9.yx mod :p, 
P6. if hr/:O then h E !!xY mod P<=>(p-h) E !!yX miod p, 

where llxY mod p is the complement oj: ~ mod p, 

in z . -p 

Theorem S: A cycle is allowed by a multifunction 
pipeline iff (!xy mod p) n (QXY mod p) • ,!, or equiva-

lently iff (!XY mod p) S !!_xy mod p, V X, Y in the set 

of function names present in the cycle. 

The generalization of the definition o:E compati
bility is straightforward, except that each integer 
must be suffixed with an appropriate function name. 
Thus two elements ix and jy, such that i,j E: ~. and 

j>i, are said to be compatible if (j-i) E ~ mod p. 

The following are generalizations of Lemma :2.1 and 
Theorem 2. 

i,j E ~ 

Cl 

Cl 

Lerrnna 6.1: Two elements ix and Jy such that 

are compatible iff (j-i) mod p E !ixY" mod p. 

Theorem 6: Given a cycle with period p, all 
rows which are allowed by the cycle are: 

possible 

row [ (i+i1p)X' (j+J 1P)y, ••. } V nonnegative 

integers i
1
,i

2
,J 1,J 2 ... and V compatibility 

classes [iX,jY''''}. Cl 

The maximal compatibility classes can be formed 
in a manner similar to the one for single function 
pipelines. As an example take again the cycle 
(1A,1B,2A) whose Q sets were formed earlier. The~ al-

lowable usage interval sets are: ~mod 4•[2}; 

!!AB mod 4=[0,1}; .!!iJA mod 4=[0,3}; .!!iJB mod 4•[1,2,,3}. 

The maximal compatibility classes containing OX are: 

(OA,2A}' (OB,1B,2B,3B}' (OA,OB,lB}' (OB,3A,3B}. 
A compatibility class Q.1 is said to £2~ another 

class Q.
2 

if for each function, the number 0 1f elements 

of that function type in class Q.1 is greate.r than or 

equal to the number of elements of the same: function 
type in class Q.2 . In the above example, [OA,OB,lB} 

and [OB,3A,3B} cover each other. The same defin:ltion 

for cover applies among rows and also betwe:en a irow 
and a compatibility class. Now we have the geneiral
ization of Theorem 4. 



Theorem 7: For a cycle, a multifunction pipeline can 
be made allowable by delaying some computation steps 
iff each row of the reservation table is covered by at 
least one compatibility class of the cycle. D 

Now it is a simple matter to formulate the problem 
of making a pipeline allowable. In a multifunction 
pipeline different functions have different execution 
times. Let D(X) be the added execution delay to 
function X. The objective function can be any function 
of the D(X)'s, which is nondecreasing in each D(X); 
e.g., some linear combination of D(X)'s with positive 
coeffi.cients. Let dij (X) be the number of elemental 

delays to be inserted at the input of a step of function 
name X in cell (i,j). Let I and J be the number of 
tows and columns in the reservation table. The added 
execution delay for a function X can be expressed as 

D(X) = L (max di. (X)~ 
Osj<J \_ O:;_i<I J j 

While the constraints can be written from Theorem 5, 
the usage interval between Xab and Yac can be express-

ed as: [(the distance of Yac from column 0) - (distance 

of Xac from column O)] • Thus we have the following 

set of constraints. 

E R_Y mod p. for each pair <X b'Y >. 
"-"X a ac 

From property 6 we can see that we need construct only 
one constraint per pair without regard to the magni
tudes of b and c. The algorithm to obtain an optimum 
soltuion is the same as Algorithm B. 

V. Concluding Remarks 

We have presented the allowability characteristics 
of pipelines and cycles. We know the structure of all 
allowable pipelines for a given cycle. It is seen 
that one can utilize a pipeline fully by adding non
compute segments to make it allowable with respect to 
a perfect cycle. For nonperfect cycles, the pipeline 
can still be made allowable if every row of the reserv
ation table is covered by at least one compatibility 
class of the cycle. 

For single function pipelines, constant latency 
cycles were shown to be perfect. Thus a single 
function ·pipeline can always be utilized fully with 
the use of an appropriate constant latency cycle. 

For multifunction pipelines, there is no straight
forward procedure to construct a perfect cycle, given 
a mix of functions to be executed. However, if a cycle 
is given, it can always be tested for its perfectness 
with the use of compatibility classes. Cycles which 
are most likely to be perfect are those having evenly 
spaced task initiations, as well as a fairly regular 
pattern of functions. These cycles have a small set of 
initiation intervals and hence one has more freedom in 
choosing an allowable usage interval. For the same 
reason, these cycles are also most likely to require a 
small number of noncompute segments in making a pipe
line allowable. 

For increasing the throughput beyond what would 
result due to the full utilization of a pipeline, 
segment replication nrust be done. Segment replication 
is also a viable alternative to noncompute segments if 
the costs are comparable. For a cost effective design, 
segment replication and addition of delays should be 
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considered simultaneously. 
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a multifunction pipeline 

cycle (2). ll mod 2 = fl} 

Added delay: 

Constraints: 

(i) [ 2 + max[ <l 00 ,d10} - d00 + d02 + d11} mod 2 E [ l}. 

(ii) [ 1 + maxf d00 ,d10} - d10 + <l 11} mod :2 E [ 1}. 

1. <loo = d10 = a11 = o. do2 = 1. 

2 · <loo= d11 = do2 = 0 · d10 = 1• 

Figure 5. Making the pipeline allowable for cycle (2): 

A branch-and-bound search for optimum solutions. 
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4.7 Further development. 

The previous discussion of the structure of an 
interface suggests a sequence in the development of 
the layers, according to the sequence of the sections 
4.1 through 4.6. This development is based on a 
strategy of successive definition. First the architec
ture of the total interface is determined, and its 
partitioning and dispersion over the related architec
tures. Next the architecture of the central message path 
is determined, and finally the architectures of the 
individual relational functions. Though this procedure 
is a useful guideline, a practical application often 
requires a substantial number of iterations through 
this sequence, due to the high dependency among the 
layers. 

A further substructuring per layer may result in 
either the development of sublayers per layer (extended 
horizontal partitioning) or a partitioning of a layer 
into functions which are not or only slightly related 
(vertical partioning). The previous discussions have 
already used the vertical partitioning by interpreting 
each layer as a class of functions, and showing 
examples of such functions. Much is dependent on the 
possibility of defining a function first as an indepen
dent entity, and next of establishing the linkages to 
a.nd from other functions. As is true for the vertical 
partitioning, the extended horizontal partitioning may 
a.lso provide more clarity in the specification of the 
interface. The protocol function of figure 6 shows what 
type of operations may be sequenced. The way these 
operations are organized in detail can be specified in 
a lower protocol layer. Complex data transmission inter
faces may build up their transfer layer as a stack of 

Local function A 

R 
e 

Source & Sink: 
lWTTu""-._,i--...,i._.i.,....i... __ ._..,... __ ... 

a n Protocol 
t c 1•t·-------------...... o I n•o1 ______ __,_..._ _______ _. 

a n Trans f e r'<-----.----1 

r-J 
< 

\-- - -
Central message path 

,-------

Architecture 
B 

L_ T - -
.J 

Figure 11: The Interface from the perspective of architecture A. 
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sublayers. Such a sublayer, and all that it encloses, 
may be interpreted as the central message path of the 
transfer layer that is just one level higher. An 
opposite development also occurs frequently: variables 
pass a layer unchanged. 

The structure so far developed for the interface 
is shown in figure 11 from the perspective of an 
individual architecture. Each box in the figure repre
sents a function, that exists in parallel with the other 
functions and is related with them via the exchange of 
variables. This horizontal and vertical structuring is 
different from the structuring in which functions on a 
lower layer are used to implement an abstract machine 
on a higher layer [10], 

S. What is a standard interface 

As stated, a system can be understood as a callee~ 
tion of interfaces (figure Sb) as well as a collection 
of architectures (figure Sa). This viewpoint is signifi
cant when an interface is defined first, and the asso
ciated architectures later. This happens with a so called 
standard interface. A standard interface, such as a 
Channel-to-I/O interface, is always defined to meet many 
different architectures, e.g. printers, tape units, disc 
units, display devices, architectures that still have to 
be invented, etc. in different quantities and configura
tions. At the time of the definition of the standard, the 
current application area is known, and there is a rough 
estimate of the characteristics of future applications. 
Definition of a standard to include all current and 
future applications is not only impossible, it is also 
highly inappropriate since it loads anyparticular applica
tion with the overhead of a multiplicity of unused applica
tion functions. Instead the standard is defined to suit 
all requirements of current and future applications with
out containing the specific functions of individual 
applications. The standard is by definition incomplete. 
Consequently, when the standard is used in a particular 
application, each relational function has to be extended 
with application dependent functions. Those application 
dependent functions form yet another layer around the 
source and sink layer of the standard interface, and 
are designated 'Application' in figure 12a. 

~ - - ........ 
Local function 

\ 

Figure 12a: Application of a 
Standard Interface 

Standard 

Interface 

Figure 12h: Partitioning of the 
Appl I cation layer. 

' / 

The consequence of this structure is that the 
variables exchanged among the application functions are 
unknown, i.e. transparent to the standard interface, and 
yet pass all layers and the message path. Since we want 
the function of the standard te remain invariant with 
each application, it implies that the standard has to 
provide for the space and time for the exchange of those 
variables. If on the level of the central message path 
the available space is to be defined in terms of avail
able code elements, the definition of the available space 
at the level of the source and sink functions has to be 
in terms of the same number of code elements, since the 



coding of the variables is transparent with respect to 
the standard. The coded source in figure 3 is an example. 
Therefore, in using a standard interface in a particular 
application, the application dependent interface can be 
defined according to the procedure explained above. The 
standard interface is now embedded as a central message 
path with a high level of complexity. (See figure 12b). 

6. Application 

The structuring and description discipline has been 
succesful applied to a number of existing and proposed 
standard interfaces. Among these are a complex data trans
mission interface [2], two I/O interfaces, one complex 
Channel-to-I/O interface [1], and an instrumentation 
interface [4]. The relational function of the secondary 
station of SDLC [2] was for example described by 25 func
tions, each of an average complexity as shown in the 
figures 8 and 9. It contains 4 sources, 2 sinks, 
8 protocol, 2 decoding, 3 encoding, and 6 transfer func
tions. A formal specification was developed as far as 
the intentions of the interface architects were stated 
unambiguously. This specification was generally a frac
tion of the length of the original document. As part of 
the description process ambiguities and omissions in 
the original documents were systematically uncovered. 

The state description technique was introduced in 
an IEC (TC 66/WG 3) standardization activity in june 
1973 [4], and eventually accepted as the method to 
define the considered interface. In the opinion of the 
committee it has contributed much to the fact that the 
definition work was practically completed within 9 
months, that is May 1974 [5]. A structured and complete 
description of this interface can be found in [3], 

7. Canel us ion. 

The proposed design discipline facilities fast, 
correct, efficient and clear specification, inter
pretation, and judgement of an interface through the 
definition and its evaluation into a structured 
specification methodology. As such it can be profit for 
both interface designers and users: 

The definition provides a better understanding, of 
what an interface substantially is: a specification 
of a portion of each of the related architectures 
(relational functions) and the architecture of the 
message path, defined to provide cooperation of the 
related architectures. It is not the story of the 
reporter, who is sitting on a grandstand, viewing the 
communication between the related architectures, 
observing, interpreting and logging what happens. It 
is the rules of the game according to which the teams 
play. 
The architecture of each relational function and the 
message path is specified individually. For all these 
architectures one specification methodology and 
language should be used. Poor interface specification 
mixes relational functions and message path, as well 
as specification methodologies and languages. 
The horizontal and vertical partitioning strategy for 
the specification of the relational functions facili
tates the recognition of the nature of functions of a 
particular application and their embedding in such a 
structure. It facilitates easier specification and 
recognition of quality and correctnes of the indivi
dual and compound functions. 
A standard interface is by definition incomplete. It 
can be interpreted as a complex central message path, 
that can be extended to a complete interface in a par
ticular application. 
The method has proven to be applicable to a number of 
widely used interfaces. 
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Summary. The motivations for the design study of 
a modular, shared resource computing system are given by 
discussing fault-tolerance and resource utilization is
sues in parallel processing architectures. A design is 
presented which employs an array of pipelined arithmetic 
processors to perform array operations. The desi9n pro
vides for fault-tolerance ("graceful degradation") capa
bility and is efficient in using main memory bandwidth. 
Various architectural tradeoffs of the design are dis
cussed. Some results of simulations used for the veri
fication of design decisions are also reported. 

1. Some Current Issues in the Design of Numeric 
Processors 

l .1 Introduction 

We wish to report several aspects of a design study 
of a fault-tolerant (highly available) [l] Shared Com
puting Resource (SCR) for parallel processing, which is 
intended for use in a multiaccess, scientific ("number 
crunching") computing environment. In fact, the SCR 
corresponds to a high capacity node in a hierarchical 
networkof computing nodes [2]. Our purpose is to pre
sent the evolving architecture of the SCR system, iden
tifying the constraints that apply and the tradeoffs 
that have to be considered. 

Many scientific computations involve array process
ing and hence need a mathematical programming language 
with array capabilities, such as APL L3]. The large 
computing requirements of such programs call for a sys
tem which is tailored to carry out array computations 
very efficientl~. To this end,some computers such as the 
CDC STAR-100 [4J, the TI ASC [5] and the STARLET compu
ter [6] implement array operations directly in their 
hardware. Alternatively, special purpose systems are 
used in conjunction with general purpose computers to 
attain cost-effective operation in array processing. 
The IBM 2938 Array Processor [7] and,·at a larger scale, 
the Illiac IV [8], the PEPE [9], and the SCR belong to 
this category. 

To put the SCR design in the proper perspective, we 
initially discuss fault-tolerance and resource utiliza
tion issues in parallel processing architectures. This 
is followed by the functional organization of SCR, its 
operation in the context of a hierarchical multiprogram
ming/multiprocessing system, various tradeoffs consi~ 
dered in designing the SCR and the scheduling issue in 
the SCR system. We conclude our discussion with a com
parison of the scheduling of array operations in the SCR 
and the ASC systems. 

1.2 Fault-Tolerance Issues in SIMD Computer 
Architectures 

SIMD computer architectures [10], which are of in• 
terest here have been classified to [11]: 

@) Parallel in space and structured array machines 
with a high level of interconnectivity among the proc
essing elements, such as Illiac IV. 

~) Unstructured linear array and associative proc
essors, such as the PEPE system. 

(c) Primarily parallel in time or pipelined proc
essors, such as the STAR-100 and the ASC. 
*This research was supported by the National Science 
Foundation, Grant No. DCR72-03633 A03. 
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Obviously, a wide range of systems with various de
grees of interconnectivity exist in the spectrum between 
"structured" and 11 unstructured 11

• Also, pipelining can 
be incorporated in the first two categories. 

The hardware complexity of SIMD systems impairs 
their reliability and complicates the implementation of 
fault-tolerance or, at least, partial fault-tolerance. 
This is especially evident in structured systems. For 
example, we consider dynamic reconfiguration in the 
Illiac IV. In order to switch out a failed processing 
element (PE) and activate a spare PE, we would need ad
ditional, high bandwidth interconnections among the PE's. 
Furthennore, operation in a "degraded" mode (with fewer 
PE 1 s) is not practical, since most programs written for 
the Illiac IV take its structure into account during 
computation. On the other hand, in systems with limited 
interconnections, "graceful degradation" and even com
plete fault-tolerance can be achieved at little extra 
cost, once provisions for on-line fault detection have 
been incorporated. 

It is evident that fault-tolerance or partial 
fault-tolerance C'graceful degradation") is a very de
sirable attribute for parallel processing systems. The 
SCR system described in this paper is an attempt to ex
plore the problems of introducing fault-tolerance into 
parallel processing. The motivations for some design 
decisions of the SCR are given in the next two sections. 

1.3 Processor Utilization Issues in SIMD Architectures 

A frequent resource underutilization associated 
with parallel-in-space SIMD computer architectures is 
due to the following facts: (1) often task requirements 
cannot be matched to the available processors, and (2) 
processors are used sporadically during their assignment 
to a program. 

Resource sharing in space with self-optimized sche
duling has been proposed to increase resource utiliza
tion in parallel processing systems [12]. For example, 
resource sharing was proposed for the Illiac IV computer 
[8] consisting of four quadrants, such that tasks re
quiring one or two, but not all quadrants for execution 
would be able to share the system. 

Theoretical justifications for resource sharing are 
provided in [13]. It is shown that an important perfor
mance measure, the mean response time, improves signifi
cantly when the system load and processing capacity is 
increased simultaneously. The space sharing approach is 
further discussed in conjunction with the SCR system. 

1.4 Memory Utilization Issues in High-Performance 
Computers 

The larg·est cost component in high-speed pipelined 
computers is the main memory; hence strong emphasis must 
be placed on effective utilization of memory bandwidth 
and space. 

Since we frequently deal with large arrays of data, 
the efficient handling of temporary results has major 
importance in such computers. Due to limited memory 
space, the programmer might be constrained to use a 
given vector length for all of his computations [14]; 
alternatively, the space reserved for temporary results 
might be specified via a compiler run time parameter 
[15]. Another major issue, which underscores the impor
tance of memory bandwidth and space, is the refurbishing 



of main memory contents, such that computations can 
proceed in an uninterrupted manner. 

As discussed in [14], a space-time tradeoff exists 
regarding temporary results. Since each array opera
tion consists of a startup time and an execution time, 
some time is wasted due to additional startups, when a 
large array has to be operated upon in parts. Addition
ally, there exists a memory management overhead in al
locating space for temporary results. 

A straightforward solution to the above problem is 
the "elimination" of intermediate array results, with 
the consequent saving of memory accesses and space [16]. 
This scheme, which has been implemented at the scalar 
level in the IBM 360/91 [17], is considered in the con
text of the SCR design for arrays of data, as the fol
lowin~ two schemes: 

(a) The storing and fetching of temporary results 
is avoided by transmitting them directly among the re
spective arithmetic units. This scheme can be extended 
to sequences of assignment statements having common sub
expressions and to the case where the final result of 
an array expression is the input to another one. 

To weigh the attractiveness of this approach, we 
evaluate the relative saving in memory accesses when 
an array assignment statement, involving n binary oper
ators is evaluated. Denoting the number of array ele
ments by l, customarily 3nl memory accesses would be 
required, while the proposed scheme requires (n+2)l 
accesses; hence 2(n-l)l accesses are saved. Given that 
the probability of the occurrence of an arithmetic as
signment sta~ement ~ith n (n>O) binary op~rators is Pn 
and postulating a fixed mean array size (l) for array 
expressions of varying complexi!Y, then the relative 
saving in memory accesses is (2n-2)/3n, where n is the 
mean value of n. 

(b) Memory accesses are saved by concurrently ex
ecuting operations involving the same input operands. 
An example of the relative saving in memory accesses 
using this scheme is given in Section 2.4. 

The use of variables in a sequence of array as
signment statements of a program can be represented as 
a directed acyclic graph, which will be called the data 
digraph. Each node in the data digraph corresponds---rc;
an input variable or the generation of a result (per
manent or temporary}. The links determine variables 
or temporary results, which are utilized in generating 
a new result. The data digraph can then be manipulated 
{see Section 2.5) to determine sets of operations whose 
simultaneous execution minimizes memory accesses. Such 
sets of operations, which have to be executed in a 
single step by the SCR, constitute a task. 

To illustrate the previous discussion, we consider 
the multiplication of two vectors with complex data 
types: 

A.B = {a+a'i) • {b+b'i) = {ab-a 1 b1
) + {ab'+a'b)i 

Figure 1 gives the data digraph corresponding to 
this computation. In this case the relative saving in 
memory accesses, when all operations are performed in 
one step is 66.7%. 

2. The SCR: Functional Description 

2.1 Operating Environment of the SCR 

The SCR is intended to operate in conjunction with 
a multiprogramming/multiprocessing computing system, 
whose interfaces with the SCR are discussed here. 

The computing system consists of several Program 
Processors {PP's), which execute user programs and 
perform OS functions. The PP 1 s and the SCR share a 
high-bandwidth main memory by means of a main memory 
controller. The main memory is large enough to allow 
multiprogramming. The PP's are equipped with local 
memories, thus relieving the main memory from excessive 
PP accesses. Programs executed by the PP's have spe-
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cial provisions for specifying array operations and 
while executing user programs, the PP's relegate array 
operations to the SCR. However, scalar operations and 
also array operations that cannot be vectorized {see 
[15] for examples) are handled directly by the PP's. 
The SCR has local autonomy and requests for computation 
or tasks, which the SCR receives from various PP's are 
enqueued in the SCR and assigned to execution based on 
local self-optimization considerations. 

2.2 Functional Organization of the SCR 

The SCR design is aimed toward the major goals of 
achieving fault-tolerance {"graceful degradation") and 
of making efficient use of main memory bandwidth. 

The approach employed to preserve main memory band
width is to allocate several Arithmetic Processors {AP's) 
to the execution of a task such that temporary results 
are transmitted directly from one AP to another*. Since 
rather high bandwidths of data transmission are in
volved, an Interconnection Network {IN) is used to 
transmit intermediate results among the AP 1 s. Addition
ally, due to the high data transfer rates at which ar
ray operands are to be transmitted between the main me
mory and the SCR, dedicated Address Generators {AG's) 
are assigned to each array operand. -----

In order to achieve fault-tolerance and high avail
ability, a "pooling" concept is used for the various 
subsystems of the SCR. In the case of AP 1 s, the mean 
AP requirement for a single task {as generated by a pro
gram translator) is smaller than the total number of 
AP's. During program execution, a subset of the avail
able AP's {under some constraints due to the IN) is as
signed to the execution of a task. Several tasks can 
be executed concurrently in the SCR. The binding of pro
gram requests to the SCR elements is deferred until the 
time of execution. At that time it is performed dyna·
mically taking into account the inventory of available 
elements. Consequently, system operation can continue 
with fewer elements (1n 11 degraded mode 11

) after failures 
of system elements occur. 

Figure 2 gives a block diagram of the SCR and its 
interfaces with the computing system. The SCR consists 
of the following subsystems: 

{a) A pool of m AP 1 s {Arithmetic Processors) which 
access the main memory controller by means of a )Vlemory 
Interface Unit {MIU). The AP 1 s are high bandwidth, · 
pipelined arithmetic units capable of performing basic 
arithmetic operations generating elementary results 
{sums, products, etc.), as well as some common matrix 
operations such as the inner product {it is considered 
to be a nonelementary result). The internal str1Jcture 
of the AP's will not be discussed here, but we postu
late that once an AP is set up by an external command, 
it proceeds autonomously with the assigned operation. 
An Input Switching Unit {ISU) whose function is des
cribed in (c) below is associated with each AP. 

{b) The MIU contains a pool of k AG's {address 
generators) which generate the addresses of data ele
ments to be transmitted to or from main memory. Each 
AG is associated with a buffer memory to mask the vari
ation in main memory response t:ime. High bandwidth 
buses are used to transmit data and addresses between 
AG' s and the main memory controller. The operat"ion of 
AP and AG units is overlapped, such that the AG 1 s fetch 
input operands in lookahead mode into the buffers, be
fore the AP 1 s operate upon them. 

{c) The IN {interconnection network) provides da
ta communication links among the AP 1 s according to the 
pattern described in Section 2.5. The ISU associated 
with each AP selects the specified inputs from the set 
of buses originating from the AG 1 s and other AP's {the 
IN) according to task requirements under externa·1 con
trol. 

{d) A Switchini Network {SN) is used to dynamic
ally assign AG 1s toP 1 s. The motivation and certain 
*A variation of this approach is discussed in Section 2.~ 



Effect of CPU Speed 

The percentage improvement in the figure of merit (f) 

versus the primary memory cost/program for CPU's 

with different speeas is drawn in Figure 7. For 

low primary memory cost/program the combination of 

a slow processor with a slow CCD has a better per

formance improvement than a fast processor with a 

fast CCD. Also in certain regions of the graphs 

the three different speed CCD's and a given CPU 

track each other showing no significant advantage 

in using a fast processor over a slow processor. 

This indicates that in this region the instruction 

execution is memory speed limited rather than 

processor speed limited. 

Effect of Degree of Multiprogramming 

The effect of degree of multiprogramming D on, f is 

shown in Figure 8. A large improvement occurs· 

in going from D=l to D•4, a small amount in going 

from D=4 to D=8 and very little in going from D=8 

to D=l6. This is due to the high probability of 

at least one task waiting for service at the pro

cessor queue when the degree of multiprogramming 

is increased. A similar behavior can be expected 

if the CPU's or the type of CCD are changed. 

Effect of Amount of MOS Memory Retained 

Figure 9 shows the effect of the amount of MOS 

memory retained on the percentage improvement in f. 

As higher amount is spent on the primary memory 

per program, it is seen that the optimum per

centage improvement in f occurs at higher and 

higher values of the MOS memory being retained. 

Conclusions 

A two server queuing model is used to analyze the 

performance of a memory hierarchy in a multiprogr

amming mode. For the primary memory a two level 

hierarchy of Bipolar, MOS is compared with a three 

level hierarchy of Bipolar, MOS and CCD by keeping 

the cost of the primary memory constant. A figure 

of merit that is a function of number of instruct

ions executed is used to evaluate the hierarchies. 

It is shown that a hierarchy using CCD's has 2 to 

3 times higher figure of merit over that using 

just MOS. Effect of varying the speed of the 

CCD's used,, effect of different cpu•s, effect of 

degree of multiprogramming and the effect of the 

amount of memory retained is then evaluated. 

An interesting result seen is that for small 

values of primary memory a slow CCD with slow 
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CPU has better figure of merit than a fast CCD 

with fast CPU. Also, for certain regions of primary 

memory requirements, it is seen that no advantage 

is gained by going to a faster CPU. 
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Model and Assumptions 

The behavior of a typical task executed in a multi

programming environment is represented by four 

states: the task being serviced by the processor, 

the task waiting for the secondary memory or I/O 

service in a queue, the task being serviced by the 

secondary memory or I/O, and finally, the task 

waiting in a queue for processor service. Thus, 

in general, there are two queues and two service 

facilities and a task cycles through them until 

it is completed (Figure 2). This, then, can be 

modeled by a two server cyclic queuing model. 

Traigerl3 has referenced the use of this model, 

Fuller and Baskett5 have used it in their analysis 

of scheduling philosophies of drum systems while 

Bhandarkar3 has used it to compare magnetic bubbles, 

CCD's, Fixed and Moving Head disks, etc. Most 

previous researchers have used CPU utilization as 

a main criterion to evaluate the effect of multi

programming. Some of the other criterions consid

ered are the waiting time in queue and the memory 

utilization, which is the percentage of the time 

that a given memory spends its time transferring 

its data. The criterion used here will be the 

ratio of the actual number of instructions executed 

by the processor to the maximum number of inst

ructions executed provided all the memory was 

substituted by the level having the fastest speed. 

The assumption made in using the two server queuing 

model (Figure 2) is that both server one, consisting 

of the processor and the primary memory, and server 

two, consisting of secondary memory and I/O, have 

an exponential service time distribution. Even 

though this may not be the case in any particular 

computing system, most models make this assumption 

since most natural phenomenon can be modeled by a 

poisson process and a general feeling for the 

performance of the hierarchy can be determined. 

Later, simulations may be used to verify the results. 

A FIFO scheduling philosophy is assumed for all 

queues in the system. 

Hit Ratio Characteristics 

A typical hit ratio characteristic as shown in 

Figure 3 is used to determine the performance of 

the hierarchy. The statistics were taken from some 

representative programs for a large computer. Once 

the hit ratio characteristics are known, the miss 

ratio characteristics can be easily determined. 
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Processor Characteristics 

A typical processor activity is characterized as an 

instruction fetch, instruction decode, data fetch and 

data operation (Figure 4). Thus, using this model, 

the average time interval between the issuance of 

successive memory accesses can be determined. For 

a more rigorous analysis of the processor behavior 

characteristics, see Streckerl2. 

Performance of the Hierarchy 

If A is assumed to be the average service rate of the 

first server, then the mean execution interval l/A 

can be expressed as [Bhandarkar3]: 

l/A '=Hit Ratio [t (M) + t (P )] 
Miss Ratio p c 

Where t (Mp) = aggragate access time for the 

primary memory 

t (Pc) • average processing time between 

successive memory accesses. 

Assuming 11 is the service rate for the second 

server th1~ probability of CPU being busy or CPU 

utilization is given by: 

u probability of CPU being busy 

l - probability (M jobs queued for second 

server) 

M 
.L.:::..e.._ 

1 M+l 
- p (Hiller6) 

Where M = the degree of multiprogramming and 

p = A/µ 

Once the CPU utilization is found, then the figure 

of merit (f) can be derived as: 

f = No. of inst. executed with a given hierarchy 

No. of inst. executed with all memory sub
stituted by fastest technology 

t (Pc) + t (fastest memory) 

t (Pc) + t (~) 
*U 

Where t (fastest memory) = access time of the 

fastest memory, and U is determined by using 

the equation given above. 

A Memory Hierarchy Design 

The final outcome of a memory system design in 

which a user is interested is its cost and per

formance. Invariably, the requirements are to 

minimize the cost while maximizing the performance. 

The cost and performance of the memory system is a 



function of the technologies T1 , T2 .... Tn and their 

sizes S1, Sz .... Sn used at any level. 

Reduction in the cost of the memory system nec

essitates a small amount whereas increase in per

formance necessitates a large amount of memory at 

the lower levels (levels nearer the processor). 

Therefore a problem encountered in the design of 

the memory hierarchies is that of finding a mix of 

memories for different levels in the hierarchy 

that would give an optimum performance for a given 

cost. 

Assume that a certain cost constraint exists for 

the design of the primary memory. Also assume that 

a two level hierarchy of Bipolar and MOS,with sizes 

S1 and Sz respectively, satisfies the cost constraint 

and places the hierarchy at point A on the hit ratio 

characteristics (Figure 3). A t~ree level hierarchy 

of Bipolar, MOS and CCD having the same cost as 

above is one that has memory sizes of S1, Sz, and 

S3 respectively such that S3 = X* (Sz - Sz), and 

X > 1 is the cost/bit ratio between the MOS and 

CCD memories. Let these sizes place the memory 

hierarchy design at Point B on the hit ratio 

curve (Figure 3). Since S3 > s2 the primary 

memory hit ratio is improved. Then the performance 

of the hierarchy can be determined by finding the 

hits and the access times for each level. 

The following sections will evaluate the effects 

on different parameters due to the constant cost 

conversion described above. The various aspects 

investigated will be the effect on the performance 

due to: 

a) CCD's of different speed and, hence cost 
used, 

b) CPU's of different speed, 

c) the change in the degree of multiprogramming, 

d) the amount of MOS memory replaced by CCD. 

The different parameters for the Bipolar, MOS and 

CCD memories, the service rate µ of the secondary 

memory and I/O and characteristics of different 

CPU's used in the calcualtions are shown in Table 2. 

Effect of CCD Speed 

The effect of replacing a partial amount of MOS 

memory by cost equivalent CCD is shown in Figure 5. 

The percentage improvement in the figure of merit 

(f) in replacing a two level by a three level 

hierarchy is shown against the cost of the primary 

memory per program. The percentage improvement 
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in the figure of merit is defined as: 

Percentage Improvement 
in the figure of merit *100 

Where fz figure of merit for a three level 
hierarchy 

And f1 • figure of merit for a two level 
hierarchy 

Since the two and three level hierarchies have 

same amount of Bipolar memory, the cost is rE~p

resented in terms of the size of the MOS memory/ 

program for a two level hierarchy. 

The graph shows that the replacement of MOS by CCD 

improves f over a wide range. It is advantageous 

to use slow speed low cost CCD's to replace MOS 

when the total dollars to be spent on primary 

memory is low. When the amount of money to be 

spent increases, then the medium cost medium speed 

CCD's give a better improvement in f than the low 

cost low speed, and high cost high speed CCD's. 

Finally, in the high cost region, high cost high 

speed CCD's become the most advantageous choice. 

A little thought will show that intuitively this 

makes sense. Also, the highest improvement in f 

is obtained for the slowest CCD' !:!. (about 300%), 

when the MOS primary memory per program is about :L6K. 

The graph shown in Figure 5 can also be used. for 

constant performance transformation rather than 

constant cost transformation. The dashed lines on 

the graph show lines of constant figure of merit, 

which is an indication of the performance of the 

processor together with the memory system. Thus, 

following the same dashed line one can determine 

the cost savings that are incurred in switching from 

a two level Bipolar, MOS hierarchy to a three level 

Bipolar, MOS, CCD hierarchy for various·CCD devices. 

With the particular assumption made in draw:Lng the 

graph and a figure of merit of f = 0.100, i:E the 

cost of the MOS memory required for a two level 

hierarchy is 52K units then the cost of the three 

level hierarchy for the slowest CCD device (T3 

400µsec.) is 15K units. Thus a cost advantage of 

about 3.5 times is realized for a constant per

formance transformation. 

Figure 6 shows the advantageous regions for Bipolar, 

MOS, CCD and Bipolar, MOS combinations as a function 

of CCD speed and primary memory requirement. 


