
25 YEARS OF SERVICE

IEEE COMPUTER SOCIETY

The 3rd Annua I
Symposium on

COMPUTER
ARCHITECTURE

Sponsored by the IEEE Computer Society
and the Association for Computing Machinery

JANUARY 19-21, 1976

Additional copies may be ordered from:

~ IEEE Computer Society Publications Office
~ 5855 Naples Plaza, Suite 301, Long Beach, CA 90803

acm Association for Computing Machinery
1133 Avenue of the Americas, New York, N.Y. 10036

75CH 1043-SC
/"-, IEEE Service Center
~j 445 Hoes Lane, Piscataway, N.J. 08865

Copyright©1976 by the Institute of Electrical and Electronics Engineers, Inc., 345 East 4 7th Street, New York, New York 10017, and the
Association for Computing Machinery, 1133 Avenue of the Americas, New York, N.Y. 10036. Printed in U.S.A.

PREFACE

GENERAL CHAIRMEN'S REMARKS

The success of the past two Symposia on Computer
Architecture and the interest that they have generated
are the greatest rewards that their organizers could
possibly hope for. The increase in attendance and the
quantity and quality of the papers received indicate
that growth and creativity in computer architecture
continue on the upswing. At the same time the broad
circulation (over 3,000 copies) of these Proceedings
provides recognition to the authors and coverage for
the interested audience not in attendance at the con
ference.

An objective of the symposium is to present the
methodologies and languages for representing architec
tural design within the pragmatics of system evalua
tion and implementation. While these topics have re
ceived attention in the abstract a greater participa
tion of users and designers from government and indus
try would aid greatly in developing these areas. Sym
posium attendance has been historically divided equal
ly between two groups, university and industry, but it
has been difficult to obtain submissions from practi
tioners of the art. It is a credit to the Program Com
mittee and in particular to its chairman that at least
a third of the final program consists of industrial
contributions. This is perhaps a good place to remind
the non-academic readers of these Proceedings of their
obligation to give, in the measure that they receive,
from their own valuable store of practical experience
and knowledge.

An exacting Program Committee has been responsible
for the delicate task of program selection and organi
zation. Their acute perception in the choice of con
tributions is evidenced in the pages that follow. We
thank them all but in particular Dan Siewiorek for his
ability to multiprocess a broad variety of tasks in a
competent and efficient way. One new and valuable fea
ture added to this Third Symposium is the Session on
Recent Results. It included reports on fresh develop
ments of significance not yet sufficiently ripe at the

deadline of manuscript submission. The archival value
of the presentations in the program should be comple
mented by these reports of work in progress, and also
by a one day Tutorial on Microprogramming by Mike
Galey and Richard Kleir.

An evening panel discussion organized by Yoahan
Chu will concentrate on the unifying and changing as
pects of software and architecture design. This ses
sion and the informal atmosphere encouraged during the
coffee breaks and other social functions should provide
the opportunity for personal interaction among the par
ticipants of the conference.

As in the past, the presence of papers from nine
different countries brings out the cosmopolitan flavor
of this conference. Responsible in no small part for
this participation are Rodnay Zaks from Franci~ and
Reiner Hartenstein from Germany ghrough the support of
the Euromicro association. The "Best Paper Award",
instituted last year to encourage excellence in the
written and oral presentations of a paper at the Sympo
sium will be continued. The winners for 1975, Harold
W. Lawson, Jr. and Bengt Magnhagen from Linkoping
H°ogskola in Sweden, will receive their award of $100. 00
and a certificate during the opening ceremoni,es of the
Third Symposium for their paper, "Advantages of Struc
tured Hardware."

Our appreciation should also go to the unsung
heroes of an effort like this one: to those who
enriched the selection process by submitting papers of
quality that were not, for special reasons, accepted at
this time and to the many:who aided in behind-the
scenes arrangements. Among the latter we single out
Harvey Glass and Joe Deeds who worked diligently to
make it more pleasant for those attending our 1976 meet
ing on the shores of the Gulf of Mexico.

Michael J. Flynn
Oscar N. Garcia

PROGRAM CHAIRMAN'S REMARKS

A survey of the symposium sessions indicates some
current trends in computer architecture research. The
most popular topics (by number of papers submitted)
were computer networks and multimicroprocessor systems.
A heightened awareness of the software/hardware inter
face)\s exhibited by three sessions and an evening
panel discussion. The sessions cover topics of hard
ware/ software system considerations, resource sharing
and process coordination, and architectures to support
software concepts.

Performance of computer systems continues to be an
important topic. One session covers the theoretical
concepts of performance evaluation and modeling while
another session is devoted to architectural features
for performance enhancement. A historical perspective
of the art of computer design is the theme of the ar
chitecture evolution session. This session focuses on
the design decisions in two computer families and prom
ises to be one of the highlights of the symposium.

Interest continues in hardware· ,descriptive lan
guages and computer architecture education. Finally,
two new sessions round out the program: the effects of

ii

special applications on computer architecture, secon
dary storage.

The large response to the symposium's call for
papers provided a wealth of material from which to as
semble a technical program. I would like to thank all
the authors of submitted papers for their interest and
assistance in putting together a quality program.

The fact that over 80 papers were reviewed in less
than two months is a: tribute to the efforts of the mem
bers of the program committee and the referee!S. Their
assistance is deeply appreciated. I would also like to
acknowledge the support provided by Oscar Garcia in the
many phases of program planning. Finally, a special
note of thanks is due Dorothy Josephson for keeping the
manuscripts and letters rolling. My informal calcula
tions indicate that program correspondence was in ex
cess of 800 letters.

Daniel P. Siewiorek

Daniel P. Siewiorek, Chainnan
Daniel Atkins III
Harvey Cragon
Edward Davidson
Reiner W, Hartenstein
John P. Hayes

A. M. Abd-Alla
Guy Almes
George A. Anderson
Judith A. Anderson
James B. Angell
Daniel Atkins III
J. L. Baer
Mario Barbacci
Forest Baskett
A. P. Batson
Dileep Bhandarkar
Barry Borgerson
William Brantley
R. E. Brundage
Don Chamberlin
Herbert Chang
Lih Chang
Yaohan Chu
Douglas Clark
Harvey Cragon
Edward Davidson
Peter Denning
D. Dennis
Jack B. Dennis
Lloyd Dickman
Donald Dietmeyer
Linda Dodge
Richard Eckhouse
Robert A. Ellis
Lee Ennan
T. Feng
Eduardo Fernandez
Edward Feustal
Lawrence Flon
W. s. Ford
Warren Franz
Samuel Fuller
Oscar Garcia
M. z. Ghanem
H. M. Gladney
R. H. Glorioso
John Grason
A. N. Habermann
V. c. Hamacher
A. Hassitt
John P. Hayes
Leonard Haynes
Leonard D. Healy
Fredrick J. Hill
Terry T. Hsu
Wing Hing Huen
Ashok Ingle
Portia Isaacson
E. Douglas Jensen
Richard Johnsson
Anita K. Jones
Angel Jordan
J. Egil Juliussen
Robert Jump
Olaf Kaestner
Theodore Kehl
Willis King
Leonard Kleinrock
Michael Knudsen

PROGRAM COMMITTEE

W. H. Huen
E. Douglas Jensen
Harold Lorin
Craig Mudge
Michael D. Mulder
Marshal c. Pease

REFEREES

iii

Leon Presser
John F. Wakerly
John H. Wensley
Neil C. Wilhelm
William A. Wulf
Rodnay Zaks

Uno Kodres
R. Krishnan
H. T. Kung
John A. N. Lee
Victor Lesser
Roy Levin
G. J. Lipovski
Ming T. Liu
Harold Lorin
Harold Livings
David Misunas
Thomas Mitchell
Craig Mudge
Michael Mulder
Dave Nelson
Peter Neumann
Peter Oleinick
Severo Ornstein
E. W. Page
Alice Parker
Janak H. Patel
Marshall Pease
Karla Martin Perdue
Udo W. Pooch
Leon Presser
Tom Price
H. R. Ramanvjam
S. S. Reddi
David c. Rine
Larry Robinson
Brian Rosen
Steven Saunders
Michael Schlansker
N. F. Schneidewind
Mark Sebern
Daniel Serain
Mary Shaw
Howard Jay Siegel
Shankar Singh
Basil Smith III
Edward Snow
Harold Stone
s. Y. W. Su
Richard Swan
Daniel T. W. Sze
A. Thomasian
Kenneth Thurber
Judy A. Townley
Rollins Turner
J. D. Ullman
Christopher Vickery
Maniel Vineberg
z. G. Vranesic
John F. Wakerly
Jerry Waxman
Terry Welch
John Wensley
Neil C. Wilhelm
Wayne T. Wilner
Larry Wittie
Y. S. Wu
William A. Wulf
s. G. Zaky

CONTENTS

Page
Architecture Evolution

"Computer Structures: What Have We Learned from the PDP-11?",
Gordon Bell, William D. Strecker, Digi.tal Equipment Corporation •• " •.•••..•.•••••• • • • • 1

Hardware Descriptive Languages

"A PMS Level Language for Performance Evaluation Modelling (V-PMS)",
Helmut Kerner, Werner Beyerle, Technical University, Vienna •• • • • • 15

"A Design Tool for the Multilevel Description and Simulation of Systems of Interconnected Modules",
M. Moalla. G. Saucier, J, Sifakis, M. Zachariades, ENSIMAG, Grenoble, France ••••••••••••••• 20
Education
"A Course in Computer Structures",
Jonathan Allen, Massachusetts Institute of Technology •••.•.••••.•••••••••••••••• 28

"The IEEE Computer Society Task Force on Computer Architecture",
George E. Rossmann, Palyn Associates, Inc., San Jose ••••••••••••••••••.•••••••• 33

Multi-Microprocessors

"The Minerva Multi-Microprocessor",
Lawrence c. Widdoes, Jr. Stanford University g •••••••••••••••••• 34

"A Hierarchical, Restructurable Multi-Microprocessor Architecture",
R. G. Arnold, Rice University, E. W. Page, Clemson University ••• •••••••• 40

"A Multimicroprocessor Approach to Numerical Analysis: An Application to Gaming Problems",
Robert McGill, John Steinhoff, Grumman Aerospace Corporation ••.•• 46

Performance Evaluation and Modeling

"A Model of Interference in a Shared Resource Multiprocessor",
John E. Jensen and Jean-Loup Baer, University of Washington •• •••••••••••••••••• 52

"A Computer Simulation Facility for Packet Communication Architecture",
C. Leung, D. Misunas, A, Neczwid, J. Dennis, Massachusetts Institute of Technology 58

"Cost, Performance and Size Tradeoffs for Different Levels in a Memory Hierarchy",
S. L. Rege, Burroughs Corporation . • • ••••••••••••••••••••••• o ••••••• ,64

Applications

"An Input Interface for a Real-Time Digital Sound Generation System",
Paul E. pworak, Alice C. Parker, C~rnegie-Mellon University ••••• • • • • t

"A Microprocessor Oriented Data Acquisition and Control System for Power System Control",

• •••••••• 68

Michael C. Mulder, Patrick P. Fasang, Bonneville Power Administration ••••••••••••••••••• 74

"Multiprogramming for Real-Time Applications",
H. M. Gladney, G. Hochweller, IBM, San Jose ••••••.••••••••••••••••••••••• 79

"Basil Architecture - An HLL Minicomputer",
Theodore H. Kehl, University of Washington .••••••••••••••••••.•••••••••••• 86

Hardware/Software System Considerations

"FuP.ction Distribution in Computer System Architectures",
Harold W. Lawson, Jr., Universidad Politechnica de Barcelona • • • • • • • • • • • • • •••••••••• 93

"Interface, A Dispersed Architecture",
Chris A. Vissers, Twente University of Technology, The Netherlands •• 0 •••••••• 0 •••••••• 98

Resource Sharing and Process Coordination

"A Design Study of a Shared Resource Computing System",
A. Thomasian, A. Avizienis, University of California, Los Angeles •••••••••••••••••••• 105

"Hardware Support for Inter-Process Communication and Processor Sharing",
W. s. Ford, V. c. Hamacher, University of Toronto • , •••••••••••••••••••••••• 113

iv

Recent Results

"A Taxonomy of Display Processors",
Ulrich Trambacz, Georg Hyla, Technical University of Berlin •••

"Traversing Binary Tree Structures with Shift Register Memories",

Page

• 11 9

W. E. Kluge, Gesellschaft fur Mathematik und Datenverarbeitung mbH Bonn •••••••••••••••• 12·~

"Architectural Support for System Protection",
E. B. Fernandez, R. C. Summers, c. D. Coleman, IBM Los Angeles Scientific Center •••••••••••• 121

"The Design of a User-Progranunable Digital Interface",
James W. Gault, North Carolina State University, Alice c. Parker, Carnegie-Mellon University •••••• 121

"Selection Schemes for Dynamically Microcoding Fortran Programs",
Philip s. Liu, University of Miami, Frederic J. Mowle, Purdue University •••••••••••••••• 122

"System Design of a Grammar-Progranunable High-Level Language Machine",
Serge Fournier, Ming T. Liu, Ohio State University ••••••••••••••••••••••••••• 122

"SMS 101 - A Structured Multimicroprocessor System with Deadlock-Free Operation Scheme",
Ch. Kuznia, R. Kober, H. Kopp, SIEMENS AG, Munich •••••••••••••••••••••••• 122

"The Design of a Multi-Micro-Computer System",
~>. H. Fuller, D. P. Siewiorek, R. J. Swan, Carnegie-Mellon University ••••••••••••••••• 12~

Networks

"Design and Simulation of the Distributed Loop Computer Network (DLCN)",
Cecil C. Reames, Ming T. Liu, Ohio State University •••••••••••••••••••• 124

HDistribution of Functions and Control in RPCNET",
Paolo Franchi, IBM Scientific Center, Pisa •••• 130

"Efficient Message Routing in Mega-Micro-Computer Networks",
Larry D. Wittie, State University of New York at Buffalo •••••••••••••••••••••••• 136

i\rchitectures to Support Software Concepts

"An Investigation of Descriptor Oriented Architecture",
Terry A. Welch, University of Texas at Austin •••••

u'Tagged Architecture and the Semantics of Progranuning Languages:
E. A. Feustel, Rice University •••••••••••••••••

"Design Data for Algol-60 Machines",

• • • • • • • • • 14 1

Extensible Types",
• • • • • • • • • • 147

A. P. Batson, R. E. Brundage, J.P. Kearns, University of Virginia ••••••••••••••••••• 151

Architectural Features for Performance Enhancement

"Cache Memories for PDP-11 Family Computers",
William D. Strecker, Digital Equipment Corporation •

"Improving the Throughput of a Pipeline by Inse:i.·tion of Delays",

• • • • • • • • • • •• 0 ••••••• 155

Janak H. Patel, Edward s. Davidson, University of Illinois ••••••••••••••••••••••• 159

"On-Line Architecture Tuning Using Microcapture",
A. M. Abd-Alla, Laird H. Moffett, George Washington University and Naval Research Laboratory •••••• 165

Secondary Storage

"A Character-Orineted Context-Addressed Segment-Sequential Storage",
Leonard D. Healy, U. s. Naval Training Equipment Center, Orlando •••••••••••••••••••• 172

"Some Implementations of Segment Sequential Functions",
J. A. Bush, G. J. Lipovski, s. Y. W. Su, J. K. Watson, s. J. Ackerman, University of Florida •••••• 178

"A Self Managing Secondary Memory System",
M. DeMartinis, Universidad de Carabobo, Venezuela, G. J. Lipovski, S. Y. W. Su, J. K. Watson,
University of Florida •••• lg)

"Price/Performance Comparison of C.mmp and the PDP-10",
Samuel H. Fuller, Carnegie-Mellon University. • 195

v

ABSTRACT

Gordon Bel~ William D. Strecker
November 8, 1975

COMPUTER STRUCTURES:
WHAT HAVE WE LEARNED FROM THE PDP-11?

Over the PDP-ll'S six year life
about 20,000 specimens have been
built based on 10 species (models).
Although range was a design goal,
it was unquantified; the actual
range has exceeded expectations
(500:1 in memory size and system
pr ice). The range has stressed the
basic mini(mal) computer
architecture along all dimensions.
The main PMS structure, i.e. the
UNIBUS, has been adopted as a de
facto standard of interconnection
for many micro and minicomputer
systems. The architectural
experience gained in the design and
use of the PDP-11 will be described
in terms of its environment
(initial goals and constraints,
technology, and the organization
that designs, builds and
distributes the machine).

1.0 INTRODUCTION

Although one might think that
computer architecture is the sole
determinant of a machine, it is
merely the focal point for a
specification. A computer is a
product of its total environment.
Thus to fully understand the
PDP-11, it is necessary to
understand its environment.

Figure Org. shows the various
groups (factors) affecting a
computer. The lines indicate the
primary flow of information for
product functional behavior and for
product specifications. The
physical flow of goods is nearly
along the same lines, but more
direct: starting with applied
technology (e.g., semiconductor
manufact.urers), going through
computer manufacturing, and finally
to the service personnel before
being turned over to the final
user.

The relevant parts, as they affect
the design are:

1. The basic technology--it is
important to understand the
components that are available
to build from, as they directly
affect the resultant designs.

2. The
organization--what
fundamental nature
organization that

development
is the
of the

makes it

1

behave in a particular way?
Where does it get inputs? How
does it formulate and solve
problems?

3. The rest of the DEC
organization--this includes
applications groups associated
with market groups, sales,
service and manufacturing.

4. The user, who receives the
final output.

Note, that if we assume that a
product is done sequentially, and
each stage has a gestation time of
about two years, it takes roughly
eight years for an idea from basic
research to finally appear at the
user's site. Other organizations
also affect the design:
competitors (they establish a
design level and determine the
product life); and government(s)
and standards.

There are an ever increasing number
of groups who feel compelled to
control all products bringing them
all t:o a common norm: the
government(s), testing groups such
as Underwriters Laboratory, and the
voluntary standards groups such as
ANSI and CBEMA. Nearly all these
groups affect the design in some
way or another (e.g. by requiring
time).

2.0 BACKGROUND

It is the nature of engineering
projects to be goal oriented--the
11 is no exception, with much
pressure on deliverable products.
Hence, it is difficult to plan for
a long and extensive lifetime.
Nevertheless, the 11 evolved more
rapidly and over a wider range than
we expected, placing unusual stress
on even a carefully planned system.
The 11 family has evolved under
market and implementation group
pressure to build new machines. In
this way the planning has been
asynchronous and diffuse, with
distributed development. A
decentralized organization provides
checks and balances since it is not
all under a single control point,
often at the expense of
compatibility. Usually, the
hardware has been designed, and the
software is modified to provide
compatibility.

Independent of the planning, the
machine has been very successful in
the marketplace, and with the
systems programs written for it.
In the paper (Bell et al, 1970) we
are first concerned with market
acceptance and use. Features
carried to other designs are also a
measure of how it contributes to
computer structures and are of
secondary importance.

The PDP-11 has been successful in
the marketplace with over 20,000
computers in use (1970-1975). It
is unclear how rigid a t2st (aside
from the marketplace) we have given
the design since a large and
aggressive marketing and sales
organization, coupled with software
to cover architectural
inconsistencies and omissions, can
save almost any design. There was
difficulty in teaching the machine
to new users; this required a
large sales effort. On the other
hand, various machine and operating
systems capabilities still are to
be used.

2.1 GOALS AND CONSTRAINTS - 1970

'I'he paper (Eell et al~ 1970)
described the design, beginning
with weaknesses of minicomputers to
remedy other goals and constraints.
These will be described briefly in
this section, to provide a
framework, but most discussion of
the individual aspects of the
machine will be described later.

Weakness l, that of limited address
capability, was solved for its
immediate future, but not with the
finesse it might have been.
Indeed, this has been a costly
oversight in redundant development
and sales.

There ls only one mistake that can
be made in a computer design that
is difficult to recover from--not
providing enough address bits for
memory addressing and memory
management. The PDP-11 followed
the unbroken tradition of nearly
every known computer. Of course,
there is a fundamental rule of
computer (and perhaps other)
designs which helps to alleviate
this problem: any well-designed
machine can be evolved through at
least one major change. It is
extremely embarrassing that the 11
had to be evolved with memory
management only two years after the
paper was written outlining the
goal of providing increased address
space. All predecessor DEC designs
have suffered the same problem, and
only the PDP-10 evolved over a ten
year period before a change was

2

made to increase its address space.
In retrospect, it is clear that
since memory prices decline at 26%
to 41% per year, and many users
tend to buy constant dollar
systems, then every two or three
years another bit is required for
the physical address space.

Weakness 2 of not enough registers
was solved by providing eight
16-bit registers; subsequently six
more 32-bit registers were added
for floating point arithmetic. The
number of registers has proven
adequate. More registers would
just increase the context switching
time, and also perhaps the
programming time by posing the
allocation dilemma for a compiler
or a programmer.

Lack of stacks (weakness 3) has
been solved, uniquely, with the
auto-increment/auto-decrement
addressing mechanism. Stacks are
used extensively in some languages,
and generally by most programs.

Weakness 4, Limited interrupts and
slow context switching has been
generally solved by the 11 UNIBUS
vectors which direct interrupts
when a request occurs from a given
I/O device.

Byte hand 1 ing (weakness 5) was
provided by direct byte addressing.

head-only memory (weakness 6) can
be used directly without special
programming since all procedures
tend to be pure (and reentrant) and
can be programmed to be recursive
(or multiply reentrant). Read-only
memories are used extensively for
bootstrap loaders, debugging
programs, and now provide normal
console functions (in program)
using a standard terminal.

Very elementary I/O processing
(weakness 7) is partially provided
by a better interrupt structure,
but so far, I/O processors per se
have not been implemented.

heakness 8 suggested that we must
have a family. Users would like to
move about over a rang' of models.

\

High programming costs (weakness 9)
should be addressed because users
program in machine language. Here
we have no data to suggest
improvement. A reasonable
comparison would be programming
costs on an 11 versus other
machines. We built more complex
systems (e.g., operating systems,
computers) with the 11 than with
simpler structures (e.g. PDP-8 or
15). Also, some systems
programming is done using higher
level languages.

Another constraint was the word
length had to be in multiples of
eight bits. While this has been
expensive within DEC because of our
investment in 12, 18 and 36 bit
systems, the net effect has
probably been worthwhile. The
notion of word length is quite
meaningless in machines like the 11
and the IBM 360 because data-types
are of varying lengths, and
instructions tend to be in
multiples of 16 bits. However, the
addressing of memory for floating
point is inconsistent.

Structural flexibility (modularity)
was an important goal. This
succeeded beyond expectations, and
is discussed extensively in the
part on PMS, in particular the
UNIBUS section.

There was not an explicit goal of
microprogrammed implementation.
Since large read-only memories were
not available at the time of the
Model 20 implementation,
microprogramming was not used.
Unfortunately, all subsequent
machines have been microprogrammed
but with some additional difficulty
and expense because the initial
design had poorly allocated
opcodes, but more important the
condition codes behavior was over
specified.

Understandability was also stated
to be a goal, that seems to have
been missed. The initial handbook
was terse and as such the machine
was only saleable to those who
really understood computers. It is
not clear what the distribution of
first users was, but probably all
had previous computing experience.
A large number of machines were
sold to extremely knowledgeable
users in the universities and
laboratories. The second handbook
came out in 1972 and helped the
learning problem somewhat, but it
is still not clear whether a user
with no previous computer
experience can determine how to use
a machine from the information in
the handbooks. Fortunately, two
computer science textbooks
(Eckhouse, 75; and Stone and
Siewiorek, 75) have been written
based on the 11 to assist in the
learning problem.

2.2 FEATURES THAT HAVE MIGRATED TO
OTHER COMPUTERS AND OFFSPRINGS

A suggested test (Bell et al 1970)
was the features that have migrated
into competitive designs. We have
not fully permitted this test
because some basic features are
patented; hence, non-DEC designers
are reluctant to use various ideas.

3

At least two organizations have
made machines with- similar bus and
ISP structures (use of address
modes, behavior of registers as
program counter and stack); and a
third organization has offered a
plug-replacement system for sale.

The UNIBUS structure has been
accepted by many designers as the
PMS structure. This
interconnection scheme is
especially used in microprocessor
designs. Also, as part of the
UNIBUS design, the notion of
mapping I/O data and/or control
registers into the memory address
space has been used often in the
microprocessor designs since it
eliminates instructions in the ISP
and requires no extra control to
the I/O section.

Finally, we were concerned in 1970
that there would be
offsprings--clearly no problem;
there have been about ten
implementations. In fact, the
family is large enough to suggest
need of family planning.

3.0 TECHNOLOGY

The computers we build are strongly
influenced by the basic electronic
technology. In the case of
computers, electronic information
processing technology evolution has
been used to mark the four
generations.

3.1 Effects Of
Memory On The
Designs

Semiconductor
PDP-11 Model

The PDP-11 computer series design
began in 1969 with the Model 20.
Subsequently, 3 models were
introduced as minimum cost, best
cost/performance, and maximum
performance machines. The memory
technology in 1969 formed several
constraints:

l. Core memory for the primary
(program) memory with an
eventual trend toward
semiconductor memory.

2. A comparatively small number of
high speed registers for
processor state (i.e. general
registers), with a trend toward
larger, higher speed register
files at lower cost. Note,
only 16 word read-write
memories were availableat
design time.

3. Unavailability of large, high
speed read-only memories,

permitting a microprogrammed
approach to the design of the
control part. Note, not for ca
paper, read-only memory was
unavailable although slow,
read-only MOS was available for
character generators.

These constraints
following design
attitudes:

established
principles

the
and

1. It should be asynchronous and
capable of accepting various
configurations of memories in
size and speed.

2. It should be expandable, to
take advantage of an eventually
larger number of registers for
more data-types and improve
context switching time. Also,
more registers would permit
eventually mapping memory to
provide a virtual machine and
protected multiprogramming.

3. It could be relatively complex,
so that an eventual microcode
approach could be used to
advantage. New data-types
could be added to the
instruction set to increase
performance even though they
added complexity.

4. The UNIBUS width would be
relatively wide, to get as much
performance as possible, since
LSI was not yet available to
encode functions.

3.2 Variations In PDP-11 Models
Through Technology

Semiconductor memory (read-only and
read-write) were used to tradeoff
cost performance across a
reasonably wide range of models.
Various techniques based on
semiconductors are used in the
tradeoff to provide the range.
These include:

1. Improve performance through
brute force with faster
memories. The 11/45 and 11/70
uses bipolar and fast MOS
memory.

2. Microprogramming (see below) to
improve performance through a
more complex ISP (i.e.,
floating point).

3. Multiple copies of processor
state (context) to improve time
to switch context among various
running programs.

4. Additional registers for
additional data-types--1.e.,
floating point arithmetic.

4

5. Improve the reliability by
isolating (protecting) one
program from another.

6. Improve performance by mapping
multiple programs into the same
physical memory, giving each
program a virtual machine.
Providing the last two points
requires a significant increase
in the number of registers
(i.e. at least 64 word fast
memory arrays).

4.0 THE ORGANIZATION OF PEOPLE

Three types of design are based
both on the technology and the cost
and performance considerations.
The nature of this tradeoff is
shown in Figure OS. Note, that one
starts at 0 cost and performance,
proceeds to add cost, to achieve a
base (minimum level of
functionality). At this point,
certain minimum goals are met: for
the computer, it ls simply that
there is program counter, and the
simplest arithmetic operations can
be carried out. It is easy to show
(based on the Turing machine) that
only a few instructions are
required, and from these, any
program can be written. From this
minimal point, performance
increases very rapidly in a step
fashion (to be described later) for
quite sometime (due to fixed
overhead of memories, cabinets,
power, etc.) to a point of
inflection where the cost-effective
solution is found. At this point,
performance continues to increase
until another point where the
performance is maximized.
Increasing the size implies
physical constraints are exceeded,
and the machine becomes
unbuildable, and the performance
can go to 0. There is a general
tendency of all designers to "n+l"
(i.e., incrementally add to the
design forever). No design is so
complete, that a redesign can't
improve it.

The two usual problems of design
are: inexperience and
"second-syst.emitis". The first
problem ls simply a resources
problem. Are there people
available? What are their
backgrounds? Can a small group
work effectively on architectural
definitions? Perhaps most
important is the principle, that no
matter who is the architect, the
design must be clearly understood
by at least one person.

Second-systemltis is the phenomenon
of defining a system on the basis
of past system history.

Invariably, the system solves all
past problems ... bordering on the
unbuildable.

4.1 PDP-11 Experi€nce

Some of the PDP-11 architecture was
initially carried out by at
Carnegie-Mellon University (HM with
GB). Two of the useful ideas: the
UNIBUS, and the use of general
registers in a substantially more
general fashion (e.g. as stack
pointers) came out of earlier work
(GB) at CMU and was described in
COMPUTER STRUCTURES (Bell and
Newell, 1971). During the detailed
design amelioration, 2 persons (HM,
and RC) were responsible for the
specification.

Although the architectural activity
of the 11/20 proceeded in parallel
with the implementation, there was
less interaction than in previous
DEC designs where the first
implementation and architecture
were carried out by the same
person. As a result, a slight
penalty was paid to build
subsequent designs, especially vis
a vis microprogramming.

As the various models began to be
built outside the original
PDP-11/20 group, nearly all
architectural control (RC)
disappeared, and the architecture
was managed by more people, and
design resided with no one person!
A similar loss of control occurred
in the design of the peripherals
after the basic design.

The first designs for 16-bit
computers came from a group placed
under the PDP-15 management (a
marketing person, with engineering
background). It was called PDP-X,
and did include a range. As a
range architecture, it was better
thought out than the later PDP-11,
but didn't have the innovative
aspects. Unfortunately, this group
was intimidating, and some members
lacked credibility. The group also
managed to convince management that
the machine was potentially as
complex as the PDP-10 (which it
wasn't); since no one wanted
another large computer disconnected
from the main business, it was a
sure suicide. The (marketing)
management had little understanding
of the machine. Since the people
involved in the design were
apparently simultaneously designing
Data General, the PDP-X was not of
foremost importance.

As the PDP-X project folded and the
DCM (for Desk Calculator Machine

5

for security) project started up,
design and planning were in
disarray, since Data General had
been formed and was competing with
the PDP-8 using a very small 16-bit
computer. Although the Product
Line Manager, a former engineer
(NM) for the PDP-8, had the
responsibility this time, the new
project manager was a
mathematician/programmer followed
by another manager (RC) who had
managed the PDP-8. Work proceeded
for several months based on the DCM
and with a design review at
Carnegie-Mellon University in late
1969. The DCM review took only a
few minutes. Aside from a general
dullness and a feeling that it was
too 1 it t1 e too 1 ate to compete . It
was difficult to program
(especially by compilers).
However, it's benchmark results
were good. (We believe it had been
tuned to the benchmarks, hence
couldn't do other problems very
well.) One of the designers (HM)
brought along the kernel of an
alternative, which turned out to be
the PDP-11. We worked on the
design all weekend, recommending a
switch to the basic 11 design.

At this point, there were reviews
to ameliorate the design, and each
suggestion, in effect, amounted to
an n+l; the implementation was
proceeding in parallel (JO) and
since the logic design was
conventional , it was difficult to
tradeoff extensions. Also, the
design was constrained with boards
and ideas held over from the DCM.
(The only safe way to design a
range is simultaneously do both
high and low end designs.) During
the summer at DEC, we tried to free
op code space, and increased
(n+l 'E?d) the UNIBUS bandwidth (with
an extra set of address lines), and
outlined alternative models.

The advent of large, read-only
memories, made possible the various
follow-on designs to the 11/20.
Figure "Models" sketches the cost
of various models versus time, with
lines of consistent performance.
This very clearly shows the design
styles (ideologies). The 11/40
design was started right after the
11/20, although it was the last to
come on the market (the low and
high ends had higher priority to
get into production as they
ex tended the market) . Bo th the
11/04 and 11/45 design groups went
through extensive buy in processes,
as they came into the 11 by first
proposing alternative destgns. In
the case of the 11/45, a larger,
11-like 18-bit machine was proposed
by thE~ 15 group; and later, the
LINC engineering group proposed an
alternative design which was subset
compatible at the symbolic program
level. As the groups considered

the software ramifications, buy-in
was rapid. Figure Models shows the
minimum cost-oriented group has two
successors providing lower cost
(yet higher performance) and the
same cost with the ability to have
larger memories and perform better.
Note, both of these came from a
backup strategy to the LSI-11.
These come from larger read-only
memories, and increased
understanding of how to implement
the 11.

The 11/70 is, of course, a natural
follow on to extend the performance
of the 11/45.

5.0 PMS STRUCTURE

In this section, we give an
overview of the evolution of the
PDP-11 in terms of its PMS
structure, and compare it with
expectations (Bell et al, 1970).
The aspects include: the UNIBUS
structure; UNIBUS performance;
use for diagnostics; architectural
control required; and
multi-computer and multi-processor
computer structures.

5.1 The UNIBUS - The Center Of The
PMS Structure

In general, the UNIBUS has behaved
beyond expectations, acting as a
standard for intercommunication of
peripherals. Several hundred types
of memories and peripherals have
been attached to it. It has been
the principle PMS interconnection
media of Mp-Pc and peripherals for
systems in the range 3K dollars to
lOOK dollars (1975). For larger
systems supplem9ntary buses for
Pc-Mp and Mp-Ms traffic have been
added. For very small systems,
like the LSI-11, a narrower bus
(Q-bus) hes been designed.

The UNIBUS by being a standard has
provided us with a PMS architecture
for easily configuring systems;
any other organization can also
build components which interface
the bus ... clearly ideal for buyers.
Good busses (standards) make good
neighbors (in terms of
engineering), since people can
concentrate on design in a
structured fashion. Indeed, the
UNIBUS has created a complete
secondary industry dealing in
alternative sources of supply for
memories and peripherals. Outside
of the IBM 360 I/O
Multiplexor/Selector bus, the
UNIBUS is the most widely used

6

computer interconnection standard.
Although it has been difficult to
fully specify the UNIBUS such that
one can be certain that a given
system will work electrically and
without missed data, specification
is the key to the UNIBUS. The bus
behavior specification is a yet
unsolved problem in dealing with
complexity--the best descriptions
are based on behavior (i.e., timing
diagrams).

There are also problems with the
design of the UNIBUS. Although
parity was assigned as two of the
bits on the bus (parity and parity
is available), it has not been
widely used. Memory parity was
implemented directly in the memory,
since checking required additional
time. Memory and UNIBUS parity is
a good example of nature of
engineering optimization. The
tradeoff is one of cost and
decreased performance versus
decreased service cost and more
data integrity for the user. The
engineer is usually measured on
production cost goals, thus parity
transmission and checking are
clearly a capability to be omitted
from design ... especially in view of
lost performance. The internal
Field Service organization has been
unable to quantify the increase in
service cost savings due to shorter
MTTR by better fault isolation.
Similarly, many of the transient
errors which parity detects can be
detected and corrected by software
device drivers and backup
procedures without parity. With
lower cost for logic and increased
responsibility (scope) to include
warranty costs as part of the
product design cost forces much
more checking into the design.

The interlocked nature of the
transfers is such that there is a
deadlock when two computers are
joined together using the UNIBUS
window. With the window a computer
can map another computer's address
space into its own address space in
a true multiprocessor fashion.
Deadlock occurs when the two
computers simultaneously attempt to
access the other's addresses
through each window. A request to
the window is in progress -on one
UNIBUS, and at the same time a
request to the other UNIBUS is in
progress on the requestee's UNIBUS,
hence neither request can be
answered, causing a deadlock. One
or both requests are aborted and
the deadlock is broken by having
the UNIBUS time out since this is
equivalent to a non--existent
address (e.g., a memory). In this
way the system recovers and
requests can be reissued (which may
cause deadlock) . The UNIBUS window
is confined to applications where
there is likely to be a low
deadlock rate.

5.2 UNIBUS and ?erf ormance
Optimality

Although we always want more
performance on one hand, there is
an equal pressure to have lower
cost. Since cost and peformance
are almost totally correlated the
two goals perfectly conflict. The
UNIBUS has turned out to be optimum
over a wide dynamic rahge of
products, (argued below). However,
at the lowest size system, the
Q-bus has been introduced, which
contains about 1/2 the number of
conductors; and at the largest
systems, the data path width for
the processor and memory has been
increased to 32-bits for added
performar.ce although the UNIBUS is
still used for communication with
most I/O controllers.

Since all interconnection schemes
are highly constrained, it is clear
that future lower and higher
systems cannot be accomplished from
a single design unless a very low
cost, high performance
communication media (e.g. optical)
is found.

The optimality of the UNIBUS comes
about because memory size (number
of address bits) and I/O traffic
are correlated with the processor
speed. Amdahl's rule-of-thumb for
IBM computers (including the 360)
is: one byte of memory is required
per instruction/sec and one bit of
I/O is required for each
instruction executed. For our
applications, we believe there is
more computation required for each
memory word, because of the bias
toward control and scientific
applications. Also, there has been
less use of complex instructions
typical of the IBM computers.
Hence, we assume one byte of memory
is required for each two
instructions executed, and assume
one byte of I/O is an upper bound
(for real time applications) for
each instruction executed. In the
FDP-11, an average instruction
accesses three to five bytes of
memory, and with one byte of io, up
to six bytes of memory are accessed
for each instruction/sec.
Therefore, a bus which can support
two megabyte/sec traffic permits
instruction execution rates of .33
to .5 mega instruction/sec. This
imputes to meory sizes of .16 to
.25 megabytes; the maximum
allowable memory is .3 to .256
megabytes. By using a cache memory
with a processor, the effective
memory processor rate can be
increased to further balance the
processor. Alternatively, faster
floating point operations will
bring the balance to be more like
the IBM data, requiring more
memory.

7

5.3 Evolution Of Models: Predicted
Versus Actual

The original prediction (Bell et
al, 1970) was that models with
increased performance would evolve
using: increased path width for
data; multi-processors; and
separated bus structures for
control and data transfers to
secondary and tertiary memory.
Nearly all of these forms have been
used, though not exactly as
predicted. (Again, this points to
lack of overall architectural
planning versus our willingness and
belief that the suggestions and
plans for the evolution must come
from the implementation groups.)

In the earlier 11/45, a separate
bus was added for direct access of
either bipolar (300ns) or fast MOS
(400ns) memory. In general, it was
assumed that these memories would
be small, and the user would move
the important part of his algorithm
to the fast memory for direct
execution. The 11/45 provided a
second UNIBUS for direct
transmission of information to the
fast memory without Pc
interference. The 11/45 also
increased performance by adding a
second autonomous data operation
unit called the Floating Point
Processor (actually not a
processor). In this way, both
integer and floating point
computation could proceed
concurrently.

The 11/70, a cache based processor,
is a logical extension of using
fast, local memories, but without
need for expert movement of data.
It has a memory path width of
32-blts, and the control portion
and data portion of I/O transfers
have been separated as originally
suggested. The performance
limitation of the UNIBUS are
removed, since the second Mp system
permits data transfers of up to
five megabytes/sec (2.5 times that
of the UNIBUS). Note, that a
peripheral memory map control is
needed since Mp address space (two
megabytes) exceeds the UNIBUS. In
this way, direct memory access
devices on the UNIBUS transfer data
into a mapped portion of the larger
address space.

5.4 Multi-processor
Structures

Computer

Although it is not surprising that
multi-processors have not been used
except on a highly specialized
basis, it is depressing. In
Computer Structures (Bell and
Newell, 71) we carried out an

analysis of the IBM 360,
predicating a multi-processor
design. The range of performance
covered by the PDP-11 models is
substantially worse than with the
360, although the competitive
environment of the two companies is
substantially different. For the
360, smaller models appear to
perform worse than the technology
would predict. The reasons why
multiprocessors have not
materialized may be:

1. The basic nature of engineering
is to be conservative. this is
a classical deadlock situation:
we cannot learn how to program
multiprocessors until such
systems exist; a system canot
be built before prog~ams are
ready.

2. The market doesn't demand them.
Another deadlock: how can the
market demand them, since the
market doesn't even know that
such a structure could exist?
IBM has not yet blessed the
concept.

3. We can always build a better
single, special processor.
This design philosophy stems
from local optimization of the
designed object, and ignores
global costs of spares,
training, reliability and the
ability of the user to
dynamically adjust a
configuration to his load.

4. There are more available
designs for new processors than
we can build already.

5. Planning and technology are
asynchronous. Within DEC, not
all products are planned and
built at a particular time,
hence, it is difficult to get
the one right time when a
multiprocessor would be better
than an existing Uniprocessor
together with one or two
additional new processors.

6. Incremental market demands
require specific new machines.
By having more products, a
company can better track
competitors by specific
uniprocessors.

5.4.l Existent Multiprocessors -

Figure MP gives some of the
multiprocessor systems that have
been built on the 11 base. The top
most structure has been built using
11/05 processors, but because of
improper arbitration in the
processor, the performance expected
based on memory contention didn't
materialize. We would expect the

8

following results for
11/05 processors sharing
UNIBUS:

multiple
a single

Pc. Pc. PRICE/ SYS Price/
#Pc Mp PERF PRICE PERF* Price PERF**
1 .6 1 1 1 3 1
2 1.15 1.85 1.23 .66 3.23 .58
3 1.42 2.4 1.47 .61 3.47 .48
40 2.25 1.35 .6 3.35 .49

*Pc cost only
** Total system, assuming 1/3 of system is
Pc.cost

From these results we would expect
to use up to three processors, to
give the performance of a model 40.
More processors, while increasing
the performance, are less
cost-effective. This basic
structure has been applied on a
production basis in the GT4X series
of graphics processors. In this
scheme, a second P.display is added
to the UNIBUS for display picture
maintenance.

The second type of structure given
in Figure MP is a conventional
multiprocessor using multiple port
memories. A number of these
systems have been installed and
operate quite effectively, however,
they have only been used for
specialized applications.

The most extensive multiprocessor
structure, C.mmp, has been
described elsewhere. Hopefully,
convincing arguments will be
forthcoming about the effectiveness
of multiprocessors from this work
in order to establish these
structures on an applied basis.

6.0 THE ISP

Determining an ISP is a design
problem. The initial 11 design was
based substantially on benchmarks,
and as previously indicated this
approach yielded a predecessor (not
built) that though performing best
on the six benchmarks, was
difficult to program for other
applications.

6.1 General ISP Design Problems

The guid~ng principles for
design in general, have
especially difficult because:

ISP
been

1. The range of machines argues
for different encoding over the
range. At the smallest
systems, a byte-oriented
approach with small addresses

is optimum, whereas larger
implementations require more
operations, larger addresses
and encoding efficiency can be
traded off to gain performance.

The 11 has turned out to be
applied (and hopefully
effective) over a range of 500
in system price ($500 to
$250,000) and memory size (8k
bytes to 4 megabytes) . The 360
by comparison varied over a
similar range: from 4k bytes
to 4 megabytes.

2. At a given time, a certain
style of machine ISP is used
because of the rapidly varying
technology. For example, three
address machines were initially
used to minimize processor
state (at the expense of
encoding efficiency), and stack
machines have never been used
extensively due to memory
access time and control
complexity. In fact, we can
observe that machines have
evolved over time to include
virtually all important
operations on useful
data-types.

3. The machine use varies over
time. In the case of DEC, the
initial users were
sophisticated and could utilize
the power at the machine
language level. The 11
provided more fully general
registers and was unique in the
minicomputer marketplace, which
at the time consisted largely
of 1 or 2 accumulator machines
with 0 or 1 index registers.
Also, the typical minicomputer
operation codes were small.
the 11 extended data-typing to
the byte and to reals. by the
extension of the auto-indexing
mode, the string was
conveniently programmed, and
the same mechanism provided for
stack data-structures.

4. The machine is applied into
widely different markets.
Initially the 11 was used at
the machine language level.
The user base broadened by
applications with substantially
higher level languages. These
languages initially were the
scientific based register
transfer languages such as
BASIC, FORTRAN, DEC'S FOCAL,
but the machine eventually
began to be applied in the
commercial marketplace for the
RPG, COBOL, DIBOL, and
BASIC-PLUS languages which
provided string and decimal
data-types.

5. The criteria for a capability
in an instruction set is highly

9

variable, and borders on the
artistic. Ideal goals are thus
to have a complete set of
operations for a given basic
data-type (e.g.
integers)--completeness, and
operations would be the same
for varying length
data-types--orthogonality.
Selection of the data-types is
totally a function of the
application. That is, the 11
considers both bytes and full
words to be integers, yet
doesn't have a full set of
operations for the byte; nor
are the byte and word ops the
same. By adhering to this
principle, the compiler and
human code generators are
greatly aided.

We would therefore ask that the
machine appear elegant, where
elegance is a combined quality
of instruction formats relating
to mnemonic significance,
operator/data-type completeness
and orthogonality, and
addressing consistency. By
having completely general
facilities (e.g., registers)
and which are not context
dependent assists in minimizing
the number of instruction
types, and greatly aids in
increasing the
understandability (and
usefulness).

6. Techniques for generating code
by the human and compiler vary
widely. With the 11, more
addressing modes are provided
than any other computer. The 8
modes for source and
destination with dyadic
operators provide what amounts
to 64 possible instructions;
and by associating the Program
Counter and Stack Pointer
registers with the modes, even
more data accessing methods are
provided. For example, 18
forms of the MOVE instruction
can be seen (Bell et al, 1971)
as the machine is used as a
two-address, general registers
and stack machine program
forms. (The price for this
generality is extra bits). In
general, the machine has been
used mostly as a general
register machine.

7. Basic design can take the very
general form or be highly
specific, and design decisions
can be bound in some
combination of microcode or
macrocode with no good criteria
for tradeoff.

6.2 Problems In Extending
Machine Range

The

Several problems have arisen as the
basic machine has been extended:

1. The operation-code extension
problem--the initial design did
not leave enouqh free opcode
space for extending the machine
to increase the data-types.

At the time the 11/45 was
designed (FPP was added),
several extension schemes were
examined: an escape mode to
add the floating point
operations; bringing the 11
back to a more conventional
general register machine by
reducing the modes and finally,
typing the data by adding a
global mode which could be
switched to select floating
point (instead of byte
operations).

2. Extending the addressing
range--the UNIBUS limits the
physical memory to 262,144
bytes (18-bi ts) . In the
implementation of the 11/70,
the physical address was
extended to 4 megabytes by
providing a UNIBUS map so that
devices in a 262K UNIBUS space
could transfer into the 4
megabyte space by mapping
registers.

While the physical address
limits are acceptable for both
the UNIBUS and larger systems,
the address for a single
program is still confined to an
instantaneous space of 16 bits,
the user virtual address.

The main method of dealing with
relatively small addresses is
via process-oriented operating
systems that handle large
numbers of smaller tasks. This
is a trend in operating
systems, especially for process
control and transaction
processing. It also enforces a
structuring discipline in the
(user) program organization.
The RSX series operating
systems are organized this way,
and the need for large
addresses except for problems
where large arrays are accessed
is minimized.

The initial memory management
proposal to extend the virtual
memory was predicated on
dynamic, rather than static
assignment of memory segment
registers. In the current
memory management scheme, the
address registers are usually
considered to be static for a
task (although some operating

10

systems provide functions to
get additional segments).

7.0 SUMMARY

This paper has re-examined the
PDP-11 and compared it with the
initial goals and constraints. With
hindsight, we now clearly see what
the problems with the initial design
were. Design faults occurred not
through ignorance, but because the
design was started too late. As we
continue to evolve and improve the
PDP-11 over the next five years, it
will indeed be interesting to
observe, however, the ultimate test
is use.

BIBLIOGRAPHY

Ames, G.T., Drongowski, P.J. and
Fuller, S.H. Emulating the Nova on
the PDP-11/40: a case study.
Proc. COMPCON (1975).

Bell, G., Cady, R., McFarland, H.,
Delagi, B., O'Loughlin, J., Noonan,
R., and Wulf, W. A new
architecture of minicomputers-- the
DEC PDP-11. Proc. SJCC (1970)
Vol36, pp.657-675.

Bell,
Computer
(1971)

C. G. and
Structures.

Newell, A.
McGraw Hill

Bell, J.R. Threaded code. COMM
ACM (June 1973) Vol 16, No. 6, pp
370-372.

Eckhouse, R.H. Minicomputer
Systems: organization and
programming
Prentice-Hall,(1975)

(PDP-ll).

Fusfeld, A. R. The technological
progress function. Technology
Review (Feb. 1973) pp.29-38

Mcwilliams, T., Sherwood, w.,
Fuller, S., PDP-11 Implementation
using the Intel 3000 microprocessor
chips. Submitted to NCC (May 1976)

O'Loughlin, J.F. Microprogramming
a fixed architecture machinE.
Microprogramming and Systems
Architecture Infotech State of the
Art Report 23. pp205-224

Ornstein, 1972? (page 28)

Stone, H.S. and Siewiorek, D.P.
Introduction to computer
organization and data structures:
PDP-11 Edition. McGraw-Hill,
(197 5)

Turn, R. Computers in the 1980's.
Columbia University Press 1974.

Wulf, W.A., Bell, C.G., C.mmp: A
multi-mini-processor. FJCC (1972)

r~-- -physic~------
1

I
I
I
I
I
I
I

MANUFACTURING - ------- ~ FIELD I
. -------- ~ SERVICE r--------1

I

I BASIC RaD;
ADVANCED

DEVELOPMENT

AP PU ED
TECHNOLOGY
(E.G. SEMI

CONDUCTORS)

Governments1 standards, ----
testing1 professional
societies

IMPLEMENTATION

ARCHITECTURE

OP. SYS.

LANGUAGES

APPLICATIONS
(HARDWARE/
SOFTWARE)

MKT/SALES

----------Competitors

flow of Information (specif ications1 ideas, etc.)

FIGURE ORG. STRUCTURE OF ORGANIZATION AFFECTING A COMPUTER DESIGN

US:::R

Fig. OS DES I GN STYLES (IDEOLOGIES) I ti TERt1S OF COST AND PERFORMANCE

Performance

maximum ------------------------------

maximum
cost
effective

minimum
level of
functionality

' null

n n+I

~incremented
fixed a variable

12

Physical
Constraints

/

/
/

(.()

c
01

4-
1....
Q)

n..

/
/

/ .~
/ (\J

13

/
/_

~
~
f
Vl
z
0
L)

LL
0

Vl
w
:z:
_J

w

I-

w
L)

Vl
_J

w
0
0
::::
~

I
(L

0
(L

V>
_J

w
Cl
0
:L

Pc Pc... Mp... KT... KMS ...
_ l __ __.__I ___ _._I ____ _l ___ _._

a. Multi-Pc structure using a single Unibus.

Pc Pdisplay*
_?-.,_lp_._ .. __ _.K_T_ .. _· ~~-

* used in GT4X series; alternatively j

P specialized (e.g., ITT) Pc speciali1ed

b. Pc with P.display using a single Unibus.

c. Multiprocessor using multiport ~Ip.

Mp(#O:IS}T Slcentral:crosspoint], l~c(# 0 !5;'11/40)-- S(l"nibus)---K~-_T_ .. _· ~
:_,) l_ 16x!6 :

d. C.rnmp CMU multi·mini-proccssor computer stru.::ture.

Figure MP Multi-Processor Computer Structures Im:ilcmcntcd usini' PDl'-11

14

A PMS LEVEL LANGU~GE FOR PERFORMANCE EVALUATION
MODELLING (V-PMS)

Helmut Kerner, Werner Beyerle
Institut fuer Digitale Anlagen
Technical University, Vienna

Summary

A comparison of Register Transfer level model
ling and V-PMS is quite indicative. While RT-modelling
approaches a restricted goal, viz.a hardware structure
capable of performing a few hundred algorithms, a V-PMS
level model has a complete computer system as its tar
get, i.e. a composite of hardware structures of the RT
level complexity cooperating under the control of an op
erating system in the execution of a load.

In order to construct a language suitable for
describing the hardware as part of a total PMS-level
model for performance evaluation, the original form of
PMS was substantially changed by providing an expanded
set of building blocks with corresponding definitions.
This language, with its clearly defined functions and
performance data, its unambiguous communication blocks
and rules for interconnections, provides a human reader
with a clear understanding of the performance of compo·
nents and of their internal communication within the
computer system, and links the hardware part to a model
of an operating system (to be supplied at a later time) .
For computer readable system specification a syntax for
connecting the above symbolic components is proposed.
A description of the CDC Cyber 74/CDC 6600 system exam
plifies the use of the proposed language and its merits
for building performance evaluation models.

1. Introduction

The bulk of papers on Computer Descriptive
Languagesl treats the design of digital systems on the
Register Transfer level of detail. Some provide macro
facili ties within an RT-level description language as
an upward extension of their language into the PMS re
gion4. Others regard the formal descriptive facilities
of their language as universally suited for any level
envisioned.5 Only few regard PMS as a second auto
nomous level of abstraction necessary to satisfy the
needs for documentation of a complete computer system
in unambiguous, concise and standardised form and for a
well structured data base of technology and configura
tion data, both oriented toward man in his role as a
designer or analyser of a system for a given purpose2,3.
PMS in its present state is directed toward this impor
tant goal. Performance evaluation of computer systems
is another, different purpose to be supported by com
puter system descriptions on the PMS level. A model of
performance evaluation consists of three parts (Fig. 1).

Hardware Part Operating Part

~
~------··---ocessor,

mory,
witches,
apology, I .

'-4------<
1
Performance I L.

L------·---- .J -

Operating
System

Control 1

1 Structur~

Fig. l PMS-level Model

Load Part

Program
Structure

(1) A model of the Hardware Part, describing the be
havior (functions, responses, performance) of the hard
ware components, but not their internal construction
(registers, instruction set, etc.).

A topological description of their interconnec
tions is a necessary part of this model.
(2) An Operating Part, consisting of the operating sy
stem software, and the hardware (control structure)

15

used for its execution (which may be part of the general
hardware complex) .
(3) A. Load Part, i.e. the model of user programs.

This paper presents a language constructed for
the description of the Hardware Part of an Evaluation
Model and of the interfaces to the Operating Part. In
its computer readable form it should be suitable as an
input to a performance evaluation model (or simulator)
by which its Hardware Part will be specified.

Obviously PMS seems to be a candidate for a
hardware modelling language, provided it is redesigned
from a man-understandable short notation into a machine
readable language. More precisely, the following re
quirements must be met for performance evaluation:
(1) The sysmbolic components of the hardware system,
(P,M,S,L~ must be defined by a standard set of well de
fined performance parameters.
(2) Explicit and unambiguous rules must exist specify
ing the information transfers permissible between com
ponents. These must be formally stated.
(3) All detail not pertinent to performance evaluation
(such as the number of internal registers, of subproces
sors within a CPU, technology data, etc.) should not
be part of the symbolic component definitions. Many
important performance parameters must be introduced on
a higher level (e.g. kernel times in lieu of instruction
sets or times). Others must be added (e.g. concurrency
within switches, etc.).
(4) Interfaces to the Operating Part (function selec
tion, responses, etc.) are to be added.
These reqirements imply such deviations from the PMS
notation that we decided to coin a new (but similar) a
cronym for the proposed language, namely "V-PMS" (Vien
nese-PMS) in order to avoid confusion with the original
PMS notation, which is similar but not a subset of
V-PMS.

2. V-PMS Language Definitions

Hardware structures can be defined using four
categories of V-PMS symbolic components: Processors,
Memories, Internal Communication Components, and Peri
pherals. Each component is defined in the format:
<component symbol> (<attribute symbol>,.(attribute

value>,)
(<Action order name>, ..• <response
name>, ...)

The interface signals to the Operating Part (second
parenthesis) will be omitted in graphical representa
tions. Semantic definitions of components, performance
attributes, action orders and responses are presented
in list form and verbally explained.
2.1 Processors P

2.1.1 Central Processor Pc (T,Tki'W) (Ki,Mp,D,
Ms,Md,B,R)

Selected kernel func
tions from Operating
Part
Program locations
Data magnitude
Source locations
Destination locations
Busy with Ki
Ready

Performance Attributes Symbol Unit

Cycle time T ps
Word Width w bit
Kernel time i Tki s

A CPU ("Pc") could e.g. be defined by its instruction
set. In staying with the purpose of the language, we
chose, however, to characterise its performance by the
time required to execute a set of kernels K1······Ki,
representing typical tasks such as matrix inversion,
sorting, etc. Each one of these kernels is associated
with a basic execution time per unit of data (e.g. sor
ting in memory of a block of n records of fixed struc~
ture). The "action-order" specifies the kernel type Ki,
the memory block Mp holding the program, the number of
records D, as well as the memory blocks M5 and Ma con
taining the source data.and the result data, respecti
vely. The basic execution time is modified depending
on the type of memory and buffers used for data and pro
gram.

2 .1. 2 I/0--Processor P; /o (same as Pc) (similar
to Pc) An I/O Processor "Pi/o" differs from the gene
ral purpose processor "Pc" only with regard to the "ker
nel" functions and the program location. Its kernels
are a few distinct I/O programs controlling the transfer
of data from a class of devices such as discs, tapes, or
other low speed devices via controllers; its program is
assumed to be located in the Pi/o· These processors are
often called "channels". The action-order to an I/O
processor will select an I/O kernel and identify an at
tached controller and peripheral.

2.1.3 Controller K (U,B) (B,R)

Performance Attributes Symbol Unit

Usage U
(Blockmultiplexer blx, Bytemultiplexer byx,
Selector controller sel)

Blocksize B words
(if blx was specified)

Controllers are trivial processors needed only for the
activation of various peripheral functions. Their at
tributes comprise their usage time and the blocksize to
be transmitted by one request on their action order line.
They don't have any performance parameters of their own,
because their operation is determined by the peripherals
attached to the controllers.

On this level of detail the Operating Part is
forced to provide a very detailed model containing a
full sequence of action orders and responses. Their is
also an alternative, global description of the I/O Pro
cessor with kernel functions implicitely defined by the
file structure definitions contained in the Workload Mo
del.
2.2 Memories M

2.2.1 Central Memory Mp (T,W,C,I)

Performance Attributes

Access Time
Word Width
Capacity
Interleaving

Symbol

T

w
c
I

2.2.2 Secondary Memory Ms (T,W,C)

Performance Attributes

Access Time
Word Width
Capacity

Symbol

T

w
c

Unit

ps
bit
words

Unit

ps
bit
words

Memories are devices which are random-adressable on a
word or multiple-word basis with location-independent

16

access times. Their block representation contains the
attributes: The capacity referring to each unit depic-·
ted,and the attribute "I" for interleaving, stating how
many such units can be accessed simultaneously within
one memory cycle. An interleaving factor of I = n makE~s

therefore a group of n memories appear maximally n times
faster than each individual memory unit. Since it is
intended to characterize only the performance of a sys··
tern and not its detailed structure, no differentiation
is made between different means of access such as paral
l@:L lines, synchronous or asynchronous time multiple
xing of a single line, etc.

2.2.3 Buffer B (Tt0 t, Tpart• Wtot• Wpartl

Performance Atributes

Access Time for complete word
Access Time for partial word
Word Width of complete word
Word Width of partial word

Symbol

Ttot
Tpart
Wtot
Wpart

Unit

p.s
p.s
bit
bit

Buffer memories are defined as small memories capable of
performing a format transformation of their content such
as a serial/parallel conversion, FIFO or FILO (stack)
organisation, etc.
2.3 Intercommnnication Elements IC
------2.3.1 Switches S Cr,P,CC,E)

Number of incoming lines
Number of exiting lines
Path-concurrency
Priority model (if necessary)

I

E

cc
p

There are two types of switches, one of them connects
two groups of components by a one-to-one cornrnpondence
(Fig. 2). The parameters I and E give the number of
components in each of the groups, while CC states the
number of concurrent paths through the switch. For this
type of switch the relationship CC~ min (I,E) holds
true. The path in the switch assumes the "usage" para
meter of the two connected lines. The general case of
this switch S (I,CC,E) is the crossbar switch. The
switch with a path concurrency CC= 1 is known as "bus".
A further special case is a multiplexer or a demulti
plexer, i.e. a switch with only one incoming or out
going line (I = 1 or E = 1) respectively. In order to
simplify the graphical representation of a system, mul
tiplexers and demultiplexers can be omitted. Should
there be a possibility for conflict situations to arise
(e.g. "I" incoming lines competing for a smaller number
"CC" of internal connections) , a· standard form of con··
flict resolution uses a "first come first serve" switch
discipline. Otherwise the form of priority will bE~ ex
plicitely stated. The most common priority1 which pro-
vi.des service in the numerical order of the connection
label,will be symbolized by the p-value P = n.

-----+ 1-----··-

S (I3 ,CC2 ,E4)

Fig. 2 Switch Schematic

The second type of switch is similar to a multi
plexer, however, with the difference that it can simul
taneously transmit from one input line into several
(viz.CC) of the E outputlines.

The relationship CC~min (i,E) is true only in the di
rection from several outputlines (E>1) to a single in
putline, i.e. CC = 1 in this direction. In the other
direction the relationship 1<cc~E is true. Fig. 3
shows a diagram explaining the corresponding symbol.

s (I 1 I cc 5 I E 7)

Fig. 3 Direction Dependant Switch,
Information Replicating

2.3.2 Links L (R,W,CC,U)

Performance Attributes Symbol

Transmission Rate
Word Width
Concurrency
(default value cc:1

R

w
cc

Usage u

Unit

words/s
bit

Simplex s, halfduplex h; default value h)

For graphical representation the symbol L can be
replaced by a line with the attributes written
above the line. The following two representations
are equivalent:

L (Rlo4, Wl2, CC2, Ud) 2d, 104 x 12 I
I

A Link "L" indicates primarily which components are con
nected, i.e. it is normally assumed that the perfor
mance of the line is equal or better than that required
by the adjoining components. Performance parameters
(as listed)will only be shown if this assumption is not
true and the line constrains the performance of the sys
tem. In graphical form the attributes can be stated
above a line as shown above. The concurrency parameter
CC states the number of physical lines of a given word
width, rate and usage,which can be simultaneously used.
For any other means of communication (such as time mul
tiplexing) the transmission performance will be expres
sed by an equivalent number of physical lines. The de
fault value of CC means a single line (CC = 1). The
usage of the line is defined as halfduplex or simplex
by the corresponding symbols shown above. In order to
keep the determination of line concurrencies simple,
duplex lines are prohibited and will be replaced by a
pair of simplex lines. A missing usage parameter in
dicates halfduplex (h) .
2.4 Peripherals T (.....) (B,R)

(every peripheral is able to give a ready and a
busy signal)

Performance Attributes Symbol Unit

Console co -----
Teletype TTY
CRT- Terminal CRT

Lineprinter LP

Card Reader CR

Card Punch CP

Paper Tape

Reader PTR
Paper Tape

Transmission Rate R
Transmission Rate R
Capacity C
Drawing Speed V
(for graphic Terminals
Print Rate R
Line Width W

Rate
Card Width
Rate
Card Width
Rate

Tracks
Rate

R

w
R

w
R

s
R

characters/s
characters/s
character

cm/s
only)

lines/min
characters/

line
cards/min

columns/card
cards/min

columns/card
characters/

min

characters/min

17

Punch PTP
Magnetic Ta Ee MT

Rotating Mass
Storage RMS

Tracks s
Transmission Rate R characters/s
Tracks s
Density D characters/cm
Transmission Rate R characters/s
Capacity c characters
Number of Cylinders NZ
Access Time T ms
(one track/average/all tracks)
Rotational Time TR ms
Positioning POS
(default value or 0 means "none",
else POS1)

The definitions of peripheral devices and their attri
butes are self-explanatory.

The Structure Part of the V-PMS Part is complete
ly defined by its links and switches, whether explici
tely or implicitely defined. A further simplification
of the system description can be achieved by a short
hand notation in form of a bracket symbol for replica
tion. Any components, with the exception of links and
switches, as well as any substructure composed of such
legal components can be iterated. The following con
vention must be obeyed for the sake of clarity: swit
ches within a replicated substructure must not be omit
ted even if such would normally be permitted (as we
stated for multiplexers and demultiplexers). The num
ber of replications is indicated by the number pre
ceeding the bracket. The actual system can be distin
guished from maximally allowed configuration by setting
the number of replications for the latter in parenthe
sis (Fig. 4). Of course, the graphical repetition of
components is a second form of replication. A distinc·
tion between the actual system and the maximal con
figuration is made by connecting the actual components
with full lines and the additionally allowed components
with dashed lines.

Fig. 4 Component Replication

3. Application
Descri2tion of the CDC Cyber 74/CDC 6600

In order to demonstrate the features of the
proposed V-.Pr"1S language and to evaluate its merits we
present a description of the Cyber 74 (CDC 6600) system
as an example:

A discussion of a few selected details of the
system diagram (Fig. 5) may underscore these general
remarks. At first we concentrate on the area labeled
"A" in Fig. 5. According to the definitions,we recog
nize in the brackets a memory-switch combination. Each
memory (with a 1 ps cycle time and 4 K words of 12 bit
width) is connected to a switch capable of transmitting
one word (12 bits) at a time (CC = 1) to one of ten
output lines. This combination is ten times replicated.
A group of 10 lines, one from each M-S combination,
reaches the I/O processor "Pi/0 ". In the same way,
another group of 10 output lines, indicated as simplex
lines, connects through a switch to a group of 5 buf
fers. We recognize a similar group of 10 input lines
reaching the M-S combination. Seventy halfduplex lines
connect each of the 10 Mp's to each of seven controllers
of peripheral equipment. The representation in V-PMS
enables the observer (human or machine) to recognize
the maximal possible information flow between the 10
(peripheral) memories and the connected devices. The

12Cl4>[Mp<TLW60,CSK>] CTlO>

I

_JSC112,ClClw,E11> fP:" _ _ _ - l
Ss B l<TTOTS' TPARTl µs

p <TO.LW60) 5 w 60 w 12> --t S<IS,CCS,ElO>
C TOT ' PART

Ss j L<TTOTS'TPARTl ~s I
-- ·•7'-- ----5 W 60 Ii 12) S(!5,CC5,Elj0>

10s

I lOT ' PART
_ __ ___ __ _ J 10s

I-A -- - - - - ~~=-!======
10c20lMP <TU'12 ,C4K>-S<IL CCL ~~~--§~--~--~--~-~---§--~-~--~~~~~~~=f-:;-t--1 p 1 /o <TO. LWl

2
>

r-~----~--------E!_Ol __ F n 11L10

~ 1:- --+10 -~ ~- 10 110 L= 10 i=--tFl
I I

smo,cc10,rn smo,cc10,m smo.cc10,rn smo,mo,m smo,mo.m

K
'. I

24 K1<UsELl
I

~<USEL)

~
I I

K3 cuavx > K1 cu~sEL>

I I
30C64>[_TTY<RlO>] Co IL~l)

I LP<Rl000,1"135>
C?<R250, WSD>

[
MT (R6x104@12xl04, S9 J

4 0324'64) J
MT<R4170~0000,S7,

022.£132)
CRCR1200,W80)

smo,mo,m

I
~<Uavx>

I
12 [CRTCR600>]

smo.mo,m
I

K2<USEL)

I
[

RMSCIU.13x105 ,Cll8xl05;.NZ q04,]
4 <8> Tl0/30/55, TR.16. 7, POSl>

Fig. 5 Cyber 74 Diagram, Revised & Expanded PMS Language

original PMS representation does not reveal these for
perfo.rmance evaluation important facts.

The same configuration can be represented in a
slightly different fashion (Fig. 6). Here each memory
is connected to one I/O processor within the bracket.

10 B

[

Mp(TJ.,Hl2,C4K) El~
10(20) I 'L_SCILCCLE9) >_, - B

P1; 0 <Tl,\H2)
-__K

70

Fig. 6 Peripheral Memory - Processor Complex,
Version II

Compared to Detail A, we indicate 10 I/O processors in
lieu of one, howeve~ with a ten times slower cycle time
(and kernel times) . This second representation shows
another feature of the machine, namely the fact that
each I/O program i.s restricted to 4 K of memory, while
according to Detai.l A, I/O programs could exceed 4 K.
With respect to performance the two representations are

18

equivalent. The second Detail "B" of Fig. 5 shows the
path between the previously discussed peripheral me
mories 10 [Mp] of 12 bit word width and the central me
mory 12 (14) (Mp,j with 60 bit words. The function and
performance of the component group in the path can im
mediately be read from the V-PMS representation: five
peripheral memories can simultaneously transmit via 5
simplex lines into a group of 5 buffers. Each one of
these 5 buffers transforms 5 twelve bit words into one
60 bit word within 5 ps. A second block of 5 buffers
disassembles 60 bit words into 12 bit words. Five as
semblies and five disassemblies may maximally occur
simultaneously.

A glance over the total system (Fig. 5) allows
assessing the merits of the proposed PMS-level language.
Despite the host of detail supplied in the graph, the
general architectural features are immediately visible,
yet the graph supplies all the information pertinent
for performance evaluation, which is missing in the
original PMS representation.

Appendix: Syntactical Def~nition

<configuration>: :~<CA>{< continuation >}
<CA> : :=<CB> I integer (integer) [<content> J
<CB> ::=<P>l<M>I <T>
<content> ::=<CB>{ <continuation A>}
<P> : :=< P >l<P. 1 > l<K>
<M> ::=<Mc> <Ml>Ol
<T> : :=< T~Y> l<CRT>I <LP> l<CR> l<CP> l<PTR> l<PTP>I

<MT >j<RMS>I <Co>
<continuation A> ::=<connection A >!<parallel> <CD>

{<continuation A>} I< parallel>
<parallel> <CD> {<continuation A>}

<CD>::= <CB> l<S>
<connection A> . . <L> <CD>
<continuation> ::= <connection>l<parallel>< C>{<conti

nuation>} I
<parallel>< parallel>< C>{ < conti

<C> ::=<CB> l<integer(integer)
<connection> ::=< L>< C>

nuation>}
[~content~] I <S>

..........
<parallel> ::=<.J:_>

Semantic Definition: The meta language symbol
means continuation through parallel pathes.

References

11211

/1/~S.Y.H., A Survey of Digital Hardware Descriptive
Languages; Proc. of the Workshop on Hardware Des
criptive Languages. pp 144, 1974

/2/ Bell, G. and Newell, A. Computer Structures :
Readings and Examples; McGraw Hill, 1971.

/3/ Knudsen, M.J., PMSL, An Interactive Language for
Systemlevel Description and Analysis of Computer
Structures; Ph.D. thesis, Dept. of Computer Science,
Carnegie-Mellon University, Pittscurgh, Pa. April 73

/4/ Piloty, R., RTS I (Registertransfersprache);
3. Aufl., Institut fur Nachrichtenverarbeitung,
TH Darmstadt, 1969

/5/ Lee, J.A.N., VDL - A Definitional System for all
Levels; Proc. 1st Annual Symp. on Computer Archi
tecture, Computer Arch. News, Dec.1973, Vol.2,
no. 4, pp 41-48.

·19

A DESIGN TOOL FOR THE MULTIL.LiVEL DESCRIPTION

Ai\TD SIMULATION OF SYSTEMS OF INTERCONNECTElJ MODULES

M. MOALLA - G. SAUCIER - J. SIFAKIS - M. ZACHARIADES

ENSIMAG - B.P. 53 - 38041 GRENOBLE-FRANCE

ABSTRACT : We suggest a rrethodology and a language to
pennit the study of a system's behavior (functional va
lidation, evaluation of global perforrrances, critical
situations). Every system is regarded as an interconnec
tion of corrmunicating m:x:lules functionning in a synchro
nous or asynchronous manner. The control section and the
data section of each m:x:lule are described separetely in
terms of respectively non-procedural and procedural sub
languages.
Key words : Data and Control Section of a system, Petri
nets, procedural and non-procedural languages, Register
Transfer Languages, High Level Languages.

INTRODUCTION

The object of this work is the elal:x:>ration of a design
tool for complex systems regarded as the interconnec
tion of corrmunicating m:x:lules functioning in a synchro
nous or asynchronous manner. M:xlules are functional
subsets performing particular functions for the whole
system such as merrory uni ts, processors, channels, peri
pheral devices, etc ..•
This tool Im.1st pennit, given a high level initial des
cription (architectural definition) , the study of the
system's behavior, of its perforrrances and the detection
of critical situations such as conflicts, deadlocks and
thrashing.
In part I, we give the characteristics which a tool
responding to those objectives Im.lSt possess. In parti
cular, the necessity of two distinct types of descrip
tions appears for the control and data sections of a
m:xlule . .!Ybreover, in order to permit perforrrance eva
luation, time has been introduced as well as the pos
sibility to create systems by interconnecting standard
predefined m:x:lules.
In part II, a rough description of the language is given.
Part III gives an example illustrating the application
of the language to the description of interleaved merrory
banks with Imlltiple entry points and two domains of ap
plication actually under study.

PART I

CCMPUTER HARDWARE DESIGN LANGUAGES : A CRITICAL RbVIEW

I.1. Description Levels of a System: We can generally
distinguish 3 description levels for a system [l] :

- behavioral description in which properties of the
system are specified in terms of the input/out:pJ.t
relations. These descriptions are closer to conventional
programs and they are not in the scope of this study.

- functional description in which the system is descri
bed as an algorithm in terms of its merrory elerrents
(variables) • Operators used in the descriptic:n may not be
hardware primitives.

- structural description represents the system in terms
of its hardware comp::>nents, and requires a complete
knowledge of logic.design.

I.2. System decomposition : Given a system described by
an algorithm, one can easily decoffi!:.Dse it into two sec
tions (sub-systems) connected as in fiqure 1. [2].

20

Data Inputs Control Inputs

Actions

D.S C.S

Test values

Data Outputs Control Outputs

Fig .1.

- The Data Section (D.S) contains the set of a data re
gisters and operators which are used either to calculate
test values on the data or to transform them.

- The Control Section (C.S) ensures the sequencing of
the operations to be executed in the D.S. It m::i.y be re-
presented as an automaton receiving arrong its inputs
test values depending on the D.S state. To each state
of the C.S is associated a set of actions executable
simlltaneously (compatible) in the D.S. Setting the c.s
at a state is interpreted by the D.S as the order to
execute the actions associated to this state. 'The c.s
goes from a state s to a state s' when the o.s has ac
complished the execution of the actions associated with
s and if the condition corresponding to the transition
ss' is verified.

I .3. Computer Hardware Design Language With Respect to

the Description Levels

It the case of a structural description of a system, tl1e
language Im.1st permit the description of the dialog bet-
ween the two sections of the hardwired system. This is
generally done in the following way : to every statE~ of
the C.S is associated a label of the program. This label
names a set of instructions describing elerrentary actiors
and/or conditional actions. The S.;l,ernentary actions are
those corresponding to the state ref erred to by the label.
Conditional actions determine the successor state in the
C.S. Such a description is facilitated by the use of non
procedural languages such as CASSANDRE [3] DDL [4] CDL [5].
Languages of this type are very convenient for the des-
cription of control structures.
In the case of a functional description, one can ignore
how data transformations are perforrred and be interE~sted
only in the values of certain merrory elerrents at precise
instants. Thus, we can associate to the states of tl1e
C.S not only simple actions but procedures, as long as
the evolution of the C.S does not depend on the values
of the internal variables during the execution of tl1e
procedure. This approach permits a rrore global descrip
tion of the system's behavior since it avoids non signi
~icant details of the c.s.
Arrong Computer Hardware Design Languages (CHOL), those
often called procedural [1] are rrore adequate for dE:!s
criptions of this type, for example APL [6], JI.POL [7],
SIMULA [8].

I.4. A critic of the existing CHIJL's for the proposed
application

We do not intend to review, here, all the existing CHDL's.
A conplete classification of these languages, as well as
interesting critics concerning their use, can be found
in [l], [9], [10]. This study is limited only to the
possibilities of using such languages in order to satis
fy the objectives mentioned in the introduction. A lan"'."'
guage responding to these objectives has to possess the
3 following characteristics :
a) Be a non-procedural language in order to allow the
representation of simultaneous actions in the descrip
tion of control mechanisms whatever the level of des
cription may be.

b) Provide the facilities of an algorithmic language per
mitting a powerful and concise description of data hand
ling and conputation.

c) Provide the possibility to manipulate software enti
ties representing rrodules of the system, as far as their
description, duplication and synchronized execution are
concerned.

For the existing CHDL's, properties a) and b) seem to be
contradictory. In fact, non-procedural languages are ge
nerally R.T.L.'s imposing a description very close to
the harwired realisation. It is evident that such lan
guages do not satisfy characteristic c) .

Conversely, procedural languages rrore or less satisfy
characteristics b) and c) • AmJng those satisfying b) ,
APL seems to be the rrost adequate to the problem,given
the richness of its data manipulation operators and the
facility to handle arrays. However one of its major draw
backs lies in the difficulty to create configurations
from standard rrodules and to describe parallelism. The
characteristic c) is partially satisfied by languages
with synchronization primitives and rrodule duplication.
In SIMUIA [8], the primitives "class" "sub-class",
"detach", "resurre" and "simulation class" are used es
sentially for this purpose. Nevertheless, all the defi
nitions that are necessary for the arrangement of links
between rrcdules (represented by classes) , the synchroni
zation and the control of their execution are left to
the prograrrmer; thus requiring a good knowledge of pro
grarrming techniques. And anyway, SIMUIA being a high le
vel language, it does not allow structural descriptions
(R.T. level for instance).

Furthernore, the distinction between C.S and D.S is adop
ted by the majority of the existing CHDL's as far as the
analysis and the description of the system are concerned.
However, this distinction appears much less clearly once
the program is vrritten. Particularly when faced with a
complex system with many levels of parallelism, the im
brication of the control and data structures makes the
program hardly readable and rrodifiable.

PART II

PRESENTATION OF THE LANGUAGE
II.1. Methodological Aspects
After the critics fonnulated in the last paragraph, the
approach adopted in the conception of this language be
comes clearer. We shall use two sublanguages, respecti
vely for the description of the two sections C.S and
D.S. The sublanguage used to describe the C.S is non
procedural and pennits, by methods exposed later, the
description of synchronous or asynchronous control struc
tures [11].
The manipulation of variables in the D.S is perfonned by
a set of procedures; these procedures are described by a
procedural sublanguage. The C.S of a module is initially
represented by a graphic model derived from Petri-nets
[12] given in the following paragraph . The translation
of the graphic model into the language is done in a sim
ple and direct way.

21

In order to permit the rrodular structuration of a pro
gram, three primitives have been introduced. One for the
declaration of standard rrodules, one for the creation
of a system by calling standard rrcdules and one for
their interconnection. Two rrodules are connected by con
founding their respective interface variables. Finally,
an execution time is associated with each procedure in
order to have the possibility to study system perfor
mances and critical situations. Execution time is either
fixed in advance or calculated dynamically as soon as a
procedure is activated.

II.2. Mathematical Model for the Description of the
Control Section

We give here a rrodel for the description of control
structures with parallel asynchronous evolutions. This
rrodel, actually under study [13], is as general as
Petri-nets [12] but it allows a less constraining and
rrore concise description of a system. Its drawback is
that critical situations such as deadlocks, conflicts,
determinacy are easier to detect in a Petri-net than
in this rrcdel.

Definition 1 : A Parallel Process Control Netvx:>rk
TP:-i?·~c:-N:-)-[13] ·is a quintuple R = (X,P,Q,f ,Po) where

- X == {x1 ,x2, ••• ,xm} is a finite set of input variables

- P == {p
1
,p2 , ••• ,pn} is a finite set of objects called

places
- Q == {q

1
,q2 , ••• ,q } is a set of boolean variables in

n bijection with places
- f is a mapping, f : p x p + gf(Q,X) where .'.Ti' (Q,X) is

the set of boolean functions on Q and X; in addition
f :Ls such that f(pi,pi) = 0, 'il'Pi € P.

- PO is a set of initial places (PO <;: P).

With a P.P.C.N , one can associate a labelled digraph
having as vertices the set of places and such that for
every couple (pi,pj), (f(pi,pj) ~ 0, there exists an

edge from pi to pj labelled by f (pi,pj).

Example : R = ({x}, {pl'p2,p3 }, {q
1

,q2,q3}, f, {p
1

})

where f is defined by the following table :

f ~l p2 P3

pl 0 xq3 xqz

p2 0 0 x'q1

P3 x' 0 0

Definition 2 : We define a token as the object having
tfi.e-£0110Wing properties
a) A place can contain one token at rrost. A token

exists at the place pi at time t <=> qi(t) = 1.

b) Every initial place contains a token.
c) A transition occurs from a place pi containing a to

ken to every place p. such that f (p. , p.) = 1. When
J 1 J

transitions occur from a place p. to places p . , o. , ••• ,
1 J ~ .K.

the token is rerroved from pi and a token is put in

each of the places pj,11<_'···

A token contained in a place is represented by a point
within the circle representing the place.

Fig.2a.

Q~~!g!~!2g_~ : A source place is a place
always containing a token. We represent
such a place by a square (figure 2.a).
Generally, a system possesses an initia
lization procedure permitting it to be
set to a particular initial configuration
This initialization corresponds to a set
of initial places of the graphic repre
sentation. In case several sets of initial

places are J;Xlssible depending UJ;Xln inp.it conditions, it
is convenient to use this type of place (see following
example).

Fig.Zb.

Also, it is often useful to have the J;XlSSi.
bility to express, for a system, deactiva
tion conditions which can be expressed by
a combinatorial function. For this reason,
we permit, in the graphical representation,
edges attaining no place (Fig. 2L). The fi
ring of a transition of this type implies
the disappearance of the token of its input
place.

Note : A Petri network can be represented by a P.P.C.N.
as suggests fig. 3. In fact, a Petri netv.ork is a P.P.
C.N. having as labels functions of the fonn a(X)j~J qj

where a(X) is a boolean function of the input variables
and J is a subset of f 1,2, •.. ,n} . For this reason, a
P.P.C.N permits a less constrained and rrore concise des
cription than Petri-nets.

< ~qzf(x)

Petri net P.P.C.N

Fig.3.

Let us, for example, represent the evolution : "A token
reaches p1 if a token was at the preceeding instant at

p2 and p3 rut not at p1".

In order to describe such an evolution by a Petri-net,
one has to create one place p~ "complerrentary" of the
place p

1
; that is, P~ is a place coutaining a token if

and only if, p1 does not have one. We are then obliged
to increase the number of places with respect to the
number of places of the P.P.C.N representing the same
evolution (Fig. 4).

Pz P3 p~

P.P.C.N Petri net
Fig.4.

The following example illustrates the application of
the P.P.C.N's.
Example : We want to describe a system controlling the
traffic through a one-track railroad tunnel which may

22

be used by trains arriving in opposite directions
(Fig. 5). We diSJ;XlSe of :

a) Pulse signals
v - x

1
and x2 indicating that a train approaches the t:un·-

nel in the directions 1 and 2 respectively.
- xi and x~ indicating that a train has just entered

the tunnel in the directions 1 and 2 respectively.
- x3 and x4 indicating that a train has passed through

the tunnel in the directions 1 and 2 respectively ..

b) 'Tu.D lights (v1 ,vi), (v2,v;2) at the tunnel entrances

indicating whether a train is allowed to pass through~

Let the control system b3 such that :

- v1 = 1 and v2 = 1 if there is no train passing tlrough

the tunnel or waiting to pass.
- v

1
= 0 and v2 = 0 if there is a train passing through

the tunnel.

- A train waiting in the direction 1 has priority over
a train waiting in the direction 2. We suppose that
there may be only one train waiting in each direct.ion.

The P.P.C.N. and the Petri network representing the
system are given in Fig.6.The variables associated to
the places are given the following interpretation

- ai a train is waiting in direction i

- pi a train is allowed to go through the tunnel :Ln

direction i, but it has not entered yet

- ti : a train is passing through the tunnel in direc

tion i

- vi : green light allowing the train to travexse in

direction i.

Representation of the C.S by a P.P.C.N
In order, to represent the C. S of a system by a P. P. C. N,
we generally associate to a place a list of actions
described by a procedure to be executed by the D.S. Du
ring the execution of those actions, all the transiticns
em:mating from the corresJ;Xlnding place are inhibited;
they becorre enabled at the end of the procedure's exe
cution. The evolution from a place depends on test
values returned from the D.S and on the state of the
c.s. The method described above does not correctly 1~rk
if we associate procedures with the input places of a
"join" transition. With P.P.C.N's, join transitions are
not as explicit as with Petri nets 1 but it is easy to
detect them by a very simple method [14] .

II-3. Presentation of the language

11.3.1. ~~~~r~1-~!~~!~r~_2f_!h~_rr2gr~
A program is composed of 3 parts.

a) Definition of standard nodules (library of nodules
used to build up the system)

S) Description of the interconnection of such nodules
in order to impletnP....nt a system

y) Initialization of the system and specification of
the input sequence for which the system is studied.

v •a1Pit,2+a,2PiPztiti

vz•ai 8 zPi ti +a.J.PiPz ti ti

R.C.P.P Fig.6. Petri Net·

We shall give explanations for each of those parts deli
mited as follows

[

DCLMJDTYPE

a) ~.MJl\JD

B) [~
END

y) [rnf
END

rr-3. 1.1. ~~~~!!2!!2~_2f_e_e!~ger~~~2g~1~
It contains the D.S and c.s description as shown below

DCIMJDI'YPE .MJDEL (IN'IVl , ••••••)
DCLPROC Pl

TEMP 5
IN'IVl- 3

END
OCLPRCC

t +- ?9
TEMP t

END

DCICTRL SYN

ENDMOD

Data Section

} Control Section

a) Data section : Instructions used in the description
of a procedure are a subset of APL's instructions. To
these instructions is added the primitive TEMP whose pa.
rameter indicates the execution tine of the procedure.
This parameter may be either a constant on an expression
on the variables of the procedure.

b) Control section : The primitive DCLCTRL indicates the
beginning of the description of the C.S. The keywords
SYN and ASYN following DCI.CTRL specify the type of evo
lution in the control structure, respectively synchronous
and asynchronous. The basic instruction used for the
description of the control section has the following for
mat : Pi IF Fij THEN Pj' where Fij is the function asso-
ciated to the transition (P. , P .) • The functions F. . can
contain : i J l.J
- predicates on the time variables or on the D.S varia

bles,
- l:x>Olean expressions on input or internal variables of

the c.s.
Special terrporal predicates may be used. For example,
the instruction :

23

Pi IF !tc THEN Pj

rreans that a transition takes place from P. to P. as
l. J

soon as a tine tc has elapsed after the end of the pro-

cedure associated to Pi.

The language's syntax penuits the description of rrany
transitions in the same instruction by using rrultiple
tests and branchings. Fo:c example, the instruction :
pi IF Fil; Fi2; Fi3; ••• THEN pjl; pj2; pj3; ..•
has the interpretation : a transition takes place from
Pi to Pjk if Fik is true.
The instruction :
pi IF Fil' Fi2' Fi3' 000 THEN pjl' pj2' pj3' 000

can be used to give priority to an action. Priority is
defined. by the order of the conditions Fik. That is, the

transition labelled by Fik is fired if Fik is verified

and if all the conditions F. such that s < k are faulty.
The t'M'.:> preceeding instrucd:8ns can also be put into the
parametrized forms :
Pi IF Fil; F i 2; F i 3 i • • • 'IHEN P (J)

Pi IF Fil, F i 2 , F i3, . . . THEN P (J)

T'MJ primitives, put at the head of the C.S description,
allow the definition of input and output control varia
bles. The primitive INPur defines input variables of the
c.s external to the rrodUle (example : INPur x1 ,x2, •••).

The primitive ourPurdefines output variables of the c.s.
(example : OUTPur Y 1 , Y 2, •.•) •

The representation of a transition having as input place
a source place is given by an instruction of the fo:rm :

l IF F 'I'HEN P

For such an instruction, the condition F is tested per
rnarnently, and one token is put into the place P every
time th.is condition is verified. Finally, the possibi
lity is given to express directly the deactivation of a
place P_i without token transfer to any other place, by

using the instruction

Pi IF F THEN Pi_

rr.3.1.2. ~~s!ere!!2~_2f_e_s2~!!~Ie!!2~_2!_!h~-~Y~!~~
The primitive CREATE pe:rmits the creation of a new rrodu
le by using the deseription of a predefined standard no
dule. Example :

CREATE .MJDULEl = .MJDEL

results in the creation of a new m::xiule called MCDULEl
as a copy of the standard rrodule MCDEL.

- The primitive LINK realizes the interconnection of
rrodules. The genitive notation (with point) is used to
distinguish the interface variables of several identical

rrodules. So, we can write :

LINK MODUIBl. INTVl = MODUIE2. INTVl

to express the fact that the interface variables INTVl
of the tvK> nodules MJDUIBl and MJDUIB2 are confounded.
When there is no ambiguity, the genitive notation may
be avoided.

II.3.1.3. Q~!~g~!~9g_9!_!~~-~g~!~~!-~!~!~-~~-2!_!~~

~g12~!-Y~!~~~
The initialization of a variable may be done by using
the primitive INIT. Example

INIT MJDUIBl. INTVl = 2

means that the variable INTVl of the nodule MJDu:LEl is
initialized to the value 2. The primitive INIT can re
cover many initializations and the variables concerned
may be internal or interface variables as well as inp1t
variables of the C.S. The following examples show some
possibilities of the use of the primitive INIT :
INIT MJDUIBl. VARl = valuel ; MJDUIB2. VAR2 = value2
INIT MJDUIBl. VARl, MJDUIB2. VARl = value3
INIT VARINX = 1
All the variables non initialized explicitly by the pri
mitive INIT are initialized to the default value zero.
Inputs used to experiment the simulated system are in
trcxiuced by rreans of the primitive ENTRIES. These inputs
are represented by input lists, each list having the
following format :

ti : x1 = valuel, MJDUIBl.Y = value2, .••

This meara that at time ti the input variables Xl and Y

of the nodule MJDUIBl will take respectively the values
valuel and value2. It is also possible to define perio
dic inputs. Example :
t . : + t [Xl = valuel, MODUIB. Y = value2]
Ttlis meaRs that the variables Xl and MJDUIB.Y take res
pectively the values valuel and value2 at all the noments
tj + mtp form= 0,1,2, ...

PART III
PRACTICAL EX.AMP LU

We illustrate this language by a simple example taken
from [15] ; it describes a nodular architecture for a
multi -access, mul tibank merrory system (§ III. 1) .

Mo

STO

[]]
n, r---.---,
111 I I I
LU L---L--..J

ADB

Df.SO

[I]
rn
111
LU

STl

[JJ
rn r--,---1 111
1.U L.---L--.J

rn ADBUS (address bus)

DESl

rn
rn
II I
UJ

In pa.rt III.2, we will explain how this language can
help the design (performance evaluation, detection of
critical configuration> •..)

III-1. Description of the system

The structure of the system is detailed in f :Lg. 7. We
distinguish 3 types of nodules
a) rnerrory bank (MB)
13) merrory access multiplexor
y) entry point (EP)

These nodules'interfaces are as follows

a) ~!:Y-~-~!~E~S:~_lMBi)
MAi address register (16 bits)

MDi data register (16 bits)

ST. status register (2 bits)
1 ST. 00 =MB. inactive

l l

STi 01 = read operation in progress }poi::ted by
. the rmlti-

STi 10 = write operation in progress ple.xor

ST i 11 = reading accorrplished } posted by MBi

(notice : we have nodif ied slightly the original example
in [15]) .
• DESi : entry point's address register in case of a

reading request.

B) ~~!:!:Y-E2!~!_!~!~!:E~S:~_(EPi)

ST2

ri 1 = Read request (1 bit)

wi 1 = write request (1 bit)

bi 1 = busy entry point (1 bit)

CAi: address register (16 bits)

CDi: data register (16 bits)

RRPi 1 = read request from the processor connected
to EP.

WRP.
l

l

1 = write request from the processor connected
to EP.

l

ADDPi : address buffer of the processor connected to
EPi

DATAPi: data buffer of the processor connected to EPi

DES2

rn [O
rn r---1---1

I I I
LU L--..l..--.J

rri
111
LU

rr-1
11•
LU

r---.---.., rn
I I I 111
L---'---1 LJ..1

DB

lihiiiWlil!WiSiii1A!D 1 It Uk~ [Ill
DBLJS (data bus)

n ~ ri r--1 r--, n n n r--1 r--,
1111111 IL I 1111111 11 I
U u LI L--.J --J u W U L--.J L--.J

b2 r2 w2 b3 r3 w3

Entry pointO

n n r--1r--,
1 I I I I 11 I u u ... __ .J 1...--.J

Entry pointl

n n r--1r--1
LJ W L.--J L--..1

24

0 D 0 CA2 0 0 D CA3

Entry point2

n '"' r--., r--,
11111 II I
U UL---' L--..J

Entry point3

n n r--1r--1
11 11 I II I
Ll U L.--.J L---1

(".)
p_,

~ Fig.7
Q

Memory layout

The multiplexor uses two buses ADBUS and DBUS (address
and data) to link an entry point to a merrory bank. The
internal register ADB(2 bits) indicates which entry
point uses ADBUS; DB0 and DB1 indicate which entry poirt

(write) or which merrory bank (read) has posted. a data
on DBUS; DB2 tells which way the exchange goes (respec-
tively 0 ana. 1) • -
Figures 8a, 8b and 8c show the 3 m:Xl.ule flowcharts and
the corresponding control graphs.
Note : In what follows, we keep the same notations for
places and for their associated boolean variables.

START

EP. requets reading
ana the target bank
is available ?
(ri=l,priority i:o+3)

MB. has completed
reJding ? (ST.=3)

(priority j~0+-3)

y

R(I):

ADB - i
DES(bank) """- i
ST(bank) - 1
r. +- 0

1

y

N N E(J):
Data transmission
to entry point(EP)
indicated by DES
STj ~ b(EP) +- 0

EPk requests writing
and the target

bank is available ?
(wk=l,priority O ~3)

y

W(K):
ADBUS and DBUS are
connected to EPk
ST(bank) .-2
bk -wk+ 0

N

Fig.Sa Multiplexor's flowchart

III-2. System's description program
In order to simplify this example, we do not take into
account the nature of the infonnation exchanged. between
MB's and EP's; so registers MD and CD are not represen
ted. Therefore, only the bank's number is retained. as
an address in CA.
DCLMODI'YPE ENTRYP (b,r,w,CA,ADDP)

DCLPRCX::: RR
~'EM!? trr (reception time of a reading request)

CA + ADDP
r + b + 1

END
OCLPRcx::: WR

TEMP twr (reception time of a writing request)

CA+ ADDP
w + b + 1

END
OCLPRCX::: AER

TEMP taer (acknowledge time of the end of a rea
ding operation)

END

25

DCLCTRL ASYN
INPUI' RRP,WRP
BEGIN
IN IF. WRP/\b I
IN IF RRPAb'
WR IF. b'
RR IF b'

AER IF 1
ENDIDD-

THEN WR
THEN RR
THEN IN
THEN AER
THEN IN

DCLMODI'YPE MEMJRYB(ST,DES)
DCLPRCX::: RH

TEMP trh (Read Handling time)

ST
END
OCLPRCX:::

TEMP
ST

END

+3

WH
twh(Whrite Handling time)

+0

DCLCTRL ASYN
BEGIN
~y IF ST = 1 THEN RH

READY IF ST = 2 THEN WH
RH IF 1 THEN RA
RA IF ST = 0 THEN READY
WH IF 1 THEN READY

ENDIDD ~-

OCLMODTYPE MULTIPLExOR (ST(4), DES(4), b(4), r(4), w(4),
CA(4))

DCLPRcx::: R (I)
- TEMP t

END

r
DES [CA [I]] + I
ST [CA [I]] + 1
r [I] + 0

iSCLl?RCX::: E (J)
TEMP t er
ST [J] + b [DES [.J]] + 0

END
OCLPRCX::: W(K)

END

TEMP tw
ST [CA [K]] + 2
w[K] + b[K] + 0

OCLCTRL ASYN
BEGIN --

STARI' IF C0,Cl,C2,C3, 1 THEN R{O) ,R(l) ,R(2) ,R{3) ,J1*)
STARI' IF C4,C5,C6,C7, 1 THEN E(O) ,E(l),E(2),E(3) ,J2
R(I) IFl THEN Jl
E(J) IF 1 THEN J2
Jl IF ~J2 THEN J
J2 IF ~Jl THEN J
J IF C8,C9,Cl0,Cll,l THEN W(O) ,W(l) ,W(2) ,W(3) ,STARI'
W(K) IF l THEN STARI'
~-
OCLCONF

CREATE .MEMJRYBO ,.MEMJRYBl ,.MEMJRYB2 ,.MEMJRYB3=.MEMJRYB
CREATE MULTIPLEXORO = MULTIPLEXOR ;
--- ENTRYPO, ENTRYPl, ENTRYP2, ENTRYP3 = ENTRYP
LINK MEMORYBO. ST=MULTIPLEXORO. ST (0) ;
-- MEMORYBO .DES=MULTIPLEXORO .DES (0) ;

MEMORYBl. ST = •••

LINK ENTRYPO.r = MULTIPLEXORO.r(O)

END
_:w:rr IN, READY,STARI'=l;b,r,w, ST=O (all places IN,

READY,STARI',b,r,w,ST are initialized)
ENTRIES O:RRPO,ADDP0=0;9:vvRP1,ADDPl=l; •••
END ••••• STOP 20

*) In fact, conditions Ci nust be entirely explicited
in the program; they are given in Figure 8a.

r
I

y

START

...... - u

~3
u
< - °' u
< - co
u

(Fig. 8a Multiplexor's control graph)
IN bi,ri,wi ="0

READY ST."-0
1

RH :
Handling of a reading
request f:r-om address ~ll'>.

N

RA :
When the multiplexor ack
nowledges, the memory bar.k
return to inactive state.

26

Fig. 8b

Fig.Sc

initial state
b,r,w=o

)associated control graph

EP ! s flowchart
l

initial state
ST=O

=::;>associated control graph

MB! s flowchart
1

III-3. Comments on the design aid
ADBUS and DBUS allocation in the multiplexor is perfor
med according to a decreasing priority EP0 + EP3 and

.f'.1B0 + MB3. The question arises whether, for given execu
tion times of the m::xiules Multiplexor and MB, some re
quest on EP3 remains unsatisfied for some critical re
quest frequencies on EP0 and EP • We can find the criti
cal values by observing the system for various execution
times.
Likewise, a standard multiplexor m::xiule is defined to
connect 4 MB's and EP's. But, without any essential rro
dification in the description program, these numbers
can be changed. Thus, we can study the correlation bet
ween structure, number of resources and performances.
This kind of possibility is essential for the evaluation
of the performances of I/O architectures(through-put)
according to the number of the channels and the reparti
tion of the peripheral devices. Another idea could be to
associate to every EP a critical time t such that :
every request from an EP must be satisfied in time less
tant tc in order to avoid disturbances in the processor
connected to EP. (A processor connected to EP could be
an I/0 channel with response time bounded by a critical
value). Notice that in this language, these critical
time bounds can be expressed in the description of the
processor by a timing function.

IV - CONCLUSION

The first interest of this tool is that it provides a
methodology for the multilevel description of distribu
ted systems. Certainly, its use is particularly interes
ting for the study of the behavior of a m::xiule(or set of
rrcdules) , when it is integrated in a specific configura
tion rather than when it is considered separately. The
separation between C.S and D.S corresponds implicitly to
the distinction between K and (D,M) primitives in PMS
[16]. Functional subsets corresponding to the primitives
L and S are shared by the cooperating m::xiules. It is ne
vertheless sometimes interesting, when emphasis is put
on the study of the inter-m::xiule conrnunication procedu
res, to extract these functional subsets in order to
reconstruct the m::xiule performing the link. Conversely,
it is also easy to deduce from the PMS description of a
system (possibly completed by its ISP description [16]),
the structure of the program describing this system in
the proposed language.
We finally emphasize that our intention has been to pro
vide a simple enough language to be user oriented. All
rronitoring functions concerning duplication, inter
actions and synchronization of the m::xiules remain trans
parent to the user and are handled by the system suppor
ting the prograrrming in this language.
The elaboration of this tool has been rrotivated by tv..D
studies actually developed at the ENSIMA.G [17], [18]:

a) Study and evaluation of a hierarchical rrerrory struc
ture for multiprocessor l.lB.chines. Such a structure con
sists of :
. a hierarchy of physical merrories
• algorithms of dynamic management at each level

(address translation, comuunication between adjacent
levels).

This tool must permit :
. validation and co~risonof some choices of algorithms

at each level
. verification of the global coherance of perfonnances

b) Design of a complex I/O system (UNIDATA 7740-50-70).
This tool must permit :

harrronization of m::xiule characteristics at each level
(buffer dimensions, inforl.lB.tion adjustments, temporal
characteristics) •

. experimentation of the dialog procedure (priority
logic, conflict resolution, resources dispatching) and
evaluation of global performances.

27

REFERENCES -----
[l] M.R. BARBA.CCI : "A Comparison of Register Transfert.

Lc111guages for Describing Computers and Digital
Systems", IEEE Trans. on C., Feb. 1975

[2] V.M. GLUSHKOV, A.A. LETICHEVSKII : "Theory of Al
gorithms and Discrete Processors", Advances in In
forl.lB.tion Systems Science, Vol. 1, Chap. I, pp 1-58
Edited by Julius T.'IOU.

[3] F. ANCEAU, P. LIDDELL, J. MERMET, C. PAYAN :
"CASSANDRE : A Language to Describe Digital Systems
Applications to Logic Design", 3rd International
Symposium, Comp. and Inf. Science, Miami, Fla.,
Dec. 1969.

[4] J.R. DULEY : "DDL, A Digital Language", Ph. D.
Dissertation, dep. El. Eng. Univ. Wisconin, .Madison,
June 1970

[5] Y. CHU: "Introducing Computer Design Languages",
Digest of Papers, Compcon 72, San Francisco, Sept.
72' pp. 215-218.

[6] K.E. IVERSON : "A Progranming Language", J. WILLEY
1972

[7] J .. A. DARRINGER : "The Description, SimJ.latiou, and
Autonatic Implementation of Digital Comp. Proces
sors", Ph. D. Thesis, EE department CMJ, May 69

[8] O.J. DAHL, K NYGAARD: "SIMUIA, an Algol Based
Sirmllation Language", Carm. ACM, vol. 9, sept. 66

[9] S. Y .H. SU : "A Survey of Computer Hardware Descrip
tion Languages in the u. S .A. " , Computer, Dec. 7 4.

[10] J.,J. CLANCY, M.S. FINEBERG : "Digital SimJ.lation
Languages : A critique and Guide" Proceedings -
FJCC - 1965

[ll] M. ZACHARIADES : "Langage d'aide a la conception
des systemes logiques", D.E.A. Report, ENSIMA.G,
Grenoble, France, june 1974

[12] C.A. PETRI : "Conm..mication with Autanata", Tech
nical Rep. n° RADC-TR-65-377, vol. 1, Rome Air
Developnent Cehter, Griffiss Air Force Base, New
York.

[13] J. SIFAKIS : ".M:xleles Temporels des Systemes Logi
ques", TheseDoc. Ing., Univ. of Grenoble, march
1974.

[14] M. MJALLA, J. SIFAKIS, M. ZACHARIADES : "Un langa
ge d'aide a la conception d'un systeme de m::xiules
interconnectes". Int. Report, RR-16, ENSIMA.G,
Grenoble, France, oct. 1975

[15] F.J. HILL, G.R. PEI'ERSON : "Digital Systems Hard
ware Organization and Design", pp. 395-403, John
Wiley & Sons, 1973

[16] C.G. BEIJ.,, A. NEWELL : "Computer Structures Rea
dings and Examples", Ed. Mac Graw Hill, 1971, p. 15,
Part. I, chap. 2.

[1 7] M. BENNEI'S, M. VERAN : Int. Report ENSIMA.G, Greno
ble, France, june 1975

[18] M. MJALLA : "Outil logiciel de test de simultaneite
en integration des systerres", ENSIMA.G, Grenoble,
France, Seminar june 1975.

A Course in Computer Structures
by

Jonathan Allen
Department of Electrical Engineering and Computer Science

and
Research Laboratory of Electronics

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge, Massachusetts

Abstract

In this subject, we treat computer structure as
an element of a group of interacting structures
including the technology, algorithm, data, and pro
gramming language. In the belief that the best
designs result when these structural factors "match"
in a complementary manner, the influence of each of
these domains is carefully studied at both the concep
tual and descriptive levels. Thus a modular treatment
of current technology is provid.ed, as well as a
thorough analysis of algorithmic structure as reflected
in computational schemata. Single-sequence machine
design is discussed, including advanced topics such
as multiple functional unit conflict resolution.
Following a presentation of microprogramming and
input/output, virtual ideas centered around the notion
of process are introduced, leading to the design of
multiprocessing and multiprocessor systems. These
ideas are applied and extended in the presentation of
the Burroughs B6700 as a higher-level language machine
designed to execute ALGOL efficiently. Finally, the
subject concludes with an introduction to general
interpretive structures for high-level languages.

1. Introduction

The content of this subject is determined by the
belief that the best computer designs result from a
consideration of all the structures that are involved
in the solution of a problem on a digital computer.
These structures are associated with:

1. Technology
2. Algorithm
3. Data
4. Programming Language
5. Architectural units

When these structural factors are mutually comple
mentary, we believe that the best results follow, and
we call the principle that requires this interaction
"structural match." Thus, we believe that it is not
possible to design a computer properly unless a
unified view of all the structural constraints posed
by the intended application area are well understood.
The architectural structure of a computer is thus seen
to be but one of a set of interacting structural fac
tors which must be cohesively interwoven to provide an
optimal design.

In addition to the structural match principle, we
believe that it is important to achieve a proper
balance between conceptual abstractions and the
description of practice. Too often, the teaching of
computer architecture is confined to a highly descrip
tive treatment of several machines such that it becomes
very difficult to detect general principles. On the
other hand, it is important to motivate conceptual
constructs and results by showing their application
to concrete designs. The course seeks to detect the
underlying generality in computer design, but to
continuously interrelate these results to classical
designs which have stood the test of time. Experience
has shown that it is possible to combine both bottom
up and top-down approaches by this means in a manner
such that abstractions are motivated by concrete

28

examples, and then these instances of practice are
clarified by interpreting them in the light of more
generalized structures.

The overall subject is split into three major parts:

I. A. Combinational and Sequential Logic; Computer
building blocks

B. Computation Schemata and Implementation

II. A. Single Sequence Computers
B. Microprogramming
C. Input/Output

III. A. Processes and Multiprocessors
B. Algol and Block Structured Languages and

the B6700
C. Virtual machines and dynamic microprogram-·

ming

Each of these three groupings consumes about 1/3 of the
subject time. We now discuss each of them in detail.

2. Logic, Technology, and Schemata:

In the first third of the subject, the background
necessary for discussion of single-sequence computers
is established. First, combinational and sequential
logic is presented in order to establish a concrete
basis on which to discuss computer design. Th.is
material is not presented from the point of view of a
digital designer, since it is felt that topics such as
gate minimization and state assignment are not needed
to appreciate the design of computers. Nevertheles::;,
basic combinational and sequential logic principles
are presented, and there is a very complete discussion
of fliplflops. Use is made of the Algorithmic State
Machine formalism which facilitates implement:ation
free definitions of sequntial circuits. Following the
treatment of basic logic principles, modular computa
tional elements are discussed, including registers,
counters, encoders and decoders, ALU's,multip1exors,
ROM's, and shift registers. The goal is to provide
sufficient concrete understanding of logical modules
so that students can appreciate how a block diagram
description of a computer could be realized. This
approach also provides a demystifying benefit. For
example, many students have difficulty understanding
how it is possible to write into and read from a
register simultaneously until master-slave flip-flops
are explained. Modern MSI and LSI practice is also
discussed so that ·Students can appreciate the .construc
tion of computers in terms of functional modules. This
background is utilized later in the course when micro-
programmed computers are discussed.

Once the student is well versed in the basic
logical structures contained in computers, we abstract
on these functional modules to obtain schemata2 which
concentrate on two aspects of computation. One aspect
is the way in which data flows between modules, and
the other is the control of this data flow sequence.
Computation structures are simplified to schemata
containing only memory cells and operators as nodes,
so that the possibilities for concurrent operation can
be clearly studied.

The first t2pe of schemata studied is the data
dependence graph which naturally exhibits all of the
possible concurrency in a computation by the simple
means of only allowing each operator and memory cell
to be used once in the course of evaluating the algo
rithm. Thus, if four additions are needed in an
algorithm, then four add operators must be provided in
the corresponding data dependence graph. In this way,
the only thing that limits completely concurrent use
of all the operators is the logical dependencies
contained in the algorithm. Conflicting use of memory
cells is impossible, since each cell has only one input.
Figure 1 shows a typical data dependence graph (DDG).

The DDG provides a conflict-free, maximum-space,
maximum concurrency representation of an algorithm.
If the operators and memory cells are controlled
appropriately, then a minimum-time maximally-parallel
implementation results. One special case of interest
is when the operators are all combinational. In this
case, the memory cells can be removed, and no timing
control is needed, since the entire schema is repre
sented as one combinational circuit.

When the constituent operators of a DDG are
sequential in nature, then it becomes important to
control their time of operation. That is, we must
provide a means to tell the operator when the input
data are ready so that the operator may start. Simi
larly, the operator must acknowledge when it has
completed its calculation, so that its output can be
read at the appropriate time. The DDG contains all
the information necessary to derive the constraints
on operator sequence, and this is shown in the prece
dence graph of Figure 2. We can see from this graph
that a given operator cannot be started until all
operators which precede it in the graph have completed
their operation. What is now needed is a modular
control structure which enforces these precedence
constraints, but no more. Although the case of
synchronous control is treated completely, we put more
emphasis on the general asynchronous case. From a
general point of view, synchronous control timing is
global in nature and forces a uniform lock-step time
pattern over the entire system. Asynchronous control,
however, is local in nature, and provides a timing
structure which is sensitive to the individual device
timing characteristics. We believe that it is impor
tant for the student to understand the relative
virtues of both of th~se control systems, and examples
of each are given throughout the subject.

The asynchronous control structure for a DDG can
be constructed from sequence, fork, and join modules2,
the interconnection of which can be derived from the
precedence graph associated with the DDG. The next
addition to the schemata is a trigger module, which
allows DDG's to be modified for pipelined operation.
Basically, the trigger module for an operator checks
both that new input data is ready, and that the
operator's output has been latched up in its output
register. Thus, by the simple expedient of adding
one new type of control, the DDG structure is naturally
extended to a pipeline schemata. Since piplined
structures are of such practical importance, there is
considerable discussion of these systems, both
synchronously and asynchronously controlled.

Following the discussion of pipelined operators,
the detailed specificity of operators and their indi
vidual operation times is abstracted away from the
precedence graph and control module structures in order
to introduce Petri nets. 3 Control examples such as
FIFO buffers are discussed, and Petri net models for
all of the asynchronous control modules are presented.
Petri nets have proved to be a particularly clear and

29

implementation-free way to concentrate on basic control
issues, and although we emphasize their utility as
abstract models for physical control structures, we
also develop their theory including a discussion of
liveness and safeness.

Building up from DDG's through pipelined systems,
the next logical stop is to allow repetitive use of
operators and cells within a schema and more than one
input to memory cells. The resulting structures,
called elementary schemata2 comprise two parts: a
data flow graph and a precedence graph. Since the
data flow graph may contain directed loops, repeated
use of operators and cells is possible, and the
schemata represent algorithms in less space but more
time than the corresponding DDG. This space-time
trade-off is emphasized by showing that for each exe
cution sequence of all the operators in an
elementary schema precedence graph (which preserves
the precedence relations), there is an equivalent DDG.
In order to utilize operators and cells repeatedly, it
is necessary to introduce a new control module, called
union, which has one input link for each time the cell
or operator must be used in the course of a computation.
Perhaps the most interesting aspect of elementary
schemata, however, is that they permit conflict at
memory cells to arise, such as when two inputs to a
cell are unordered in the precedence graph. We give
a very careful treatment of conflict, and show that
every execution sequence of a conflict-free elementary
schema has the same equivalent data dependence graph.
The fact that the sequence of memory cell loadings of
every conflict-free schema is determined solely by
the initial values of the cells is used to prove that
every conflict-free elementary schema is determinate.
Finally, we also prove that every conflict-free ele
mentary schema is functional, in the sense that the
final values in the output cells are functions of the
initial values in the input cells. The notion of func
tionality also allows us to give a precise definition
of equivalence of elementary schemata.

It has turned out that the careful treatment of
conflict and its associated concepts has paid off
substantially in the discussion of many practical
topics including multi-ported memories, multiple
function-unit processors, process scheduling, and
concurrent I/O. In all of these cases we have been
able to give a rigorous conceptually-grounded discus
sion which avoids superficial description. A complete
discuss:Lon of arbiters4 is given, including implementa
tion details, in order to illustrate the breakdown of
theoretical models for synchronizers and arbiters
when events are separated in time by arbitrarily small
amounts.

The last type of schema to be discussed is the
basic schema,2 which adds iteration and conditional
tests to the power of the elementary schemata. Two
new control modules are introduced for this _purpose,
providing for control branching based on the truth
value of test predicates. With the addition of these
new features, "while P do G" and "until P do G"
construe.ts can be easilymodeled. There are no new
conceptual difficulties due to addition of these
structures, but the basic schemata are now adequate
to serve as models for digital computers. Thus the
treatment of schemata provides a clear foundation for
the detailed study of computer structures, in which
all of the difficult control problems are faced.
Students are thus able to examine very complicated
machines in the context of an appropriate conceptual
framework.

3. Single-Sequence Machines, Microprogramming, and
Input/Output:

The second third of the subject is devoted to ,
single-sequence computers. After a brief review of
computability results5 which show that nearly every
computable algorithm can be performed on a general
purpose computer in finite time, a minimal-state
machine model is introduced which has no state memory
in the processor except for program sequence informa
tion. This machine allows us to concentrate on the
basic control sequence within an instruction. From
the minimal-state machine, it is natural to introduce
the three-address architecture. A complete basic
schema for a simple three-address machine is developed,
and the time balance between memory and processor is
discussed. Next, the classic one-address machine6 is
introduced, and historical perspective is used to
motivate its structure. This architecture extends
naturally to the modern general register machine,
where we provide a basic schema for a subset of the
DEC PDP-10.7 The influence of technology on general
register designs is pointed out, and the IBM 3708
architecture is also discussed at this point.

Stack architecture is then developed, with an e~e
to later detailed discussion of the Burroughs B6700.
This is also an appropriate time to discuss program
sequence control including subroutine access and
recursion with their heavy reliance on stack·mechanisms.

A complete treatment of memory designs is pro
vided, including addressing by indexing and indirection.
Multiport, overlapped, and interleaved memory modules
are covered using the previously acquired background
in asynchronous control and arbitration. A variety
of cache systems is also treated, but virtual memory
is saved for the last third of the subject.

A particularly interesting topic is that of
multiple-functional-unit computers, such as the CDC
660010 and the IBM 360/91. 11 We point out how conflict
can arise when such concurrency is allowed, and then
show that the control structures which resolve the
conflicts in both of these machines can be interpreted
as transforming the multiple units into a dynamic DDG,
which is of course conflict-free. This is a good
example of how fundamental notions introduced in the
first third of the subject can be applied to clarify
difficult control designs and cut through superficial
differences. We also discuss pipelined processors
such as the Texas Instruments Asc12 and the CDC Star-
100, 15 utilizing the earlier treatment of pipelining.

After the basic structure of single-sequence
machines has been treated, we consider microprogramming.14
This is useful both to demystify the detailed construc
tion of computers, and to prepare for a discussion of
virtual machines later. The Wilkes model is presented
as a systematic means to implement control, and then
a simple but complete microprogrammed computer is
discussed in detail. Register, ALU, buss (including
three-state logic), memory timing, and main instruc-
tion subroutine designs are treated as well as condi-
tion testing and branch sets. Experience indicates
that this concrete discussion of microprogramming is
very useful to students as a basis for interpreting
their conceptual understanding. Vertical and
horizontal microcoding designs are compared, and the
use of microcode to dynamically reconfigure the data
flow structure (as in the SPS 4115 arithmetic section)
of a machine is presented. Then control memory
design features are enumerated, leading to writeable
control stores, dynamic microprogramming, and
emulation. This seems to be the natural place to

30

present the IBM 360/370 architecture,14 with its
provision for emulation (e.g. of the IBM 1401 and 7094)
and family compatability achieved through various
technological implementations.

The one remaining aspect of single sequence mach
ines is input/output, the various features of which
we unify by contrasting how processor state inf orrna
tion is saved and switched. First, status driven I/O
is presented vi.a a teletype serial interface, complete
with processor "busy-waiting." Then interrupts
are introduced, and critically compared with status
driven I/O. The basic schema for a single-address
machine is modified to accommodate this simple level
of I/O. Next, direct memory access is developed as
a special purpose wired-logic processor which avoids
most interrupts in a block transfer. The direct
memory access is then generalized to channel archi
tecture, and a complete discussion of channE!l opera
tion is given in the context of disk management.8
Finally, channels are generalized to completely
independent I/O processors. Virtual I/O processors,
such as those used in the CDC 660o10 and Texas
Instruments Asc 12 are introduced using the "time-slot"
sharing concept, and then completely separate I/O
processors for high data-rate applications are used
as an example of the use of microcomputers. As a
practical application, we have recently added to this
section of the subject a treatment of asynchronous
bus design

7
16 including the new instrument interface

standard.1 This material is particularly useful to
non-computer-science students whose main concern is
to acquire an in-depth understanding of the use of
computers in complex instrumentation and data
acquisition systems.

4. Processes, Block-Structured Languages, and
Virtual Machines:

In the last third of the subject, we make a
transition from single-sequence machines to the
consideration of asynchronously interacting algorithms
via the notion of the process, 18 and from this
abstraction to virtual machine ideas. The previous
discussion of input/output has provided concrete
examples of interprocess communication, so that
students are led naturally to the notion of process,
or the virtual running of a program. In order to
introduce ~irtual ideas, we first discuss virtual
memories, 1 both those with paging and purely
segmented types. These are then generalized to the
notion ~O virtual device, as used in Dijkstra's THE
system. We are then led to the idea of process
as the basic construct for virtual machines.

Processes are rigorously defined, as are pro
cessors, and the problems of asynchronous communica
tion between processes via shared variables are
discussed as examples of conflict at a higher level
than was previously treated in terms of schema.
Critical sections are defined, and process control
primitives are introduced. The interactions of
create, run, block, wakeup, and terminate are
illustrated by many examples, and th21f we show how
these primitives can be implemented. The need for
perfect arbitration leads to the notion of lock
variables and the associated busy-waiting problems,
and then Dijkstra's P and V semaphore operators are
discussed. Detailed implementations of these
operators are given, including introduction of test
and-set or equivalent instructions. Students enjoy
the mental exercise of devising semaphore solutions
to process communication problems, and we treat
many classic examples, such as the bounded buffer
problem, in class.

Following the consideration of processes we natur
ally turn to multiprocessor systems or several

22 varieties. Recently we have treated Illiac IV,
C.nunp,23 SPS-41, 15 and the BBN Pluribus24 as varied
and interesting examples of the many design options,
These are particularly valuable illustrations since
they can be strongly motivated by their intended
areas of application.

Once a solid groundwork in processes has been
established, we find it feasible to examine a very
unique machine, the Burroughs B67009. First
however, we review the semantics of ALGOL 6025, and
introduce Johnston's contour mode126 to make this
explicit. We have found, incidentally, that the
contour model provides an especially effective means
for clarifying recursion, a topic which seems to
require extensive explanation from many points of
view. The contour model of ALGOL semantics can then
be mapped one-to-one onto a stack model, where we
develop completely the manipulation of static and
dynamic links. Once the stack model has been pre
sented, it is both natural and easy to introduce the
B6700. We emphasize here that the B6700 is a very
complicated machine, albeit of great interest.
Nevertheless, given the requisite background in
processes and stack implementation of ALGOL, students
are able to insightfully absorb a vast amount of
detail about the computer, since they have the
appropriate conceptual background with which to
appreciate and interpret the design. We have found
this part of the subject, with its attendant treatment
of procedure entry and exit, multiprocess contour
model, and events and queues, to be extremely interest
ing and useful to students. Concepts which have been
developed throughout the course up to this point,
with the sole exception of microprogramming, all
come together in the B6700, and students are quick
to realize that the machine architecture would be
unintelligible without a deep appreciation of the
implementation needs of inter-process structure and
ALGOL variable bindings. The careful treatment of
these topics requires a lot of time, but we have found
it to be extremely worthwhile.

Following the discussion of the B6700 as a higher
level language machine, it is natural to ask if
machines can be built which can be effectively
adapted to several higher-level languages. In effect,
what is needed is an architecture that supports
several virtual higher-level language machines. The
best current examQle of such a computer is the
Burroughs B1700, 27 which we discuss briefly. The use
of variable length encoding, defined fields, and the
provision of general interpretation facilities are
illustrated with this machine. We find this to be
a fertile area in the subject, but presently lack of
time, and detailed knowledge of the B1700 implemen
tation, have precluded greater emphasis.

5. Sununary:

We have described an attempt to approach com
puter architecture from a broad perspective, and' to
treat machine architecture design as a system of
cooperating processes, each of which represents the
constraints imposed by a particular structural
domain. In this way, the interaction between tech
nological feature~, algorithmic structure,
programming languages, and data structures is
allowed to determine the resultant architecture.
Our experience has shown that this approach provides
a good balance between description of practice and
conceptual analysis, so that the pedagogical
experience is of inunediate utility but also lasting
importance. While it is difficult to isolate

31

design principles for computer design, we feel
that this combined structural approach provides a
good basis on which to continue the search.

Fig. 1 Typical Data Dependence Graph

Fig. 2 Precedence Graph derived from Data Dependence
Graph of Fig. 1

References

1. Clare, C. R. Designing Logic System Using State
Machines, McGraw-Hill, 1973.

2. Allen, J. and Gallager, R. G. Notes for M.I.T.
Subject 6.032; Computation Structures.

3. Petri, C. A. "Communication with Automata" Supple
ment 1 to Technical Report RADC-TR-65-377, Vol. 1.
Griffiss Air Force Base, 1966.

4. Patil, S. S. "Bounded and Unbounded Delay Synchron
izers and Arbiters" Computation Structures Group
Memo 103, M.I.T., June 1974

5. Minsky, M.L. Computation: Finite and Infinite
Machines, Prentice-Hall, 1967.

6. Burks, A. W., Goldstine, H. H., and Von Neumann, J.
'~reliminary Discussion of the Logical Design of
an Electronic Computing Instrument" in Bell, C. G.,
and Newell, A.: Computer Structures, McGraw-Hill
1971.

7. Digital Equipment Corporation DECSYSTEMlO Assembly
Language Handbook. 1972.

8. Katzan, H. Computer Organization and the System/
370. van Nostrand Reinhold, 1971.

9. Organick, E. I. Computer System Organization;
the B5700/B6700 Series, Academic Press, 1973.

10. Thorton, J. E. "Parallel Operation in the Control
Data 6600 AFIPS Proc. FJCC, Part II, Vol. 26, 1964.

11. Entire issue, IBM System Journal, Jan. 1967

12. Texas Instruments, Inc. "A Description of the
Advanced Scientific Computer System" Document
MlOOlP, Dec. 1972.

13. Hintz, R. G., and Tate, D.P. "Control Data Star-
100 Processor Design" Compean '72 Digest of Papers.

14. Husson, S. S. Microprogramming Principles and
Practices, Prentice-Hall, 1970.

15. Signal Processing Systems, Inc.: SPS-41 Users
Manual, April 1973, Waltham, Mass.

16. Digital Equipment Corporation, PDP-11 Peri
pherals Handbook, 1975.

17. IEEE Standard Digital Interface for Programmable
Instrumentation, IEEE Std 488-1975, April 1975.

18. Horning, J. J., and Randall, B. "Process Struc
tt.iring" Computing Surveys, 2_, No. 1, March 1973.

19. Denning, P. J. "Virtual Memory'~: Computing Surveys,
1_, No. 3, Sept. 1970.

20. Dijkstra, E. W. "The Structure of THE-multipro
gramming System" Comm. ACM, l!._, No. 5, May
1968.

21. Dijkstra, E. W. "Cooperating Sequential Processes"
in F. Genuys (ed.), Programming Languages,
Academic Press, 1968.

22. Barnes, G. H., et al. "The Illiac IV Computer"
IEEE Trans. on Computers, C-17, No. 8, Aug. 1968.

23. Wulf, W. A., and Bell, C. G. "C.mmp-A multi-mini
processor: Proc. 1972 FJCC.

24. Heart, F. E .. , et al. "A new minicomputer/multi
processor for the ARPA network" Proc. 1973
National Computer Conference.

25. Randell, B., and Russell, L. J. Algol 60
Implementation. Academic Press, 1964.

26. Johnston, J.B. "The Contour Model of Block
Structured Processes" SIGPLAN Notices, ~' No. 2,
Feb. 1971.

27. Wilner, W. T. "Design of the Burroughs Bl700"
Proc. 1972 FJCC.

32

THE IEEE COMPUTER SOCIETY TASK FORCE
ON

COMPUTER ARCHITECTURE

George E. Rossmann
Palyn Associates, Inc.

4100 Moorpark
Suite 201

San Jose, California 95117

The subject of computer architecture as
currently taught in most computer engineering and
computer science programs is a mixture of architec
tural principles, organizational strategies, and
implementation techniques. This blurring of the
hierarchy of system levels that characterize the
structure of a computer has made it very difficult
for students (and often instructors as well) to
determine what were the forces that led to the
design decisions they have seen reflected in
machines. Furthermore, current courses in computer
architecture pay insufficient attention to the fact
that to a user the essential part of any computer
system is its visible facilities: language
processors, operating system, and other software.
Therefore, they do not support the integration of
hardware and software design that is required to
create computer systems which satisfy the user.

In view of these circumstances, a task force
was established by the IEEE Computer Society to
prepare a detailed specification for a course of
study in computer architecture for students whose
major interest is in computer engineering or computer
science. The members of the task force were:

George E. Rossmann, Chairman: Palyn Associates,
Inc.

C. Gordon Bell: Digital Equipment Corporation

Frederick P. Brooks, Jr.: University of North
Carolina, Chapel Hill

Michael J. Flynn: Stanford University

Samuel H. Fuller: Carnegie-Mellon University

Herbert Hellerman: State University of New York
at Binghampton

The task force defined computer architecture by
deciding what professional architects are supposed
to do. We determined that the computer architect's
task is to define computer systems that use hardware
and software technologies so as to best satisfy all
the users' needs, including function, economy,
reliabiiity, simplicity and performance. In
carrying out this task, the architect must develop
an understanding of the potential applications of
each system and then bring to bear extensive know
ledge of hardware architecture, operating systems
principles, implementation details, component
technologies and many other things to accomplish
its design.

The task force prepared a report on a course
of study in computer hardware architecture. The
material presented in this report was restricted to

33

those topics which we felt every computer engineer and
computer scientist ought to know and to those computer
systems which have been in the mainstream of commer
cial equipment. The material was organized into 11
modules, each dealing with a fundamental aspect of
computer hardware architecture. The modules are:

Module No. Title

2

3
4

5
6

7

8

9
10

11

Introduction and Meta Representation

Data Representation

Instructions and Addressing

Interpretation and Control

Memory Hierarchies

Protection Mechanisms and Hardware
Aids to Supervision

Specialized Processors

Multiple Computers

Performance Evaluation

Re l i ab i 1 i t y

System Design Evaluation.

Not much was said in the report about software and
operating systems directly, but their influence on
hardware architecture permeated all the modules. The
report was published in the December, 1975 issue of
Computer~ magazine.

THE MINERVA MULTI-MICROPROCESSOR

Lawrence C. Widdoes, Jr.
Digital Systems I:aboratory

Departments of Electrical Engineering and Computer Science
Stanford University

Stanford, California 94305

A multiprocessor system is described which is an experiment
in low cost, extensible, multiprocessor architectures. Global issues
such as inclusion of a central bus, design of the bus arbiter, and
methods of interrupt handling are considered.

The system initially includes two processor types, based on
microprocessors, and these are discussed. Methods for reducing
processor demand for the central bus are described.

1. Introduction

At Stanford University we are In the process of constructing
the Minerva Multi-Microprocessor, designed to allow continuing
experimentation with a class of inexpensive, extensible multiprocessor
architectures.

Given the dramatic progress of LSI technology, it has become
important to find modules suitable for LSI implementation which fit
together as natural parts of a much larger system. A multiple
instruction multiple-data stream (MIMD) [FLY72] architecture
may be partitioned so that each processor corresponds to a single
module, yielding these desirable attributes:

l. Extensibility. An MIMD architecture is extensible
with a nearly constant cost/performance ratio, to
some limit [BAU75].

2. Reliability. Parts of an MIMD machine may fall
and be repaired without catastrophic effects
[HEA 73].

Other ad vantages of multiprocessors are discussed in [LEH66],
[HWA 74], [RA V73], and [REY7il

From the hardware point of view, the goal of the Stanford
Minerva experiment is to make contributions to the following
questions regarding a low cost, extensible multiprocessor:

1. What bus structure and hardware communication
protocols are suitable?

2. What simple mechanisms can be devised for
reducing the problem of limited bandwidth of the
communication channels?

3. How can the components of a multiprocessor be
partitioned for LSI packaging?

In addition, the experiment has numerous software goals, but these
will be considered elsewhere.

The remainder of this paper discusses the structure of the
Minerva Multi-Microprocessor, and presents our conclusions about
these hardware issues.

2. Minerva Hardware

The Minerva Multi-Microprocessor system consists of a
compatible set of asynchronous devices organized around a single
demand-multiplexed bus IDBUS (Inter-Device Bus). The
organization of the multiprocessor Is shown in Figure I, and the
devices shown there are briefly described in the Appendix.

For reasons of extensibility, the shared bus IDBUS is the only
communication path between devices, with the exception that each
device which Is capable of initiating a conversation over the IDBUS
has at least one direct communication path to the IDBUS ARBITER,

34

which arbitrates control of the IDBUS. This communicaUon path
consists of a request line and a grant line.

We have currently designed two processor devices, c:a.lled the
8080 CPU and the 3000 CPU, based on the Intel 8080 and 3000-
series microprocessors, respectively. Minerva will support at lea.~t
eight CPUs of the 8080 class, and four CPUs of the 3000-series class
simultaneously without severe problems of IDBUS bandwidth. We
hope to increase these numbers by using software methods to reduc:e
processors' IDBUS bandwidth requirements.

2.1 IDBUS Structure

To meet our aims of extensibility and low cost, we chose a
single, demand-multiplexed bus with a data-path width of 32 bits.
Because we are installing 32-bit processors (3000 CPU), this data
width is necessary. We are able to draw conclusions about interfacing
processors with narrow data words to a wide bus by using eight-bit
processors (8080 CPU), so this data width is sufficient. We chose a
demand-multiplexed design because we intend to acquire enough
processors to severely overload the bus and to study means C>f
reducing bus loading; time multiplexing would eliminate this area ()f
investigation.. Finally, because multiple buses provide at best no
increase in cost-effectiveness, we chose the simpler single-bus structure.
In general, the conclusions we draw can be applied to multi-bus
structures.

IDllUI

Figure I
Minerva System Block Diagram

We use an IDBUS address width that allows access to 230

bytes, large enough to allow the addition of virtual memory. Actually,
the address consists of a 28 bit word address for read and an
additional four byte-select signals for write. The byte-select signals
enable writing of any combination of bytes within a four-byte word.

Any device which wishes to initiate a conversation over the
IDBUS first reserves the IDBUS by means of a standard protocol: the
device raises its request line and waits for its grant line to become
asserted. For reasons of extensibility we do not daisy chain the
requests and grants; daisy chaining leads to intolerable delays as the
number of active devices grows. Although requests can be
overlapped with bus operations, request turnaround time is important
during periods of low bus utilization, for example, when a single
processor is executing a largely sequential program segment; therefore
a centralized arbiter is essential for a system containing many
processors each with a widely variable bus bandwidth requirement.

Jordan and Baatz point out the deficiencies of a fixed-priority
bus arbitration discipline [jOR 741 A !though a fixed-priority
discipline is tempting because of its simplicity, it is unsatisfactory. If
the number of requestors is large enough to allow good bus
utilization, then it is large enough to possibly lock-out the lowest
priority requestor for an arbitrarily long time. If the maximum
waiting time is not of interest for those processors which may be
locked out, then this situation may be tolerable, but if processors are
to be indistinguishable, and if a processor is to have the capability of
meeting real time constraints, then lockout must be impossible; we
must be able to calculate an upper bound on waiting time.

The IDBUS ARBITER is divided into two parts; a priority
arbiter and a FIFO arbiter. Out of a total of 39 ports, 16 are FIFO
ports, and the remainder are priority ports. The number of priority
or FIFO ports can be easily increased at the cost of slightly longer
arbitration time.

The priority ports are used for devices which have a
predictable, non-saturating IDBUS bandwidth requirement. We
include these ports primarily because it is often convenient for a
device (eg., the CRT) which has a periodic, small IDBUS bandwidth
requirement, to receive guaranteed fast service. Because the IDBUS
demands of processors are generally dependent upon software,
processors will ordinarily use FIFO ports. The 3000 CPUs actually
have two request lines to the IDBUS ARBITER, one to a FIFO port,
and one to a priority port. The priority line is used to make special
IDBUS accesses under microprogram control. For example, one 3000
CPU acts as an arithmetic processor; arithmetic routines are stored in
the local microprogram. Any processor requiring an arithmetic result
places operands In main memory and requests service by sending an
interrupt to the arithmetic processor. The operands are fetched from
public RAM and the results are replaced in public RAM by
requesting the IDBUS through a priority port. Since the original
requestor was forced to wait in a FIFO queue for IDBUS access, this
strategy does not greatly complicate the calculation of maximum
waiting time for IDBUS service, but it significantly shortens
maximum waiting time for arithmetic operations. The use of these
priority lines will be carefully controlled during the construction of
the microprograms, and therefore will not cause priority IDBUS
demand to be unpredictable.

The disadvantage of FIFO arbitration is added hardware
complexity, which may result in increased waiting time and increased
cost. The increased waiting time is small, l 00 ns waiting· time for an
eight-port FIFO arbiter versus 60 ns for an eight-port priority arbiter,
both implemented with 7400-series SSI and MSI parts. The increased
cost is not significant; the 1/0 pin count is obviously identical for alt
arbitration disciplines, and therefore the LSI implementation costs are
essentially identical.

FIFO queueing is not the only discipline that will prevent
IDBUS lockout; a rotating priority scheme would serve the same
purpose and the costs are not significantly different. The arbitration
time for a rotating priority discipline can be essentially identical to
that of a fixed priority discipline.

2.2 Interrupt Structure

For reasons of extensibility, interrupts, like all other forms of
communication, are constrained to be sent over the IDBUS.

35

Interrupts are sent over the IDBUS from the interrupting device to
the interrupted device by placing on the IDBUS an address which
defines the IDBUS conversation as an interrupt and also defines the
the interruptee processor, and data which defines the interrupting
device and condition. Each device which has the capability to be
interrupted listens to the IDBUS for its interruptee address.

Many 1/0 devices have the capability to send interrupts.
Each 1/0 device which has this capability has, for each condition
which may initiate an interrupt, two eight-bit internal registers, the
interruptee register, and the interrupt identity register. These
registers are accessible over the IDBUS. They are concatenated with
appropriate constant signals in order to form the full address and
data sent over the IDBUS during an interrupt conversation.

In conventional uniprocessor systems, the boolean variable
which represents the state of an interrupt" condition is stored at the
interrupting device. Communication to a processor of the value of
the variable is either by priority access to the central bus CDEC73],
or by direct connection. In the first case the interrupt will be handled
as soon as it is placed on the bus, and in the second case the interrupt
may be handled at any time, since it does not tie up communications.
In either case the interrupt is cleared when handled.

These conventional solutions are obviously unsatisfactory for
an extensible multiprocessor. We cannot tie each interrupt flip-flop to
each processor, and we cannot guarantee that an interrupt will be
serviced as soon as it acquires the bus. We are therefore forced to
store information about the state of an interrupt at the interruptee.
The storage of such information causes a peculiar synchronization
problem in disabling interrupts. That is, it is difficult to know, after
a particular interrupt has been disabled, whether the interruptee will
be interrupted by a previous event. The solution to this problem
which avoids duplicating hardware in each processor is to include in
each 1/0 device a status bit for each interrupt condition in that
device. This status bit tells whether the interrupt condition has sent
an interrupt over the IDBUS since the last time the bit was cleared; it
is tested after the interrupt condition has been disabled.

The resettable interruptee feature provides much flexibility in
interrupt handling mechanisms. In one degenerate case, all l/O
device interrupts can be directed to a single, fast, interrupt handling
processor. The 3000 CPU is well suited for this task, although the
8080 CPU is much too slow. The interrupt handling processor is
responsible for scheduling all work for the other processors; they
receive interrupts only from the interrupt handling processor. This
idea has appeared elsewhere [LAM68]. Such an interrupt
handling mechanism requires a fast processor in order to service the
worst case accumulation of interrupts within desired time constraints.

We are able to implement interrupt handling mechanisms
which do not require a fast processor, but are only slightly less
general, by using the full power of the resettable interruptee. For
Pxample, whenever a processor receives an interrupt of type A, before
servicing the interrupt it can examine the state of the other processors
and assign the next interrupt of type A to the best processor. This
mechanism is less effective than the centralized design because the
assignment of work is made considerably before the work is to be
done, and so this strategy will work only in an environment of
periodic interrupts with predictable computing requirements. High
processor speed is not required because task scheduling is distributed
among all processors.

The function of the resettable interrupt identity feature is
simply to allow reshuffling of priorities in cases where the interrupt
identity is mapped onto priority levels at the processor.

Any processor which can access the entire IDBUS address
space automatically has the capability to send interrupts; a processor
can, in fact, simulate the occurrence of any type of interrupt by
placing the appropriate data on the IDBUS. This feature facilitates
experimentation with various interrupt handling strategies, and also
allows processors to exchange signals without polling.

2.3 Mutual Exclusion

The software must deal with resources which need to be
accessed sequentially, and it is therefore important to provide a basis
for implementing software mutual exclusion primitives which is
somewhat more convenient than IDBUS interlock [DIJ68].

A !though the common solution is to allow all public RAM locations
to be accessed with an indivisible read"modify-write operation, we
chose to provide special mutual exclusion flags, for reasons of cost.
Minerva has 256 mutual exclusion flags ,accessible over the IDBUS.
A mutual exclusion flag becomes asserted: whenever it is read, and in
the same IDBUS cycle. It is cleared by a write. These flags thus
implement the test-and-set primitive, from which higher-level
mechanisms can be built.

In order to allow mutual exclusion on a lower level, a control
signal is included in the IDBUS which retains IDBUS control for the
grantee during the next bus cycle. This facility allows
microprogrammed processors to implement a read-modify-write cycle,
and also allows devices which are not processors to perform mutual
exclusion if necessary without the extensive control structure required
for using the mutual exclusion flags.

2.4 8080 CPU Structure

The 8080 CPU is a processor module based upon the Intel
8080 chip [INTA 75). It is shown in Figure 2. and consists of the
8080 chip and ancillary circuitry. The major functions of the
ancillary circuitry are to receive interrupts, to provide private
memory, to provide private I/0 (eg., local status registers not
accessible over the IDBUS), and to interface the 8080 chip's 8 data
lines and 16 address lines to the 32 data lines and 32 address lines of
the IDBUS.

A II directly accessible ID BUS locations and all private 1/0
locations are accessed by memory reference instructions; we have
converted the 8080 IN and OUT instructions to reference the lowest
256 bytes of private RAM, Addresses are translated before being
placed on the IDBUS; commonly accessed IDBUS locations are part
of the 16-bit 8080 address space, and all other locations can be
accessed by indirection through an address register set up by a
private 1/0 operation.

A It hough use of the 8080 chip as the basis for a processor
module is not currently a cost effective way to obtain instruction
executions per second in the Minerva system, we were interested in
the problems involved in interfacing an eight-bit machine to a larger
bus. The total gate count of the ancillary circuitry excluding private
RAM is only about 700, and therefore it is easy to imagine that this
hardware could be placed on bus interface chips organized in a bit
sliced architecture and controlled by an eight-bit CPU chip.
Furtherm.ore, the cost of the 8080 CPU device is very low, so that
even with limited resources we have been able to begin construction.

2.4.l Private Memory

Each 8080 CPU device includes 1K bytes of private RAM,
organized as 4K by l byte in order to interface directly with the 8080
CPU chip. In order to reduce the cost of the 8080 CPU device, the
private RAM is not directly accessible over the IDB US. Software
protocols have been established to allow one processor to access the

-··t&J

- CPU OIJP

DATAC9c7l

l'IHUATE
1.-0

DATA llU'FERIHIJ
COHTllOL.

INST.
8TAO<

Figure 2

private RAM of another, but private RAM is not normally accessed
in that mode.

The primary purpose of the private RAM is to allow us to
explore software methods of reducing IDBUS loading. Private RAM
is located· at the bottom of the 16-bit address space seen by the local
8080 CPU chip; private RAM and public RAM are addressed
uniformly. Routines that are not location dependent can therefore be
relocated from private RAM to public RAM or vice versa without
modification, allowing dynamic optimization of the locaticin of code.

Commonly used constants and reentrant routines are stored in
private RAM, as well as some variables that are local to a process. In
particular, the routine which copies from private to public RAM and
vice versa is located in private RAM to minimize IDB US loading.
The storing of local variables in private RAM introducE!S a problem
in task switching: If a process is switched from processor A to
processor B, then B must either request the local variables from A, or
the switching must occur at a time when the local variables are dead.
It is possible to allow the top levels of a process stack to be stored in
private RAM, and copying the stack is unnecessary if the proce.ss
switches processors only upon exit from all blocks whose sta.ck is
privately stored. In order for the scheduler to make good use of this
strategy, apriori knowledge of the probable execution times of proce.ss
blocks is required.

Each 8080 CPU module has a unique, read-only processor
identity. The processor identity is the ultimate basis for all
differentiation between processors, and private RAM is USE!d to
accelerate access to private information by eliminating indirection.
For example, interrupt vectors are in general different for each
processor, and since they are stored in the lowest 1K of the 8080
chip's address space, it is not necessary to use software indirection to
locate the proper vector at interrupt time.

The private RAM effectively makes the 8080 CPU into a
processor which can be dynamically programmed to perform special
macro functions without using IDBUS bandwidth. In this sens•? it is
similar to a dynamically microprogrammed processor, eJ<:cept that its
implementation is currently less expensive, and its "micro" language is
the same as its "macro" language, resulting in the feature that code
can be relocated from private RAM to public RAM and vice versa.

2.4.2 Instruction Stack

As an inexpensive means of reducing IDBUS lo::tding caused
by the 8080 CPU, we chose to employ instruction prefetching.
A !though instruction pref etching has been used elsewhere
[BEL 71] and a similar idea, the retention of previously executed
sequential instructions, has also been used [TH061], previous. uses
have been for the purpose of decreasing average memory access time.
The same issue can be considered from the point of view of
decreasing bus loading.

The 8080 chip contains an eight-bit data bus, and executes

lDllU8-FllOtllll~

JDEIU8 REQUEeT TO flRBITDI !II

8080 CPU Block Diagram

36

instructions from one to three eight-bit bytes in length. Most
instructions affect one byte of data, and in efficient programs the data
byte is usually located in an internal register. As a consequence, most
memory accesses are instruction fetches. This observation is
supported by the data in Table l, which were collected by
simulating a mix of arithmetic and memory management routines. It
should be noted that the programs sampled showed a wide range of
values for the quantities listed; the range is indicated. Furthermore,
the 8080 programs sampled have a strong tendency to execute
sequential instructions. The sequentiality of programs has been
asserted elsewhere [SHE68].

Fraction of Memory Byte Operations Represented by:

Fetching All
Instructions
and Immediate Data

Fetching First Byte
of Non-Sequential
Instruction

Fetching Non-Immediate
Data or Stack

All Write Operations

Table l

.80 to .99

.01 to .05

.Ol to .15

.01 to .10

8080 Instruction Stream Characteristics

These observations lead to the conclusion that using the entire
32-bit IDBUS data path to prefetch instructions would significantly
reduce th.e 8080 CPU's IDBUS demand. We therefore implemented a
four-byte instruction stack which operates as follows: When an
instruction byte which is not in the instruction stack must be fetched
over the IDBUS, the four bytes containing the desired byte and
starting on a four-byte boundary are fetched and retained in the
instruction stack. When an instruction byte which is already in the
instruction stack is required, it is simply fetched from the instruction
stack. Immediate operands are considered to be instruction bytes.

It is possible that an 8080 CPU may loop in its instruction
stack, never fetching a new instruction over the IDBUS. A case iii
point is a jump to the current location; the instruction stack would not
reflect any changes that might occur in that instruction in public
RAM. This is a minor consideration; we do not intend that exit from
four-byte loops should be dependent upon another device changing
the looping instructions in public RAM. On the other hand, this
problem should be considered for larger instruction stacks.

The case in which an 8080 CPU writes into its own
instruction stream is more plausible than the case in which another
processor writes into an 8080 CPU's instruction stream, and it is
therefore important to prevent the anomaly in which a processor
would write into its own instruction stream less than four bytes ahead
of the current execution address, yet not execute what it had written
because the instruction stack had not been updated by the write.

The instruction stack may be contrasted with a cache, which
can retain non-sequential data and uses a more complicated
replacement strategy. A cache is thus able to exploit the property of
program locality, which includes most of program sequentiality, but
also much more. Unfortunately, the cache is more complicated to
implement, although it would involve the same number of 1/0 pins,
and it suffers from the severe problem that if it is big enough to
exploit locality, then It is big enough that out-of-date information
becomes a problem. If the only information stored in the cache
consists of reentrant procedures, then this problem is minimal. On
the other hand, if the cache can contain only reentrant procedures,
then much of the locality property is lost. We return to this issue in
our discussion of the 3000 CPU cache in Section 2.5. l.

Unless the 8080 instruction stack were to be made large
enough to allow an instruction in the stack to be used, on the average,
significantly more than once, it would not pay to make the instruction
stack larger than the data path, that is, four bytes. Even assuming a
wider IDBUS data path width, the data path utilization decreases as

37

the instruction stack size increases, as shown in Table 2. Here the
data path utilization is defined to be the number of useful data bytes
in an average bus operation divided by the width of the data path.
The data in Table 2 were collected from the same programs as the
data in Table l, and show the same variability.

Stack Length (Bytes) Average Data Path Utilization

1.0

2 .80 to .95

.60 to .90

8 .35 to .80

16 .20 to .60

Table 2
8080 Instruction Stack Size vs. Data Path Utilization

By setting a bit in a local status register, the 8080 CPU can
cause every IDBUS fetch to be placed in the instruction cache.
Executing in private RAM, the 8080 CPU can therefore access bytes
in sequential IDBUS locations using minimal IDBUS bandwidth.

Our instruction stack requires four eight-bit, tri-state data
latches, four four-bit address latches, and a small amount of control
logic. This is in addition to the latches required for IDBUS data
which is routed around the instruction cache.

Instruction prefetching may be contrasted with a multiple-bus
design. An alternative IDBUS structure would consist of four eight
bit buses; each processor would have access to each bus, and public
memory would be four-way interleaved. This design involves
additional bus control at each processor, and additional bus arbiters.
More importantly, it involves replication of bus address and control
signals. This problem becomes relatively less important as the ratio
of data width to address width increases, but an increased data width
results in increased cost and also in less efficient use of the data word.
A 32-bit data word is common; with 20 address signals, six control
signals, and 32 data signals in each bus, a four-bus structure requires
232 signals, while a single bus with 32•:"4 data bits requires only 154
signals. Our instruction stack design requires only about 68 bus
signals, and corresponds to the four-bus structure in which each bus
has eight data bits, 30 address bits, and six control signals, a total of
176 signals.

On the other hand, multiple buses and interleaved memory
allow more efficient use of the data path. With the instruction stack
design, each write operation requires a full IDBUS cycle and
therefore wastes three bytes of the data path. Other inefficiencies lie
in data reads and wasted instruction bytes. Our instruction stack
allows a data path utilization of from .6 to .9, (see Table 2),
whereas the four-bus design would give a data path utilization of I
(no waste). Assuming that looping in the instruction stack does not
take place, in both cases data path utilization is proportional to
maximum attainable total throughput.

2.5 3000 CPU Structure

The 3000 CPU is a 32-bit microprogrammed processor
module based upon the Intel 3000 chip set [INTB 75).

The 3000 CPU is largely conventional, executing
microprograms from a RAM control store of I K by 32 bits. The
RAM control store is locally accessible, and is also accessible over the
IDBUS. The design of the 3000 CPU is similar to the design of the
8080 CPU in interrupt reception, provision of private memory, and
provision of private 1/0. These aspects will not be discussed further.
However, the problem of interfacing the high speed 3000 CPU to the
IDBUS required a unique solution, and this is discussed in the next
section.

2.5.1 Cache

Depending upon the macro-instruction set, one 3000 CPU is
capable of almost fully loading the IDBUS. We intend to experiment
with the design of instruction sets which reduce IDBUS loading, but
microprogramming alone cannot efficiently take advantage of the
dynamic locality of programs.

Fortunately, there has been much work done on the design of
caches to decrease average memory access time [KA P73]. The dual
role of a cache is that it can dramatically decrease the loading of a
shared memory bus.

Our cache has a capacity of 256 buckets, each containing 32
data bits, 20 address bits, and two control bits: valid and modified.
Addresses presented to the cache control are 28 bits, specifying a full
IDBUS word address. Addresses, data, and control bits are presented
to the cache under microprogram control; the cache is simply a RAM
with special control logic to perform certain cache operations without
microprogram intervention.

The microprogram uses the cache in three modes as follows:

I. Reading. If the address is a cache hit, then read
from cache, otherwise create an empty cache bucket,
read from IDBUS, store the address and data into
cache, set modified to false, set valid to true, and
read from cache.

2. Writing a non-shared address. If the address is a
cache hit, then set modified to true, store the data,
and exit. Otherwise, create an empty cache bucket,
set valid to true, set modified to true, and store the
address and data.

3. Writing a shared address. If the address is a cache
hit, then set modified to false and store the data. In
any case, perform a write over IDBUS.

In order to create an empty cache bucket, first the cache
resident to be removed is chosen by direct addressing (hashing) using
the address of the new cache resident, and if modified is true in the
resident to be removed, then the resident to be removed is written
over IDBUS.

Shared and non-shared locations are determined by software
convention, and are differentiated by a special address bit. The 3000
CPU macro-instruction address space is thus folded; a real IDBUS
location has one name as a shared location and another name as a
non-shared location.

Our highest-level programming language will be modeled
after Concurrent Pascal [BRl74], and will require explicit
declaration of shared variables. The addition of a special address bit
to differentiate between shared and non-shared variables causes
problems for processors which have access to only a small address
space and therefore cannot afford to fold that space, eg., the 8080
CPU, but such processors will treat all variables as shared and will
not have caches.

The strategy outlined above for performing reads and writes
uses minimal IDBUS bandwidth; besides reads of addresses which
are not cache hits and writes of evicted cache residents, only writes to
shared addresses require use of the IDBUS. This reduction in
IDBUS loading is accomplished by maintaining redundant data in
the various caches, and so provision must be made for keeping the
redundant data consistent. Each 3000 CPU cache continually listens
to the IDBUS for writes. Whenever the cache detects an IDBUS
write, the IDBUS address being written is stored in a 28-bit buffer.
The buffer is emptied by invalidating the cache resident having the
address which was overwritten, if there is such a resident. Emptying
the buffer occurs between processor requests to access the cache; this
operation is implemented in hardware. There is no problem with
buffer overflow, since the cache can be examined and a bucket
invalidated significantly faster than the IDBUS write cycle time, and
such buffer emptying operations have priority over microprogram
requests for cache operations.

Writes over the IDBUS are not partitioned into writes to
shared locations and writes to non-shared locations, therefore more
cache operations are done than necessary, since optimally only writes
to shared locations would affect every cache.

38

Incorrect results are obta.ined if two different. 3000 CPU:s
attempt to write into the same address and use the non-shared nam1~
for the address. We count on a specially constructed high level
language with concurrency primitives to prevent this type of error.
Such a language is important for reliable programming with
concurrency, regardless of the hardware. Brinch-Hansen discusses
this issue [BRI73].

The 3000 CPU has the capability to perform an IDBUS read
or write without using the cache. This capability is used by
convention when accessing the mutual exclusion flags in 1)rder t1)
prevent synchronization problems that would be caused by the
existence of multiple copies of these flags.

A !though our 3000 CPU design uses only random MSI and
SSI in addition to the Intel 3000 chip set, the design can be
partitioned into a small set of LSI chips. In the LSI implem1entation,
the cache might operate without microprogram control, inte!rcepting
all IDBUS accesses except when explicitly inhibited, and als10
monitoring the IDBUS for writes to resident addresses.

3. Proe-ress and Goals

We have completed the construction and debugging of a
nucleus system containing one 8080 CPU, the IDBUS ARBITER,
and several peripheral controllers, and have commenced con:struction
of the remaining peripherals and a 3000 CPU. These devices will be
completed by the middle of 1976. Several additional CPU's will then
be added.

In parallel with the hardware construction, we are prnceeding
with the design of an operating system and a compiler for Concurre111t
Pascal. The philosophy in writing the operating system is toi do task
scheduling dynamically in order to create an environment in whiclli
the physical implementation does not have to be explicitly considered
during programming.

4. Conclusion

Very low microprocessor costs allow us to consider connecting
microprocessors together to form a low-cost extensible multiprocessor.
To keep costs minimal, a central bus is used, and hardware in each
processor exploits properties of programs in order to reduce IDBUS
loading. Such hardware can be incorporated into LSI microprocessc1r
chip sets with little additional cost.

The bus arbiter is centralized in order to reduce bus access
time, which is important when bus utilization is low. Th·~ arbitE!r
uses a FIFO scheduling discipline to bound bus lockout time.

Maximum flexibility of scheduling disciplines is provided by
including a resettable interruptee register for each interrupt wndition,
and extensibility ls retained by directing an interrupt to the
appropriate interruptee over the central bus.

Acknowlede-ements

This research was performed while the author was ;:i. Fanniie
and John Hertz Foundation Fellow. The work was partiatny
supported by the Joint Services Electronics Program under contraict
NOOOl4-75-C-0601. The author wishes to express appreciation for
the cooperation of Intel Corporation and of the Stanford Artifici:ll
Intelligence Laboratory.

Appendix

3000 CPU[0:3]
These devices are processors based on the Intel 3000 chip set.
Control store is IK 32-bit words of RAM. The 3000 CPU has lK
32-bit words of private memory accessible by microprogram. A 512-
bucket cache is used to reduce IDBUS loading.

8080 CPU[0:7]
These devices are processors based on the Intel 8080 CPU chip.
Each contains private memory and has a 4-byte instruction cache
used to reduce IDBUS loading. The 8080 CPU can access the entire
IDBUS address space; less frequently referenced areas are accessed by
indirection.

CRT CONTROLLER (CRT)
This device controls a standard raster-scan video monitor. It
continuously reads lines from the PUBLIC RAM and displays them
on the monitor, requiring less than 31. of the IDBUS bandwidth. It
requires a data structure in RAM consisting of a linked list of lines of
ASCII characters, with the head of the list at any location. Character
fonts are stored in a special RAM accessible over IDBUS and are
variable. The CRT never interrupts any processor.

IDB US
The IDBUS is the only communication path between devices. It has
a data path width of 32 bits, and an address width of 28 bits plus
four byte-select signals.

IDBUS ARBITER
The IDBUS ARBITER arbitrates control of the shared bus IDBUS.
It has two classes of request ports, priority ports and FIFO ports.
The priority ports handle requests in fixed priority order, and the
FIFO por.ts handle requests in FIFO order.

IDBUS MONITOR
The IDBUS MONITOR continually monitors the IDBUS and the
IDBUS ARBITER. In a 256-bucket buffer, the IDBUS MONITOR
records for each IDBUS cycle, or for a random sampling of IDBUS
cycles, the grantee, the slave address, and a floating-point time
interval since the last recorded IDBUS cycle. This buffer interrupts
when full, and can be read over the IDBUS.

KEYBOARD CONTROLLER (KBD)
This device is the IDBUS interface for an ASCII keyboard.

MUTUAL EXCLUSION FLAGS (MUTEX)
MUTEX consists of 256 flags, addressed as memory and organized as
one per 32-bit word. Two operations are defined for these flags: test
and-set and clear. These flags are used to easily implement mutual
exclusion.

PUBLIC RAM (RAM)
The PUBLIC RAM consists of 16K 32-bit words of MOS dynamic
memory having about 300 ns access time and 500 ns read cycle time.
During a write, any bytes of the addressed word may be
independently inhibited from being written.

PUBLIC ROM (ROM)
The ROM consists of lK 32-bit words of reprogrammable MOS
read-only memory having about 1.5 us access time. It is read over
IDBUS and is used to bootstrap the system at power-on time.

REAL-TIME CLOCK (CLK)
The CLK is a 32-bit counter which increments at 10 us intervals. It
will be used for time-of-day calculation and high-resolution interval
timing. It delivers all 32 time bits when read. It has the capability to
interrupt at the 32-bit alarm time which is stored in a single alarm
register addressed as a memory location, and it has the capability to
interrupt at timer overflow.

UART
This ts the interface to a standard UART.

39

BAU75

BEL71

BRI73

BR174

DEC73

DIJ68

FLY72

HEA73

References

Baum, A., and Senzig, D., "Hardware Considerations in a
Microcomputer Multiprocessing System," Proc. 1975 IEEE
Computer Conference, pp. 27-30

Bell, C. G., and Newell, A.,"The IBM 7094 I, II," Computer
Structures: Readings and Examples, McGraw-Hill, 1971,
pp. 517-541

Brinch-Hansen, P.,· Operating Systems Principles, Prentice
Hall, 1973

Brinch-Hansen, P., "Concurrent Pascal: A Programming
Language for Operating System Design," California
Institute of Technology Information Science Technical
Report 10, 1974

Digital Equipment Corporation, Peripherals Handbook,
Maynard, Massachusetts, 1973

Dijkstra, E. W., "Cooperating Sequential Processes," in
Programming Languages, (F. Genuys, ed.), Academic Press,
1968, pp. 43-112

Flynn, M.]., "Some Computer Organizations and Their
Effectiveness," IEEE Transactions on Computers, Vol. C-
21, No. 9, September, 1972, pp. 948-960

Heart, F. E., et. al., "A New Minicomputer/Multiprocessor
for the ARPA Network," Proc. AF/PS 197.J National
Computer Conference, Vol. 42, pp. 529-537

HWA 74 Hwang, K., et. al., "Multiprocessor System Design:
Architecture, Control, and Hardware Organization," IEEE
Computer Group Depository No. R 74-84, 1974

INTA 75 Intel Corporation, Microcomputer Systems Manual, Santa
Clara, California, January, 1975

INTB 75 Intel Corporation, Intel Data Catalog, Santa Clara,
California, 1975

JOR74

KAP73

LAM68

LEH66

RAV73

REY74

SHE68

Jordan, Bernard W., and Baatz, Eric L., "C.MUP .•
Northwestern University's Multimicrocomputer Network,"
Proceedings of the 1974 IEEE Symposium on Computer
Networks: Trends and Applications, pp. 51-56

Kaplan, K. R., and Winder, R. 0., "Cache Based
Computer Systems," Computer, Vol. 6, No. 3, March, 1973,
pp. 30-36

Lampson, B. W., "A Scheduling Philosophy for Multi
processing Systems," Communications of the ACM, Vol. 11,
No. 5, May, 1968, pp. 347-360

Lehman, M., "A Survey of Problems and Preliminary
Results Concerning Parallel Processing and Parallel
Processors," Proc. of the IEEE, Vol. 54, No. 12, December,
1966, 1889-1901

Ravindran, V. K., and Thomas, T., "Characterization of
Multiple Microprocessor Networks," Proc. 197.J IEEE
Computer Conference, pp. 133-135

Reyling, G., "Performance and Control of Multiple
Microprocessor Systems," Computer Design, Vol. 13, No. 3,
March, 1974, pp. 81-86

Sherry, S. S., and Flynn, M.]., "Addressing Patterns and
Memory Handling Algorithms," Proc. AF/PS 1968 Fall
joint Computer Conference, Vol. 33, pp. 957-967

TH064 Thornton,]. E., "Parallel Operation in the Control Data
6600," Proc. AF/PS 1964 Fall joint Computer Conference,
Vol. 26, pp. 33-40

A HIERARCHICAL, RESTRUCTURABLE MULTI-MICROPROCESSOR ARCHITECTURE

R. G. Arnold
Laboratory for Computer Science and Engineering

Department of Electrical Engineering
Rice University

Houston, Texas

Al:lSTRACT

This paper introduces a system architecture whic~
allows a high degree of restructuring so that system
resources may be tailored to processing requirements.
The proposed system organization consists of a large
number of byte-slice processors interconnected through
a system of busses. Each processor is capable of com
municating with every other processor in the system and
any number of adjacent processors may be strung to
gether to create a wider arithmetic capability than is
possible with a single processor. Processors may be
organized into a number of independent teams while
processor teams may, in turn, be organized in a hierar
chical fashion to allow for concurrent processing.
Processor teams may function either in cooperation with
or completely independent of other processor teams.

All communication throughout the system consists
of information packets containing the data to be trans
ferred and a series of tags which indicate the destina
tion address for the data and the action to be taken by
the processor upon receipt of the information packet.

Two types of busses are employed: Conventional
busses and the circulating loop (or Pierce loop). The
circulating loop moves an information packet in a fixed
direction a uniform distance in each unit of time and
therefore allows independent data transfer operations
to be carried out simultaneously. Several examples il
lustrate the utility of the proposed architecture.

I NT RO DUCT I ON

Computer technology appears to be reaching a point
of diminishing returns in attempts to increase the
basic speed of a large-scale processor. Regardless of
the advances in hardware technology, there have tradi
tionally been requirements for architectural innova
tions to gain increased speed and capabilities as well
as added flexibility. Historically, the major concerns
for parallel designs centered upon the efficient uti li
zation of hardware resources. With the recent revolu
tion in the capabilities and economics of large-scale
integration technology, the cost of a basic central
processing unit has decreased to the point where it is
no longer a significant fraction of total system costs.
At present, the cost of software development is of
major concern even in conventional architectures and
will likely be the limiting economic factor in archi
tectures which have been developed to exploit program
parallelism. This paper is directed towards the de
velopment of fundamentally different computer archi
tectures for the efficient utilization of an aggregate
of the newly available microprocessors operating con
currently to gain increased computational power.

In order to realize the potential advantages of
the concurrency of operations possible in multiple
processor systems, an adequate system for communication
and control among a multitude of processors must be de
veloped. In the past, multiple-processor systems em
ployed only a small number of complete processors or
large numbers of slaved functional units and were
structured accordingly. The communication between
processors has often been achieved through the use of
a dedicated set of channels, multi-port memories, a

40

E. W. Page
Department of Electrican and Computer Engineering

Clemson University
Clemson, S. C.

cross-bar switch, time-shared busses, or combinations of
these methods; typically, the control arrangements have
become less flexible as the number of processors in
creased. Thus, systems of the past are often unwieldy
and impractical in terms of current desires.

2' 3
T. C. Chen has demonstrated the weaknesses in

traditional concurrent systems and provided motivation
for the development of multiple-processor systems that
are loosely coupled with a high degree of local intel-
1 igence and autonomy. In his discussion on the eff -
ciency of traditional, tightly coupled, concurrent sys
tems, Chen shows that for small deviations from the
ideal, perfectly parallel task to a real task with small
amounts of serial or sequential requirements, the ef
ficiency of a tightly coupled, concurrent system takes
a precipitous drop. The efficiency falls initially at
a rate of M-1 where M is the number of parallel elements
in the system; the greater M is, the more significant
the impact of less than perfectly structured, perfectly
para! lei problems. Since no two problems are ever
quite the same, this also provides motivation to have
the system adapt to fit the problem rather than dis
torting the problem to make it amenable to solution by
the data processing system.

As a result of considerations such as those pre
viously mentioned, a new system of processor should
meet the following requirements;

1. A large number of processor modules should be
possible.

2. Uniformity of modules from the point of view of the
communication/control structure should exist.

3. Each processor module should be capable of communi
cation with all (or most) other processor modules.

4. Blocks of processors should be able to function as
a team, independently of other teams.

5. A hierarchy of control should be possible as shown
in Fig. 1.

6. A dynamic ability to reconfigure the system (i.e.,
rearrange the hierarchy of control) to fit the
system to the problem, thus allowing the system to
appear as a Von Neuman machine, a parallel array
processor, an associative para! lel processor, etc.,
as required.

]. Considerations such as reliability, fault-tolerance,
and graceful degradation demand the incorporation
of redundancy and a capability for dynamic
reconfiguration.

The system described here has been developed to
satisfy the preceding requirements.

GENERAL SYSTEM OVERVIEW

As illustrated in Fig. 2, the proposed system con
sists of a number of modules containing microcomputers
and ancillary circuits connected by a series of busses,
loops, and SHORT or BLOCK/SHORT modules. All inter
processor communication takes place on the various

busses. Each processor has its own independent memory
and is capable of performing any of the system tasks
assuming it has been suitably programmed. Along with
the various elements of hardware in the system, a basic
system philosophy and a set of communication protocols
are required. It is intended that this system be re
structurable and capable of being organized in a hier
archical fashion. As such, there will generally be one
processor (any processor) responsible for overall
system action. This processor designates subordinates,
establishes the chain-of-command and directs its imme
diate subordinates in the tasks they are to perform.
In order to implement this philosophy, the following
basic characteristics/protocols wi 11 be incorporated
into the design:

1. Each module will be named, both with a unique, per
manent name, a 11 P-name 11 and with a name that is
changeable, a 11V-name. 11 Each V-name consists of
two parts: A Block or team name and an element
name. All communication is carried out by tagging
or addressing the information with the destination
V- or P-name and placing it on a bus. Thus, data
or commands may be passed to a module by specifying
both the block and element names or to all modules
in a block by specifying the block name and 11 XX 11

for the element name where 11 XX 11 specifies a 11 uni
versa 111 name to which a 11 modu 1 es respond. Like-
wi se, information can be passed to all modules
simultaneously by specifying 11 XX, XX 11 as the V-name.

2. All commands sent by a master or controlling module
must be taken in by its subordinate and acknowl
edged. The subordinate queues the commands pending
the arrival of the appropriate operands.

3. Task completion must be signaled.

4. Several adjacent processors may be strung together
to form a wider arithmetic ability than would
otherwise be available.

5. All communication throughout the system wi 11 con
sist of information packets containing the data to
be transferred and a series of tags. Since each
processor is identified by a name, all ambiguities
associated with the transfer of information are
resolved through the use of the processor names.
In addition to the destination P- or V-name, each
packet wi 11 contain tags uniquely associating the
operands with the commands in a possible queue or
other temporary storage medium. For data packets,
a 1 bit tag will also indicate the order of the
operands for non-commutative operations.

DESCRIPTION OF SYSTEM ELEMENTS

The heart of each system module is the micro
computer itself. Each microcomputer, the microproc
essor with its memory, wi 11 be microprogrammed to pro
vide all the basic functions of a standard processor
and to respond appropriately to the actions of the
system. It should automatically perform overhead type
tasks. For example, it should maintain a queue of com
mands and automatically acknowledge the receipt of com
mands. Generally, the programs would consist of a
series of subroutines whose call would be initiated by
commands received from more superior elements of the
hierarchy.

Each processor must have a priority interrupt
capability such that interrupts occurring below the
processor 1 s priority level are masked. It must also
have lines for the 11 carry out 11 generated by an arith
metic operation or left shift. Likewise, it should
also have a 11 carry in 11 capability. Gurrently available
processors organized on a bit slice basis provide

41

these features. 9 There is no requirement as to word
length, speed, etc., for the processor.

Communication between processors is provided by the
system of busses. There are two basic types of busses
employed in the system: Conventional time-shared busses
and circulating busses. The circulatin~ bus or C-Bus,
often referred to as the Pierce Loop, 6 • • 8 can be con
ceptually considered to be a circulating loop that moves
a packet of data in a fixed direction a uniform dis
tance in each unit of time. Any user can transmit by
placing an information packet on the bus anytime a gap
in the circulating traffic appears at its location.
Each user must continually monitor the traffic pa·ssing
its location. When a user recognizes that a packet
passing its location contains its address (or name),
the user removes the packet from the bus. The packet's
former position in the traffic stream is now a gap,
free to be filled with a new packet by any user. The
C-bus thus provides a temporary memory or queue of in
formation and is a means by which several independent
data transfers can be carried out simultaneously.
There are two classes of C-busses, the DONE busses and
DATA bus. Their functions will be explained later.
Conventional busses are of the typical 11 party line11 ar
rangement having one transmitting user and many re
ceiving users at a time; the CMD (Command) and ACK/NAK
(Acknowledge/Negative-Acknowledge) busses are of this
type. Each of the conventional busses is equipped with
a bus controller to arbitrate conflicting requests for
the bus for transmission. Any user desiring to trans
mit must be granted permission by the controller.

The functions of the busses can also be separated
into two divisions: Data transfer and control. In
order to control the system efficiently, several sets
of busses providing command and control capabilities
have been grouped together. Each set will collectively
be termed a Control Group (C.G.). Each Control Group
competes for attention from each processor on a pri
ority basis much as in the case of a priority interrupt
system. The Master Control Group (M.C.G.) is the
highest, most significant priority or O~ level (C.G.O.).
Each additional Control Group is on level 1, 2, etc.
Each Control Group other than the Master can be blocked/
terminated at the left edge of any processor by activa
tion of the BLOCK/SHORT module. By this it is
meant that conventional busses are blocked, circulating
busses are 11 shorted 11 or the loop is closed. Each
Control Group consists of a CMD bus, a DONE bus and an
ACK/NAK bus. The CMD bus carries commands to proc
essors. When a processor name matches the name attached
to a command on a CMD bus at level 11n, 11 an interrupt to
the processor is generated on interrupt priority 11n. 11

If the processor priority is lower than 11n, 11 the inter
rupt is accepted and the command is recognized as des
tined for this processor. A processor recognizing a
command is obligated to reply positively on the ACK/NAK
bus if the command can be accepted into its command
queue. Otherwise, the processor replies with a nega
tive acknowledge or NAK. The DONE bus provides the
means by which the command processor can acknowledge
the completion of the required task.

Data transfers are carried out on the DATA C-bus.
A data item is placed on the DATA bus in the form of an
information packet containing the data and the destina
tion processor name. As the packet circulates around
the bus, the destination name is compared to the name
of each processor. When a match occurs between the
name on a data item and a processor, that processor is
signaled and it is obligated to remove the data item
from the bus.

The basic bus formats for information packets with
an explanation of the various fields is given below:

CMD BUS

1~ I NAME

DATA BUS

I
p

I NAME v

DONE BUS

Iv I Name

ACK/NAK BUS

I v I NAME

OPERATION

OPERATION

OPERATION

COMMAND

I~ I DATA

P/V 1 bit that indicates that the content of
the name field is to be interpreted as a
module's permanent name (P), or its V
name (V) .

Name the name of a processor. When inter
preted as a V-name, it consists of 2-
parts, the block and the element name.

Operation # -- Each command sent to a module is num
bered and held in memory in numerical
order by the receiving processor until
its operands are present and there are
no commands having a lower number in
memory. The operands are uniquely
identified as belonging with a parti
cular command by a matching Operation #.

1/0

DATA

A/N

In the DATA bus format, this indicates
the order of the two operands for non
commutat i ve operations.

The actual operands, etc., transmitted
on the DATA bus.

1 bit that indicates the positive ac
knowledgement (A) of the receipt and
acceptance of a command or a negative
acknowledgement (N) indicating that the
named module is unable to accept or
perform the required operation.

The SYNC/CARRY LOOP also transfers data through
out the system. It is designed to transfer information
shifted or "carried out" from the arithmetic section
of a processor to the arithmetic section of another
processor. This al lows several processors to function
as a single multiprecision arithmetic unit. The SYNC/
CARRY LOOP passes through each processor module and
has no storage of information. By activation of the
appropriate SHORT modules, as shown in Fig. 3, the
LOOP may be gated through the processor proper or past
it. In a similar manner, it may also be "shorted" at
the left edge of each processor module, i.e., it may
be broken into two closed loops at the left end of the
module.

In addition to the various busses, the items men
tioned previously as BLOCK/SHORT modules and SHORT
modules perform an important function in the implemen
tation of a hierarchical structure. The BLOCK/SHORT

42

modules are a part of every Control Group except the
Master Control Group. Their function is to divide a
Control Group into independent sections. This allows
several teams of modules to operate independently ~n
the same Control Group. Each BLOCK/SHORT module is
controlled by the processor to its immediate left. Fig
ure 4 illustrates the utility of the BLOCK/SHORT mod
u!es. Here C.~. 1 is broken into two independent parts
with each section functioning just as if it were a com
plete C. G. Processor 2,1, for example, can then con
trol 3,1 and 3,2 without any interaction with other
processors on C.G. 1.

BASIC I Li..~ISTRAT ! ONS

The system, when viewed in an unstructured idle
configuration, will appear as a collection of p~oc
essors ~rranged in a cylindric fashion connected by a
collection of busses. However this structure whPn
viewed in an active state, wili generally be divid~d
into a col!e~t!on of teams of processors in a hierarchy
of respons1b1l 1ty and control. Structuring takes place
in the following fashion:

1. Initially, the user will designate a processor as
the master and load its memory with the appropriate
programs. This processor then begins execution.

2. The master would decide which of the various proc
essors will perform particular tasks.

3. The master commands each processor in turn to load
the program being sent to it over the DATA bus.

4. Each processor then sets its V-name and priority to
the values sent it on the DATA bus upon command of
the master.

5. The appropriate modules are then commanded to acti
vate their BLOCK/SHORT or SHORT modules as
required. '

. For.example, the hierarchy shown in Fig. 5 may be
defined 1n the system by activating the appropriate
BLOCK/SH~RT modules, naming the processor appropriately
and specifying their priorities or the level on which
the module expects commands. The o.!!:!_ module has been
established with the V-name of 11 1,1 11 and designated as
the most superior element in this structure. Modules 1
and 5, assigned V-names of 11 2,2 11 and 11 2,1, 11 respectively,
are both directly controlled by 11 1 ,1 11 and expect com
mands at the O!b_ priority level, i.e., from the master
control group. Module 1 (named 11 2,2 11

) controls di·
rectly the three modules 2, 3 and 4 (named 3,1; 3,2;
3,3; respectively) through commands on the control
group at the 12_! priority level. Note that since the
BLOCK/SHORT modules between 0 and 1 and between 4 and 5
have been activated, this group of proc~ssors is capa
ble of completely independent action without inter
actio~ with other modules on the Control Group level 1.
Assuming that the appropriate control modules in the
SYNC/CARRY loop have been activated as shown, modules
11 3,XX" could be considered as an arithmetic functional
unit of 3·n precision where n is the word size of a
given module. Module 11 2,2. 11 would be the controller for
this arithmetic section.

As another example, consider a parallel array proc
essor. This configuration, using an arithmetic capa
bility of 2·n bits would appear as in Fig. 6. Again
each level in the hierarchy is controlled on a dif
ferent level control group. Module 11 1, 111 is the system
controller and actually contains the program to be ex
ecuted. Each of the modules 11 3,1 11 through 11M+2,2"
contains the appropriate data elements as in any

parallel lll:lrray processor. Module 11 1, 111 would control
each of the functional groups A, B, ... by placing a
command with the appropriate destination name on the
Master Controf Group CMD bus for the specific control-
1 ing module desired. Processor 11 1,1 11 can control all
the functional groups simultaneously with one command
addressed to 11 2,xx. 11 Thus, as in the case of a paral
lel array processor, a single ADD, MULTIPLY, etc.,
command could cause all M functional groups to perform
the required operation on the appropriate operands in
each of the independent memories.

In the case that restructuring is required (due to
problem changes or hardware failures), the master need
only cause the system to pause while it proceeds
through the structuring phase again, etc. It is as
sumed that the master can interrupt any processor by
commands on C.G.O which can never be blocked.

Although the preceding discussion and examples
have only two C.G. 's and result in three levels of
hierarchy, there could be several more C.G. 's. This
would allow several more levels of hierarchy and, at
each level, each processor would appear as a master to
all those processors subordinate to it.

The following points should be noted:

1. All data transfers take place on the DATA bus.
Therefore, this bus wi 11 be a bottleneck and its
performance will seriously affect the total system
throughput. The DATA bus must therefore be a very
high speed bus.

2. In order that a group of m processors be connected
to form an m·n bit arithmetic section, they must
be adjacent or broken only by single modules opera
ting on a different hierarchy level.

3. Although the master controller usually would com
municate only with the modules one level below it
in the hierarchy, it can send commands to any
module through the master control group. It,
therefore, can begin corrective action by re
assigning names, etc., should a fault occur.

OBSERVATIONS AND CONCLUSIONS

The utility of the system proposed here depends
upon the amount of hardware and software overhead re
quired and the latency in the interprocessor communi
cations. Based on the work of Hayes and Sherman, it
can be shown that, on the average, in a light to mod
erately loaded system, the expected delay to place an
information packet on a C-bus, and consequently the
total message communication rate, is well within the
practical limits for useful systems. Assuming a
number of processors communicating with all other proc
essors symetrically on a bus with a 1 .5 x 106 word/sec
rate with each processor transmitting at~ rate of
50 x 103 word/sec, Hayes and Sherman show that each
processor can expect a delay of less than 0.7 µs. 7 On
the other had, Avi-ltzhak 1 has shown that, in the
heavily loaded case, a deadlock situation can occur
where competing groups of processors 11 see-saw11 control
of the bus, locking out all other processors. There
fore, it is important that the meaning of 11 heavy, 11

11moderate·, 11 and 11 light 11 loading be determined quanti
tatively. Worst-case figures must be computed and the
potential for deadlock eliminated.

As is evident from the examples, only a limited
number of Control Groups are likely to be used. It
will be necessary, however, to determine exactly how
many levels of hierarchy and hence of Control Groups
are required to provide a generally useful organiza
tion meeting the criteria mentioned earlier.

43

Since the system is to be constructed in a modular
fashion with a uniform communications interface between
modules, the direct.physical configuration of a system
to serve as a small real-time controller or other fixed
task system should be simple and straightforward.
Following a 11 divide and conquer 11 philosophy, each
module would be given a single fixed task and would be
responsible for or to a small constant set of other
modules thus reducing the problems inherent in handling
multiple tasks or interrupts in real-time.

A point of major concern is the cost of the soft
ware required to support a system of the type proposed
here and the difficulty of preparing user programs.
While more research is necessary in this area before
conclusions can be drawn, the complexity of the support
software is reduced by the simplicity of the C-bus con
cept and by the intercommunications protocol which is
largely hardware controlled.

An interesting point is that the proposed architec
ture can be configured for the execution of data-flow
programs. 4 , 5 The difficulty of preparing data-flow
programs is no more difficult than preparing programs
for conventional machines since it is not necessary to
explicitly detect parallelism. To execute data-flow
programs, system processors, or perhaps processor teams,
would be assigned as operators in the data-flow program.
Each processor would be directed to distribute copies
of its computational results to destinations indicated
by the links of the program. The flow of data tokens
is represented by the flow of operands on the DATA bus.
The flow of control tokens in the form of packets
transmitted on the control busses forces data-flow
programs to enforce the firing rules.

In conclusion, an organization of microprocessors
intercommunicating over a series of busses and having
a restructurable, hierarchial control philosophy has
been presented. Although the development of this
architecture is by no means complete, it is hoped that
the problems indicated and will yield a flexible multi
processor architecture that allows restructuring of
system resources to tailor them to processing
requirements.

REFERENCES

1. Avi-ltzhak, B., 11 Some Heavy Traffic Characteristics
of a Circular Data Network, 11 Bell System Technical
Journal, Vol. 50, No. 8, pp. 2521-2549, Oct. 1971.

2. Chen, T. C., 11 Distributed Intelligence for User
Oriented Computing, 11 AFIPS Conference Proceedings,
Vol. 41, Part 11, pp. 1049, 1972.

3. Chen, T. C., 11 Parallelism, Pipelining and Computer
Efficiency, 11 Computer Design, Vol. 10, pp. 69-74,
1971.

4. Dennis, J. B., 11 First Version of a Data-Flow
Procedure Language, 11 Symposium on Programming,
lnstitut de Programmation, University of Paris,
Paris France, pp. 241-271, Apri 1 1974.

5, Dennis, J.B. and Misunas, D. P., 11 Preliminary
Architecture for a Basic Data-Flow Processor, 11

2nd Annual Symposium on Computer Architecture,
p"'i):"" 126-132, Jan. 1975.

6. Graham, R. L. and Pollak, H. 0., 110n the Addressing
Problem for Loop Switching, 11 Bell System Technical
Journal, Vol. 50, No. 8, pp. 2495-2519, Oct. 1971.

7. Hayes, J. F. and Sherman, D. N., 11Traffic Analysis
of a Ring Switched Data Transmission System, 11 Bell
~tern Technical Journal, pp. 2947-2978, Nov. 1971.

8. Pierce, J. R., "How Far Can Data I.oops Go?" IEEE
Trans on Communications, Vol. Com-20, pp. 52t="5°r0,
1972.

9. Rattner, et al., "Bipolar LSI Computing Elements
Usher in New Era of Digital Design, 11 Electronics,
Vol. 47, No. 18, pp. 89-96, Sept. 197

1 DIRECTLY CONTROLS 2,3

3 DIRECTLY CONTROLS 4,5

Fig. 1. Example of a Hierarchical Structure

....
Oct.
Cl<:::>
>-0
ZDC
0" v

PROCESSOR

NOTE: ONLY TWO (THE MINIMUM) CONTROL GROUPS RAVE BEEN SHOWN
SEVERAL MORE WOULD BE DESIRED

Fig. 2. Hardware Organization.

THRU SHORT

Fig. 3. SHORT Modules.

44

/

- --\

---""---M~~..__-~~-t+---t+---t<--:·:J)

Fig. 4. A Hierarchical Organization.

___ - Repre11nt1 flow of information
on SYNC/CARRY loop

")
.1---1-'--~~---...j.....4.--~~-----l~~-...!-+---+-+--/

r-~----ifa-......a...::=..:.--&,.l---..+-__...,--8!1-+-----fjll--+--o~-M----+-------l~r+--+----fio!:~-~
"'"- _,

PROCESS~R MODULE
2 4

V-NAME

' PRIORITY
PERMANENT LEVEL
NAME

LEGEND

Fig. 5. A Hierarchical Organization Employing a Multiple Precision Arithmetic Unit.

le VII 0

I eve I

Fig. 6. An Array Processor.

45

A MULTIMICROPROCESSOR APPROACH
TO NUMERICAL ANALYSIS:

AN APPLICATION TO GAMING PROBLEMS

Robert McGill
and

John Steinhoff

Research Department
Grumman Aerospace Corporation

Bethpage, New York 11714

Abstract

A parallel processing system is described that con
sists of a minicomputer host and a set of bipolar microcom
puter modules. It is argued that such a system in which the
microcomputers operate with little mutual interaction should
be effective for an important class of problems in numerical
analysis. In particular, estimates are given for the opera
tion of the system on a problem in gaming theory. In this
problem, the extensive I/O and software capabilities of the
minicomputer provide ease of use for a large part of the
problem. The relatively simple part of the problem, which
requires almost all of the computational time, is executed
in parallel on the microcomputers. It is argued that the
system, with 10 to 20 modules, would offer one to two
orders of magnitude more speed at several orders of magni
tude less cost than current large general-purpose machines.
The potential for the development of new algorithms that
exploit fully the characteristics of the new devices is
discussed.

1. Introduction

The recent introduction of low cost bipolar micropro
cessors has made it possible to build very fast microcom
puters for control and simple numerical processing. In this
paper we consider the use of these microprocessors togeth{lr
with low-cost bipolar random access memories (RAM) for
solving a certain type of large scientific numerical analysis
problem. These devices are incorporated in simple, in
expensive computing modules that can perform a (limited)
class of computations as fast as a large, general-purpose
machine. A system comprising one or two dozen of these
modules connected to a host minicomputer is proposed.
This type of system should be very efficient for solving cer
tain problems requiring a large number of simple computa
tions, each with limited accuracy. Such problems may be
wasteful of the resources of large, general purpose
machines, and our approach should provide an effective
alternative.

A study is made of a gaming problem whose solution
requires the generation of a very large number of trajec
tories, each of which has to be tested for decision and win/
lose conditions at many time points. The algorithm is sim
ilar to Monte Carlo techniques, for which the use of simple,

special purpose machines has been considered
1

.

The program divides naturally into a game simulation
routine and an executive routine that initializes each game
and makes decisions based on previous games. Although
almost all of the computations are done by the game simula
tion routine, it is not very complicated and programming
each module (which is microcoded) for this function is not
too difficult. The rest of the program, which requires much

46

of the software effort, is programmed in a high level langu
age on the minicomputer, which also provides the](/ 0
function. The gaming algorithm considered is easilly adapted
to the above scheme, and, since the entire game calculation
is performed in each module, the only communication
requirements are between the host and the modules. Also,
the total time spent transferring data is small, and, for
the number of processors considered, there should be little
communications conflict.

The particular problem studied originated from an
aerial combat analysis program being carried out at

Grumman
2

. An estimate is made of the time and cost
required to solve this problem on the proposed system and
compared with estimates for an IBM 370/168. In addition
to the gaming problem, some other problems for which the
system should be effective are briefly considered.

The main point of this paper is to show that with
currently available bipolar devices a system can be econom·
ically developed to solve certain numerical analysis
problems that might be too costly or otherwise impractical
to solve on large general purpose machines. Even without
an automatic operating system, the time required to con-·
figure and microcode the modules should be considerably
less than the analysis that went into the original problem
formulation. This effort might lead to a numerical solution
that otherwise could not be obtained.

2. The Multiprocessor System

The system as configured to solve the gaming problem
is depicted in Fig. 1. A Data General minicomputer is used
as host to the modules. Since the microcomputers should
cost less than $2000 each, the entire system including one or
two dozen modules represents about twice the cost of the
original minicomputer.

For the gaming problem, as will be explained in Sec
tion 4, it is only necessary to transfer data between each
module and the host. Also, each module executes the same
program independently of the others, but with different data.
Except for program loading, the modules and the host each
ope~ate under their own control. During operation, the de
cision to transfer data to or read data from the memory of
the host is made by the modules, based on computed condi
tions. The data is then transferred via the direct memory
access (DMA) channel of the minicomputer. For the number
of modules considered and for the present problem, the
amount of time each module spends transferring data will be
small compared to the total computing time. Thus, access
conflicts to the DMA channel should be infrequent. In this
case it is only necessary to use a priority encoder and a
decoder to resolve conflicts, as described, for example,
in detail in Ref. 3. This system selects a device and then

locks out all others until the transfer is completed. Since
the modules execute identical programs the performance
should be independent of the particular type of priority
scheme (fixed, circulating, wait time dependent, etc.) and
the fixed scheme, which is the simplest, is used. Each
module enters a wait mode from the time it requests data
until this data is received.

If the amount of data to be transferred were larger or
if more modules were used, this simple scheme would be
inefficient and a more sophistfoated system would be neces
sary. The entire control and data flow scheme, however,
is quite problem dependent and it seems best at this time to
configure the system for the problem, rather than develop
a general purpose scheme - especially since the cost of
implementing these specific schemes is not too high. Some
interesting possibilities for controlling complex systems of
modules, based on graph models of computation, are given
in Ref. 4.

Some other multiprocessor systems which use a
Multiple Instruction, Multiple Data stream (MIMD) approach
similar to ours are:

• Carnegie Mellon's C. mmp
5

- A set of 16 mini
computers communicating with memory modules
through a crosspoint switch. Our processor
modules are much cheaper and faster than these
minicomputers, but do not have the flexibility and
software support. Also, in our system, each
module only has access to a single large memory
in the host and its own small local memory

• The computer module set described by Fuller,

Siewiorek and Swan
6

- These modules, like ours,
are intended for special purpose application and
also have individual local memories. There is no
general purpose host, however, to coordinate
activity and store infrequently used code. Instead,
this code is distributed among the local memories,
accessible to each module through a set of inter
module buses which would only directly connect
nearby modules

• The multimicroprocessor system described by

Senger7 is similar to ours, but the microproces,
sors do not have individual control units. Instead,
the processors are treated as resources and, when
available, can be acquired by a controller through
a hardware scheduler. There is a control unit for
each instruction stream, but the number of pro
cessors need not equal the number of instruction
streams.

The following are examples of modular systems that
are configured specifically for a particular problem. Some
idea as to the advantages of this approach, for some pro
blems, over using a general purpose machine can be gotten
from these references.

• A set of microprogrammable modules, described

by Cooper
8

- Reflects the basic idea that complex
arithmetic and logical functions can be implemented
by a set of identical modules connected together
specifically for the task. These modules are gen
eral building blocks and not constrained to operate

47

in a particular configuration

• The CDC Modular Change Detection System
9

-
This system, much larger than ours, consists of a
set of 40 similar modules connected to each other
and to a general purpose computer. Performing
320 million instructions per second, it implements
a special algorithm to process image data at a
cost reduction of three orders of magnitude, com
pared to standard, general purpose machines.

3. The Computing Module

The basic module, currently being constructed, con
sists of an Intel 3000 series bipolar microprocessor set,
bipolar RAM and Schottky TTL MSI and SSI devices, as
sembled on a wire-wrap board. The module is arranged in
four main sections (see Fig. 2):

• 16 bit Arithmetic Logic Unit (ALU)

• 256X16 bit Data Memory (DM)

• Microprogram Control Unit (MCU)

• 512X28 bit Microprogram Instruction Memory
(MIM).

The full cycle time of the module is 145 ns. while the memory
access time is 40 ns., so that the design possibilities are
somewhat different from standard processors whose cycle
time is memory limited. The operation of these units for
one cycle is as follows:

3.1

• The ALU can decode an instruction and execute an
arithmetic or logical operation

• The MCU can compute a new address for the MIM

• The MIM can output a microprogram instruction
for the next cycle

• The DM can write a data word computed in the
previous cycle and read a new word for the next
cycle

• The MIM can be independently addressed by another
module for a second read operation.

Microprogram Instruction Set

The MIM word has 4 fields:

• Jump - 7 bits used by MCU together with internal
:flags and carry from ALU to generate next MIM
address

• Flag Control - 4 bits used by MCU to set internal
flags and generate carry input for ALU

• ALU Control - 8 bits decoded by ALU for operation
on data in one of 11 internal registers or on the
DMbus

• DM Addressing - 9 bits used to form DM address,
for write control and for loading of the Memory
Address Register (MAR).

3. 2 DM Addressing

There are 3 addressing modes: .

• The (8 bit) address is taken from the MAR

• Considering the memory as a 16X16 word matrix,
4 bits from the MAR specify the column and 4 bits
from the MIM word specify the row. This mode
allows any one of 16 words in a column to be
addressed directly by each microinstruction once
the MAR is set up

• 4 bits from the MIM word specify one of 16 words
in the first column, creating effectively 16 addi
tional directly addressable registers.

Once addressed, a data word can be read from the
DM in one cycle, operated on by the ALU in the next, and
written back into the same location in the following cycle.
This sequence of operations requires one microinstruction
and a set of these operations can be executed at the rate of
one per cycle. This capability requires little extra hard
ware (2 address registers) and a fast memory, and turns
out to be very useful for the algorithms that we use, where
variables are "updated" at each of many time points (see
section 4).

The use of fast bipolar RAM, in addition to saving
cycles normally required for some store operations, also
results in shorter basic cycle times. Also, since the
modules execute the same program the MIM can be shared
(this sharing is completely automatic - the modules remain
functionally independent). Thus, the cost of the bipolar
RAM, which would otherwise be a dominant factor, is re
duced to about that of the microprocessor chip set.

At present, we do not have a hardware multiply capa
bility. Although a device could be made fairly cheaply using
standard Schottky TTL parts which would perform a 16 bit
multiply in several of our basic cycles, the trade-offs in
volved in including it are different here then in conventional
computers: The cost of our modules is low and they are
to be replicated as many times as is feasible so that the
total cost of the multiply capability might become a signi
ficant fraction of the entire system. Also, the high data
throughput of our module can make it possible to compute
certain functions very rapidly without performing any multi
plications (except for multiple shifts). It will be seen that
the requirements of our particular gaming problem can be
satisfied in this way. Future problems, however, will
most likely require that at least some of the modules have a
hardware multiply capability and this can be included at that
time.

Some recently developed processors which are similar
to burs are described in Refs. 10, 11and12. These
machines are intended for dedicated signal and image pro
cessing, but have the following features in common with
ours:

• Separate data and instruction memories

• Overlapped instruction fetch, execute and data
fetch

• Microprogrammability

48

• Reliance on a general purpose computer (host)
for mass memory and I/ O

• Cycle time in the range of 50-200 ns. (the 50 ns.
machines use ECL technology)

• Dedicated operation.

In addition, these processors have some features that
ours does not, such as multiple, more sophisticated arith
metic units. The more general numerical analysis pro
blems that we plan to attack result in algorithms having
more branching possibilities and less regularity than signal
and image processing algorithms and do not seem to be able
to make efficient use of such micrcparallel structures.
Instead, we approach our problems with a macroparallel
structure consisting of a set of independent, simple modules.

4. The Gaming Problem

The gaming problem studied here is based on an al
gorithm being developed at Grumman for evaluating the
effectiveness of an aircraft and its weapons systems in

aerial combat
2

• A dogfight between two aircraft is simula-·
ted where the controls of each plane are adjusted according
to the observed position of the opponent. To provlde a
simple but realistic simulation, information available to
each pilot is assumed to be limited, and discrete visually
discernable regions are defined so that controls can only
be changed when.an opponent moves into a new re~P,on.

The algorithm consists of two phases: In the first a
sequence of runs are made (by the modules), each consis
ting of a simulated dogfight where the controls are chosen
for each region according to weighted random variables ..
Each run continues until win, lose, or draw conditions are
met. Based on the outcomes, the values used to weight the
control choices are adjusted (by the host) and new runs are
made. When the weighting values converge, a control
strategy is available for the next phase. The second, o:r
statistics, phase consists of a large number of the samo
aerial combat simulations, but the players use the best
strategy (most heavily weighted control choices) developed
in the first phase. The number of wins and losses for a
sequence of initial conditions in the second phase determine
the aerial combat effectiveness of the vehicles.

The program is meant to be used as a tool to determine
the effectiveness of various changes in the characteristics
of an aircraft in aerial combat situations. Thus, the pro
gram must be used many times with different values of :para
meters such as maximum velocity or turning radius. F'or
this reason the computational time for an evaluation canmot
be too long.

4. 1 Implementation

The host is programmed in a higher level language for
the executive function, which includes maintaining a stack of
initial conditions, storing and updating the tables of weight
ing values and keeping track of the statistics and the c011-
vergence of the tables. Also, the memories of the modules
are loaded from the host when it initiates the prog;ram.

Each module is programmed to independently compute
an entire game. At the start of each game the module
requests a set of initial conditions and initial controls from

the host. It then computes and integrates the velocity pro
files of the two vehicles. At each time point it tests the
distance between the vehicles as well as relative position
and heading angles to determine whether a new visual region
has been entered, or a win, lose or draw achieved. If a
new region has been entered, the relevant control variables
are requested from the host and the game is resumed. If
termination conditions are met, the outcome of the game as
well as the regions entered and the corresponding control
choices (in the "learning" phase) are transmitted to the host
and a new game is started. The modules always use the ·
DMA channel of the host when requesting or writing data,
and compute the relevant memory locations.

4. 2 Computational Requirements

Although the executive routines in the host, together
with the weighting tables account for most of the memory
requirements, almost all of the computations are done by
the modules in generating and testing the trajectories.
Therefore, we tried to use algorithms that would do these
calculations in the least time.

The control choices for the vehicles, as well as the
trajectory equations are quite simple and the accuracy
requirements are minimal. The problem is that a very
large number of games have to be played, in each of which
these trajectories have to be computed at many time points.

We chose a scheme similar to a (sequential) digital
differential analyzer for these computations: Complicated
functions are written in terms of differential equations,
which are then integrated. Also, products are written in
differential form and, when one of the variables changes by
a specified amount (a power of 2-signaled by the carry from
an accumulator) the product is incremented by the other
variable, shifted by the appropriate amount. Implicit equa
tions can be solved by varying the unlmown so that the
equation is satisfied to within certain bounds.

An example of the technique used is the transformation
from Cartesian coordinates (x, y) to polar coordinates
(R, 9), where (x, y) are the relative coordinates of the
vehicles and (R, 9) are the relative separation and angle,
and

x = R cos 9

y = R sin 9.

At the start of the game the exact Rand 9 are computed by
the host (this represents a negligible overhead). As the
trajectories are computed x and y are changed. The
algorithm is then used to compute new polar coordinates
(R

0
, 9c)' which are no longer exact but are close to the

correct transformations. These approximate coordinates
satisfy (to first order) the requirement that

x = R cos 9
c c c

and
y

0
= R

0
sin 9c

be close to x and y. Each algorithm cycle R
0

and 9 are changed by a certain amount, a new x and y
c c c

found and the new errors lx-x I, IY-Y I computed. The c c
process continues until the errors are less than a specified
amount. The property that makes this technique very fast

49

is that by choosing certain increments for R
0

and 9
0

new

values of x
0

and y c can be computed with only a shift and an

add (see Fig. 4). The change in R
0

, which we call a stretch
-n

is chosen to be aR2 R , and the new R is
I -If~ C C

R
0

= R
0

+ aR2 R
0

•

The corresponding new values of x
0

and y
0

are

x '= x +a 2-nx
c c R c

I -n
y c = y c +aR2 y c'

where aR = 0, +l or -1 (see Fig. 3).

For the rotation,

9 '= -m c 9c+a92

and

where a
9

= O, +l or -1 (see Fig. 4).

For our algorithm, n and m are kept fixed and aR and a
9

chosen to keep lx-x I and IY-Y I within certain bounds. c c
If n and m are chosen so that the changes in x

0
and Y

0
for

the above operations are not too different from the changes
in x and y from time point to time point along the trajectory,
only a :few iterations will be needed at each step.

This technique is similar to that used in a fast curve

generation algorithm
13

and in the Cordie algorithm
12

'
14

These schemes can be made quite accurate, but in our case
this does not seem to be necessary since the process we are
modeling (a human pilot) has only crude perception of the
relevant quantities.

4. 3 Performance Predictions

At present, only a two dimensional case is being run
(constant altitude) on a general purpose machine, and the
control choices are restricted to left/ right turn or straight
flight, and accelerate/ decelerate or steady speed. This
initial study is being used to determine the feasibility of a
full three dimensional analysis. The two dimensional pro
gram, coded in Fortran IV, takes about three hours on an
IBM 370/168, and it is estimated that the three dimensional
case would take between 100 and 1000 hours, depending on
the amount of operator intervention.

About 80, 000 games (both phases) are required for the
two dimensional case. In each game there are about 2000
integration steps, and about 40 region changes where a new
control choice must be made and stored. The large number
of games required is due to the fact that over 300 regions
were defined for each player with up to 6 control choices
in each.

To determine the total computational time for our
system to run the two dimensional case, we need to lmow
the number of module cycles necessary to perform the

trajectory computations at each integration step and the time
required to transfer data to and from the host at each region
boundary. From the micro-code already developed for the
module and from the data channel characteristics of the
minicomputer, we estimate that the:re are about 100 cycles
required and 20 µ.s. data transfer time. Also, we have to
take into account the time that the host spends updating the
tables and computing initial conditions (about 20 i..e. per
region). Even though this time is insignificant when the
problem is done sequentially it may be important here.

·Based on the above numbers, and the 145 ns. basic
cycle time we have:

• Module computing time per game;

tM Rl2000x100x145 ns. = 29 ms.

• Data transfer time per game;

tD RI 40x20 µs. = . 8 ms.

• Host computing time per game;

tH Rl40x20 µ.s. = . 8 ms.

When the data channel to the host is being used, neither the
module communicating to the host nor the host can do any
computation. Thus, the time required per game for each
module is

tM + tD R130 ms.

and for the host

tH + tD RI 1. 6 ms.

If the number of modules N is much less than tM/tD there

will be a negligible amount of communication conflict be
tween modules and the total computing time will be

TRI 80, ooo x max (tH + tn', (tM + tD)/N).

Using this approximation for N .:S 10, since tM/tD F::J 36,

we have

T Rlmax (2.1, 40/N) minutes.

Since the three dimensional case was estimated to take 30
to 300 times longer, the time required for our system with
10 modules to perform the full three dimensional analysis
should be a manageable 2 to 20 hours.

5. Extensions of the System

There are two basic extensions that we can make to
the system.

The first only involves software changes and perhaps
minor modifications to the modules. The basic data trans
fer structure, however, would be kept fixed. This system
should be applicable to algorithms similar to the one

1
studied, such as Monte Carlo techniques and (systematic)
multidimensional global searches. As in the gaming pro
blem, a large sequence of computations must be made, each
computation depending only weakly on the others. Also,
although requiring a large amount of computer time, these
problems frequently involve only simple codes and modest
storage and accuracy requirements and can be wasteful of
the resources of a large general purpose machine.

50

A more involved extension of the system would be to
include inter-module communication. This modification
would most likely be necessary for the efficient solution of
partial differential equations. However, if a certain class
of very time consuming problems were. chosen and the sys·
tem configured specifically for them, this modification
should not be too difficult. Certainly, the change would be
very simple compared to developing a general inter-module
communication scheme.

6. Conclusion

A multiprocessor system that solves a gaming pro
blem has been discussed. The problem is one of a general
class that requires the playing of large numbers of "games".
In each of these the trajectories of two or more vehicles are
computed and tested for decision and win/lose conditions at
many time points.

The system uses a minicomputer (with extensive soft
ware and r/ O capability) as an executive (host) and multiple
microcomputers to implement the basic game computations.
This system requires only one type of interconnection: host
to microcomputer module. After microcoding the module
part, via the host, existing software can be used for the
complex executive part (where speed of executive is not
critical, but ease of use and flexibility are). With this
architecture, the computational speed should increase al
most directly with the number of modules, up to 10 to ~W
for our particular problem.

This approach, although relatively simple, only
became practicable in the past year with the advent of the
bipolar microprocessor. This device forms the basis of a
complete miCrocomputer module with small memory but
high computation speed - of the order of the IBM 370/168
(145 ns. cycle time) at a total cost of under $2000 (not in
cluding development costs). Thus, 10 to 20 of these modules
and a host mini can now be assembled for about double the
price of the minicomputer system ($80, 000).

The particular gaming problem that we study arises
in the evaluation of various systems in aerial combat man
euvers. Feasibility studies indicate that a reali:stic three
dimensional problem would require several hundred hours
on an IBM 370/168 to solve. Also, for a meaningful study,
several solutions would have had to be obtained as vari.ous
parameters are changed. Thus, the usefulness of the
algorithm in determining the effectiveness of various sys··
terns in aerial combat requires that both the time and the
cost of obtaining solutions be reduced by one to two orders
of magnitude. Preliminary studies, based on a Data
General minicomputer and a system of 10 modules, indicate
that the solution time can be reduced by a factor of 50 to a
manageable 2-20 hours.

Equally important in its affect on the performanc:e of
our system is the length of time it can be economically and
practically run on the problem. This system could easily
make a 10-hour run, with less expense and probably less
turn-around time than a 1-hour run on a large machine.
Thus, it seems reasonable to claim for the problem con
sidered a factor of about 500 increase in efficiency for our
system compared to an IBM 370/168.

In addition to the gaming case, our system should be
directly applicable to other areas, such as global searches
or global optimization. These problems, like olllrs, fre-

quently do not have large memory or accuracy requirements
and can be very wasteful of the capabilities of large com
puters. They can, however, require enormous amounts of
computation.

Our main point has been to show that with currently
available bipolar devi~es a system can be economically
developed to solve certain numerical analysis problems that
might be too costly or impractical to be solved on large gen
eral purpose machines. Even without an operating system,
the time required to configure and microcode the modules
should be considerably less than the analysis that went into
the original problem formulation, and the additional effort
might lead to a numerical solution that otherwise could not be
obtained.

Acknowledgement

Many of the features of the microcomputer were
suggested by Martin Kesselman, who is currently designing
and building the first module.

References

1. Yu. A. Schreider, The Monte Carlo Method, Perga
mom Press, New York, 1966, esp. Ch. 1. 8. Also,
E. Sadehand M. Franklin, "Monte Carlo Solution of
Partial Differential Equations by Special Purpose Com
puter," IEEE Trans. Comp., C-23, p. 389 (1974).

2. M. Falco, G. Carpenter and A. Kaercher, "TheAnaly
sis of Tactics and System Capability in Aerial Dogfight
Game Models, " Grumman Research Department Report
No. RE-474, (1974).

3. D. P. Siewiorek, "Process Coordination in Multimicro
processor Systems," Microarchitecture of Computer
Systems, EUROMICRO, (1975), p. 1.

4. s. S. Patil, "Micro-Control for Parallel Asynchronous
Computers," Microarchitecture of Computer Systems,
EUROMICRO (1975), p. 17.

5. W.A. WulfandC. G. Bell, "C. mmp-A Multi-Mini-Pro
cessor, "AFIPS Conference Proceedings, Vol. 41
(FJCC 1972), p. 765.

6. s. H. Fuller, D. P. Siewiorekand R.J. Swan, "Computer
Modules: An Architecture for Large Digital Modules,"
Proc. Symp. on Computer Architecture, (1973), p. 231.

7. D. Senger, "A Multiple Instruction Stream Processor,"
Microarchitecture of Computer Systems, EUROMICRO
(1975), p. 71.

8. R. G. Cooper, "Micromodules: Microprogrammable
Building Blocks for Hardware Development," Proc.
Symp. on Computer Architecture (1973), p. 221.

9. P. J. Klass, "Analyzer Pinpoints Radar Changes,"
Aviation Week and Space Technology (May 26, 1975).

10. J. Allen, "Computer Architecture for Signal Processing,"
IEEE Proceedings (April 1975), p. 624.

11. G. Zimmermann, "SPDM -A SubprocessorWithDyna
mic Microprogramming," Microarchitecture of Com
puter Systems, EUROMICRO (1975), p. 149.

12. J. Staudhammer, "A Fast Display-Oriented Processor,"
Proc. Symp. on Computer Architecture, (1974), p. 17.

13. P. E. Danielsson, "Incremental Curve Generation,"
IEEE Trans. Comp. C-19, (1970), p. 783.

51

14. J.S. Walther, "A UnifiedAlgorithmforElementary
Functions," Spring Joint Computer Conference Vol. 38
(1971), p. 379.

Figure 1: Multiprocessor System

ARITHMETIC
ARRAY

..J
DATA 0

a: CJ')

I- CJ')

z UJ

0 a:
(.) a

a (.'.) <! ADDRESS, CONTROL

i ci
a:

o..' (.) DATA
::;;; ~
~

MICRO INSTR 256 x 16
CONTROL DATA

UNIT MEMORY

Figure 2: Microcomputer Module

ADD SHIFT
.......

a-
'--------~

-o·

Figure 3: Stretch Operation; Q = x
0

, Y c' Rc

SUBTRACT

2·n Ye~[_-_------~,---.,,..--' /

/

/

//SHIFT

~--~~'
2·n xc---.. [=- -=- -=- 1 '

ADD
'SHIFT

Figure 4: Rotate Operation

A MODEL OF INTERFERENCE

IN A SHARED RESOURCE MULTIPROCESSOR*

John E. Jensen and.Jean-Loup Baer
Department of Computer Science

University of Washington
Seattle, Washington

Abstract

This paper presents a generalized model of
tightly-coupled multiprocessor systems which is then
simplified to form a stochastic model for the study of
interference. Analysis is performed on the resource
contention which is characteristic of such systems in
order to find a measure of system performance. After
reviewing the problem of memory interference, the
analysis is extended to contention in other individual
resources, then combined to form a model for the
interacting effects of contention in systems where
processors contend. for several shared resources.

1. Introduction

Recent design proposals and realizations [4,10,11]
have included multiprocessors in attempts to meet the
expanding demand for high-performance systems. A
solution to the need for improved efficiency lies in
the distribution, duplication and sharing of hardware
resources. Unfortunately this leads to situations
in which a given unit may receive several simultaneous
requests for service (e.g. a memory module). The
result is degraded performance, or interference,
measured by comparing actual machine performance to
the ideal case for which there is no contention. This
paper presents a generalized model of tightly-coupled
multiprocessors with highly shared computing resources.
Analysis is then performed on the resource contention
in order to find a measure of system performance.

The best known contention problem is when proces
sors and IO controllers interfere in their access to
main storage. Analytic models with exact solutions
exist for two processor systems [8] via Markov chain
methods, but the general case becomes too complex,
precluding a precise solution. F'or a solution in
closed-form one has to introduce simplifying assump
tions in order to prevent the analysis from becoming
unwieldy. A series of models have been introduced
in which a prototype instruction is assumed and its
execution rate (IER) analyzed for a variety of multi
processor types [9]. Closed-form solutions are
obtained for IER in terms of parameters which relate
typical design characteristics of the memories and
processors. In addition, cache memories may be intro
duced to the processor-memory interface [3]. In this
paper, we extend previous formulas [9] to include
cache memories, and then propose a more general one
for systems in which processors contend for several
resource classes as well as primary memory.

2. The Machine Model

2.1 A General Shared Resource Multiprocessor
Figure 1 shows a general model of a shared

resource multiprocessor (SRM) in PMS notation [2].
The example was chosen purely for ease in description
and conservation of space, with the design of more
specific configurations being one of the objectives
of the model. 8 central processors P.c share 16
modules of primary memory M.p.through a central
processor-memory switch S.mp. Each P.c possesses
some local memory M.c and a set of mapping registers
D.map which define its access to main memory.

*This.research was supported by NSF grant GJ-41164.

52

The P.c's have no arithmetic power, performing
only load, store and branch instructions. Other
instructions are memely fetched and decoded, while
operands are sent to a shared set of pipelined
execution units D.e via a common request bus L.req.
The P.c's are arranged into 2 time-shared rings by
S.ring, which creates a maximum overlap of computing
with a minimum bandwidth required in the request
bus [4]. Input-output is initiated to IO controlle1::s
in the same way as a request for a D.e. When an "IO"
instruction is executed, a request is sent to an
appropriate K.io and the P.c is allowed to continue.
IO-completion interrupts cause the appropriate P.c to
be interrupted [5].

A special controller K.sched is provided for
assigning new tasks to P.c's, with two options for
flexibility in the scheduli.ng mechanism. In the
"floating control" scheme [5,7] P.c's perform their
own scheduling under the control of K.sched. Under
11 fixed control", K.sched serves each request by
returning the entry point of the new task in memory,
while a dedicated processor P.sched (with associated
M.a for the scheduling tables) constantly supplie-s
K.sched with the next task to be assigned for
execution.

2.2 Examples of the Model
The generality and versitility of the model may

be illustrated by examining some current designs.
C.mmp [11] is a set of 16 asynchronously executing
PDP-ll's (each with local memory) which access main
memory through D.map's and S.mp. The ring structure
and D.e's are missing since each P.c has its own
complete processing capability. C.mmp's IO system
is similar to its memory system in that the P.c's are
connected to busses supporting the IO controllers by
the S.kp switch. Scheduling is handled by the oper
ating system without any additional hardware.

Figure 2 is a conception of Texas Instruments'
ASC [10]. A single P.c feeds instructions to 4 high
speed pipelined D.e's which consume streams of vector
operands under the control of re&isters found in M.c.
The most interesting feature is the "peripheral
processor" which performs the control and data-manage·
ment functions for the ASC, and is actually a ring
of "virtual processors" (P.v).

Figure 3 emphasizes the ring structure aspects
by modeling Flynn's SRM [4]. It has 4 rings of 8
P.c's, and uses L.req and D.e's as in the model. The
P.c's have no D.map or S.mp, but access memory
through buffers. Cache memory M.c is associated w:Lth
each ring. No mention is made of IO, and scheduling
is done under program control through a standard
fork-join construct.

2.3 The Simplified Machine Model
The model described thus far requires too much

detail to be studied at the instruction level, hence
we capture some of its generality into a more manage
able form in Figure 4. Centrally located is S.mp
which provides access by the P.c's and K.io's to the
M.p modules. The specialized scheduling processor
P.s (with memory M.a) makes all policy decisions
regarding the activation of user and operating system
tasks as well as allocating the system's resources.
IO consists of three subsystems, representing the
common IO speeds anticipated.

The multiprocessing resources consist of synchro
nized processor rings (3 in the figure) with a set of
independent pipe-lined D.e's which are capable of per
forming all arithmetic functions (except divides) with
the same latency. Each ring consists of skeleton P. c' s
and corresponding M.c's connected by a processor-ring
switch S.p. The purpose of the time-multiplexed
switch [4] is to select the P. c. that is to be con
sidered "active" during each time-slice of the ring,
and to coordinate all communication between the P.c's
and the D.e's and the remainder of the system.

The instruction units use 'an instruction set which
is patterned after the SRM [4]. Each of the 8 skeleton
P.c's begins its instruction-fetch sequence one minor
cycle behind its predecessor on the ring. In one major
cycle each P.c will prepare one instruction for execu
tion to take place during the subsequent one. A 60ns
minor cycle is assumed [1,10], resulting in a 480ns
major cycle which provides ample time (120ns) for
finding operands in an implicit cache. In the case
where an access to main memory is required ("miss" on
the cache), 600ns should be more than sufficient to
perform the transfer (120ns plus one major-cycle delay)
and still maintain the synchronous timing of the
processor ring.

3. The Resource Contention Model

3.1 The Memory Interference Problem
In this section, we introduce an analytic model

for general resource contention used to estimate the
losses due to interference between processors re
questing identical resources. We begin by examining
memory interference (the request by more than one P.c
for the same M.p module) using expected values for the
number and types of instructions executed. The com
bined effects of the hardware speed arid memory con
flicts are characterized by a single entity, the in
struction execution rate (IER), for which we calculate
and estimate.

The P.c's and M.p's are viewed as a stochastic
service system in which the M.p's represent m servers,
each capable of serving one of k P.c's. Each server
handles only those requests directed toward it,
serving them in order of arrival and queuing those
occurring when it is busy. The M.p's are characterized
by a constant service time (access time) followed by an
interval of unavailability (rewrite time) before sub
sequent requests can be serviced. P.c's are character
ized by the amount of elapsed time between the comple
tion of service on one memory request and the genera
tion of the next one.

The problem is made more tractable with a few
simplifying assumptions. Although processor behavior
varies with different instruction types, the probabil
ity distribution of instructions, the average frequency
of memory requests, and the average time required to
execute one instruction can be determined. The access
pattern of each processor is assumed to be random, and
no distinction is made between read and write requests.
We simplify further by considering each instruction to
be a series of instances of a "unit instruction" con
sisting of one memory access followed by a fixed (mean)
interval of processor activity.

3.2 An Analytic Model for Memory Contentiog
In Strecker's formulas for the "unit execution

rate" [9], the execution sequence is considered as a
Markov process, consisting of a series of "unit
instructions", from which we may calculate the rate
of memory service. (The principle parameters are
defined in Table 1.) The unit instruction begins when
an address is received by one of the m modules of M.p
at S.mp. Ta is the time required for the memory
control to set up the switch and for data to be
delivered. Tw is the time required for the module to

53

recover and become ready for the next request. Tp
begins for each of the k active P.c's when it receives
data from an M.p, extending through the computation
until the P.c has a new data address. The "computa
tion" done in this "unit instruction" may be an
instruction decode, an (indirect) address computation,
or the actual execution of a machine instruction.
Several of these unit instructions comprise one com
plete machine instruction.

The unit execution rate (UER) is the number of
unit instructions executed per unit time. In terms of
the service times Sm and Sp [9]

UER = m * [l - (1-Pm/m)k] / Sm
such that k

Pm= 1 - (m/k) * (Sp/Sm) * [l - (1-Pm/m)].
The analysis is split into three cases (bases upon the
relationship between Tp and Tw) which may be combined
to form composite equations for the service times as

Sp ~ Tp9Tw and Sm = Ta+Tw - (Tw9Tp) * (1-Pm/m)
k

(where a9b = a-b if a>b, and a9b = 0 if a~b). The
complete equation for the unit execution rate is then

k
UER = _ __;m:;;._.*__..[-=1----=(l;;;_-_P_m_,_/_m.c.-) _].._____

Ta+Tw - (Tw9Tp) * (1-Pm/m)k
where

Pm k 1 - (m/k) * (Tp9Tw) * [l - (1-Pm/m)].

Ta+Tw - (Tw9Tp) * (1-Pm/m)
k

In order to solve the Pm equation, we examine the two
cases Tp~Tw and Tp>Tw. In the first case Pm=! and
we are done. In the second case the denominator
simplifies to Ta+Tw, resulting in a k-th order poly-

·nomial in Pm. Since the two sides of the equation are
monotonic in opposite directions on the interval [O,l],
for a given set of parameters we may solve for Pm in
this interval and obtain the UER from the first
equation above.

We extend this model by associating with each P.c
a cache memory with access time Tb and "hit ratio" Pb.
Th_e effect of this addition is that with probability
Pb, the memory request will be satisfied in the cache
(hence no M.p service) while with probability 1-Pb,
a normal memory cycle will be required. For the case
where Tp~Tw it has been shown [3] that

Sp Pb*(Tp+Tb) + (1-Pb)*(Tp-Tw)
and

Sm Pb*(0 + (1-Pb)*(Ta+Tw)
such that Pm equals

k 1 - m*[Pb*(Tp+Tb)+(l-Pb)*(Tp-Tw)] * [l-(1-Pm/m)].
k * (1-Pb) * (Ta+Tw)

This new Pm equation has a single solution in the
interval [O,l] as in the previous case. We may
generalize this formulation to include the case
where Tp<Tw [6], but the memory being considered in
this model is relatively fast, so the case Tp~Tw is
sufficient, yielding

k UER = m * [l - (1-Pm/m)]
(1-Pb) * (Ta+Tw)

where Pm is determined from the above formula.

3.3 Modeling Multiple-Resource Systems
Previously, a unit instruction was defined in

terms of memory access frequency, with all other
aspects of the instruction being considered as
"processor activity", or Tp. Using the same analysis
as above we can determine the effects of multi
processor contention for other shared resources by
extending the notion of a unit instruction to repre
sent one "access" to a resource of ~ given class
(e.g. pipelined D.e's) followed by the average
processing time between requests for that resource
class. The period of time comprising one unit
instruction will, in all cases but for M.p, include
several machine instructions. For example requests
for floating-point multiplies occur in approximately

13% of the instructions for a scientific mix [6], such
that one unit instruction for the multiply resource
becomes 1/0.13 times the length of one machine
instruction.

When main memory is considered as the sole con
tendable resource, the !ER of a system is computed by
first estimating the UER of memory, then dividing by
the number of memory references per instruction. The
UER of memory is computed using Strecker's approxima
tion which assumes an otherwise constant P.c processing
time. A similar set of assumptions will allow the UER
to be. calculated for the floating-point multiply units
(or any other resource), given that some fixed value
can be derived for the remaining "processor activity"
between requests for the multiply units (cf. section
3.4). The !ER can then be calculated by dividing by
the frequency of multiply instructions.

In order to model the UER of other resources, the
parameters used :ln the contention model must be gener
alized. Table 1 defines the set:of resource conten
tion parameters a-z which will be used in the remainder
of this paper. The correspondence in parameter names
for the memory interference example is given in the
table and is illustrated here functionally.

UER (k, m, Tp , Ta, Tw, Tb , Pb) =· h (k, m, t , a, w, b , p)
Table 2 illustrates typical figures for these param
eters applied to a variety of harware resources.

With the introduction of pipelined D.e's, the
number of stages v in the pipelirtes becomes of impor
tance. So far we have assumed that all k P.c's
actively contend for the system's resources at all
times such that UER=h(k, •..). In our machine model,
however, the P.c's are intentio~ally arranged into
time-phased rings of v P.c's each, so that they only
contend with corresponding P.c's from other rings on
the same time-slot, increasing the !ER of the system.
If the system contains k P.c's which are all active,
then there are v separate conterttions (one per time
slice on the processor ring) among goups of k/v P.c's.
In this situation (for a single~resource system)
UER=v*h(k/v, •••) such that

!ER= v * h(k/v,m,t,a,w,b,p) I f.
Suppose now that some P.c's are idle such that

k is less than the total number of P.c's in the system.
The approximation above is optimistic in that it
assumes the k active P.c's to be optimally distributed
over the v time-slots. In particular, if k<v, it
computes the !ER to be better than optimal! The
invalidating factor is that not all v time-slots
necessarily contain active processors. If we assume
the k active P.c's to be randomly distributed, then
c, the expected number of currently active time-slots,
may be determined as was the expected number of busy
memories:

c = v * [l - (l~l/v)k]
and hence

!ER c * h(k/c,m,t,a,w,b,p) /f.

3.4 The Model for Combined Resources
We have shown how the UER of each resource class

may be determined, from which we calculate the"per
formance measur(~ IER=UER/ f. In order to combine the
analyses of the individual resources, we normalize this
measure to the number of processors by the "processor
execution rate" PER=IER/k. We also define the "effec
tive execution rate" EER=IER(k)/IER(l) which measures
the performance in terms of the number of effective
processors, and the "multiproce.ssor efficiency"
EFF=EER/k, which gives a directi measure of the
degradation caused by contention in the system.

We now combine the analyses of the individual
resources to fo:rm a model for the interacting effects
of contention. Consider a system of k processors with
n resource classes, each characterized by a set of
parameters {m,v,a,w,b,p} (e.g. Table 2). We calculate
the UER f©r each resource class i (assuming that we

54

know ti' the average time between the completion of

service and the generation of the next request for
resource i) by substituting the appropriate paramE~ters
into

hi= h(zi,mi,ti,ai,wi,bi,pi).
Allowing the unknowns zi and ti' an equation for L,
the expected length of one complete machine instruc
tion, may be obtained from L=l/PER in terms of th1~ UER
of the i-th resource:

l/L = (hi/fi) I zi

with zi, the average number of processors in cont1:>.ntion
for resource i, being computed as

k
zi = k/ci where ci = vi * [l - (1-1/v:I_)] .

The remaining unknown ti was defined earlier
(for systems with ti ~ wi such that one unit instruc-

tion for class i has length ti+ai. (We have assumed

for simplicity that pi=O. Otherwise ai may be re

placed by the appropriate expression in ai, bi and

pi.) However, ti is not a function solely of the i-th

resource (as assumed earlier), but rather of the execu
tion rates of the n-1 other resources. Thus the
equation above contains two unknowns, L and ti. In

order to eleminate ti, we repeat the above 1:>.quation

for the n resource classes and add a constraint to
form a system of n+l equations in n+l unknowns
{t

1
,t

2
, ..• ,tn,L}. The constraint is that L must be

the sum of the access times per instruction of each of
the n shared resources, plus the service time of the
non-shared resources in the skeleton processor (t:imE~
required to decode, index, and issue instructions).

To obtain an equation for this constraint, con-
sider the example of Figure 5. Shown is a six
instruction sequence for a system with three resource
classes: two M.p modules, an add and a multiply un:lt.
(We assume an access time of 3 minor cycles and a
rewrite time of 2 minor cycles for M.p, for a major
cycle time of 8 minor cycles.) The time occupied by
communication ai between the processor and each re
source is shown by solid lines in the figure, with
dashed lines representing the other activities w:L"

Occasional delays di, represented by dotted-lines, are
caused when the requested resource is busy serving
requests from another processor (e.g. the first
multiply is delayed 1 major cycle). Requests to
functional units are sent on the last minor cycle of
the instruction, with the result available exactly
one major cycle later (cf. a2 's and a

3
1 s and their

associated w
2

1 s and w
3

1 s). The skeleton processor

looks only one instruction ahead and hence need not
worry about potential register conflicts. This was
also subsumed in our concept of a unit instruction.

The individual times may be summed in order to
form a constraint on the length of each machine in-·
struction, as demonstrated in Table 3. The total
elapsed time for one unit instruction on r1~source i. is

ti + ai + di,

where di is the average delay due to contention for

the i-th resource. (Thus the table entries for ti may

be found by subtracting ai and di from the total t:l.me

elapsed). We use this expression to determine a.n
expected value for the length of one compl,ete machine
instruction L in terms of the i-th resourc.e

L = (ti+ ai +di) * fi.

The i-th resource occupies time (ai + di) *fi out of

each instruction, which may be solved from the equation

above to yield
(ai +di) * fi = L - ti* fi.

If we let Lo be the time required per machine instruc
tion by the skeleton processor, we have as our con
straint equation

L = Lo + ¥ { L - ti*fi }.
;1.=l

This completes our svstem of equations. which has
a unique solution that may be determined numerically.
The knowledge of L implies that of PER as defined
previously and hence that of IER. The analytical
solutions thus achieved are in accordance with the
results from simulation presented in Table 4. The
example system in Table 2 was simulated, with resource
request frequencies determined by random draws from
four typical instruction mixes [6]. The resulting
instruction lengths are compared with the contention
free instruction lengths computed by ignoring time
lost waiting for resources.

4. Summary and Conclusions

A general model of a large, tightly-coupled
multiprocessor system has been introduced and shown to
be capable of representing several recent design
proposals and realizations. It was then reduced to
a more specific model of a shared-resource multi
processor for use in an analytical study of resource
contention. By examining first the problem of inter
ference in main memory, we have been able to abstract
previous results [3,9] to find closed-form formulas
for the effects of contention in any individual
resource, on the assumption that the behavior of the
system with respect to all of its other resources is
known. Furthermore, we have combined the analyses of
the separate resources to form a more complete model
when processors contend for several resource classes
simultaneously.

Solving for this model yields a unique solution
which allows a prediction of performance and degrada
tion in multiple-resource systems. Several hypotheti
cal systems have been parameterized through the model,
and the iterative numerical solution has converged to
the correct processor execution rate in each case.
The performance estimates measured by this analysis
have been shown to be reasonable by simulation at the
instruction level, and it is anticipated that future
simulations of systems will make use of this result to
account for hardware resource contention while retaining
a high-level view of the systems being modeled.

References

[l] Anderson, D. W., Sparacio, F. J. and Tomasulo, R. M.
"The IBM System/360 Model 91: Machine Philosophy
and Instruction Handling" IBM J. of R. & D. 11:1
(Jan. 1967), pp. 8-24.

[2] Bell, C. G. and Newell, A. Computer Structures:
Readings and Examples McGraw-Hill, New York, N. Y.,
1971.

[3] Bhandarkar, D. P. "Analytic Models for Memory
Interference in Multiprocessor Computer Systems"
Ph.D. Dissertation, Carnegie-Mellon University,
Sept. 1973.

[4] Flynn, M. J. and Podvin, A. "An Unconventional
Computer Architecture: Shared Resource Multi
processing" Computer 5:2 (March-Apr. 1972),
pp. 20-28.

[5] Gountanis, R. J. and Viss, N. L. "A Method of
Processor Selection for Interrupt Handling in a
Multiprocessor System" Proc. IEEE 54:12 (Dec. 1966)
pp. 1812-1819.

55

[6] Jensen, J. E. "Dynamic Task Scheduling in a
Shared Resource Multiprocessor" Ph.D. Disserta
tion, UniversitY. of Washington (in preparation).

[7] Pariser, J. J. "Multiprocessing With Floating
Executive Control" IEEE Int. Conv. Record, 1965,
pp. 266-275.

[8] Skinner, C. E. and Asher, J. R. "Effects of
Storage Contention on System Performance" IBM
_Systems J. 8:4 (1969), pp. 319-333.

[9] Strecker, W. D. "Analysis of the Instruction
Rate in Certain Computer Structures" Ph.D.
Dissertation, Carnegie-Mellon University, June
1970.

[10] Watson, W. J. "The TI ASC -- A Highly Modular
and Flexible Super Computer Architecture" Proc.
_AFIPS 1972 F.J.c.c.' pp. 221-228. --

[11] Wulf, W. A. and Bell, C. G. "C.mmp -- A Multi
Mini-Processor" Proc. AFIPS 1972 F.J.C.C.,
pp. 765-777.

Table 1 - Contention Model Terminology

Ta effective access time of M.p (service time)

Tw effective rewrite time of M.p (recovery time)

Tp average time between the completion of service on
onememory request and the generation of the next
request by P.c

Tb cycle time of fast buff er memory

Sm time required by M.p to service one request

Sp ti.me beyond memory cycle required by P.c to
prepare the next request

Pb probability of finding the request in buffer

Pm probability that a request is queued at an M.p

a service (access) time of each resource (Ta)

b buffer speed for each resource (Tb)

c number of processor-ring time-slots containing
requests for each resource

d de.lay time caused by contention at each resource

f frequency of use for each resource (ratio of
requests per number of machine instructions)

h the contention function (UER)

i index to the various resource classes

k number of active processors (those to which tasks
are currently assigned)

L length of one machine instruction (inverse of IER
on one processor)

m number of resource units in each resource class

n number of resource classes

p probability of using buffer for each resource (Pb)

t time between completion of service on one request
for each resource and the generation of the next
request for that resource (Tp)

v number of stages in the functional-unit pipelines
for each resource (coincides with the number of
time-slices in the processor rings)

w recovery (rewrite) time for each resource (Tw)

z average number of processors in contention for
each resource

Table 2 - Example of Resource Parameters Table 3 - Timing Summary for the Computation A*B-C*D+E

Resource Class m v a _w __ b __p_

main memory 16 1 600ns 120ns 60ns 0.9

integer add 1 8 0 480ns - 0

Total Occurrences Length of Occurrence
a. w. d. a. wi ~ l. l. __ l._ _'_l._

Total Time Consumed
a. w. d. t.
_..!. _..!. ~ _..!.

floating add 2 8 0 480ns - 0 memory units 11 11 5 3 2 33 22 21 26
multiply unit 2 8 0 480ns - 0

divide unit 2 8 0 1920ns - 0 add unit 2 2 1 1 8 8 2 16 8 70

logical unit 1 8 0 480ns - 0 multiply unit 2 2 1 1 8 8 2 16 8 70

shift unit 1 8 0 480ns - 0

IO controller 4 1 0 12ms - 0 Total Decode Time (Lo) 6
scheduler 1 1 480ns 6µs 480ns 0.9

Total Access Time a. 37
l.

Table 4 - Comparison With Simulation Results

(average instruction length in nanoseconds)
Total Delay Time di 37

Total Time Elapsed 80
Instruction Mix Analxtic Result Simulation Contention-Free

Floating Point 483 477 401 Number of Instructions 6
FORTRAN I/O 650 659 369

X£L/S Compiler 439 443 371
Average Instruction Length 13.3

v. SIMTRAN Simulation 532 535 377
0\

Figure 4 - The Simplified Machine Model

M.p Figure 3 - The Model Applied to Flynn's SRM

M.p

M.p

M.p

M.p

M.p

YJ
L::::::rJ I~

V1
........

Figure 1 - A General Shared Resource Multiprocessor

,---.
I I

,- - -,p .sch~d
I 1 ___ 1

M.p

Figure 2 - The Model Applied to TI' s ASC

s.e

S.e

L.status

s.

p

P.c

s.

B ffiJ
M.a

Figure 5 - Instruction Sequencing for the Computation A*B-C*D+E

LOAD Rl•--A
decode I -

MULTI~Y Rl•--Rl*B

memory . a<l> w<l> a<l> w<l>

LOAD R2 •--C - 1-Miii:rr!;Y R2•--R2*D

a<l> w<l> a<l> w<l> ---- ---
--- -~--lSUBTRACT Rl4-~-R2 ADD Rl•--Rl+E -

d<l> a<l> w<l> d<l> a<l> w<l> -----~ - -- -----------~ - -
I STORE~
- ... uniit ##12 ~;;_;-a<P w<-;----a<l> w<l>

un t ----- ---
J<l> 11<1:> w<l> -----· d<l> a<l> w<l> a<l> w<l> --------------- ---

I add unit

A B c

I
• _. _ 2~3~ _____ a:z_ ----~~ _ I

\multiply
iunit

I mi.nor L.__ ti lp
cycles

2h ...:12 4p_,_._

-----------~-· -- -------···~·---------~--

D E

a<2> v<2> d<2> a<2> w<2> ---------- ----- --------- __ _.

a<3> "1<3> ---------
¥ ¥ ~ i q ~

·---------·· ----·--------

* A Computer Simulation Facility for Packet Communication Architecture

by

Clement K.C. Leung
David P. Misunas
Andrij Neczwid
Jack B. Dennis

Project MAC
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Abstract: Several proposals for computer data processing and memory systems that exploit the inherent parallel
ism in programs expressed in data flow form have been advanced recently. These systems have packet ~ . .mication_
architecture -- each system consists of many units that interact only through the transmission of information
packets through channels that link pairs of units.

A simulation facility for evaluatlng the programmability and potential performance of these proposed data pro
cessing and memory systems has been designed. The facility uses microprocessor modules to emulate the b·ehavicir
of system units or groups of units. By conducting a simulation in accurate scale time a precise extrapolation
of performance of a proposed system may be obtained.

The user of the facility will specify the system to be simulated in an architecture description language. A host
computer translates the system description modules into microprocessor programs and controls the loading and moni··
tors the operation of the microprocessors. Application of the facility is illustrated by consideration of a sim··
ple data flow processor.

Introduction

Recently, a number of proposals for computer data pro
cessing and memory systems organized to exploit the
parallelism inherent in programs expressed in data flow
form have been developed. These include a series of
machines of increasing capability described by Dennis
and Misunas [2, 3], two machines capable of supporting
high level language including procedures as data [5, 6,
8, 9, 10] and memory systems organized for highly paral
lel operation [l].

Each of these systems consists of many units connected
by channels, and is organized so the units operate asyn
phronously and interact only through transmission of in
formation packets over the channels. Each unit of these
systems is designed so it never has to wait for a re
sponse to a packet it has transmitted to another unit,
if other packets are waiting for its attention; this
design principle permits a high level of concurrent
processing. The units themselves may be constructed
of simpler units and channels that cooperate in the
same manner, yielding a hierarchical structure in which
interactions occur only at well-defined interfaces.
Systems structured to operate according to this disci
pline are called packet communication systems and are
said to have pack~ communication architecture.

The application of packet communication architecture to
computer system design is now sufficiently advanced that
careful evaluation of the performance potential of pro
posed systems is required. Since analytic techniques
of sufficient power are not known, evaluations must be
carried out by simulation. The simulation of a conven
tional computer architecture is readily carried out by
progrannning a conventional Von Neuman-type computer,
and the result of such simulation may be easily inter
preted to predict performance of a proposed machine.
However, simulation of a highly asynchronous system is
not so easily accomplished using a conventional sequen
tial computer -- much effort (in progrannning and in
simulation runs) would be spent in the implementation
of psuedo parallel processes and the coordination of
their interactions.

* The work reported here was supported by the National
Science Foundation under grant DCR75-04060.

58

With the advent of low-cost LSI processors there is an
attractive alternative to progrannned simulation on a
conventional computer: a system having packet conmruni
cation architecture is divided into parts and each part
is emulated by a microprocessor. We have designed an
architectural simulation facility based on this idea.
The facility consists of a number of microprocessor
modules arranged so they may easily communicate through
a network for the simulation of any packet connnunica
tion system. The system to be simulated is specified
in an architecture description language designed e2c
pressly for packet connnunication systems. A host com
puter translates architecture descriptions into program
modules executed by the microprocessors. The: host com
puter also provides means for debugging and for measur
ing performance of the simulated system.

Our explanation of the simulation facility is aided by
discussing its application to modeling the operation of
a simple data flow processor. We start with a brief
description of the data flow processor and show how the
structure of this processor might appear when expressed
in our architecture description language. Ne~xt comes a
detailed discussion of the hardware portion of the fa
cility and how it supports the modeling of packet com
munication systems. We conclude with a brief discus
sion of the software support to be implemente~d on the
host computer.

An Example of Packet Connnunication Architecture

Throughout this paper we shall use a simple data flow
processor as an example of a packet connnunication sys
tem. This data flow processor has been proposed for
certain signal processing computations such as wave
form generation and filtering in which a fixed constel
lation of operations is applied to a stream of data.
The processor does not support data-dependent deci
sions, structured data, or procedures, though these fea
tures have been considered in generalized versions of
this processor (3, 5, 6, 8].

The units and channels that comprise the top-level de
scription of the data flow processor are shown in Fig
ure 1. Instructions of a data flow program to be exe
cuted by the data flow processor are stored in Instruc
tion Cells (Figure 2). Each Instruction Cell holds an
instruction of the program, contains registers fot'
holding one or two operands of the instruction, and is

result
packets

Functional
Unit 0

Functional
Unit n-1

Instruction
Cell 0

Instruction
Memory

Instruction
Cell m-1

operation
packets

Figure 1. Structure of the elementary
data flow processor.

designated by a unique cell identifier. An instruction
specifies an operation to be performed on its operands
and specifies each register (by a cell identifier and
a register index 1 or 2) which is to receive a copy of
the result. When all operands of an instruction are
present in a Cell, the Cell is enabled and its content
is transmitted as an operation packet to the Arbitra
tion Network. Each operation packet is forwarded by
the Arbitration Network to a Functional Unit capable of
interpreting the operation packet. A Functional Unit
performs the function specified by the instruction code
of the operation packet it receives on the operands in
the packet and, for each destination specified in the
operation packet, generates a result packet consisting
of a copy of the result and the cell identifier/register
index of a destination cell register. The Distribution
Network accepts result packets from the Functional
Units, and delivers each result packet to the Cell ad
dressed by the cell identifier in the packet. After
the result packet is received by a Cell, the resul't in
the packet is stored in the register addressed by the
register index of the packet. If all of its operands
are present, a Cell receiving a result packet is en
abled and generates another operation packet to be pro
cessed. A more detailed description of the architec
ture and operation of the data flow processor is given
in [2J. We note that depending on their construction,
the Arbitration Network and the Distribution Network
are capable of processing one or more packets simul
taneously.

Instruction Cell

re ister

instruction destination destination

~'-e-g_i_s_:_:_:_ra_n_d----------------------~~ >----~-+
register

~'-----o-p_e_r_an_d __ 2 ____________________ ~~

Figure 2. Structure of an Instruction Cell.

59

Archit~ Description Language

Our architecture description language is a design nota
tion for packet connnunication systems. The basic unit
of description is a module with a number of input ports
and output ports. A description module is either a
structural description or a behavioral description.
A structural description of a module specifies the
decomposition of the module into simpler modules and
the channels connecting ports of these simpler modules.
A behavioral description specifies the module's behavior
in the form of a sequentially executed program that:
(1) receives packets from a specified input port;
(2) transmits packets over a specified output port; or
(3) updates state variables of the module. In these
respects our language is adapted from the notation used
by Rumbaugh to formally describe his data flow multi
processor [9].

In add:ltion, our description language borrows much of
its syntax, type structure and elementary control struc
ture from PASCAL [ll]. An information packet or a state
variable is defined as a PASCAL record whose components
are individually accessible. Packet type information
is included in the specification for each channel con
nection, and for each input port and output port decla
tion, permitting the support software for the simula
tion facility to enforce strong type checking through
out the hierarchical description of a system.

The overall architecture of the data flow processor is
specifi.ed in the description langua,ge module Processor
shown i.n Figure 3. Processor contains a list of sub
modules and a list of interconnections. The interface
assumed for each submodule is given by the type of in
formation packet which may be transmitted over its in
put and output ports. The relevant packet definitions

Processor: module (m: integer, n: integer);

structure:

Cell [l .. m]: module

distnet-in input port,

arbnet-out output port;

Arbitration-Network: module (m, n)

cell-in [l .. m] input port,

fen-unit-out [l .• n] output port;

Functional-Unit [l •• n]: module

arbnet-in input port

distnet-out output port;

Distribution-Network: module (m, n)

fen-unit-in [l •• n] input port,

cell-out [l .• m] output port;

Cell [l .. m). arbnet-out ~operation-pkt

to Arbitration-Network ·cell-in [l •. m);

Arbitration-Network · fen-unit-out [l. .n) send operation-pkt

to Functional-Unit [l. .n] · arbnet-in;

Functional-Unit [l •. n) distnet-out send result-pkt

to Distribution-Network•fc:n-unit-in [l. .n];

Distribution-Network · cell-out [l. .m] send result-pkt

to Cell [l. .m) · distnet-in;

end Processor;

Figure 3. Top level description of the data flow processor.

address =record [cell-id: integer; register-id: integer];

operation-pkt = packet [opn: opcode;

result-pkt

destination: array [1 •. 2) of address;

opd: array [1 .. 2] of operand];

= packe!:_ [cell-id: integer;

register-id: integer;

opd: operand];

Figure 4. Packet definition.

for Processor are presented in Figure 4. The specifi
cation of the data types opcode and operand depends on
the kind of computation to be implemented on the data
flow processor and is not given in Figure 4. A complete
specification of the data flow processor is obtained by
supplying description modules for Cell, Arbitration
Network, Function-Unit and Distrib~n-Network. Each
of these description modules must satisfy the interface
requirements set forth in the definition of Processor
and must implement the operation of the corresponding
unit of the data flow processor as outlined above.

In illustration of the technique for specifying the be
havior of a module, a specification of the operation of
the module Cell is given in Figure 5. Cell corm:nunicates
with the other submodules of Processor via its input
port distnet-in and its output po~t arbnet-out. Packets
of type result-pkt and operation-pkt are received and
transmitted by Cell at distnet-in and arbnet-out re
spectively. The state variables of Cell provide stor
age for packets received and store state information
for controlling the operation of Cell. The state vari
ables are initialized and reset as necessary from one
cycle of operation of Cell to the next. The when state
ment in Cell (Figure 5~ activated upon receipt, at
distnet-in, of a result packet which delivers an operand
to the instruction held in Cell. When all the required
operands are available, an operation packet is formed
and emitted at arbnet-out by the send statement (Fig
ure 5). A when statement contain~e or several blocks
of statemen~one block for processing the input pack
ets arriving at each input port. The complete execution
of a when statement embodies: (1) receiving and ac
knowledging an input packet from one of the input ports
monitored by the when ~tatement, and (2) executing the
block of statements for processing input packets ar
riving at the input port.

The specifications of Processor and Cell illustrate the
descriptive power of the architecture description lan
guage. Other submodules of Processor can be similarly
defined. After presenting the hardware facilities in
the next section, we will describe the implementation
of the module Cell as a program executed on the pro
cessor modules.

Organization of ~ Simulation Facilities

The simulation facility shown in Figure 6 is composed
of a host computer, a number of microcomputer modules
each consisting of a microprocessor and a number of
memory modules, a control bus for host-microcomputer
communication, and a Routing Network for transmitting
packets between microcomputer modules. The host com
puter loads simulation programs into microcomputer
modules, monitors and controls the progress of a
simulation, and collects statistical data for per
formance evaluation. The control bus transmits com
mands, addressing information and data from the host
to the microcomputer modules, and transmits acknow
ledge signals and memory word contents from the

60

Cell:~

distnet-in input port receives result-pkt,

arbnet-out output port~ operation-pkt;

behavior

I* State Variables */
respkt : record result-pkt;

operation: opcode;

destl, dest2: address;

operandl, operand2: operand;

opdl-expected, opd2-expected: ~;

opdl-received, opd2-received: ~;

repeat begin

opdl-received := if opdl-expected ~ ~ ~ Ja:.wi;

opd2-received := if opd2-expected then false §ilse g~;

while -, opdl-received v -, opd2-received do

when distnet-in receives respkt do

~ respkt • register-id of

1: begin

if opdl-received then ~;

opdl-received := ~;

operandl .- respkt · value ~i;

2: begin

if opd2-received then ~;

opd2-received := ~;

operand2 := respkt · value ~~;

~;

send [opn: operation;

destination[l]: destl; destination[2): dest2;

opd[l]: operandl; opd[2): operand2]

at arbnet-out;

end repeat;

end Cell;

Figure S. Specification of the operation of
an Instruction Cell,

microcomputer modules to the host. Under control of
the host, microcomputer modules execute programs
which simulate the operation of units of a simulated
system. In addition to communicating with the host
via the control bus, each microcomputer module is
connected by an input port and an output port to the
Routing Network, through which the module sends or
receives packets from other modules.

The Routing Network provides a buffered path betwE!en
every pair of microcomputer modules, permitting the
transmission of packets without regard for whether
the destination processor is ready to receive them.
A packet transmitted to the Routing Network from a
microcomputer consists of a destination address for
the packet and the packet content. The destination
address is used by the Routing Network to direct the
packet to the input port of the appropriate micro
computer module. The Routing Network performs arbi
tration and distribution functions in a manner simi
lar to that described for the Arbitration and
Distribution Networks in [2].

Before we describe the structure of the commands is
sued by the host and the various schemes by which the

Control
Bus

Interface

micro
processor

memory

•
•
•

micro
processor

memory

Host

Routing
Network

Figure 6. Organization of the simulation facility.

host controls a simulation, let us examine the mech
anisms available for controlling a microcomputer
module in more detail. The simulation program module
contained in each microcomputer module is organized
so program execution starts from a home state and
returns to this home state after ea~r~tion,
that is, after the complete processing of a packet.
Each microcomputer module also has a wait state in
which no instructions are executed and control of the
internal busses of the microcomputer module is relin
quished to the host.

Two special registers in each microcomputer module,
the !J:!!!. ~ and the ~ flag, are set by the host
and utilized to control the progress of a simulation.
The run count of a microcomputer module is set by the
host to the desired number of cycles of operation of
the simulated unit for the current simulation. Each
time a cycle of operation is completed, the run count
is decremented. If the decremented run count is zero,
the microcomputer module enters a wait state and sig
nals to the host that it has entered that state. A
negative run count enables a microcomputer module to
process transactions until halted by the host. The
wait flag is set by the host when it is desired that
the designated microcomputer module(s) enter the wait
state. The flag is checked by a microcomputer module
when the module is in the home state. Hence, microcom
puter modules placed in the wait state through setting
of the wait flag have no partially completed transac-

61

tions, and all state variables of the modules are in a
consistent state.

The host performs its control functions by issuing
commands to the microcomputer modules via the control
bus. Commands issued by the host are either
addressed or universal. A universal command is obeyed
by all microcomputer modules, and such commands are
u~ed by the host to start, stop, and temporarily sus
pend the execution of a simulation. An addressed
command is executed only by a designated microcom
puter module. Each command transmitted over the bus
consi.sts of a selection code and a command name. The
selection code specifies which of the microcomputer
modules is to respond to the associated command.
Each microcomputer module examines the selection code
of each command to determine whether the module
should respond to it .

The host can issue one of nine commands to a micro
computer module. The possible commands are Read,
Write, Hold, Release, Halt, Enable, Clear, Start and
Reset. The Read and Write commands provide the capa
bility to examine or alter the contents of a memory
module associated with a microcomputer module. The
other commands are used in the selection of a micro
computer module for execution of a Read or Wr'i te
command, or for controlling the progress of a simula
tion.

Often, it is desired that several, but not all, of
the microcomputer modules respond to a Write command
simultaneously, for example, when loading a simula
tion program into a number of microcomputers which
are to simulate identical units. This function is
accomplished by individually issuing Enable commands
to the desired processors; Commands issued subse
quently are executed by all enabled processors until
a Clear command is received from the host. Note that
the Clear command can be either addressed or universal.

The Start, Hold, Release, Halt and Reset commands are
used to implement the various schemes by which the
host controls a simulation. All microcomputer
modules of the system are initially in the wait state.
A simulation is initiated by a universal Start command
which places all microcomputer modules in their home
states. A simple scheme to halt a simulation is to
issue a universal Hold corrnnand which halts program exe
cution in all microcomputer modules inunediately. The
host is then free to read or write into the memory mod
ules by issuing Read and Write connnands. Program exe
cution at each microcomputer module can be restarted at
the point of interruption by issuing a universal Release
conunand.

All microcomputer modules can be put into their wait
states simultaneously and immediately by issuing a
Reset command. However, when the microcomputer
modules are to be stopped for the purpose of debug
ging and evaluation, all modules should be in consist
ent states. This is accomplished through the use of
a universal Halt command. Execution of the Halt com
mand sets the wait flag of each microcomputer module
by generating a universal Hold command followed by a
universal Write into the wait flags, and then a uni
versal Release. Each microcomputer module, upon
reaching its home state, then discovers that its wait
flag is set, enters its wait state, and signals the
host. When the host has received an acknowledge
signal designating that each microcomputer module has
entered its wait state, it can examine and alter the
memory contents of any microcomputer module, and it
can examine the status of each microcomputer input
port to see if there are any packets·present.

Once a simulation has been halted and the status of
the facility has been determined, one or several
microcomputer module~ can be enabled for a specified

number of transactions by properly setting their run
counts, setting the wait flags of the other microcom
puter modules and then issuing a universal Start
command. Receipt of the Start command causes each
microcomputer module to exit its wait state and re
enter its home state. The microcomputer modules whose
run counts were set will accept packets at their in
put ports. All others will iminediately reenter their
wait states.

An active microcomputer module will signal the host
computer after completing the specified number of
transactions. The acknowledge signals from the micro
computer modules are ANDed and ORed to produce a
Universal Acknowledge and an Addressed Acknowledge,
indicating that the appropriate processors have re
sponded to a universal or addressed corrnnand.

The various control schemes and communication proto
cols presented provide a minimal capability for con
trolling and examining system ope~ation during a simu
lation. The fact that the host can readily access
the individual memory modules allows one to easily
extend the control, analysis and debugging capabili
ties in software. Each microcomputer module can store
any desired status information in its memory for the
host to retrieve, even to the point of retaining all
packets processed by the module.

An example of a software evaluation facility is the
evaluation of performance of individual sections of
a simulated processor through analysis of event
~· An event count is a count maintained by an
individual microcomputer of the number of transactions
which have taken place since initiation of a timing
interval. The use of event counts allows the study
of the relative efficiency of sections of the simu
lated processor and provides data necessary for
determining such parameters as cache size and struc
ture of the memory/processor interconnection networks.

Simulation of ~ ~ Communication System £!! the
Hardware Facility

A packet communication system is simulated on the
hardware facility through simulation of one or more
units of the system on each microcomputer module. The
constructs used in the simulation programs are imple
mented on a microcomputer module in a straightforward
manner. The implementation of packet transmission and
processing, the identification of microcomputer states
during program execution and the coordination between
packet processing and microcomputer state transitions
are further illustrated in this section using the
module Cell (Figure 5) as an example.

In general, a unit simulated on a microcomputer module
may have several input ports. A separate input buffer
is allocated in memory for each input port of the sim
ulated unit. Every packet transmitted through the
Routing Network specifies a target port, which is an
input port of a simulated unit. A microcomputer module,
upon receipt of a packet, uses this target port designa
tion to deposit the packet in one of its input buffers.

The program module Cell has one input port distnet-in.
If Cell is the only unit simulated on a microcomputer
module, every packet arriving at the input port of the
microcomputer is automatically deposited in the buffer
associated with clistnet-in. Any output packet of the
module Cell is t~ansmitted through the output port
arbnet-out.

Each microcomputer module is in a wait state after the
simulation programs have been loaded. A Start cormnand
transfers the microcomputer module from the wait state
to the home state, and initiates execution of the simu-

62

lation program. Unless temporarily halted by a Hold
corrnnand, the execution of a simulation program on a
microcomputer module proceeds until a when statement is
reached, at which point the microcomputer reenters its
home state. Upon reentering its home state, the module
examines its wait flag and enters the wait state if the
wait flag has been set by the host. If the wait fla.g
is not set, the microcomputer module queries its wai.t
flag and the status of the input ports monitored by thEl
when statement in turn using a round-robin algorithm,
until the wait flag is set or an input packet becomE!S
available. If the wait flag is set, the microcomputer
enters its wait state. If an input packet becomes
available first, the when statement is executed.

When the program module simulating ~ is executed on
a microcomputer, the microcomputer enters its home
state each time the when statement (Figure 5) that re
ceives result packets at distnet-in is reached. The
run count of a microcomputer module is decremented at
the end of each cycle of operation of the simulated
unit, and the microcomputer module enters its wait
state if the updated run count becomes zero. In the
case of Cell, the run count is decremented and examined
each time the body of the outermost repeat statement i:s
executed.

Software Support

The structure of the controlling software system fo:r
the simulation facility is presented in Figure! 7. Op
eration of sections of the simulated system iEI speci
fied by modules in the architecture description lan
guage in the manner described earlier. These modul,es
are translated into relocatable microprocessor object

relocatable
microprocessor

architecture machine
description language

:~=~~~ication Jlanguag;1--T-ra_n_s_l_a_t_o_r _ __,I module;~

user
programs

user
interaction
during
simulation

source
language of
simulated

icroprocessor
Simulator

machine
language of
simulated

abs1::ilut:e
micro
processor
machine
language
programs

Ftem
-------. machine,__ _____]

Compiler Loader

}
I

~ -~_:_~-~-~o_t;_o_n_ ,,.1(---{:~·r]

Control
Bus

Figure 7. Structure of the simulation
control system.

code and are stored in the file system of the host
computer; the necessary programs from the file are
linked together to form a non-relocatable micropro
cessor program. Either the individual procedures or a
complete simulation program can be tested by use of a
microprocessor simulator residing in the host computer.
Once the simulation programs have been validated by
use of the microprocessor simulator, the programs are
loaded into the microprocessors, and the facility is
ready to execute a program of the simulated machine.

A user program to be executed on the simulated archi
tecture is compiled into the machine language of the
simulated machine and sent to the microprocessor sys
tem for execution. The debugging and evaluation cap
abilities of the system are used to co~trol execution
of the program and evaluate feasibility of the proposed
system architecture.

Conclusion

The architecture simulation facility appears to be a
powerful tool for the evaluation of packet connnunica
tion systems. Its capabilities permit the testing and
evaluation of a broad range of architectural concepts.
The facility is currently under construction using the
Motorola M6800 microprocessor and a DEC PDP-11 host
computer. Portions of the software system are being
developed on a PDP-10 computer to allow use of the lan
guage CLU [4, 7]. The system is intended to be used
primarily for an investigation of the design and cap
abilities of data-flow processors, and we expect it to
be invaluable for this application.

Acknowledgements

The authors wish to thank Bob Jacobsen and Dave Isaman
for many helpful connnents and suggestions.

~~
1. Dennis, J. B. Packet connnunication architecture.

Proceedings of the 1.21.2 Sagamore Computer Confer
~ 2!1 Parallel Processing, IEEE, New York, 1975.

2. Dennis, J. B., and D. P. Misunas. A computer arch
itecture for highly parallel signal processing.
Proceedings of~ ACM 1974 National Conference,
ACM, New York, November 1974, 402-409.

3. Dennis, J. B., and D. P. Misunas. A preliminary
architecture for a basic data-flow processor.
Proceedings of the Second Annual Symposium 2!1 Com
puter Architecture, IEEE, New York, 1975, 126-132.

4. Liskov, B. H., and S. N. Zilles. Progrannning with
abstract data types. Proceedings of ACM SIGPLAN
Conference 2!1 Very High Level Languages, SIGPLAN
Notices 2,,4 (April 1974), 50-59.

5. Misunas, D. P. A Computer Architecture for Data
Flow Computation. S.M. Thesis, Department of Elec
tr:l.cal Engineering and Computer Science, M.I.T.,
Cambridge, Mass., June 1975.

6. Misunas, D. P. Structure processing in a data-flow
computer. Proceedings of the 1975 Sagamore Com
~er Conference ~ Parallel Processing, IEEE,
New York, 1975.

7. Project MAC Progress Report XI, July 1973-1974.
Project MAC, M. LT., Cambridge, Mass. , 35-50.

8. Project MAC Progress Report XI, July 1973-1974.
Project MAC, M.I.T., Cambridge, Mass. , 84-90.

9. Rumbaugh, J. E. A Parallel Asynchronous Computer
Architecture for Data Flow Programs. Report TR-150,
Project MAC, M.I.T., Cambridge, Mass., M.a.y 1975.

10. Rumbaugh, J. E. A data flow multiprocessor.
Proceedings of the 1975 Sagamore Computer Confer
~~ 2!1 Parallel Processing, IEEE, New York 1975.

111. Wirth, N. The progrannning language PASCAL.
Acta Informatica l (1971), 35-63.

63

COST, PERFORMANCE AND SIZE TRADEOFFS
FOR DIFFERENT LEVELS IN A MEMORY HIERARCHY

S. L. Rege
EMSO, Advanced Development

Burroughs Corporation
Piscataway, New Jersey 08854

Abstract

This paper evaluates the effect of cost and per

formance tradeoffs on memory system hierarchies

achieved by varying the total amount of memory

at any two adjacent levels. The hierarc.hy is

analyzed in a multiprogramming mode by using a

two server cyclic queuing model. As an example,

a two level hierarchy of Bipolar, MOS and a three

level hierarchy of Bipolar, MOS, and CCD for the

primary memory are compared. A figure of merit

that is a function of the number of instructions

executed by a given processor is used to eval

uate the different memory hierarchies. It is

shown that up to 3:1 advantage in performance can

be achieved by using a three level rather than the two

level hierarchy at the same total cost. The effect

on the performance of the memory hierarchy due to

the change in the degree of multiprogramming, the

speed and cost of CCD technology used, the speed of

the CPU used and the amount of CCD and MOS memory

used are then evaluated. The performance of two

and three level hierarchies is also analyzed as a

function of the primary memory requirements versus

the CCD speed.

Introduction

Until recently, electronically addressable devices

such as ferrite core, plated wire, semiconductor

memories and the electro~echanically addressable

devices such as magnetic tapes, disks and drums were

the few technologies from which a computer system

designer could build a memory system. A number of

different new technologies and devices have been de

veloped that close the 'access gap 1 9 between the two

dissimilar technologies mentioned above. Some of

these are the Charge Coupled Devices (CCD's)2, Bubble

Memories4, Electron Beam Addressed Memories (EBAM)ll

and Domain Tip Propagation (DOT)lO. Other technologies

like CMosl, and Integrated Injection Logic (I2L)7,

compete directly with the existing technologies. Table

1 shows the possibility of a six level hierarchy and

some cost and performance projections for these tech

nologies.

64

This paper uses a two server queuing network model

to analyze the cost/performance tradeoffs achiev

able by using various sizes of the memories at

different levels and various combinations of the

memory technologies. Specifically CCD is usE!d

as an example in the 'access gap' and comparison

is made between two and three level hierarchies

for the primary memory. A multi-programmed mode

of operation is assumed and a figure of merit is

defined to analyze the hierarchies.

Multiprogramming and Memory Hierarchy

Multiprogramming is multiplexing of CPU over a

number of different tasks residing in the pr:i.mary

memory. A task switch is made whenever a par-

ticular task has to wait for certain resource

(e.g. secondary memory) long enough to justify the:

overhead involved in switching. Multi-programming,

a psuedo parallel operation, has been used as a

method to enhance the CPU utilization when memory

technologies and I/O equipment with significant

access gaps are used. Therefore, given a processor

and a memory hierarchy using different technologies

T1, Tz .•. Tn (Figure 1), a boundary exists such that

an access across the boundary necessitates a task

switch. There may be various reasons for the boun

dary to exist between any two particular technologies.

One of the main reasons is the disparity between the

task switching time required by the processor and

software and the access time of the technology.

In the memory hierarchy (Figure 1) the technologies

that are used on the processor side of the task

switching boundary form a part of the primsry memory,

while the others form the secondary memory. The

degree of multi-programming is the average number of

active tasks that reside in the primary memory and

is usually a function of the primary memory size

and working set size of the program.

Model and Assumptions

The behavior of a typical task executed in a multi

programming environment is represented by four

states: the task being serviced by the processor,

the task waiting for the secondary memory or I/O

service in a queue, the task being serviced by the

secondary memory or I/O, and finally, the task

waiting in a queue for processor service. Thus,

in general, there are two queues and two service

facilities and a task cycles through them until

it is completed (Figure 2). This, then, can be

modeled by a two server cyclic queuing model.

Traigerl3 has referenced the use of this model,

Fuller and Baskett5 have used it in their analysis

of scheduling philosophies of drum systems while

Bhandarkar3 has used it to compare magnetic bubbles,

CCD's, Fixed and Moving Head disks, etc. Most

previous researchers have used CPU utilization as

a main criterion to evaluate the effect of multi

programming. Some of the other criterions consid

ered are the waiting time in queue and the memory

utilization, which is the percentage of the time

that a given memory spends its time transferring

its data. The criterion used here will be the

ratio of the actual number of instructions executed

by the processor to the maximum number of inst

ructions executed provided all the memory was

substituted by the level having the fastest speed.

The assumption made in using the two server queuing

model (Figure 2) is that both server one, consisting

of the processor and the primary memory, and server

two, consisting of secondary memory and I/O, have

an exponential service time distribution. Even

though this may not be the case in any particular

computing system, most models make this assumption

since most natural phenomenon can be modeled by a

poisson process and a general feeling for the

performance of the hierarchy can be determined.

Later, simulations may be used to verify the results.

A FIFO scheduling philosophy is assumed for all

queues in the system.

Hit Ratio Characteristics

A typical hit ratio characteristic as shown in

Figure 3 is used to determine the performance of

the hierarchy. The statistics were taken from some

representative programs for a large computer. Once

the hit ratio characteristics are known, the miss

ratio characteristics can be easily determined.

65

Processor Characteristics

A typical processor activity is characterized as an

instruction fetch, instruction decode, data fetch and

data operation (Figure 4). Thus, using this model,

the average time interval between the issuance of

successive memory accesses can be determined. For

a more rigorous analysis of the processor behavior

characteristics, see Streckerl2,

Performance of the Hierarchy

If A is assumed to be the average service rate of the

first server, then the mean execution interval l/A

can be expressed as [Bhandarkar3]:

l/A =Hit Ratio [t (M) + t (P)]
Miss Ratio p c

Where t (M) = aggragate access time for the
p

prj_mary memory

t (Pc) - average processing time between

successive memory accesses.

Assuming µ ~s the service rate for the second

server the probability of CPU being busy or CPU

utilization is given by:

u probability of CPU being busy

=• 1 - probability (M jobs queued for second

server)

1 -·PM
=-1 M+l

- p (Hiller6)

Where M the degree of multiprogramming and

p = A/µ

Once the CPU utilization is found, then the figure

of merit (f) can be derived as:

f = No. of inst. executed with a given hierarchy

No. of inst. executed with all memory sub
stituted by fastest technology

t (Pc) + t (fastest memory)

t (Pc) + t (~)
*U

Where t (fastest memory) = access time of the

fastest memory, and U is determined by using

the equation given above.

A Memory Hierarchy Design

The final outcome of a memory system design in

which a user is interested is its cost and per

formance. Invariably, the requirements are to

minimize the cost while maximizing the performance.

The cost and performance of the memory system is a

I
I

E}-{D-[~J..;. ... 1

"-~' PRl~Y l'&'ORY I SECONDARY MEMJRY

t
o::
~
LL
0

~
TASK SWITCHING

BOLNDARY

FIGURE 1: A M:oMJRY HIERARCHY WITH A TASK SWITCHING BOLNIJARY

PROCESSOR WITH

PRl~Y MEl'ORY

~[[IC

[_~,~,=1
FIGURE 2: 1'•10 SERVER QUEU!tlG t'ODEL

250

200

SECONDA.'\Y l'&'ORY

AND 1/0

F = 0.050

~t 150
C:}
u..
1.;,
.I
~·-

100

100 NSFC.

500 NSEC.

lCXJ/scc.

r- T<Pc) = '.-:ffi NSEC.
0.

§· qi< i"'OS RETA! NED
50

n = 8
P.R I ~V\RY_ MF::P "RY

BI POLAR] K rn:~ST ANT
t'OS AND CCD VARIABLE

lK 2K 5K 101<

FIGlRE 3i TYPICAL HIT RATIOS Fffi A SET OF REPRESENTATIVE PROGi AMS

1.0

0.94

0.92

0.9 -r--.--.-.---.-...---..---.-.--~~-----.-----
4 5 8 10 20 3l 40 50 70 100 200 ID

PRIW\RY f>EMJRY SIZE (K WORDS)/PROGRAM

INSTRUCTION OPERAND INSTRUCTION

PROCESSOR

FEYV™~

20K

INSTRUCTION
DECODE

OPERATION

FIGURE 4: i"ODEL FOR PROCESSOR AND "9'0RY OPERATION

F = 0.150
T3 = 192 SEC.

F = 0.200

F = 0.250

F = 0.400

F = 0.500

T3 = l!O SEC.

501< lOOK 2COK ?OJK

IMSTRUCTI ON
ll:CODE

MJS MEt'CRY SIZE/PROGRAM FOR A "TWO LEVEL HIERARCHY

FIGrnE 5: EFFECT OF CONSTANT COST AND CONSTANT PERFORWINCE TRANSFORf'\b.TIONS ON A M:MJRY SYSTEM DESIGN
67A

250

]~)

100

JK 2K

lOOOK

~ SOOK

~
-' w
> w

300K

-' 200K
~
<

"' 0

~~"' lOOK

- SOK
,_
"' 0

"'
"' 30K

20K

FIGURE 6: GRAPH SHOWING THE ADVANTAGEOUS REGIONS FOR TWO

AND THREE LEVEL MEMORY HIERARCHIES FOR PRIMARY

MEMORY,

THREE LEVEL HIERARCHY

Tl • 100 NSEC,

T2 = 500 NSEC,

µ = 100/SEC,

T(Pc> - 500 NSEC.

4K MOS RETAINED

D = 8

fR.1.l:11lflY...11E/1Qfil

BIPOLAR lK CONSTANT

MOS AND CCD VAR I ABLE

(BIPOLAR, MOS, CCD) ADVANTAGEOUS

lOK -r----r~-r--~---,:r-~~.-~~..-·~~,--~~.......-
0 50 100 200 300 400 500 600

CCD SPEED (u SEC,)

FIG~E 7: EFFECT OF DIFFERENT SPEEDS AND DIFFERENT CPU'S ON PERFORMANCE

SK

Tl 100 NSEC,

T2 50J NSEC.

100/SEC,

T<Pc> 50J NSEC,

D 8

LfK f'IOS RETAINED

P..kJf1il.i<l t1fr1)R'I'.

BI POL/'R lK CONST ANT

CT!Ul:!AIWIE.81 Siill.._

___ _FAST 0,511SEC,

l,011SEC,

-,-,SUJ/J ~.011SEC.

lOK 20K SOK lOOK 200K ID<
MlS fw'EPORY SIZE/PROGRAM FOR A TWO LEVEL HIERARCHY

67B

2:ll

I-

~ 200

z

2:ll

LL
0

~150
2
LL

w
i!=

]J(

FIG~E 8: EFFECT OF DEGREE OF MJLTIPROGRN1'1ING ON PERF~CE OF TI-IE SYSTEM

2K 5K lOK 20K :llK
M:lS MEfv'ORY SIZE/PROGRAM FOR A TWO LEVEL HIERARClff

FIGURE 9: EFFECT OF /IPOl.Nf OF f/OS fRY RETAINED

2K 5K 20K

t-CS 1'1:M'.JRY SIZEIPROGR.AM FOR A TWO LEVEL HIERARCHY

67C

Tl = 100 NSEC,

T2 = 500 NSEC,

= J.92.00µSEC,

= JOO/sEc.

I 1-.0LM lJ< CONSTANT
!S /\ND CCD VARIABLE

lOOK

Tl

T2

13
µ

D =

lOOK

100 NSEC,

500 NSEC,

J92µs

100/SEC,

8

0,5µSEC.

f/OS AND CCD
VARIABLE,

200K

STORAGE~ COMMONLY USED RANDOM ACCESS TIME COST/BIT TECHNOLOGY
NAME -- ---cAPPR.OX.) --

1

3

4

5

6

each~ 50 nsec.* 1.0¢ Fast Semiconductor
RAM

Main 500 nsec. 0.1¢ Slow Semiconductor
RAM

Block or
50µsec. 40m¢ Fast CCD

Swapping

Backing
400µsec. 10m¢ Slow CCD

Store
Fast Bubbles

Secondary 50 maec. lm¢ Slow Bubbles

Mass 5 sec. O.l.m¢ Automated Tape
Tape Handlers

TABLE 1

STORAGE TECHNOLOGY SPECTRUM, MEMORY HIERARCHY LEVELS

AND COST PROJECTIONS

*(See Martin and Frankel [1975] for cost performance projections.)

NAME SYMBOL

PROCESSOR t(P c)

BIPOLAR
MEMORY Tl

MOS
MEMORY T2

CCD
MEMORY Tl

DISK AND I/O

DEGREE OF
MULTIPROGRAMMING D

CHARACTERISTICS

FAST 0.5 usec.
MED. 1 usec.
SLOW 4 usec.

100 nsec.

500 nsec.

FAST 40 usec.
MED~ 192 usec.
SLOW 400 use.c.

10 msec.

1 TO 8

The processor
characteristics are
for average time between
issuance of memory
requests.

Cost ratio with MOS
3
4
5

TABLE 2: DIFFERENT PARAMETERS USED FOR THE EVALUATION

OF THE PERFORMANCE OF THE HIERARCHY

670

Ferrite
CORE

EBAM

Fixed Head
Disks & Drums

Moving Head
Disks

Laser Devices,
Etc.

AN INPUT INTERFACE FOR A REAL-TIME DIGITAL SOUND GENERATION SYSTEM

Paul E. Dworak
Department of Music

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

A man/computer input interface is described in
this paper. This interface allows human control of
the frequency, amplitude, spectral content and enve
lope of real-time sound production.

by

The interface consists of a two-dimensional
array of ~eys for enter~ng data, latches and compara
tors to s~gnal changes in key depression, hardware
for scanning the keyboard and address generation logic.
Both the fundamental frequency represented by each key
column and the harmonics of each frequency -- repre
sented by each element in the column -- are
programmable. Amplitude and envelope are software
controlled.

App1ications.of the int~rface instrument range
from music.compositi?n to clinical use in auditory test
ing. The interface is part of an electronic sound
generation system presently being designed and
constructed.

Introduction

The ~esigns of electronic sound-generating instru
ments during the past 25 years have demonstrated that
it is both desirable and necessary for an instrument
to v~ry, under human control, the frequency (pitch),
amplitude, spectral content (tone color or timbre) and
envelope (attack-decay) of a sound being producea. At
present, analog synthesizers can provide real-time
control of all these parameters, but at best only a
few different events may be programmedl. '

Hybrid analog/digital systems are limited in the
number of parameters that can be varied simultane~
ously. 2 3 On the other hand? completely generalized
sound production can be obtained using a digital com
puter and a software approach.~ s This has not been
attempted previously on a real-time basis However
witry th~ introduction of high-speed, low-cost digit~l
logic, it seems reasonable to hope for real-time digital
sound pr.oduction if an efficient man/computer input
interface can be designed. Such an input interface
should provide information about frequency amplitude
spectral/content and envelope to a dedicat~d central '
processor.

The real problem that needs to be solved in
interface construction is the meaningful representation
of as many parameters as possible on an input device
with limited dimensions and little hardware. In his
own electronic music studio, Sto~khausen6·has redis~
covered and aemonstrated that the combinations pitch
and tape speed (tempt), loudness and tape speed and
even spectral content and speed are interdependent
By constructing similar relationships it is not only
des~rable, but possib~e, to represent

1

up to four
musical parameters (pitch, amplitude, envelope and
spectral content on a two-dimensional input device by
carefully defining the relationships between the
parameters.

The device described here has been developed as
part of a system that will provide this degree of

AliceC. Parker
Department of Electrical Engineering

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

flexibility. The total system design consists of the
following units (see Figure 1):

68

1. A keyboard-like interface to provide direct
control of frequency, spectral conteint,
amplitude and envelope

2. A microprocessor to service and interpret
the binary information provided by the
input interface, to allocate digital
oscillators and to control the digital-to
analog conversion process

3. A minicomputer employed to provide auxiliilry
software input, mass storage for memory
of recent events and increased computing
power

4. A random access memory for storing wavefotnns,
sample increment information used in fre
quency computations and amplitude curves

Minicomputer: ~
Auxiliary Con-
trol Software

Dedicated RAM Memory ·
Processor -- :::, Waveforms,
Central Control Sample IncrE~ment

Unit M1 S::=====;Jit""' Information
Sound Produc- : ..
tion Control l'liii

Keyboard
Interface:
Human Input

Binary Output

-
~-
DAC and
Sound
Equipment

FIGURE 1 : Sys tern Arc hi tec:ture

Since the instrument being described is
digital it allows the use of any frequency
values,' any frequency incremen~s and any ':'aveforms.
These parameters may be predefined or varied under
minicomputer~program control.

Sampling theory and digital sound production are
well documented in the literature. Furthermore,
except for the interface, the other elements of the
system outlined in Figure l are available commer
ciilly, The remainder of this paper will therefore
deal with the details of the design of the interface.

A Multi-Input Interface

The digital interface, a two-dimensional proto
type of which has been constructed and tested, is
designed to convert information entered along its X
and Y axes into binary information representing the
fundamental frequency, spectral content and amplitude.
Since the output data of the sound desired is binary
and the system is programmable, the interpretation of
entered data by the sound generation system is soft
ware dependent. The interface is a mu~ti-input
device, as opposed to many single-input analog key
boards. The number of inputs that can be entered
simultaneously depends upon the cycle time of the
central processor used and upon the memory capacity of
the total system, but should never be less than ten.
. The keyboard is a 256-by-8, X-by-Y matrix of

s1wtches. The prototype of the keyboard which has been
constructed has an 8-by-3 array of switches (Figure 2).

~----------------
' I
I Digital Circuitry :
I

+5V
GND
Clock IN

Figure 2: Physical Layout of the
Prototype Keyboard Interface
and Sample Data Word

The x addresses are quickly scanned to locat~ changes
in key depression from the last sc~n. The b~nary
address of the chJnged key status is stored in the
right half of each binary data word.

The switches depressed at address Xn(any
s1ng1e x address} are represented by a bit pattern
corresponding to (XnY1, XnY2, •••• , XnYm}
(XnONymON = l and XnONymOFF = ~). It is
apparent that the X addresses may be programm:d to
correspond to any frequency, as a result of which

69

all pitch intervals and degrees of microtonal tun
ing are possible.

The bit pattern information at each address is
envisioned as corresponding to harmonic or non
harmonic multiples of the fundamental frequency
specifi~d by each X address. If a sine wave is .
specified, if v0 = fundamental frequency, and 1f
v1 and v2 are the first two integral multiples of
Ye, simple Fourier synthesis of a few waveforms is
possible. If the inputs Y~ through v2 reference
square waves, sawtooth waves or user-supplied wave
forms, more complex waveforms are possible. Finally,
if v1 and v2 represent nonharmonic multiples of the
frequency specified by xnv0, other complex tones
can be derived. Of course, more interesting tones
can be produced when eight "Y" inputs are
available.

The interface will be scanned from x0 to X255
in operate mode and whenever a new signal is found
at any address, scanning will be stopped. An
interrupt will be supplied to the central processor.
The central processor will provide logic signal to
restart the scan. In the prototype, a restart can
be supplied manually.

The inputs will be interpreted as follows: the
address X will be interpreted as the RAM location n
address, the contents of which contain the fixed
point increment to be used during the sampling .
process. The bit patterns for each X address.w~ll
act as indirect references to addresses containing
other such increment information. The bit pattern
information will also instruct the processor how
many summations are to be performed (how many over
tones are present} before a sample is supplied to
the digital-to-analog converter.

Scanning will stop only when a new input
a~pears ow when an old input disappears (onset of
sound and end of sound). Signals that are unchanged
will be ignored, as will blank addresses. Process
ing of signals in progress will be uninterrupted
unless a change in some aprameter occurs (see
Figure 3). . .

Memory locations will be allocated in RAM for
each X-key column and a conversion from the key
frequencies to the binary sample increment value
needed by the central processor for sound produc
tion will be performed. by a software program. L~a~
ing the binary values will be performed by the mini
computer. Waveforms for amplitude control wi-11 be
loaded in allocated storage in a s·imilar fashion,
employing a program that allows the waveforms to be
"drawn" in. The interface interpretation program
will be stored in ROM. Both the keyboard and the
RAM memory will be interfaced as peripherals to
the central processor via input-output ports. Infor
mation represented by the keyboard interface states
is dependent on the contents of the RAM memory.

Representation of Amplitmde and of ~nvelope

It has already been explained that, for any
address X the Y switches represent programmable n'
overtones. With no additional hardware, the bit
pattern representation of the Y switches can be
used to describe amplitude directly and envel~Pe
(amplitude over time) indirectly. The following
conventions will be followea:

1. The greater the number of Y switches
depressed at any address, the greater

(l) (2) (3) System Action

0 Do nothing at all

0 Do nothing at all

0 Do nothing new; continue
processing the t6nes(s}
represented

~ Do nothing new; continue
processing the tones(s)
represented*

Prepare to discontinue the
last tone(s) of this
address (channel)

Stop scan; dump '000' into
data word; stop tones(s}
at this address*

Prepare to start (or change
tone(s) of this address*

Stop scan; dump bit pattern
into* data word; start
pitch computations

(1) Address, High or Low; Is this address
being scanned now? Yes= l; No= 0

(2) A0 + A1 + A2; Are any of the keys of
this address depressed? The OR of the
iAput is represented here.

(3) A ~ B; ,Has the comparator detected a
new input? (ls the past bit pattern
of this address different from the
present?)

* Principal Status: Start Tone(s)
Continae Tone(s)
Stop Tone(s)

FIGURE 3: Interface States and Functions

A

but not move the center frequency of the
filter, unless the lowest frequency
switch depressed changes. That is, if Y~
is depressed first, the dominant tcme
produced will be the frequency
represented by v0 , if v0 remains
depressed while Y1 is lowered,
Y0 will still predominate, but the ampli
tude will increase; if, as a next step,
Y~~is raised and v2 depressed -- v1
undisturbed -- the frequency represented
by Y1 will now predominate.

4. Amplitude levels will change smooth"ly, not
in discrete steps. Adding or subtracting
Y switches from the total number depressed
will describe a new steady state reached
after a system-specified time period.

It wi 11 be necessary for the processor to keep
track of the order in which switches are depressed
and released. General curves of the type shown in
Figure 4 (all derived from the concept of a single
dominant tone) will be stored in memory to giovern
amplitude control.

A

A

FIGURE 4: Rela+.ive Amplitudes (A) for
the amplitude will be. Various Switch Settings

2. Since a single finger can normally depress
only adjacent switches, the first switch
depressed will be interpreted as the center
frequency of a band-pass filter which
attenuates the frequencies represented by
the other Y switches according to a
programnable curve.

3. Adjacent switches depressed after the first
switch will increase the total amplitude,

70

Thi. s interpretation of the bit pattern in for ..
mation will provide a wide variety of stable timbres,
especially when eight Y switches are available. It
will be possible, for example, to stress the
fundamental or lowest frequency at any address, to
stress the highest-overtones (frequencies) at this
address or to sweep through the overtones in any
order.

Possible Functions

A few examples of data input and sound output
will give the reader a better understanding of the
keyboard's possible functions:

l. If at address x1, a single Y key is
depressed, e.g., v1, the pitch represented by that
key will be looked up and converted to sound
whose timbre follows the stored waveforms. The
other Y pitches at this X address will also be
converted, but they will be attenuated according to
an amplitude curve similar to the lower left one
in Figure 4 (waveforms and amplitude curves are
stored in different locations in memory and function
differently). Obviously, if three pitches are
sounding at x1, the listener will hear a single
waveform containing the frequency components
indicated by both the waveforms and the attenuation
curve.

2. If Y2_ is also depressed at x1, the pre-
vioos pitches will remain as they were, except that
the pitch specified by v2 (and from its waveform
the associated harmonics) will be amplified. The
resulting timbre will be brighter.

3. If all Y inputs are depressed, all fre
quencies referenced will be heard and the result
ing sound may be noise-like. This result is con
sidered desirable, since it enables the listener
to approach noise-like sounds in an organized
fashion by starting with more simple sounds. And
the technique for making the transition is simple,
since it is directly related to the number of keys
depressed.

4. If the Y inputs are touched each in turn
at x1, the resulting sound will approximate that
produced by sweeping a filter.

5. If at address x1 , v1 is depressed, and at
address x10 , v1 is depressed, two distinct tones
wi 11 be heard, since they will have common wave
forms and equal amplitudes.

6. If at address x1, all Y's are depressed,
and at x10 only v1 is depre$sed, the louder sound
at x1 will absorb the higher, quieter sound at x10
into a single complex bright tone.

The types Of sounds produced are limited only
by the combinations of keys that the fingers can
reach and in the present design, this represents no
limitation. Any timbres that can be expressed as
sums of frequency compon~nts of specified ampli
tudes can be at least approximated.

Circuit Theory

For any single channel of the interface (i.e.,
any X

0
address; see Figure 5), an input, indicated

by th~ closing of one or more of the three switches
along the Y axis, is inverted and passed both to
the D inputs of a Quad Latch (TTL-7475) and to the
B inputs of a four-bit Magnitude Comparator (TTL-
7485). That is, input v0 appears inverted on

71

latch input o1, delayed on latch output Q1 and
on comparator input B1• Input v2 appears on latch
input o3 delayed on latch output Q3 and on compara
tor input B2•

The Q outputs of the latch are tied to the A0
throug~ A2 inputs of the comparator. Since the
lateh inputs are enabled only once during each scan
and only when the channel to the right af the
channel under consideration is being scanned (see
Figure 6), any change in the inputs subsequent to
the enabling will cause a change in the B inputs of
the comparator, but not in the A inputs. This will
cause the A = B output to go low (Figure 5).

When this condition occurs, the interface is
prepared to indicate a change of state {see
Figure 3). When the scan again reaches this
channel, the address input will be high, as will
the NOT of A = B. The AND of these two signals
allows any signals present on the inputs to be
passed as high outputs to the data word and on the
prototype, to the LED display as well (Figure 5).

If both the address and the inverted compara
tor output are high, the high resulting from the
AND of these tow inputs is inverted and is used
to block the clock input. This stops the scan by
inhibiting the shifting in the eight-bit Serial
In-Paral lel-Out S~ift Register (TTL-74164} to be
discussed in the next section. As long as the
clock is blocked, both the binary address of the
channel being examined ahd the bit pattern on that
channel will be displayed.

A RESTART pulse momentarily brings the block
ing high to ground and permits counting and shift
ing to continue until a new input is found.

Once an input is latched, the inputs on that
channel will be ignored if there is no further
change in them, since the A inputs of the compara
tor wil'I equal the B inputs. As long as A = B,
any further display for this channel will be
blocked and the clock will count normally. When
an input is present for some time, the interface
will recognize two state changes for any channel:

1. A change in the bit pattern for that
channel in which case scanning will be
stopped, the new bit pattern displayed
and passed to the central processor.

2. A removal of all inputs for that channel
in which case scanning will be stopped
and zeros will be displayed and passed
to the central processor.

RESTART will re-enable scanning in all cases.

Scanning of the Keyboard

Scanning is controlled by a TTL-74164
Shift Register whose "H" output is tied to its
serial input. Information on the serial input then
appears on the "A" 6utput. Clocking the shift
register causes the information on A to be shifted
into B, from B to C, and so forth. Information on
H is shifted into A and the process repeats (see
Figure 6). Shift registers are cascaded to. provide
256 address selection lines.

The initial value of the first shift register
is 'lf'Jf'J09'J09'J0' (binary). As a result, during
shifting only one channel {address) will be high
at a time, making possible the logic described in
the last section.

Enable Control -
to Latch Hew Inputs
-- Shift RegisteP
Channel n

A

7485
Comp a~

. to Find
Change
of State

. 13 0 in the -----1-----.i Inputs

I
I
I
I
I
I
I
I

A=B I-·_

I
I
I

Output Bit
Pattern of
Pitch Multiples
for this
Address (To
Computer)

I Outout Control -- Pass
I Bi nary Data on Iraputs when

I
Scan He aches this Address
-- New Data Only

~
-·h

,__,.__......,-t--"O Interrupt
___ I . (To Computer)

RJSTART

!
Clock In

Address
Select Scan
Control -- From
Shift Register
Channel n

·+Display Control -- Stop
&-------------------' .._ · · - · - /Clock When New Data Is

Out Address of Clock Input Found; Display this Data
i)ata Channel
Scanned -- for
Pitch Control

74177 Counte

(To Computer) ~

Figure 5: Basic Lo qi c for a Single Interface
Channel {Xi Address) of the Prototype

Channels

Channels

The Initial Value of the Shift Register
is 10000\if0~. As a Res ult, Only One
Channel is High at Any Tine.

xfK
7

Higure 6: Prototype Shift Register Functions

72

Address Select
Scan Control -
Shi ft Register
Bit A Controls
X Output on
cRannel ' Etc.

Circular Shift
Register

Latch Enable
Control -- Shift
Register 13 i t 13
Enables Latch on

~~~~~~~ C~t~~cx1 •• SRA enables 
Latch x7 



The shift register outputs control two 
principal functions. Any output controls the dis
play of data on its respective channel. New infor
mation at address x0 is displayed when a 1 is 
sHifted into A. The same procedure is followed for 
the other addresses. The shift register outputs 
also enable the latches of the channel (address) 
preceding the one being scanned. The latch on 
channel x0 is enabled by shift register output B, 
latch, latch x1 by output C, and so forth. Latch 
x8 is enabled by shift register output A. 

Present Project Status and Future Research 

At the present, a prototype of the keyboard 
exists. The D/A conversion hardware has been 
designed and constructed. Software for computation 
and output of waveforms has been tested. Ttie 
remaining tasks include acquisition and programming 
of a didicated processor, system integration and 
testing. 

The keyboard is expected to be used for music 
composition and the investigation of waveforms not 
found in conventional musical instruments. 

Applications 

THe applications of a sound keyboard range 
from electronic music composition to auditory 
research. The concept of having fingertip control 
of sound production would allow design engineers;·to 
hear research waveforms without constructing 
circuitry. Psychophysical experiments on hearing 
would be enhanced by such a device. The interface 
will also make possible human control of electronic 
music events in live performance without resorting 
to magoetic tape and to sequences. 

Acknowledgements 

The authors would like to express their 
appreciation to Dr. A. G. Jordan for his encourage
ment in the research described here. 

References 

1Hubert s. Howe, Electr.onic Music Synthesis (New 
York~ w. W. NOrton & Co., 1975). 

2Max Mathews, "Computers and Future Music, 11 

Numus-West, No. 6-74. 

3Sergio Franco, Hardware Design of a Real-Time 
Musical S~stem, Doctoral Dissertation, University 
of Illinois, Urbana, Illinois, 1974. 

4Max Ma~hews, The Technology of Com~uter Music 
(Cambridge, Mass.: M.t.T. Press1 969). 

5 Heinz von Foerster, James W. Beauchamp, ed., ·Music 
by Computers (New York: Wiley & Sons, 1969).--

15Jona than Cott, Stockhausen: Conversations with 
the Computer (New York: Simon and Schuster, l 973). 

73 



A MICROPROCESSOR ORIENTED DATA ACQUISITION AND CONTROL 

SYSTEM FOR POWER SYSTEM CONTROL 

by 

Michael C. Mulder 
Bonneville Power Administration 

and 

Patrick P. Fasang 
University of Portland and 

Bonneville Power Administration 

Introduc'tion 

'The advent of microcomputer systems with their inherent 
cost/performance advantages had precipitated a reassessment of 
known application areas that heretofore were not considered 
candidates for digital systems solution. In the power industry there 
are many applications for microcomputer subsystems for performing 
data acquisition functions, monitoring changes in the status of the 
high voltage transmission lines, issuing control commands to open or 
to close high voltage breakers via relays, and for acting as an 
intermediate device for storing data or system states. Microprocessor 
oriented subsystems provide cost/performance improvement over 
existing subsystems and are easily applied to applications that 
currently do not use digital systems. 

Described in this paper is a MICRO processor oriented Data 
Acquisition and Control system referred to as MICRODAC which is 
°'Zapable of moni~ring high voltage perturbations (via transducers), 
accepting and issuing control commands, performing format changes 
and error encoding/decoding, performing system self checks, and 
transmitting data to supervisory computers. This system performs a 
very necessary function in power system data acquisition and control 
at low cost, high reliability, and low power consumptions. 

I. System Organization and Operation 

Due to the severity of EMI/RFI fields present in most power 
system field sites, the use of digital systems has been minimal to 
date. However, with the availability of small, low cost and low 
power consuming microprocessing systems, combined with 
special shielding techniques and the improvements in fiber 
optics, it is now possible to blend these systems and techniques 
into a solution for such data acquisition and control 
applications. Figure l provides a glimpse of the overall 
functional system organization that appears effective. Note that 
two of the three interfaces to the external world are optically 
isolated and the third (i.e. power supply) is heavily filtered and 
isolated. The digital computing system is shielded with two 
forms of shielding; EMI/RFI shielding and capacitive shielding. 

The digital system organization of MICRODAC, shown in 
Figure 2, utilizes the Motorola family of microprocessing 
modules and consists of an MC6800 microprocessor, a 1 
megahertz crystal controlled clock, a 7040 Hz oscillator for 
asynchronous interfacing, two RAM's of 128 words x 8 bits 
each, two ACIA's, 14 PIA's, eight INTEL l 702A PROM's of 
256 words x 8 bits each, PIA-input/output interface circuitry, 
AID converters, and DI A converters. The control program is 
stored in the PROM's which are easily programmed, and the 
RAM's are used for temporary storage of data and for MPU 
stack operations. 

74 

MICRODAC responds to control commands and changes in the . 
sensed input data. Upon detecting a change in the input ciata, 
the PIA-input/output interface circuit generates an interrupt 
signal which is sent to the MC6800, which in tum services the 
interrupt signal by updating tables located in RAM. 
MICRODAC then notifies the supervising computer of the 
change and sends the new data to a service center via a 
fiber-optic communication link. After notifying the supervising 
computer, MICRODAC returns to surveillance mode. When a 
control command is sent to MICRODAC from the service center 
(e.g., system query), MICRODAC executes the issued control 
function. For both data acquisition and control modes of 
operation, MICRODAC performs a software self check 
function. 

To provide for operation in a hostile environment MICFtODAC 
is housed in a double shielded containment cabinet. The outer 
cabinet is constructed with a material which will attenuate EMI 
and RFI interference. The inner cabinet provides for capacitive 
shielding. 

All required power supplies are derived from an unintermptible 
power supply system. This system uses three methods of power 
conversion. A primary D.C. voltage of +13.5 volts is obtained 
from a well regulated power supply in the uninterruptible 
power supply system. During normal conditions, the + Ul.5 volts 
is used to charge an external + 12 volt battery and to power two 
DC/DC converters. One converter outputs a + H> V D.C. and a 
-15 V D.C. The other converter outputs a +5 V D.C. When there 
is an A.C. power outage, the converters opE!rate from the 
external +12 V D .C. backup battery. The battery is 
continuously charged and is ready for service at any time. There 
is no switching of power source involved when there is an A.C. 
power outage because the input to the backup battery and the 
inputs to the two DC/DC converters are both tied to the + 13.5 
V D.C. line. The -9 V D.C. for operating the PROM's is derived 
from the -15 V D.C, The backup battery is good for about eight 
hours. 

II. Hardware Considerations 

The MC6800 microprocessor system operates sole!ly with 
memory space. The MPU references all components connected 
to its bus as memory locations. The address and data bus 
operate at standard TTL levels. Selection of the various memory 
or input/output components is done by selectively enabling the 
appropriate address lines. The MC6871A discretie clock provides 
the MC6800 with two clock signals, namely .01, and f)2~!This 
clock is crystal controlled and has pulse stretching capabilities 
via the HOLDl and HOLD2 inputs. 



128 Points of Discrete Data, 
Analog Data, and Discrete 
Control 

EMI/RF~erf erence Data Control 
Acquisition 

• • • Pi ber Optic Cables 
50~tsec. Interrupt 

AC 
.Power 

Microcomputer 

System 

. Crystal 
Controll d 
Clock 
l MHz 

Optical Isolation 

Interface 

I •-.,...------------

Supervising 
Computer 

- - - - - -....!l 
Fiber Optic .Cablre 
5 KHz - 500 KHz 
Asynchronot.ts Tr.ansmi'S'.sion lita~e 

Figure 1 - MICRODAC FUNCTIONAL ORGANIZATION 

The :SiQgle.,~p,-circuit allows execution of a program stored in 
PROM one instruction at a time. The address and data bits are 
displayed on the address and data line LED displays, 
respectively. Initiating a single instruction execution is done by 
depressing the single step switch on the front panel while in 
HALT mode. 

MIGRODAC ·has 1two types of memory, namely RAM's and 
PROM's. ·ruhe;RAM's are used for temporary storage of data and 
for MPU stack operation. The PROM's are used for program 
storage. The eight PROM chips can store up to 2048 words of 
eight bits each. Each chip holds 256 x 8 bits, and programs can 
be stored in each chip by selectively setting the appropriate bits 
after all of the bits have been set to the zero state by exposing 
the chip to ultra violet light. Once programmed and protected 
from ultra violet light, the programs reside in PROM with no 
decay time constant. The procedure for loading a program into 
a PROM is as follows: first, the assembly .langu&ge program is 
translated into an octal listing; the octal isting is then translated 
into a BNPF listing: the BNPF listing is loaded into the PROM 
programmer, and the PROM programmer then programs the 
PROM. This process typically takes 2-4 hours. 

75 

Interfacing the MPU to the external world is provided by the 
Asynchronous Communications Interface Adapter (ACIA} and 
the Peripheral Interface Adapters (PIA's). The ACIA provides 
data formatting and control capabilities for interfacing parallel 
information from the MPU to serial asynchronous data 
communication devices. The PIA's are used as interfacing 
buffers between the MPU and external peripheral equipment 
which supplies data in parallel. 

The drive capability of all control signals from the MPU is one 
standard TfL load and 30 pf. A number of control signals must 
drive more than one standard TTL load and therefore 
necessitate the use of signal drivers. All drivers, except the data 
line drivers, are unidirectional. 

The power requirements for MICRODAC are as follows: one +5 
volt 3 amp d-c power supply and one -9 volt lamp d-c power 
supply. All Motorola chips require only the +5 volt power 
supply. The INTEL 1702A PROM chips require both power 
supplies. 



Programmable 
Read Only 

A ~xmory 
0 7 

Figure 2 - MICROCOMPUTER SYSTEM 

Ill. System Software Organization 

System software for MICRODAC is arranged as shown in Figure 
3. When system RESET is initiated, the software branches to a 
set of initialization routines which set the input/output 
configuration and issue control commands to all units tied onto 
the common busses. Table formats and initial values are also set. 
The software then initiates a software system self check. This is 
accomplished by exercising the MPU and I/O interfaces with 
known data and with the MPU inspecting the results. The MPU 
is checked first, then the PIA interfaces, and lastly the ACIA 
interface to the supervising computing unit. If all results are as 
anticipated, the system clears the interrupt bit of the MPU and 
the system moves to a WAIT state; waiting for a data change to 
occur or for a command to be issued by the supervising 
computer. When either occurs, the system polls the PIA's and 
the ACIA to identify the source of the interrupt. The polling 
software is organized on priority, with high priority elements 
serviced first. Multiple interrupts are easily and swiftly serviced. 
Once the element generating the interrupt is identified, the 
software branches to the servicing routine to complete the 
required function. When all interrupts have been serviced, the 
MPU returns to the self check software; and if the self check 
routines are successfully executed, the MICRODAC system 
returns to. the WAIT state. Typical times for servicing i.nterrupts 

76 

are 48 microseconds. The MICRODAC utilizes 1000 bytes of 
PROM storage. The software orgar~ization is modular and is 
easily extended to allow additional PIA's and ACIA's to be 
added to the system. A portion of the software is shown in 
Figure 4. 

IV. Fiber-Optic Communication Link 

Serving as a "smart" subsystem in a power system, MICRODAC 
will be working in an electromagnetically hostile environment. 
As mentioned earlier, MICRODAC is housed in a double 
shielded containment cabinet to shield against EMI and RFI 
fields. For the purpose of isolation, low loss fiber optic cables 
are used as the communication link between MICRODAC and 
the supervising computer. The length of the fibor optic cable 
varies with practical limits of 200 meters. The maximum bit 
rate at which the fiber optic cable will operat•~ is 50 KHz. 
Operating in the optical domain the fiber-optic link offers such 
advantages as high bandwidth, no cro:ss-talks, no 
electromagnetic interference, and high electrical isolation from 
potential noise source. 

The fiber-optic communication link consists of a fiber .. optics 
bundle of 6 fibers, Ga As LED's and driver circuits, and 
avalanche photod~o.de$ and receiver circu~ts. The LED's are 



Contact 
Points, 
Master 
Command, 
Analog 
Data 
Polling 
Handler 
Routine 

Reset 

Initialization 
Routines 

S stem Wait 

No 

ACIA-00 

ACIA-01 

PIA-00 

II 

II 

PIA-07 

PIA-08 
II 

PIA-013 

Transmit 
Message 

Clear Interrupt 
Bit 

1--------_J 

Print 
Error Mess ge 

ce 

Executing 
Routines 
including 
Datu. bu.se 
Handling 

Figure 3 - PROGRAM FLOW CHART FOR MICRODAC 

modulated by varying the j1,mction current. The outputs of the 
LED's are transmitted over the fiber-optic bundle with the 
photodiode serving as detectors on the receiver end. The system 
can transmit and receive data rates up to 30 megahertz with an 
SIN of 500 to l. Input and output electrical signal connections 
are made with BNC connectors. The electrical-to-optical signal 
converter uses the input data to modulate the light emitting 
diode source. The reconverter at the output uses photodetectors 
and amplifiers to produce a replica of the input electrical data. 

V. Conclusion 

MICRODAC has been constructed as a prototype unit to 
demonstrate the capabilities of microprocessors as applied to 

77 

power system data acquisition and control problems. The 
system has performed successfully and has exhibited excellent 
cost/performance benefits. Software for MICRODAC is 
currently being written for several applications in which large 
numbers of units will be used. 

Reference 

"MC 6800 Microcomputer Reference Manual," Motorola, Inc., 
Semiconductor Products Div., 5005 E. McDowell Road, 
Phoenix, Arizona 85008. 



01220 
01830 
01240 
OJ 250 
01260 
01270 
01280 
01290 
01300 
01310 
01320 
01330 
01340 
01350 
01360 
01370 
01380 
01390 
01400 
01410 
01420 
01430 
01440 
01450 
01460 
01470 
.014'30 
01490 
01500 
01510 
01520 
01530 
Ol 540 
asso 
01560 
01570 
01580 
01590 
01 60:) 
01610 
01 G20 
01 G30 
01 6LJO 
01650 
01660 
01 670 
01680 
01690 
01700 
01710 
01720 
01730 
01740 
01750 
<l760 
0770 

4100 

* 
* 

ACrA JNTEHHUPT HANDLI:'JG 

4100 B6 2004 POL 
4103 2A 31 

ORG 
LIJA. !\ 
BPL 
LDA A 
STA A 
LDA. A 
DPL 
LDA A 
STA A 

$4100 
$200LJ 
POLI 
$2005 
$0010 
$2001; 
*-3 
$2005 
$0011 

LOAD STAT 1JS. f1EG• 
HJTPT· PENDING? 
LOAD 1 S1 Ch.l\fl • 
STOHE lST CHAR• 
LOAD STA.TlJS REG• 

L: l 05 DC' 2005 
L;J08 97 10 
41 OA B6 200L~ 
41 OL, 2A FD 
410F 86 2005 
411 2 97 11 

4114 96 10 
411 6 91 60 
4118 27 04 
411A 91 61 
411C 27 07 

* 

LOAD 2ND CHAR· 
STOHE 2NL CHAB· 

* EXECUTE CO~MAND 00000010 = ISSUE C0~120L FACK£T 
* LOCATED IN 50011· co~~ANIJ OOOOOlCO CAUSES A * TABLE READ AND SENDING OF DATA FACKE1 I~ 50050, 
* $0051 TO THE ACJA• 

* 

* 

LDA A 
CMP A 
BEQ 
CMP A 
BEQ 

$0010 
$0060 
CMDl 
$0061 
Ctv:D2 

LdAV COMt-".A.>JD 
COtv'.PARE TO C~D 
JS THIS CMI.Jl? 
COMPA.RE TO C~D 2 
IS THIS Cl:",L2? 

* CMD 1 J SSUES CONTtiOL PACKET TO PB• 

* 411E 96 11 CMDl LDA A 
STA A 
BRA 
LDA A 
STA A 
LDA A 
BIT A 
BEQ 
LDA A 
STA, A 

$0011 
$200A 
POLI 
$0050 
$2005 
$2004 
#-$02 
•-5 
$0051 

LOAD CO~TROL FACXET 
I SSU£ PD CO~rv'.A.t':rf.1 
CO:JTJNUE POLL 

41 20 B7 200?\· 
4123 20 11 
4125 96 50 CMD2 LOAD Ctv:D 
4127 B7 2005 
412A B6 2004· 
412D 85 02 
412F 27 F9 
4131 96 51 
4133 B7 2005 

L1 1 3 6 D G. ~ 0 0 9 
L; 1 30 2A. 1 6 
413D D6 2008 
413E 97 51 
41 L:O 9 6 50 
41 LJ2 
41L!5 
.lj J 1~8 
41 l:f'i. 
41 L~C 
41.l;E 
Ll} 51 

47FB 

'27 2005 
BE 
85 
27 
96 
137 
:m 

G2 
F9 
51: 
2005 

47F8 4100 

$2005 

* 

THANSY.I T COI"':tv:AND 
MAKE SUEE TDRE IS SET 

LOAD DATA PACKET 
THANSfv:JT COtv'.fv:A~~L 

* PfA JNTEnnUPT HANDLING· INTERflUPT JS PnOCESSEL 
* B'f ~·IPU ,.JfTH HJPUT DAT,'\ PACH:ET · STO:U!.D JN !.0051. 

* P.OLl 

POL2 

* 

LDA A 
BPL 
LDA A 
STA A 
LDA A 
STA A 
LDA A 
BIT A 
BEQ 
LOA A 
STA A 
nn 

$2009 
FOL2 
$2008 
$0051 
$0050 
$2005 
$2QOL; 
U02 
*-5 
$0051 
$2005 

* lNTEfiHUPT VECTOHS 
• 

ORG 
FDD 

S47F8 
S4100 

LOAL FA CO~ThOL ~EG• 
JNTEEEPT FE.~LI~JG? 
LOAD L~.TA FACY.E.1 
STOI1E JN TABLE 
LOAD CO!<'.:~A·\JD 

TRANSt-:n co~:r".Af~L 
1"'.AKE SUEE TDEE IS SET 

LOAD DATl'.t PACKET 
THANS'l"'JT DATA 
RETUBK FfiO~ INTE~flUFT 

INTERRUPT REQUEST 

Figure 4 - A PORTION OF THE SOFTWARE FOR MICRODAC 

78 



MULTIPROGRAMMING FOR REAL-TIME APPLICATIONS 

H. M. Gladney 
and 

G. Hochwellert 

IBM Research Laboratory 
San Jose, California 95193 

Abstract 

A software system supporting multiple event-driven 
processes concurrently on a small process control 
computer is described. Each application can be 
programmed and tested independently. An implementation 
of the system, called LABS/7, has been productive for 
over three years. 

The limits to which real-time multiprogramming 
may be pushed are explored. 

Introduction 

In recent years, dramatic reduction in the cost 
of logic and memory has made it reasonable to consider 
applying dedicated, and largely idle, minicomputers 
to real-time control and data acquisition applications. 
The conventional wisdom seems to have been that an 
independent minicomputer should be assigned to each 
application, and that, for applications generating 
large amounts of data, this minicomputer should be 
supported by a large flexible central processor. 
However, cost reduction of electronic circuitry has 
not been paralleled by similar reductions in the cost 
of prograrmning, of computer-computer communication 
links or of peripheral hardware. For example, King 
and Carbonarol show that sharing a printer between 
several processors can be cost-effective and imply 
that similar arguments a~plied to other peripheral 
devices. Wann and Ellis describe a linked system of 
minicomputers which has as on~ of its objectives 
sharing of peripherals. While this paper demonstrates 
how simple the basic support can be for loosely coupled 
minicomputers, it is not clear that the extra effort 
to segment applications is repaid. Jensen's 
description3of a somewhat differently linked system 
shows that partitioning an application can be a 
non-trivial exercise. The arguments supporting 
assignment of a single processor to each application 
have been that, because of system-wide supervisor 
overhead, it is very difficult to provide real-time 
applications adequate response if they compete for a 
single processor; that errors in one application will 
impact another; and that distinct applications cannot 
be independently programmed. This paper describes 
one way in which these difficulties cah be overcome. 

Recently we described a system, called LABS/7, 
which operated on a hierarchy of computers in which 
each of several satellite processors supported multiple 
independent applications.4 The emphasis in that paper 
was on distribution of function between a centralized 
host and multiple satellites, and on system features 
that make application programming easy for 
inexperienced programmers. In the present paper, we 
focus on aspects of satellite processor multi
programming that make a great deal of sharing feasible, 
and attempt to communicate the limits. To a large 
extent, the external characteristics of the supervisor 
and application programs are independent of the 
hardware architecture and of how function is 
distributed between the satellite processor and other 

tPresent address: Deutsches Elektronen-Synchrotron, 
Notkestieg 1, 2 Hamburg 52, W. Germany. 

79 

attached processors, so these factors will be ignored 
in this paper as much as possible. 

Most of the structure of LABS/7 is a straight
forward application of methods used previously in 
process control computers such as the IBM/1800 and 
general purpose machines such as System/360. The 
central idea behind the method for real-time 
multiprogramming is simple. Most of the processing 
required by many real-time applications has very modest 
response requirements. This may be exploited by 
running most of each application at low priority if 
the system provides for rapid response to critical 
short segments of code. 

System Objectives 

The overall objective of LABS/7 was to provide a 
system which manages the entire set of resources of 
a set of coupled computers and defines to the user 
simply and precisely how an application can be 
designed, including options how to assign the function 
among the involved processors. 

If we assume it possible to reduce overall costs 
by having several applications share a process-control 
computer, a general requirement follows--it is 
necessary to support multiple independent real-time 
processes concurrently in such a manner that each 
application can be designed, programmed, and tested 
with minimal reference to other applications. 

Prograrmning development is an increasing cost 
factor. This has been quantitatively explored in 
recent study of the cost-effectiveness of laboratory 
automat:lon.5 In addition, significant improvements 
can result if programming assistants are unnecessary. 
To maximize the usefulness of a ~eal-time system to 
engineers, each user must be able to write his own 
application programs, with minimal consultation with 
support programmers, in a language which provides 
detailed control of timing, synchronization and 
input-output to the instrument. This command language 
should be very easy to learn. 

Control of any single real-time application usually 
involves several asynchronously running tasks. A 
control program to manage the system's 
serially"'."reusable resources is desirable whether or 
not the. system is multiprogrammed. Such a control 
program becomes only slightly more complex if 
independent applications are to be supported. If each 
application is to be able to access the full 
capabili.ties of the hardware, it is impossible to 
eliminate the need for· coordination between users. 
It must be the function of the control program to 
minimize the coordination necessary, and to provide 
methods of resolving contention for each shared 
resource. A summary statement of the objective is: 
The system must inalude a multitasking supervisor, 
which peY'171its each application programmer to control 
the required resources and to synchronize related 
events. PerfoY'171ance specifications for the system 
components should be explicit. 

Below there are itemized specifications6 for 
software which address these general objectives. This 



list of specifications is not intended to be complete, 
but to focus on those requirements that are 
specifically sensor-based~ or for which the 
implementation is strongly influenced by real-time 
requirements, such as responsive connnunication between 
the real-time processor and a large central machine. 
Real-time control and data acquisition are to be 
supported by a control program which manages the 
machine resources and by independently prepared 
application programs. The requirements include: 

(i) A connnand language for real-time application 
programs; 

(ii) The abil.ity to initiate any application 
program either from a terminal or from another 
applicat.ion program and to pass a short 
paramete·r list to the new program; 

(iii) Multiple tasks within each application 
program, and mechanisms for task 
synchronization; 

(iv) Pre-emptive task switching; 
(v) The ability to include sections of machine 

code within an application program; 
(vi) The ability to include in an application 

program a machine language subroutine for 
asynchronous service of an interrupt signal; 

(vii) The ability to record the interval between 
two sensor inputs to high precision; 

(viii) Compactness of the permanently resident 
portion of the control program and of 
real-time application programs; 

(ix) A relocating program loader; 
(x) A program-accessible timer for each 

task. 
Data reduction, storage and reporting functions can 
be supported on either the real-time processor or an 
attached central processor. The balance between what 
is best done on the satellite and what is best on the 
host will vary for different installations and for 
different applications. Much can be accomplished 
with: 

(xi) The ability to transmit data to and from the 
host, to initiate program execution at the 
host from an application program on the 
satellite; and to synchronize program events 
on the host and satellite; 

(xii) The ability of a real-time program to call 
FORTRAN subroutines; 

(xiii) Support for several satellite computers on 
a single host. 

To give the user as much flexibility and simplicity 
as possible in program preparation, the requirements 
include: 

(xiv) 

(xv) 

Symbolic addresses in application source 
code, including those of hardware devices 
and data files; 
The ability to load new programs and to test 
them concurrently with active applications. 

Architecture of Labs/7_ 

The objectives listed above have been realized in 
a system implemented on the IBM System/7 as the 
controller and with either IBM System/360 or System/370 
as the host installation. Since the features of 
interest are not particularly hardware dependent, 
hardware descriptions which are available elsewhere7 
will not be repeated. It is only pertinent that the 
System/7 has conventional process control computer 
architecture, with four interrupt levels, registers 
for each hardware level, and that wide range of 
peripheral devices, including sensor input-output and 
teleprocessing ports, disks and printers is available. 

What is LABS/7? It is a combination of functions 
including: 

a supervisory program for the satellite, with 
service rout:lnes for the sensor interfaces, 

80 

communication hardware, disks, terminals, and a 
printer; 
a set of commands, with which the user creates 
programs which are executed interpretively by the 
supervisor; 
a host communication program supporting several 
satellite controllers; 
predefined datasets and command procedur1:is on the 
host to fac:llitate program preparation; 
a set of utility programs to initialize the 
satellite and to transfer programs and data between 
the satellite and the host. 

We will describe the key features of the supervisor 
and the real-time command language. The program 
preparation facilities used with LABS/7 are the macro 
assembler, FORTRAN IV compiler, and link-editor 
provided as IBM products for the System/7.8,9 The 
system is oriented towards program and data storage 
on a System/7 attached disk, although this is not 
essential. 

* LABS/7 Supervisor and Emulator 

The user's view of the satellite supervisor and 
the emulator is sketched in Figure 1. The elementary 
unit of work for the supervisor is a command. Commands 
are combined to form tasks, each of which is assigned 
a service priority which is used by the supervisor to 
allocate execution time. An application program 
consists of one or more related tasks which can share 
variables. 

* 

Priority-
State- Executing Waiting 

Application Program 

Ready 
225 

Ready 
21)0 

Waiting 

Application Program 

We use the word "emulator" for lack of a more accurate 
word. Normally an emulator is a set of microprograms 
which create a target machine on a different vehicle 
machine. An interpreter normally denotes a set of 
programs which translate high level language to mach
ine language immediately prior to execution. The 
device used in LABS/7 is a combination of these methods 
and somewhat closer to the first. 



Application program execution is assigned to the 
lower two hardware priority levels. Although the 
supervisor does not enforce it, it is intended that 
a task for which timing precision is irrelevant be 
given a priority corresponding to the lowest hardware 
level. The upper two hardware levels are used for 
servicing completion signals generated by the I/O 
hardware, and for process interrupt exit routines (see 
below). 

The supervisor manages storage in the System/7 
dynamically. The resident supervisor code occupies 
between 3000 and 6000 words of storage, depending on 
which optionals such as disk support, printer support 
and telecommunication support are included and on the 
size of the sensor I/O interface and the number of 
terminals supported. The remaining storage is 
allocated in continguous blocks to application 
programs. An application program can be assigned any 
available storage. There is no software limit to the 
number of tasks or the number of programs executing 
concurrently. 

The supervisor includes an emulator which executes 
each application program command by analyzing its 
assembled form and linking to a system-resident 
routine. Following completion of each command 
execution, the supervisor processes the next sequential 
command in the highest priority task that is ready. 
Since each emulator subroutine is designed to run 
within 250 machine cycles, the top priority task will 
be served within about 400 machine cycles of being 
posted ready. (The latter estimate includes an 
extremely conservative allowance for supervisor 
overhead originating from unrelated tasks.) If a task 
becoming ready has higher hardware priority than the 
active task, switching occurs without waiting for 
completion of the current command. 

Included within the supervisor is support for 
bidirectional transmission of data with several options 
of transmission hardware. This software isolates the 
user from details of transmission protocols and manages 
the transmission line on a first-in, first-out basis. 
Initial program load can occur from disk, across the 
host communication link or from paper tape. Both 
direct access and communication support are optional; 
the system will operate with one or both omitted. 
Support is included to provide each application with 
an independent terminal. 

LABS/7 Command Language 

The command language for application program 
development is intended to make it easy to write an 
application program with fairly detailed control of 
the hardware. The burden of program translation is 
borne by a standard macro assembler9 to avoid 
interpretation overhead when the program is executed. 
The resulting relocatable load module consists mainly 
of pointers to emulator routines and operand addresses. 
This structure minimizes the application program 
storage requirements. Operands in the source code 
are either symbolic or explicit, and may be indexed. 
In particular, data files are referred to by symbolic 
names which are bound to disk data sets by the program 
loader. Sensor-based input/output conrrnands refer to 
specific hardware addresses by symbolic name. This 
feature makes application programs independent of the 
machine configuration. Source programs may have source 
subroutines, which may be nested. 

An application program may have more than one 
task. Each task runs independently, subject to the 
availability of resources requested from the system 
and the completi,on of events for which it explicitly 

81 

waits, although tasks may communicate with each other 
by using common storage locations. For synchronization 
of task execution with other tasks, with external 
events, or with the completion of some of the slower 
I/O, the command language supports the definition of 
symbolic events; it provides for either explicit 
posting of an event completion or for connecting an 
event name with an emulator routine that must post 
completion. 

Commands have been designed to be similar in 
appearance to FORTRAN statements wherever possible, 
while maintaining the flexibility inherent in assembler 
language. Many instructions have vector operands with 
automatic indexing provided. For example, one may 
add, subtract, multiply, or divide two vectors with 
a single command. The overhead associated with 
emulation of each LABS/7 instruction is 25 to 40 
machine cycles depending on the type of instruction 
and the concurrent system activity. 

In the current implementation, there are about 70 
commands, which may be grouped in 11 categories; some 
examples are given in Table I. A simple example of 
an application program is included in the appendix. 
Because all application program requirements could 
not be satisfied by emulator routines, the command 
set has a mechanism to include· a "user exi.t routine", 
written in System/7 assembler language. This is 
convenient for including functions which are not used 
frequently enough to be permanently resident, and for 
testing new functions. 

FORTRAN subroutines may be called by real-time 
programs, and may themselves call subroutines written 
in the real-time command set. Most of the facilities 
of the FORTRAN IV are available.8 

Timing and Responsiveness 

Engineers and scientists frequently over-estimate 
their data-rate and timing precision requirements when 
they initially consider automating an application. 
In this section, we present observations which can be 
applied to reduce timing constraints.lo The timing 
precision and data-rate capabilities of LABS/7 are 
then summarized followed by an abstract discussion of 
the mechanisms that permit real-time multiprogramming 
with good responsiveness. · 

1) 

2) 

3) 

For most sensor-based applications, the 
precision required of timing control provided 
by the computing system is less than the 
intrinsic speed of the computer. In many 
data acquisition applications, time is not 
even an explicit variable, so that as long 
as reasonable throughput is maintained, data 
input can be controlled by a low priority 
program. For data acquisition applications 
which are time-dependent, it is most often 
necessary to know when the data was taken, 
not to control data acquisition to precise 
intervals. 

A process control computer is capable of 
collecting a million numbers a minute or 109 
data per day. This data rate is far in excess 
of what is usually required, even for a 
demanding set of applications. Scheduling 
of the work, which can be done by the system 
itself, can alleviate peak loads. 

Inexperienced users tend to want to collect 
too much data by an order-of-magnitude or 
more. Every data point collected must be 
either processed or wasted. 



4) Missing the collection of a few points in a 
file of physical measurements may be 
unimportant if it can be recognized that this 
has occurred. Only if a critical measurement 
cannot be redone in time does loss of data 
become serious. 

In most applications, a very high data rate needs 
to be sustained for only for a very short interval. 
Since the start of a high-speed process can be 
synchronized by the computer, it is very easy to devise 
strategies which avoid conflict between incompatible 
high-speed runs. For the few applications which 
require high rates for sustained periods (or extremely 
accurate timing) inexpensive solutions can be designed 
with integrated circuit chips built into a processor 
interface. Two examples, one from a laboratory and 
one from a quality control test illustrate the point. 
In mass spectroscopy of a gas chromatographic effluent, 
scans of 5000 points every half-second may be 
indicated; however, only scans corresponding to a 
chromatographic peak need to be gated into the 
controller, and only the data significantly greater 
than the noise level are meaningful; in a typical 
15-minute run of 107 points, interface electronics 
can reject as uninteresting all but 105 points. In 
fatigue testing of jet aircraft wings, it may be 
necessary to process 50,000 strain measurements per 
second for hundreds of hours in order to record the 
details of a fracture when it finally occurs; one 
could use a microprocessor which passes data to the 
control processor only when the strain is changing 
rapidly, and at that time usurps control of the 
processor. 

In LABS/7, since the objective was to give the 
user all possible freedom, some responsibility for 
sensible use of the resources was also transferred by 
providing guidelines which have been successful at 
avoiding timing conflicts between applications. The 
responsiveness of LABS/7 running on a System/7 can be 
sununarized as follows. The next command of the top 
priority task will be executed within 200 µsec. of 
the time the task is ready to execute. For situations 
in which the interval between two occurences must be 
either very short or controlled to a close tolerance, 
a user exit routine mechanism can be programmed. For 
applications in which the response to an external 
signal must occur within 20 µsec., there is a process 
interrupt exit routine mechanism. Sustained data 
rates of 1000 points per second for multiple concurrent 
applications are possible with the normal capabilities 
of the LABS/7 emulator, as is an aggregate data rate 
of 20,000 points per second. Bursts of digital input 
or output data at over 100,000 points per second may 
be achieveq using a process interrupt exit routine. 
As far as we know, these response times are adequate 
for the several hundred applications which are 
currently supported by LABS/7 in different locations• 
The mechanisms permitting application programs to 
include segments of machine code are seldom used. 

Discussion 

It is clearly not possible to arrange that a single 
processor serves multiple independent applications 
with guaranteed response times for each application 
irrespective of competing activity. Complete 
independence of competing applications is not generally 
possible unless all applications (except perhaps one) 
are slow relative to the processor. However, it is 
easy to arrange that the bulk of each application can 
be executed at relatively low priority and that 
task-switching is available very frequently and with 
low overhead. If the application programming system 
is such that critical portions of code are clearly 
identified small segments, and if the performance of 

82 

elementary service mechanisms is precisely specified, 
it is possible to adjust the priorities of application 
tasks and interrupt servicing routines so that most 
requirements are met within acceptable engineering 
tolerances, and so that those portions not satisfied 
are clearly identified simple segments which might be 
candidates for service by an attached microprocessor. 
In our experience, adjusting priorities for a set of 
applications has always been very easy to do. 

In the LABS/7 implementation, attainment of the 
achievable limits of performance was not emphasized, 
partly because none of the users of the syst1~m have 
requested performance improvements. However, it is 
worthwhile to estimate what limits are possible and 
what mechanisms might be made available so that 
application programs can access most of the speed of 
the hardware in a high level 
multitasked-multiprogrammed system. To a colllsiderable 
extent, this discussion can be independent of details 
of the hardware architecture. 

The supervisory program for a real-time system 
can be quite conventional--it should provide for 
enqueuing on serially reusable resources,.creating 
and synchronizing tasks, waiting for events and 
responding to interruption requests. (In this 
discussion it is assumed that the processor has three 
or more hardware priority interrupt levels; a key 
parameter is the time required to switch from a lower 
to a higher priority level and to detect which of 
several possible interrupt signals was received.) If 
the processor includes time-sensitive devices, such 
as disks or telecommunication lines, they should be 
assigned to the second highest hardware interrupt 
level so that they cannot interfere with servicing 
the highest level. Over-runs on such devices can be 
handled with normal error mechanisms. 

The majority of each application program is to be 
executed on the lowest processor level. If the system 
provides a mechanism by which control will be regained 
by a supervisory program periodically (e.g., every 
250 memory cycles), it is possible to provide a large 
number of software priorities for multi-tasking. One 
very effective way to do this is with an emulator, 
which is executed without the supervisor eveff giving 
up control. The LABS/7 supervisor switches contriol 
to the ready task of highest priority at the end iof 
every emulator subroutine, whenever an I/O wait is 
necessary and in each pass through the loop of a 
data-dependent emulator subroutine. Such an emulator 
has other very desirable features: application 
programs are extremely compact, the application 
progranuning language is easily extended either with 
new emulator subroutines or with assembler macro 
commands whose individual instructions are i~mulator 
commands or other assembler macro commands; it is 
possible to enhance the emulator functions without 
reassembling application programs; adverse :interactions 
between application programs are largely avoided by 
the isolation the emulator provides; and ne.arly all 
of the overhead of language translation occurs when 
an application is assembled. (Another alternative is 
the type of interpreter described by Freema:n,11 which 
should be further examined.) 

Such an emulator is best exploited by running 
those program segments which do not have important 
timing requirements (see above) as the lowest prj_ority 
tasks. Generally the sensitive program segments can 
be written as quite short medium priority tasks (10 
to 30 emulator instructions corresponding to 2000 to 
6000 memory cycles), with the effect that when one of 
these is encountered, there is very low probabil:Lty 
of unacceptable delays because of competing proci~sses, 
How to segment a program into separate tasks is often 



suggested by the application. Since data are shared 
by tasks within a program, segmentation does not 
materially complicate prograrraning. If this type 
segmentation into tasks is not desired, a similar 
result can be achieved with a "change priority" 
instruction included in the emulator set. 

For data collection,tasks in which timing precision 
is important, the emulator can include a sensor input 
subroutine that includes in its results a time stamp. 
If the implementation is--mask interrupts; read 
internal clock; start sensor I/O read; unmask 
interrupts; wait for sensor I/O completion--the time 
interval between successive data reads will be precise 
to about 10 memory cycles (depending on functional 
details of the hardware). This interrupt masking will 
introduce only negligible disturbance to other 
functions of the system. With well-known interpolation 
methods, it is trivial to reconstruct data tables on 
equal time intervals if this is desired.10 

All function described above is available without 
including machine code in the application program. 
If it is necessary that two external events of a single 
application occur within a small number of machine 
cycles of each other, a user exit routine, as described 
for the LABS/7 implementation, may be employed. If 
the machine language code of the subroutine were 
constructed similar to that described in the preceding 
paragraph, the minimal interval between the events 
would be determined by hardware limitations. 

It is possible to provide for very fast response 
to interrupt~on requests with an emulator subroutine 
which inserts into the interrupt decoder a branch to 
a process interrupt exit subroutine which is a part 
of an application program (there are many ways to do 
this). If no competition is active, the application 
subroutine can be entered within a few machine cycles 
of the time the hardware recognizes which of several 
interrupts occurred. If this device is used at the 
highest interrupt priority, the only interference to 
an application using it will be from other use of the 
same device, from interrupt masking as described 
irranediately above and from interrupt masking required 
in the multitasking supervisor. In practice, the last 
source of interference is negligible compared to the 
former two. To understand these interferences, an 
example is helpful. Suppose there is a system 
restriction that process interrupt exit subroutines 
be limited to 25 machine cycles and that no user exit 
subroutine should mask interrupts for longer than 25 
cycles. Suppose further that there is an average 
interval of 2500 machine cycles between such events 
and that their occurrences are uncorrelated, then the 
probability that entry of a process interrupt exit 
subroutine be delayed by 25 machine cycles is less 
than 1%, and the probability that the delay is 50 
machine cycles or longer is less than .01%. If such 
analysis reveals that the possible peak interference 
is unacceptable, the system can include a mechanism 
to enqueue for exclusive service on the process 
interrupt exit routine function. Perhaps because of 
the application characteristics described above in 
the section on timing and responsiveness, we have not 
felt it necessary to include such enqueuing in the 
LABS/7 implementation. 

Conclusions 

It has been frequently assumed that multi
prograrraning a small computer for real-time applications 
is not viable for reasons of operating system 
complexity, supervisor overhead, or timing 
interferences between applications. In this paper we 
have described a counterexample and abstracted the 
mechanisms on which it is based. All of these 

83 

mechanisms on which it is based. All of these 
mechanisms are individually well-known, and such a 
system could be implemented within almost any hardware 
architecture. 

An implementation, called LABS/7, exists and has 
the following characteristics: 

The entire operating system, including disk, 
telecommunications and terminal support and an 
emulator requires about 6000 6-bit words of memory. 
Supervisor overhead, relative to applications 
coded in machine language, is less than 20%. 
Applications can largely be programmed 
inde.pendently. The areas of timing contention 
are well-defined and therefore easily resolved. 
Modifications and additions to the application 
language are easy to make. 
And support exists for attachment of several 
real-time processors to a host processor. 

LABS/7 has been in productive service since 1973 
so that the basic ideas presented have been tested 
and found to be useful. 

Appendix - An Application Example 

A short example is given below to demonstrate the 
simplicity of the language for the data acquisition 
portion of an application. 

When a start signal triggers process interrupt 
PI!, 100 digital readings are to be taken from a 
scanning device, Dil. Each reading must be preceeded 
by the setting of digital latch DO! to initiate a 
digital readout. Because a single reading is subject 
to noise, it is necessary to repeat the scan of 100 
readings 50 times and average the results. The 
following LABS/7 statements illustrate how this may 
be accomplished: 

WAIT 
DO 
DO 
SBIO 
SBIO 

SCAN CONTINUE 

* 

Pil 
AVG,50 
SCAN,100 
DO! 
Dil,BUFR,INDEX 

WAIT FOR START SIGNAL 
BEGIN AVERAGING LOOP 
BEGIN DIGITAL SCAN LOOP 
SET DIGITAL LATCH 
READ INTO INDEXED BUFFER 
END OF SCANNING LOOP 

* ADD 100 READINGS INTO DOUBLE PRECISION BUFFER 
ADD AVG,BUFR,100,PREC=D 
MOVE I,O RESET READ BUFFER INDEX 

AVG CONTINUE END OF AVERAGING LOOP 

* * DIVIDE DATA FOR 100 PTS. BY 50. STORE RESULT IN BUFR 
DIVIDE AVG,50,100,BUFR,PREC=D 

BUFR BUFFER 
AVG BUFFER 

100,INDEX=I 
200 

These data might be processed on the System/7 to 
produce a report or be sent to a host computer. In 
order to send the data to a System/370 host, the 
following simple addition opens System/370 data set 
named 'SYS7.TESTDATA' for output, writes data stored 
in BUFR to the host, and closes the data set. 

TP OPENOUT,DSNAME 
TP WRITE,BUFR 
TP CLOSE 

DSNAME TEXT 'SYS7.TESTDATA' 

OPEN HOST DATA SET 
WRITE DATA TO HOST 
CLOSE HOST DATA SET 

NAME OF HOST DATA SET 



Acknowledgements 

We are deeply indebted to R. W. Martin and 
D. L. Raimondi for permission to use the material based 
on LAJ3S/7 and for detailed debates of many items 
raised in this paper. Ms. J. Valdillez' help with 
the manuscript is gratefully acknowledged. 

References 

1. W. F. King and F. Carbonaro, "Output Device Sharing 
by Minicomputers," Proceedings of 2nd Annual 
Symposium on Computer Architecture, IEEE, p.141, 
December 1974. 

2. D. F. Wann and R. A. Ellis, "Conjoined Computer 
Systems: An Architecture for Laboratory Data 
Processing and Instrument Control," Proceedings 
of 2nd Annual Symposium on Computer Architecture, 
IEEE, p.170, December 1974. 

3. E. D. Jensen, "A Distributed Function Computer 
for Real-Time Computer," Proceedings of 2nd Annual 
Symposium on Computer Architecture, IEEE, p.176, 
December 1975. 

4. G. Hochweller, H. M. Gladney, R. W. Martin, D. L. 
Raimondi, and L. L. Spencer, "LAJ3S/7 - A 
Distributed Real-Time Operating System," IBM 
Systems Journal. Vol. 15 (in press). R. W. Martin, 
D. L. Raimondi, and L. L. Spencer, "LAJ3S/7 -
Laboratory Automation Basic Supervisor for the 
IBM System/7 - Application User's Guide," IBM 
Research Report RJ1501, January 1975. 

5. R. H. Kay, H. D. Plotzeneder, R. J. Gritter, "Cost 
Effectiveness of Computerized Laboratory 
Automation," Proc. IEEE .§1, 1495 (1975). 

6. See also, H. F. Pike, "Future Trends in Software 
Development for Real-Time Industrial Automation," 
SJCC (1972). 

7. "IBM System/7, System Surranary; System Hardware 
and Software Overview," IBM Systems Reference 
Library GA34-002. 

8. "IBM System/7 FORTRAN IV Language," IBM Systems 
Reference Library GC28-6876; "Combining FORTRAN 
IV and MSP/7: A Programming Guide," IBM Systems 
Reference Library SC34-0025. 

9. "IBM System/7 Host Program Preparation Facilities 
on System/360 or System/370," IBM Systems Reference 
Library GC34-0018. 

10. A specific example is given by H. M. Gladney, B. 
F. Dowden, and J. D. Swalen, Anal. Chem. !!_, 883 
(1969). 

11. M. Freeman, "An Instruction Class for an Extensible 
Interpreter," Proceedings 2nd Annual Symposium on 
Computer Architecture, IEEE, p.195, December 1974. 

84 



Category Connnand Name 

System Configuration SYSTEM7 

IO DEF 

Task Control ATTACH 

WAIT 

QUEUE 

Program Flow CALL FORT 

GOTO 

Timing Control INTIME 

WTIMER 

Data Definition BUFFER 

Data Manipulation ADD 

CONVERT 

ADDINEX 

Teleprocessing TP OPENOUT 

TP SUBMIT 

Terminal Support YESNO 

WRITE 

Sensor I/O SBIO AOx 

SBIO Diy 

TABLE I 

EXAMPLES OF REAL-TIME COMMANDS 

Function 

Defines the size and I/O configuration of the S/7 hardware 

Relates a symbolic sensor I/0 address to S/7 hardware addresses 

Defines and starts a new task within a program 

Waits for completion of a named event 

Enqueues on a named (serially reusable) resource, such as the 
printer 

Calls a FORTRAN subroutine, and passes parameters 

Unconditional or calculated branch 

Returns the time elapsed since the last execution of INTIME, 
precise to 1 millisecond 

Waits until a previously set time interval expires 

Defines a buffer and a pointer which is automatically indexed when 
certain I/O commands transmit to or from the buffer 

Adds a single precision constant or vector to a single or double 
precision constant or vector 

Translates ASCII characters into EBCDIC characters or vice versa 

Increments the contents of an index 

Initializes communication into a host processor dataset 

Submits a job into the host processor jobstream 

Transmits a query to a terminal, and branches if the answer is 
not yes 

Enqueues for service a table of terminal output commands 

Sets the voltage on analog output converter "x" 

Reads the condition of digital input word "y" 

85 



BASIL ARCHITECTURE - AN HLL MINICOMPUTER 
Theodore H. Kehl 

Departments of Computer Science and Physiology/Biophysics 
University of Washington 
Seattle, Washington 98195 

Introduction 

During the past several years a computer-aided 
design system (the Logic Machine) has been under 
development in our laboratory. Briefly, the Logic 
Machi_ne consists of a microprogrammable control 
processor, one or more functional units, one or more 
bidirectional buses, and a microprogram all arranged to 
perform a specific digital algorithm. Our major goal 
has been to be able to construct .!!!!Y digital device 
with this system. We have been able to build a graph
ics display terminal (1), a floating point processor 
(2), string/array auxiliary processor (3), and a 
minicomputer (4). It has amazed, us to see how simple 
and fruitful it has been to construct these devices. 
In this paper we describe the use of the Logic Machine 
design system to build still another digital device, a 
high-level language minicomputer. 

The motivation for this effort is probably obvious 
to all hardware designers; software is the most 
expensive part of a computer system and a high-level 
language computer will significantly reduce software 
costs. Not so obvious is the task simplification at 
the systems programming level, enabling a programmer to 
quickly review his work, decide on additions or correc
tions, and expand a program or system. These b~nefits 
reduce the layers of logic and, we are convinced, will 
enable much more sophisticated software systems to be 
built. That is, machine languages are too primitive 
and, eventually, a programmer cannot keep track of all 
the facets of a system. 

Another way to reduce system complexity is to 
reduce the size of the operating system. Clearly, a 
multiuser system requires a large operating system; 
the construction of a "private, personal" computer for 
single users would considerably reduce operating system 
size. LSI memories and bit-sliced microprocessors make 
this feasible. Of course personal, private computers 
are not a panacea; on the other hand, there are situa
tions in which such systems are preferable (even 
mandatory) to multiuser systems. This is so in our 
laboratory, where the emphasis is on physiological data 
acquisition, experimental control, and simulation. 
With LSI microprocessors and semiconductor memories 
used in conjunction with our own design and construction 
facilities, it has been feasible to construct our own 
computers and the necessary operating systems. 

Still another way to simplify a system is to 
limit the scope of intended applications. Admittedly 
our orientation is "warped" by the physiological 
research setting in which we are located. Later, for 
example, we will show how our need for vector arith
metic hardware has influenced our compilation 
techniques, that is, in character string processing. 
Vector/array machines were motivated by large 
scientific problems whereas byte machines were the 
result of the business requirements. The former are 
of little use in business applications, just as the 
latter are of little use in scientific applications. 

Supported by a Grant from the National Institutes of 
Health, Division of Research Resources, Biotechnology 
Research Branch, RR00374. 

86 

These considerations led us to design (1) a high
level language minicomputer, (2) to be used in a 
"private, personal" fashion by, (3) physiologists/ 
biophysicists. We call this system BASIL (BASIC - SIL, 
for System Implementation Language). The BASIL 
language is a version of BASIC enriched for systems 
programming. Although intended as a single·-language 
computer the possibility of additional languages is 
kept open. Whether or not BASIL is useful to other 
scientists in their research disciplines can only be 
answered by those scientists; the complexity of modern 
science prevents us from making sweeping st.atemen:ts. 
We shall restrict our comments to the computer needs of 
physiologists/biophysicists. 

These are as follows: 

1) An aggregate data acquisition rate of 100 KHz 
A/D samples is usually adequate if the system has fast 
response time. 

2) Digital output control and display feedback 
from the computer to the experiment (and experimenter) 
are required. 

3) Floating-point arithmetic - vector and scalar 
- much "number-crunching" with a strong vector emphasis 
are required. 

4) Peripheral high-speed and low-speed storage 
are needed. Often a single day's experiment will fill 
most of a reel of magnetic tape. For storage of inter
mediate results a modest-sized (4M words) d.isk is 
sufficient. 

5) A main memory of 32 K words (16-bi.ts/wo:rd) is 
quite adequate for physiological/biophysical resiearch. 

Perhaps a more useful list is one that: describes 
nonessential features. 

1) Multiuser operating system. Item 1 above 
prevents, in any practical way, sharing of a computer 
by experimenters. Although it may be technically 
possible to share, the operating system cost (to 
construct and maintain the software and provide memory) 
is so large as to make the single-user uniprocessor 
system a preferred alternative. 

2) Multiple languages. An interactive algebraic 
language is sufficient for most physiological/bio
physical research. All programming, including system 
programming, is to be done in this languag1~. A single
language computer would be of significant benefit in 
an enviroment in which we expect to have .!!!:~. profession
al programmers. Even with professionals system modifi
cations and developments are improved when a high-level 
language is used. 

3) Line printers and card readers. With a 
single-user, single-language system a highly inter
active, source-oriented text editor is quite easy to 
implement. Program development and listings on the 
scope are preferred over the card reader/l:ine printer. 
A 60 char/sec printer/plotter is sufficient for both 
programming listings, manuscript text, and hard-·copy 
graphical output. 

As far as we know there are no minicomputers that 
satisfy all of these requirements. Nor are there 
likely to be any. Jordan Baruch (5) describes how the 
specialization in biomedical research has 



"disaggregated'' the marketplace, making it unprofitable 
for vendors to pursue highly specialized subsegments. 
This is easily seen by the above comparison; the list 
of things not needed by the physiologist/biophysicist 
are precisely those required by the physician/hospital 
records system. 

A global issue is'how to "reaggregate" the bio
medical community. Baruch recommends that scientists 
in subspecialities "standardize and specify out to 
some operating boundary" computer systems for that 
subspeciality. A high-level language minicomputer 
would be of great value in meeting Baruch's recommend
ation. 

Microprogrammed Sequenced Functional Units 

BASIL belongs to the class of digital devices we 
call Logic Machines. That is, several function units 
are connected together over one or more bidirectional 
data buses and are sequenced by microcommands emanat
ing from a vertically encoded microprogram engine 
(control processor). The choice of vertical encoding 
and bus-access discipline are explained in a paper 
describing the LM2, another logic machine minicomputer 
previously constructed in our laboratory. (4) BASIL, 
block-diagrammed in Fig. 1, uses the LM2 functional 
units for main memory, peripheral I/O, cooperative 
processing. Here our attention will be restricted to 
the ALU-addressing function unit, where most of opera
tions associated with a CPU are performed. 

Second-generation microprocessor LSI integrated 
circuits make up nearly all of the data path of BASIL. 
Four Monolithic Memories (6701) Schottky bipolar bit 
slices, each a 4-bit slice (see Fig. 2) capable of 205 
ns microinstructions, form the data part. A
source and B-source registers select 2 of the 16 gen
eral registers for input to the ALU. A µ-instruction 
register selects one of eight functions to be performed 
on a variety of sources and destinations. 

The macroinstruction format is shown in Fig. 3 and 
is composed of three fields: ALU control field, 
microroutine branch field, and two flag bits. The flag 
bits are used as general-purpose modifiers and do not 
have a rigid definition. 

Macroinstructions require a 16-bit word. Operand 
addresses follow the instruction and each operand 
address requires a 16-bit word. Thus, for example, 
A + B -----J C requires four words of storage: 

"ADD" 

ADDRESS OF A 

ADDRESS OF B 

ADDRESS OF C 

Execution of the macroinstruction proceeds as follows 
(refer to Fig. 4, a listing of the BINOP macroroutine). 
A macroinstruction program counter (MacroP) is bussed 
to the memory address register (MAR). If the memory 
is busy.an interlock holds up processing until not 
busy, at which time a read cycle is started. Just 
after the read cycle starts, MacroP is incremented. 
These actions are performed by a single microinstruc
tion - MicroPRDINC. 

MDRMACRO moves the contents of the memory data 
register to the macroinstruction register. This 
microinstruction is also interlocked to memory access 
complete to hold up processing until the data are 
valid. Also the µ-instruction register in initialized 
to transfer inputs to A-ram. A-source and B-source 
are set to 0 and 1, respectively. 

87 

"DECODE," a control processor microinstruction, 
allows peripheral device functional units to gain 
control of the control processor. See [4] for a 
complete description of cooperative processing wherein 
the control processor executes microinstructions for 
peripheral devices. 

The six-bit control processor microroutine address 
portion of the macro is applied to the address inputs 
of the macro branch table to produce a 12-bit branch 
address. This branch table has lowest priority rela
tive to other branch tables located in the peripheral 
device functional units. Consequently, if none of the 
other functional units require service, DECODE gates 
an address from the macro branch table to the control 
processor. This address causes the control processor 
to start execution of the appropriate microroutine 
required for the macroinstruction. 

MDRDIS transmits the operands from the memory data 
register to the 6701 bit slices. Steering for the 
first operand to Ao was initialized during macro fetch 
by micro MDRMACRO. That steering is changed for the 
second operand by incrementation of the 6701 ALU micro
instruction register which is, in fact, a counter. 

With the two operands in register 0 and 1, the 
microinstruction MacroREGLD transfers the ALU field 
from the macro register to the 6701 microinstruction 
register. 

Finally, the address of the destination is ac
quired. CPMACRO changes the ALU field of the macro 
register to steer from 6701 to output; the result is 
transmitted to the memory, and the microroutine closes 
by jumping back to macro fetch. 

Given in Fig.4 is the timing of macro fetch and 
BINOP. The timing assumes TI ts TMS 4030 with 300 us 
access, 500 ns full cycle). BINOP would execute in 
2 µsec if all operands were stored in a 100-ns memory 
(such as cache) but require more than twice as long 
(5.1 mj_croseconds) when stored in this memory. BASIL 
is actually faster than the worst case described in 
Fig.4 ·because main memory is 4-way interleaved. 

Performance 

A conventional computer would require a minimum 
of three instructions to perform A+ B----:) C: 

LD 

ADD 

ST 

A 

B 

c 
If we assume a 500-ns memory, the conventional machine 
would require 3 µsec: 3 instruction fetches, 2 oper
and fetches (for A and B) and a store (C). BASIL's 
worst case timing is 5.1 for the same operation 
(BINOP). We are willing to accept this two-fold speed 
reduction considering the ease with which the macro
code is produced. Realistically, the over-all machine 
performance of BASIL is much better for the following 
reasons. 

On the one hand, if we assumed a 5-bit operation 
code, a 16-bit macro can only address 2048 words 
directly. This addressing space is unacceptably small 
and most minicomputers have page registers to increase 
the addressing space. Control of the page register 
adds to the compiler complexity and consequently is 
often not used. Alternatively, double word instruc
tions are used and, while simplifying compiler con
struction, such a machine is only about as fast as 
BASIL - two memory cycles are required for each macro 



fetch, and three for operand manipulation. (ln point 
of fact, high-level languages for minicomputers often 
produce far less efficient code. This is because a 
compiler writer will often first design a group of 
macros and the object time code consists of calls to 
these macros. Significant overhead is introduced in 
the calling operation; RT-11 Fortran for the PDP-11/45, 
a macro-based compiler, does A + B ~ C in 12 ..c, sec. 
More sophisticated compilers, such as Fortran-4 PLUS, 
produce better object time code but with much slower 
compilation and much larger memory requirements.) 

Furthermore, BINOP is a scalar operation: the 
worst case for BASIL and the best case for a conven
tional machine. Shown in Fig. 5 are all of the macros 
necessary for the compilation of BASIL. (Notably 
missing are the floating point arithmetic operations, 
which are done in a separate auxiliary string/array 
processor [3]). Many of these macros manipula~e 
strings of characters, usually at memory bandwidth 
speeds. Since much of compilation involves character 
string operations, BASIL compiles at quite high speed. 
Unfortunately, it is nearly impossible to give an 
estimate of BASIL compilation speed relative to that 
of a conventional machine. For the most part BASIL 
seems to be at least twice as fast. 

But speed is not really an important issue 
because, in the environment for which BASIL is intend
ded (i.e., a physiologist/biophysicist's laboratory), 
compilation speed does not have highest priority. Of 
much greater importance is the ease with which 
external command-and-control functions can be incor
porated in the software. Our goal is to encourage 
the basic scientist to develop his own command-and
control systems. With conventional computers this is 
an onerous task involving command language decoding, 
that is to say, lexical analysis. 

BASIL's lexical analysis commands 

Lexical analysis consists of separating the 
parts of a line of source code into its constituent 
parts. Because a conventional compu~er can ?nly 
manipulate a single character at a time, lexical 
analysis tends to be slow and cumbersome. Ou: 
approach is to perform firmware cha7acter ~tring ?per
ations. This has the advantage of increasing lexical 
analysis speed and decreasing the complexity of the 
software. In addition, character string commands are 
useful as fundamental operators in all software 
systems using text: text editors, information re
trieval systems, type setting systems, etc., and thus 
has utility for run-time systems as well. 

To illustrate the use of the firmware commands 
consider the lexical analysis of: 

BETA= ALPHA .NOT. (GAMMA .OR. DELTA) 

This line must be searched with a series of substrings 
taken from a table of operators. For example, the 
substring ".AND." would be passed over the line of 
source code and, in this example, a match would not be 
found. The command to do this operation would be: 

CO=INDEX (LINE, OPER, 1) 

where "LINE" is the source line, "OPER" is current 
operator currently being considered, "L"indicates the 
search to begin at the first character in "LINE." If 
the search is successful the index of "LINE" matching 
the first"·" of ".AND." will be stored in "CO"; other
wise, CO = O. In memory the sequential words for this 
instruction would be: 

"INDEX" 

ADDRESS OF LINE 

ADDRESS OF OPER 

ADDRESS OF CO 

and execution proceeds at nearly memory speed. 

As each operator is located it is moved (by 
instruction MOV) into an array of strings, and the 
operator substring of "LINE" is set to blanks. Thus, 
at the end of the operator scan procedure, the deci
mated line of the example is: 

BETA ALPHA GAMMA DELTA 

The remaining substrings of characters, i.e., the 
symbols, are then transferred to the string array. 
Lexical analysis is thus completed. 

Vector operations, I/O service and micro-interrupts 

BASIL depends on vector-like operations, embed
ded in firmware, to speed up compilation. Microcode1 

for vector-like operations is written to utilize as 
much of memory band width as possible; nevertheless, 
BASIL is memory band width limited. However, I/O must 
be supported at some minimum word rate. BASIL' s disk 
drive, for example, must handle a word every §.~..ttse~cs. 
BASIL's vector hardware, for maximum efficiency, 
performs microsteps in tight sequences such as trans
ferring the contents of the MDR directly to the MAR 
(Fig. 4 ) . If the microcode were interrupted and th~i 
MAR altered, as it would certainly be to satisfy I/O, 
just after the MDR to MAR transfer, the indirect 
address would be lost. Hence, BASIL microcode must 
control the I/O requests and permit them to occur only 
at "safe" times. A conventional interrupt scheme will 
not suffice because it cannot recognize "safe" times. 

A DECODE/PASS microinstruction permits I/O acU v-
ity when no volatile information can be lost. . 
Execution of DECODE/PASS is as follows: 1 . .MPC is 
stored in a DECODE/PASS register, 2. Periphel'al device 
request priority network is checked, .3. If no peri
pheral devices are requesting se7vi~e, t~e c?ntrol . 
processor passes and the next mainline microinstruction 
is executed, 4. However, if a peripheral device 
requires service the decode option is performed (the 
control proc~ssor accepts a peripheral device func
tional unit generated microroutine branch address 
resulting in a branch to a service microroutine), 
5. The DECODE option arms the DECODE/PASS register so 
that, when the I/O service microroutine (which always 
ends with a DECODE) is completed a branch back to the 
location following the DECODE/PASS micro is executed. 
DECODE/PASS micros are sprinkled, by the micropro
grammer, in his code so that the maximum worst case 
time is less than the fastest peripheral device. Shown 
in Fig. 4 are DECODE/PASS instructions with a maximum 
of . 9 .f\sec worst case -- easily within the 6. 4 .c.tSec 
disk response time. Indeed a 500 K word/sec I/O 
transfer rate can be sustained. 

Most DECODE/PASS micros occur just after a memory 
access while the memory is busy; at a time which would 
otherwise be wasted. Operating in the "shadow" time 

88 

(as it is usually called) in this way slows BASIL little 
and usually not at all. 



Discussion 

It was necessary in the preceding sections to 
provide sufficently fine detail as background for 
what we believe are critical issues of high-level 
language minicomputer architecture. In our opinion, 
the main concern in HLL design is that too much 
language will be embedded in hardware/firmware. (See 
[6], [7]). If too much language is embedded in the 
hardware/firmware, the system is frozen into a specific 
rigid processing framework. 1he future of such a 
system is strictly limited; it will only execute the 
language that was built in. Care must be taken during 
the design phase to ensure that new, improved high
level languages can be developed. 

Furthermore, it is difficult to justify the cost 
of an appreciable fraction of a system's hardware if 
that hardware is limited to source language transla
tion/compilation. Rather, in our opinion, it is far 
better to try to design multipurpose system functions, 
those that are useful both at run-time and at comp
ilation. 

We believe BASIL's character string firmware 
represents such multipurpose system functions. Comp
ilation is speeded and simplified because the firmware, 
executing at close to hard-wired speeds, manipulates 
source code more "naturally." Important system 
functions involving text manipulation, such as text 
editing, are executed faster and are easier to program. 

Probably most important of all, however, is that 
new languages can easily be added and old languages 
improved because the tables that drive the lexical, 
precedence, and syntactical aspects of compilation are 
available to the software engineer for modification. 
Furthermore, if these tables are not enough, the 
software engineer can even build his own system func
tions; BASIL's control processor is user micropro
grammable. 

1hese are important issues for BASIL's end-user 
clientele -- physiologists/biophysicists. A great 
deal of work on unique high-level systems is needed 
for this important biomedical science. Current com
puters and operating sys terns are simply too primitive 
for these systems to be attempted. 

By Chu's definition BASIL is an indirect HLL 
because it produces intermediate code, whereas a direct 
HLL executes source without translation [6]. Although 
there have been many proposals for HLL computers only t\. 
few attempts have been made. By far the most notable 
is SYMBOL [6,7,9], which has, among other features, 
hardware data structures, a special language (SYMBOL), 
all built into a hardwired machine. Only one SYMBOL 
machine has been built thus far, and we speculate that 
potential users have found the system too rigid. 
Weber [10] microprogrammed an IBM 360/30 to execute a 
high-level language called EULER. 1hese authors report 
a significantincrease in execution speed. 

While these projects have been milestones in the 
development of HLL, they· have made discouragingly 
little impact on computer science. We feel that BASIL 
has better prospects because (1) the entire system is 
programmed in a single language and (2) it is designed 
for a specific clientele who traditionally have not 
been concerned with nor benefitted from nor have been 
interested in massive computer systems developments. 

89 



Upto256µ. 
command 

r-----,:.....-- lines 
Control 
Processor 
4K x 8 words 

ALU
Addressing 
Functional 
Unit 

Coroutine 
Branch Table 
16wordsx12bits 
Functional Unit 

Main 
Memory 
Functional 
Unit 

Direct 
Memory 
Control 
Functional Unit 

Magnetic 
Tope 
Functional 
Unit 

Fig. 1 Block Diagram of BASIL at Functional Unit Level 
(Not all functional uni ts shoWil) 

NOTE: THE NUMBERS IN PARENTHESES 
ARE THE NUMBER OF SIGNAL 
!LINES. 

A•l.ICT 

CLCIClt 

-ION 

Fig. 2 

Fig. 3 

I SELECT 

NAIOD-INST~UCTIOHS 

.. , AOM (171 Cl11P 
3!2 BITS CONTROL 

DATA 
Ill 

CH 

3STATE 

OUTPUT COl'<TML 

OATAOUT 

Origanization of Monolithic Memories 
Shottky Bipilar 4-bit Slice (6701) 
(Reproduced with permission of Monolithic Memories, Inc.) 

f-- 2 ~ --<--- 8 ---) ~ 6 ----) 

Flags ALU Control 

Macroiristruction Format 

90 

Microroutine 
Branch 

Address 

Console 
Keyboard 
Printer Plotter 
Function Unit 

Disk 
Controller 
Functional 
Unit 



Location 

Macro fetch 

BINOP: 
ADD, SUB, OR 
XOR, INC, DEC 

Microinstruction Comment 

MacroPRDINC MacroP to memory address register 
(MAR); read cycle initiate; 
increment MacroP 

MDRMacro 

Decode 

MacroPRDINC 

MDRMARRD 

MDR DIS 

DECODE/PASS 

MacroPRDINC 

BLD 
1 

MDRMARRD 

MD RD IS 

DECODE/PASS 

Macro REGLD 

MacroPRDINC 

MDRMAR 

CPMacro 

DECODE/PASS 

JMPFETCH 

Interlock until data ready; memory 
data register (MDR) to ALU instruction 
register (AIR); initialize A- and B
source 

Branch to address specified by highest 
priority F.U. (Macros have lowest, 
peripherals higher); allows peripherals 
to cycle steal 

Total macrofetch 

Acquire address of 1st operand 

Interlock until data ready; 
MDR to MAR; READ cycle initiate 

MDR (1st operand) to 6701 ALU 

No volatile data; permit peripherals 
to get control processor 

Acquire address of 2nd operand 

Move the constant "1" to B-source 

Get 2nd operand 

2nd operand to 6701 ALU 

Permit peripherals to cycle steal 

Macro instruction register to ALU 
instruction register 

Acquire address for result 

Set up to store result 

ALU to MDR, wait till memory 
not busy; start write 

Permit cycle stealing 

Jump to Macrofetch 

Total BINOP 

Total Macrofet ch + 
BINOP 

Equivilant LM2-BASIL execution for BINOP 

Equivilant PDPll/45 (RTll FORTRAN) 

Fig. 4 BINOP Listing 

*Assumes (worst case) 500 ns memory without normal 4-way interleave 

91 

Time (ns) 

100-300* 

100-400* 

200 

400-900 

100-300* 

100-500* 

100-500* 

100-200 

100-300* 

200 

100-300* 

100 

100-200 

100 

100-100* 

100-500* 

100-500* 

100-200 

200 

1700-4200' 

2300-5100 

20,000 

12,000 



Arithmetic: 
BINOP (ADD, SUB, XOR, OR, AND) 
MONOP (Negate) 
MIJL 
DIV 
Raise to power 

Relationals: 
.NE. 
.LT. 
.LE . 
. EQ. For both strings 
.GE. and integers 
.GT. 

Subscript Addressing: 
Loads: 

One dimension array 
Two dimension array 
Multiple dimension array 

Store: 
One dfmension array 
Two dimension array 
Multiple dime·asion array 

Control~ 

Call subroutine 
GoTo 
Return 

For both strings 
and integers 

For both strings 
and integers 

If (false) GoTo 
For-loop test 
Move (strings and integers) 

Functions: 

References 

Substring 
Index 
Length 
Chrfcn 
Outs tr 
Output (mag tape) 
Outeof " 
Out rem 

1. Torode, J. Q. and Kehl, T. H. , "A Graphics Display 
TerminalLogicMachinE:, 11 COMPCON 1 75, p. 313. 

2. Torode, J. Q., "A Microprogrammable Logic Machine," 
Ph.D. dissertation, University of Washington, 1972. 

3. Burkhardt, K. and Kehl, T. H., "A Logic Machine 
Auxiliary Processor," COMPCON '75, p. 309. 

4. Kehl, T. H., Dunkel, L., and Moss, C., "LM2 - A 
Logic Machine Mini-Computer," IEEE Computer., 
November. 1975. 

5. Baruch, J. J., "Industrial View of Computer 
Applications in the Life Sciences," FASB Proceed
ings, Vol. 33, No. 12, Dec. 1974, p. 2412. 

6. Mullery, A. P., Shaur, R. F., and Rice, R., 
"ADAM, A Problem Oriented Symbol Processor," 
Proc. SJCC, 1963, p. 367. 

7. Rice, R. and Smith, W. P., "SYMBOL - A Major 
Departure from Classic Software Dominated von 
Neumann Computing Systems," Proc. SJCC, 1971, 
Vol. 38, p. 575. 

92 

Read: 
Integer 
String 
String temp 

Input: 
Integer 
String 
String - no quotes 
String temporary 
String temp-no quotes 

Print: 
Print integer 
Print string 
Print control 
Print tab 

Pseudo-ops: 
Forward reference 
Integer constant 
String constant 
Integer data pointer 
String data pointer 
Begin dimension statement 
Begin string declaration 
Where is JLOC for line X 
Where is integer symbol 
Where is string symbol 
Where is label 
Where is unknown 
Assign integer 
Assign string 
Append string 

Symbol table 
commands 

Fig. 5 - Listing of macroinstructions 
required for BASIL compilier. 

8. Chu, Yaohan, "Introducing the High-Level-Language 
Computer Architecture," Technical Report TR-227, 
University of Maryland, Feb. ·1973. 

9. Chesley, G. D. and Smith, W. R., "The Hardware
Implemented High-Level Machine Language for 
SYMBOL," Proc. SJCC, 1971, p. 563. 

10. Weber, H., "A Microprogrammed Implementation of 
EULER on the IBM System/360-30," CACM, Sept. 1967, 
p. 549. 



Function Distribution in Computer System Architectures 

Harold W. Lawson, Jr. 

Universidad Politechnica de Barcelona * 

ABSTRACT 

The levelwise structuring and complexity of a computer 
system is presented informally and as a general model 
based upon the notion of abstract machines (processors), 
processes and interpreters. The important domains of 
the computer architect are considered along with histo
rical perspectives of certain stimulae and decisions 
that have affected the distribution of functions anongst 
the various levels of computer system implementations. 

Keywords: Computer Architecture, Computer System 
Complexity, Computer History. 

1. Introduction 

In the early days of digital computers, the stratifica
tion of computer systems was, on the surface, quite 
simple. Two main levels were apparent, namely, hard
ware and programs (e.g. software). Growth in the sophi
stication of the application of computers to new areas, 
changing physical technologies, the man-machine inter
face, the economics of computer usage, production and 
investment, inherent and created complexities and 
finally better understanding of the structuring of 
hardware and software have all influenced the level
wise structuring of the functions within computer sys
tem architectures as we view it in the mid 1970's. It 
would be difficult to get an agreement on precisely 
how many levels exist (or should be described) in a 
modern computer system. It would even be difficult to 
have agreement on the question: What is a modern compu
ter sytem? In any event for purposes of this paper we 
shall begin with the leveling structure as introduced 
by Lawson and Magnhagen (1). This leveling is at least 
representative for a supporting implementation of the 
"Third Generation Computer System" environment as pre
sented by Denning (2). 

2. Informal View of Function Distribution 

The above mentioned leveling structure appears in 
Figure 1. The lowest level is purely physical whereas 
the higher levels are all organizational, realized by 
hardware algorithms or program algorithms (or combina
tions). While the various levels may vary in content, 
one thing is clear: each level (1) uses level(l-1) as 
a "tool" for level (1) composition. In the next sec
tion we formalize, as a general model, the composition 
of levels and the inter-level relationships. Presently, 
we shall consider the implications of Figure 1 in an 
informal manner. 

First let us consider the question of complexities. In 
the paper by Lawson and Magnhagen (1), the notions of 
horizontal (intra-level) complexity and vertical 
( nter- evel) complexity were introduced. That is, 
there is an inherent complexity within each level and 
created complexities due to the mapping of level upon 
level. Many examples of created complexities can be 
sighted. Some will be presented later in the paper. 

The levels of Figure 1 are shown as an inverted pyra
mid to illustrate that "in general", the lower the 
level, the fewer people involved in designing, and 
producing the tools of the levels, whereas, as we go 

toward higher levels the greater the number of people 
involved in using lower levels .as tools. That is to say, 
for example, that more people use integrated circuits 
than design and produce them, or, hopefully, more people 
use computers then design and produce computer hardwares 
and so~wares. This relationship is an important factor 
in developing an informal notion of the cost function of 
vertical complexities to be specified shortly. 

~~~~~.....,.t~JS~E~R~C~O~MMUll~~I.T.Y._~~~~~~~ & 
APPLICATION PACKAGES

SOFTWARE SYSTEM

TARGET SYSTEM

MICROPROGRAMS

MICRO COMPUTER ARCHITECTURE

INTEGRATED CIRCUITS AND CIRCUIT -BOARDS

LOGIC

CIRCUITS

Computer System Architecture.

Figure 1.

As a rather practical matter, there appears to be a few
unwritten principles that one can extract from the short
history of designing and producing computers that have
been related to many project developments and indivi
duals making decisions.

Principle 1:
"If you cannot solve the problem, give it to someone
else".

Frequently the passing of problem goes upwards in the
leveling structure, thus increasing the number of people
affected by the decision. Complexities become magnified.

Principle 2:
"If you cannot select an alternative, provide all possi
bilities".

That is, give your "users" general purposeness so that
they can do anything they wish. While this may be use
ful at certain levels of the distribution, it can be
disastrous at other levels and contribute heavily to
magnified. complexities. A simple measure of the applica
tion of this principle is the quantity of shelf-space
for documentation of all possibilities (assuming the
level is fully documented).

Of course these two principles are based upon the fact
that the designers and/or implementors first realize
that they have a problem or are aware of the alternati
ves. A lack in these directions can cause even greater
magnified complexities in the eventualey-stem.

Principle 3:
"If a tool exists that can be adapted to perform a func
tion; use i~

* Former address: Mathematics Institute, Link.oping Univers~ty, Link.oping, Sweden.

93

This decision, normally by those responsible for the
economics of the system implementation, has frequently
been catastrophic, The wrong tools are used to imple
ment a level (1+1), thus forcing many complications
upon the implementors and propogating complexities up
wards. A professional plumber does not use carpenters
tools to fix leaks in the plumbing, nor does he use
general purpose tools to rectify a specific problem.
Amateur plumbers due to the usage of the wrong tools
or tools of too high a degree of general purposeness
can create floods .. Several analogies applied to compu
ter system architectures may come to the readers mind
in which floods were created.

Principle 4:
"If a design mistake is discovered during implementa
tion, try to accomodate the mistake instead of fixing
it".

This is, of course, an economic· question of project
investment that must be made by responsible project
m~nagement in rel~tio~ship to schedule slippage, penal
ties for late delrveri:es, etc, It ;i.s r~re thi;i,t the
implementation procedure is reset to a point where the
mistake can be corrected, Frequently, the end cost has
been higher than the cost would haye been for mistake
correction. Many design mistakes have wound up being
presented as ''system features'',

All four of the above principles have resulted in intra
and inter level complexities, Now for the informal
c?st function, It should be obvious that if complexi
ties are passed upwards, towards the users, the cost
of complexity increases since the cost must be repaid
for each usage, Whereas if complexities are passed
downward, it is probable, but not always guaranteed,
that total costs can oe decreased,

To illustrate some concrete examples of the passing of
complexity let us consider the following;

Passing complexities downwards;

, simplified job control language
, vertical (highly encoded} microinstruction formats

tagged data and program object types
, virtual storage management by lower levels

Passing complexities upwards:

user selection of a multiplicity of file accessing
techniques
complicated code compilation decisions left to
compilers
using unsuitable microarchitectures for emulating
foreign target systems

The author does not offer any rule-of-thumb for decid
ing upon the correct structuring of the levels of a
computer system architecture. A quote from Horning and
Randell (3), with which this author is in complete
agreement, explains why:

"The appropriate use of structure is still a creative
task, and is, in our opinion, a central factor of any
system designers responsibility".

The author does venture to say that some of the key
factors are the selection of an understandable amount
of semantic content at each level and the appropriate
balance of special purposeness vs general purposeness.
As for the number of levels; that is system dependent.
A process control system does not require as many le
vels as a multi-user access system where the users are
performing different types of data processing.

94

3. A General Model of Function Distribution

Horning and Randell (3) have pointed out that proeess
es can be used to model parts of a computer system.
In this section, we build on this notion. The main ex
tension is upon the specification of program partB,
which we consider as being composed of the execution
sequence of programs utilizing one or more "abstract
machines".

Two types of abstract machines form the notion of what
we shall call "processors". One type of processor can
service sequential processes, the other type of pro
cessor exists to take care of process interaction:3.
The latter of these may be viewed as the controller
of asynchronous concurrent events and for this type
of processor we assume the notion of "monitors" as
presented by Hansen (~} and further developed by
Hoare (5} and Hansen (6). The important part is that
the processors perform algorithms leaving out the notim
of whether they are hardware, software or combinations
thereof. A processor can, for example, be an arithmeti
cal and logical unit as well as a resource allocation
monitor.

A processor which we shall refer to as (pr) res~onds to
a program (p) and an instance of the execution of (p)
upon (pr) yields a process (ps).

We may state formally:

ps = f(pr,p) (3.1)

A process is a function of a processor and a program.

If we think then that each level other than the lowest
level in Figure 1 is a processor, we can construct a
computer system model generation formula

(3.2)

where n = number of levels above the physical circuit
level of Figure 1 (i.e. the number of organizational
levels). That is, a processor is defined as a process
which is developed as a function of a lower level pro
cessor and its "program" where program does not only
mean stored program, it can mean simple sequencing.
Note that this formula also serves as a formal defini
tion of the notion of an interpreter or interpreter
hierarchy.

Given this notion, we can now state what the role and
responsibility of the computer architect is in terms
of producing a computer system design.

To find conventient mappi~between each (pr. ,p)
pair that permit convenient realizations of i11 le
vels and to distribute functions according to some
goals amongst the various levels, Furthermore, to
seek to minimize both intra and inter level complexi
ties in all parts of the system.

In respect to system complexity, we can consider the
following formalization as the measure of complexity(c) .

n
c = I:

i=1

where: n
k

m

.k
i

m
I:

j=1
s.

J

number of levels in the system
exponential growth of complexity between
levels
number of potential state transitions within
a level

s = a vector containing a measure of complexity
of each potential state transition.

We note that the complexity is weighted by the level,
thus reflecting the increasing cost of complexity dis
cussed in the previous section. It is obviously diffi
cult to measure the complexity of each transition in a
uniform way, however, it is indeed related to the se
mantic content of discrete activities and the potential
interactions of the activities at each level whether
they be timed sequences through a logic chain, micro
instructions, target instructions, procedures or a run
in a multi-phase application package.

The programming language conrruent Pascal as presented
by Hansen (6) contains some interesting features for
controlling the complexity of interrelationships of
processes and monitors. The process and monitor func
tions to be performed are declared as abstract types
rather than as absolute objects. Further, a concise
statement of real instances of processes and monitors
giving each instance only specific "access rights" to
other processes and monitors is made by a-global de
claration. The interconnections within an access graph
are made quite explicit. Other interactions are auto
matically excluded by the programming language trans
lator. This type of thinking would be extremely use
ful in constructing proce·ssors at all levels including
microcode, .Q_omputer ~ided Qesign, LSI layout, etc.

Having now considered the levelwise structuring and
implication in a general model form, we shall finish
by considering some historical events that affected
the distribution of functions and various (pr,p)
mappings.

4. Historical Perspective

We shall consider some, but certainly far from all of
the events that have caused changes in the distribu
tion of functions in computer system architectures.

Let us first briefly consider the physical component
technology changes since we shall later concentrate
on the organizational aspects. That is, what we have
built and how we have structured the systems we have
built.

The first major step above the early use of relay and
vacuum tube technologies for logic realization, was
the invention and use of the transistor. On the memory
side, the first major step was the invention of magne
tic core storage. We have gone through several genera
tions of transistors realized in different types of
technologies with astounding success in miniaturiza
tion, packing densities and speed increases to the
point where the transistor currently forms the basis
for most memories and logic.

We shall not belabor these obvious physical changes,
however, it is worth noting that the physical side has
had an important impact upon what we have built. Up
until 1970's when mini and later LSI microcomputers
became increasingly important, we viewed the central
processing unit as well as the memories as expensive
items.

Due to the early high costs, it is not hard to see why
the first stored program* type architecture was so
readily accepted. That is, uniform program - data
stores, and a simple accumulator oriented processor
logic.

* This concept is usually referred to as the van Neu
mann (7) type of architecture, but Professor Maurice
Wilkes has informed the author that several people in
cluding the group at the Moore School of Electrical
Engineering, University of Pennsylvania, contributed
to the concept. Professor Wilkes proposes EDVAC type
computer.

95

Early attempts to move away from the first stored pro
gram type architectures generally resulted in very
complex, expensive hardware structures for processors
such as the Burroughs B5000 (8,9). In any event, it
was clear that certain architects such as Barton (10)
did not consider the first stored program structure as
a best solution that was cast in a Bible of stone. It
is interesting to note that these early departing
architectures would with todays integrated circuit
technologies (and computer aided design techniques)
be many orders or magnitude simpler to realize.

As the functional requirements for processors grew
from very simple functions to include features such
as floating point arithmetic, decimal arithmetic and
input/output control, it became obvious to Wilkes (11)
that this increase in complexity required a better
organizational hardware implementation technique.
Wilkes thus proposed new levels in the function distri
bution, namely, microprogram architecture and micropro
grams.

On the software organizational side, it became obvious
in the late 1940's and early 1950's that constructing
programs directly in machine language was a nuisance,
therefore, assembly languages were conceived. Further,
the notion of utility programs and subroutines for
computations as well as computer management functions
like input/output codes evolved to give economic and
psychological advantages to the field of programming.
These were the humble beginnings of system softwares.

The scope of the system software level increased with
the proposal by Hopper (12) to use higher level pro
gramming languages. It is interesting to note that in
the early developments of programming languages that
some implementors realized that the machine for imple
mentation, usually following the early stored program
computer concept, was n,ot a convenient machine for the
mapping of programming languages programs. Therefore,
the idea of inventing a pseudo-machine for the language
and constructing an interpreter program of the pseudo
machine became popular.

During the mid 1950's many arguments occurred concern
ing the pro's and con's of using higher level languages
vs assembly code on the first hand and, on the other
hand, pseudo machines and interpreters as an implemen
tation techniques as opposed to compiling code. Un
fortunately, compiling won out on the efficiency of
object program arguments. Thus, since the mid 1950's
we have spent large sums of money reconstructing com
pilers to generate codes for new hardwares, Many times
it is difficult and sometimes impoosible to decide upon
the "best code" to generate for particular programming
language features. With pseudo machines, there is
usually only one best mapping, But at that time, it
would have been-difficult to propose constructing more
hardware-like pseudo machines. Machine architectures
and microprogramming, of course, have now evolved to
the point where this is not only possible but economi
cal, for example, see Wilner (13) and Lawson and Malm
(14).

In the early 1950's a divergence in computer architec
ture occurred based upon the end use of systems. That
is, processors, their related memories and input/output
systems were made more special purpose and oriented to
wards scientific or commercial markets. Using this de
sign Btrategy, certain ps = (pr,p) mappings were better
for certain classes of applications. However, it was
frequently required to supply compilers of scientific
languages for commercial oriented processors and vice
versa. These compiler mappings in many instances were
extremely difficult. Like using carpenters tools to
fix leaks in the plumbing.

One of the main arguments for moving to the System/360
type architecture in the early 1960 1 s was to create a
more general purpose architecture, thus cutting down
of the proliferation of different system softwares
that arose from having several special purpose archi
tectures. One system for all users and, as was attempt
ed, a uniform programming language for all, namely,
PL/I. One of the main problems was that by adding gene
ral purposeness, the mappings ps (pr,p) for most all
areas, Fortran, Cobol, PL/I etc. to System/360 became
more difficult. This resulted in very complicated
schemes of compiler code generation and optimizations
of System/360 codes as well as providing the economic
need for several levels of support. Did this reduce
the software proliferation?

While one may question the soundness of the target
system architecture of System/360, it is important to
note that this was the first wide scale use of Wilkes
microprogramming concept. Various System/360 process
ors were designed and programmed to be compatable
interpreters of the System/360 architecture. The micro
processors were not general purpose microprocessors,
but designed for the special purpose of implementing
System/360. In any event, since they were programmable
they were used to produce "emulators" of IBM second
generation equipment. Many of these ps = (pr,p) mapp
ings, where pr was the microprocessor, were extremely
painful and represent prime examples of the plumber
using carpenters tools and creating floods.

On the operational (access) side of computers, it be
came evident in the mid 1950's that one user at a time
exploiting such an expensive resource was uneconomical.
Therefore, the ideas of spooling programs, supervisors,
schedulers etc. eventually led to the notion of opera
ting systems. As the reader is well aware, these pro
perties led to profound changes in the way people use
computers and led to special requirements upon many
levels in the computer system architecture. Denning
(2) does an excellent job of extracting the principles
of operating systems as we know them in third genera
tion computer systems.

In the mid 1960's several people were speculating that
microprogramming would become an important media for
aiding in programming language and operating system
requirements. See, for example, Opler (15), Lawson
(16), Wilkes (17) and Rosin (18). However, the neces
sary step to accomplish this was to have a more gene
ral purpose microprocessor. Such microprocessors start
ed to be developed in the late 1960 1 s, see Lawson and
Smith (19) and have resulted in several interesting
designs including those mentioned earlier, namely
Wilner (13) and Lawson and Malm (14).

While redistribution of functions to a more general
purpose microprocessor may have certain appeal in re
ducing complexity, it is a realistic fact of life that
the huge investment in computer products (hardwares
and softwares) of typical third generation products
has slowed down the marketing of products based on
different concepts for target system architectures
and instruction sets. At least one system architecture
by the Amdahl Corporation has used redistribution of
functions to better use Large Scale Integration parts
in perpetuating System/360 and-370 type architectures.

One prime example of the redistribution of functions
from software to hardware has been the wide spread
use of the concept of virtual memory. This concept
has helped solve many complex problems with program
overlays and file management by utilizing levels lower
than the system software level. It is interesting to
note that the idea and implementation existed for many
years before it was widely implemented. See Kilburn,
Edwards, Lanigan and Sumner (20).

96

On the hardware side, many manufacturers during the
1960's after strong resistance from "hardware artists"
have accepted the use of Qomputer !ided _Qesign tech
niques for accomplishing printed circuit board layout.
This type of resistance is very similar to the argu
ment of "programming artists" utilizing assembly
languages vs the utilization of higher level langua
ges. That is, I can always do a better job without
automation tools. But we may ask; at what global eost?
In any event, just as with higher level languages, CAD
can be extremely effective and certainly permits us to
more quickly and clearly realize more sophisticated
architectures at the lower organizational end of the
function distribution.

In the 1970's we have experienced an awareness (certain
ly not too soon) of the complexities of using computer
systems. Much is now written on structured programming
and programming style, see for example Dahl, Dijkstra
and Hoare (21), Weinburg (22) and Denning (23). These
writings have influenced application and system soft
ware construction and should in the future hopefully
start to influence lower levels of the organizational
end of the function distribution.

Hansens Concurrent Pascal (6) as mentioned earlier con
tains some interesting features for structuring and.
controlling "compoment" interrelationships. This work
builds on that of Wirths Pascal (24). It is clear in
these two cases that there is an attempt to redistribute
functions in the distribution of Figure 1. By having
the programming language translator "guarantee" that
invalid interrelationships cannot exist, we can avoid
constructing lower level hardware and/or microcode
solutions to checking for invalid operations.

It is interesting to note that the concepts of structu
red programming and improved programming style require
a restrictive type of programming, thus reducing seman
tics. Could this be a good general principle? Special
purpose tools, with restricted semantics, can perhaps
be used to solve, in a better manner, special problems!!

While this historical treatment has certainly not been
exhaustive, it is hoped that the reader can see in
terms of the earlier informal and general model pre
sentations of structuring and complexity, some of the
implications of the events that have happended. in the
brief history of digital computer design, implementa
tion and utilization.

Conclusions

It would be difficult to terminate this paper without
saying a few words about possible directions for func
tion distribution in the future. One thing is clear,
the range of the distribution that a computer architect
must cover has increased. He must be intimately famili
ar with all levels with the exception of the details
of the physics of logic realization by particular tech
nologies. Further, he must be prepared to specify and
appropriate number of levels to solve the problem at
hand and assure that the ps = (pr,p) mappings are
realizable, economic and convenient to utilize.

Current trends towards LSI logic parts at low costs due
to high production volume will undoubtedly have a great
impact upon the organizational levels, see Fuller and
Siewiorek (25). Just make sure that the parts selected
represent the correct tools to do the job, otherwise,
look out for floods. The mass production of large
scale integration parts may be insensitive to the
complexity of the logic, but users of the components
are not insensitive.

Due to the fact that processor physical structures have
reduced in cost, we can expect more dedicated systems
on the one hand and an attempt to utilize many process
ors in a distributed manner on the other.

As a practical matter for many areas of computer usage,
we are saddled with our history due to large program
investments. There will certainly be an impetus to
seek solutions to new architectures that can accomodate
this software investment. Most likely, these solutions
will be combinations of several levels in the distribu
tion of functions.

Acknowledgment

The author wishes to thank Professor Maurice Wilkes
for reviewing this material, particularly to verify
the historical aspects.

References

(1) H.W. Lawson, Jr. and B. Magnhagen. Advantages of
Structured Hardware, Proceedings of the Second
Annual Symposium on Computer Architecture, Houston
Texas, January 1975.

(2) P.J. Denning. Third Generation Computer Systems.
Computing Surveys 3, 4 (1971)

(3) J.J. Horning and B. Randell. Process Structuring.

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

Computing Surveys 5, 1 (1973).

P.B. Hansen. Operating System Principles. Prentice
Hall, Englewood Cliffs, N.J., 1973.

C.A.R. Hoare. Monitors: An Operating System Struc
turing Concept. Communications of the ACM 17,
10 October 1974.

P.B. Hansen. The Programming Language Concurrent
Pascal. IEEE Trans. on Software Engineering,
Vol SE-1, No. 2, June 1975.

- . von Neumann's Collected Works. A.H. Taub,
Ed. Pergamon, London 1963.

Burroughs Corporation. B5000 Reference Manual.
Form 200-21014, Detroit 1961.

W. Lonergan and P. King. Design of the B5000
System. Datamation, 7, 5, May 1971.

R.S. Barton. Ideas for Computer Systems Organi
zation: A Personal Survey. Software Engineering
vol 1, Academic Press, New York, 1970.

M.V. Wilkes. The Best Way to Design an Automatic
Calculating Machine. Manchester U Computer Innau
gural Conference, 1951.

G.M. Hopper. Compiling Routine A-¢. Unpublished
documentation. May, 1952.

W.T. Wilner. Design of the B1700. Proceedings of
the FJCC, Anaheim, California, 1972.

H.W. Lawson, Jr. and B. Malm. A Flexible Asyn
chronous Microprocessor. BIT 13, 2 June, 1973.

A. Opler. Fourth Generation Software. Datamation
13, 1 (1967).

H.W. Lawson, Jr. Programming-Language-Oriented
Instruction Streams. IEEE Trans C-17 (1968).

97

(17) M.V. Wilkes. The Growth of Interest in Micropro
gramming: A Literature Survey. Computer Surveys
1, 3 (1969).

(18) R.F. Rosin. Contemporary Concepts in Micropro
gramming and Emulation. Computing Surveys 1, 4
(1969).

(19) H.W. Lawson, Jr. and B.K. Smith. Functional
Characteristics of a Multi-Lingual Processor.
IEEE Trans. on Computers vol C-20, July 19J1.

(20) T. Kilburn, D.B.G. Edwards, M.J. Lanigan and
F.H. Sumner. One-Level Storage System. IEEE
Trans. EC-11, April 1962.

(21) O.J. Dahl, E.W. Dijkstra and C.A.R. Hoare.
Structured Programming. Academic Press, London,
1972.

(22) G.M. Weinburg. The Psychology of Computer Program
ming. Von Nostrand Reinhold, 1971.

(23) P.J. Denning, ed: Special Issue: Programming.
Computing Surveys 6, 4, 1971.

(24) N. Wirth. The Programming Language Pascal. Acta
Informatica, vol 1, no. 1, 1971.

(25) S.H. Fuller and D.P. Siewiorek. Some Observations
on Semiconductor Technology and the Architectures
of Large Digital Modules. Computer, October, 1973.

INTERFACE, A DISPERSED ARCHITECTURE

Chris A. Vissers
Twente University of Technology

Enschede, The Netherlands

0. Abstract

Past and current specification techniques use ti
ming diagrams and written text to describe the phenome
nology of an interface.

This paper treats an interface as the architecture
of a number of processes, which are dispersed over the
related system parts and the message path. This approach
yields a precise definition of an interface. With this
definition as starting point, the in~erent structure of
an interface is developed. A horizontal and vertical par
titioning strategy,based on one functional entity per
partition and described by a state description, is used
to specify the structure. This method allows un/amb:i_guous
specification, interpretation, and implementation,and
allows a much easier judgement of the quality of an in
terface. The method has been applied to a number of wi
dely used interfaces.

1. Introduction

Many committees, charged with standardizing an in
terface struggle many years (8 to 10 years makes no ex
ception) to get the job done. What are their problems ?
We can find at least three. First, an interface is always
much more complex than a first estimate suggests. Quali
fication and quantification of the needs of the users is
a difficult task, application dependent, and subject to
different opinions. The definition of the functional con
tents of an interface that satisfies these needs introdu
ces an extra choice, and consequently makes agreement one
level more difficult. Second, the disclosure of an inter
face allows the linkage of products of different compa
nies into one system, which requires the political will
to make this happen. The third problem is the available
methodology and language for the specification of an in
terface and its preliminary vers.ions. Conventional metho
dology uses timing diagrams and written text, often illus
trated with tables and drawings. This methodology has a
number of serious disadvantages. The most important of
these are discussed in this paper. Bad specification me
thodology makes an interface difficult to master and do
cument, and enhances the risk of errors, incompleteness,
inefficiency and vagueness. It also opens the door to
obstruction of progress through vague reasoning. An in
terface with such characteristics contributes to non
uniform and unintended interpretations. And faithful to
Murphy's law this has led to system malfunctioning, even
though the interface was scrupulously interpreted.

Therefore, the availability of an efficient tool
that allows unambiguous and clear specification and in
terpretation of an interface would be of great profit to
both its designers and users. For the designers it faci
litates a clear discussion and expedites a correct, com
plete, efficient and clear specification. For the users
it will help to avoid system malfunctioning, caused by
misinterpretation or unauthorized extension of a given
interface.

This paper presents a specification method that
tries to incorporate the desired characteristics. It has
been applied to a number of existing and proposed stan
dard interfaces [1,2,31 with satisfactory results. The
state description technique, which is closely related
with the method, is reflected in an interface which is
now becoming an international standard. It proved to be
of extreme value both in the development and use of this
interface [4,5], The method is based on the definition
of an interface, which will be discussed first. Next,

98

technique and language for the specification of an inter
face are discussed. This is followed by the development
of a structuring discipline for an interface, and a dis
cussion of the character of a standard interface. Finally
some conclusions are drawn.

2. Definition

Few attempts seem to have been undertaken to state a
manageable definition for the concept of interface. It
may be that the term interface itself, and its transla
tions to various languages(cutting place, tangent plane),
pretends to be clear enough. But the term interface is
currently used with many divergent interpretations. (The
term 'connection' is used in [6] to indicate the same
kind of relation definition as discussed in this paper).
Therefore, if we want to discuss a specification metho
dology for it, an adequate definition is demanded.

What we clearly want, is to be able to bring sys
tem parts that can be considered and design1ed as sepa
rate functional entities, into relationship to form a
system with a higher level of functional performance.
The possibility that some system parts can be brought
into relationship makes us say that these system parts can
interface. Therefore an interface can intuitively, but
still informally, be called a 'relation definition'. In
order to interface, the system parts must bi~ given
certain properties which are attuned to each other.(e.g.
two system parts know the same variable, one as its
producer,the other as its consumer). All properties of
a system part are defined by the complete specification
of its functional behaviour, its architecture. Therefore
we are able to define an interface by specifying the
architectures of the related system parts. Through the
definition of the architecture of each part~ the inter
faces of these parts are concurrently established.
However, in some cases we may desire, or be forced, to
define an interface first, and the complete architectures
later (e.g. for the definition of a standard
Channel-to-1/0 interface), In these cases it is
undesirable, unfeasible, and unnecessary to define the
complete architecture of the related system parts in
order to be able to define their interface,

System parts have a relation if they can affect each
other's functional behaviour. Without mutual effect they
ignore each other and the system parts are independent
and unrelated. The mutual effect is through variables
(messages) with a defined behaviour and exchanged via a
message path. Suppose we want to define the effect of
system part A on system part B through variable V .. The
behaviour of V can be defined throu'gh the definition of
the generative mechani'sm of V, which belongs to A and
forms a portion .of A's architecture (the influence~ of A).
The effect on B through V can be defined through the
definition of that portion of B's functional behaviour
expressing that eff~ct (th~ effect on B). Conversely we
can define the effect of B on A through W. This yields,
another portion of A's and B's architecture. The two
portions of A's architecture can be specified either as
separate portions if there is no correlation between them,
or integrated if there is. A similar statement can be made
for B.

An interface of two or more systems parts defines for
each system part that portion of its architecture that al
lows a relation between those system parts to form a sys
tem providing a desired function.

The previous reasoning assumed a functional passive
message path for the exchange of the variables V and W.
Though this is often the case, an interface may contain a
message path that performs logic operations on the vari
ables it exchanges as explained in section 4.3: Central
message path. Consequently the definition of an inter
face has to be extended to contain the architecture of
the message path, as-shown in figure I. As with the
definition of an architecture, the definition of an
interface is a specification problem. This specification
problem concerns not one architecture. but a portion of
each of the related architectures and the message path
in between. In this sense the concepts of architecture
and interface are equivalent. The term relational func
tion is given to that portion of an architec.ture that is
part of the considered interface. The remaining portion
of the architecture is called local function. It forms
the complement of the relational function in the
architecture's total relation with its environment.

....
\

_..

\
..... ""

Figure la: Three related archi
tectures A, B, and C.

Figure lb: The A-B-C Interface.

This definition provides the basis for a sound
specification method: the interface is specified by the
separate specification of each relational function and
of the message path. Since these items are portions of
an architecture, their description may use the same
techniques and languages as applied to architectures in
general.

3. Description techniques and languages

Three basically different description techniques
are conceivable and used to specify an architecture:
the phenomenological, the assertive, and the generative
description.

3.1 Phenomenological description.

The phenomenological description gives an observa
tion of the behaviour of the input and output variables.
As known from automata theory, that bases its definition
of an automaton on it, this is a valid specification
method. But in order to be complete, the observation
must include all input and output variables, and all
possible sequences of their values. Though this ~
requirement is not important for the development of
(automata)theory, it is impractical for any architecture
of some complexity, because of the sheer monotony and
inordinate length of the sequences, It is not surpri
sing that this method is not used in practice for the
specification of architectures, Therefore it is a real
surprise to observe that the conventional specification
method for interfaces is still based on the phenomeno
logical description, since the timing diagrams are
literally an observation of the signal lines that
exchange the messages among the system parts, Those
diagrams are furthermore by definition incomplete,
as long as they do not contain all input and output
variables of the relation functions. This incompleteness
however, is normal in conventional specification
methodology, since the variables exchanged across the
local function/relational function boarder, are nor~
mally missing in the timing diagrams. (In 4. 1 Sources
and sinks we come back to this point). To make things.

I
I

even worse, most specifications only contain the most
significant sequences. Although this cuts down on the
monotony and length of the sequences, it makes the
specification even more incomplete. Hence, the written
text, which usually goes together with the diagrams,
becomes essential to fill up the gaps in the specifica
tion with timing diagrams. The text, however introduces
several new problems. The use of another language will
inevitably tempt the writer of the specification to
'explain' the diagrams. And so the reader must carefully
distinguish between text that contains additional
specification and text that contains redundant written
specification of the diagrams. Furthermore it is in most
cases not clear whether the text is meant to be asser
tive, generative, or phenomenological. The observation
of the message path as basis for the description,
results in an intermixed description of the contributing
relational functions and the message path itself. This
burdens the implementer of an architecture to untangle
the relational function, that is part of this architec
ture, from the total specification, The phenomenological
description is maximally unstructured, opposite to the
nature of human thinking. Therefore the implementer has
to bridge the 'maximum distance' from the phenomeno
logical specification to his product, a realizable
generative specification.

The previous observations suggest a specification
method for an interface in which each relational func
tion and the message path is specified individually.
Each individual specification uses one description
technique, preferably not the phenomenological, and
one description language.

3.2 Assertive description •
The assertive description method, originally

introduced to prove program correctness [7,0], speci
fies an architecture by specifying assertions on the
behaviour of the input and output variables. In so
doing, the assertions form in fact a shorthand notation
for the phenomenological description of the input and
output variables, and allow the latter's drawbacks to
be avoided • The assertive specification can not be
simulated, since this requires a model of the generative
mechanism between inputs and outputs. Simulation can be
highly desirable if we want to check the assertions
against samples of the phenomenological descrintion.
The specification of the assertions themselves is the
biggest problem in using this technique, in pa~ icular
when the architecture is complex. This often requires
that the architecture is specified as a collection of
related partitions, and each partition is specified
assertively. Through this partitioned specification,
internal variables are defined, and the assertive
approach comes close to ·the generative approach which
is followed in this paper.

3.3 Generative description.

Associated with the phenomenological specifica
tion of a finite automaton, the type of system to which
we are restricted· when we start an implementation, is
a (minimlUll) state machine. This state machine can be
considered as the generative mechanism that maps the
input onto the output. A description of it can replace
the phenomenological description. For complex systems,
as frequently encountered for interfaces, it will
generally be difficult to establish this minimum state
description. Since the generative description is used
to replace a desired input/output behaviour (phenomeno
logy) the latter is not available to deduce a minimum
state description from it. Associated with the minimum
state machine are inany equivalent machines with the same
phenomenology which do not contain the minimlUll set of
internal states. Therefore, although the minimum state
description often appears to be the most attractive
one [2], we often have to be satisfied with a reasonably
good equivalent description. Most of our experience is
based on the use of this type of description for inter
faces, though an assertive description might equally
well have been chosen.

99

3. 4 Language.

The most pr1m1t1ve language in which the generative
mechanism for a finite automaton can be expressed is the
state transition diagram or table, as used in sequential
circuit theory. Though this language has succesful been
used in a number of applications [1,3,4], and remains
quite suitable for specific ('logic') functions, it
appears to work inefficiently for more complex interfa
ces. In these cases an algorithmic language, that con
tains primitives for many (numerical and logical) opera
tions is much more powerful [2]. Some examples of this
are shown in figures8 and 9. It remains essential though,
that the algorithmic description is interpreted as a
state machine description. The representation of the
states is free, since they are internal to the automaton.
The optimum choice is a representation that provides
maximum clarity of specification. This can often be
achieved by adapting state representation and formula
tion of transition conditions to each other [2], The
algorithmic language allows also many different
representations for the state transition diagrams or
tables. So these descriptions can be mixed with
algorithmic statements, and simulated on a computer [9].
The possibility of simulating the interface is an
important advantage of the generative description.

4. Structure.

Human nature does not favour the specification of a
complex system by one single homogeneous function, such
as a large diagram, table or algorithmic expression. We
no longer have confidence that it represents what we
want. Instead we start with smaller individual parts of
specification. For each part we have confidence that its
specification is, or can made to be, what we want. And
we link up (interface) those parts, often by extension
of their specification, into a larger part of specifica
tion. Such a partioned specification method raises pro
blems of its own: where to start, and how to link up the
parts. A general structuring discipline, providing a
structure in which partitions of specification can be
embedded, can greatly help in reducing these problems.
Such a structuring discipline for the specification of
an interface is discussed in the following sections.

4.1 Sources and sinks.
The first class of part1t1ons is called the source

(Q_{l_=O)A !:7'2;

(a)

Figure 2: Decoded source.

'V DECSOURCE
[1] W1:+CQ.a=o)/W1
[2] DS+Q_{l_
[3] DELAY T2
[4] W2:+C'f2.a•o)/W2
[5 J DS+'{2{1_
[6] DELAY T1
[7] +W1

(b)

Graphic (a) and algorithmic (b) description of a decoded source.
The local variable .Q.S., whose behaviour Is free, is used to deter
mine the behaviour of the relational variable DS. The behaviour of
DS is as foll011s: DS=O remains at least Tl seconds valid, DS;i!O re
mains at least T2 seconds valid. Each value of DS#O is enclosed by
the 'separation message' DS=O. The variable OS is used in the rela
tional function. If D.S. behaves as DS (i.e. as required), the imple
mentation of the source is trivial: a short-circuiting from j~ to
DS.

The local function represents the complement of the
relational function in the architecture's total relation
with its environment. This leads to the introduction of
the sink function, the counterpart of the source function:

I
A sink function defines the existence, set of values,

and behaviour, of a relational variable, which is made
available as input to the local function [3].

A sink function has the same appearance .as a source,
therefore no examples are shown. Practical applications
often require the combination of a source and sink func
tion into one function. Such a function is called a
conversational source or sink function, dependent upon
its main task. The conversational character is required
when the validity time (the time that the value of the
variable remains unchanged) of a relational variable is
defined in a logical way (figure 3) instead of by the
use of time (figure 2).

(Q.'i:.l:'.=1)AP=3

(Q.'i:.\'.'.=0)AP=5

and sink functions layer. To operate as one functional Cal
entity -e.g. a Channel- information is exchanged
between the local and relational function of the channel.
Conventional methodology often hides the variables
carrying this information in vague statements, such as

' if the Channel is able to connnunicate with a
device, it places an address on the bus ... '

Such a statement gives rise to numerous questions:
- Where and how is the ability to communicate

generated ?
- When the channel is able, will it actually

communicate ?
- What happens when the channel is able, but other

activities require the channel~s attention
- When, where and how are addresses generated, how

and where are they coded ? Etc-.
It is therefore necessary to make a clear distinction
between the variables generated by the local function
and by the relational function, and to decide which
of these cross the boundary between local and relational.
The interface is only interested in those locally
generated variables that are inputs to the relational
function. Since their generation is a part of the local
function, which is per definition unknown, we cannot
define their behaviour~ But we can define their required
behaviour via a finite automaton, called a source
function:

I
A source function defines the existence, set of

values, and required behaviour of a local variable,
which is made available as input to the relational
function [3].

100

((2{1_[X]=1)ACSV=O

(Q.'i:[X]=O)ACSV=O

'V CODEDSOURCE
[1] WAIT:+(CSV+((((2§.!'.'.=1)AP=3)vCSV)A~(Q{l_f=O)AP=5)/WAIT

(b) [2] CS+Q.{1_
[3] +WAIT

Figure 3: Coded converational source.

Graphic (a) and algorithmic Cb) description of a coded conversa
tional source. The local variables .Q.s.Y. and ~ are used, together
with the relational variable P, to determine the behaviour of the
relational variables CSV and CS. As long as CSV=O, the code of CS
may change. Analogous to figure 2, CSV=O may be interpreted as
the separation message. CSV is used both in the relational func
tion and in the local function. The code of CS remains valid, as
long as CSV=l.

When all sources and sinks for each relational
function are identified, they form a layer that shields
the local functions from the remaining part of the inter
face. This remaining part is called in figure 4a basic
interface function. The source and sink layer definE~
the behaviour of all inputs and outputs of the interface
and is therefore a suitable place to start the definition
It shows that an interface can be considered as an
architecture that is dispersed over several other
architectures and the message path.

\

I

........ _, L- -

Figure 4a: Source and Sink layer
and Basic interface function.

/Local f'n A'

I I

-..J L

Figure 4b: Partitioning of the
Basic interface function into
the Basic protocol functions
and the Basic message path.

When an interface is considered as a dispersed
architecture, one can view a system either as a
collection of related architectures (figure Sa), or as

I

a collection of interfaces (figure Sb), The latter
viewpoint is used when a system makes use of one or more
predefined interfaces.

..... _ -,' , ,
,- -- _ - - - - .. - - ..

, .. ,:. ·, ~.- -->-:1 ..:.-< - - -~ .. -; ..i::.
\ ... i :"" ;' \ .., i ;", \"' I I .,'

1' I' I I

,. ..L .&. - ... - - - - .J. 1. - - - - - - ... J.,,

Environment

Figure Sa: System, specified by
a collection of architectures.

Figure Sb: System, specified by
a collection of Interfaces.

·4.2 Basic protocol.

When the source and sink layer is defined, the
remaining part of the interface represents its basic
function. This basic interface function contains the
flow of the data from sources to sinks and the
operations performed on the data. If the basic interface
function is defined as one automaton and subsequently
partitioned into the basic protocol functions (the parts
that are accomodated in the related architectures), and
the basic message path (figure 4b), it will usually
result in a voluminous, inflexible and costly basic
message path. Most interfaces require a reduction of
this cost through a reduction in the space and time
allowed for the exchanged variables. At the same time
increased flexibility is desired and obtained through
a·general purpose message pat~. Consequently the basic
protocol functions have to be adapted to this reduced
and generalized message path to form part of a definite
specification. Starting with the basic protocol, however,
is very useful in formulating the interface's basic task
and in deciding how the elements of this task are alloca
ted to the related architectures.

4.3 Central message path.

The next step is the definition of the central
message path. The basic message path indicates what
variables are to be exchanged. As a first step it can be
decided how much space and ~ will be assigned to these
variables. Three most important and competing parameters
influence this choice. The first one is the possibility
of physical separation of the architectures, in particu-

l 01

Figure 6: Basic protocol function.

A simpl if led basic protocol function of a complex Channel-to-i/o
interface [lJ. The function is located in the Channel. The diagram
shows how a data transfer sequence can be build up. The elementary
steps In the sequence are represented by the states In the diagram.
The transitions in the diagram indicate how these steps may be
sequenced. It follows that data transfers from different devices
may be mixed. This allows the multiplexing of the message path.

lar their maximum physical distance. The second is the
desired time performance of the interface, and the third
is the desired reliability of the interface. Another
important parameter is the level of independence of the
message path from the related architectures. The weight
of those parameters is highly dependent on the applica
tion of the interface (e.g. industrial plant control
versus laboratory experiments), which makes a universal
central message path for all applications unlikely.

As a second step, the function of the central
message path is defined. In some message path configura
tions, such as in string or loop configurations, this
function is trivial: just one or more connections. A
less trivial function is represented by the so called
bus or party line configuration that can be found in
most Channel-to-I/O interfaces. Such a bus structure
gives the 'or' of the coded variables presented to it
by the relational functions. This 1or 1 is a simple,
but essential function that allows multiplexing of
data from various destinations. The implementation
of the 'or' function is generally distributed over
the relational functions.

'\/ CMP
[1] L:SflL+PSL
[2] SRLV+PSLV
[3] PRL+v/SSL
[4] PRLV+v/SSLV
[5] -+L

Figure 7: Central mAssage path function of snLC [l].

The central message path function connects one primary station to
multiple secondary stations. The S(econdary) R(eceivlng) L(inel is
connected to the P(rimary) S(ending) L(ine). Idem for the S(econ
dary) RCecP.iving) I.Cine) V(alid), which carries thP. clock.
The value of the PCrimary) R(eceivlnr;) LCine) is the 'or' function
of the send Ing inputs to the 1 i ne, represented by the ~
S(econdary) S(endlng) L(ine). Idem for PCrimary) R(eceiving) L(inel
V(alid). PSL and PSLV are generated in the function FRAl<'.ETP.MSMIT
TER of figure 8. PRL and PRLV are used In the function FRfYERECEl
VER of figure 8.

More sophisticated message path functioning can be
found in many CPU-Channel interfaces. Here the message
path contains store operations• priority assigments to
regulate concurrent acces to the same storage locations,
and the like. These functions are performed by main
storage.

The CPU-Channel interface is a prominent example of
the use of memory in the message path. Exchange of
variables via memory (indirect transfer) allo~s either
parallel or sequential operation of the relational func
tions. A freedom of choice which is left to the implemen
ter. When no memory is used, the transfer is direct,
which requires parallel operation of the relational

functions. The determination of the space, configuration
and function of the message path of the interface plays
a definite role in the total performance and applicabi
lity of the interface. The message path is therefore
central to the relational functions as illustrated in
figure JO. It is not surprising that some names of inter
faces are based on it (e.g. the unibus). But this does
not justify the identification of the message path, or
its momentary condition (e.g. the state of main storage
as the interface between the program modules), as the
entire interface. The message path should be derived from
the basic protocol functions and not vice versa.

4.4 Transfer.

The introduction of the central message path
requires an adaption of the basic protocol to the space,
time, and function of the central message path. This
requires a number of functions to adapt the format
(multiplex, serialize) of the variables supplied by the
basic protocol to the message path and vice versa. The
sequencing of different variables over the same trans
mission path requires a mechanism to indicate the type
and (in)validity of these variables. The introduction of
the coded representation of the variables on the message
path, discussed in the next paragraph, also makes these
mechanisms necessary. Dependent on the choices made for
the message path, such a mechanism can make use of hand
shaking, strobing, or enveloping techniques. The chance
of message mutilation caused by the message path, often
requires the introduction of message protection mechanisms
These mechanisms can range from a simple parity check to
complex methods such as cyclic redundancy check, buffe
ring, numbering and retransmission.

The functions charged with these types of tasks form
a layer, shielding the basic protocol from the message
path. This layer is called Transfer in figure JO.

V FRAMETRANSMITTER;SPTR;SFLAG
[1] W1:+(-TRANS)/W1
[2] SPTR+FLAGPTR,(CHECKBITS SFRAME),SFRAME,FLAGPTR
[3] W2 :+PSLV/W2
[4] SFLAG+((pSPTR)>24+pSRFAME)v(pSPTR)~B
[5] PSL+(0,-1+SPTR)[SFLAGVSCNT"5]
[6] SPTR+(-SFLAGvSCNT"S)+SPTR
[7] FRSEND+O=pSPTR
[8] SCNT+PSLxSCNT+1
[9] W3:+(FRSEND,PSLV,-PSLV)/W1,W2,W3

v

V FRAMERECEIVER ;FINE ;SUPR
[1] W1:+(-PRLV)/W1
[2] FINB+RF'LAG
[3] SUPR+(-PRL)ARCNT=5
[4] RFLAG+(-PRL)ARC'NT=6
[5] RCNT+PRLxRCNT+1

[1]
[2]
[3]
[4]
[5]
[6 J

V X+CHECKBITS Y;N
N+pY
X+16p1

L:N+N-1
X+1+(X,0)"POLAX[O]"Y[N]
+(N-'O)/L
X+cl>-X

[6] RFRAME+(BxRFLAG)+SUPR+PRL,(-FINB)/RFRAME
[7] FRDY+RFLAGApRFRAME~32

[BJ W2:+(FRDY,PRLV,-PRLV)/L,W2,W1
[9] L:RFOKE+A/(16tRF'RAME)=C'HECKBITS 16+RFRAME
[10] W3:+(PRLV,-PRLV)/W3,W1

v

Figure 8: Transfer functions of SDLC [2].

The FRAMETRANSMITTER generates PSL and PSLV (see figure 7) from
the variable S(endlng)FRAME, that It receives from the ENCODER
function, shown in figure 9. It Indicates when the frame
is transmitted (by FRSEND) etc. The FRAMERECEIVER assembles a
variable R(eceived)FRAME from PRL and PRLV (see figure 7), and
presents this to the DECODER function of figure 9. The subfunction
CHECKBITS generates the cycl le redundancy checkbits, and ls part
of both the transmitter and receiver function. It is not an in
dividual auto~aton.

4.5 Coding and decoding.

As mentioned under 3.4 Language, the representation
of the state of the automaton is free as long as we are
in the architectural phase, and can be chosen to provide
maximum clarity of specification. When the automaton is
implemented, the implementer is free to represent the
state of the variable by any suitable set of code ele
ments according to his criteria. Source and sink
variables are internal to the individual architecture's

as are most of the variables contained in the basic pro
tocol and transfer functions. Their final representation
is the implementer's decision. The situation is different
however, for the variables that are exchanged via the
message path. Usually an interface is designed to allow
the implementation of each architecture by an independent
group without requiring them to communicate with all
other groups. When this is the case, the representation
of the variables crossing the message path is public and
must be settled by the interface designer. The variables
are principally provided or accepted by or via the basic
protocol, and are subjected to the transfer operations.
Hence the functions performing the coding and decoding
form a layer in between the (basic) protocol and the
transfer, as shown in figure 10. The message path
provides the code elements for the representation of the
exchanged variables.

[1]
[2]
[3]

[4]
[5]
[6]

[1]

[?. J
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]

V ENCODER;SAF;SCF;SIF
f/1 :+(-TRANS) /W1

SAF+(Bp2)TIADD
SCF+(Bp2)T(16xFB)+(SNSI,SRQI,SROL,SNSA,SCMDR,SRR,SRNR,SREJ,SI)/
3 7 15 99 135 ,(1 5 9 ,2xSNS)+32xSNR
SIF+(SCMDR/HELPFIELD),(SNSI/OUTNSI),SI/OUTI
SFRAME+SIF,SCF,SAF

W2:+((ENCODERDY+TRANS),-TRANS)/W2,W1

V DECODFR;RAF;RCF
W1:+(-FRDYARFOKE)/W1

RAF+ -8 +RFRAME
RCF+-B+-16+RFRAME
RIF+-16+RFRAME
MA+(2.LRAF) E (TADD, CADD)
PB+RCF[3]
INR+2.LRCF[O 1 2]
INS+2lRCF[4 5 6]
RVIF+-RCF[7]
RNSI+3=2lRCF[O 1 214 5 6 7]
RSIM+7=21RCF[O 1 2 4 5 6 7]
RORP+19=21RCF[O 1 214 5 6 7]
RDISC+35=2lRCF[O 1 2 4 5 6 7]
RSNRM+67=2.LRCF[O 1 2 4 5 6 7]
RRR+1=2.LRCF[4 5 6 7]
RRNR+5=2.LRCF[4 5 6 7]
RREJ+9=2.LRCF[4 5 6 7]

f/2: +((DF.CODERDY+FRDY), -FRDY) /'12, W1
v

Figure 9: Encoding and Oecoding functions of SDLC [2].

The ENCODER function generates the variable SFRAME from the
variables provided by the protocol functions of SDLC. The DECODER
function performs the opposite operation. Both functions are l in
ked to the transfer functions of figure 8.

4. 6 Protocol.

The introduction of the central message path, the
transfer layer, and the coding layer may affect th•~
basic protocol functions. If so, these functions must be
adapted to the communication facilities provided by this
central part of the inte.rface. This adaption predomi
nantly involves the introduction of sequencing funi:::tions,
due to the time limitations of the message path. The
adapted basic protocol functions thus form a layer, in
figure 10 called Protocol, in between the source and
sink layer and the coding and decoding layer. The
protocol layer which is defined through this procedure
contains the highest level of functions representing the
substance of the relation of the archi tecture:s. In a
standard Channel-to-1/0 interface, the interface iB
primarily concerned with the exchange of different
classes of messages, such as commands, data, and status.
The protocol layer in this type of interface controls
such things as the setting up, maintenance and closing
down of message transfers, as well as the interleaving
of message transfers from different origins and th1air
priorities in case of concurrency. In general few
arithmetic and other data manipulation
functions, are found in this type of interface. Other
interfaces such as the Channel-Main Storage interface,
or CPU-Main Storage interface, may contain in. high
degree of data manipulation and buffering fun.ctionB.
The CPU-Main Storage interface can be conside:red as
including the definition of almost the entire: CPU
instruction set.

102

- -
/

,..........Local functlon"'A'

/ "' (

!'-->
I \

\
I

\
I

\ I
\. /

" /
I / I

--.I L-
_......

Figure 10: Layered structure for an Interface

4.7 Further development.

The previous discussion of the structure of an
interface suggests a sequence in the development of
the layers, according to the sequence of the sections
4.1 through 4.6. This development is based on a
strategy of successive definition. First the architec
ture of the total interface is determined, and its
partitioning and dispersion over the related architec
tures. Next the architecture of the central message path
is determined, and finally the architectures of the
individual relational functions. Though this procedure
is a useful guideline, a practical application often
requires a substantial number of iterations through
this sequence, due to the high dependency among the
layers.

A further substructuring per layer may result in
either the development of sublayers per layer (extended
horizontal partitioning) or a partitioning of a layer
into functions which are not or only slightly related
(vertical partioning). The previous discussions have
already used the vertical partitioning by interpreting
each layer as a class of functions, and showing
examples of such functions. Much is dependent on the
possibility of defining a function first as an indepen
dent entity, and next of establishing the linkages to
and from other functions. As is true for the vertical
partitioning, the extended horizontal partitioning may
also provide more clarity in the specification of the
interface, The protocol function of figure 6 shows what
type of operations may be sequenced. The way these
operations are organized in detail can be specified in
a lower protocol layer. Complex data transmission inter
faces may build up their transfer layer as a stack of

Local function A

n•o ______ ._, __ .._ __________ _.

a n Transfer.__ ___ __.

Central message path

1-------

Architecture
B

L_ "T - -
J

Figure 11: The Interface from the perspective of architecture A.

103

sublayers. Such a sublayer, and all that it encloses,
may be interpreted as the central message path of the
transfer layer that is just one level higher. An
opposite development also occurs frequently: variables
pass a layer unchanged.

The structure so far developed for the interface
is shown in figure 11 from the perspective of an
individual architecture. Each box in the figure repre
sents a function, that exists in parallel with the other
functions and is related with them via the exchange of
variables. This horizontal and vertical structuring is
different from the structuring in which functions on a
lower layer are used to implement an abstract machine
on a higher layer [10].

5. What is a standard interface

As stated, a system can be understood as a collec~
tion of interfaces (figure Sb) as well as a collection
of architectures (figure Sa). This viewpoint is signifi
cant when an interface is defined first, and the asso
ciated architectures later. This happens with a so called
standard interface. A standard interface, such as a
Channel-to-I/0 interface, is always defined to meet many
different architectures, e.g. printers, tape units, disc
units, display devices, architectures that still have to
be invented, etc. in different quantities and configura
tions. At the time of the definition of the standard, the
current application area is known, and there is a rough
estimate of the characteristics of future applications.
Definition of a standard to include all current and
future applications is not only impossible, it is also
highly inappropriate since it loads anyparticular applica
t~on with ~he overhead of a multiplicity of unused applica
tion functions. Instead the standard is defined to suit
all requirements of current and future applications with
out containing the specific functions of individual
applications. The standard is by definition incomplete.
Consequently, when the standard is used in a particular
application, each relational function has to be extended
with application dependent functions. Those application
dependent functions form yet another layer around the
source and sink layer of the standard interface, and
are designated 'Application' in figure J2a.

/. - -
Local function '

\

Figure 12a: Application of a
Standard Interface

Standard

Interface

Figure 12h: Partitioning of the
.Appl I cation layer.

The consequence of this structure is that the
variables exchanged among the application functions are
unknown, i.e. transparent to the standard interface, and
yet pass all layers and the message path. Since we want
the function of the standard te remain invariant with
each application, it implies that the standard has to
provide for the space and time for the exchange of those
variables. If on the level of the central message path
the available space is to be defined in terms of avail
able code elements, the definition of the available space
at the level of the source and sink functions has to be
in terms of the same number of code elements, since the

of main memory contents, such that computations can
proceed in an uninterrupted manner.

As discussed in [14], a space-time tradeoff exists
regarding temporary results. Since each array opera
tion consists of a startup time and an execution time,
some time is wasted due to additional startups, when a
large array has to be operated upon in parts. Addition
ally, there exists a memory management overhead in al
locating space for temporary results.

A straightforward solution to the above problem is
the 11 elimination 11 of intermediate array results, with
the consequent saving of memory accesses and space [16].
This scheme, which has been implemented at the scalar
level in the IBM 360/91 [17], is considered in the con
text of the SCR design for arrays of data, as the fol
lowin~ two schemes:

(a) The storing and fetching of temporary results
is avoided by transmitting them directly among the re
spective arithmetic units. This scheme can be extended
to sequences of assignment statements having common sub
expressions and to the case where the final result of
an array expression is the input to another one.

To weigh the attractiveness of this approach, we
evaluate the relative saving in memory accesses when
an array assignment statement, involving n binary oper
ators is evaluated. Denoting the number of array ele
ments by t, customarily 3nt memory accesses would be
required, while the proposed scheme requires (n+2)t
accesses; hence 2(n-l)t accesses are saved. Given that
the probability of the occurrence of an arithmetic as
signment sta~ement ~ith n (n>O) binary op~rators is Pn
and postulating a fixed mean array size (t) for array
expressions of varying complexi.1Y, then the relative
saving in memory accesses is (2n-2)/3n, where n is the
mean value of n.

(b) Memory accesses are saved by concurrently ex
ecuting operations involving the same input operands.
An example of the relative saving in memory accesses
using this scheme is given in Section 2.4.

The use of variables in a sequence of array as
signment statements of a program can be represented as
a directed acyclic graph, which will be called the data
digraph. Each node in the data digraph corresponds~
an input variable or the generation of a result (per
manent or temporary). The links determine variables
or temporary results, which are utilized in generating
a new result. The data digraph can then be manipulated
(see Section 2.5) to determine sets of operations whose
simultaneous execution minimizes memory accesses. Such
sets of operations, which have to be executed in a
single step by the SCR, constitute a task.

To illustrate the previous discussion, we consider
the multiplication of two vectors with complex data
types:

A.B = (a+a'i) · (b+b'i) = (ab-a'b') + (ab'+a'b)i
Figure l gives the data digraph corresponding to

this computation. In this case the relative saving in
memory accesses, when all operations are performed in
one step is 66.7%.

2. The SCR: Functional Description

2.1 Operating Environment of the SCR

The SCR is intended to operate in conjunction with
a multiprogramming/multiprocessing computing system,
whose interfaces with the SCR are discussed here.

The computing system consists of several Pro9ram
Processors (PP's), which execute user programs an
perform OS functions. The PP's and the SCR share a
high-bandwidth main memory by means of a main memory
cont ro 11 er. The ma i n memory is 1 a rge enough to a 11 ow
multiprogramming. The PP's are equipped with local
memories, thus relieving the main memory from excessive
PP accesses. Programs executed by the PP's have spe-

106

cial provisions for specifying array operations and
while executing user programs, the PP's relegate array
operations to the SCR. However, scalar operations and
also array operations that cannot be vectorized (see
[15] for examples) are handled directly by the PP's.
The SCR has local autonomy and requests for c:omput;ation
or tasks, which the SCR receives from various PP 1 s are
enqueued in the SCR and assigned to execution based on
local self-optimization considerations.

2.2 Functional Organization of the SCR

The SCR design is aimed toward the major goals of
achieving fault-tolerance ("graceful degradation") and
of making efficient use of main memory bandwidth.

The approach employed to preserve main memory band
width is to allocate several Arithmetic Processors (AP's)
to the execution of a task such that temporary results
are transmitted directly from one AP to another*. Since
rather high bandwidths of data transmission are in
volved, an Interconnection Network (IN) is used to
transmit intermediate results among the AP's. Addition
ally, due to the high data transfer rates at which ar
ray operands are to be transmitted between tlhe main me
mory and the SCR, dedicated Address Generators (AG;' s)
are assigned to each array operand.

In order to achieve fault-tolerance and high avail
ability, a 11 pooling 11 concept is used for the various
subsystems of the SCR. In the case of AP's, the mean
AP requirement for a single task (as generated by a pro
gram translator) is smaller than the total number of
AP's. During program execution, a subset of the avail
able AP's (under some constraints due to the IN) is as
signed to the execution of a task. Several tasks can
be executed concurrently in the SCR. The binding of pro
gram requests to the SCR elements is deferred until the
time of execution. At that time it is performed clyna;..
mically taking into account the inventory of available
elements. Consequently, system operation can continue
with fewer elements (1n "degraded mode") after failures
of system elements occur.

Figure 2 gives a block diagram of the SCR and its
interfaces with the computing system. The SCR consists
of the following subsystems:

(a) A pool of m AP's (Arithmetic Processors) which
access the main memory controller by means of a !1_emory
Interface Unit (MIU). The AP's are high bandwidth, ·
pipelined arithmetic units capable of performing basic
arithmetic operations generating elementary results
(sums, products, etc.), as well as some common matrix
operations such as the inner product (it is considered
to be a nonelementary result). The internal structure
of the AP's will not be discussed here, but we postu-
1 ate that once an AP is set up by an externatl command,
it proceeds autonomously with the assigned operation.
An Input Switching Unit (ISU) whose function is des
cribed in (c) below is associated with each AP.

(b) The MIU contains a pool of k AG's (address
generators) which generate the addresses of data ele
ments to be transmitted to or from main memory. Each
AG is associated with a buffer memory to mask the vari
ation in main memory response t:ime. High bandwidth
buses are used to transmit data and addresses between
AG's and the main memory controller. The operatfon of
AP and AG units is overlapped, such that the AG's fetch
input operands in lookahead mode into the buffers, be
fore the AP's operate upon them.

(c) The IN (interconnection network) provides da
ta communication links among the AP 1 s according to the
pattern described in Section 2.5. The ISU associated
with each AP se 1 ects the s pee i fi ed ·inputs from the set
of buses originating from the AG's and other AP's (the
IN) according to task requirements under external con
trol.

(d) A Switchin~ Network (SN) is used to dynamic
ally assign AG's toP's. The motivation and certain
*A variation of this approach is discussed in Section 2,,

advantages of adopting this scheme are discussed in
Section 2.4.

(e) The Scheduler in addition to task scheduling,
controls PP-SCR communication. The requests for com
putation (11 tasks 11

), which the SCR receives from various
PP 1 s a re enqueued· by the Scheduler and s 1 ated for exe
cution based on the availability of the SCR elements
requested by the task-. Upon the completion of a task,
the Scheduler notifies this event to the program which
originated the task. Task scheduling is discussed in
more detail in Section 3.1. ·

(f) The Control Unit (CU) performs the actual set
up of a task, which is defined by the Scheduler. The
CU generates a control vector, which determines the
hardware configuration of the AP's and the AG's, in
addition to initializing certain registers internal to
these units, for the duration of a task. In other
words, this is a virtual processor-memory-switch sys
tem [18], where the desirable configuration can be
achieved by means of static (residual) microprogramming.
After task setup a computation proceeds independently
from the CU. The CU attention is required when an
arithmetic exception or hardware fault is indicated.
The CU communicates the status of failed units to the
Scheduler, which updates the SCR configuration tables
accordingly.

In the following sections we discuss tradeoffs
that arise in implementing such a design.

2.3 Issues in Utilization Arithmetic Processors in
Tandem

Although we consider homogeneous AP's, their rate
of execution may differ in performing basic arithmetic
operations of varying complexity. Here, we address the
issue of matching the bandwidth of pipelined units,
which have to be connected in series to execute a task.

When we define the delay in one pipeline segment
as one cycle, then for some basic operations, such as
addition and multiplication, the AP's generate one ele
mentary result per cycle. The execution rate for more
complex basic arithmetic operations, such as division,
is a multiple of the cycle time. We also assume that
the delay due to the IN is fixed and equal to one cycle
(see also Section 2.5).

Since we are dealing with deterministic queueing
systems operating in tandem, the provision of buffers
between AP's to hold unprocessed intermediate results
doesn't improve performance and throughput is deter
mined by the execution rate of the 11 slowest 11 AP*.
The following alternatives are to be considered in
operating several AP's in tandem:

(a) Control the inflow rate of array data, such
that it matches the bandwidth of the slowest AP. This
a~proach results in a potential waste of memory band
width, as well as the underutilization of the non
bottleneck AP's.

(b) Only arithmetic operations which are execu
table at the same rate should constitute a task. A
disadvantage of this scheme is the fact that temporary
results generated due to this constraint have to be
saved in main memory. An advantage of this scheme is
the potential simplification of control.

(c) Design the AP's to generate one elementary
result per cycle, regardless of the complexity of the
basic arithmetic operations to be performed. The draw
back of this approach is that the additional hardware
is not justifiable for infrequent and complicated oper
ations.

(d) Use multiple AP's in parallel, in order to
compensate for the low execution rate of complicated
arithmetic operations. A disadvantage of this approach
is the additional control requirement, as well as com
plications in th~ interconnection schem~
*Such buffers, wen introducea in the I~D, can be used
to delay the inputting of operands into an AP.

107

To simplify this discussion, ft is assumed in the
remainder of this paper, that the set of basic arithme
tic operations are executed at the same rate. However,
a more careful study of the above-mentioned tradeoffs is
required for a design decision.

2.4 The Memory Interface Unit

In this discussion we consider an AP which has two
operand ·inputs and one output. Then the permanent
(static) association of three AG's with each AP reduces
the AG utilization due to the following:

(a) The capability of directly passing intermedi
ate results among AP's obviates the need to access the
main memory for them.

(b) Scalar variables occurring in an array expres
sion are treated as "immediate" operands and can be re
plicated by the AP's.

In considering the dynamic sharing of the AG's
among the AP's, we face the following tradeoffs:

(a) The number of AG's can be reduced substanti
ally. At this point we estimate the saving in the num
ber of AG's when array expressions inv.Q_lving binary
operators are considered. Given that r AP's are re
quired on the average by each task, then there are
Lm/rJ tasks in the system, each requiring r+2 AG's for
their execution, and the number of AG's saved is:
3m - (lm/rJ)(r+2) ~ 2m(l-l/r). For r = 2, m AG's are
saved, which is a considerable reduction in system hard
ware. A more accurate approach to determine the number
of AG's is given in Section 3.2.4.

(b) The AG's can be used independently for memory
remapping functions (e.g., transposing a matrix) or ini
tialization of arrays (e.g., setting the elements of a
matrix to zero). To remap a data structure, two AG's
are used, one for fetching the data and the other one
for storing. This approach, of course, requires a means
to interconnect the AG's. Memory remapping operations
usually precede certain arithmetic operations, for ex
ample, in matrix multiplication, we may need to trans
pose the second matrix in order to realize efficient
columnwise fetching of the second matrix during matrix
multiplication.

(c) There is a potential gain in the reliability
of the system due to functional modularization. On the
other hand, the unreliability of the SN associating the
AP's and the AG's, its cost, and the overhead required
for control require attention. The generality of the
dynamic association provided among the AP's and the
AG's is affected by hardware technology (cost, relia
bility, speed), as well as the issue of scheduling and
resource utilization.

(d) It was suggested in Section 1.4 to save memory
accesses by concurrently executing operations involving
the same input operands. This scheme can only be real
ized when an AG in charge of accessing an array can be
associated with multiple AP's simultaneously. In the
case of matrix multiplication, this approach results in
considerable savings in memory fetches. We consider
the case when the multiplication of two nxn matrices is
performed using p AP's; then one row of the first ma
trix can be multiplied simultaneously by p columns of
the second matrixt. In this case, a single AG is allo
cated to fetch the row vector and the number of memory
fetches is n3(1+1/p) versus 2n3 in the conventional
scheme (p = 1). The saving in memory accesses is 37.5%
for p = 4 and approaches 50% for p = n.

While a more detailed.study is under way to deter
mine the SN design, for the purpose of this discussion
the SN is assumed to be a crossbar switch, the implica
tion being that there are no restrictions in associat
ing AP's and AG's. The crossbar switch consists of a
single bus per AG against three buses per AP, two of
which correspond to !SU inputs, while the third one is
the AP output.
tThe inner product operation is used.

2.5 The Interconnection Network and Task
Characteristics

The function of the IN is to provide data communi
cation links among the AP 1 s. The IN is a passive sub
system and the actual line switching is performed in the
ISU 1s under CU control, as part of task setup. The fol
lowing criteria are used in synthesizing the IN:

(a) The available interconnection patterns should
be suited to the most common instances of computation
that arise. Less common cases are transformed to di
rectly executable form before execution.

(b) The utilization of AP 1s should not be drasti
cally reduced due to limitations imposed by the IN.
This underutilization, which manifests itself in the
form of increased response time in executing tasks, is
due to the fact that the multiple AP's required by a
task should be able to transmit intermediate results
directl,y to each other.

(c) The AP 1 s should be interconnected in a manner
that facilitates scheduling. A homogeneous interconnec
tion is then superior to a nonhomogeneous one.

(d) The IN should accomodate undisrupted opera~ion
when failures in the system occur. Due to the relative
hardware complexity of the AP 1 s with respect to the IN,
we primarily consider AP failures. The protection of
the IN is to be considered separately. The degradation
in system performance upon AP failures then should cor
respond to the actual loss in computational capacity.

{e} The overall operation of the SCR is simplified
when the delay introduced by the IN in transmitting data
is fixed.

Assuming that dedicated buses are used in the IN to
satisfy criterion (e), we initially use criterion (a),
task characteristics, to design the IN. The design thus
obtained will be evaluated and modified (if necessary)
to satisfy the other criteria.

If the input nodes of the data digraph (as defined
in Section 1.4) are omitted, we obtain a digraph which
reflects the interconnection requirements for a sequence
of assignment statements. Generally, due to an insuffi
cient number of AP 1 s and/or limitations in the IN, it
will not be possible to perform the sequence of computa
tions in one step. Hence, we face the issue of parti-
tioning the data digraph. .

In the data digraph, we differentiate between links
corresponding to the transmittal of intermediate and
permanent results. Since permanent results have to be
stored in main memory, the cost in memory accesses of
cutting a link corresponding to the transmittal of a
temporary result is twice that of a permanent result.or
input variable. Additionally, when we limit the maxi
mum number of operations allowable in a task, then under
certain restrictions, an optimal partitioning procedure
exists, which minimizes the cost of links joining the
various subsets of the data digraph [19].

Based on the above discussion, the following scheme
is adopted to design the IN and to determine the optimal
task size. First a static analysis of a set of 11 typical11

programs is performed by partitioning their digraph for
different maximum task sizes. Then we determine the
task size, which, while maintaining memory accesses at
a low level, requires an IN of moderate complexity.

To illustrate the concept, we consider the design
of an IN, when the interconnection digraph corresponding
to tasks has at most four nodes and five links. This
means that a task consists of at most four arithmetic
operations and not more than five results are trans
mitted among AP 1 s. Form AP 1 s, an IN where the output
of AP[i] is connected to the ISU of AP[(i,:!:.l)1lU2.9m] and
AP[(i_:!:.2)Q!Q.2m] then satisfies the interconnection.requ~re
ment. Figure 3 illustrates the AP 1 s and the IN in this
case. This illustrative IN will be further discussed
in the remainder of this paper and its properties will
be further investigated.

108

An example (taken from [15] and translated into
APL) is given in Figure 4(a) to illustrate the mapping
of task {program requirements into the SCR h,ardware.
All variables are arrays of the same size (l). The
d'ata and the interconnection digraph for this task are
given in Figures 4(b) and 4(c) and Figure 4(d) is a
possible setup for the task. Note that 11Y11 is fetched
by a single AG and channeled simultaneously to three
AP's.

2.6 The Coordination Issue in the SCR

In Section 2.2 it was noted that after the CU sets
up a task for execution, the AP 1 s and the AG 1 s proceed
autonomously with its execution. This section describes
the coordination of the operation of a set of AP 1 s and
AG 1 s which are assigned to the execution of a task.

During the execution of a task, the next set of
input operands must be placed into the buffer before an
AP may start to operate upon them. To denote the pre
sence of operands in the buffer, indicators are associ
ated with each location in the buffer. The AP 1 s as
signed to a task, start operating on the next set of in
put operands, when all respective indicators indicate
readiness. However, this approach is expensive in terms
of hardware and provisions are needed to handle the in
terspersed vacuous results that would be generated by
the AP 1 s.

A reduction in hardware and control complexity is
achieved by using multiple buffers associated with each
AG and assigning a single indicator to each buffer. In
this case, after operating on the contents of a set of
buffers in one burst, the set of AP 1 s will ·immediately
switch to the next set of buffers, if they are ready;
otherwise the AP 1 s are idle. However, the situation
wi 11 arise infrequently if the total comput,ati ona l band
width is matched to the main memory bandwidth and input
operands are mapped in the memory in a mann1er whi.ch fa
cilitates their access. The first scheme outperforms
the second one with respect to overall executton time
when idling occurs. Here we face a tradetiff between
complexity of control and delay in execution.

A similar problem arises when a computation is
halted because an output buffer is full. In general, a
set of AP 1 s executing a single task proceed with their
operation, when the next set of buffers associated with
their inputs are full and those associated with their
outputs empty. This scheme can then be implemented by
distributed control, where the AP 1 s sense the state of
certain indicators (as determined by the task), before
proceeding to operate on the next set of operands.

3. Task Scheduling in the SCR

3.1 Task Characteristics

As discussed in Section 2.1, tasks originating at
the PP 1 s are enqueued in the SCR and then executed ac
cording to a predetermined scheduling discipline. Tasks
sent by a PP may be independent, in which case they can
be executed concurrently; or there may be precedence
relationships among tasks, which are observed by the
Scheduler. In this discussion only independent tasks
are considered.

Tasks sent by the PP 1 s contain enough information
for their scheduling as well as setup. A computational
task specifies the following: arithmetic operations to
be performed, variables or 11 pseudo-variabl1es 11 [6] in
volved in the operation, the interconnection among AP 1 s
for transmitting intermediate results, and the delay
which should be introduced in the ISU in inputting cer-
tain operands to the AP.

The AP requirement of a task is detenmined by the
number of arithmetic operations. The AG requirement is
similarly determined by the number of array operands to
be transmitted to or from main memory. The i nte!rconnec
tion requirement then poses a problem. In the general

case, we consider a processor digraph, where the nodes
correspond to AP's available for task allocation and the
links in the graph correspond to the IN lines among
those AP's. In order to schedule a task, we must find
a subgraph of the above graph in which the interconnec
tion digraph of the task can be imbedded. On the other
hand, due to the regularity of interconnections in the
illustrative IN, the above approach {which is similar to
finding isomorphic graphs) can be avoided by transform
ing the interconnection requirement to an AP proximity
requirement. Due to the large number of cases involved
and space limitations, we treat this issue by consider
ing two examples:

{a) F + {{{{A+B)+C)+D)+E) can be evaluated by as
signing AP's which are at most two apart. If the expres
sion is rewritten as: F + {{{A+B)+{C+D))+E), then at
least three contiguous AP's are required to execute the
task. Note that the total latency in the pipeline has
been reduced from four to three levels.

{b) X + {A+B) x (A-B); y + {A+B) ~ {A-B) can be
executed when four contiguous AP's are allocated to the
task.

Due to the unavailability of statistical data char
acterizing tasks as discussed above, the queueing char
acteristics of the system are studied in the next sec
tion under postulated task characteristics.

3.2 Evaluation of Queueing Characteristics

3.2.l The Single Resource System

We consider a queueing model of the SCR system,
where tasks require multiple AP's for their execution
and constraints due to other resources are not consi
dered [20]. In the open queueing system, the task ar
rival process is Poisson with rate A. The input stream
consists of tasks with unequal processor requirements
{given by the vector R). Tasks in different task
classes (a task class is determined by the AP require
ment) occur with fixed probabilities (.given by the vec
tor F). All tasks are enqueued in a single queue in the
order of their arrival. The processing time distribu
tion is exponential with rate µ.

For some realistic task characteristics, increasing
the number of AP's over ~{R) under a fixed total proc
essing capacity {to be denoted by C which is set to
unity for normalization purposes) results in improve
ments in the mean response time characteristic for high
utilization factors. This is due to the reduction in
unutilized capacity associated with idle processors, an
inevitable occurrence under nonpreemptive scheduling
disciplines. Additionally, a set of unbiased scheduling
disciplines {with the exception of FCFS) considered in
[20] were observed to have a close mean _r.esponse time
characteristic once m is increased over r (mean AP re
quirement of tasks), under fixed total processing capa
city. The first-bit (FF) scheduling discipline, which
inspects the queue (waitlist) from head to tail and al
locates the first executable task, is employed in this
discussion due to the simplicity of its implementation.

A simulation program was developed to determine the
queueing characteristics of the SCR (see [21] for de:_
tails). The normalized mean response time_graph (µCT/m)
versus the normalized arrival rate (fn = Ar/µ) as ob
tained by the simulation program is given by graph (a)
in Figure 5, for the following set of system and task
characteristics: m = 8; R = (1,2,3,4) and F = (0.5,0.25,
0.125,0.125). This graph will serve as a benchmark in
further sections.

3.2.2 The Effect of the IN on Performance

Here we use the simulation program to determine the
effect of the IN on the mean response time characteris
tic.

Instead of generating the interconnection require
ment of tasks individually, the following approach was

109

taken :in order to keep the simulation cost down. The
system was subjected to the same workload twice, with
the following restrictions on task assignment:

(a) Only contiguous AP's can be allocated to the
execution of a task.

(b) No two neighboring AP's allocated to the exe
cution of a task can be more than two AP's apart.

The mean response time graphs which are obtained
from the simulation program under restrictions {a) and
(b) provide upper and lower bounds to the mean response
time characteristic and are given by ~raphs (bl) and (b2)
in Figure 5. Note that for a high utilization fac- ·
tor (p = An = .9) the increase in mean response time is
about 10%, which indicates that the IN design satisfies
criterion (b) in Section 2.5 for the assumed task char
acteristics.

3.2.3 Operation in Degraded Mode

In this section we study the performance of the
system when AP failures occur. First we note that the
Scheduler need not distinguish between a busy and a
failed AP. However, since a failed AP remains 11 busy 11

indefinitely, provisions are needed in the IN to bypass
a failed AP.

Graphs (cl) and (c2) in Figure 5 give the upper and
lower bounds to the mean response time characteristic
for a single AP failure. Note that while the computa
tional capacity of the system has been reduced to C =
.875, the. mean response time increase (the average of
cl and c2 values is considered) is about 35% when An·=
.6. On the other hand, if we consider a seven AP sys
tem with C = .875, then the mean response time increase
is only 24% over the eight AP system for An = .6. This
discrepancy in mean response time degradation indicates
that criterion (d) in Section 2.5 is not satisfied and
performance can be improved by providing additional (re
dundant) links in the IN.

Consideration of double AP failures in the system
makes the inadequacy of the IN further evident. For
example, if the two AP failures are four apart (which
occurs in 4 out of 28 cases when m = 8), no task re
quiring four contiguous AP's can be allocated. However,
system o~eration is possible in other cases and graph
(d2) in Figure 5 gives the lower bound to the mean res
ponse time characteristic when two contiguous AP's fail.

Based on the above discussion, we add· additional
links to the system. Provided that (i_:!:.3) me.Qui links are
added to the system, then for the task characteristics
under consideration, a single failed AP is completely
masked. The failure of two adjacent AP's would then
correspond to a single AP failure in the original IN
design.

Another method, which avoids a large degradation in
themean response time characteristic upon AP failures,
is to reduce the effect of AP failures on processing
capacity by increasing the number of AP's under fixed
total processing capacity. There are two disadvantages
to this scheme: (1) increasing the number of AP's be
yond a certain point results in increases in mean res
ponse time; (2) additional hardware is required in re
lated subsystems when the number of AP's is increased.

Finally, heuristic approaches can be used to im
prove the performance of the system for given task char
acteristics. For example, a nine AP system with the
original IN will tolerate all two AP failures and a con
siderable improvement is then achieved at the cost·of
one extra AP.

The task during whose execution a hardware failure
occurs, is reenqueued for execution, given that its in
put operands were left intact.

3.2.4 The .System with Two Resources

In the single resource system (Section 3.2.1), it
was postulated that the number of AG's is always ade
quate, such that no task has to wait for this resource.

Here we consider the case where the AG 1 s, in addition
to the AP 1s are considered for task scheduling and
there are no restrictions in associating AP 1 s and AG 1 s
for task execution (see Section 2.4).

In order to determine the number of AG 1 s, when the
number of AP 1s and task characteristics are fixed, such
that the performance of the system doesn 1 t degrade when
the second resource is introduced, the following two
approaches are considered:

(a) Determine the mean response time of the sys
tem under a given scheduling discipline and load level
(arrival rate), while increasing the number of AG 1 s (a
parameter in the simulation program) until the relative
improvement in mean response time with respect to the
single resource system is sufficiently small. A dis
advantage of this approach is the high cost of simula
tion as well as the fact that the result depends on the
load level and.the scheduling discipline.

(b) This approach is independent of the schedul
ing rule and is based on the argument that the through
put bound of the single resource system shouldn 1 t be re
duced, when the constraint due to the second resource
is introduced. The throughput bound is defined as the
smallest input rate for which the system is guaranteed
to saturate regardless of the scheduling discipline,
which may be preemptive. The throughput bound for the
two resource s1stem for given system resources and
task characteristics can then be obtained by a simple
extension of the linear programming formulation given
in [20].

For the task characteristics considered in Section
3.2.1, and assuming that each task requires two more
AG 1 s than AP 1 s (this is true for any assignment state
ment involving binary operators), the second approach
was used to determine that at least eighteen AG 1 s are
required for eight AP 1 s to maintain the throughput
bound at the sarn~ level.

In genera 1 , the two approaches. complement each
other as follows. The second approach {perhaps en
hanced by a utilization factor argument) is used to nar
row down the search space and determine a tentative num
ber of processors for the 11 second 11 resource. This num
ber is then used to determine if the performance of the
two resource system is satisfactory for the scheduling
discipline under consideration.

In the above case, the performance of the system
was determined to be satisfactory under the first-fit
scheduling discipline (modified for two resources),
when eighteen AG 1 s were provided.

3.3 Dynamic Versus Static Scheduling of Tasks

In this section we compare the SCR system with the
four-pipeline version of the ASC [5]. These two sys
tems have the following differences:

(a) In the ASC, the pipelines are available only
to the program executing in the central processor. In
the SCR system, any program executing in the PP 1 s can
generate tasks for the SCR. While it can be projected
that due to resource sharing, the AP utilization will
be higher in the SCR, this advantage needs to be
weighed against the overhead in time and hardware to
implement the SCR scheme.

(b) Since there are no provisions in the ASC to
transmit intermediate results, only independent opera
tions can be executed simultaneously, while the SCR
performs operations at the task level. To illustrate
this point, we consider the execution of the sequence
of assignment statements given in Figure 4(a). The
FORTRAN optimizing compiler developed for the ASC will
minimize the schedule (the maximum finishing time for
the set of operations) by breaking down a computation
into several parallel segments if required [15]. The
schedules for the ASC and the SCR systems are given by
Figures 6(a) and 6(b), respectively*. Given that all
*It is assumed that all basic arithmetic operations

all arrays have .t elements and denoting the startup
time by E (the startup time is not shown explicitly in
the diagrams) then the execution· time in the 11 modified 11

ASC is .t+l2E versus .t+4E in the SCR.
(c) As was noted in (b), the objective of the

ASC 1s FORTRAN compiler is to speed up the execution of
the program executing in the central processor, while
the objective in the SCR is to speed up the execution of
the set of programs executing in the PP 1 s. Hence, it is
undesirable to speed up the operation of a single pro
gram at the expense of other programs in the system.
However, based on more careful analysis, it may prove
advantageous to break down computations of arrays whose
size exceeds a certain threshold value.

(d) In the case of a pipeline failure in the ASC,
although operation continues with the pipe disabled, the
schedule generated by the FORTRAN compiler loses its· op
timality and there is a need to recompile the program
if optimal execution is desired. As described earlier,
the SCR system is less sensitive to AP failures.

These potential advantages of the SCR over the ASC
system provide further motivation for an in-depth study
of the suitability of the SCR as a special purpose array
processor.

4. Conclusion

This paper presents our current results on the SCR,
in a design study concerned with the evolution of a
fault-tolerant hierarchical computing system. While ad
ditional work is required to evaluate the quality and
the completeness of the proposed SCR design, the design
can be considered as a contribution to the series of
novel architectures addressing themselves explicitly to
efficient solutions for extensive numerical computing
requirements.

Acknowledgments

The authors are pleased to acknowledge suggestions
by Professors Gerald Estrin and Tomas Lang of UCLA and
by the conference referees, which helped to improve the
quality of this paper.

References

[l] Avizienis, A., 11 Architecture of Fault-Tolerant
Computing Systems, 11 Proceedings International
Symposium on Fault-Tolerant Computing_, Paris,
France, June 1975, pp. 3-16.

[2]

[3]

[4]

[5]

[6]

[7]

Flynn, M. J., 11 Trends and Problems in Computer
Organizations, 11 Proceedings of IFIP Congress 74,
Stockholm, Sweden, August 5-10, 1974, pp. 3-10.

Iverson, K. E., A Programming Language, J. Wiley
and Sons, New York, 1962.

Hintz, R. G. and D. P. Tate, 11 Control Data STAR-
100 Processor Design, 11 Proceedings Sixth Annual
IEEE Computer Society International Conference,
San Francisco, California, September 1972, ·pp.
1-4.

Texas Instruments, Inc., The ASC System - Central
Processor, Austin, Texas, 1973.

Giloi, W. K. and H. Berg, 11 STARLET - an Unortho
dox Concept of a STRING/ARRAY Computer,w
Proceedings of IFIP Congress 74, Stockholm,
Sweden, August 5-10, 1974, pp. 103-107.

Ruggiero, J. F. and D. A. Caryell, 11 An Auxiliary
Processing System for Array Calculatfons, 11 IBM
Systems Journal, Vol. 8, No. 2, 1967, pp. 1"113-"135.

take one cycle, which is not true in the case of Ase.
110

[8] Barnes, G. H.et al., 11 The Illiac IV Computer, 11

IEEE.Transactions on Computers, Vol. C-17, No. 8,
August 1968, pp. 746-757.

[9] Crane, A. B. et al., 11 PEPE ComputerArchitecture, 11

Proceedings Sixth Annual IEEE Computer Society
International Conference, San Francisco,
California, September 1972, pp. 57-60.

[10] Flynn, M. J., 11 Some Computer Organizations arid
Their Effectiveness, 11 IEEE Transactions on
Computers, Vol. C-21, No. 9, September 1972,
pp. 948-960.

[ll]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Thurber, ·K. J. and P. C. Patton, 11 The Future of
Para 11 el Processing, 11 IEEE Transactions on
Computers, (Correspondence), Vol. c.:.22, No. 12,
December 1973, pp. 1140-1143.

Chen, T. C., "Parallelism, Pipelining and
Computer Efficiency, 11 Computer Design, January
1971, pp. 365-372.

Kleinrock, L., "Resource Allocation in Computer
Systems and Computer Communication Networks, 11

Proceedings of IFIP Congress 74, Vol. l, pp. 11-
18.

Owen, J. E., "The Influence of Machine Organiza
tion on Algorithms," Comllexith of Sequential
and Parallel Numerical A gorit ms, Ed. J. F.
Traub, Academic Press, 1973, pp. 111-130.

Wedel, D., "FORTRAN for Texas Instruments ASC
System, 11 SIGPLAN Notices, Vol. 10, No. 3, March
1975, pp. 119-132.

Abrams, P. S., 11 An APL Machine, 11 SLAC Report No.
~' Stanford University, Stanford, California,
October 1970.

Tomasula, R. ~., 11 An Efficient Algorithm for
Exploiting Multiple Arithmetic Units, 11 IBM
Journal of Research and Development, Vol. 11,
No. 1, January, 1967, pp. 25-33.

Lesser, V. R., "Dynamic Control Structures and
Their Use in Emulation, 11 SLAC Report No. 157,
Stanford University, Stanford, California,
October 1972.

Kernighan, B. W., "Optimal Sequential Partitions
of Graphs, 11 Journal of the ACM, Vol. 18, No. l,
January 1971, pp. 34-40.

Thomasian, A. and A. Avizienis, "Dynamic
Scheduling of Tasks ·Requiring Multiple Processors,"
Proceedings El e.venth Annua 1 IEEE Computer Society
International Conference, Washington, D.C.,
September 9-11, 1975, pp. 77-80.

Thomasian, A., "The Design Study of a Shared
Resource Parallel Processing System, 11 Ph.D.
Dissertation, in progress, Computer Science
Department, University of California, (to be
available in June 1976).

AG:
AP:
CU:
IN:
ISU:
MIU:
PP:
SCR:
SN~

111

List of Abbreviations

Address Generator
Arithmetic Processor
Control Unit
Interconnection Network
Input Switching Unit
Memory Interface Unit
Program Processor
Shared Computing Resource
Switching Network

a a'

ab

ab - a'b'

Figure 1

lllTERCOIUIECTIOll llETl/QRK (I:!)

MAIN MEMORY

Figure 2

FROM MIU

TO MIU

Figure 3

b b'

a'b +ab'

THE;;l
COMPUTING

RESOURCE (SCR) I
DATA FLOW LINE -
CONTROL, STATUS
AND MESSAGE
FLOW lll~ES

INTERSYSTEM

COMMUNICATION

BUS

PROGRAM

PROCESSORS

112

1 + x

2(+)

Nonnal ized
Mean
Response
T1me
(µCi/m)

AP's

.4

(b)

- - - 3- - - - - ·-

-l--l-----+-4--

-------2---

.5

[l.J
[2]

m

1 (+)

(a)

(d)

XYZ
X+l+X
A<-X+Y
C..-XxY
B+X-Y

Figure 4

.6 . 7

Figure 5

AP's

Time (in cycles)

~ + 12e

(a)

Figure 6

(c)

3(x)

Normalized Arrival Rate, "n

.8 .9

Time (1 n cycles)

i + 4e

(b)

HARDWARE SUPPORT FOR INTER-PROCESS COMMUNICATION AND PROCESSOR SHARING*

W.S. Ford
and

V.C. Hamacher

Departments of Electrical Engineering and Computer Science
University of Toronto

Toronto, Ontario, Canada

Abstract

The abstraction of a computer system as a set of
asynchronous communicating processes is an important
system concept. This paper indicates how the concept
could be supported at a low hardware level. A new
inter-process communication mechanism called a mailbox
is introduced. Examples of its use as a programming
tool are given. This is followed by a description of
hardware features that use this mechanism as the basis
of communication between the components of a complete
system. These features include processor-sharing
hardware capable of handling process selection and
switching with high efficiency. It is also indicated
how these features can take the place of conventional
input/output structures.

1. Introduction

The abstraction of a computer system as a set of
asynchronous communicating processes [l] is a concept
which is widely accepted and used by present-day
programmers. In fact, this abstraction is now recog
nized to the extent that most modern systems support
it at either a low-level software (e.g., [2,3]) or
firmware (e.g., [4,5]) level. Because it is becoming
increasingly economical to implement widely-used
programming features in hardware, consideration should
be given to low-level hardware support for this
important abstraction. Much can be gained by going to
the basic hardware level, as this removes the restric
tion of simply implementing sequential algorithms, as
is the case when firmware or software features are
superimposed upon a conventional hardware structure.
We shall therefore propose new low-level features
which would exist, for example, at the machine in
struction level of a minicomputer, or, in a larger
machine, at a level below firmware which implements
more complex functions. These features consist of the
following:

a) Mechanisms for controlling inter-process
communication and synchronization. These
facilities should provide a programmer with
operators capable of efficiently emulating
familiar programming language synchronization
primitives (e.g., semaphores [6], monitors
[7]) and solving common synchronization
problems. They should not need to differen
tiate between software processes running
internal to a CPU and external processes
based on peripheral devices or other CPU's.
This generality will allow input/output
handling and multiprocessing to be incorpor
ated in a natural way.

b) Facilities for handling the sharing of a CPU
among a number of logical processes. Process
selection and switching should be automatic
and fast; however, there should be sufficient
flexibility for scheduling policies to be
determined under program control.

* This research was supported in part by grant A-5192
from the National Research Council of Canada.

113

The combination of these features should relieve
the programmer from the well-known problems associated
with the conventional interrupt mechanism. It is
essential that time overheads, especially in process
switching, be kept low in order to compete with more
conventional input/output structures. An attempt will
be made to restrict these proposals to features whose
implementation in current or foreseeable technology
would be cost-effective, even for application in
machines down to the minicomputer scale.

This paper will concentrate on the hardware
aspects of these features, and only brief examples of
their role in programming will be given. The program
ming aspects will be discussed further in a future
publication. For clarity and consistency, Pascal
notation [8] is used throughout for the description of
all hardware and software concepts and algorithms.

2. The Mailbox Mechanism

The concept of a low-level mailbox mechanism has
been discussed by Spier [9] . He defined the basic
characteristics of any interprocess communication
mechanism, then introduced a single bit "mailbox" as
the "most elementary communication mechanism which
would satisfy all of the requirements". His mailbox
was capable of transmitting, after initialization, one
one-bit message from a sender process to a receiver
process. We add practicality to this mechanism with
the following two extensions:

a) It is made reusable so that it can pass a
stream of messages.

b) A data-carrying capability is added so that a
message can convey a word of information.

A mailbox can now be considered as possessing
both a state (full or empty) and contents. In Pascal
notation, mailbox can be defined as a structured type:

~mailbox record
--state: (empty_, full);

contents: word
end

The sending and receiving operations on mailbox m can
be described respectively as PUT value AT m interpret
ed as:

repeat until m. state = empty;
m.state := fuU;
m.contents := value

and GET value AT m interpreted as:

repeat until m. state = fuU;
m.state := empty;
value := m.contents

It must be stipulated that, following a successful
until test, the mailbox should be inaccessable to
other processes until the assignment operations are
complete. This mechanism guarantees that every mes
sage sent by a PUT operation will be received by
exactly one GET operation.

This mailbox has considerable value as a low
level programming tool for general synchronization

problems. We present here two brief examples of the
use of the mechanism in programming-- the implementa
tion of semaphores and queues.

2.1 Semaphores

The binary semaphore is an important tool as it
has been used widely in published solutions to many
interesting synchronization problems. It has also
been shown [7] to be a suitable mechanism for imple
menting monitors. Wirth [10] pointed out that a
general semaphore corresponds to a message queue which
passes only null messages. A similar concept is used
here to implement a binary semaphore using a single
mailbox. We consider semaphore as a type:

~ semaphore = mailbox

and define the operations on semaphores as P(s),
implemented as PUT AT s, and V(s)f implemented as GET
AT s. The null value arguments of the PUT and GET
instructions indicate that the mailbox contents field
is unused.

With this implementation, the mailbox fuU state
corresponds to a semaphore value <l, while the mailbox
empty state (the natural initial state) corresponds to
a semaphore value of 1 (the natural initial state for
a mutual exclusion semaphore). A small inconsistency
in this implementation is that, strictly, it should be
illegal to attempt to execute a V-operation on a bin
ary semaphore with value 1. Rather than detect such
an attempt as an error, the mailbox mechanism will
cause the violating process to be delayed until the
next P-operation. If the semaphores are used correct
ly (as in compiler-generated code), the inconsistency
will not arise.

2.2. Queues

The mailbox mechanism also provides for a simple
implementation of FIFO queues of known maximum length,
as require.d for. buffering message streams between
processes.. This queueing problem has also been refer
red to as a bounded buffer producer/consumer problem
[6,. 7].

A queue of maximum length k words is implemented
as an array of k mailboxes, all initially empty. An
in-pointer and out-pointer initially point to one of
these locations. A queue of maximum length k can
therefore be described as the structured type:

type queue [k] = record
----st'Ore: array [l .. k] of

mailbox;
in, out: 1. .k

end

For a queue q two operations are defined. The opera
timi for a producer process to append a word to the
tail of the queue is APPEND word TO q which can be
implemented as:

with q do begin
- PUT word AT store [in];

in := if in < k then in + 1
-else 1

end

The corresponding operation for a consumer process to
remove a word from the head of the queue is REMOVE
word FROM q implemented as

with q do begin
-- - GET word AT store [out];

out := if out < k then out + 1
-else 1

end

If there is only one producer process and one
consumer process operating on the same queue, the
above will be correct without any need for semaphores
or indivisible operatiqns. Whenever the consumer

114

process attempts to remove a word from an empty queue
it will automatically be blocked until the queue is no
longer empty. Conversely, if the producer process
attempts to append a word when all k locations are
full, it will be blocked until the consumer removes a
word. In the case of more than one producer process
for the same queue, it is necessary to enclose the
APPEND code in a critical region guaranteeing mutual
exclusion between producers. A similar modification
applies to the case of more than one consumer.

3. Mailbox Memory

We now present a proposal for a hardware imple
mentation of mailboxes which enables them to be used
as the basis of communication between the co1J1ponents
of a complete system. For this purpose, a physical
processor is considered to be any CPU, or any hardware
device which logically communicates directly with a
CPU process. This includes input/output channels and
some peripheral devices. In general, a physical pro
cessor may be capable of supporting more than one
logical process. The principal path of communication
between physical processors is mailbox memory (an
array of mailboxes) . A possible system configuration
is illustrated in Figure 1. This shows all physical
processors connected to a common bus which is managed
by a mailbox memory controller. Firstly, the mailbox
memory and the controller will be described,, assuming
that each physical processor supports only one logical
process. The following section will discuss compat
ible hardware features for efficiently handling the
sharing of a physical processor.

Mailbox memory consists of a number of addres
sable locations, with word size typically one or two
bytes. Any mailbox location may be in either a f'uU
condition, in which case its contents represent' some
meaningful va~ue, or an empty condition in which the
contents are undefined and inaccessable. An addition
al bit for each word indicates a fuU or empty state.
Since these state bits are accessed more frequently
than the complete words, they can profitably be
retained in separate higher-speed memory devices.

The mailbox memory controller receives PUT and
GET requests on the bus, each request specifying a
single mailbox memory address. These requests origin
ate from either explicit CPU instructions, or from
device interfaces. All are handled identically. The
PUT operation applied to an empty mailbox causes a
value to be passed from the processor and stored in
the location, the state of that location then becoming
fuU. Conversely, a GET operation on a fuU maHbox
causes the contents of that location to be passed to
the processor and the location assumes the empty
state. The read operation on mailbox contents is
allowed to be destructive.

Any attempt to execute a PUT operation on a fuU
mailbox, or a GET operation on an empty mailbox 1:::auses
a BLOCK signal to be sent back to that processor.
That processor then.enters a mode where it monitors
the bus waiting for a WAKEUP signal for that particu
lar mailbox. Whenever a PUT or GET operation is suc
cessfully executed, a WAKEUP signal is broadcast on
the bus together with the address of the mailbox
involved. When a blocked processor eventually detects
the appropriate WAKEUP signal, it then reissues the
original PUT or GET request.

The activity of the mailbox memory controller in
processing PUT and GET bus requests can be described
as the following indivisible sequence:

whi 1 e true do
begin

receive op for mailbox m from processor p;
state := m.state {Retrieve the state bit};
if (op = GET) A (state = fuU) then_

begin {Successful GET}
---generate WAKEUP (m);

m.state := empty;
valu~ := m.contents;
transfer value to processor p

end
else if (op = PUT) A (state = empty) then
begin~{Successful PUT}
---generate WAKEUP (m);

m.state := full;

end

transfer value from processor p;
m.contents :=value

end
else generate BLOCK (p) {Unsuccessful

PUT or GET}

An essential feature of the mailbox memory con
troller is that it can be processing only one PUT or
GET request at any time. Hence there may be times
when more than one of the processors are competing for
access to the controller. It will be assumed that
such competition is resolved on a priority basis, as
with conventional bus conflict resolution.

4. Processor Sharing

When the physical processor is a CPU, special
provision must often be made for sharing it among a
number of internal·processes, each being an instance
of execution of a machine program. These internal
processes must be able to communicate with each other,
as well as with external processes, via mailbox memory.

4.1 Process Status Table

Assume that a physical processor may support a
maximum of N internal processes. Each such process is
assigned a unique identifying number. in the range
[O, N-lJ, this number being an index into a hardware
process status table. The organization of this table
is shown in Figure 2. Naturally, only one process is
executing machine instructions at any time, and the
identifier of that process is held in a hardware reg
ister denoted the current process register. For every
process, the status table contains a bit to indicate
ready/blocked status, and a register containing a
priority value. These entries are used by a despatch
ing mechanism which, when enabled, loads into the
current process register the identifier of a ready
process selected according to priorities. This des
patcher will b~ discussed in more detail later.

Each internal process is assumed to have its own
partition of memory for storage of local data. Each
process also has its own set of CPU registers, includ
ing program counter and memory bounds registers. The
register sets for all processes can be implemented in
a high-speed random access memory configuration. When
accessing this memory, the most significant portion of
the address is obtained from the current process reg
ister, so context switching between processes simply
involves changing the contents of that register.
Therefore, the only time overhead in process switching
can be the despatcher delay, which will be discussed
later. To briefly support the feasibility of this
feature, it should be pointed out that the value of N
for a 16-bit minicomputer could reasonably be of the
order of 16. With 8 CPU registers this would require
a high-speed random access memory of 128 16-bit words.
This is not an unreasonably expensive item in current
high-speed logic technology.

The execution of a PUT or GET machine instruction
causes the processor to issue an appropriate PUT or
GET request to the mailbox memory controller. If the
request can be satisfied directly, the appropriate
data transfer is made and execution of the same pro
gram continues. If, however, the request cannot be

115

satisfied and the BLOCK signal is returned, the
status of the current process is set to blocked and the
program counter is not incremented. In each process
status table entry there is an additional word of suf
ficient length to hold a mailbox address. When a pro
cess is blocked, the address of the mailbox at which it
is blocked is entered in that word. After blocking of
a process the despatcher is invoked, causing the pro
cessor to switch to a new process.

To handle WAKEUP signals, the processor has an
asynchronous mechanism which continually monitors the
bus for any WAKEUP signal. On every such signal, this
mechanism searches the process status table for proces
ses which are blocked at that particular mailbox, and
if any are found their status bits are set to ready.
Also, a processor flag is set, indicating that the
despatcher should be invoked at the first opportunity.
For fast execution of the wakeup phase, it is apparent
that the "blocking mailbox" words of the process status
table could be configured as an associative memory.
For a system with N = 16 and a maximum of 1024 mailbox
words, this would call for a relatively inexpensive 16-
bit by 10-bit associative memory.

The "wakeup" time can actually be as long as one
mailbox contents access time with zero effective time
cost. This is because every WAKEUP signa'i is followed
by a mailbox contents access. If the PUT or GET opera
tion involved was initiated by this processor, then the
processor will be delayed anyway until the completion
of that access. If the operation was initiated by some
other processor, then the "wakeup" can completely over
lap program execution. It is impossible for the pro
cessor to commence executing a PUT or GET instruction
until the previous mailbox operation is completed, so
there is no possibility of "block" and "wakeup" modif
ications of the process status table clashing, provided:

a) the time for the table adjustment following a
WAKEUP signal is less than a mailbox contents
access time, and

b) the time for the table adjustment following a
BLOCK signal is less than a mailbox state bit
access time.

It is clear that a CPU must have special process
management instructions for initiating, terminating,
and supervising internal processes. There must at
least be instructions to enable a process to modify
the register contents of another process (for initial
izing the program counter and memory limits), to set
or clear ready/blocked flags, to suspend another
process by forcing it to block at a dummy mailbox, and
to initialize mailbox states to empty. Access to these
instructions should be restricted to nominated super
visory processes. There is also a need for instruc
tions to change process priorities. To maintain flex
ibility in scheduling, it appears that access to these
instructions should be relatively unrestricted.

4.2 Despatcher

The purpose of the despatcher is to examine all
priority :registers and ready/blocked flags of a pro
cessor, and load into the current process register the
identifier of some ready process whose priority is no
lower than that of any other ready process. If no pro
cess is ready, it must generate the signal CPUIDLE
which inhibits processing. The despatching activity
ne·ed only be carried out after a change has been made
to the process status table, i.e., after a recognized
WAKEUP signal, a BLOCK signal, a change priority
instruction, or a process management instruction. A
synchronization problem arises as the recognition of
WAKEUP signals is not synchronized to the basic pro
cessor cycle, as the other activities are. In resolv
ing this problem, it should be stipulated that, when
the mailbox memory controller broadcasts a WAKEUP

signal, it should not have to wait for responses from
processors (i.e., a processor simply "absorbs" a WAKEUP
signal). Nor should the speed of the mailbox memory be
severely restricted by possible excessive delays on the
part of processors in reacting to wakeup signals. For
this reason, it appears sensible to synchronize des
patching to the processor and provide the despatcher
with storage to take a "snapshot" of the ready/blocked
flag status whenever it is invoked. On receipt of any
WAKEUP signal, the processor wakeup mechanism then has
only to execute an associative search and set any
required ready flags. It is then capable of immediate
ly accepting another WAKEUP signal. When the despatch
er is about to commence its cycle, it latches in the
current values of the flags and uses the latched
values. Further WAKEUP signals can then be accepted
while the despatcher is operating, although any process
made ready by such a signal cannot run until after the
subsequent despatcher cycle.

The next consideration is the possibility of hav
ing despatching overlapping normal processing. Assume
that the despatcher is invoked at the end of any in
struction cycle in which the process status table was
modified, either by the instruction itself (which may
have caused a BLOCK, changed priorities, set or cleared
ready/blocked flags, etc.) or by the recognition of
WAKEUP signals during that period. In the simplest
implementation (no overlap), a new instruction cycle is
not commenced until the despatcher cycle completes.
All despatching time therefore becomes processing over
head. Another approach is to permit processing of new
instructions to continue while the despatcher is still
operating. For obvious correctness reasons this cannot
be done following a BLOCK signal or some process man
agement instructions, but it may be possible to delay
process switching if the only table changes that have
been made since the last despatching cycle have been
caused by priority changes or WAKEUP signals. If this
is done, the effects of priority changes and wakeups

.will be delayed for a limited number of instructions.
This will not normally affect correctness.

There exist a variety of possible methods for
implementing the despatcher, e.g., sorting networks
[11), associative memory [12), or microcoded sequential
algorithms. To estimate the achievable speed of a
despatcher, consider a simple combinatorial network
implementing the required function. This is basically
an N-way p-bit digital comparator, where p is the num
ber of bits of each priority register. A fast practi
cal configuration is a tree structure of two-way
comparator elements as illustrated .in Figure 3. The
function of each comparator element is to compare two
input priority values, and output both the higher of
the values and the identifier of the process having
that higher priority. At the lowest level, the
priority lines must be gated with the corresponding
ready flags to ensure that only processes with ready
status are considered (assume priority 0 is equivalent
to blocked status) .

Assuming N processes, the delay time for this
circuit will clearly be flog 2 NlT, where T is the delay
of a p-bit comparator. This comparator is equivalent
to a p-bit subtractor, and it can be shown that an
achievable delay for such a circuit is 2 + 2flogFpl,
where F is the maximum permissible fan-in. A large
range of priority values may be desirable for imple
menting, for example, several of Hoare's algorithms
[7]. Assuming pup to 16, F = 4, and a gate delay of
20 nsec., this would give T = 120 nsec. For a proces
sor supporting 16 processes, the total despatcher delay
w<:.1ld be 480 nsec. , i.e. , of the same order as a memory
cycle time.

d.3 Process Modules

J\i1 important system parameter is N, the r.1aximum
: :" .. ~te·c of processes supported by a CPU. It is

116

•essential that N be sufficiently large for any given
application, but not be excessively large because of
the high cost in wasted register sets, associative
memory, etc. It should therefore be a highly flexible
parameter. One way of achieving this is the usEi of a
modular hardware structure, where each of :m modules
contains the registers, status table, associative
memory, and section of the despatcher for n proc:esses,
where N = mn. Any particular machine can then be
built with as many modules as required for the partic
ular application, and machine capability can be expan
ded as required by adding modules.

With this modular approach, the tree structure
model of the despatcher (Figure 3) is no longer accep
table. To estimate achievable despatcher speed,
consider, therefore, an array structure as shown in
Figure 4. In this array, each A element is a 2-·way p
bi t comparator, and each B element is an n-way p-bit
comparator. The time delay in an A element will be T,
and in a B element will be flog2nlT. The total des
patcher delay will therefore be the basic delay in B
elements plus the time for the result to propagate
through the A elements, i.e., (flog2nl + m)T. Hence,
for speed reasons, n should be large relative to m;
however, for flexibility n should be small. In a
realistic situation n might be 4 or 8. (It is, in
fact, possible to combine modules of different n in
the same system.) ~

Assuming a value of n = 4 and all other para
meters the same as for the despatcher discussed pre
viously, the total delay for a modular despatcher
would be 720 nsec. which is still an acceptable value.

5. Input/Output

In conclusion, we shall demonstrate the role of
the proposed hardware features in the driving of
conventional input/output devices.

Consider, firstly, the class of devices whose
basic unit of data transfer is no more than a few
bytes. The class includes keyboards, teleprinters,
paper tape equipment, real-time clocks, process con
trol interfaces, etc. As was shown in Figure 1. these
devices can be configured so as to communicate direct
ly with the mailbox memory controller by PUT and GET
bus requests. From a system point of view each device
can therefore be considered to be executing an inter
nal program containing PUT and/or GET statements.

For example, an output device such as a tele
printer may be considered to be executing the program:

while true do
begin

end

GET characater AT teZeprintout;
print character

where teZeprintout is a mailbox dedicated to that
device. A CPU process can then send a character to
the teleprinter by executing the single instruction
PUT character AT teZeprintout. Output to the tele
printer could be buffered using the FIFO queue mechan
ism as follows. Assume a queue printqueue of suffi
cient maximum length, then the main process code for
emitting a character is APPEND character TO print
queue. An additional CPU buffer process e,xecutes the
following program:

while true do
begin
--yjEi'vJOVE nextchar FROM printqueue;

PUT nextchar AT teZeprintout
end

This process effectively takes the place of a conven
tional device interruot service routine. For effi
cient device operatio~ it should, of course, have a
relatively high priority.

Input devices can be handled similarly. For
example, a keyboard may be considered as executing the
following program:

while true do
begin

receive character from operator;
PUT character AT keyboardin

end

A CPU process then receives a character from the key
board by executing the instruction GET character AT
keyboardin. It is assumed that if the device is in
its blocked internal state it is incapable of accept
ing another character from the operator, e.g., the
keyboard is locked. Again it is possible to buffer
the device using the FIFO queue mechanism and a dedi
cated CPU buffering process.

Special consideration must be given to devices
such as disks which require high-speed transfers of
large blocks of data to or from conventional memory.
With these transfers it would be unrealistic to pass
a.11 data through mailbox memory, so we assume the
existence of some form of channel which controls the
direct transfer of blocks of data between the device
and conventional memory. However, certain communica
tions between the channel and CPU processes will be
passed via mailbox memory. These include requests for
transfers, notification of completion of transfers,
and notification to the CPU of any error conditions.
A CPU process initiates a transfer by depositing an
appropriate message in a dedicated mailbox known to
the channel. Several processes can thereby share the
device with conflicts being automatically resolved on
a priority basis at that mailbox. To wait for the
completion of its transfer, a process waits for a
response from the channel at another dedicated mail
box. To handle error conditions, a convenient ap
proach is to have channels and devices report all
error conditions to special CPU processes dedicated to
handling such conditions, rather than report them to
the process requesting the transfer. Each special
process waits at a mailbox for notification of an
error and can take any required action (e.g., notify
the operator). It then responds to the channel that
it should either repeat or abort the transfer. It is
possible to share the same error-handling process
among a number of channels and/or devices. This
provides a very convenient way for handling similar
error conditions at different devices; for example,
all console display messages regarding device states
can now originate in the one process.

6. References

1. Horning, J.J. and Randell, B. (1973), Process
Structuring, Computing Surveys, Vol. 5, No. 1,
pp. 5-30.

2. Wulf, W., Cohen, E., Corwin, W., Jones, A., Levin,
R., Pierson, C., and Pollack, F. (1974), HYDRA:
The Kernel of a Multiprocessor Operating System,
Comm. ACM, Vol. 17, No. 6, pp. 337-345.

3. Ritchie, D.M. and Thompson, K. (1974), The UNIX
Time-sharing System, Comm. ACM, Vol. 17, No. 7,
pp. 365-375.

4. Liskov, B.H. (1972), The Design of the Venus Oper
ating System, Comm. ACM, Vol. 15, No. 3, pp.
144-149.

5. Atkinson, T. (1974), Architecture of Series 60/
Level 64, Honeywell Computer Journal, Vol. 8,
No. 2, pp. 94-106.

6. Dijkstra, E.W. (1968), Cooperating Sequential
Processes, in Programming Languages, F. Genuys
(ed.), Academic Press, New York, pp. 43-112.

7. Hoare, C.A.R. (1974), Monitors: An Operating
System Structuring Concept, Comm. ACM, Vol. 17,
No. 10, pp. 549-557.

117

8. Wirth, N. (1971), The Programming Language Pascal,
Acta Informatica 1, pp. 35-63.

9. Spier, M.J. (1973), Process Communication Prerequi
sites or the IPC-Setup Revisited, 1973 Sagamore
Conference on Parallel Processing, Syracuse
University, pp. 79-88.

10. Wirth, N. (1969), On Multiprogramming, Machine
Coding, and Computer Organization, Comm. ACM,
Vol. 12, No. 9, pp. 489-498.

11. Thurber, K.J. (1974), Interconnection Networks - A
Survey and Assessment, National Computer Confer
ence, Vol. 43, pp. 909-919.

12. Berg, R.O. and Johnson, M.D. (1970), An Associative
Memory for Executive Control Functions in an
Advanced Avionics Computer System, Proc. 1970
IEEE International Computer Group Conference,
pp. 336-342.

MAILBOX
MEMORY

CONTROLLE~

MEMORY /DIRECT
/MEMORY

/ACCESS

(/)
(!)
<(
...J
LL

b
<(
w
a::
:c .._
i
0
w
~
(!)

(/)
w
~
a:
0 a:
a.

SLOW
DEVICES

(/)
:::>
CD

PHYSICAL
PROCESSORS

CHANNEL
FAST

DEVICES

Figure I• Possible System Configuration

PROCESS ADDRESS

"o" - I \ -1 TO CURRENT
PROCESS --, REGISTER

' A
I I

"3" - L I

"4" -

"5" -

"o"~CPUIDLE
"6" -

"7" -

PRIORITY VALUES

Figure 3• Combinatorial Despatcher for 8 Processes

118

CHANGE PRIORITY
INSTRUCT IONS

BLOCK a WAKEUP
BUS SIGNAL.$

PROC. 0 ------- ------·------

PROCESS
STATUS
TABLE

PRIORITY

~
m
b
<(
w
a::
Ci
w
::II.:
u
g
CD

DESPATCHER

CURRENT
PROCESS
REGISTER

ADDRESS
OF

BLOCKING
MAILBOX

PROC. I

MOST SIGNIFICANT
PART OF REGISTER
MEMORY ADDRESS

Figure 2= Processor-Sharing Hardwarn

PRIORITIES AND
READY FLAGS

"o"

PROCESSES _,..._
A MODULE 0 0 TO n-1

PROCESSES -~ A MODULE I nTO 2n-I

PROCESSES __.,..__
N-n TO N-1 A MODULE m-1

-----.----- .-----
I

11
0

11 ~ CPUIDLE L- TO CURRENT
PROCESS REGISTER

Figure 4: Structure of a Modular Despatcher

A Taxonomy of Display Processors

Ulrich Trambacz and Georg Hyla

Technical University of Berlin

Einsteinufer 35-37
D-1000 Berlin 10, West-Germany

- Abstract -

A potential customer exam1n1ng computer graphics
systems including a random positioning and
refreshed CRT needs a lot of time and effort to
form an opinion of the various marketed systems.
To him not only systems appear very different, but
also manuals are often cryptic and equivocal. In
addition, graphic packaJes supplied by manu
factures naturally take adventage of specific
capabilities of the hardware and try to bypass
their deficiencies. As a consequence, it is nearly
impossible to run on a display system application
programs which are written for another system.

Questions that drive from this situation are:
what, of what nature, and where are these
differences among display systems.

A prerequisite to investigating the differences
among display systems is a uniform description. A
notational system covering both the physical
structure and the program level was given by BELL
and NEWELL in form of Processor-Memory-Switch
(PMS)- and Instruction-Set-Processor (ISP)
notation. These notations have been applied to a
number of historic (ESL Console, DEC 338, IBM
2250, Evans and Sutherland LOS 1) and present
(Adage AGT 400,IDIIOM/II, IMLAC PDS-4, LUNDY
System 32, The Picture System, Vector General)
display processors.

The historic evolution of display systems is
characterized by MYER and SUTHERLAND using the
term 11 wheel of reincarnation 11 . A full rotation of
this wheel is passed when another level of
computer peripheral is added to the system,
further removing the display CRT itself from the
central processor. This evolution will be shown
at presentation time with idealized systems at
each stage described in PMS-notation.

In the fifties display devices were tied
directly to the central registers of the host
computer. In the early sixties a data channel was
included as a link between the display device and
the host or central computer. This channel soon
was developed into a display processor which in
turn became a full-fledged mini-computer with some
graphic features. In the late sixties and early
seventies this potentially never-ending cyclical
process of nesting levels of graphics computer
power stabilized somewhere around two full

119

rotations of the 11 wheel 11 by the design of 11 stand
alone11 and 11 intelligent 11 satellites.
On the first plance the ISP-description of a
display processor does not disclose a taxonomical
scheme. Because of the great number of graphical
functions implemented in the various - and
sometimes sophisticated - processors, the ISP
description certainly becomes rather bulky. But it
is exactly this volume which necessitates that an
unequivocal language like ISP be applied to the
display hardware.

A look at the functional level of a display
processor shows that certain characteristics
shared by a group of instructions :r:,iist so that a
classification throughout all descriptions is
possible. There is one set of i~structions
controlling the display processor, another set
handling references, and a third set driving
graphic generators:

1) instruction group computing (igc)
2) instruction group addressing (iga)
3) instruction group graphic (igg)

An instruction group covers a number of functions
each including a number of instructions.
This hierarchy forms an instruction tree which
clarity is further enhanced by unifying the diverse
instruction identifications provided by manu
factures. The attached figure shows an instruction
tree derived from the ten examined display systems.
The major differences between the examined display
systems concern discipline, which is the
specification of a function, and significant
achievements in computational power, especially
with respect to transformation and clipping
hardware.

On the functional level the systems appear more
alike than on the discipline level. Essentially,
no basic changes occured in terms of geometric
primitives beside circle and reflection generation
available in a few commercial systems.
The resemblance on the functional level might be
the key to achieve standards for display systems.

Instruction Tree of Display Processors

igc

isp.display iga

igg

mode-control

interrupt

modify-P.display ------1

references

transi~ional-storage ---1

storage

storage-control

geometric-primitives~

text-primitives ----4
transformations

morphologic
transforms

120

stop
run
no-operation
set-P.display-modes
set-P.display-controls
set-console-modes
set-console-controls
initial-stack-mode

P.display
console
timer
program
picture
track/inking
console-unit

multiple-load
addressed-load-single
change-single

pop
jump
conditional-jump
jump-to-subpicture
cond-jump-to-subpicture
multiple-jump-to-subroutine
jump-return

push
single-instancing
multiple-instancing

write-single
write-multiple
write-picture

buffer-modes
addressing-modes
algorithmic-modes

point
vector-2d
vector-3d
graph-vector
simple-figures
simple-curves
curves

character
symbol
raster-array
transformations

linear-geometric
transformations

non-1 inear-geometric
transformations

intensity-change
bl ink
l i nestructures
colors
shading

RECENT RESULTS

TRAVERSING BINARY TREE STRUCTURES WITH SHIFT REGISTER MEMORIES

W. E. Kluge
Gesellschaft fur Mathematik

und Datenverarbeitung mbH Bonn
5205 St. Augustin 1

Germany

The paper proposes a tree-structured shift register memory in which traversals of binary data tress in pre
or end-order are performed as sequences of two non-cyclic data permutations which move the data tree relative to
a unique access port that is located in the root node of the memory tree. These two permutations, denoted A and
B, emulate elementary traversal steps. Permutations A correspond to traversals between nodes of an even tree
level and the next higher odd level, permutations B correspond to traversals between nodes of an odd tree level
and the next higher even level. Traveling from a node to its left successor requires one permutation, traveling
to its right successor requires two identical permutations in succession. Three identical permutations in suc
cession perform a counter-clockwise cyclic traversal within a subtree which comprises a (root) node, its left
successor node and its right successor node; i.e. subsequences AAA and BBB yield identity. Accordingly, if the
conventional address assignment of trees applies, then the permutation (traversal) sequence that is effective on
the memory corresponds to the address of the node that is actually being visited. Starting to the right of the
most significant '1' bit in the address code and proceeding in the order from left to right, a 'O' corresponds to
one permutation and a '1' corresponds to two identical permutations; the permutation is A if the bit position is
even, and B if the bit position is odd. Thus, the state of permutation may be identified by the address code.
The permutation sequence that traverses the data tree is generated from single control bits, associated with
every node of the data tree, which distinguish between branch nodes and leaf nodes. Whenever a branch node is
being visited, then the permutation to be executed next changes with respect to the preceding permutation. When
ever a leaf node is being vfsited, the next permutation remains the same as the previous one.

ARCHITECTURAL SUPPORT FOR SYSTEM PROTECTION

Eduardo B. Fernandez, Rita C. Summers, and Charles D. Coleman
IBM Los Angeles Scientific Center

Los Angeles, California 90067

A set of architectural extensions, involving hardware/software interaction, is proposed to constrain the
execution-time behavior of application and higher authority programs, running in a CPU of the type of IBM System
370. The extensions consist of the addition of a new state to the previous supervisor and problem states, en
forcement of disciplined transition between states, hardware distinction of four data types, and a set of rules
that enforce the structure of processes operating in this environment. Application of the extensions to a shared
data base shows that the protection of the operating system under which it runs can be enhanced significantly,
with respect to errors or attacks from the users of this data base.

THE DESIGN OF A USER-PROGRAMMABLE DIGITAL INTERFACE

James W. Gault
Electrical Engineering Department

North Carolina State University
Raleigh, North Carolina

Alice c. Parker
Electrical Engineering Department

Carnegie-Mellon University
Pittsburgh, Pennsylvania

An interface for digital computers and peripherals is described in this paper. The design process is traced,
beginning with the definition of the problem environment, and the derivation of primitive interfacing functions.
The functions are associated with four functional classes; data input/output, data storage, data manipulation,
and control. Interface capabilities range from control over the synchronization 0f input and output pulse data
to control over the data word widths acceptable. System limitations include technical, timing, and synchroniza
tion problems. The interface is modular, generalized, and user programmable. The control is contained in two
levels: a user microprogram, and a read only nanoprogram.

121

SELECTION SCHEMES FOR DYNAMICALLY MICROCODING FORTRAN PROGRAMS

Philip S. Liu
Department of Electrical Engineering

University of Miami
Coral Gables, Florida 33124

Frederic J. Mowle
School of Electrical Engineering

Purdue University
West Lafayette, Indiana 47907

The objective of the present study has been to investigate possible methods to reduce a program's execution
time by detecting and converting automatically the more frequently executed program parts, mostly inner loops,
into microcode. The methods proposed were static loading of inner loops, selective loading of inner loops, over
lay of inner loops, and user-aided scheme. Using Fortran programs as the test programs, a simulation program was
written to measure the gain achieved by each method. A final gain between 1.587 and 4.76 was achieved by the pro
posed methods for memory speed ratios between 3 and 8. It was found that 90% of the final gain of the test pro
grams could be obtained with writable control memory requirements that were less than 40% of the final requirement.

SYSTEM DESIGN OF A GRAMMAR-PROGRAMMABLE HIGH-LEVEL LANGUAGE MACHINE

Serge Fournier and Ming T. Liu
Department of Computer and Information Science

The Ohio State University
2036 Neil Avenue

Columbus, Ohio 43210

An architectural concept called Grammar-Programming is introduced which allows computers to be constructed
that can directly execute a variety of high-level languages. Representing an intermediate level between the basic
hardware/firmware functions of ordinary computers and the software operations of language translators, it is shown
how grammar-programs can be constructed which specify the syntax and semantics of various programming alnguages.
The Grammar-Programmable Machine (GPM) then uses these specifications to process directly the users' high-level
language programs. In the Ph.D. dissertation* upon which this abstract is based, a model is first developed for
representing the syntactic and semantic characteristics of context-free language generators, and an automaton
called a Syntax Network (SN) is constructed. Next a simple, statement-directed language is introduced to express
the states of the syntax network and to define the actual grammar-programming language. A simulator is then imple
mented which is used to test the grammar-programs written for ALGOL and SNOBOL. Finally, the architectural organ
ization for the Grammar-Programmable Machine is described at the register-transfer level. By taking advantElge of
its intermediate position between software compilation and hardware interpretation of high-level languages, the
Grammar-Programmable Machine is able to emphasize the best features of both techniques and to achieve a potential
that neither can reach individually.

-l<
Serge Fournier, The Architecture of a Grammar-Programmable High-Level Language Machine, Ph.D. dissertation:,

Department of Computer and Information Science, The Ohio State University, June 1975.

SMS 101 - A STRUCTURED MULTIMICROPROCESSOR SYSTEM WITH DEADLOCK-FREE OPERATION SCHEME

Ch. Kuznia, R. Kober, H. Kopp
SIEMENS AG

D 8000 Munchen 70
Hofmannstr. 51

Germany

The presented multimicroprocessor system has been designed to treat certain problem classes such as la:rge
systems of differential equations or online process control. It consists of a main processor and an arbitrary
number of modules, each with a microprocessor, a private memory and a communication memory. The most chara·~ter
istic features of the SMS 101 organization are:

- a phase structured interaction scheme (PSI-Scheme) which simplifies organizational problems
- a data communication concept, that replaces common memory by simultaneously storing data in distributed

memories.

A first realization of the system comp"J;ises eight modules, but the organization allows an extension up to several
hundreds of modules. Thus with present day technology a computing capacity can be achieved which is 2 or 3 mag
nitudes higher than that of conventional computers.

122

THE DESIGN OF A MULTI-MICRO-COMPUTER SYSTEM

s. H. Fuller, D. P. Siewiorek and R. J. Swan
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Continuing advances in semiconductor technology now makes practical the construction of multi-micro-processor
systems with tens to hundreds of processors. We are currently involved in the design and construction of a multi
micro-processor system to experimentally investigate the problems of building and programming systems with a large
number of processors. The LSI-11 microcomputer is the basic "computer module" that provides processing power and
primary memory. The interconnection scheme between the computer modules allows the processors to cooperate in a
true multiprocessor fashion: they can share and efficiently access all of primary memory. A number of working
groups are now investigating the central problems facing the design and successful application of reliable multi
micro-processor systems and these problems will also be discussed.

123

DESIGN AND SIMULATION OF THE DISTRIBUTED LOOP COMPUTER NETWORK (DLCN)

Cecil C. Reames ~nd Ming T. Liu
Department of Computer and Information Science

The Ohio State University
2036 Neil Avenue Mall
Columbus, Ohio 43210

Summary

The primary goals of this paper are two-fold:
1) to present the design and hardware implementation
of the interface transmitter for the Distributed Loop
Computer Network (DLCN), using a novel shift-register
insertion message transmission mechanism, and 2) to
discuss simulation results comparing DLCN with Pierce
and Newhall loops, which verify earlier claims as to
DLCN's superior performance.

I. Introduction to DLCN

The Distributed Loop Computer Network (DLCN) is
envisioned as an integrated hardware/software/communi
cation system that is to be designed and operated with
distributed control. The goal for the network is
to provide efficient, inexpensive, reliable, and
flexible service to a localized community of semi
autonomous users in an environment of constantly
changing user demands and requirements. Previous re
search concerning DLCN concentrated attention on the
communication network, as it was felt that existing
loop networks made rather inefficient usage of the
loop communication channel. Accordingly, the authors
designed a novel message transmission mechanism for
DLCN which is much more efficient and sophisticated
than those in current use [12,13]. Implemented in the
loop interface hardware, the new shift-register inser
tion mechanism has the following important characteris
tics: 1) concurrent and direct transmission of
variable-length messages onto the loop is possible;
2) hardware buffering of incoming messages by the
interface permits nearly immediate access to the loop
for locally generated messages, thus greatly reducing
queueing and total transmission times; and 3) automatic
regulation of loop message traffic is provided, all
accomplished in a completely distributed loop network.

II. DLCN Interface Transmitter Design

A loop network is composed of a high-speed digital
communication channel (1 to 10 megabits per second),
arranged as a closed loop to which computers, terminals,
and other peripheral devices are attached through loop
interfaces (see Figure 1). Messages from a sender are
put onto the loop by their interface, then travel
around the loop from interface to interface until
removed by the interface for the addressed receiver.
Thus, the design of the loop interface and the trans
mission mechanism it incorporates are of extreme
importance in the operation of a distributed loop net
work.

The loop interface can be logically partitioned
into message receiving and transmitting sections (see
Figure 2). The design of the interface receiver is
fairly simple. It accepts incoming messages from the
loop, checks their destination address fields, and
either delivers them to the input buffer of the
attached component if they are addressed to it or
passes them on to the interface transmitter for relay
ing to the next interface. The function of the
transmitter is to place messages onto the loop, both
incoming messages relayed from the receiver and newly
generated messages from the local attached component.
The mechanism incorporated in the interface transmitter
must be capable of merging these two message streams

124

onto the loop without interference and without the use
of centralized control.

Figure 1. A Distributed Loop Computer Net\"Ork

Loop Interf.sce Loop Input

Line I Control I Line
Driver 1 1 R•c•ive:: ~
-----l.--r---l-----
Tracnitur Receiver

Rode Output Node Input

I
Output I Input ________ l _______ _

Attache<I Component

Pisure Z. fuactiooel Organhatiou of Loop Interface

Newhall and Pierce Transmission Mechanisms

Two transmission mechanisms are in common use to
day for loop systems. In the Newhall loop [2,3, 14],
a round-robin control passing token circulates around
the loop and allows only one interface at a time the
opportunity of transmitting. The selected interface
may place one or more arbitrary length messages onto
the loop, or may simply pass thEi control tok<Em on to
the next interface downstream. In the Pierc·e loop
[10,11), communication space on the loop is divide:d
into one or more fixed-size slots. Messages are also
divided into frames or packets, so that each packet
will occupy one slot on the loop. The transmission
mechanism is as simple as waiting for the beginning
of an empty slot and filling it with a packet.

Both of these transmission mechanisms are simple
to implement but suffer from certain inherent short
comings. The control passing mechanism limits message
transmission to just one interface at a time and thus
results in very inefficient loop channel utilization
and long message delays. Dividing messages into
packets introduces other problems. Not only is there
delay in waiting for an empty packet to arrive, but
considerable communication space is wasted when divid
ing variable-length messages into fixed-size packets.
In addition, all the facilities required for conv1~rt
ing messages into packets and back again - dlisass1~mbly,
sequencing, buffering, and reassembly - must: be
provided by the loop interface or attached compon10\nt.
Thus, neither mechanism makes very efficient usage of
the loop.

DLCN Transmission Mechanism

With the elimination of these faults in mind, a
third transmission mechanism was developed by the
authors for use in DLCN [8,12,13]; a somewhat related
concept, although not nearly as sophisticated, was
independently proposed by Hafner [6]. Called the
shift-register insertion technique for the transmission
of variable-length messages, it combines the best
features of the two aforementioned mechanisms. This
new mechanism makes possible the concurrent generation
and direct transmission onto the loop of arbitrary
length messages in a completely distributed network.
A model of the mechanism and a detailed explanation of
how it operates have been published before [12], so
the explanation given here will be somewhat sketchy.

The loop transmitter must accept the two streams
of incoming relayed and locally generated messages
and must transmit both streams onto the loop without
mutual interference. Conflicts, which might other
wise occur because of the simultaneous arrival of
messages from both streams, are resolved by delaying
the incoming relayed messages in a variable-length
shift register located in the loop interface. Thus,
as long as delay buffer space is available in the
interface, the transmission of locally generated
messages can have priority over the relaying of in
coming messages, as the latter can be delayed if
necessary. Of course, the amount of delay (worst
case upper limit) and thus also the length of locally
generated messages cannot exceed the size of the delay
buffer.

The interface transmitter (see implementation in
Figure 3) operates in one of two modes: relay and
transmit. In relay mode (M=O), incoming messages are
passed through the delay buffer (DB) and back onto
the loop. The amount of delayed data in the buffer
(indicated by counter DC) does not change while in
coming messages arrive but decreases when no traffic
is incoming. In transmit mode (M=l), locally generated
messages (from DB) are put onto the loop. In this
mode the amount of data in the delay buffer increases
when incoming messages arrive and remains constant
otherwise. The switch from relay to transmit mode
(requested by RDY being set) can occur when both the
following conditions are met: 1) the relaying of an
incoming message is not in progress, and 2) the
available space in the delay buffer is at least as
large as the message to be transmitted.

Properties of DLCN Mechanism

The superior performance of DLCN's transmission
mechanism can be largely explained by the existence
of the interface delay buffer and by the ease with
which the two above conditions for message transmission
can be met. DLCN does not have to wait for a control
token or an empty packet to arrive before sending a
message. Assuming buff er space at least as large as
the message to be transmitted is available, DLCN can
insert a locally generated message onto the loop at
the end of relaying any incoming message. Subsequent
incoming messages (if any) can be temporarily delayed
in the interface buffer until transmission of the
local message is completed.

Thus the DLCN transmission mechanism minimizes
the time a message must remain queued waiting to get
onto the loop, at the possible expense of transmission
time once on the loop. As the simulation results to
be presented in the next section will conclusively
verify, total message transmission time and queueing
time are both substantially reduced by this method,
together with average and maximum queue lengths.
These latter facts mean that attached components can
get rid of generated messages quickly and do not
need large output buffers for queueing many messages.

125

Having partially filled delay buffers at each
interface which can absorb small fluctuations tends
to have a stabilizing effect on performance. Further
more, the finite si~e of each delay buffer automati..
cally regulates the amount of traffic which can be put
onto the loop by any interface, as delay buff er space
must be available before transmission can occur.
However, whenever delay buffer space is available,
nearly immediate access to the loop is guaranteed,
regardless of other message traffic already on the
loop. All these factors taken together mean that
message delays are smaller and that more efficient
utilization of the loop is achieved.

III. Simulation Results

Mathematical analysis of DLCN as an open queueing
system with cyclic feedback will be attempted in
future research (see Figure 41 but the difficulty of
this task suggested that a simulation study would be
more appropriate for preliminary verification of
performance claims. Accordingly, simulation models
were written in the GPSS/360 language for all three
networks - DLCN, Pierce, and Newhall - so that
relative performance could be more easily judged. The
primary quantities of interest in this study were
total message time and queueing time, although
many other quantities were measured dur.ing the
simulation. It is probably best to list all times
which will be discussed and give their precise
definitions:

1)

2)

3)

4)

queueing time - time elapsed f rofu message
generation until placement on the loop by the
transmitter;
transmission time - time elapsed from message
placement on the loop until the last charac
ter is received and removed from the loop;
acknowledgement time (DLCN only) - time
elapsed from generation of the acknowledgement
message at the receiver until the last
character is received at the transmitter;
total message transmission time - sum of 1)
and 2) only for Newhall and Pierce loops;
sum of 1), 2), and 3) for DLCN.

Characteristics of All Simulation Models

The general characteristics of all three networks
modeled were the same. Each consisted of 6 nodes,
with each message source being an identical inde
pendent Poisson process. Messages produced at each
node were uniformly addressed among the other five
nodes, so that message traffic was entirely symmetric
and random. Message data lengths were exponentially
distributed with a mean of 50 characters; 9 additional
characters of header information were added to each
message or packet produced. All timing was in
arbitrary character ... time units, so that no particular
line rate was assumed. Propagation delay on the
communication channel itself was ignored, while
each interface contributed 2 units of delay: 1 unit
in the receiver for address checking and 1 unit in
the transmitter. While these assumptions are some
what unrealistic, most are fairly standard, and it is
hoped that their simplicity will aid in later mathe
matical analysis of DLCN.

Special Features of the DLCN Model

The simulation models for the Pierce and Newhall
loops were kept simple and unsophisticated. However,
several special features were modeled for DLCN in
order to correspond more closely to the situation
expected in a real network. For example, a 6-
character acknowledgement message which can be
embedded in each data message and returned to the
transmitter to indicate acceptance, error, or receiver

Delay Buff er

. I!
I; : i

DB

OB Loop Interface IB
Model

Node In

(•)

Loop Network

Add Character to OB
(b)

Fig. 3. Hardware Implementation of Shift-Register Insertion Transmission Mechanism Figure 4. Loop Interface Model for Analytical Study

TABLE I

DLCN SIMULATION TIMES

IA line queueing time transmit time acknowledgement total time delay time *

~ usage mean dev mean dev mean dev mean dev mean dev
3600 .056 2.1 14.3 58.6 47,8 13 .7 12.8 n.5 51.l 10.9 29.8
1500 .138 6.4 25.S 61.3 50.1 19.1 26.5 86.7 61.8 12.5 32.3

900 .235 12.2 38,3 67.8 64.2 24.0 35 .6 103.9 83,3 14,7 37,3
600 .365 19,4 45,9 79,6 78.3 37.1 59.2 136.1 113.8 19.8 42.6
480 ,474 30.1 65.2 102.1 124.6 42.2 57,5 175.2 163.4 25.2 55.9
420 .543 39,9 84.2 115.1 145.3 55.1 6$,7 210.2 193.4 30,4 63.0
342 .677 64.2 145,9 150.8 206.4 81.8 97.4 297.7 279.0 42.9 86.6
300 .759 101.6 222.1 210.3 334.0 91.J~ 93 .1 401~.o 450.0 56.6 130.9
270 .844 181.5 504.0 332.7 659.0 132,4 122.4 648.4 903.0 89.6 242.8
240 .937 303 .1 606.0 468.9 805.0 176.8 139.9 900.6 1061. 131.2 353.0

*delay time is for each interface visited

TABLE II

PIERCE AND NEWHALL SIMULATION TIMES
Pierce Loop

*
Newhall Loop

IA line queueing time total time IA line queueing time total time

~ usage mean dev mean dev ~ usage mean dev mean dev
2700 .09s 10.9 38,3 115.2 79,3 2100 .153 15.J 32,9 77,8 55,9
1800 .147 18.7 53,3 12h.4 94,7 1500 .183 21.1 45.1 84,4 66.4
1200 .200 27.9 71.5 133. 7 109.6 900 .242 38.6 65.0 101.0 78.3
900 .293 47,1 103,3 152.1 133,4 600 .328 75.5 111.3 137,7 120.J
720 .J67 69.1 111.J 174.1 142,9 480 .378 135.2 204.9 198.5 210.1
600 .430 74.9 123.3 180.9 152.2 420 .424 283.6 343 .o 346.5 3h3.0
540 .479 119.1 194.3 215.3 212.9 360 .487 611.6 558.0 675.4 559.0
480 .513 148.4 259.0. 251.8 263.0 330 • 518 3210. 2230. 3269 . 2231.
420 • 633 215.6 271.0 326.1 299.0 JOO .511 6564. 4384 • 6632. 4384.
360 .717 257.7 317.0 365,3 342.0
330 .762 360.9 455.0 463 .7 457,0
300 .801 587.2 661.0 690.7 686.o

* 270 .935 1412. 1329. 1511. 1357. queueing time per packet, not per message

126

busy has been proposed for DLCN [8] and was included
in the simulation model. A receiver error rate of 1
character in 10,000 was then modeled, with messages
received in error being retransmitted until accepted.
A receiver busy period of 5 time units after accepting
each message was also modeled (to correspond roughly
to component processiµg time), with messages received
during that busy interval being rejected and retrans
mitted. Finally, messages were randomly assigned
priorities of 0 (lowest) to 7 (highest), with acknow
ledgement messages always having priority 7; these
priorities were used in determining if the relayed
incoming or the locally generated message should be
transmitted first, rather than always giving priority
to the local message.

Details of Each Simulation Model

In the DLCN simulation model, the size of each
interface's delay buffer was changed from 256 to 512
characters. This change was necessary because the
truncated exponential distribution used allowed message
lengths of up to 500 characters, and the delay buffer
must be at least as large as the longest message to
be transmitted. The amount of data in each delay
buffer was tabulated every 20 time units in order to
obtain the distribution of buffer contents and of de
lay time.

For the Pierce model, a packet size of 72 charac
ters (including the 9 characters of header information)
was initially tried. Further simulation, however,
showed that the optimal packet size (that which mini
mized total message transmission time) was only 36
characters. Since the number of packets in a message
is geometrically distributed [l], the optimal packet
size can also be calculated by minimizing the
product of mean number of packets per message and
packet size; so doing gives an optimal packet size of
36.28 characters, which agrees nicely with the simu
lation result. It was decided to place just one
complete packet on the loop, as has been done in prior
simulation studies [1,7], for this minimizes packet
transmission time. Since the 6 nodes together intro
duce only 12 units of delay, a delay box of 24 time
units was placed between the last and first interfaces
so as to form an entire packet interv.al of 36 time
units.

Two possible schemes for the control passing
mechanism were investigated in the simulation modeling
of the Newhall loop. In the first method, all
messages in the queue of the selected interface were
transmitted one by one, the control token being passed
only when that queue was empty. In the second method,
the control token was passed after only one message
from the queue was transmitted, whether other messages
remained in the queue or not. Method one led to
longer queue lengths, but in all cases gave shorter
total message transmission times, and thus it was
adopted for the Newhall simulation model.

Comparison and Evaluation of Simulation Results

Tables I and II present the simulation quantities
of primary interest. The message interarrival time
for each source (node) is given, together with the
average utilization level of the interface transmitter
(which is effectively the same as the communication
channel or line load level). All other entries are
mean times as labeled and their standard deviations.

Figure 5 shows a graph of mean total message
transmission time (both including and excluding
acknowledgement time for DLCN) versus mean source
arrival rate for all three networks. Figure 6 shows
the percentile distribution of total transmission time
for all three networks {emphasizing DLCN's perfor
mance) and gives an indication of worst-case behavior.

127

Notice that at low levels of loop channel utilization,
the performance of the Newhall loop closely approaches
that of DLCN. As the traffic level increases,
however, the Newhall loop soon falls far behind. A
little thought as to the operation of the control
passing mechanism in the Newhall loop explains why.
If all message queues are empty (or nearly so), the
control token will circulate around the loop every
12 time units (thus the minimum line utilization is
.083, not O), and the mean queueing time will be 5-1/2
time units. Compare this result with DLCN, which
does not have to wait at all unless an incoming
message is being relayed (and then only to the end of
that particular message). For DLCN, the situation
does not change as the traffic load increases, but
for the Newhall loop, the control token is delayed
more and more and takes longer and longer to make
a complete circuit. Yet even if one transmitter is
active at all times, the mean line utilization can
only be about 50% (since on the average, messages
only travel halfway around the loop before being
received).

At low levels of line utilization, the Pierce loop
does not fare as well as either DLCN or the Newhall
loop. The reason for this fact is that a message
always has a mean wait of half the packet interval
(17-1/2 time units) and must then be transmitted in
several packets (the mean measured was 2.36 packets
per message, which agrees closely with analytic
calculations [1,7]). At higher traffic levels,
however, the performance of the Pierce loop is better
than that of the Newhall loop, for the packet
mechanism can allow two or more transmitters to be
active concurrently (even with a single packet), as
long as each transmitter finds the packet empty when
it arrives. DLCN, of course, is better than either
network, for it does not have to divide a message
into packets and does not have to wait for a control
token or an empty packet to arrive. It is interesting
to note that even if the time required for an acknow
ledgement message to return to the transmitter is
include.cl in DLCN's total time, it still performs
better than the Pierce loop at all traffic loads and
better than the Newhall loop except at very low
utilization levels.

For the Pierce and Newhall loops, the average
transmission time on the loop is the same for any
traffic load (measured by simulation as 46.7 time
units per packet for the Pierce loop, 63.0 time units
per message for the Newhall loop). For DLCN, however,
since messages may be delayed during transmission,
the mean transmission time does increase significantly
with higher traffic loads (as shown in Table 1). So
why does DLCN give better overall performance than
either of these other networks? The answer lies in
an examination of the queueing time spent by a
message waiting to be transmitted onto the loop.

Figure 7 is a graph of the mean queueing times
for each of the three networks. In the case of the
Pierce loop, the times are for packets, not messages,
and reflect the fact that when a message is being
divided into packets, one packet is formed and added
to the transmission queue at the start of each packet
interval, until the proper number of packets have
been generated. Notice the extremely small queueing
times for DLCN as compared with the other two networks.
Maximum and average queue lengths are similarly
smaller for DLCN, since messages can get onto the
loop so quickly. This very small queueing delay for
DLCN more than offsets the increased transmission time
and leads to its superior overall performance.

The gain in performance for DLCN is primarily due
to the hardware delay buffer in each interface and
to the fact that it only delays incoming messages by

f"lf:AN TOTAL TRANSMl{l~ION TIM!:: .. ~ FOR ALL Tt-Rr:E NETWORKS
~.'-!-~~~~.~~~~~~~~--'~~~~~~~~--.

!D
r
'(!

M

M

:n

M

N

X DLC>l < ~ITH N:'.1'. TIN!':>

'if PJf:RCE LocP

+ HfllHALL LOOP

: . i/!e : _ i:le 2, .se 1 Ae
M~AN NESSAGf. ARRIVAL RATE

PERCENTILE DISTRIBUTION OF Mf::SSAGF::
TRANSMISSION !IMES

: . ee : . ae 2 _ 6e :i Ae
MEAN NESSAGE ARRIVAL RATE

r.IGUR[6.

128

'"&
EXPECTf.D OUF'DEING TIME: fOR

ALL THRFJ: NETWO~KS
~::-.-~~~~~~~~~~~~~~~~~~~~--~

'<'
L~

"' "'
~-

"' !ti

~

l-?I!!
~~
LL!r
t--

s~
~a;i
w~
LL..
!.;,.
:J
cnl8
S2!ci <':'l
I.:' I:i.;i
Hr.;,
1-·ll:i
>-'I!
<
rl
~r.l

"' ~~
r!

to
to

~

~
.02

X DLC>l

: . ee : ae ::>, r,e l Ae
Mf::AN N~SSAGf. ARRIVAL RATE

r.IGURE 7

ME:AN DELAY :IMf. AND
BUFFER CONTENTS FOR DLCN

r, "IF.AH EILF!l':'R cr).fl"f.HTG

X NF.AH Dr:J..~Y "'."Il'f':

~·.oo

_,,e .6e .ae :.~ i' . .:10
FRACTIONAL LOOP UTILIZATION

f:"IGURF:: 8.

the minimum amount necessary. Figure 8 shows graphs
of the average contents of a delay buffer and the
average message delay experienced, both plotted versus
line utilization. Surprisingly, both graphs are
rather flat and increase only slowly until very high
load levels are reached. In fact, the simulation
showed that a message almost never had to wait for
available delay buff er space until a line utilization
of .75 was reached. Even at a line load of .85,
only 5% of the messages had to wait for delay buffer
space to become available. Thus the delay buff er
accomplishes very nicely the task for which it was
designed.

Much additional simulation work has been done in
studying the effects of variation of parameters, such
as buff er size, mean message length, message length
distribution, message priority, message arrival
distribution, etc. Because of limited space, the
results of all these studies cannot be presented here.
However, the DLCN simulation model has proved to be
fairly insensitive to most parameter variations, and
no unexpected changes in behavior have been observed.

IV. Conclusions

An implicit goal in the design of DLCN and its
new transmission mechanism was the desire to make
more efficient utilization of the loop communication
channel. At the same time, it was felt that control
of the network should be completely decentralized
and distributed. The hardware implementation given
for the interface transmitter and the simulation
results presented for its performance have shown
that both of these goals have been successfully
accomplished.

These two goals of efficiency and distributed
control have been extended and adopted as the design
philosophy of the Distributed Loop Computer Network.
DLCN is intended to be an integrated hardware/soft
ware/communication system which uses distributed
control to provide efficient, inexpensive, reliable
and flexible service to its users. As the results
presented in this paper and elsewhere indicate, much
of the work needed in the hardware and communication
areas has now been performed. Attention is therefore
turning to the software and the design of the Distri
buted Loop Operating System (DLOS). A preliminary
investigation of the design requirements for the low
level network software has already been carried out
[8]; the areas of distributed process control and
data base management are now being studied. Further
research in these areas, ultimately leading to
complete specification of the structure of DLOS and
to implementation of a prototype version of DLCN,
will be the subject of future papers.

Acknowledgement

The authors wish to express their appreciation to
Dr. Marshall C. Yovits for his encouragement and
constant support during the period of this research.

References

[l] Anderson, R.R., J. F. Hayes and D. N. Sherman,
"Simulated Performance of a Ring-Switched
Computer Network", IEEE Trans. on Corron., COM-20,
3 (June 1972), 576-591.

[2] Farber, D. J ., et ai., "The Distributed Computer
System", Proa. COMPCON '?3, February 1973,
pp. 31-34.

[3] Farmer, W. D., and E. E. Newhall, "An Experi
mental Distributed Switching System to Handle
Bursty Computer Traffic", Pl'oa. ACM Symp. on
Data Communications, Pine Mountain, Georgia,

129

October 1969, pp. 1-33.

[4] Fraser, A. G,, "Loops for Data Communication",
Computing Science Technical Report #24, Bell
Laboratories, Murray Hill, New Jersey, December
1974.

[5] Fraser, A. G., "Spider - A Data Communication
Experiment", Computing Science Technical Report
#23, Bell Laboratories, Murray Hill, New Jersey.

[6] Hafner, E. R., z. Nenadal and M. Tschanz, "A
Digital Loop Communication System", IEEE Trans.
on Comm., COM-22, 6 (June 1974), 877-881.

[7] Hayes, J. F., "Modeling an Experimental Computer
Communication Network", Pl'oa. DATACOMM '?3, St.
Petersburg, Florida, November 1973, pp. 4-11.

[8] Liu, M. T., and C. C. Reames, "The Design of the
Distributed Loop Computer Network", VoL I, Proa.
19?5 International, Computer Symp., Taipei, Taiwan,
August 1975, pp. 273-283.

[9] Peebles, R. W., J. Labetoulle and E. G. Manning,
"Analysis and Simulation of a Homogeneous
Computer Network", Technical Report CCNG-E-30,
Computer Communications Network Group, Univer
sity of Waterloo, Waterloo, Ontario, January
1975.

[10] Pierce, J. R., "How Far Can Data Loops Go?", IEEE
Trans. on Comm., COM-20, 3 (June 1972), 527-530.

[11] Pierce, J. R., "Network for Block Switching of
Data", BeU Syst. Tech. Journ. , LI, 3
(July/August 1972), 1133-1143.

[12] Reames, C. C. and M. T. Liu, "A Loop Network for
Simultaneous Transmission of Variable-Length
Messages", Proa. 2nd Annual, Symp. on Computer
Architecture, Houston, Texas, January 1975,
pp. 7-12.

[13] Reames, c. C. and M. T. Liu, "Variable-Length
Message Transmission for Distributed Loop
Computer Networks", Teclmical Report OSU-CISRC-
74-·2, Department of Computer and Information
Science, The Ohio State University, Columbus,
Ohio, June 1974.

[14] Yuen, M. L., E. E. Newhall, et ai. "Traffic
Flow in a Distributed Loop Switching System",
Proa. Symp. on Computer-Communications Networks
and TeZetraffia, Polytechnic Institute of
Brooklyn, April 1972, pp. 29-46.

DISTRIBUTION OF FUNCTIONS AND CONTROL IN RPCNET

Paolo Franchi
IBM Scientific Center, Pisa, Italy

Summary

This paper describes the general characteristics
and architecture of RPCNET, a distributed computer net
work for use in the Education and Research area which
is being developed in Italy. This project is a joint
undertaking of the National Research Council, IBM
Scientific Center and a number of Universities and
Research Institutes.

In order to match the variety of needs and
contraints inherent in the environment in which the
network must be developed and made operational, a
functional rather than a system approach has been
followed in the designing of the Network. The present
architecture includes some modifications to the
original design which were necessary in order to
establish a more definite boundary between applications,
interface and communication subnetwork.

The mapping of these functions into physical
components is also presented as well as some types of
applications.

1. - Introduction

1be REEL Project was formally established in June
1974 as a cooperative effort among the IBM Scientific
Center of Pisa, the Computing Center of the University
of Padova and CNUCE, the Computing Center of the
National Research Council. Other partners, such as the
University of Torino, CSATA (the Center for Advanced
Technology Applications of Bari) and CNEN, the
National Council for Nuclear Energy (Bologna), joined
the Project later.

The objective of this cooperation is to study a
networking solution for the Italian scientific
community. More specifically, purpose of the Project is
to provide Computing Centers in the Education and
Research area with a sensible way of sharing their
computational resources, such as application programs,
data sets, compilers and programming subsystems.

This objective should be attained without causing
unnecessary intereference with the normal activity of
the Centers and at the same time minimizing additional
hardware and softwa~ requirements. For this reasons
the basic features of RPCNET (!EEL !reject ~omputer
NETwork) are: distributed control topology, dynami
cally variable configuration and nonhomogeneous nodes.

In order to satisfy this requirements the initial
design of the Network [l] was based on a classical
structure where each node was composed of one Front
End Processor (FEP) and one or more Hosts. The
communication functions could also be performed by a
Host subsystem ("logical FEP") at the partners' sites
where a physical FEP was not available (2]. On the
other hand, the physical FEP, rather than the Host,
appeared to be a suitable residence for some types of
applications (for instances, terminal supports).

130

This approach allows a maximum flexib il:i. ty in the
logical and physical configuration of the Network, but
tends to vitiate the original concept of FEP and Host.
Moreover, using this approach, it is much moire difficult
to define and design a neat boundary between the
communication subsystem and the application interface.

Therefore, when these problems became eYident
during the development of the Project, a critical
revision of some points became desirable. After this
analysis, the architecture of RPCNET was partially
revised, concentrating on the distribution o:f functions
and control.

This revised design is the subject of this paper.
For the sake of convenience in this presentation we
have borrowed some concepts and terms from the IBM
Systems Network Architecture [3].

2. - Basic Elements

The general structure of RPCNET is defined in terms
of two types of physical entities:

"Network Node",
"Network Connection",

and one type of logical entity:
"Network Table".

A Network Node (or simply "Node") is any dat.a process
ing system, including one or more physical p:t:'ocessors,
which is able to perform a minimum subset of the
functions defined as "Node Functions", and which i.s
described by a state vector in the Network T<able.

Network Connection is any duplex communication
channel which connetcs two Nodes and whose activity
state is reported to the Network Table.

The Network Table is a representation of the
static and dynamic topology of the Network in terms of
Network Connections and Nodes. A subset of information
contained in the Network Table is stored in •each Node
and is continuosly updated by the system.

The Node Functions are composed af thre1e
functional sets (Fig. 1):

"Communication Functions"
"Interface Functions"
"Applications"

The Communication Functions is the minimum subset of
these functions which is necessary to qualify a da.ta
processing system as a Node of RPCNET. The Communication
Functions of any one Node in cooperation with the
Communication Functions of the other Nodes will result
in a single functional unit which is called the "Common
Network" ('Fig. 1).

Applications can access the Common Network only
by means of a set of functions called Interface
Functions. The Interface Functions of any one Node!
cooperate with the Interface Functions of the other
Nodes and with the Common Network. The resulting
functional unit is called the "Communication Syste!m11

(Fig. 1).

NODE

APPLICATIONS

INTERFACE
FUNCTIONS

FUNCTIONS

COMMON
NETWORK

LAYER

COMMUNICATION
SYSTEM

Fig. l. Node, Communication System and Common
Network relationship.

APPLICATIONS

- - - - -I~~R~A~--G
FUNCTIONS Q

COMMUNICATION ~
FUNCTIONS v

(a)

(c)

HOST

FEP

APPLICATIONS

COMMUNICATION FUNCTIONS

APPLICATIONS --------------
INTERFACE ~
FUNCTIONS u

- - - ~;;U;I~A~~; -;;;\
FUNCTIONS v

(a)

COMMUNICATION
FUNCTIONS

(b)

Fig. 2 . One processor Nodes : (a) "Full Node";
(b) "Switching Node".

APPLICATIONS APPLICATIONS

~~F~-e

I.F. 8

COMMUNICATION
FUNCTIONS

(b)

APPLICATIONS

I.F. 8 HOST

VALUE ADDED FEP

Fig. 3. Multiprocessor Nodes: (a) "Host and FEP Node"; (b) "Multiple Host Node"; (c) "Value Added FEP Node".

131

Applications of the Network are users of the
Communication System. The Applications functional set
can be empty without altering the Communication System.
Similarly, no Interface Function is necessary to make
the Common Network operational.

The Common Network is a general purpose packet
switching system for moving unrelated data units called
PIUs (!'._ath ..!_nformation ~it) from one location to
another one.

3. - Communication System Control

As far as the activity of the Communication System
is concerned, the control functions in each Node are
performed by two network addressable components:

11!!_etwork ~ervices ~anager" (NSM),
11£omrnon !'!,etwork ~anager (CNM).

In each Node there is one and only one CNM and one,
several or, in certain cases, no NSMs.

CNMs share the control of the Common Network in a
equihierarchical way. That is, the Common Network works
as a symmetrically distributed control machine whose
control elements are the Common Network Managers.

NSM supervises the network activities of the
Applications, namely, providing them with a "Network
Environment''. The capability to contact other
Applications is a specific service offered by this
environment. NSMs share the control of the "Interface
Functions Layer" of the Communication System (Fig. 1).

The way in which CNMs define the logical
configuration of RPCNET is largely independent of both
the physical layout of the processors to be included
in the Network and of their interconnections.

In other words, the creation of CNMs should be
considered as a sysgen option of the Communication
System. In Fig. 2 the two cases of a single processor
Node are shown. Figure 3 represents some examples of
multiple processor Node. In this latter case, the
connection between processors belonging to the same
Node is considered as an "Internal Connection" and is
not included in the architecture of RPCNET. Conversely,
all the communication channels which link processors
supporting CNMs are considered as Network Connections.

Each Application is supervised by one and only
one NSM, which must be the NSM residing on the same
physical processor which supports the Application.

4. - Information Exchange

In addition to the NSM and CNM a third type of
network addressable unit exists, called the "Logical
Channel Termination" (LCT). The "Logical Channel" is
the basic facility by which two Applications can trade
information across the Communication System. Two LCTs
exist for each Logical Channel.

The port through which an Application can access
the network facilities (network services and logical
channels) is called "~ogical Qni t 11 (LU). Several LUs
can be requested by and dedicated to a single
Application. Each LU is controlled by one Application
and by one NSM. LUs belong to the Interface Functions
Layer.

Two LUs can communicate with each other either•
by means of the corresponding NSMs or through a Logical
·channel, that is a pair of LCTs. This latter type of
activity is called a "Session". A Session involves a
pair of LUs and a pair of LCTs for a certain period of
time. Multiple Sessions between LUs are not allowed.

132

In Fig. 4 the possible exchange of information
between network addressable uni ts are shown. The unit
of information which flows from a network addressable
unit to another one through the Common Network is
called ~asic ..!_nformation Qnit (BIU). BIUs are sub
divided when necessary, and mapped into PI Us before
entering the Common Network. The maximum length of a
PIU is a constant of the Common Network.

The size of the BIUs exchanged between two NSMs or
between two CNMs is predetermined so that these BIUs do
not necessitate segmentation. The upper bound on the
size of BIUs exchanged either in-node or exch.anged
between remote LCTs is the same.

A network addressability exception (monosegment
BIU) is generated by the NSM or CNM of the destination
Node or by a CNM of an intermediate Node when the
destination LCT, NSM or CNM is not reachable I(Fig. 4).

5. - Transmission Header

The .:!:_ransmission !!_eader (TH) is that part of a
PIU which provides addressability, identification and
sequential order of the BIU or BIU segment carried by
the PIU as its text part. The network addressE!d of
CNM, NSM and LCT is shown in Fig. 5. These addresses
are carried as E_es tination ~ddressed £.ields (DAFs) and
Qrigin ~ddress !_ield (OAFs) by the PIUs.

Two main types of PIUs are defined, each type
being identified by a !_ormat IDentifier (FID):

"In-session" (FID:::l), carrying a segment of a
multisegment BIU;
"Out-of-session" (FID=2), carrying an entire o:r'
non-segmented BIU.

In both types a E_ata £ount £.ield (DCF) contains the
binary count of the bytes in the !3IU or BIU se1gment
carried by the PIU.

In a FID=l type PIU a ~equence !'!,umber £.ie,ld (SNF)
contains the sequence number of the BIU within the
Session, and a ~e.§_ment !!umber (SGN) contains the order
number of the segment within the BIU.

In a FID=2 type PIU the corresponding fields
contain a !equest IDentifier (RID) which identifies any
Request and an ~ct ion £ode (AC) which indicates to the
receiving CNM or NSM the meaning and use of the
associated BIU.

6. - Access to the Communication System

The application can access the Communication
System by using a defined set of functions and services
which are provided by the Interface Functions Layer.
These functions and services can be invoked following
the specifications of a Macro Language (RNAM) define1d
for RPCNET.

In the first step (OPENLU) an Application asks the
Communication System for one or more LUs. Cont.act wi.th

SESSION

NODE ID 0 0 0 0

(a)

NODE ID HOSTID 0 0

(b)

I NODEID HOST ID LCTID

(c)

COMMUNICATION ACROSS THE COMMON NETWORK:
<J---------{> NORMAL REQUEST/RESPONSE

COMMUNICATION ACROSS THE COMMON NETWORK: Fig. 5. Network address of:
..- ----t>o

NETWORK ADDRESSABILITY EXCEPTION

IN-NODE AND IN-CORE COMMUNICATION

+----+ IN-NODE COMMUNICATION

(a) CNM, (b) NSM, (c) LCT •
The NODEID identifies the
Node and the HOSTID identifies
the subarea controlled by one
NSM.

Fig. 4. Information exchange between network addressable units.

the local NSM is then established and the Application
becomes addressable, through its LUs and NSM, from the
Communication System.

At this point the Application can send a message
to (MESSAGE) and receive a message from other
Applications, can make enquiries (ENQUIRE) about the
state of availability of other Applications, and can
establish a Session (BIND) between one of its LUs and a
remote LU. This Session can be established only if the
remote Application has issued the INVITE macro.

All these services are provided by the local NSM,
which has permanent contact with the remote NSMs.

Once in Session, two Applications can exchange
information through LCTs, without the intervention
of their NSMs. An Application can receive (RECEIVE) and
send (SEND) BIUs, following preestablished rules of
data flow or breaking (BREAK) these rules.

In-session BIUs are composed of two parts: the
Request/Response Unit (RU) which is transparent to the
Communication System, and the !equest/Response !:!,eader
(RH), which is built by the Communication System on
the basis of a parameter list provided by the Applica
tion. On the receiving side, the RH is checked by the

133

Communication System and passed to the Application as
an end status condition of RECEIVE macro.

At the end of a Session, NSM is again invoked to
close the Session (UNBIND) and release the LU (CLOSELU).

A specific set of logical rules for exchanging
data in the framework of a Session, implemented on an
RNAM language program, is called a "User Protocol". User
Protocols are not included in the architecture of
RPCNET. Each Application develops its own User Protocol
in order to communicate with other Applications.

7. - Node Structure and Data Flow

Figure 6 shows the internal structure of a Node
which corresponds to the case of the one processor Node
illustrated in Fig. 2a.

The modification necessary to account for other
cases described in Fig. 2 and Fig. 3 are obvious. In
Fig. 6 the dashed arrow between NSM and CNM represents
an in-core communication. This connection does not exist
when the upper and lower part of the Node communicate
through an Internal Connection. In this case the

Bl---....-.. -APPL. 2---r---11 ~-APPL. N___.J

I RU+ CV

-· ,,. -----· ~- --I I
I

I I COMMUNICATION I I I

NETWORK ACCESS CONTROLLER SYSTEM - - -I I I I
I I I I
I I I I

8 8 [-'---i T~ GJ
I I
I I -- .. -~ ~
I I 1 I
I I
I I ~ BIU I

I J
: ! NETWORK

SESSION HANDLER - I""--
--I - I SERVICES

GJ
I I

0

G • .,. MANAGER I

- : c
~ I p

I
_L

tnu PIU ~ t NETWORK
SERVICES
OPERATOR

UPPER PACKET SWITCHER I - - -
;_ - tPIU

-- j_ ----------
~

COMMON NETWORK
LOWER PACKET SWITCHER r--- - - COMMON I

NETWORK I 0
_.,,,,. ___

t : c

r5PIU~
MANAGER

.... - Ip
~ -~

1 COMMON
NETWORK
OPERATOR

G c:J NETWORK -
CONNECTION

HANDLER -L._,
··-· --

Fig. 6. Node structure and data flow.

134

communication task is taken over by the Upper and Lower
components of the Packet Switcher.

The ,!:!etwork ~onnection !:!_andler controls and hand
.tes Network Connections such as BSC or SDLC Data Links
and Channel Attachments. Each Network Connection is
,'epresented by a .!:!etwork ~onnection ~lement (NCE) to
which outbound PIUs are 'enqueued.

The Network Connection Handler keeps idle Data
Links in an active state by sending special empty
frames called Hello message.

Each change in the Network Connection state is
reported to CNM which is :responsible for the
reconfiguration of the Common Network and the updating
of routing tables. The reconfiguration mechanism
[1,4] is based on the flooding technique, which
allows broadcasting of vital information in the most
reliable way.

The Common Network Operator is conceived of as a
non-automatic extension of the CNM. In the testing
stage of the Network, the role of the Common Network
Operator should be gradually reduced and its functions
partially taken over by the CNM.

In the meantime an Qperator £ommand ~rocessor
(OCP) allows the operator to issue commands such as:
start and stop of Network Connections, display and
modify Network Tables, message sending to other
operators, displaying Packet Switcher queues and so on.

The ~acket ..§_witcher (!!ewer and ~per component)
routes outbound PIUs to NCEs and inbound PIUs to the
CNM, NSM or Session Handler.

The Session Handler takes care of the segmentation
of out-bound, In-session BIUs and the reassembling of
inbound, FID=l PIUs. It also performs some functions of
In-session data flow control. Each session is
represented by a Logical Channel Element (LCT); LCTs
have a one-to-one relationship to the local LUs as well
as remote LCTs and LUs.

The Network Access Controller not only manages the
contact point of the Applications with the Communication
System, but also allocates and deallocates LUs,
translates Communication Vectors (CV) into RH and
viceversa. This component performs also the cross flow
control of BIUs to/from Session Handler, to/from
Application and to/from NSM.

The Network Services Manager supports the Out-of
session activities of the LUs and provides them with a
Network Environment. The functions of this environment
are the already mentioned MESSAGE, ENQUIRE, BIND,
INVITE and UNBIND functions.

The NSM receives from the CNM all the information
concerning changes in Common Network states which may
affect the normal operation of In-session activities.
This information is namely reachability of remote Nodes
and availability of their NSMs.

The Network Services Operator can issue commands
such as: start and stop Applications, enquire about
number and level of activity of LUs and LCTs, etc. Also
the functions of the Network Services operator will be
gradually reduced and taken over by the NSM.

8. - Implementation and Applications

The systems which have been considered in the REEL
Project for the implementation of Nodes are: VM370,
OS/VS systems and System/7,

Three types of Network Connections have been
considered: the System/7-370 Channel Attachment (RPQ
D08112), which is also used for Internal Connections;
BSC Data Links between System/7 (equipped with TPMM,
RPQ 008011) and OS/VS, VM370 systems equipped with the
Transmission Control Unit (TCU) of the 370x series in
emulation mode. Between two Systems/7s BSC and SDLC
Data Links have been considered.

Besides the implementation of the Communication
System, the project plan includes four Applications,
which should allow testing of the entire system. These
Applications are: the emulation of the 2702 TCU and the
support of 2741 Terminal (System/7); the access to the
OS/VS and VM370 Spool System (System 370).

Due to the fact that User Protocols are not
included in the architecture of RPCNET, an Application
can communicate only with another Application which
uses the same User Protocol. In this project, two
different User Protocols have been defined: the
"Interactive Session Protocol" and the "Spool-to-spool
Session Protocol".

An alternative approach was considered where a
very general User Protocol would match the variety of
possible network Applications. However this has been
judged too expensive.

Acknow le dgmen ts

The content of this paper is the result of a
cooperative effort on behalf of several individuals.
The author would like to acknowledge in particular the
valuable discussions with and helpful suggestions of
L. Lazzeri, L. Lenzini, C. Menchi, F. Tarini, A. Fusi,
G. Gori, M. Maier, C. Paoli, R. Porinelli and G. Sommi.

135

References

[l]- P. Franchi, "Internode Communication Functions:
Initial Design". IBM Scientific Center Technical
Report 513-3527, April 1974.

[2]- P. Franchi and G. Sommi, "RPCNET Features and
Components". Proceeding of the European Computer
Conference on Communications Networks, London,
September 1975.

[3]- IBM System Reference Library, "System Network
Architecture". Form No. GA27-3102.

[4]- William D. Tajibnapis, "The Design of a Topology
Information Maintenance Scheme for a Distributed
Computer Network". Proceedings of the ACM Annual
Conference, November 1974.

EFFICIENT MESSAGE ROUTING IN MEGA-MICRO-COMPUTER NETWORKS

Larry D. Wittie
Computer Science Department

State University of New York at Buffalo
Amherst, New York 14226

Abstract

With rapidly developing microprocessor
technology, we can anticipate an entire micro
computer being contained on a single, low-cost
L~I chip. It will be technically and economi
cally feasible to interconnect thousands or
millions of these microcomputers to form a
very large and powerful machine -- a Mega
Micro-Compute~ (MMC) • This paper defines a
system of interlocking buses allowing dense
message flow within an MMC. Each microcomputer
shares two buses; each bus is shared by six
teen computers. There is a simple algorithm
for optimal routing of messages. Data activity
on each bus is analytically determined as a
function of network size and the spatial dis
tribution of messages between nodes. MMCs are
about equally efficient whether connected by
buses or by Pierce rings. For equal line
costs, an MMC can allow 200 times denser
message flow than a million computer network
structurea like Illiac IV.

1. Introduction

Single LSI chips already can contain
either 16K bits of memory or sophisticated
microprocessors. Within a few years, both the
memory and logic of a complete microcomputer
will be combined on a single LSI chip. Micro
computers of at least the power of a PD?-8
snoula cost only a few dollars.

There already is much interest in high
speed computers built as networks of micro-

1 2 3 computers. ' ' Commercial production of an
array of 512 Intel 8080 microprocessors has

recently been announced. 4 Fast network com
puters are needed for weather modeling and
satellite aata reduction.

'l'his paper presents a communication
structure for efficiently linking thousands or
millions of microcomputers to form a Mega
Micro-Computer (MMC). 'l'he most difficult prob
lem in MMC design is allowing for frequent
messages among processors. By presuming
messages are generated at the same rate
throughout an MMC, this paper analyses message
delays and local differences in communication
line activity inherent to network topology.

2. Characteristics of MMC Components

This pape.r assumes that each microcompu
ter in an MMC has a 16-bit CPU, 16K to 64K
worcis of 16-bit RAM, and two bus port con
trollers, all on a single chip. Each port is
capable of both input and output access to its
shared, external communications line. Each
microcomputer node can process its CPU task
and two port messages concurrently. Most
messages receivea at a node are just relayed
from one bus to another on the way to a
different node ..

'l'he shared communication lines linking

136

microcomputers will be called buses in this
paper. Each message is presumed to contain
destination information, to have exclusive use
of each bus on its route for activation time
Ta, and to be relayed to another bus only
after delay time Td. The bus times Tel and Td
are constant throughout the network. All 1:::on
nections within an MMC are local enough that
propagation delays are almost insignificant.
This paper assumes that activation time Ta is
short enough that bus access delays can be
ignored. A bus is said to be overcrowded if
messages try to access it more rapidly than
once every Ta. One measure of network activity
tells the minimum global intermessage~ intc~rval
that avoids local overcrowding.

This paper does not specify exac:t mei:;
sage protocols nor distributed line control

methods, such as discussed by Nisnevich. 5

Digital communications techniques suc:h as the

buffer and forward loops of Pierce6 (multiple

messages, fixed length), Newhall 7 (one m~s
sage, variable length), or Reames 8 (multiple
messages, variable length) or such as the fast

time division multiplexing Collins-system9 may
be used instead of buses. The times Ta and Td
can be adjusted by factors of 1/N and B, where
N is the number of simultaneous messages and B
is the number of buffering nodes on each line.

3. Nested ~roups of Computers Shari~~

Microcomputer nodes in an MMC network are
assumed to lie regularly spaced in a toroidal
ly continuous, plane square of side=(2S+1).
The x or y distance between adjacent nodes is
1. Buses connecting the nodes logically sub
divide the physical space into nested square

2 3 (J+1) groups of 16, 16 , 16 , .•• , 16 computers,
as shown in Figure 1. Spanning but not leaving

each 16(i+ 1>-group are level-i buses
("i-buses"), each connected once in each inner

16i-group. Each complete bus in the network,
regardless of level, is shared by exactly 16
regularly spaced computers. The higher thet bus
level, the wider the physical spacing between
connections. The smallest are the level-0
buses, one local to each 16-group in the net
work. Level-J buses are the longest, ·each
spanning the entire network. Buses near the
edges of the MMC square may be incomplete,
with fewer than 16 connections.

In Figure 1, the single, double, and

triple lines demarcate 16 1-, 162-, and 16 3-
groups respectively. Nodes appearing in
Figure 1 are connected to 24 different
0-buses, 16 1-buses, 64 2-buses, 48 3-buses,
and 24 4-buses. However, only one 1-bus, one
0-bus and parts of a 2-bus and another 1-bus
are explicitly shown.

Each node is connected to two buses, one

local and the other higher level. The numbers
in Figure 1 give the level of the non-local
bus shared by each node. Since the highest
bus level(J) is 4, the MMC network in Figure 2

contains 1 million (16 5) computers. The nodes
marked with an X would be wired to level-5 and
higher buses in larger MMCs.

2 1 3
1 2 1 4
1 2 1 3
1 2 1 x

Figure 1 Logical Groups of Computers Showing
Levels of High Buses Shared By Some

Nodes of a 16 5 (=10 6) Micro-Computer
Network for Highest Level (J)=4.

The hierarchy of overlapping buses re
organizes the physical plane of MMC nodes into
a (J+1)-dimensional hypercube of side=16. Each
node has a (J+1)-place hexidecimal index, or
hyperspace address. Level-i buses run parallel
to the i-th hyperdimension axis; the indices
of nodes on the same i-bus differ only in the
i-th place. The 3-place indices in Figure 2

allow addressing of 4096 (=16 3) computers in a
network with buses of levels 0 through 2. Each
node index in Figure 2 is subscripted by its
high bus level.

The allocation function ALLH(n) deter
mines the level of the higher bus connected to
node n. ALLH(n) is the least i for which

n mod 2i = 2i- 1-1. It gives the position of
the rightmost 0 in the binary representation
of n. ALLH(01F)=ALLH(011111)=6 and ALLH(OOA)=

ALLH(1010)=1. For the fraction 1/2J of the
nodes whose ALLH value exceeds J, either the
higher bus port is left disconnected or it is
connected to some extra J-bus.

4. Message Routing In an MMC Network

Messages between computers not sharing a
bus must be relayed through intermediate
nodes. There is a simple algorithm to select
a route using the fewest buses. It is equiva-

lent to that of Pierce6 for multiple ring

systems. Unlike Brandenburg•s 10 scheme for
Pierce rings, no directory is needed. Only the
current and final node addresses are needed.
The path length varies as log(Dn), where Dn
is the absolute difference between the two
node indices.

137

The MMC routing algorithm is as follows:
1. The final destination is the immediate des

tination.
2. If the current and final addresses are

identical, the message has arrived. Other
wise if the current and immediate addresses
differ leftmost in the i-th hex position,
an i-bus is needed.

3. If the current node is on an i-bus, then
relay the message to the node with the same
i-th address place as the immediate des
tination. Repeat from step 1.

4. Otherwise, overwrite the lower i bits of
the current address with the high i bits of
the pattern 011 ••• 1 to find the nearest
node on an i-bus. Make this i-bus node the
immediate destination. Repeat from step 2.

4881

48C1

4C01 4C12 4C21 4C3x

4C41 4C52 4C61 4C7x

4C81 4C92 4CA1 4CBx

4CC1 4CD2 4CE1 4CFx

-BUS
8001 8012 8021 803x

8041 8052 8061 807x

8081 8092 80A1 80Bx

80C1 80D2 80E1 80Fx

84o1 8412 8421 843x

8441 8452 8461 847x

8481 8492 84A1 84Bx

84C1 84D2 84E1 84Fx

4981 4992 49A1 49Bx

49C1 49D2 49E1 49Fx

4D01 4D12 4D21 4D3x

4D41 4D52 4061 4D7x

4D81 4D92 4DA1 4DBx

4DC1 4DD2 4DE1 4DFx

850i 8512 8521

8541 8552 8561

8581 8592 85A1

85C1 85D2 85E1

883x 8901 8912 8921 893x

887 x 8941 8952 8961 897 x

88Bx 8981 8992 89A1 89Bx

88Fx 89C1 89D2 89E1 89Fx

Figure 2 Bus Path From Node 48F to Node 81F in
Part of a Network of 4096
Computers With Bus Ports Higher
Than J=2 Unattached(X).

LOCATION CU IMMEDIATE GOALCG> DECISION
4 8 F 8 1 F

0100 1000 1111 1000 0001 1111 2-BUS NEEDED
2-BUS NOT AVAILABLE

4 8 D
0100 1000 1101 NEW SUB-GOAL

0-BUS TRANSFER ON 0-BUS
4 8 D 8 1 F

0100 1000 1101 1000 0001 1111 2-BUS NEEDED
2-BUS TRANSFER ON 2-BUS

8 8 D 8 1 F
1000 1000 1101 1000 0001 1111 1-BUS NEEDED

1-BUS NOT AVAILABLE
8 8 A

1000 1000 1010 NEW SUB-GOAL
0-BUS TRANSFER ON 0-BUS

8 8 A 8 1 F
1000 1000 1010 1000 0001 1111 1-BUS NEEDED

1-BUS TRANSFER oN 1-BUS

8 1 A 8 1 F
1000 0001 1010 1000 0001 1111 0-BUS NEEDED

0-BUS TRANSFER ON 0-BUS

8 1 F 8 1 F
1000 0001 1111 1000 0001 1111 ALL DONE

Table A Routing From Chip(48F) To Chip(81F)

This algorithm uses primary bus moves to
transform the message origin address into the
destination address, one hex place at a time,
higher places first. Interposed before each
primary move are secondary bus moves to reach
a node on the primary bus. Since each node is
on only one high bus, at least a 0-bus secon
dary move is needed after each.

Figure 2 shows the buses used by a mes-
s age from node 4 SF to node .S 1 F. The nodes sub
scr ipted by X are not connected to any high
bus. ·Table A lists the algorithm steps needed
to send the message as shown in Figure 2.

5. Message Activity Rates On Buses

One can analyse message activity on MMC
buses if all nodes generate messages at the
same rate M and distribute them over the plane
with the same annularly synunetric function
MDEN(r), where r is the maximum X or Y dis
tance between the sending and receiving compu
ters. Because of these homogeneity assump
tions, all MMC buses at the same level are
equally active. Bus activity differs from
level to level because of secondary moves on
low buses and because of high bus moves for

l
long distance messages. A detailed analysis of

1

MMC bus activity has been developed else-

where 11 and is summarized below.

The calculation of a precise expression
for activity on each MMC bus requires summa
tions over all messages from one computer and
over all computers in the network. The space
around the central computer (O,O) of a (2S+1)
square MMC can be covered by concentric square
annuli of distance r from the center, for
1<r<S. Because MDEN symmetry is assumed,
messages from the central node to nodes on the
same r-annulus are equally frequent.

The probability that a message from (O,O)

to (x,O) exits from a 16i-group is

min(1,x/4i). The probability than an i-bus is
the highest needed for a message from (O,O) to
(x,y) on the r-annulus

Define:

=(x+y)/4i-xy/16i, if r<4i;

=1 I if 4i<r.

POLY (r ,i);; (r-4i) (r/2-4i) /16i
for O~i<J, 1~r~S;

=:1, for i=J, 1<r<S;
=:o, otherwise.- -

The expected nwnber of high i-bus uses
because of one central message to some node on
the r-annulus

=POLY(r,i+1)-POLY(r,i), if r~Bi;

=POLY(r,i+1)

Summing over all r-annuli, the expected
rate of high i-bus uses from all central
messages is:

138

4i+1

MHIX(i) 8M l r•MDEN(r)POLY(r,i+1)
r=1

4i
-SM I r•MDEN(r)POLY(r,i),

r=1

for O~i~.:r;

=O , otherwise.

Two hex indices differing in their I-th
place, have a 15/16 probability of differing
in any lower place. A message requiring a high
I-bus use has a (1-1/16) probability of re
quiring a primary i-bus use, for O<i<I. For
the ALLH defined in this paper, every use of a
bus on levels (4i+1) to (4i+4) must be set up
by a secondary use of an i-bus.

Denoting a move on an i-bus by the vector
MVi and the vector sum of moves resulting from

a high i-bus move by HIMVi' the scalar count

BUSE(i) of all i-bus uses is implicitly de
fined by

J J
l BUSE(i)*MV.=: l MHIX(i)*HIMV.,

i=O 1 i=O 1

with BUSE(i)=:O, for all i>J.

By equating the coefficients of c~ach MV i,

it can be shown that

4i+4
BUSE(i)=MHIX(i)+MBAC(i+1)+ l MBAC(k),

k=4i+·1

with MBAC(i)=:BUSE(i)-MHIX(i)/16, for all i.

Since each bus is shared by 16 computers
and all buses on the same level are equally
active, the expected rate of activity of each
i-bus from all messages is

BACT(i)=16•BUSE(i)/BCON(i),

where BCON(i) is defined as the fraction of
nodes connected to some i-bus. For the! ALLH
defined previously,

BCON(i)=2-i, if O~i<J;
=2-J, if i=J and higher ports unused;

=2-(J- 1), for i=J and higher ports
used for J-buses.

The only factor needed for a closed form
expression for BACT(i) is the exact form of
MDEN(r). Defining MDEN(r) for a given network
depends on knowing the computation tasks bE::!ing
performed. However, 'we can select a class of
MDEN distribution functions which cove1r thE::!
range of likely message distributions:

s
MDENP(r)=C/Pr, where C=1/ l (Br/Pr).

r=1

MDEN 1 (r) is uniform, modeling a random

access memory with no locality. MDEN 2 (r)

decays so rapidly with distance that 99% of

all messages reach the nearest 360 neighbors
of any node; for P=8, 99% reach the nearest
48.

6. Message Transmission Efficiency

Two measures, MDLY and MINT, of MMC mes
sage transmission efficiency are derived from
BUSE(i). MDLY, the average message delay, is
proportional to the average number of buses
used to relay a message:

J
MDLY=Td l BUSE(i)/M.

i=O

MINT is the minimum interval allowed be
tween messages from the same computer so as
not to overcrowd the busiest bus:

MINT=Ta•max BACT(i)/M
O<i<J

The larger MINT is, the less frequently com
puters may communicate.

In general, message density functions
such as MDEN 2 and MDEN 8 greatly localize

messages, causing most to use only low level
buses. All destinations are equally likely for
MDEN 1 • Since most nodes are distant, the

average message for MDEN 1 uses high level

buses nearly as often as low level buses.

Table B shows values of the measures MDLY
and MINT for MMC networks containing from 25

to one billion (10 9) computers. Delay and in
terval measures for networks of more than 1000
computers are nearly constant for local dis
tributions. For problems with only local mes
sages, a unit message is delayed only 2 Td
times and millions of computers can each send
messages as often as -once every 24 Ta times.

J
~N8"'C/8R MDEN2•c12R f1DEN1 •C/l R

NETSIZE T~~~ ~LfD Ml~T MDLf MINf MDLf MI~T
IN A IN i> IN· A IN D IN A

25 l 1.8 21.6 1.9 22.8 2.0 23.4

1089 2 2.0 23.6 2.8 29.8 4.3 41.3

4225 3 2.1 24.l 2.9 30.8 5.5 58.4

25921 3 2.1 24.1 2.9 30.8 6.3 60.0

1002001 4 2.1 24.2 3.0 31..l 8.4 120.0

25010001 6 2.1 24.3 3.0 31.3 14.0 474.0

1024064001 7 2.1 24.3 3.0 31.3 18.7, 960.0

Table B Delay and Interval Measures For
Messages Distributed Locally {MDEN8 , 2>

And Widely (MDEN 1) if BCON(J)=2-(J- 1)

For uniform distributions, maximum activ
ity occurs on the next to highest (J-1) bus

J-1 and requires MINT about equal to 15*2 •
Average message delay increases roughly
linearly with J. Almost all problems require
no worse than uniform message distribution
over a network. In even a randomly accessed
network of one million (106) computers,
average message delay is only 8 Td and each

139

computer can send a message every 120 Ta.

1..:..~(s) To Connect One Million Computers

As a specific example, consider an MMC of

one million (10 6) computers spaced 5 cm apart
in a square array. The highest level (J=4)
buses are less than 300 meters (6*1000*.05)
long for a maximum propagation delay of 2
microseconds (micsec) (at 15cm/nanosec.) Pre
sume the average message packet has 3 words
(48 bits) of header addresses and 13 words of
information for a ~otal of 16 words (256
bits).

7.1 MMC Networks With Buses

First presume each shared communication
line is a bus with 16 data lines and 4 address
lines, each 1 Megabit/second (Mbs). Presume
each message takes 2 micsec for propagation
delay, 1 micsec for the addressed port to
buffer each word and to pass it to its com
panion port, and a final 2 micsec for start
ing th~~ next relay. For a 16-word message, the
bus times are Ta=18 and Td=20 micsec.

For locally distributed messages (MDEN 8) ,

MDLY=2.1 and MINT=24.1. Once every 440 micsec,
each computer can originate a 16-word message
(208 bits of data) that will take about 42
micsec to reach its destination.

For widely distributed messages (MDEN 1),

MDLY=8.4 and MINT=120.0. Each node must wait
2200 micsec between 16-word message, each
relayed for 170 microseconds. Because of the
factor of ten difference in MDLY and MINT for
million computer networks, the intermessage
interval is about ten times the individual
message delay if buses link the nodes.

7.2 MMC Networks With Rings

Alternately, presume each shared line is
a 20 Mbs Pierce ring allowing up to 16 simul
taneous messages. Let each message be a 264
bit block: 8 ring control bits, 48 address
bits, and 208 data bits. Each port must have
a fast (say, 50 nanosecond per bit) shift
register through which all messages pass. The
path delay for a message passing through an
average of 8 buffers is 1-06 micsec
(264*.050*8). Allowing 4 micsec extra for re
laying to another ring, the message delay Td
is 110 micsec per ring. At saturation the ring
can carry 16 simultaneous messages, yielding
an effective line activation time Ta of 6.6
micsec (106/16) per message.

For local spread (MDEN 8) the minimum

intermessage interval is 160 micsec and
average message delay is 230 micsec. For wide
spread (MDEN 1) the interval is 800 micsec and

the delay is 925 micsec for a 16-word message.
In a MMC network 256-bit messages can be 3
times as frequent but each are delayed 5 times
as long on rings as on buses. The ring delay
can be decreased by using faster shift regis
ters. However, the delay and interval are
much more nearly equal for rings.

Ring linked structures require fast
buffering in each node and ring synchroniza-

tion hardware. Short messages are as expensive
as long. Because line messages pass through
all nodes in a ring, open failure of a single
node will break a ring but not a bus. In a
bus structure, neighbors may route messages
around a failed node.

7.3 Solomon Networks

For contrast, consider a SOLOMON-type
network of one million computers each linked

to its four neighbors as in the Illiac Iv12 •
Since there are the equivalent of 4/2 links
per SOLOMON node versus only 2/16 links per
MMC node, each link must be 1.25 Mbs to have
an average of 2.5 Mbs per node. To shift a
256-bit message over one node takes 205
micsec=Td=Ta. The average path length for
MDEN 1 is 1000 nodes and for MD~N 8 is 2 nodes.

For local messages, the message delay and
interval are each 410 micsec; for widespread
messages, they are 205,000 micsec.

TYPE OF NETWORK lt!C NETWORK MMC NETWORK SOLOl1JN
OF ONE Ml LLI ON GROUPED BY 16 GROUPED BY 16 NEAR-4 NETWORK
U 06 > COMPUTERS WHH BUSES WITH PIERCE RINGS WITH LINES
BusEs/CO>IPUTER

0.125 IN NETWORK 0.125 2.000

LOCAL INTERVAL·
D1sTR1- MINT

440 BUTION IN 160 410

MDENs· MICSEC

C/8R
DELAY·

MDLV 42 230 410
IN MICSEC

GLOBAL INTERVAL•
DISTRI- MINT 2200 800 205000 BUT ION IN

MDEN1 .. MICSEC

CoN-
DELAY·

MDLV
STANT 170 925 205000 IN

M ICSEC

Table C Minimum Intermessage Interval and
Average Message Delay For 256-bit
Messages in Networks Linked With An
Average of 2.5 Mbs of Input/Output
Line Capacity Per Computer.

The SOLOMON machine is about 2 times
slower even for local messages and 200 times
slower for messages distributed uniformly
over one million nodes. Table C summarizes the
differences in minimum intermessage interval
and average message delay for the three net
work structures just described.

8. Conclusions

A hierarchically linked network of
thousands or millions of microcomputers can
form a very powerful, very flexible computing
system. Groups of individual computers may
dynamically partition or unite themselves to
solve a changing mixture of many small or a
few large problems. over a range of network

sizes from 10 2 to 10 9 computers, grouping com
puters 16 to a bus provides an efficient
tradeoff between minimum intermessage inter
val and average message path delay time. Mes
sages are transmitted much more rapidly and at
lower cost in MMC networks than in SOLOMON-

140

like networks. Because of myriad al te!rnat«~
paths, grouped networks can bypass failed
components. The advent of truly parallel
mega-micro-computer networks will introduce
new fields of basic algorithms, opera.ting
systems, and machine architecture.

References

1. V.M. Glushkov, et al, "Recursive Machines
and Computing Technology", Information
Processing 74, Vol. 1, North Holland, -
1974, pp. 65-70.

2. C.H. Radoy, and G.J. Lipovski, "Switched
Multiple Instruction, Multiple Data Stream
Processing", Proc. 2nd Symp. on Computer
Architecture, Jan. 1975, pp. 183-187.

3. E.D. Jensen, "A Distributed Function
Computer for Real-time Control", Pree~ 2nd
Symp. on Computer Architecture, Jan. 119 7 5,
pp. 176-182.

4. R.A. Frank, "Imsai Arrays Micros for 1.ow
Cost Power", Computer World, Vol. IX,
No. 44, October 29, 1975, p. 1.

5. L. Nisnevich, and E. Strasbourger, "DE!
centralized Priority Control in Data Com
munication", Proc. 2nd Symp. on Computer
Architecture, January 1975, pp. 1-6. ,

6. J.R. Pierce, "Network for Block Switching
of Data", Bell Sys. iech. J., Vol. 51,
No. 6, July-August 1972, pp. 1133-1145.

7. E.E. Newhall, and A.N. Venetsanopoulos,
"Computer Communications - Representative
Systems", Information Processing 71, North
Holland, 1972, pp. 545-552.

8. c. C. Reames, and M.T. Liu, "A Loop Ne!t
work for Simultaneous Transmission of
Variable-Length Messages", Proc. 2nd
Symp. on Computer Architecture, January
1 9 7 5 , pp. 7-1 2 •

9. R.L. Sharma, et al, "C-System: Multipro
cessor Network Architecture", Information
Processing 74, North Holland, T97~1-.-
l9-23

10. L.H. Brandenburg, et al. "On the .Address
ing Problem of Loop Switching", Bell Sys.
Tech. J., Vol. 51, No. 7, September 1972,
pp • 1 4 4 5-1 4 6 9 •

11. L.D. Wittie, "Communications in Hierarchi
cal Mega-Micro-Computer Networks", SUNY/
Buffalo, Computer Science Dept. , •rechnical
Report No. 102, December 1975.

12. G.H. Barnes, et al, The "Illiac IV Com
puter", IEEE Trans., C-17, Vol. 8, August
1968, pp. 746-757.

Acknowledgement

Preparation of this paper was supported
in part by SUNY Research Foundation Grant
050-7358A.

AN INVESTIGATION OF DESCRIPTOR ORIENTED ARCHITECTURE

Terry A. Welch
Department of Electrical Engineering

The University of Texas at Austin
Austin, Texas 78712

Abstract

A computer architecture is proposed which uses a
hardware implemented descriptor system to ,provide
facilities for explicit data typing, memory relocation,
and access protection at the data element level. The
problem of having to fetch descriptors for every operand
access is overcome by storing descriptors in small fast
memories of various types. The resulting machine runs
simple languages (such as FORTRAN) as fast as con
ventional architectures, and offers significant speed
improvement for languages using complex data types
(such as data management systems). The cost of the
descriptor storage hardware is shown to be modest, so
this architecture would be suitable for machines as
small as a large minicomputer.

Introduction

A descriptor architecture is a computer organiza
tion in which data descriptions are explicitly stored and
interpreted by hardware. That is, for each data field,
there is a word or two of memory, called the descriptor,
which defines the mode, precision, access protection,
location, and structure of the data. The descriptor is
read each time the data field is accessed, so the hard
ware has significant information with which to better
carry out the operation to be performed. The use of
descriptors potentially provides many important im
provements in computer design in two categories: (1)
decreases software costs due to better diagnostic
tools and simplified programs, and (2) more efficient
memory management in terms of mechanisms for memory
protection and for data relocation.

Descriptors have been used in some form on several
machines, most notably on Burroughs systems 3

'
4

,

have been used in many software systems, and
have been investigated in the literature with regard to a
number of applications. Comprehensive discussions of
uses and potential uses appears in [l] and [2]. A
characteristic of previous descriptor designs, however,
is that the descriptor was used for only one or two of
its several possible uses, and thus the overhead of
storing and accessing the descriptors was not always
justified by the benefits of their use. The investigation
described here focuses on the possibility that a
machine designed specifically to utilize descriptors can
minimize their overhead memory costs through good
hardware design and still retain the ability to use
descriptors for enough different functions to achieve
significant performance gains. A research computer is
now under construction at The University of Texas at
Austin for the purpose of testing those possibilities.

141

Descriptor Utilization

The various uses for descriptors are summarized
here, to indicate the type of facilities needed.

Data Type Information

Descriptors provide explicit identification of
operand data type, which permits operators to adapt to
the operands supplied. Descriptors are particularly
useful when working with a wide range of data types,
and/or dynamic data types, especially as appear in
data base management. It is desirable to have the
ability to build hierarchies of descriptors to describe
complex data structures. A criterion of a good descrip
tor system would be its ability to run type-tolerant
Languages such as APL in compiled rather than inter
preted form.

Address..!Qg

Memory addresses appear in the descriptors, so
only descriptor identifiers appear in instructions. This
serves both to reduce instruction lengths, and to put
memory addresses into a compact fixed format so that
hardware aid for memory allocation and relocation is
more easily achieved. A good descriptor implementation
should be able to support a dynamic segment relocation
system with substantially less addressing overhead
than occurs in a paged virtual memory system.

Protection

Descriptors can serve to restrict the type of
access and the range of access for individual variables.
They have many of the properties associated with
"capabilities," which are receiving increasing interest
for protection purposes at the operating system level 6

•

Previous implementations 6
'

7 have used capabilities at
the segment level, but this is too coarse of a resolu
tion for many applications such as data management.
An objective of a descriptor implementation is to pro
vide efficient hardware support fora capability based
protection system extended down to the Level of pro
tecting access to individual variables.

This above set of objectives, to be achieved
simultaneously, requires an elaborate descriptor
system which contains information describing variables
at the segment (relocation) Level, at the protection
field Level, and at the Level of components in data
structures. Further, every operand access must be
carried out through descriptors. The implementation
problem is that some variable accesses may require
several descriptor accesses, giving unacceptably high
execution time overhead. This paper investigates hard
ware solutions to this problem, utilizing small fast
memories to store descriptors.

Descriptor Addressing Requirements

The objective in building a descriptor-oriented
machine is to provide a mixture of hardware and micro
coded firmware to manipulate complex data structures
at the machine language level. This requires the
facility to carry out rapidly a sequence of descriptor
interpretatons for each machine language instruction.
A principal source of possible inefficiency is in ad
dress computation, both for accessing data in memory
and ·for identifying descriptors in a high-speed descrip
tor storage unit.

For these purposes, we presume that memory
space is utilized in segments, so that a segment is
defined to be a continuous memory space allocated as
one unit. No restrictions are placed on segment con
tents, which may be mixtures of data types, code, and
descriptors. Segment addressing is hoped to be of
sufficient flexibility and efficiency so that a computer
system could use segments as a basic memory alloca
tion unit, or could use the segmentation system on top
of a paging system.

For purposes of this discussion, assume that
descriptors are segregated within segments (e.g., all
descriptors for a segment appear in the first locations
of the segment). Descriptors must contain at least the
following set of abilities, to provide a flexible
addressing system:

To access data: Segment ID, relative address
displacement

To access descriptors: Segment ID, descriptor
number.

Segment ID is an identifier which selects a unique
segment, but whose exact coding will vary substan
tially from system to system. Segments addressed will
typically be: (1) the segment in which the descriptor
resides, (2) the segment in which an actual parameter
list (from a routine which called the present routine)
resides, and (3) arbitrary segments in which global
variables, other procedures, and Large data structures
might reside.

Descriptors are viewed as occurring in two
general usage categories:

(1) Directly accessed, which include descrip
tors for data elements which have explicit
variable names (with proper data organiza
tion these can be few in number; perhaps
about ten for a FORTRAN subroutine when
variables of common type are listed as a
vector under one descriptor).

(2) Indirectly accessed, which define the de
tails of data structures, parameter lists,
etc. (these hardly exist in FORTRAN, but
might number in the hundreds for a procedure
in a data-structure oriented Language).

These two types are distinguished for purposes of
efficiency in access.

142

The descriptor-based addressing system is pre
s urned to sup port very efficient memory relocation
capabilities. A segment must be able to be loaded in
an arbitrary memory Location, and perhaps be able to
be moved dynamically while a program is running. This
requires that absolute memory addresses be treated
carefully. In particular, each segment's absolute
address should appear in a small fixed number of places
in the system, so that when the segment moves few
addresses. need to be changed.

An important restriction on the system addressing
is that no program be given access to unauthorized
addresses, which means to unauthorized descriptors.
Thus, when switching from one program to another, care
must be taken to block access tci any stray descriptors
remaining in the descriptor storage unit. The memory
protection features potentially offered by a de~scriptor
system can be preserved if a program can a cc es s only
those descriptors specifically allocated to it.

The above paragraphs describe a basic set of
properties characterizing a descriptor-oriented system.
The remaining sections of this paper will attempt to
demonstrate that these properties can be efficiently
implemented at the machine language level.

Hardware Facilities

The strategy proposed for descriptor handling is
to keep the most frequently accessed descriptors in
small fast buffer memories, so that average descriptor
access times can be kept small. It is concei.valbe that
this descriptor memory could be organized as a single
content-addressable memory (CAM), but speed and cost
are improved if other accessing methods are used as
well. The descriptor buffer memory would best consist
of the following three component memory typE!S.

A random access memory is used to store the
directly accessed descriptors for the presently act:Lve
procedure. The RAM can be addressed directly by
descriptor number, since these numbers can be
assigned consecutively by a compiler. The RAM could
be block-loaded upon program entry, since the
descriptors would be in a contiguous main: memory area.
Block Loading would utilize the rapid block transfer
capability (provided by interleaving), which is increas
ingly common even in small computer memories, to Load
the RAM much faster than if descriptors were loaded
piecemeal. The RAM can be small, not more than 64
words, so it can be quite fast.

A La st-in-first-out stack is used for procedure
linkage. The top stack element contains the descrip
tor for the actual parameter list, which in general will
point to another segment. The top element is us eel for
most parameter references, but other stack elements
must be kept accessible in case a parameter is passed
from procedure to procedure. Implementation of a
stack is very simple with a few RAM memory chips and
an up-down counter to indicate stack top. The over
flow problem is best handled, in small machines, by

providing an adequate stack size (say 64 locations) and
issuing an error message if the stack ever fills up.

A content addressable memory is used for all
other descriptors. The CAM is addressed by the two
tuple [segment number, descriptor number}, which
typically might be 2 0 bits of address, so a RAM is not
feasible. The necessary size of the CAM varies with
application: FORTRAN-like languages will rarely use it;
languages using extensive data structures or global
variables will need large quantities. An initial ex
perimental value of 256 locations has been selected for
evaluation. That size is too big to build a real
associative memory within a reasonable budget, so a
RAM with hash-coded addressing is used instead. The
result is an average read time of around 300 nsec.,
which might not be enough faster than an access to main
memory to justify its costs (about $600. 00 product cost)
except in larger systems. The nature of the use of the
CAM is such that its omission would not fatally cripple
a descriptor machine (as discussed in the conclusions
section).

In addition to the descriptor storage mechanism
described above, a fourth memory, to store segment
base addresses, is used. This would be a RAM,
addressed by segment number, which contains the
absolute machine address at which each active segment
is stored. This approach keeps the absolute addresses
out of the descriptors, thus reducing their length and
simplifying relocation procedures. The number of base
registers thus provided could be 64 or 256 with little
difficulty. If the segment identification numbers exceed
eight bits, then probably a segment name mapping
system would be added as discussed below.

The important point to notice from the above
discussion of hardware facilities is their moderate
cost. Without the CAM, the system costs roughly 100
integrated circuits, which is equivalent in cost to about
4K of 32-bit semiconductor memory. Adding the CAM
would double that. This then would be not too expen
sive to add to a medium-sized minicomputer (or larger)
system.

Operand Addressing

The normal operation of operand address inter
pretation follows this sequence:

(1) When an instruction is fetched, it specifies an
operand by descriptor number.

(2) The descriptor is fetched from the descriptor
RAM, and it specifies segment number and displacement
for the variable.

(3) The segment number is used to fetch a base
address from the base register memory, which is added
to the displacement to give the full memory address of
the operand.

This sequence requires perhaps 300 nsec. in conven
tional TTL logic, which would decrease instruction exe
cution rates by 10% to 40% in typical minicomputers

143

designs (hopefully compensated for by requiring fewer
instruction executions).

In more complex data structures, including
parameter lists, a descriptor may point to another set
of descriptors, not necessarily in the original segment.
These secondary descriptors would be accessed from
the CAM. The first access to each secondary descrip
tor will not find it in the CAM, so it will have to be
written there after fetching it from main memory. The
unsuccessful CAM access may take about two main
memory cycles, but should happen only once per
descriptor, unless the CAM is fairly full of active
descriptors, or unless that routine is swapped out in a
multi-user system.

One type of descriptor can be given special
treatmEmt. This is the indirect pointer descriptor which
serves only to point to another single descriptor. It is
useful for crossing segment boundaries, mapping non
contiguous descriptor sets into contiguous descriptors,
and providing a data element with several access paths
having different access restrictions. Whenever such a
descriptor is found, its target descriptor is substitued
for it in the descriptor storage RAM. That is, for a
given descriptor number, there will exist different
contents in the RAM than appear in main memory, but
functionally the two forms are equivalent. This
provides the benefit that each time that variable is
accessed after its first access, a level of indirection
is bypassed (and a CAM location is saved).

Of course care must be taken that this dynamic
binding of variables does not produce unauthorized
access paths for a program .. For example, if an in
direct descriptor is pointing to a procedure's parameter,
and if the parameter descriptor is substituted for the
original indirect descriptor, that binding mµst be
broken if the procedure is exited and re-entered with a
new parameter; if the old s ubstitued descriptor is still
existing in descriptor storage, the procedure may pick
up the wrong parameter. There are three such problems
to consider here:

Relocation. If absolute memory addresses
appeared in descriptors, then descriptor substitutions
would have to be unbound whenever a segment was
moved. The design proposed here segregates memory
addresses from the descriptors at all times, so no
such problem arises.

Parameters. As shown in the example above,
care must be taken when exiting procedures to unbind
all parameter linkages. This is done by erasing all
descriptor RAM contents upon exit. It is not efficient
to erase the CAM each time a procedure is exited, so
desCriptor substitution is not permitted in the CAM.

_Protection. When a sequence of descriptors is
traversed to arrive at a variable, the resulting type of
access permitted may not be less restrictive than that
specified by any des cri pt or on the pa th. Therefore,
when a target descriptor is substituted in RAM for an
indirect descriptor, the resultant access restriction
must be as restrictive as the more restrictive of the
original two descriptors.

It appears feasible to permit modification by substitu
tion of descriptors in the dynamic stored form, provided
the above restrictions are followed.

Segment Addressing

The base register storage system has the
objective of providing low cost dynamic memory relo
cation capabilities, while removing some troublesome
addressing problems from the descriptor storage pro
cess. This is a segment address mapping system in
tended for systems where memory is allocated by seg
ments. It would also be useful in paged systems, to
translate segment names into a more convenient
address range so that virtual addresses within the
computer are kept at a manageable length. The follow
ing discussion described two systems, a full virtual
memory system and a very simple mapping system,
which both use the same hardware facilities.

The virtual memory system presumes long
segment names, and a software controlled segment
table to map these names into memory addresses. This
table is very slow in access time, so hardware is
provided to minimize the number of accesses.
Specifically, the base register memory is used to hold
addresses of all active segments, using the following
strategies (summarized in Fig. 1):

Register Assignment. Base registers are
assigned sequentially, using a hardware counter,
whenever a new segment is activated. The assigned
base register holds the segment's memory address or
an indication that the segment is not available in
memory.

MAIN MEMORY

INSTRUCTION

DESCRIPTOR#

DESCRIPTOR SET

DISPLACEMENT SEGMENT NAME

SEGMENT TABLE

SEGMENT NAME SEGMENT #
BASE ADDRESS

jOPERAND

DESCRIPTOR STORE

DISPLACEMENT SEGMENT #

PAGING
MECHANISM

OPERAND ADDRESSING

Figure 1

144

Segment Table. This table in main memory
must contain entires for all segments, indicat:lng file
or memory location. When a segment is moved into
main memory, a base reigster is assigned, and its num
ber is stored in the segment table. If the segment ls
later relocated or swapped out, the base register is
modified accordingly.

Descriptor Contents. Descriptors in main
memory will contain segment names as part of their
address information. When a descriptor is first
accessed, the segment table will be accessed to find
the assigned base register number for the segment
referenced. This number becomes part of the descr:Lp
tor in the descriptor storage mechanisms (RAM, CAM,
and LIFO), so that each subsequent use of the variable
requires only direct access to its base register. Thus,
the segment table is accessed only once for e~ach fJlrst
use of a descriptor.

Register Reassignment. Since the register set
is fixed and smaller than the number of possible seg
ments, eventually the end of the set is reached and
previously assigned registers must be reassigned.
Care must be taken that entries in the segment table
and descriptor store do not still reference previous
assignments of reassigned registers. The simplest
algorithm is, upon reaching the end of the base
registers, just to empty all base registers and erase
a 11 as signed register numbers from the segment table
and descriptor store. This requires that descriptors be
stored with segment names intact, so that they can be
relinked at any time.

Thus, there exists a mechanism whereby a
relatively short base register number is substituted for
each active segment name. This permits use of a ran
dom access memory to store base registers (in place of
the associative memory used in most virtual systems),
which can therefore be made large enough in size to
efficiently handle all active segments and yeit be
moderate in cost. Such a system is pos siblE~ principal
ly because descriptors are stored in volatile form .in a
separate storage mechanism, so operand segment ID' s
can be modified dynamically as segment base register
numbers change.

An alternate usage of the same hardware
apparatus produces a poor man's segmentation system
of reasonable simplicity. If segment names are
restricted in range to the size of the base register set,
then the base registers can be set up directly by the
system loader, and no runtime access to the segment
table is needed. That is, the loader must worry about
assigning and reassigning base registers to segments,
but if the number of base registers is adequate this is
not a complex job. The loader must identify segments
and modify all inter-segment descriptors (except those
for parameters) when a routine is loaded. Therea:Eter,
the segment can be reallocated or removed with the
only modification being to base registers.

When this approach is compared to the base
register system of conventional machines, two
distinct differences are noted:

(1) The number of base registers must be restricted
in conventional machines because of the number of
address bits which would be required in each instruc
tion.. By moving the base register designation into the
descriptor, it may be given more bits since it is not
retrieved from main memory so frequently. Consequent
ly, the number of base registers may be comfortably
largEi in a descriptor machine.

(2) The programmer need not assign base registers
since the loader can perform this action. This is made
easy by the large number of registers available, and
because segment names appear only in a relatively few
places in the code due to the descriptor structure.

This level of relocation system appears quite feasible
for small time-sharing systems.

Procedure Entry

Procedure entry and exit is frequently a time
expensive operation, so this process is worth special
attention. In particular, any system of hardware
support for dynamic address binding must be shown to
be both efficient and accurate in handling parameters.

State Switching

When a new procedure is entered, the
descriptor storage RAM must be loaded with the new
descriptor set. To gain efficiency in state restoring,
this RAM is duplicated so that the descriptor set of the
calling routine is not lost. This permits rapid returns
from the last issued procedure call, but other returns
will require the RAM to be reloaded again. Available
statistics9 indicate that 50% to 80% of procedure exits
will not require RAM reloading. The other descriptor
storage facilities pose less trouble. The LIFO stack
automatically stores its state information so no special
action is required. The descriptor CAM and base
register set have contents which may be used by any
routine which can address them, so they do not consti
tute part of a procedure's state.

Parameters

Actual parameters are organized as a contigu
ous list of descriptors in the calling routine. Since
normally the correct set of data descriptors will not be
contiguous, the parameter list descriptors will be
indirect pointers to the true descriptors. The parameter
list is pointed to by a parameter descriptor held in the
LIFO descriptor memory. Thus, a parameter reference
will require three descriptor fetches: one from the LIFO
store to find the parameter list, a second (from the CAM
on later accesses) to find the location of the actual
descriptor, and a third (usually from ·the alternate RAM)
which actually describes the data. While this is a long
sequence, it will normally be fast. Note that this
mechanism has no difficulties in the case where an
actual parameter is itself a formal parameter. The
:first such reference is slow, but on subsequent
references the substitution for indirect descriptors
permits many descriptor accesses to be bypassed.

145

The descriptors in the parameter list can con
tain access restrictions, to distinguish call-by-name
from call-by-value parameters. This eliminates copy
ing of parameters in all cases, except called-by-value
parameters in which might be modified by side effects
of later procedure calls.

The stack will contain the conventional
linkage information to the calling routine, namely the
return address and pointer (descriptor) to the para
meter list. This information does not get stored in
main memory, so the stack must be protected against
erasure. Interior elements in the stack can be access
ed, so the passage of parameters from one routine to
another can be handled easily. The choice of a stack
mechanism, rather than stodng linkage information in
main memory, is based on cost. It reduces control
costs, and is itself not particularly expensive using
existing memory circuits.

In summary, then, the procedure mechanism is this:

(1) Upon entry, the parameter descriptor and
return address from the call are pushed onto the stack;
the descriptors for the new procedure are loaded into
RAM storage.

(2) Parameter references are indirect through the
top stack element, and thence indirect through a para
meter list descriptor to the data descriptor; the la st
descriptor may itself be a formal parameter, which
lengthens the initial access time but causes no control
problems.

(3) Procedure exit consists of popping off the top
stack element, but no special actions are required on
other storage elements.

This procedure mechanism appears to be sufficient to
eliminate run-time software exc~pt in special instances.
The apparatus established to reduce the overhead of
descriptors access serves also to reduce the overhead
of indirect parameter a cc es s, so parameters need not
be copied into the called routine. In addition,
dynamic relocation is not obstructed, so that the
calling routine can be relocated during procedure exe
cution without affecting parameter access.

Conclusions

The above described system is presented as a
feasibility demonstration that the use of dedicated
small fast local memories can reduce the overhead of
descriptor processing sufficiently to make it as fast as
more conventional instruction processing. Instruction
execution times are increased perhaps 25% due to
longer operand interpretation processing. Procedure
entry requires a block transfer of descriptors, which
takes perhaps the equivalent time of two to four
instrucUon executions, in a interleaved memory
system. Each parameter accessed for the first time
requires two extra memory cycles. These time costs
are offset by the saving in run-time procedure software

execution, by reduced operating system code for reloca:..
tion, and by reduced instruction size. The la st effect
is significant since typically eight bits can be elimi
nated from 32-bit memory reference instructions, and
this represents a 25% reduction in memory bandwidth
requirements (e.g., the 16-bit base plus displacement
of a IBM 370 instruction could be replaced by a 8-bit
descriptor number).

It appears that FORTRAN level languages will
break even or run slightly faster on the architecture
proposed, but extensive testing will be required to
verify the exact savings. This would indicate that the
addressing flexibility inherent in a descriptor system
does not need to penalize execution of simple
languages.

On the other hand, operand fetches would be
slower foF type-tolerant languages such as APL and
data management systems. Systems with richer type
structures and w.ith dynamic variable sizes will use
more descriptors, most of which are used infrequently
(e.g., a descriptor giving the length of a field in a
particular file record). These secondary descriptors
will cause frequent fetches from the CAM or main
memory, and thus will cause longer instruction inter
pretation times. It should be observed, however, that
these secondary descriptors perform functions which
are not directly available in conventional machines, so
accessing and interpreting a secondary descriptor
replaces a software action in present language imple
mentations. Thus, even if no CAM is provided and
every secondary descriptor reference requires a main
memory access'· the proposed architecture will run
these high-Uel.lel languages significantly faster than a
conventional machine of equivalent technology.

The implementation proposed here is an
example of a necessary trend in computer architecture
today, namely extension of the memory hierarchy down
ward through use of small fast memories. This system
uses dedicated functional memories rather than or in
addition to general usage cache-type buffers. Use of
a dedicated memory is made more valuable by the
descriptor format, because it segregates frequently
used address information into a compact fixed-format
area (the descriptor set). This strategy of using
descriptors to isolate critical machine language data
appears to be a promising way to achieve increased
use of hardware to replace low-level software.

Acknowledgement

This research was support under National
Science Foundation Grant GJ-42514 and Joint Services
Electronics Program Contract F 44620-71-C-009 l.

Bibliography

[l] Feustal, E. A., "On the Advantages of Tagged
Architecture, " IEEE Trans. on Computers,
C-22 (July 1973), pp. 644-656.

[2] Iliffe, J. K., Basic Machine Principles, 2nd
ed., Macdonald/American Elsevier, 1972.

146

[3]

[4]

[5]:

[6]

[7]

[8]

[9]

Burroughs B6500 Information Processing Systems
Reference Manual, Burroughs Corp., Detrolt,
Mich., 1969.

Wilner, W. T., "Design of the Burrough Bl 700"
AFIPS Conference Proceedings, Vol. 41, FJCC
1972, p. 489.

Proceedings of the International Work~~
Protection in Operating Systems, IRIA, Paris,
France, August 1974.

Shepherd, J., "Principal Design Features of the
Multi-Computer (The Chicago Magic Number
Computer)," ICR Quarterly Report, No. 19,.
Institute for Computer Research, University of
Chicago, November 1968, sec. lB.

England, D. M., "Architectural Features of
System 250," Plessey Telecommunications
Research, Ltd., Ta plow Court, Taplow, M<3iden
head, Berkshire, England, 1972.

Linden, T. A., "Capability-Bas~d AddressJlng to
Support Software Engineering and System
Security," Proc. Third Texas Conference on
Computing Systems, November 1974, p, 8/5.

Batson, A. P., Brundage, R. E., and Kearns,
J. P., "Design Data for Algol-60 Machines,"
Third Symposium on Computer Architecture,
Clearwater, Florida, January 197 6.

TAGGED ARCHITECTURE AND THE SEMANTICS OF PROGRAMMING LANGUAGES: EXTENSIBLE TYPES
by E .A • Fe us te 1 t
Rice University
Houston,Tx.

Keywords: Progranuning languages, computer architec
ture, step-wise refinement

Abstract,
This research note suggests that before we design

hardware or software for the task of problem solving,
we re-evaluate the task of problem solving in terms of
the linguistic constituents which will be required and
the manner in which these linguistic constituents will
be combined. Utilizing the principles of composition
and abstraction-to-specifics, we conclude that all
data and programs might be realized in a structured
format called messages. We conclude with a few pre
liminary thoughts and questions as to how an architec
ture designed for such structured operands and opera
tors might be designed.

Introduction
A premise of these preliminary thoughts is that

there are many problems which we want to solve by
computer whose solutions are currently beyond the
state of the art. The principal reason for this sit
uation appears to be that the complexity associated
with preparing a computer solution combined with the
complexity of the problem makes the complexity of the
task beyond our ability to solve the problem (l].

Numerous techniques have been advocated for reduc
ing the complexity of the problem of producing a com
puter solution. Software techniques include debug
ging (2,3,4], structured programming, step-wise
refinement (5,6], proving programs, data abstraction
[7], and very high level languages [8,9]. Hardware
techniques include high level language machines (10]
of which SYMBOL [11] is best known, and tagged archi
tecture (12,13].

We will pursue the assumption that we should re
evaluate the entire hardware-software interface as
seen by the problem solver to establish a gestalt of
problem solution by computer (14]. It would seem
appropriate to attempt to retain as many features of
a natural language solution of the original problem
as is possible rather than to limit the solver in an
artificial manner as is done by so many hardware-soft
ware-interfaces to solvers in today's computational
envirorunents. We thus pursue the solver's artificial
language and the eventual language of the machine from
the linguistic viewpoint, attempting to find a repre
sentation for his problem which will be closely
matching the problem in structure and language. Only
after we have done this will we evolve a language for
programming and a mechanism for the evaluation of
programs.

The Requirement for an Abstraction
to-Specifics Methodology

The principal requirement for a progranuning tool for
the solution o~ complex problems is an abstraction
to-specifics methodology, a step-wise refinement

t This work was supported in part by National Science
Foundation Grants: GJ3647 and DCR72-03609A01.

147

method. This methodology requires that each succeed
ing refinement of an abstraction (lower level) be func
tionally isolated from higher levels and dependent
only on constituents selected from lower levels of
abstraction or from a level parallel to itself.

Although it might appear that at any level we should
only be able to refer directly to the next level with
out recourse to constituents at even lower levels (as
found in the T.H.E. operating system (15]), if we are
to reflect the linguistic processes in which we analyze
the problem in a direct manner, we must permit a down
ward directed graph model of abstraction of connected
constituents instead of an onion model of layered
connecti.ons.

The methodology which we wish to select is to give
us the necessary freedom to deal with the real issues
of solvi.ng the complex probelm. It should allow us to
reflect the solution to this problem in a transparent
manner--that is, the methodology used to solve the
problem should not add unduly to the complexity of the
total solution. The use of the abstraction-to-speci
fics methodology permits us to ignore detail (tempor
arily) while we pursue the space of possible solutions
utilizing higher level abstractions.

After we have found abstractions representative of
the class of solutions which we desire, the method
ology should provide a structure wherein the detailed
solution may be generated in successive specification.
It is desirable that the structure bear the weight of
detail at each level, permitting us freedom in dealing
with the implementation of each first level abstrac
tion in a group of second level abstractions, etc.

One methodology of great utility is the treatment of
all computational entities as messages. Messages may
represent names of objects, functions on objects, pro
cedures to be carried out, the objects themselves, and
homogeneous and non-homogeneous groupings of objects.
In the sequel we will make some preliminary conunents
on their use, flexibility, and implementation.

The Constituents of Computation
A most important prerequisite to our use of an ab

straction is the ability to name it and to refer to it
by the name or names chosen for its use. The notion of
name permits us to refer to an object such as an oper
ator, an envirorunent, a function, and a datum in an
abstract way without being concerned with the represen
tation or the details of its implementation or access.
We will next discuss several desired features of names.

At the minimum we must be able to directly associ
ate a name with the object to which it is permenently
bound. In addition however we wish to be able to
reference an object by naming the name of an object
(indirect reference) or alternatively an alias for a
direct reference or an indirect reference. Although
a permanent binding is sufficient, we would prefer to
permit a dynamic binding so that we might manipulate

the structure of our universe of discourse and ease
the task of the composer of each abstraction. Finally
we wish to be able to specify attributes and proper
ties associated with each name in a manner similar to
the property or.attribute lists in LISP. Such proper
ties might include type information, copy rights, ac~
cess, sharing, use, and environmental information.

Names refer to objects of different types which may
be manipulated in manners consistent with their prop
erty lists. We prefer the notion that data may be ob
tained functionally [16]. That is, there should be no
distinction between information which is retrieved as
the result of a function call or from accessing the
object associated with a name. Functions on the other
hand may be manipulated, created, destroyed, and aces
sed a.s data--although not in the same manner as done
o~ the von Neumann machine. Further we feel that data
should derive its properties from the chain of attri
butes taken from the chain of names which access it
and not from the representation of the data itself.
Thus atomic data and functions are but packets of in
formation to be interpreted by the viewpoint provided
by the accessing symbol. Names may also be used to
refer to packets of information clustered together,
collectively, individually, or by some subset prop
erty. We observe that the notions which we have out
lined above are little different from the way in
which language permits the use of abstraction.

As in conventional mathematical notation, we would
choose to have polymorphic operators and functions
whose meaning is determined by the attributes (in
herited or direct) of the names with which they are
associa tedvariadi.cally in prefix, suffix, or infix
notation. Thus the symbol for an operator is merely
a name for an abstract procedure whose function is
semantically determined by the tupe of its arguments
and which may have a dynamic meaning dependent on the
state of computation. It must be possible to specify
the binding of operators to their parameters, formal
and actual, and to create closures representing Curied
functions. we assume that any operator may be recur
sive, may create new operators and environments and
may be self destructive.

Extended classes of data and operators may be com
posed by encapsulation [18] through indirect or direct
reference on previously defined objects and operators.
Since data and operators are treated identically, no
distinction is to be made between abstractions con
taining procedures, data, or mixtures of both. Such
compositions will normally be copies of original con
stituents unless sharing is specified as an option
[19]. Since names are compound objects themselves, we
choose to eliminate the distinction between name and
object and represent the closed metalanguage thus de
fined as typed packets which we will call messages.

The mechanism which we have chosen for the repre
sentation of problem solutions appears to be quite
general. Yet it so resembles the necessities of the
language which we will use to solve the complex prob
lems, that the difficulties of specifying a solution
may be minimized. Thus we are led to a consideration
of how such a message computer might be organized.

The Message
One informal view of a message is that of a memoran

dum as utilized in an office environment. The message
contains information about who is to receive it, who
sent it, and the date that it was sent, the topic to
be discussed, and the body of the message. It may
contain other information including a routing list,
access information, and a memorandum reference number.
The latter identifies it in case of the need for a
reply or comment.

In the same manner, a message in a computational sit
uation consists of separate parts, each of which may be
messages. A header is followed by a sequence of mes
sages which is followed by a trailer. The header may

148

indicate the process which is to receive the message
as well as indicating the number of messages in th1~
sequence and their relative position within the body
of the message or it may indicate the purpose for the
inclusion of some or each of the messages in the
sequence.

Several points are worth noting about the definition
of messages. First a message is defined recursively
in that a message may contain a sequence of messages.
This sequence must be finite and may be empty. The
latter sequence indicates a null object of a certain
type. Second, the definition of a message implies
the possibility of a nested set of potentially nested
messages. This nesting property corresponds naturally
to the conventional notation for block structured
languages, to the structuring methods in most lan:
guages for data, and to the structure of most file
systems. Third because of the fact that indirect
references may be imbedded within a message objects
may share each others components or refer recursively
to themselves. In conventional programming languages
this notion corresponds to procedure calls in the
procedural part of the language, to pointers in the
data structure part of the language, or to cross
references within a dictionary system.

The use of the message as defined above may be shown
in an informal manner by comparison to a memorandum
and its effect on the employee receiving it. The
memorandum may contain orders for the immediate execu
tion of a certain procedure at an assigned priority.
It may indicate that a procedure parameterized by one
or more other memoranda are to be executed. Or it may
be a procedure whose execution is conditioned on some
other external event (a deferred procedure) •. Alt1ar
natively it may be regarded as a conveyance of data
from the sender to the receiver in which case it may
be put in a file of messages under its reference head
ing for further use.

Let us assume that the actor process [20] receives
a message. After examining the header, it may exe
cute the process described in the message immediately.
It may evaluate parameters of the message from one or
more separate environments and then execute the pro
cedure. It may file the message for future reference
and/or execution under a name it generates or one it
obtains from the message itself in an environment
which is specified internally or externally.

The Implementation
In this research note, we do not propose a concrete

realization of the architecture which implements the
message concept. (A design is in progress.) we do
speculate on some of its characteristics and invi.te
discussion from the research community.

It seems likely that such a system architecture
could consist of several specialized computers in the
same manner as SYMBOL does. One computer might manage
the space of names for a given environment and would
be responsible for the process which map a name to
an object and which determine the inherited attributes
from the name chain., A second computer might manage
the mapping of the physical representation of thEi ob
ject into the virtual message space and would be r.e
sponsiblefor dictionary maintenance. A third com
puter might be responsible for marking messages to be
deleted and doing garbage collection in virtual
message space. A fourth computer might be responsible
for message transport to external devices a.nd a fifth
for internal transport and pipeline management. A
sixth computer might perform type checking on argu
ments of procedures. A seventh might be involved in
the evaluation of function, perhaps using several
functional units in a dataflow scheme. An eighth
might be used for copying messages. A ninth might be
used for I/O and dynamic changes in represEmtation
from internal form to external form. And so on.

One question which arises is what method should be

used to store message information. Our preference
would be for a bit serial· store organization because
of the implkit assumption that messages may be of
variable length. BORAM, magnetic bubble memory, or
charge coupled device memory might be used, organized
in a parallel manner so that different messages might
be accessed simultaneously. After selection of numer
ic components such as numbers, vectors, and arrays
from a larger message, the resulting representations
would probably be stored in a local operand cache,
organized in word format for use by parallel arithme
tic units.

A n~jor advantage of the associative mapping scheme
for names to objects is that the names now convey
type information and representation information which
facilitate easy manipulation of and scheduling for the
flow of operand streams. Names and their associated
structural information and procedure references may be
held in a smaller, faster storage unit. Name lookup
may be overlapped with computation.

It seems quite likely that a message machine will
consist of many specialized components designed to
optimize handling of specific types of messages such
as procedures, queues, arrays, etc. and that the
'1.11 .. ~'r. of such compoµents would increase for high per
fo :.ice machines and be smaller on intermediate
performance machines. The design of the canponents,
their interconnection, and their interaction promises
a new era in development of computing machinery.

149

References
1. Dijkstra, E.W. ,"The Humble Programmer", CACM 15,

No. 10, Oct. 1972, pp 859-866.
2. Gaines, R.S., The Debugging of Computer Programs,

Ph.D. Thesis, Princeton University, Princeton, N.J.
August 1969.

3. Grishman, R.,AIDS: All-Purpose Interactive
Debugging System User 1 s Manual, Courant Institute
of Mathematical Science, New York,N.Y., 1968.

4. Kulsrud,H.E., HELPER: An Interactive Extensible
Debugging System, Working Paper No. 258, Institute
for Defense Analyses, Princeton N.J., May 1969.

5. Dijkstra, E.W., 11 Notes on Structured Programming",
Structured Programming, Academic Press, New York,
N.Y., 1972, pp. 1-82.

6. Wirth, N. ,Systematic Programming; An Introduction,
Prentice Hall, Englewood Cliffs, N.J., 1973.

7. Liskov,B.H., and Zilles, S.N., 11Programming with
Abstract Data Types 11

, SIGPLAN Notices 9, 4,
April 1974, pp. 50-59.

8. Schwartz, J.T., On Programming -- An Interim Report
on the SETL Project, Instalment 1: Generalities,
Computer Science Department, Courant Institute
of Mathematical Sciences, NYU, New York, N.Y.
February 1973.

9. -----, 11Proceeclings of a Symposium on Very High
Level Languages 11

, SIGPLAN Notices 9,4, ACM,
New York, N.Y. April 1974.

10. -----,"Proceedings of a Symposium on High-Level
Language Computer Architecture",SIGPLAN Notices 8,
11,ACM, New York, N. Y., Nov. 1973.

11. Rice,R. ,Smith, W.R., "SYMBOL: A Major Departure
from Classic Software-Dominated van Neumann
Computing Systems", AFIPS Conf Proc 38, pp.575-587.

12. Iliffe, J.K., Basic Machine Principles, 2nd Ed.,
American Elsevier, New York,N.Y., 1972.

13. Feustel, E.A. ,•~n the Advantages of Tagged
Architecture 11

, 1.E.E.E. Transactions on Computers,
C-22,7,July 1973, PP· 646-656.

14. McMahan, L. N., Language Directed Computer Arch
itecture, Ph.D. Thesis, Rice University, May 1975.

15. Mutschler, E. Q. , 111, An Integrated Mode 1 for
Computational Processes, Ph.D. Thesis, Rice
University, May 1973.

16. Dijkstra, E.W., "The Structure of the T.H.E.
Multiprogramming System, 11 CACM 11, 1968, pp. 341-
346.

17. Reynolds, J.C., 11Gedanken - A Typless Language
Based on the Principle of Completeness and the
Reference Concept 11 , CACM 13, 5, May 1970, pp 308-
319.

18. Redell, D. D., Naming and Protection in Extendible
Operating Systems, Technical Report 140, Project
MAC, MIT, Cambridge Mass., Nov. 1974.

19. Wozencraft, J.M., Evans,A.Jr., Notes on Program
ming Linguistics, Department of Electrical
Engineering, MIT, Cambridge, Mass., Feb. 1971.

20. Hewitt, c., 11Planner, 11 Project MAC Progress
Report XI, MIT, Cambridge, Mass., July 1973 -
July 1974, pp. 221-282.

150

DESIGN DATA FOR ALGOL-60 MACHINESt

by

** A. P. Batson, R. E. Brundage, and J. P. Kearns
Department of Applied Mathematics and Computer Science

University of Virginia, Charlottesville, Virginia 22901

Key Words: program behavior, machine design, high
level language machines, Algol-60, virtual
memory, processor utilization

CR Categories: 6.22, 4.22

Abstract:

The performance of a high-level language machine
will depend upon the characteristics of its workload.
Equally, the design for such a machine should be
guided by some understanding of the work which it will
be called upon to perform. We present here some be
havioral properties of a large Algol-60 program in
terms of the requests they represent for the various
processing resources of an Algol-60 machine. The
data provide insight into the behavior of such
machines, particularly with respect to dynamic memory
requirements and the procedure activation rates
associated with direct Algol-60 execution. The data
can thus be of value to designers of high-level lan
guage machines in view of their implications for the
performance of such systems.

1. Introduction

The syntactic rules of a high-level language to
gether with their semantic interpretations serve as
functional specifications for a high-level language
machine. That is, these rules prescribe the ultimate
results which must be achieved as a result of the in
terpretation of source-language programs by the
machine. However, these rules do not provide guidance
to the machine designer as to how to best implement
such a language interpreter. Many linguistic con
structs are used only rarely, whereas others may be
frequently encountered and would merit extra attention
in the design process so as to assure acceptable per-

formance levels for the complete system. Knuth 1 s 1

studies of a large sample of Fortran programs, for ex
ample, shows that certain statement types are much
more conunon than others. Moreover, the 'static'
characteristics of the syntactic rules cannot provide
a designer with the information he needs to visualize
the time-dependent behavior of a machine as it is
exercised by actual source language programs. For
example - if the majority of procedure calls in
practice involve only a limited amount of computation
before procedure exit, then it would be advantageous
to provide a fast implementation of the procedure
call and exit mechanism, whereas if the opposite
characteristic were typical of real programs (i.e.,
procedures had long lifetimes), then the details of
the design of the calling mechanism would have only
a limited effect upon system performance. Another
1~xample can be found in the memory requirements of
programs, such as the depth of the pushdown stack
required for a stack-based Algol-60 machine. The
syntax of Algol-60 gives no clue towards a maximum

tThis research was supported by NSF Grant GJ 1005

'lo~
Now at the Department of Mathematics, Florida

State University.

151

stack depth to build into the machine, save infinity
of course! Since any sensible and practical design
must satisfy the maxim "don't make all the users
pay for what only 1% of them need", then clearly the
designer of a high-level language machine should
start with some idea of the characteristics of the
workload which is to be interpreted by his design.

The workload for a high-level language machine
is, of course, source-language programs and their
data. The literature contains little experimental
information on the characteristics of symbolic high-

level language programs. As mentioned earlier, Knuth
1

collected information on the prevalence of certain
statement types in Fortran programs, and also a
limited amount of data on some dynamic properties of

2 3
a few programs. Two of us ' have described in de-
tail the dynamic behavioral properties, at the source
language level, of a sample of Algol-60 programs.
These programs were small-to-medium in size, with
fairly short execution times, and were selected from
a collection of production jobs for scientific/
engineering applications. In contrast, we present
here the results of a study of a rather large Algol-60
program. In fact, the Algol program whose execution
characteristics we describe here is the Algol-60
compiler for the Burroughs B5500, with a fairly
large Algol program as its input data.

2. Conceptual Resource Model

The results we shall present are discussed in
terms of a simple resource model of the Algol-60
machine. We identify four separate and distinct re
sources - an arithmetic/logical processor, a string
processor (i.e., a processor which performs character
manipulation functions), a virtual memory processor,
and an input/output processor. Any executing Algol-
60 program can be represented as a sequence of re
quests (which we term an execution trace) for the
services of the various processors. This execution
trace is the input to the abstract representation of
the Algol-60 machine, shown in Figure 1. A detailed
description of the syntatic and semantic characteris
tics of the execution trace can be found in Brundage's

thesis4 . The only new addition to the model described

in our earlier work2 ' 3 is the addition of the string
processor, which has been included to facilitate
description of the significant amount of string mani
pulation involved in our current example, when the
program executing on the Algol machine is a language
translator. The operation of the abstract virtual
machine in Figure 1 can be visualized as follows:
The execution trace, representing the stream of re
source demands made during process execution, is
input to the interpreter, which directs the resource
requests to the appropriate processor.

We next specify the measurement units for the
resource model. We have chosen to define time in
units of work performed by the computational and
string processors. In the model, requests for

Virtual
Memory
Processor

~~
String

Execution Processor

Trace --- • ~

- Interpre.ter ~ Arithmetic/
Logical -- Processor ~ .._

Input/Output
Processor

Figure 1 Algol Process Machine

service by the input/output processor or the virtual
memory processor in the execution trace do not
"consume" time but they do signify that the arithmetic/
logical processor (or string processor) has been
halted because of a request for service by a different
processor. Thus the process is blocked from using the
arithmetic/logical processor until this request has
been satisfied. Memory requests are specified in
"words", which correspond in general to the cells of

Johnston's contour model
5

•

3. Measurement Technique

The hardware and software of a Burroughs BSSOO
were modified to permit the acquisition of a magnetic
tape of execution events with each event precisely
time-stamped. A software-controlled hardware counter
was constructed and the 1 MHz clock pulses of the
BSSOO processor were input to this counter, which
could be started, stopped, read, and reset under pro
gram control. The BSSOO Algol compiler and the
operating system were modified such that each event
of interest during execution of an Algol program
caused a time-stamped event record to be written on
magnetic tape. This trace tape was used, in conjunc
tion with an inverse symbol table, to generate
symbolic trace tapes which were processed to obtain
the results presented here. More complete details
of the technique for data collection and reduction

are described elsewhere
2

'
4

• All.times given in the
results are fat the BSSOO equivalent of our computa
tional processors and do not include time normally
spent on that real processor for virtual memory al
location or for I/O processing. These activities
were deleted during processing of the raw trace data
to permit presentation of the results in terms of
the abstract machine of Figure 1.

4. Results

The BSSOO Algol compiler, the source language
program executing on the Algol machine in this ex
periment, is a large and complex program. It contains
around 12,000 lines of Algol code, and has over 250
Algol blocks. When this program was executing in
the experiment described here, there were 37,261
block/procedure entries, compared with 28,911 of

these in the 34-program sample described earlier
2

•
3

by two of the authors. In addition, there were
22,875 distinct activations of the string processor.
This effect was not included in the earlier results

152

since the programs in that sample performed little.
character manipulation.

The results presented earlier for the 34-
program sample consisted of 23 distinct distributions,
and it is clearly impossible to present all of these
here. Rather, we will direct our attention to those
execution characteristics which are most evidently
germane to the designer of an Algol-60 machine, and
the characteristic statistics for the distributions
of these values are presented in Table 1.

Two important machine resources are processors
and memories. We first discuss some of the data on
the memory demands made on the Algol' machine. The
first line of Table 1 shows the statistics for the
distribution of sizes of program segments called during
execution. The most interesting characte.ristic of
these code segment size distributions is the fairly small
size of most code segments. The experimental results

for the sample of user programs 2 are not markedly
different. The user sample had mean and median of
38.7 and 23 words, respectively, as compared to 90.8
and 14 words found in this experiment. Since a pro
gram segment must be brought into executable memory
before it can become the site of execution, the
relatively small sizes of the segments have definite
implications for the design of the virtual me1rnory
subsystem for an Algol-60 machine. For a page-base!d
design, for example, it would seem prudent to keep
page sizes down to something rather smaller than the
current fashion of lK words to avoid excessive inte~r
nal fragmentation of executable memory.

Another consequence of a procedure call is that
space must be allocated for its contour data segment.
Most Algol-60 implementations store this in a push-
down stack. Line two of Table 1 shows the statist:Lcs
for contour data segment sizes for the 134 distinct
blocks/procedures activated during this experiment.
The distribution has 37,261 events (more than the
33,184 program segment activations because of recur
sive procedure calls, which generate a new contour
data segment for each recursion), and the mean and
median are 6.96 and 2.5 words respectively. These
figures indicate the amount of stack space associated
with procedure calls, and do not include storage for
the elements of arrays declared locally to the block.
Recursive procedure calls accounted for 11% of the.
sample.

Once a procedure has been entered it has a
certain active lifetime before it is finally exite~d,
and line three of Table 1 shows the statistics of the
lifetime distribution for all contour data segments.
The mean of around 8 ms., and median of 0.75 ms. are
those measured on our BSSOO 1 MHz equivalent of the
arithmetic and string processors of Figure 1, and
should be modified appropriately for a processor with
a different execution speed. These block lifetim1as
are very short, and in fact 50% of the lifetimes of
all procedure activations are less than 0.35 x lo-4
of the total processor time of the experiment. Block
lifetimes are not in general equal to the p1::ocessor
time consumed while control resides in that block
(the outer block, for example, has a lifetime equal
to the total processor time) and we shall later pro
vide much stronger evidence of the preponderance of
short-lived, short execution-time procedures in the
workload of the Algol machine.

The dynamic distribution for the block execu
tion times - i.e. the processor time consumed while
control resides in each activated block, is described
by the statistics of line four of Table 1. The mean
of this distri.bntion at 0. 5 7 ms. is considerably
smaller than that of the block lifetime distribution,
as would be expected, but the median of 0.34 ms. is

Variable

Program Segment Size (words)

Contour Data Segment Size (words)

Contour Lifetime (milliseconds)

Block Execution Time (microseconds)

Contour Transition Interval (microseconds)

Block Execution Time/Block Lifetime

String Processor Burst Time (Microseconds)

Sample
Size

33,184

37,261

37,261

37,261

74,521

37,261

22,875

Median Mean

14 90.8

2.5 6.96

0.75 7.94

344 566

140 282

1.00 0.64

235 330

Std.
dev.

185

9.75

250

1322

509

0.33

246

Table 1 Summary Statistics for Measured Variables

not greatly different from the median of the lifetime
distribution. This suggests that a large number of
the procedures activated are simple, in the sense that
they make no calls on other procedures, and we explore
this hypothesis explicitly below. The most outstanding
feature of the block execution times is their short
duration. The mean of 566 µs represents the execution
of only around 50-100 B5500 instructions per procedure,
and thus it is clear that for this particular workload
the Algol machine needs an efficient implementation
for the procedure activation mechanism. The results

3
from the 34-program sample reported earlier are not
in conflict with this observation - although the
mean found there was 17.7 ms. with a standard devia
tionof 1260 (the distribution was highly skewed), the
median was found to be 0.63 ms. One is tempted to
ascribe the smaller mean for the Algol compiler to
the fact that it was written by very expert programmers
who used structured programming techniques (in 1966
or so) long before that term arrived in the world of
computing. Equally, we point out that extensive mod
ularization of programs into small procedures can im
pose severe execution speed penalties if the procedure
calling mechanism is inefficiently implemented. Taking
the present results for the Algol compiler we see
that a procedure activation time of 50 µs represents
10% of the total execution time. The median proce
dure execution time was 0.16 x lo- 4 of the total
processor time for the sample.

Another indication of the importance of the pro
cedure entry and exit mechanism is seen in the distri-

bution of contour-transition intervals3 •5 . A contour
crossing event is either the entry to or exit from a
procedure or block. Each such event, in terms of the
abstract machine of Figure 1, involves a call on the
virtual memory processor for allocation or de
allocation of a contour data segment. In more practi
cal, current systems it corresponds to a call on the
procedure entry or exit mechanism, since there are
only a very few non-procedure blocks in the sample.
The mean of around 280 µs, and median of 140 µs, (line
five of Table 1) illustrate even more forcefully the
important effect on performance of the design of
this feature of a high-level language machine.

The values obtained when each block execution
time is divided by its lifetime will be unity only
for "simple" procedures, i.e. those which make no
calls on other procedures. We see in line six, Table 1
that around 50% of all procedure activations were of
that type. The standard "intrinsic" procedures of
the Algol compiler (such as ABS, SQRT, etc.) were
treated as if they were in-line code and calls on them
are not included as procedure activation events. The

relatively large number of such simple procedures in
dicates that some performance improvement might be
obtained by designing a special simple mechanism for
their implementation. The corresponding figure for
the sample of 34 user programs reported earlier was
that 80% of all procedure calls were of this simple
type.

In the final line of Table 1 we present the
statistics for the durations of bursts of activity on
the string processor. Our execution traces were~such
that the string processor is always called from the
arithmetic/logical processor, and the string processor
times are included in the block execution times de
scribed above. The 37,261 block activations contained
22,875 calls on the string processor for string ma
nipulation activities (corresponding to entries to
"character mode" on the Burroughs B5500 processor),
and these string manipulation bursts had a mean dura
tion of 330 µs, with a median of 235 µs. The large
number of calls for such services, and the fact that
they account for over a third of all the processing
time, illustrates the utility of sophisticated string
manipulation facilities in language translation.

5. Concluding Remarks

The results presented here can serve as useful
information to the designer of an Algol machine,
whether this be in the form of a· complete hardware
system or through the more conventional software
hardware combination in use today. The general
characteristics of the data are not in conflict with

the results presented earlier2 •3 for a sample of 34
user-written production programs, though there are
some interesting differences which we shall comment
upon later. Perhaps the most outstanding result, for
the designer of a high-level language machine, is the
crucial importance of the procedure entry and exit
mechanism. It seems clear that procedure activation
occurs at such frequent intervals that close attention
should be given to the design of this feature of an
Algol machine. Moreover, the frequency of activation
of "simple" procedures is so high that it may well be
worthwhile to provide a special mechanism for such pro
cedure calls. In the user program sample, where 80%
of all procedure activations were of this type, there
were in addition an unknown large number of calls on
standaLd procedures such as SIN, SQRT, etc. which
would considerably increase this effect. It may be
inexpedient to implement all procedure calls with a
generalized Algol-60 facility.

The block execution times for the Algol compiler
execution presented here have a distribution which is

153

much less skewed than that found for the sample of
user programs. While this is partially due, no doubt,
to the fact that only one program is involved here
(though written by several programmers), we feel that
programming style is a major contributing factor.
The Algol compiler is a well-modularized, sophistica
ted program written by very experienced programmers,
and one is tempted to call it "structured". It is,
therefore, probably no accident that the rate of pro
cedure entry and exit events is S·ignificantly higher
for this program than was found for the sample of user
programs. If programmers of the future are going to
be using structured programming techniques, at least
in the sense of writing highly modularized programs,
then our results indicate that designers of new
systems must give especially careful attention to the
implementation of procedure entry, parameter transfer,
and procedure exit mechanisms to ensure high perfor
mance.

6. References

1. Knuth, D. E., "An Empirical Study of FORTRAN
Programs" Software Practice and Experience,
1 (1971) pp. 105-133.

2. Batson, A. P. and R. E. Brundage, "Measurements
of the Virtual Memory Demands of Algol-60 Pro
grams" (Extended Abstract) Proc. Second Annual
ACM-SIGMETRICS Symposium, Montreal, 1974,
pp. 121-126.

3. Brundage, R. E. and A. P. Batson, "Computational
Processor Demands of Algol-60 Programs" Proc.
5th ACM-SIGOPS Symposium on Operating Systems
Principles, Austin, Texas, 1975.

4. Brundage, R. E., Ph.D. thesis, University of
Virginia, 1974.

5. Johnston, J. B., "The Contour Model of Block
Structured Processes" ACM-SIGPLAN Notices 6 (2)
(Feb. 1971) pp. 55-82.

154

CACHE MEMORIES FOR
PDP-11 FAMILY COMPUTERS

WILLIAM D. STRECKER
RESEARCH AND DEVELOPMENT

Digital Equipment Corporation
146 Main Street

Maynard, Massachusetts 01754

ABSTRACT

This paper gives a summary of the research which led to
the design of the cache memory in the DEC PDP-11/70.
The concept of cache memory is introduced together with
its major organizational parameters: size, associativ
ity, block size, replacement algorithm, and write strat
egy. Simulation results are given showing how the per
formance of the cache varies with changes in these pa
rameters. Based on these simulation results the design
of the 11/70 cache is justified.

Introduction

One of the most important concepts in computer systems
is that of a memory hierarchy. A memory hierarchy is
simply a memory system built of two (or more 1

) memory
technologies. The first technology is selected for fast
access time and necessarily has a high per bit cost.
Relatively little of the memory system consists of this
technology. The second technology is selected for low
per bit cost and necessarily has a slow access time.
The bulk of the memory system consists of this technol
ogy. The use of the hierarchy is coordinated by user
software, system software, or hardware so that the over
all characteristics of the memory system approximate
the fast access of the fast technology and the low per
bit cost of the low cost technology. An example of a
user software managed hierarchy is core/disk overlaying;
and of a system software managed hierarchy is core/disk
demand paging. The prime example of a hardware managed
hierarchy is a bipolar cache/core memory system.

Until recently the concept of cache memory appeared only
in very large scale, performance oriented computer sys
tems such as the IBM 360/85 [1,2] and 370 models 155
and larger. Recently a small cache was announced as an
option for the DG Eclipse [3J computer system. A lar
ger, internal cache memory is part of a recently an
nounced DEC PDP-11 family computer system:the PDP-11/70
[4] • The content of this paper is a summary of the re
search done on the feasibility of using a bipolar cache/
core hierarchy in PDP-11 family computer systems.

Cache Memory

A cache memory is a small, fast, associative memory lo
cated between the central processor (Pc) and the primary
memory (Mp). Typically the cache is implemented in bi
polar technology while Mp is implemented in MOS or mag
netic core technology. Stored in the cache are address
data (AD) pairs consisting of an Mp address and a copy
of the contents of the Mp location corresponding to that
address.

The operation of the cache is as follows. When the Pc
accesses Mp the address is first compared against the
addresses stored in the cache. If there is a match the
access is performed on the data portion of the matched
AD pair. This is called a hit and is performed at the
fast access time of the cache. If there is no match -
called a miss -- Mp is accessed as usual. Generally,
however, an AD pair corresponding to the latest access
is stored in the cache -- usually displacing some other
AD pair. It is the latter procedure which tends to keep
the contents of the cache corresponding to the Mp loca-

155

tions most commonly accessed by the Pc. Because pro
grams typically have the property of locality, that is,
over short periods of time most accesses are to a small
group of Mp locations, even relatively small caches
have a majority of Pc accesses resulting in hits. The
performance of a cache is described by its miss ratio
the fraction of all Pc references which result in
misses.

Cache Organization

There are a number of possible cache organizational pa
rameters. These include:

1. The size of the cache in terms of data stor
age.

2. The amount of data corresponding to each ad
dress in the AD pair.

3. The amount of data moved between Mp and the
cache on a miss.

4. The form of address comparison used.

5. The replacement algorithm which decides
which AD pair to replace after a miss.

6. The time at which Mp is updated on write
accesses.

The most obvious form of cache organization is fully
associative with the data portion of the AD pair cor
responding to basic addressable unit of memory (typi
cally a byte or word) as indicated by the system archi
tecture. On a miss this basic unit is brought into the
cache from Mp. However, for several reasons, this is
not always the most attractive organization. First, be
cause procedures and data structures tend to be sequen
tial, it is often desirable to bring into the cache on
a miss a block of adjacent Mp words. This effectively
gives instruction and data prefetching. Second, be
cause of associating a larger amount of data with an ad
dress, the relative amount of the cache storage which
is used to store data is increased. The number of
words moved between Mp and the cache is termed the block
size. The block size is also typically the size of the
data in the AD pair2 and is assumed to be that for this
discussion.

In a fully associative cache any AD pair can be stored
in any cache location. This implies that for a single
hardwarE~ address cdmparator the Mp address must be com
pared serially against the address portions of the AD
pairs (which is too slow). Alternatively there must be
a hardware comparator for each cache location (which is
too expensive). An alternative form of cache organiza
tion which allows for an intermediate number or compara
tors is termed set associative.

A set associative cache consists of a number of sets
which are accessed by indexing rather than by associ
ation. Each of the sets contains one or more AD pairs
(of which the data portion is a block) • There are as
many hardware comparators as there are AD pairs in a
set. The understanding of the operation of a set associa
tive cache is aided by Figure 1. The n bit Mp address

is divided into three.fields of JI,, i, and b bits. As,...
sume that there are 2i sets. The i bit index field se-
lects one of these sets. The A portion of each AD pair
is compared against the JI, bit label field3 of the Mp ad
dress. If there is a match,the b bit byte field se
lects the byte (or other sub unit) in the D portion of
the matched AD pair.

If there is no match Mp is accessed and (generally) a
new AD pair is moved into the cache. Which of the AD
pairs to be replaced in the set is selected by the re
placement algorithm. Typical replacement algorithms are
first in, first out (FIFO); least recently used (LRU),
or random (RAND) •

~------ -------------·----- -·- n ·····-----------------------1

~----- f-----+-------- i--------f--b·---1

Figure 1 Address fields for a Set Associative Cache

There are two limiting cases of the set associative or
ganization. When the number of sets is the cache size
in blocks, only a single hardware comparator is needed
and the resulting organization is called direat mapped.
It is the simplest form of cache organization. When
there is only one set, clearly a fully associative
cache results.

So far in the discussion there has been no distinction
made between read and write accesses. When the Pc makes
a write access, ultimately Mp must be updated. There
are two obvious times when this can be done. First is
at the time the write access is made. Both Mp and the
cache (if there is a hit) are updated simultaneously.
This strategy is termed write-through. Alternatively,
onlv the cache can be updated on a write hit and only
when the updated AD pair is replaced on some future
miss is Mp updated. This str~~~~Y is termed write-back.
The choice between these two strategies involves sys
tems considerations which are beyond the scope of this
paper. 4

There are other possible asymetries in the handling of
reads and writes. One possibility is that after a
write miss an AD pair corresponding to that access is
not stored in the cache. This is termed no-write-allo
cate. The alternative is of course termed write-allo
cate.

Cache Memory Simulation

The understanding of memory hierarchies (and programs)
has not reached the point where cache performance can
be predicted analytically as a function of cache organ
izational parameters. As a consequence the studying of
cache memory behavior is done through simulation.
(Some cache simulation results for other computer ar
chitectures are reported in [2, 5, 6, 7]). For the
purposes of this study a two part simulator was con
structed.

The first part was a PDP-11 simulator. This is a PDP-11
program which rtuls other PDP-ll'programs interpretively.
A variety of properties of the interpreted programs can
be collected including the sequence of Mp addresses
generated. The latter is termed an address trace. The
address trace is processed by the second part, the
cache simulator. This is parameterized by cache organ
ization and determines the miss ratio for a given ad
dress trace.

156

Cache Simulation Results

Since the performance of cache memory is a function not
only of cache organization parameters but also of the
program run, it is desirable to run cache simulations
with a wide variety of programs. Multiplying thesei by
a wide variety of a cache organizational parameter::; to
be simulated resulted in a considerable1 amount of simula
tion data of which only the highlights are reported
here.

The first experiment was to determine the approximate
overall size of the cache memory. Plots of the miss
ratio against cache size for several programs5 are given
in Figure 2. (All sizes in both the figures and the
discussion are 16 bit PDP-11 words.) A block size of
two and a set size of one were held constant. In qen
eral the miss ratio falls rapidly for caches up to 1024
words and falls less rapidly thereafter •

(.I)
(.I)

-~

. 5 --

.4

.2

.1

Figure 2

BLOCK SIZE 2
SET SIZE 1

~
~~~~~~---- MACROASSEMBt.ER --::::::::--~ FOHTRAN COMP 1 LE 

Pl P 
-:.::::=:::=:::Fm g ~~~uss) .:.i..£IlL :I.L __ _ 

256 512 1024 2048 

CACHE SIZE 

Effect of Cache Size on Mi·ss Ratio 

Figure 3 depicts the effect of set size (associativity) 
on cache performance. In order to clarify the results, 
Figures 3 through 6 only contain simulation data for a 
single program (the Macro assembler) which had the 
highest miss ratio in Figure 2. As expected a larger 
set size reduces the miss ratio. The largel3t improve
ment occurs in going from set size one to s1:!t size two. 
Although not shown, even going to fully associative has 
little further effect on the miss ratio. 

In Figure 4 the impact of block size is shown. Espe
cially in smaller caches,going to a larger block signi
ficantly reduces the miss ratio. This is a result of 
a smaller cache depending more on the prefetching ef
fect for its performance. 

The effect of write allocation and replacement algo
rithm is given in Figure 5. For the program comddered 
there is negligible performance difference across the 
different strategies. 

In Figure 6 the effect of periodically clearing the 
cache is depicted. This approximates the E!ffect on the 
cache of rapid context switching in that when a new 
program is brought in the cache appears "clear" to it. 
Even completely clearing the cache every 300 Pc accesses 
only degrades the miss ratio to 0.3. This represents 



a worst case condition that would be unrealized in prac
tice. For example the "new program" brought in every 
300 Pc references might be an interrupt handler. Any 
program running that often would typically find that 
the cache always contained information relevant to it. 
Indeed for the cache organization given it is impossible 
in 300 accesses to significantly clear a 1024 word 
cache. 

Conclusions 

The performance goals of the PDP-11/70 computer system 
required the typical miss ratio to be 0.1 or less. An
alysis of the preceding data with emphasis on the 
breaks in the curves suggested that the optimal organi
zation was a cache size of 1024 words, block size of 
two words, and a set size of two. Since the data sug
gests that replacement algorithm and write allocation 
strategies have negligible effect, a no-write-allocate 
strat~gy and a random replacement algorithm were se
lected. 

.2 

Cl) 
Cl) 

i: 

,l 

BLOCK SIZE = 2 

~--------.. CACHE SIZE 512 

'l_____,,___,__~-... "------- -. 1024 
---------. 2048 

2 4 
SET SIZE 

Figure 3 Effect of Set Size on Miss Ratio 

.2 
\~SET SlZE •I 

~ CACHE SIZE 512 

~ 1021J ------. _____ 
2048 

4 

BLOCK SIZE 

Figure 4 Effect of Block Size on Miss Ratio 

157 

Cl) 
Cl) 

.1 

i: .05 

Figure 5 

0.3 

0 

~ 
c::: 0.2 e::: 
C/) 

~ 
L 

0.1 -

Figure 6 

REFERENCES 

NO ALLOCATE 

ALLOCATE ON WRITE 

FIFO RAND LRU 

CACHE SIZE 1024 

SET SIZE 2 

BLOCK SIZE 2 

Effect of Replacement Algorithm and 
Write Allocation on Miss Ratio 

CACHE SIZE 10211 

BLOCK SIZE 2 

SET SIZE 2 

\ 

300 3000 30000. 

CLEAR liJTUNAL (/ICCESSES) 

Effect of Clear Interval on Miss Ratio 

1. Conti, C. J., "Concepts for Buffer Storage", Compu
ter Group News, Vol. 2, No. 8, March 1969. 

2. Conti, c. J., Gibson, D. H., and Pitkowsky, s. H., 
"Structural Aspects on the System I 360 Model 85, 
I. General Organization", IBM Systems Journal, 
Vol. 7, No. 1, 1968 . 

3. Ealipae Computer Systems, Data General Corp., 1974. 

4. PDP-11/?0 Proaessor Handbook, Digital Equipment 
Corp., 1975. 

5. Meade, R. M., "On Memory System Design", Proceedings 
of the Fall Joint Computer Conference, 1970. 

6. Bell, J., Casasent, D., Bell, G. G., "An Investiga
tion of Alternative Cache Organizations", IEEE 



Transactions on Computers, Vol. C-23, No. 4, April 
1974. 

7. Gibson, D. H., "Considerations in Block Oriented 
Systems Design", Proceedings of the Spring Joint 
Computer Confe.rence, 1967. 

NOTES 

1. Memory hierarchies can of course consist of three 
or more technologies. Discussion and analysis of 
these multilevel hierarchies is a fairly obvious 
generalization of the discussion and analysis given 
here. 

2. In a few complex cache organizations such as that 
in the IBM 360/85 the size of the D portion of the 
AD pair (called a sector in the 360/85) is larger 
than the block size. That potential level of com
plexity will be ignored in this discussion. 

3. Note that in a set associative cache only the label 
field must be stored in the cache AD pair -·· not 
the entire Mp address. 

4. For the PDP-11/70 system,write-through was chosen. 
The main impact of this is that each write access 
as well as each read miss results in an Mp access. 
Data suggests that in PDP-ll's about 10% of Pc ac
cesses are writes. 

5. These programs are system and user programs running 
under the PDP-11 DOS operating system. They in
clude the Macro assembler, FORTRAN compiler, PIP (a 
file utility program), and FORTRAN executions of 
numerical applications. The range of miss ratios 
is typical for the much wider group of programs ac
tually simulated. Indeed the miss ratio for the 
Macro assembler for a given cache size was the worst 
of any program simulated. 

158 



IMPROVING THE THROUGHPUT OF A PIPELINE BY INSERTION OF DELAYS t 

Janak H. Patel and Edward S. Davidson 
Coordinated Science Lab 
University of Illinois 
Urbana, Illinois 61801 

Sununary 

A pipeline is defined to be a collection of re
sources, called segments which can be kept busy simul
taneously. A task once initiated, flows from segment 
to segment for its execution. A collision occurs if 
two or more tasks attempt to use the same segment at 
the same time. 

The collision characteristics of a pipeline with 
respect to a schedule of task initiations are investi
gated, A methodology is presented for modifying the 
collision characteristics with the insertion of delays 
so as to increase the utilization of segments and hence 
the throughput under appropriate scheduling. 

I. Introduction 

Pipelines are becoming increasingly connnon in many 
computers, sometimes for achieving high speed computa
tion at a lower cost than would result from simply 
using higher speec electronic components. However, in 
most cases it is used because of a better performance 
per unit cost over other architectures. A pipeline as 
defined here is a collection of resources called 
segments which can be kept busy simultaneously. A task 
once initiated, flows from segment to segment for its 
execution, in a predetermined manner. The effective
ness of the pipeline lies in the fact that a task can 
be initiated before the completion of some previously 
initiated tasks resulting in high performance and 
segments can be special rather than general purpose 
resulting in low cost. We term a pipeline in which 
all the tasks have identical flow patterns, a single 
function pipeline. In a multifunction pipeline there 
are two or more distinct possible flow patterns and 
each task uses one of these flow patterns. Each flow 
pattern is identified by a function name and it can be 
displayed in a reservation table, such as Figure 1 and 
6. Rows correspond to segments 'and columns to units of 
time. A function name, denoted by a single capital 
letter, is placed in row i and column j (cell (i,j)) if 
after j units of execution a task with that function 
name requires segment i. We shall consistently use X 
as a function name in single function pipelines. Fig.6 
is a reservation table of a multifunction pipeline with 
two distinct flow patterns for two functions A and B. 

In our model we assume that a task once initiated 
must flow synchronously without preemption or wait. 
There is no restruction on the flow patters, however. 
In Fig. 1, multiple X's in a row may indicate either a 
slow segment or segment reusage (feedback). Multiple 
X's in a column indicate parallel computation. It is 
the reusage of a segment which poses a problem, namely, 
two or more tasks may attempt to use the same segment 
at the same time, resulting in a collision. However, 
in multifunction pipelines even without any reusage, a 
collision may occur because of two or more independent 
and distinct flows of tasks. 

In previous work, the central problem treated is 
to schedule the tasks in a given pipeline so as to 
achieve high throughput without causing any collision. 
This problem was first investigated in [l]. Subsequent 
work on this problem is reported in two doctoral 

t This research was supported in part by the National 
Science Foundation under Grants GJ-35584X and GJ-40584 
and in part by the Joint Services Electronics Program 
(U.S.Army,U.S.Navy, and U.S. Air Force) under Contract 
DAAB-07-72-0259. 

159 

theses [2,3]. An overview of some related results and 
a more comprehensive bibliography can be found in [4]. 
Our investigation is from a different perspective and 
seeks a methodology for modifying the reservation table 
of a given pipeline so as to increase the utilization 
of segments and hence the throughput under appropriate 
scheduling. 

The pipeline utilization is limited by its colli
sion characteristics which are a result of the usage 
patterns of the segments. One way of modifying usage 
pattern is by segment replication. Another way is to 
remove our assumption regarding the waiting of a task 
between two steps and provide internal storage buffers 
which allow variable delay between segments [4]. Still 
another way of changing a usage pattern is by insert
ing noncompute segments, which simply provide a fixed 
delay between some computation steps. It is the modi
fication of a pipeline by the use of noncompute seg
ments which is the concern of this paper. It is assum
ed that any computation step can be delayed by insert
ing usage of a noncompute segment, where each X in the 
reservation table is considered to be a computation 
step. 

We shall first consider single function pipelines 
for ease of understanding, since the notational com
plexity of multifunction-PiPelines is considerable. 

II. Single Function Pipelines 

We start by investigating some collision charac
teristics of a single function pipeline (referred to 
simply as pipelines in this and the following section). 
A usage interval of a segment is defined to be a time 
interval between two reservations (X's) of that seg
ment by a single task. For example in Fig. 1, all 
usage intervals of s0 are 2, 3 and 5. Let ! be the 

set of all usage intervals of a pipeline; e.g., 
[•{l,2,3,5} for Fig. 1. Clearly any two tasks will 
cause a collision if and only if they have the same 
initiation time interval as one of the usage intervals. 

A sequence of task initiations can be completely 
described by a sequence of initiation intervals be
tween successive tasks (also known as latency), For 
example, task initiations at time instants O, 3, 5, 9 
and 12 can be described by the latency sequence 
(3,2,4,3). An initiation interval of 0 is not permis
sible. Let G be the set of all initiation intervals 
(not just th~ intervals betw;;;n successive initiations) 
of a latency sequence. Thus Q for the latency sequence 
(3,2,4,3) is {2,3,4,5,6,7,9,12}. 

If a subsequence of latencies appear periodically 
in an infinite sequence, it is termed an initiation 
cycle. Thus a cycle (2,3,2,5) implies an infinite 
initiation sequenc~ (2,3,2,5,2,3,2,5,2,3,2,5,2, ..• ). A 
constant latency cycle is a cycle with only one latency 
latency; e.g., cycle (4). Let the period, p, of a 
cycle be defined as the sum of the latencies in the 
cycle. Thus the period p of cycle (2,3,2,5) is 12 and 
p of cycle (4) is 4. The average latency, £a of a 

cycle is the average of the latencies of the cycle. 
For example, £a for cycle (2,3,2,5) is 12/4•3. This 

implies an average initiation rate of one task every 
3 time units. 

The initiation interval set Q of a cycle is simply 
the set Q of the infinite initiation sequence implied 
by the cycle. Thus Q={4,8,12,16,20 ••• } for cycle (4) 
and for cycle (2,3,2,5) Q is {2,3,5,7,9,10,l2,l4,15, 
17,19,21,22,24,26, ••• }. Let G mod p be the set formed 



by taking modulo p equivalents between 0 and (p-1) of 
the elements of G, For cycle (2,3,2,5) with pml2, 
Q mod 12=[0,2,3,S,7,9,10} and for constant cycle (4) 
with p=4 Q mod 4=(0}. It can be shown that Q and 
G mod p of a cycle have the following simple properties, 
~emembering that 0 is not a permissible initiation 
interval. 

Pl.a. if g~O then g E Q mod p => g+ip E Q Vi?_O 

b. 0 E Q mod p and ip E Q Vi~l always. 

P2.if g ~ 0 then g E Q mod p <=> (p-g) E Q mod p. 

It is useful to introduce the set M, the comple
ment set of Qin .&..• the set of positive integers. 

Clearly H mod p = Z -G mod p. Where Z is the set of - -p- -p 
integers modulo p. Then the following is a direct 
consequence of P2. 

P3. h E tl mod p <=> (p-h) E li mod p. 

An initiation interval between two tasks is said 
to be allowable w:ith respect to a. pipeline if these 
tasks do not colUde in the pipeline. A cycle is al
lowable with respect to a pipeline if all its initia
tion intervals are allowable. CoP,versely, we also say 
that a usage interval or a pipeline is allowable with 
respect to a cycle if no collision occurs. A collision 
occurs in a pipeline when a cycle. is followed iff (if 
and only if) some initiation interval of the cycle 
equals a usage interval of the pipeline. Thus a cycle 
is allowed by a pipeline iff there are no elements com
mon between the usage interval set, F, of the pipeline 
and the initiation interval set, Q, of the cycle; i.e.' 
iff F n G = ~, or equivalently, iff F c H. Thus H, the 
complement set of Q can be described-as the set of al
lowable usage intervals with respect to the given cycle. 
By using the property Pl of G, tQe allowability con
dition can be reduced to the-following theorem. 

Theorem 1: A cycle with period p and initiation 
interval set G is allowed by a pipeline with usage 
interval set !, iff (f mod p) n (Q mod p) = 2_. 0 

A constant 
mod p is always 

Corollary 1. 1 : 
pipeline iff no 
of ;,. 

latency cycle (t) has p = ;,. Its Q 
[OJ and hence the following. 

A constant cycle (t) is allowed by a 
usage interval is an integral multiple 

It is helpful to look at the allowable usage in
terval set H to see what allowable pipelines can be 
constructed-for a given cycle. Let a row which has an 
X in each of columns t 1,t2 , •.. tk be denoted as row 

[t
1
,t

2
, ..• tk}; e.g., the 2nd row.of Fig. 1 is row fl, 

2 ,4}. A pipeline is allowed by a cycle if all its rows 
are allowed. To construct an allowable row we can 
start by placing an X in some column i. We can place 
another X in some column j, only:if the usage interval 

li-jl E g; a third X in some column kif Ii-kl and 
j-k E g, and so on. 

However, it is convenient to restrict the column 
numbers to be between 0 and (p-1), and still retain all 
the useful information. For this, let us define two 
elements i, j E ~'to be compatible if li-jlEtl mod p. 

The use of the absolute quantity can be avoided by 
using property P3 of li mod p. Thus we have the follow
ing lenuna. 

Lenuna 2.1: Two integers i,jE Z are compatible iff -p: 
( i- j ) mod p E li mod p. D 

Using the definition of compatibility or the above 
lenuna we can form all the compatibility classes on the 
elements of z , given a cycle. A compatibility class 

-p 
is one in which each element is compatible with every 
other element in the class. We need to form only the 

160 

maximal compatibility classes. A maximal ~npatibility 
class is not a subset of any other compatibility class. 
--If [z1,z2 , ••. zk} is a compatibility class with 

respect to some cycle then the row [zl'z2, ... zk} is al

lowed by that cycle. This is because by the definition 
of compatibility all usage intervals lzi-zjl are al-

lowable. In this way we can produce only a limited 
number of allowable rows. However, with the use of' 
property P3 and Lemma 2.1 it is possible to construct 
other allowable rows as follows. 

Theorem 2: Given a cycle with period p, the following 
rows, and only those rows, are allowed by th1~ eye le: 

row [z1+i1p, z2+i2p, .•• J V integers i 1,i2, ... 

and V compatibility classes [z1,z2, ... J of 

the cycle. 0 

Consider a problem in which a pipeline, character
ized by its usage interval set, is given and one has 
complete freedom in choosing an allowable inltiation 
sequence. Bounds on the minimum average lat1~ncy of 
such sequences and a branch-and-bound algorithm to 
discover a minimum average latency allowable cycle are 
reported in [l] and [4]. Minimum average latency 
cycles maximize segment utilization, where utilization 
is measured as the percent of time the segment remains 
busy. 

Here we consider the reverse problem. :Namely, a 
cycle is given and one has complete freedom :in choos
ing any allowable usage pattern. While the :9olution 
to the former problem is useful for scheduling a given 
pipeline, the solution to this problem is useful for 
designing a pipeline for a given schedule. Theorem 2 
completely characterizes the entire class of allowable 
pipelines. We shall soon see that it is possible to 
put an upper bound on segment utilization with the: 
help of the compatibility classes. To achieve maximum 
utilization of a segment for a given cycle, we must 
increase the number of usages per task; i.e., increase 
the number of X's in a row. Theorem 2 gives all pos
sible allowable rows and it implies that the maxin~m 
number of X's in any allowable row is equal to the: 
size of the largest compatibility class. Thus the: 
maximum achievable utilization of a segment with 
respect to a given cycle is the ratio of the size of 
the largest compatibility class to the average lat:ency 
of the cycle. 

Example 1: For cycle (1,9), p=lO, average latency 
i,a=5, Q mod 10 = [0,1,9} and hence tl mod 10 = [2,3,4, 

5,6,7,8}. The maximal compatibility classes contain
ing 0 are [0,2,4,6,8}, [0,2,4,7}, [0,2,5,7}, [0,3,5,7}, 
[0,2,5,8}, [0,3,5,8}, and [0,3,6,8} of which the larg
est has size equal to 5. Note that classes contalning 
0 are sufficient to characterize all classes since a 
constant may be added modulo p to all elements of a 
compatibility class to produce another compatibil:f.ty 
class. Thus by Theorem 2, no allowable row has more 
than 5 X's. This implies that the maximum possible 
segment utilization with cycle (1,9) is 5/5=100%. D 

Example 2: For cycle (2,3,7), p=l2, i,a=l2i3=4, 

Q mod 12•[0,2,3,5,7,9,10} and hence tl mod 12=[1,4,6,8, 
11}. The maximal compatibility classes containing 0 
are [0,1}, [0,4,8}, [0,6}, and [0,11} of which the 
largest has 3 elements. Thus the maximum number of 
X's in any allowable row is 3 which in turn implies a 
maximum segment utilization of 3/4•75%. In other words 
no allowable pipeline for cycle (2,3,7) has a segment 
which is busy more than 75% of the time. 0 

Among cycles with same i,a' those which allow a 

high utilization and hence more economical realization 
are clearly preferable. Furthermore they offer more 



flexibility in pipeline de-sign. Let us define a cycle 
to be perfect, if it allows a 100% segment utilization; 
e.g., cycle (1,9) of Example 1. Unfortunately we can
not test the perfectness of a cycle without forming 
the compatibility classes. However, we know a special 
class of perfect cycles which are of considerable 
interest in single function pipelines. 

Theorem 3: All constant latency cycles are perfect. 

Proof: For constant cycle (t), Q mod p=[O} and thus 
!! mod p=fl,2 ... (t-1)}. One can verify that [0,1,2, ..• , 
(t-1)} is a compatibility class with t elements. Hence 
the upperbound on the segment utilization is 
/,/ t = 100%. 

III. Noncompute Segments 

0 

In this section we consider the addition of non
compute segments to a pipeline to make it allowable for 
a given cycle. The effect of delaying some computation 
step can be displayed in a reservation table by writ
ing a 'd' before the X which is being delayed. Each d 
indicates one unit of delay called an elemental delay. 
In the absence of any other information on precedence, 
we must assum~ that all the steps in a column must be 
completed before any steps in the next column are 
executed. Therefore, if the steps in column 2 of Fig. 
1 are unevenly delayed, we must store the output of 
some steps so that all the outputs are simultaneously 
available to the steps in column 3 of Fig. 1. The 
effect of delaying the step in row 0, column 2 (x02 ) 

of Fig. 1 by 2 units and x22 by 1 unit is shown in 

Fig. 2. The elemental input delays d1 , d2 , and d3 
require the elemental output delays d

4
, d

5
, and d6 . 

Now given some integer i between 0 and (p-1), we are 
in a position to delay any step arbitrarily such that 
the step occurs in a column number equivalent to i 
modulo p. Thus given a cycle, we can make any row of 
a given reservation table to look like one of the rows 
of Theorem 2; provided of course, the row does not 
have more X's than the size of the largest compatibil• 
ity class of the.cycle. Hence we have the following 
theorem. 

Theorem 4: For a given cycle, a pipeline can be made 
allowable by delaying some of the steps, iff the 
number of X's in each row of the reservation table is 
less than or equal to the size of the largest compati
bility class of the cycle. 0 

Corollary 4.1: For a given constant latency cycle (t), 
a pipeline can be made allowable by delaying some steps, 
iff there are no more than t X's in each row of the 
table. 0 

An important implication of Corollary 4.1 is that 
by adding elemental delays to a pipeline one can always 
fully utilize a single function pipeline with the use 
of a cycle with constant latency equal to the maximum 
number of X's occurring in any single row of the reser
vation table. Full utilization of a pipeline here, 
means that at least one segment is busy all the time. 
Thus the maximum achievable throughput of that pipe
line iB attained. Of course complete redesign or 
replication of selected segments to reduce the number 
of X's in a row may allow higher throughput. 

Example 3: The reservation table of Fig. 1 is to be 
made allowable with respect to cycle (1,5). The re
sulting table appears in Fig. 3. For cycle (1,5), 
p=6, Q mod 6=[0,1,5} and hence !! mod 6=[2,3,4}. The 
maximal compatibility classes containing 0 are: 
[0,2,4} and [0,3}. The first row of Fig. 3 is row 
[0,2,10}, which resulted from the class [0,2,4} by 
constructing row [0,2,4+p} as per Theorem 2. The 
second row, [1,3,5} results from class [0,2,4} and the 
third row, [2,4} results from class [2,4} c [0,2,4}. 

Thus all the rows are allowable. 0 

Once we have a modified table, we need to assign 
the elemental delays to noncompute segments. Noncom-

• pute segments are physical resources like any other 
segment and may be shared by various elemental delays 
for their efficient utilization. Two elemental delays 
di and dj are defined to be compatible if lti-tjl 

mod p E !! mod p. Where t 1 and tj are labels of the 

columns in which di and dj appear. Clearly, if di and 

d are compatible, they can share one noncompute segment 
j 

because the usage interval lti-tjl is allowable. Using 

the above definition we can form the maximal compatibil
ity classes of all the elemental delays present in the 
solution. All the elements of a compatibility class 
can share a single noncompute segment. Now the problem 
reduces to the standard covering problem; i.e., finding 
the minimum number of compatibility classes which cover 
all the elemental delays. 

Example 4: The set of elemental delays of Fig. 3 is 
<d 1,d2 ,a3,d4 ,d5 ,d6,dj>· Their corresponding column 

numbers are <3,6,7,8,9,2,3>. For cycle (1,5), !! mod 6 
is [2,3,4} (from Ex. 3). Thus [d 1,d

2
}, (d

1
,d3}, (d2 , 

d4}, [d2 ,d5}, [d2 ,d6}, [d2 ,d7}, [d3 ,d5}, [d3 ,d7} are 

the maximal compatibility classes. Noting that the 
subsets of maximal compatibility classes are compati
bility classes, one of many possible minimal cov~rs is 
[d1 ,d

2
}, [d4}, [d

5
}, [d6}, [d3 ,d

7
}. Thus 5 noncompute 

segments are required. The assignement above is shown 
in Fig. 4, where s3 through s7 are noncompute segmentsq 

Besides reducing the number of noncompute segments 
in a solution, it is also important to reduce the added 
execution delay. The execution delay of a task in Fig. 
1 is 6 units while in the modified table of Fig. 4 it 
is 11 units. In situations where it often becomes 
necessary to empty the pipeline; e.g., due to logical 
dependancies among tasks, the execution delay of a task 
can become an important parameter in determining the 
overall throughput. Therefore, we shall take the added 
execution delay as the objective function to be mini
mized. Now the problem of making a pipeline allowable 
can be formulated as follows. 

Let: I and J be the number of rows and columns in 
the given reservation table. Let dij and dlj be the 

number of elemental delays to he.inserted respectively 
at the i.nput and output of a step Xij of the reservation 

table. If no X occurs in cell (i,j) of the table then 
d and d' are defined to be zero. Some other di. ij ij J 
can be set to zero if it occurs between two consecutive 
computation steps which are indivisible. Let D be the 
added execution delay. Then the problem can be formal
ly stated as: 

Minimize D = I ( max (d . )\ 
O::d<J 0$.i<I iJ ') 

subject to the constraints, 

integer dij ~ O. . \ 

[ ( c - b )+cl 'b +cl + L ( max 
a ac h<J<c \0$.i<I 

E !! mod p. 

for each pair <Xab'Xac> with c > b. 

mod p 

where, g is the set of allowable usage intervals with 

161 



So 

s.i 

S2 

S3 

$4 

S5 

s6 

S7 

0 l 2 3 4 5 6 7 8 9 10 

x 
x 

x 
x x 

x x 
x x {d1,d2} 

x 
x 

x 
x x 

td·} So 
d5} 

{ ds} 
S1 

{d3~d7} 
S2 

0 l 2 3 4 

A B B 
AB B 

B A AB 
FP- 4688 

FP- 4687 

Figure 4. Assignment of elemental 
delays to noncompute segments 

Figure 6. Reservation table .for 
a multifunction pipeline 

FP-4689 

Optimum solutions are: 

cycle (2). ll mod 2 = [l} 

Added delay: 

Constraints: 

(i) [2 + max[d00 ,d10} - d00 + d02 + d11} mod 2 E [l}. 

(ii) [l + max[d00 ,d10} - d10 + d11} mod 2 E [l}. 

1. doo • d10 = d11 = o. do2 = 1. 

2 · doo = d11 = do2 = 0 · dio = 1 · 

Figure 5. Making the pipeline allowable for cycle (2): 

A branch-and-bound search for optimum solutions. 

164 



ON-LINE ARCHITECTURE TUNING USING MICROCAPTURE 

A~ M. Abd-Alla and I.ra.ird H. Moffett 
The George Washington University and 

the Naval Research Laboratory 
Washington, D.C. 

ABSTRACT 

The modification or tuning of the micro
code in a computer that utilizes a writable 
control store is one method whereby a program's 
execution time can be improved. A method for 
automatically performing a microcode tuning 
or synthesis has been developed by Drs. Karl
gaard and Abd-Alla and is discussed in detail 
in [l]. Presented is an extension of this 
effort which allows the microcode tuning to 
be performed on-line on program loops. This 
is accomplished by gathering data on charac
teristics of the program during its execution, 
utilizing this data to generate the informa
tion required to tune the microprogram, initi
ating the on-line tuning procedure, and trans
ferring to the tuned routine to complete the 
execution. 

INTRODUCTION 

The primary effort in utilizing user 
microprogrammed machines is usually to write 
a microprogram that performs in a manner 
similar to an assembly language macro. This 
is usually done because the user requires 
greater throughput for his program than the 
standard microcode allows. This remicro
programming to increase throughput (or 
tuning) is performed manually. The general 
steps required to perform this tuning are: 

.(1) Identify segments of the microcode 
which permit possible optimization 

(2) Create a new micro-routine which 
performs the same function of the chosen 
microcode segment so as to improve machine 
performance 

(3) Load the new micro-routine into 
the machine and communicate these archi
tecture changes to the system programs so 
that the new architecture can be utilized. 

A method for automatically performing 
microcode tuning or synthesis has been 
developed by Abd-Alla and Karlgaard [l] • 
Although this method is general enough to 
be applied to many user applications, it 
requires considerable overhead which prohibits 
its use for real time applications. This 
paper is an extension of the microcode tuning 
effort to allow the tuning of program loops 
to be accomplished "on the fly" during run 
time. The technique itself is entitled 
"Microcapture Timing" where microcapture 
refers to the capturing of the program loop 
and tuning refers to the remicroprogramming 
of the machine. To date there is no other 
method known to the authors that performs 
architecture tuning on-the-fly. 

165 

The following sections present briefly: 
the tuning algorithm developed in [l], the 
drawbacks of this method for real-time appli
cations, a method for performing the trace to 
generate the required statistics, an approach 
to performing the actual synthesis, and future 
efforts to be performed by the authors in 
examining the utility of this tuning method. 

Heuristic Synthesis Algorithm 

A synthesis procedure was presented [l] 
whereby the time required to perform operations 
in a program loop could be reduced. Basically 
this method required a trace of the program in 
order to gather data concerning the program 
operation. This data would enable one to detect 
the presence of loops, the number of times a 
specific memory location has been addressed 
within the loop, and whether that address was 
an instruction or an operand location. Then, 
as shown in Fig. 1, from statistics generated 
from the collected data the loop boundaries 
were determined and the most of ten used memory 
locations holding data referenced within the 
loop were determined. Those were placed in 
the GP microregisters and a new set of micro
instructions were created which utilized a 
microoperation stream equivalent to a register
to-register stream. After the loop was completed, 
a restore operation was performed. The 
synthesized microcode, along with the preload 
and restore operations, would then be called 
by a macro developed by the assembler or compiler. 
When this internal macro was called during program 
execution, the GP micro registers would be pre
loaded, the tuned microcode for the loop executed 
and the system restored for a continuation of the 
rest of the execution. This method has shown 
loop execution to be increased by a factor of 8 
for a data movement program. Several drawbacks 
to utilizing this procedure in this manner are 
that: (a) A trace program to generate usage 
data increases the amount of overhead for the 
program, (b) A program to generate the statistics 
must be run prior to selection of the data to 
be placed in the GP microregisters, (c) The 
synthesis is performed in software rather than 
by a microprogram. 

The Trace and Statistics Generation 

If one can perform a trace which does not 
increase the program execution overhead and can 
generate the statistics as the program is 
operating, then two major hurdles have been 
removed. This would allow the algorithm to be 
truly automatic. An approach to accomplishing 
this is to perform the trace and statistics 
calculation in hardware. This may seem very 
difficult at first but a relatively simple 
scheme for accomplishing this is described 
below. 



Based on a study of programs performed 
by IBM on the IBM 360 the average number of 
assembly language instructions in a program 
loop is 8 [2]. Therefore, if we examine 
every location as it is accessed and maintain 
a file of the last 16 or 24 locations used, 
we will encompass most program loops. These 
16 or 24 file locations will contain the 
address of the instruction plus the address 
of any operands the instruction may utilize 
during its execution. The statistics that 
are required for each location accessed 
during the execution of the loop are the 
number of times the location is accessed, 
determination of whether that location con
tained an instruction or an operand, and the 
determination of whether or not it is jump 
instruction. 

This can be accomplished by the use of a 
content addressable memory (CAM) and a high 
speed random access memory (RAM) used in con
junction with the microstore. See Fig. 2. 
The basic approach is as follows: as the 
computer reads an instruction from memory, 
the Content Addressable Memory is simultane~ 
ously searched using the location being 
addressed, i.e., contents of program counter 
as a target. 

If there is a match, a flag in the CAM 
would be set corresponding to a repeated 
location. For each CAM word there is a 
corresponding word in the random access 
memory. Contained in that word is: (a) the 
count or whether that location has been 
recently addressed, (b) whether or not it 
is a jump instruction, (c) whether it is 
an instruction or an operand, (d) whether 
the instruction contains an indirect address, 
and (e) computer status information. The 
accessed RAM data is compared to 110 (count, 
jump and no operand) and if it is equal, the 
synthesis phase may be initiated. If it is 
not equal to 110, the count field is set to 
1 and the word is stored back in the RAM 
location. 

If there is no match, then the next avail
able space in the CAM is loaded with that 
addressed location. (This space is determined 
by the CAM/RAM address counter which is modulo 
the number of words in the CAM.) The corre
sponding location in the RAM has its count 
set to 0 and its jump, operand, indirect and 
status locations set accordingly. 

Whether the accessed location is an 
instruction or operand location can be deter
mined by the computer phasipg. To determine 
if it is a jump instruction or if the instruc
tion contains an indirect address either the 
instruction decoder has to set a flag or it 
can be determined in the microcode. The status 
information can be determined by examining 
the pertinent flip-flops and registers. This 
hardware will then generate the loop statistics 
required for synthesis. Notice that the above 
hardware will require the loop to be computed 
twice with the standard microcode before the 
synthesis phase of the tuning process begins. 

166 

Performing The Tuning 

The next phase of the tuning process is 
the actual synthesis of the new microcode. In 
selecting the synthesis method, one must 
remember that the execution of the synthesis 
program is pure overhead. This "wasted" time 
will not be made up until several executions 
of a given loop in the application program 
have been performed. Because of this fact, 
the authors found it necessary to perform the 
synthesis algorithm by microprogram rather 
than by software. 

There are several basic approaches to the 
tuning which may be utilized. One is the 
synthesis of a new microprogram to execute the 
loop as performed in [l] • The primary dif:fi
cul ty with this method for run time utilization 
is the large amount of time that would be 
required to perform the deletion and creation 
of new microinstructions. Also, new micro
instructions would have to be added that would 
allow manipulation of its own memory contents 
and specific bit generation and deletion facil
ities. 

As a basis for determining the time it 
would take to perform the synthesis routine 
described above, a modified HP 2100A was 
chosen. This machine is a modified version 
of the HP 2100 Computer. One of the modifi
cations which is essential is the ability to 
lead the microstore with microcode commands. 
It was assumed in the modification that the 
procedure and the tuning for loading the micro
store from a microprogram was different than 
loading the microstore from software. Thei 
technique used would load the load buffers 
directly using special yet simple additional 
hardware. It would then require approximcLtely 
2 microcycles to load the microstore under 
microprogram control. To write a new micro
program for each instruction requires either 
a microprogram that has a file of microprograms 
that would utilize general purpose micro
registers or an analysis microprogram that 
would modify each microinstruction as it was 
executed. This latter approach is prohibitive 
due to the amount of micro accessing and 
storing required and the difficulty (new 
microinstructions required) in modifying the 
subfields that require modification. The 
former approach would require a rather large 
microprogram and would still have the diffi
culty of modifying the subfields to place the 
proper microregister in the instruction. Either 
of these methods would force the synthesis 
routine to take too long. The number of times 
through the loop would have to be large in 
order to benefit from the tuning. 

A modification of this method which would 
reduce the synthesis time significantly is not 
to create or delete microinstructions but to 
leave the instructions as they are, link them 
together and remove the instruction access. 
This can be effectively performed by using a 
pointer list approach. This approach would 
have a microprogram that would create a list 
of pointers. These pointers would contain the 
address of the initial microinstruction for 
each machine instruction in the loop and the 
address of the operand to be fetched from 
memory as the actual instruction would. This 
pointer list would be a series of jump instruc-



tions that perform two specific tasks: 
(1) load the address of the operand into the 
appropriate microregister as the initial 
accessing of the instruction would have done 
and, (2) jump to the proper address in micro
store to initiate the execution of the micro
instructions. The formation of these jump 
instructions would be performed after the 
instruction fetch and before the execution of 
each instruction. As one can observe, the 
microinstructions in the pointer list routine 
would be similar (a jump instruction) ; only 
the data would be changed. The improvement 
using this synthesis method is the difference 
between accessing an instruction in main 
memory versus accessing an instruction in the 
microstore. 

The formation of the pointer list then 
is the synthesis routine. The synthesis 
routine is initiated after having received 
the "go ahead" signal from the microcapture 
hardware. It performs the following functions: 
(i) permits normal access of the machine 
instruction, (ii) transfers the operand 
address from the microregister that it was 
loaded into the proper segment of the micro
store register (general purpose register in 
most machines with writable control store), 
(iii) transfers the address as determined by 
the instruction decoder or mapper to the 
proper segment of the microstore load register, 
(iv) places the proper instruction bit pattern 
into the microstore load register, (this bit 
pattern is the same for every instruction in 
the pointer list) , (v) load the micro
instruction into proper location in the micro
store, and (vi) execute the instruction as 
usual. The synthesis procedure terminates 
when the synthesis of the returning jump is 
performed. Some of these functions can be 
performed in hardware under microcode command 
and others can be performed by microcode. As 
can be seen, the savings here is in the time 
to perform the synthesis. 

During execution of the loop under 
pointer list control the program counter is 
incremented when the pointer list is reac
cessed and reset to the initial loop address 
when the returning jump is performed. Any 
conditionals interior to the loop increment 
the program counter naturally. The loop 
execution is terminated when the program 
counter does not match an instruction address 
in the CAM. The contents of the program 
counter is the address of the next instruction 
that is accessed from main memory. 

The pointer list algorithm can be modified 
one step further with only a small increase 
in overhead. By using the additional micro
registers that are not used by the standard 
microinstruction set, or by including special 
registers in the microcapture hardware, further 
improvement can be made to the performance of 
the pointer list approach. During the last 
step of the synthesis procedure (when the 
instructions are being executed) , if the 
count in the microcapture hardware of that 
memory access location is 1, then load the 
operand into a special register. Now each 
time that location is accessed, its data are 
fetched from the special register rather than 
main memory. This will require additional 
provisions in the hardware to keep track of 

167 

the mapping between the memory locations of 
the operands as referenced by the instructions 
and the corresponding special registers. 
Prior to each main memory access, during loop 
execution, a CAM search is performed to deter
mine if the data being accessed is in a 
special register or in main memory and the 
memory access microinstruction is altered if 
necessary. The method used in the simulation 
was to expand the number of bits in the RAM 
in order to place the operand in the RAM. 

Performance Analysis and Simulation 

The cost of the microcapture archi
tecture tuning is the time required to actually 
perform the synthesis, the restore for contin
uation and the additional hardware required 
for statistics generation. The question 
immediately arises as to the trade-offs in 
the implementation. If it can be shown to be 
throughput effective, then the additional 
hardware is justifiable. To determine this 
requires some analysis, a detailed simulation 
of the scheme and an investigation into 
typical loop profiles. 

To begin with a determination of the 
crossover point between performing the 
algorithms and not performing the algorithm 
in an operating situation is required. 

A simple analysis to determine the cross
over point is presented below. Let us assume 
for simplicity that the time to perform the 
synthesis is directly proportional to the 
number of instructions in the loop. 

Let tn = time required to perform the 

synthesis; the loop is executed once as the 
synthesis is being performed. 

Let t 1 = time to execute the loop once 

using unsynthesized instructions. 

Let t 2 = time to execute the loop once 

using the synthesized instructions. 

Also assume t = bt n 1 where b > 1 and 

tl = at2 where a > 1. 

Let y = number of cycles through the loop. 

Now let us examine two specific cases: 

Case 1 y = 2 

Since two cycles are required before the 
synthesis begins, then no time is gained or 
lost. 

Case 2 y > 2 

The time to execute the loop y times with no 
tuning is t 1y and the time to execute the 

loop y times using the algorithm is 

(1) 



To determine the break-even point: 

or y = 2 + ab - 1 
a - 1 

(2) 

(3) 

To determine the values a and b will 
require a simulation. Let us take an example. 
Let the execution improvement be two hence 
a = 2 and the time to synthesize relative to 
regular loop operation be a factor of 5 
hence b = 5, then 

2 + 2 x 5 - 1 = 11 times y = 2 - 1 ( 4) 

through a loop before improvement occurs. So 
if the average number of times through a loop 
(which references a number of locations in 
the CAM) is greater than 11 the method is 
useful. 

The simulation of both of these synthesis 
techniques were performed on the HP 2100A for 
two programs: a data move program in which 
data is moved from one area of core memory to 
the other, and a linear search program where 
the target is sequentially stepped through 
the memory locations containing the data 
being searched. The basic timing results are 
shown in Figures 3 and 4. 

As one can observe the crossover between 
time on the standard HP 2100A and the HP 2100A 
with the pointer list technique employed is 
4.0 times through the loop for the data move 
program and 4.3 for the linear search. Further 
modification of the pointer list technique to 
incorporate the special registers for repeated 
operands gives a crossover of 4.0 for the data 
move and 4.1 for the linear search. The per
cent improvement in per loop performance is 
given in the table below. 

Pointer List 

Modified Pointer 
List 

Data 
Move 

55 

98 

Sequential 
Search 

86 

150 

Notice that in the linear search simulation the 
entire synthesis phase had not been complete 
when the target had been located. Likewise, 
although to a lesser extent, with the data 
move because the return jump was not executed. 
Making a linear approximation to the graphs 
in Figures 3 and 4 at the synthesis point and 
substituting these approximations into the 
analytical equations yields a crossover of 
3.98 and 4.3 for the data move and sequential 
search respectively for the pointer list 
technique. Similarly for the modified pointer 
list technique we obtain 3.99 and 4.2 as the 
crossover points. 

Cache Versus or in Combination with Microcapture 

To compare the performance of these two 
architectural techniques in the execution of 
small loops the data move and the linear search 

168 

programs were analyzed. This analysis was 
based on the HP 2100A simulation using a 
faster memory. The assumptions madei for 
this analysis are: the HP 2100A operation 
remains the same, the cache memory cycle 
time is equal to two (2) microcycles, and 
the percentage of bits on the cache is 100. 
Figures 5 and 6 show the difference.between 
the HP 2100A using microcapture techniques 
and the HP 2100A using a cache memory. 

It is also interesting to investigate 
using the two techniques in combination with 
one another. Figures 7 and 8 show the 
performance improvement that can be gleaned 
by using these techniques together. 

There are three primary areas for trade
of f s between the two techniques. These areas 
are performance when executing loops, types 
of systems each can be used with, and the 
cost of implementing each technique. 

A performance comparison can be mad1:i by 
examining Figures 5 and 6. The crossover 
point between the cache and the modified 
pointer list is 10.0 times through the loop 
in one case and 15.7 times through the loop 
in the other. For the microcapture tuning to 
be better than the cache requires the avc3rage 
number of times through captured loops to be 
greater than 10 or 15. 

In order for a computer system that 
utilizes a cache memory to be easily imple
mented and produce a relatively high hit/miss 
ratio, it has to be able to move the data 
into its cache memory in blocks rather than 
as single instructions. This requires the 
computer to have a paged memory management 
system. Typically computers that have p.aged 
memory systems are relatively expensive 
($75,000 and up). This limits the usage of 
a cache to larger systems. The microcapture 
tuning technique, on the other hand, can be 
utilized in any level of computer system. 

The third area, cost of implementation, 
is important due to the order of ma~Jni tude 
difference between the cost of the two 
techniques. A 1024 word 16 bit/word cache 
memory costs approximately $2,500 while the 
cost of implementing the microcapture hard
ware is about $300. 

From an examination of Figures 7 and 8 
it is evident that a performance improvement 
can be gleaned if the two techniques are used 
in conjunction with one another. S:Lnce the 
performance improvement is present and the 
cost of including microcapture in a system 
which uses cache memory is very small, it is 
reasonable to use the two techniques in 
combination. 

SUMMARY AND FUTURE EFFORTS 

To determine the usefulness of these 
tuning methods, typical loop profiles in 
programs should be analyzed. This would 
include the determination of the "average" 
number of instructions per loop and the 
"average" number of times a single loop is 
executed in a given environment. If this 



"average" number of times through a small loop 
is larger than the crossover, then the 
synthesis procedure is a useful technique 
because of the definite throughput improve
ment. 

REFERENCES 

1. Abd-Alla, A.M. and Karlgaard, D.C., 
"Heuristic Synthesis of Microprogrammed 
Computer Architecture", IEEE, Transactions 
on Computers, Vol C-23, No. 8, August 
1974, pp. 802-807 

2. Meltzer, A.C., Private Communication, 
Chairman of the Electrical Engineering 
and Computer Science Department at 
George Washington University 

3. Hewlett-Packard Company, Microprogramming 
Guide for the Hewlett-Packard Model 2100 
Computer, Hewlett-Packard Company Document 
5951-3028, February 1972 

ALGORITHM STEPS 
Determine Loop Bounds 
for Highest Frequency 
Loop 

1 
Assign Highest Pre-
quency data references 
within the loop to 
working storage regis-
ters 

1 
Create Working 
Register 
Preload Micro-

·a iOT"lt:; 

1 
Create Register-to-
Register Equivalent 
Instruction Stream 

1 
-

Translate Register-to-
Register Stream to 
Micro-Operation Stream 

1 
Optimiz.e Micro-

!----operation Stream 
I--

I 
Create Main Memory 
Restore Micro-
operations ... -r 

. __ J ___ _ 
~ele~e unnecessary 
proloads and restores 
where applicable 

SYl\TTEES IZ ED 
.HICROCOD3 

Pre load 

Instruction 
Body 

Restore 

11 
To Control 
Storage 

Figure l 

169 

Comparator f 110 f 

Program 
Counter "----.1 

1 
I 

-~ 
RAM 

I ~ Re iste 

Address 
Counter 

c Count 
J Jump 
0 Operand 
S Status 

I 
Field 

Indirect 
Content 
Addressable 
Memory 

Fla0 
Register 

c J 0 S I 
I 

I 

I 

I 

Random 
Access 
Memory 

Figure 2a TRACE HARDWARE 

RAM FIELD FUNCTIONAL DESCRIPTION 

r 

c 
J 
0 

* 

If Flag set, set count to 1 
Set to 1 if a jump instruction 
Set to 1 if an operand 
If comparison true adjust 

mapper to execute from 
synthesizer routine 

FIGURE 2b Random Access Memory 

DATA MOVE 

700 1 time 

600 
I in 
i- microcycles 

500 

400 -

300 -

200 -

100 

1 2 3 4 5 6 7 

Number of times through loop 

Figure 3 

a-standard 
b-pointer list 
c-modified pointer list 



700 

600 

500 

400 -

300 

200 

100 

LINEAR SEARCH 

time 
in 

microcycles 

--'---l--1--.. 1. ·-···-- I 

1 2 3 4 5 6 7 

Ntunber of times through loop 

Figure 4 

a-standard 
b-pointer list 
c-modified pointer list 

DATA MOVE 

I 
700 r time 

in 
micro cycles 600 ,_ 

500 

400 

100 

1 2 3 4 5 6 7 
Number of times through loop 

Figure 5 

a-standard 
b-pointer list 
c-modified pointer list 
d-cache 

170 

LINEAR SEARCH 

700 time 
in 

600 - microcycles 

500 

400 

300 

200 

100 

700 

600 

500 

400 

200 

100 

1 2 3 4 5 6 7 

Number of times through loop 

Figure 6 

a-standard 
b-pointer list 
c-modified pointer list 
d-cache 

DATA MOVE 

time 
in 

microcycles 

1 2 3 4 5 6 7 

Number of times through loop 

Figure 7 

a-standard 
b-pointer list 
c-modif ied pointer list 
d-cache. 
e-cache/pointer list 
f-cache/modif ied pointer list 



LINEAR SEARCH 

700 
time 
in 

600 · microcycles 

500 -
a 

1 2 3 4 5 6 7 

Number of times through loop 

Figure 8 

a-standard 
b-pointer list 
c-modified pointer list 
a-cache 
e-cache/pointer list 
f-cache/modif ied pointer list 

171 



A CHARACTER-ORIENTED CONTEXT-ADDRESSED 
SEGMENT-SEQUENTIAL STORAGE 

LEONARD D. HEALY 
Computer Laboratory 

U. S. Naval Training Equipment Center 
Orlando, Florida 32813 

The Context-Addressed Segment-Sequential Storage 
( CASSS) described-in this paper pro vi des a solution to 
the problem of data retrieval from a large, nonpreor
ganized file. It provides this capability entirely by 
hardware, eliminating the need for special data struc
turing solely for the purpose of reducing search time. 
The major features of the architecture of a character
oriented CASSS system are described, including the 
basic hardware configuration selected to implement such 
a system and the set of search instructions chosen to 
provide a wide variety of search operations useful in 
information retrieval. Of particular importance in 
this application is the method of quasi-parallel 
instruction execution, which allows a full string 
search of the entire data base in a single cycle of 
the sequential storage device used. 

Introduction 

Conventional information retrieval systems limit 
-the user to a search capability restricted in either 
the flexibility of the search that can be conducted or 
in convenience in access to the system. The direct 
search--comparison of the contents of an entire file to 
a search criterion--provides the most comprehensive 
capability. However, the time required for transfer of 
the entire data base to core storage for search limits 
this technique to applications where a number of 
queries can be accumulated and processed in a single 
batch operation. Conventional on-line data retrieval 
systems obtain the shorter search time needed by 
augmenting or restructuring the file (e.g., indexes and 
inverted files). This limits the possible searches to 
those supported by the particular file arrangement 
chosen and compounds the problem of file maintenance. 

Earlier special-purpose hardware systems for 
information retrieval relied upon keywordsl,2 or 
summary records.3 More recently proposed systems4,5,6 
provide a sophisticated search capability that just
ifies the term context-addressing rather than content
addressi ng. Since the storage structure of these 
systems consists of sequentially accessed storage 
(e.g., disc tracks), the system is referred to as a 
f_ontext-~ddressed ~egment-~equential ~torage (CASSS). 

CASSS Organization 

The data structure used in the CASSS system is a 
one-dimensional array of words called a file. From the 
software viewpoint, collections of words related in 
some way are stored together in a contiguous section of 
the file called a record. Figure l shows how a file of 
mixed-size records is mapped into a linear list and 
then divided into segments to match the storage struc
ture. The function of search and retrieval operations 
is to examine all records to determine which ones 
satisfy a search criterion and to transfer those 
selected to the core storage of the host computer. 

The basic architectural element in the system is 
the cell, consisting of a storage segment and its 
associated processor. Figure 2 shows a block diagram 
of the system. Each cellular processor, under command 
of the common controller, can perform a search of its 
entire storage in a single rotation of that storage. 

The controller is used to broadcast instructions to 
the cells and to provide the other functions needed to 
interface the CASSS sys tern to its host computer. 

RECORDS SEGMENTS DISC I 
TRACKS : 

• I 

~}~{~}~()1-
SOFTWARE MAKEUP HARDWARE PLACEMENT 

Figure 1. Storage of Records as Segments 

CENTRAL PROCESSOR 
INPUT/OUTPUT CHANNEL 

BROADCAST/COLLECTOR BUS 

Figure 2. System Block Diagram 

This organization offers advantages other than 
its rapid search capability. It can simplify the soft
ware support needed by eliminating the need for multi
level mappings both from high-level retrieval languages 
to machine language and from user-oriented view of data 
to machine-dependent ~torage structures.7 The simi-
1 ari ty between the procedure used to specify a query 
using a high-level language and the execution of the 
hardware instruction set in a CASSS system has been 
demonstrated.a 

Character-Oriented CASSS 

This paper describes a CASSS architecture for 
the handling of data stored in their natural form {the 
character strings familiar to the user) rather than 
~needed in some manner to enhance retrieval operations. 

172 



It allows retrieval of information from a file that is 
not necessarily preorganized by retrieval operations 
that are not necessarily planned before the file is 
created. This does not preclude special file organ
izations or search methods, but it does dictate a set 
of choices in the architecture that are different from 
systems that are limited to more organized data struc
tures or search methods. The major features of this 
design are the organization of the cellular processor, 
the instruction set and a means of executing instruc
tions in a quasi-parallel manner, and the I/O sub
system that provides autonomous retrieval of selected 
records. 

Processor Design 

The design of a cellular processor to perform 
string search operations is a compromise between the 
full string search capability of SNOBOL4 and what is 
both useful in searching large data bases and practical 
to implement by a sequential search. The design steps 
consist of selection of a data representation method 
and a hardware configuration to perform the search. 

Data Representation 

The choice of the character as the atom of 
information to be stored requires a suitable alphabet 
for data representation and to provide extra code 
combinations not in the data set for control functions 
needed in implementing the search algorithms. The 
Extended Binary-Coded-Decimal Interchange Code (EBCDIC) 
suggests 1tself for th1s purpose, but any character 
code with unassigned combinations could be used. The 
extra codes are needed to replace control functions 
that were handled in previous CASSS systems4,5,6 by 
flag bits appended to each word. Flag bits were 
appropriate where the word being stored was relatively 
long and the flag bits occupied very little of the 
total storage. However, flag bits appended to each 
code in the 8-bit character representation of data 
result in a 12.5 per cent increase in the hardware 
required. 

Character Marking 

The most restrictive change caused by the use of 
control codes instead of flag bits is the marking of 
characters during search. The process of searching all 
records in storage and marking those that satisfy a 
query is performed in steps by marking individual 
stored characters that satisfy some criteria. Char
acters are marked by substituting a mark symbol, 
designated !i1, for the character code. The companion 
operation of unmarking a character previously marked is 
accomplished by reversing the substitution process. 
The comparand character for each search conducted is 
placed in a register for temporary storage at the end 
of the search cycle. During the next cycle; while the 
search and mark operation is being performed, the 
characters marked on the previous cycle are unmarked 
by substituting the character held in the temporary 
storage. This substitution method limits each indiv
idual search instruction executed to the marking of 
one specific character, but the saving in storage cost 
by avoiding an extra bit in each character far out
weighs the effect of this restriction. 

processor Organization 

Figure 3 shows a block diagram of the search 
portion of the cellular processor. Details of the 
search instructions, presented in the next section, do 
not alter the basic configuration. The dotted boxes in 
the block diaqram represent connections to other parts 

173 

of the cell, and the solid boxes represent the func
tional elements required to execute the search instruc
tions. Table I indicates the purpose of each block. 
Instruction execution consists of circulattng the data 
and rewriting them in the sequential storage. When 
marking or unmarking of a character is called for, 
the appropriate symbol is substituted into the recirc
ulation loop. 

_C 
r ORIGIN 1 
1 

SIGNAL 1 

'- - - - _J 

OPERATION 
DECODER 

WR I TE 
LOGIC 

CODE 
GENERATORS 

CODE 
DETECTORS 

_c WORD 
REGISTER 

rMRITE1 

I HERD 1 

L - - .J 

Figure 3. Instruction Execution 
Portion of Cellular Processor 

Table I 
Processor Functional Elements 

r READ 1 

I HERD I 
L - - .J 

Timing lli~· The timing signal provides a series of clock pulses for the 
entire processor. These clock pulses are synchronized with the data from 
external sources. 

~ri~in llinal. The origin signal provides an output that is true ("l") only 
urrng t!lefirst data bit available from the sequential storage. 

Read Head. The read head provides the serial data stream representing the 
lriToriilatTon in the sequential storage. 

Write Head. The write head enters the serial data stream provided at its 
TriPUt Tiito. the sequential storage. The positioning of the heads is such that 
the data entered into storage replace the data currently available in the 
word register. 

~~~!r~h~~o~P~~s 3~:t i ~~t~~c~!o~0 ~~ ~~d e~~c~~:~a~~n~~!is i ~~i ~~t~~e~~~i on 
character being searched for.

Time Decoder. The time decoder provides eight separate pulses, defining the
eTghtDTtfiltervals during the serial processing of a single character.

Code Genera tors. The code genera tors produce a serial 8-bit code corresponding
to ea~ symbol that must be recognized by the processor.

Code Detectors. Code detectors provide recognition of each of the special codes.

~a~~~~ s~:~ ~g ~~~c:~~~d r~~i ~!e~x~~~~!~e~e~o~~ei~h~~:~t~~ ~~~{ ti~n a:~~~ the
storage.

~~m~:~~~~e~e~~~ ti~. se~~:n~~~~a~~~~a~::i s i~r r!~e~~:~ ~~s h~~~uih~r~~a~~~ter to
instruction operand during the first character time and recirculates its
contents during other character i nterva 1 s.

iheP~~:~~ oE~9
J ~!~~~ct i~~. te7~o~:~~i ~=~i ~ i~r i ~~u~s~~o~0 t~~ 1 ~o~~: r~~~P~~~~~ t!~om

during the first character time and recirculates its contents during other
character intervals.

Equality Q.~. The equality detector compares the input to the comparand
reg1 s ter to the input to the word register.

Write '=.Q.gi"-. The write logic connects the appropriate code generators, the
temporary register, or the word register to the write head.

Control. !:.Q.gj_£. The control logic consists of an instruction decoder and the
logic nece!;sary to provide control signals to the other elements in the cellular
processor.

Search Instructions

The format of the search instructions used in
the character-oriented CASSS system is a character
string. The first character denotes the instruction
code, and succeeding characters specify the operand.

The elementary search instructions have a single
character operand; the more complex instructions have a
variable-length operand. Table II gives a description
of the search instructions selected for search of non
preorgani zed data bases. A more formal instruction
definition in APL notation is available in a report.9

Table II
Description of Search Instructions

The following instructions mark each stored character that satisfies the
conditions g1 ven and unmark any previously marked characters that do not
sat1 sfy these conditions.

• Mark Character
MC C

• String Search
SS C

• Ordered Search
OS C

•Ordered Field Search
OF Z C

•Move Mark
l+I 08 ~ C

•Inequality Search
IS Z C1 c2 ••• CN Z

Matches the comparand C.

Matches the comparand C and fol lows
inmediately a- character marked by the
previous search.

Matches the compa rand C and fo 11 ows a
character in the same record marked by
the previous search.

Matches the comparand C and fol lows a
character in the same record marked by
the previous search with no 1 nterveni ng
end-of-field code Z.

Matches the comparand C and fol lows a
character in the same record marked by the
previous search by exactly D characters
(where D is specified by Da Db treated as
a bi nary number).

Matches the de 1 im1ter specified by Z and
follows a numeric string that: (1) follows
inmediately a character marked by the
previous search, and (2) satisfies the
comparison (< .~.~. 'I,?_,>)

The following instructions add the quantity C1 C2 ... CN treated as a binary
to the contents of the first threshold accumulator if the conditions shown are
met. They unconditionally unmark all previously marked characters.

•Threshold Addi ti on The record was marked by the previous search.
TA N C1 C2 ... CN

•Threshold Prime The record was not marked by the previous search.
TA N Cl C2 ... CN

The following instructions compare the contents of the threshold accumulator
designated to the comparand c1 c 2 ... CN according to the comparison option
(<,~1 =,f,?_») specified and perform the additional functions indicated.

•Threshold Test If the comparison between the comparand and the

TT N cl c2 ... CN i~~~!m!~~e~~~l~e~~~~m~~~!~~o;~ ~~~~~~~:~~~by
one. Reset the first accumulator to zero.

•Threshold Compar1! If the comparison between the comparand and the
TC N C1 C2 ... CN second threshold accumulator is successful, mark

the !!_1 symbol fol lowing the second accumulator.
Reset the second accumulator to zero.

Elementary string searches are performed using
the first three instructions in the list. For example,
the search for the string ABCDE$, where $ represents
an arbitrary string including the null string, is done
by the instruction sequence: MC A, SS B, SS C, OS D,
SS E. Execution of this program leaves the E in each
string in storage that matches the input string marked.

The next three instructions in the list are
designed for use where the user knows the data format.
These instructions allow the progranmer to locate
fields within a record that are identified by a header
or are a fixed number of characters from some other
field that can be located. The Move Mark (MM) and
Inequality Search (IS) instructions iTlustrate the
effect of the limitation imposed by the substitution
method of marking characters. It is not possible to
move the mark ahead by a fixed distance--the marking
must be limited to a specific character. Similarly, a
numeric string to be marked if it meets some arithmetic
comparison (<,<,=,~,>,>)must be followed by a known
delimiter, allowing the marking to be restricted to
a specific character. Any non-numeric symbol in the
data alphabet may be used for the delimiter. The
characters within the comparand field for the IS
instruction must be numbers.

174

The threshold instructions provide the capa
bility to evaluate retrieval criteria based upon some
Boolean or threshold function of individual string
searches. This feature requires the addition of two
accumulators, designated A1 and A2, respectively, at

the end of each record. A control symbol, designated
~l' is placed before, after, and between these accumu-
lators to allow the processor logic to locate them.
The first accumulator, with its associated threshold
instructions, allows evaluation of any linearly sepa
rable threshold function of individual string searches.
The second accumulator, with its associated instruc
tions, allows evaluation of any m-out-out-n function of
the functions evaluated using the first accumulator.
This capability allows efficient evaluation of a wide
range of search functions of interest in information
retrieval.

Search Example

Use of the instructions is best illustrated by
an example. Assume a file made up of personnel
records, with the arrangement of the first nine fields
as shown in Table III. Let the problem be retrieval of
all records that satisfy the following criterion:
{(Name: Julia Smith) OR (Maiden Name: Julia Jones) OR
((Name: Smith) AND (City: Gainesville, Florida))
OR ((Maiden Name: Jones) AND (City:
Florida))) AND ((No. Dependents: .::. 4) OR (Sala~y:

> 150. 00)).

Table III
Field Allocation within Each Record

Delimiter Field Use Field Length

.QI Social Security No . 9 characters

Name Variab'le

/l I Street Address Variab"le

/2/ City, State Variab"le

/3/ Zip Code 5 char.1cters

Date of Birth 6 char.acters

Mai den Name Variable

/4/ Salary Vari ab 1 e

/5/ No. Dependents Variable

/6/

Let a set of Xi's, where l ..::_ i.::. 6, represent
the truth value of the individual string searchE!S. The
search function is (X1 v x2 v x3 v x4) A (X5 v x6). It
can be implemented by the appropriate set of string
searches followed by threshold operations. Table IV
shows how the threshold instructions are lJlsed in the
search program. Execution of this program causes all
records that satisfy the query to be marked in the
delimiter following the second threshold atccumu·lator.

Table V shows a section of the complete program.
It illustrates the method of locating the field de-
1 imiters and moving the mark over fixed-length fields
to reach the field to be searched.

Quasi-Parallel Instruction Execution

Since each instruction performed by the CASSS
system requires a search of each record in storage,
the execution time for a single search instruction is
at least the time required to traverse all records.

INST.

14. TA

30. TA

58. TA

77. TA

78. TT

83. TA

88. TA

89. TT

90. TC(IT)

INST.

I. MC

2. MM

:3. SS

4. SS

!). SS

6. SS

7. SS

II. SS

9. SS

10. SS

11. SS

12. SS

13. SS

14. TA

15. MC

16. SS

17. SS

18. ,...,

19. SS

20. SS

21. SS

Table IV
Use of Threshold Instructions

COMPARANO REMARKS

(String Search for X1)

1,1 Add one to first threshold accumulator in those
records where search is succsssful.

····· (String Search for X2) ·····
1,1 Add one to first threshold accumulator in those

records where search is successful.

. (String Search for x3)
1,1 Add one to first threshold accumulator in those

records where search is successful.

..... (String Search for x4)
1,1 Add one to first threshold accumulator in those

records where search is successful.

1,1 Add one to second threshold accumulator in those
records where the first accumulator holds at least
one.

..... (String Search for X5)
1,1 Add one to first th res ho 1 d accumu 1 a tor in those

records where search is successful.

····· (String Search for X6) ·····
1,1 Add one to first threshold accumulator in those

records where search is successful.

1,1 Add one to second threshold accumulator. in those
records where the first accumulator holds at least
one.

1,2 Transfer to core storage the identifier for each
record for which the second threshold accumulator
holds at least two.

Table V
Search Program Example

COM PA RAND

!!.1

10,0,"J"

"U"

"L"

"!"

"A"

"S"

"M"

"!"

"T"

"H"

"/"

l,l

"/"

"3"

"/"

12 ,0, "J"

"U"

"L"

"!"

REMARKS

Mark start of each record.

Locate and search first character in name field.

Continue name search.

Comp 1 ete name search.

Add one to first threshold accumulator in
those records where search is successful.

Begin second search sequence.

Mark beginning of zip code field.

Locate and search first character in maiden
name field.

Continue maiden name search.

175

However, it is possible in most circumstances to
execute several search instructions during one sequen
tial storage cycle. Though this adds to the cost of
the cellular processor, it results in an "effective"
implementation. The quasi-parallel execution of k
instructions results in a k-fold decrease in search
time with only a small increase in processor hardware.
Without this feature, the character-oriented CASSS is
not practical. A search rate limit of one character
per sequential storage cycle is too slow to be useful.
For example, the search program for the sample problem
above would take almost 100 storage cycles it if were
executed one instruction per cycle. Quasi-parallel
instruction execution reduces the time required to six
storage cycles.

The string matching that is characteristic of a
typical search program makes quasi-parallel execution
possible. Each string search program begins with an MC
instruction and executes a sequence of comparison
operations. The search ends by marking the character
at the end of the desired string or by using the result
of the string search to increment the threshold accu
mulator at the end of the record. An example of such a
program is the task of incrementing the first threshold
accumulator in those records that contain the string
ABCD$.

The program to perform this search is: MC A,
SS B, OS C, SS D, TA 1,1. Fi$ure 4 shows the diagram
of a sequential machine in which the states indicate
the instruction to be executed next~ At each step,
the machine considers only three comparands: (1) symbol
!!.1 to determine whether the TA instruction must be
executed, (2) the comparand of the instruction being
executed, and (3) the comparand for the previous MC or
OS instruction. In other words, the only possible
options during the search of the data are: (1) to end
the string se.arch because the end of the record has
been reached, (2) to continue the search of a contig
uous string of characters satisfying the search, or
(3) to reinitiate the string search from the beginning
of the comparand string to be matched.

Figure 4. Instruction Selection

There are two limitations upon the quasi-
paral lel execution of instructions. The first is that
parts of two different string searches cannot be
executed together. This restriction is made part of
the logic of the cellular processor. The second
restriction is data dependent and cannot be solved by
hardware. If a string used as comparand is embedded

in a stored string such that its occurrences overlap,
only the first of these stored strings is marked by
the string search. For example, the string ABABAB
contains the string ABAB twice, but the search for the
string ABAB using quasi-parallel execution of instruc
tions will detect only the first occurrence of that
string.

Fortunately, the problem of embedded strings
does not occur in the major applications of the CASSS
system. In those cases where it is a problem it can
be corrected by programming. A dummy instruction is
added for this purpose. Its only function is to signal
the hardware to perform instructions before and after
the dummy instruction on separate storage cycle. In
the case of the string search ABAB, a dummy instruction
inserted in the middle of the search instructions
causes the search for the first AB to be separated from
the search for the second AB. The result is that the
string ABABAB in storage is marked after each occur
rence of the string ABAB.

Correct results in searching for embedded strings
can be guaranteed by breaking the string to be
searched into substrings such that no substring repeats
its initial character. This algorithm is not imple
mented in hardware because it is not an 11 effective 11

solution to the problem for all applications. For
example, the search program for the sample problem in
the previous section can be performed correctly in six
storage cycles (one cycle for each separate string
search to be evaluated}, but implementation of the
above algorithm divides the search so that it takes 15
storage cycles. The choice of how to break the strings
is left to the programmer, becaase efficient program
ming depends upon a knowledge of the data base. For
applications other than text editing, the programmer
can probably do a more efficient search than that
obtained by direct application of the algorithm that
guarantees correct search of any possible storage
contents.

Data Transfers

The character-oriented CASSS system uses the I/0
techniques common to third-generation computers. The
interconnection to the host computer consists of"a
low-speed I/0 channel for transfer of search instruc
tions and a direct port to core storage for high-speed
data transfer. The I/0 subsystem provides the capa
bility to read, replace, or modify either entire
records or portions of records. Data transfers, once
initiated by a command from the host computer to the
CASSS system, are executed without further intervention
by either the computer or the search execution portion
of the CASSS system.

Marking Records for Transfer

The semi-autonomous transfer of data requires
the addition of several character positions in each
record immediately after the record delimiter code.
The first two positions hold a binary number repre
senting the record length, and the next one or more
character positions provide one-bit control flags for
each high-speed data path provided. Once a record is
marked, the transfer is performed and the flag is reset
by the I/O controller. The transfer paths share the
common entry port to core storage and thus do not
operate in para ·11e1 . However, each transfer pa th has
the characteristics of a channel and will be referred
to as such. The number of channels, and thus the
number of control positions in the record header, is
made optional to fit the particular use.

The major problem in record retrieval is moving
the mark that is entered in the record contents by the

176

search operation to the beginning of the record. This
is a backward-marking operation that cannot be done by
sequential storage. The simplest way to acc:omplish
it is to provide a bit-per-record random acc:ess
storage, but this is inefficient use of storage in a
system that holds a large number of records. Instead,
this design takes advantage of a characteristic of the
search problem--the number of records to be marked is
much less than the number of records stored. There
fore, it is less costly to store complete iclentif·iers
for the few records than to store one bit for each
record.

Three alternatives for providing this storage
suggest themselves: (l} adding several words of storage
within each cell, (2) providing a single storage shared
by all cells, and (3) using an assigned buffer area in
the central computer's core storage. The last method
is selected because of its flexibility. The number of
records retrieved by a search is likely to vary widely
for different cl asses of retri eva 1 problems.. The first
two methods require that storage hardware bi~ sufficient
to satisfy the type of search that retrieves the most
records. A buffer area in core storage can be altered
in size according to the class of problems being
solved.

A record can be identified by either its
position within the file (e.g., the 29th record) or by
its phys i ca 1 1 oca ti on (e.g. , the 10th record in the 3rd
cell}. The former method is the one selected, because
it uses a file characteristic rather than a storage
characteristic. The record number is useful in refer
ences between records, even in a dynamic situation,
whereas a physical location is not.

Use of the record number imposes the burden of
translating between record number and physical location
upon the cellular processor. Three registers are added
to each cellular processor for this purpose. These
registers hold: (1) the first record in the cell, (2)
the last record in the cell, and (3) the record most
recently processed by the cell. The last register is
used for encoding record location to record numbe!r, and
the firt two allow the cell to recognize those iden
tifiers that refer to its contents.

The marking of records for transfer is done in
two steps. The first step is performed by the last
search instruction in a sequence. The Identifier
Transfer (IT) option is added to each of the search
Tnstructions to cause the identifier for each rec:ord
marked by the instruction to be transferred to core
storage. When this option is selected, the normal I/O
transfers are interrupted while the instruction is
being executed. As each cellular processor performs
its search operation, it sends the identifier for each
record it marks to the I/0 con troll er.

The transfer of record identifiers is much
faster than the transfer of the records themselves for
two reasons. First, the amount of data to be trcrns
ferred is much less, so that fewer overlaps occur.
Secondly, each cell provides temporary storage of the
identifier it is trying to transmit for the length of
time it takes to process the next record. Only in the
case of sustained occurrence of overlaps does the
identifier transfer take more than one cycle of the
sequential storage.

Record Retrieval

The Input-Output (IO} instruction selects a
channel for transfer of records indicated by the
references in core storage and initiates the transfer
by marking the selected records at their begining.

Only the part of the operation concerned with re
trieving the identifiers from core storage and routing
them to the proper cells is considered here. The other
aspects of the IO instruction are essentially like
those used with a conventional disc controller.

The transfer of record identifiers from core
storage begins by temporarily halting any normal I/0
transfer that might be in progress. The identifier
block in core storage is then broadcast to all cells,
starting with the first word in the block. The broad
casting is done one word at a time, with the controller
waiting for a reply before sending the next word in the
sequence. The cell that holds the indicated record
(readily determined since each cell has a register to
hold the upper and lower record numbers stored in its
segment) accepts the information and sends a reply
signal. The cell uses this information to mark the
record indicated in the appropriate I/0 flag bit the
next time it becomes available from sequential storage.
The execution of the IO instruction is complete when
the channel for transfer is established and all records
to be transferred are marked in the flag bit for this
channel in the record header. The transfer itself then
proceeds in parallel with other operations b~ing
performed by the CASSS system.

Summary

The CASSS architecture that has been developed
provides an effective solution to the problem of re
trieval of information from large files that are not
necessarily preorganized. It allows implementation of

Acknowledgements

The author wishes to acknowledge the advice,
help, and assistance in conducting this research given
him by Ors. Keith L. Doty, Gerald J. Lipovski, and
Stanley Y.W. Su of the Electrical Engineering Depart
ment of the University of Florida.

I.

2.

References

R. H. Fuller, R. M. Bird and R. M. Worthy, 11 Study
of Associative Processing Techniques, 11 Rome Air
Development Center, Griffiss AFB, N. Y., TR No.
RADC-TR-65-210, Sept. 1965.

J. L. Parker, ~ Lo~~c ££!:_Track Information
Retrieval Syst~m, .D. dissertation, Department
of Computer c1ence, University of Illinois,
Urbana, Illinois, Feb. 1971.

3. G. F. Coulouris, J.M. Evans and R. W. Mitchell,
"Toward Content-Addressing in Data Bases, 11

Comput.J., vol.15, pp. 95-98, May 1972.

4. B. Parhami, 11A Highly Paralle·l Computing System
for Information Retrieval, 11 in 1972 Fa 11 Joint
~· Conf., AFIPS Conf. Proc. ,vol. 41 pt. 2.
ffintVale~ J.!Afii5SPress:l972, pp. 681-690.

177

sophisticated search strategies based upon file con
tent--searches that a conventional system can perform
only by time-consuming direct search--in a time com
parable to that obtained in a conventional system only
by using a highly structured file organization. It
simplifies the problem of file maintenance by removing
the need for highly structured file organization solely
to enhance retrieval.

The ability to search unformatted data is
obtained by storing data as a character string and
searching it by string matching operations. The search
is performed rapidly by dividing the total data base
into a number of segments that are searched in
parallel. The implementation of complex searches is
made possible by an instruction set tailored to perform
searches for character strings and by a scheme for
quasi-parallel execution of search instructions. This
latter feature is the most important attribute of the
architecture. It makes the string search technique
feasible by searching for an entire string rather than
a single character at a time.

The input-output subsystem provided is an adap
tation of the method used on third-generation computers.
This gives the same magnitude of improvement over
previously proposed search and retrieval systems that
the change to autonomous input-output transfers gives
over second-generation computers. The use of the core
storage of the host computer as the random access
storage needed in marking records for output provides
a means of handling cross-references and multi-linked
data structures.

5. L. D. Healy, G. J. Lipovski and K. L. Doty, "The
Architecture of a Context Addressed Segment
Sequential Storage, 11 in 1972 Fall Joint Comput.
Conf., AF I PS Conf. Proc. :vDJ:4T j)t.2:-
Montva l~~ AFTPS Press, 1972, pp. 691-701.

6. G. P. Copeland, Jr., G. J. Lipovski and
S. Y. W. Su, "The Architecture of CASSM: A
Cellular System for Non-numeric Processing, 11 Proc.
First Annual Slmposium on Computer Architecture;
Gaines~ Fa, Dec. 1973, pp. 121-128.

7. S. Y. W. Su, G. P. Copeland, Jr. and G. J.
L ipovski, 11 Retrieval Operations and Data Repre
sentation in a Context-addressed Disc System, 11

Proc. ACM SIGPLAN/SIGIR Interface Meeting on
Programming Languages and Information Retrieval,
Gaithersburg, Md, Nov.-i973.

8. G. P. Copeland, Jr. and S. Y. W. Su, 11 A High Level
Data Sublanguage for a Context-addressed Segment
sequential Memory, 11 submitted for publication.

9. L. D. Healy, The Architecture of a Context
Addressed Segment-Sequential Storage, Ph.D.
dissertation, Department of Electrical Engi
neering, University of Florida, Gainesville, Fla,
June 1974.

SOME IMPLEMENTATIONS OF
SEGMENT SEQUENTIAL FUNCTIONSt

J.A. Bush G.J. Lipovski
S.Y.W. Su J.K. Watson

S.J. Ackerman
University of Florida

Gainesville, Florida 32611

Abstract

Since conventional computers are straining to handle
the increased size and sophistication of non~numeric
processing (data management, information retrieval,
artificial intelligence), a new class of non-numeric
architectures is evolving. The segment sequential ar
chitecture is one of these. Further development of this
architecture requires new techniques for multiple cell
operation and intercell communication to handle control
and search operations. This paper describes such tech
niques for instruction fetching, operand recall, string,
set and tree context searching, and pointer transfer.
It is expected that combinations of these techniques
will appear in :Euture architectures that are needed for
non-numeric processing.

1. Introduction

Recognizing a need for non-numeric processors to
support large data bases, several investigators have
been striving to develop suitable architectures: Fuller,
et al.,1965,2 Parham, 1972, 6 and Healy et al., 1972.3
Several systems have been proposed,1,3,4,5 and two of
them - CASSM at the University of Florida and RAP at the
University of Toronto8 - are presently being developed.
These systems all make use of sequential memory orga
nized as· segments associated with simple processors.

In the segment sequential architecture, 3 fixed
length words are organized into variable length records,
which are packed into a single file. See Fig. 1. The
programmer can consider this data to be in a single
file. •However, the file is broken into equal length
segments of words, and each segment is stored on a sepa
rate disc. track, CCD shift register, or magnetic bubble
memory.. In the following discussion, the terminology
appropriate to· discs will be used. A "microprocessor"
and. associated segment of memory are here called a cell.
A one-dimensional array of cells can search the file in
parallel in one cycle of the disc, as each cell operates
on tlJ.e, first word in its segment, then the next word in
the segment, and so on. See Fig. 2.

The segment. sequential architecture is claimed to
be particularly suit.able for non-numerical processing
because the software can ignore the location (unit, sur
face, track, sector, etc.) of words on the disc, and
can process the information where it is on the disc.
In addition the hardware can simultaneously process
words on different disc tracks so that arbitrarily large
data bases can be searched in the same time it takes to
search one segment. These two features make the architec
ture very attractive for data management systems, which
account for a very large share of day-to-day work done
on computers. For a discussion of further advantages
of such disc systems, see [9,10).

It should be noted that a segment can contain sev
eral records, and a record can span several segments.
The latter problem requires some intercell communication
so that records can be searched as a whole, for example
to find all sets that contain words a and b, even if a
and b are on different segments.

tThis paper was supported by NSF Grant GJ-43225.

178

memory
segment

SOFTWARE MAKEUP HARDWARE PLACEMENT

Figure 1-Storage of records as segments

Post

Processor

Main
Processor

cell i

to cell i+l

to I/O buss

Figure 2. Cell processor and Memory Segment

We suggest that the non-numeric procE~ssor has
evolved at this point to about where the numeric proces
sor had evolved in the early forties. ThE~ development
of techniques for random access memories :Ln 1943 had to
predate the development of the von Neumann architecture.
This paper presents a number of techniques for intercell
communication. It is intended to provide the kind of
background that the random access memory provided to
the von Neumann architecture. Based on some of these

techniques and others yet to be developed, a general
purpose architecture for non-numeric processing should
emerge, to be widely used in data management systems.

In this paper, implementations for five techniques:
instruction fetching, operand recall, string and tree
searching and pointer transfer are presented for multi
ple segment systems. Further techniques for input and
output in multiple segment systems are presented by De
Martinez. 1 Here, each technique is presented as in
dependently as possible from the others so that a sub
set of the techniques can be used in any future archi
tecture. However, they are so ordered that simple con
cepts presented first will help explain more subtle con
cepts given later. Generally, the techniques are first
presented for a single segment where they are easy to
describe. Then the more complex multiple segment case
is considered.

For purposes of discussion, the following conven
tions and definitions are used in the rest of this paper.
Fixed length words are divided into data and tag7 fields.
The tag field is used not only to identify word types
as data, instructions, operands or erased words, but
also tag bits are used to mark successful searches, and
so on. Data words are organized into records, whose
first word is especially tagged to be a delimiter word.
These records are organized, later in the paper, as
nodes in a tree. The file is divided into segments, as
depicted in Fig. 1, such that, the topmost segment con
tains the first record(s). As Fig. 2 shows, the cell
that contains each segment communicates to its next
upper and next lower neighbor, and to a common buss for
I/O. The ordering of records is thus retained by the
order of segments and the order within each segment. The
searching and rewriting of words from top to bottom on the
segment is called the scan, and the time after the bottom
word is processed, before the top word is again proces
sed, is called the gap. A cycle is a gap plus a scan.

Generally, an instruction, such as "Search for A" is
conducted in one or two cycles. The first cycle is exe
cuted in the main processor (Fig. 2) while the second cy
cle is executed in the post-processor if necessary. These
are concurrent so that the post-processor completes execu
tion of instruction i while the main processor executes
instruction i+l. This permits the processor effectively
to execute one instruction per cycle. The post-proces
sor operation is logically complete just before the
operation done by the main processor. (In practical
systems using garbage collection, delays are necessary
between post-processor and main processor.)

2. Fetch-Cycle-Equivalent Operations

Analogous to the fetch cycle operations of fetching
an instruction and recalling an operand in a standard
computer, the segment sequential architecture utilizes
techniques described below. During one cycle of the
disk, one instruction in the common register is executed
on the data in all tracks simultaneously. A second word
may or may not be required as an operand in the 0 regis
ter 'for the instruction. The instruction and operand,
if needed for the current cycle, are fetched in the
previous cycle.

2.1 Instruction Fetch

Some words on the disc are especially tagged to be
:instructions, in distinction to data or operands, and
some of these are further tagged from time to time as
active. It is possible to append active instruction
words onto the bottom of the disc from an external com
puter, or to activate instructions already on the disc
a:s a result of searching data on the disc. Among all
active instructions, the topmost is fetched to be the
:instruction for the next cycle, and is deactivated. By

other means, several consecutive instruction words can
be activated during one cycle, to be fetched one at a
time later. More generally, active instructions
scattered throughout the disc will be fetched one at a
time. Note that this is an instance of a general case
of first-in-first-out order (FIFO order) because words
can be appended at the bottom and used or removed from
the top of the memory (disc) •

2.1.1 Single Track. For single-track case, the
problem is to take instructions from the track in FIFO
order. This is done by saving the first active instruc
tion word encountered in a scan and then marking that
word as inactive so the next active word will be taken
on the next scan.

This technique requires a buffer register F.B and
a flip-flop F.FULL. F.FULL is cleared at the beginning
of each cycle. As long as F.FULL is clear, words from
the disc are loaded into F.B. Each word that enters
the main processor is checked to see if its tag indi
cates an active instruction and F.FULL is clear. If
they are, the instruction is marked inactive and F.FULL
is set. Thereafter, this prevents any succeeding words
from being chosen. At the end of the scan the copy of
the inst:r:uction word retained in F.B is sent to the !
Register, where it will be decoded as the instruction
for the next scan. During that cycle, another instruc
tion is to be fetched. F.FULL is cleared during the
gap time, to prepare for the next scan.

2.1.2 Multiple Track. The multiple track system
must fetch the topmost active instruction in the entire
disc. Consider a two-track disc in which the. upper track
(higher priority) has an active instruction A near its
bottom and the lower order track has an active instruction
B near its top. Word A should be fetched and deactivated
even though the two processing elements will meet B
first as they scan the tracks. Means to save at least
word A, and to deactivate only word A are required.
The proposed strategy is to save the topmost instruc-
tion within each segment as before, but not to deactivate
it. The location within the segment of the "fetched"
word is also saved as the word is "fetched" on each
track separately. During the gap, a priority circuit
determines the top cell that fetched an instruction.
That instruction is sent to all cells, and in the
following cycle, that cell deactivates its "fetched"
instruction.

This technique requires F.B, F.FULL as before, a
word counter WCT, two word-count-save buffers F.WCT.B
and F. WC'I', in each cell and' a conventional hardware
priority circuit (like an I/0 priority circuit) between
cells. (See Fig. 3.) In each cell, F.B and WCT are
initially cleared. WCT is incremented as each word is
scanned. The topmost instruction in each cell is found
as in the single-track case by saving the first active
instruction word in F.B and the word count WCT in
F.WCT.B, then setting F.FULL. During the gap, F.FULL
is used a.s an indication of 'instruction found' for in
put to a priority circuit which decides which cell with
F.FULL set is the highest. This topmost cell sends its
instruction from its F.B to the I-Registers in all cells
and its F.WCT.B to its own Post-Processor's F.WCT (so
that the instruction on that track will be deactivated
in the next cycle) • Other cells load a very large num
ber (11 ••• 1 >> max(WCT)) into F.WCT (so that no work
will be deactivated) • Deactivation will be done when
F.WCT is equal to WCT in the Post-Processor. All lower
order cells which found instructions are prevented from
transferring their F.B to the I register in all cells,
and their F.WCT will never equal WCT, so those lower
instructions remain active for the next cycle. Finally,
all F.FULL's are cleared, and the segment is ready for
the next scan.

179

data in

D
A
T
A

F.WCT.B

data out

from cell i-1

F.B

Post
Processor

to
cell
i+l

Main
Processor

cell i

to I/O
buss

Figure 3 -- Instruction Fetch Logic

2.2 Oper~nd Recall

A collection of words on the disc are especially
tagged to be a stack of operands in distinction to data
or instruction words. New operands are generally pushed
onto the stack on the bottom. If an operand is required
by an instruction, one word is popped from either the
top (FIFO order) or bottom (LIFO order) of this stack.
Popping an operand from the top of the stack can be
similar.to fetching an instruction. Identical but
separate hardware is used, except that the operand
word is actually erased from the disc rather than merely
deactivated. However, popping the bottom word on a
stack requires different techniques. In the following
section, techniques are presented for popping either
the top or bottom word of a stack, using the same hard
ware.

2.2.1 Single Track. While the instruction is
being fetched, it is not yet known whether an operand
will be needed. Nevertheless, an operand is saved but
not erased. When the instruction.is decoded and an
operand is indeed required, the last-found operand is
actually erased from the disc. If the operand is re
called from the top, one must save only the first
stack word. If the operand is recalled from the bottom
of the stack, one keeps saving all stack words. In the
end, the bottom stack word is the word that was last
saved, and it will be used as the operand in the next
cycle if it is needed.

These techniques require the word counter WCT and
save registers O.B, O.WCT and O.WCT.B, as well as flip
flop O.FULL. Initially, O.FULL is cleared, and is set
when a stack word is found. Similar to multiple track
instruction fetching, when an operand word is found it
is loaded into o.B and WCT is put in o.WCT.B uncondi
tionally if LIFO order is used, or conditionally on
a.FULL being clear if FIFO order is used. The recalled
operand is now in O.B and its locatioh is in O.WCT.B.

180

During the gap if the operand is found to b(e needed in
the next instruction, it is transferred to the operand
register O, while O.WCT.B is transferred to O.WCT in
the Post-Processor, otherwise a very large number is
put in O.WCT. In the next cycle, the word :image on
disc is era~ed by the Post-Processor if O.WCT equals
WCT.

2.2.2 Multiple Track. By simple extension to
the previous techniques, the multiple track case can
be handled. A priority network identical to that used
by the instruction fetch is used to locate the topmost
cell with an operand for the FIFO case. A mirror
image priority network is used to locate th<e bottom
most cell with an operand for the LIFO case. If an
operand is required, the operand in O.B in the cell
chosen by the priority network is loaded into 0 in each
cell, and O.WCT.B is loaded into O.WCT. In all other
cells, or if no operand is required, a very large num
ber is loaded into O.WCT.

3. Content and String-Context Searches

A search instruction may look for a word which
compares with the operand of the instruction. Th.is is
the basic content addressing mode of most associative
memories. As a result of such a search, all words that
satisfy the search are marked by setting a tag bit, and
"other words are unmarked by clearing this tag bit. It
would be possible later to find the marked words and
output them or rewrite part of them.

Alternatively, this mark can be passed, like a
token in a relay race, from one word to low(er words to
find a string of consecutive words. Suppos•e one wishes
to rewrite any word on the disc that follows a pair of
words, "a" and "b". One first searches for every occur
rence of an "a" in a word, marking that word. In the
next instruction, one marks only all words that have a
"b", and that are preceded on the disc by a previously
marked word. In the final instruction, one rewrites
all words that are preceded by a previously marked word.
Note that searching is conducted in the context of a
data structure, a string of words. In one v-ariation of
this operation (ordered set search) , the string on the
disc can have extra words, i.e. , the word s•equence axyzb
would satisfy this search. In another variation (in
verse ordered set search) the string on the disk can
have fewer words, i.e., the word sequence "a" alone
would satisfy the search. Various combinations of these
string searches can be used to recognize some misspelled
words, recognize patters, and so on. These operations
are easily carried out in a segment sequential architec
ture as we describe below.

3.1 Content Searches

As indicated previously in Fig. 1, all words are
fixed length and stored serially. Under no condition
is a word stored partly on one track and partly on an
other. Numbers are stored least significant bit first.
The•tag bit M that identifies marked words can be the
last bit of each word on the disc.

An equality comparison can be made using a JK
flip-flop S.T, which is initially set for each word.
As each word is scanned serially, the corresponding
operand bits and data bits from the disc arE~ compared
through an exclusive-OR gate to the K input, to clear
S.T if they differ. At the end of the word, S.T is
loaded into M and is then set for the next word. An
arithmetic inequality test can be done with a serial
subtracter. Bits can be ignored (masked out) by dis
abling the clock to S.T or the carry flip-flop of the
subtracter when such bits enter the comparator or by
ORing mask bits into both inputs to the comparator.
Considerable flexibility is obtained when the word is

divided into fields (e.g., tag, name, value fields) and
separate comparator checks ·each field. At the end of
the word, combinational logic is used to load the tag
bit M, based on the results of the various comparators,
and on the instruction bits that select various search
options. Some of the search options are discussed
below.

.3.2 Search Next

A search next is a search for a word satisfying
some basic criteria which immediately follows a word
satisfying some previous criteria (indicated by the
mark on that word) • The string search indicated in
Section 3 is performed by first searching for and marking
(setting M-Bit) of all words containing "a" as described
in Section 3.1; then performing, on the next cycle, a
search for all words containing "b" which immediately
follow a marked word (i.e., one with "a") as we describe
below.

3.2.1 Single Track. Herein, a dual rank flip
flop S.LAST is used to indicate the state of the mark
bit of the previous word encountered. The data word it
self is searched as in 3.1. S.LAST is cleared at the
start of a cycle. At the end of each word, S.LAST is
cleared if the comparator outputs a zero at the end of
the word~ then this value is exchanged with the tag bit
M of that word.

3.2.2 Multiple Tracks. The only difference be
tween this and the single track case involves the value
of S.LAST at the beginning of each cycle. Previously,
the topmost word of the track had no predecessor, but
now it is preceded in the segment by the last work on
the track above this one. Clearly, only the topmost
cell will initialize S.LAST to zero. All others will
initialize their S.LAST to the final value of tag bit M,
which has been put in S.LAST, in the next lower cell.
That is, the S.LAST values of all the cells will shift
down one cell with a zero filling on the top.

This is a simple instance of a technique here
called precomputation. Until the instruction has actually
been selected at the end of a cycle, it is not known
whether it will, in fact, be a SEARCH NEXT instruction.
However, if it is, one must already have the last M bit
in S.LAST ready to pass to the next cell. That is, the
value in S.LAST must be precomputed and available for a
SEARCH NEXT instruction; it must be computed in every
cycle whether it is needed or not.

3.3 Search and Hold

An inverted ordered set search can be implemented
as a variation on the string search using Search Next
instructions. It is only required to leave the tag bit
M set to 1 if M became 1 (i.e., not to clear M until the
end of the query) • In order to mix this type of search
with conventional string search operations, it is useful
to select only some words in file, by means of a tag bit
H, so they retain their value of M if H is 1, as in the
search and hold instruction, while other words load M
each time as in the search next instruction if H is 0.
By this means, it is possible for a record in the data
base to recognize whenever a sequence of arguments of
string search instructions has a pattern, such as "a"
followed immediately by "b", followed somewhere in the
record by "c". The word storing "b" has tag bit H set
to 1.

3.4 Search Lower in Record

"b" after "a". This is clearly similar to a "search next"
except that the desired word need not immediately follow
the previously marked word. This search is usually
modified by taking records intp account: the word "b"
must be after "a" but in the same record as "a", not in
a lower record. Records are separated by data words
that are especially tagged as deli.miters. We must find
"b" after "a" with no delimiter words in between. This
type of instruction can be used in ordered set searches
discussed in Section 3.1. It is also the basis for
"forward marking" since the word "b" is located for
ward on the disc as the head scans the disc. It will
be contrasted to "backward marking" in Section 4.

3.4.1 Single Track. The problem is simply one of
recording for each cycle the fact that a word with its
match bit. set has been encountered after a record de
limiter has been passed.

Herein, a flip-flop S.ABOVE is initially cleared
and is cleared whenever a delimiter is found. It is
set when a word is encountered that had tag bit M=l.
M is simultaneously loaded with 1 if the content search
comparator gives a 1 and the value of S.ABOVE was a 1
just before the word was encountered; otherwise it is
cleared. Next, each word is examined to see whether it
is a record delimiter; if it is, then S.ABOVE is cleared.

3.4.2 Multiple Tracks. Operation within the track
can be similar to the single track case if S.ABOVE is
properly initialized. However, whereas the forward mo
tion in a single disc track automatically propagates
the M bit lower in the record, with multiple tracks it
is necessary to propagate this bit to an indefinite num
ber of lower cells up to and including the first one
that has any delimiter.s in it in order to initialize
S.ABOVE. Thus, it is necessary to know if any M bits
between a delimiter and the end of a track are set, re
cording this in a flip-flop S.FOUND, and also to know
if any delimiters had been found on a track, recording
this in a flip-flop S.DELIM. Propagation is easily
accomplished by a carry lookahead circuit (using, say,
74182's) propagating "carries" from higher to lower
cells. S.FOUND and the complement of S.DELIM are input
to the generate and propagate of the carry lookahead,
and the "carry" is loaded into S.ABOVE. This initializes
S.ABOVE so that the operating continues as in 3.3.1.

It should be noted that this same carry lookahead
circuit is capable of being time-shared by many functions,
some of which have just been mentioned. By setting all
propagates to zero, the generate' in each cell goes to
the next lower cell, and only that cell. This was used
in the search next operation. This circuit can also be
used as the priority circuit to find the lowest cell
with an operand-LIFO order. A carry lookahead circuit
in the opposite direction, discussed later, can also be
used to fetch instructions and obtain FIFO operands.

3.5 Burst: String Searches

The string searches discussed in the previous sec
tions require one cycle per word in the query. This
creates a serious bottleneck. The following technique
is capable of searching for strings of arbitrary length
n in two cycles in most cases. However, an n word ran
dom access memory is required to store the words of the
query. This algorithm is analogous to the string search
algorithm commonly used in software: first search for
just the first word of the string; when it is found
search for the rest of the string.

3.5.1 Single Track Implementation. This algorithm
This search consists of searching for and marking requires an n memory B.M, a memory address register B.A,

each word satisfying some condition which occurs after flip-flops B.LEFT and B.BUSY and a tag bit F on each
(lower in the record) a word. which satisfies some previous word. In the first cycle, the first word of the string
condition. For example: search for all occurrences of B.M. [0] is compared against each word on the disc,

181

setting F if a match is found and clearing F otherwise.
At the beginning of the second cycle, B.LEFT and B.BUSY
are cleared. In the second cycle, when a word is found
with F=l and a burst search is not in progress B.BUSY is
O, F is cleared, B.BUSY is set, and a burst search is
initiated as follows. As successive words appear after
the first word, words B.M[l), B.M[2], ••• are read by
means of B.A and compared one at a time against the
successive words read from the disc. The burst search
is terminated and B.BUSY is c'ieared if either a mismatch
is found or all the words match. In the latter case,
the string is found and the algorithm is successfully
completed. In the former case, a burst search is ini
tiated whenever the next word is found with tag bit F=l.

Note that a word with F=l may be encountered in
the middle of a burst search. If this occurs, B.LEFT
is set. If B.LEFT is set at the end of a scan and no
match for the complete string has been found an extra
scan is requested. Extra scans are requested until a
match has been found or B.LEFT is clear at the end of a
scan. The search terminates unsuccesully if B.LEFT is
clear and no match for the complete string is found.

3.5.2 Multiple Track Implementation. A priority
circuit and intercell communication to initialize B.BUSY
are required for multiple track operation. Only one
random access memory B.M is needed. Cells get access
to B. M by means of the priority circuit which sets B. BUSY.
The first cycle, comparing B.M[O] against all words and
setting tag F, is done as in the single track case.
B.BUSY is cleared at the beginning of the second cycle
only, and B.LEFT is cleared at the beginning of the
second and later cycles. In the second (and successive
cycles), it is possible that a word with F=l will be
met in more than one track at the same time. A priority
circuit is used to initiate a burst search (set B.BUSY
and clear F) in only the prior track. The other track
will set B.LEFT to request a burst search in a later
cycle. It is also possible that a string will overlap
tracks. This is indicated when B.BUSY is 1 at the end
of a scan. The flip-flops B.BUSY are simply shifted
down one cell at the end of each scan to continue the
search. If B.LEFT or B.BUSY is 1 at the end of a scan,
another scan is requested.

4. Set and Tree Context Searches

The content and string context searches described
in the last section provide basic information retrieval
functions. They are not sufficiently powerful for most
information retrieval applications, however. As before,
we are assuming that a collection of words is organized
as a record, and that the first word in the record is
tagged as a delimiter. It is at least necessary to
organize the records as unordered sets having an inde
finite number of words. It should be possible, for
instance, if two words "a" and "b" are in such a set, to
search for "a" and then change "b", whether "a" is
higher than "b" or "b" is higher than "a" in the file.
Note that the ordered set search operations could only
do this if "a" was higher than "b" on the disc. The
operation of forward marking used in ordered set searches
must be mated with some techniques for backward marking.

It is also quite useful to search these unordered
sets for a subset of words given by the operands of some
search instructions. A mark bit is needed for the set
as a whole to indicate if the set is a successful candi
date for continuing a string search. This bit can be
maintained in the delimiter word at the beginning of the
record. (Actually, a stack of bits in the delimiter is
maintained to permit logical operations on the results of
searches.) Then, the results of searches are uniformly
sent to the delimiter word, using backward marking which
will be discussed below, and this result is available to
affect further searches or modify instructions in the

182

record by means of forward marking techniqu·es similar
to those used for search lower (Section 3.4). This
technique can be used for unordered set searches and
for modifying words in the set without regard to their
order.

The solution to this problem can be generalized
to handle tree data structures. Tree structures
naturally handle such data management problems as are
found in corporations, armed forces, or libraries. We
shall consider the extension to backward marking to
handle searches in trees as well.

4.1 Backward Marking

The general problems is that for every record,
the successful result of a comparison between an operand
and any word in it should be stored by setting a bit in
the delimiter. If ·one or more words in a record satisfy
the comparison, then the result stored in the delimiter
should be 1, but if no words satisfy the comparison
the result should be 0.

4.1.1 Single Track. For a record contained
entirely within a segment, the problem is simply one of
getting the result of a search in a word in the 1~ecord
stored into the delimiter word that has already been
passed in the segment.

Implementation of this function uses a delimiter
counter M.DCT and a 1 x n random access memory RAM
where n is the maximum number of records possible on
the disc segment. M.DCT is able to be used as an ad
dress to read or write in RAM. Each bit in the RAM is
a carrier for each record whereby it is set in one
revolution in the main processor by the result o:E a
comparison on data words, and is unloaded into the de
limiter word and cleared in the next revolution :i.n the
post-processor. Initially, M.DCT is cleared, and it is
incremented each time a word with a delimiter ta9 is
encountered. Thus, the ith bit of RAM is addressed for
reading or writing as words in the 1th record are en
countered. During a backward marking instruction, if a
comparison between the comparand and a word met on the
disc is satisfied, the bit RAM [M.DCT] is written with
a 1. In the next revolution in the post-processor, the
bit RAM [M.DCT] is copied into the mark bit in the de
limiter word and is cleared. Note that if two successive
backward marking instructions occur, the reading and
clearing of the RAM in the post-processor due to the
first instruction occurs simultaneously with the writing
of the RAM in the main processor; however, the reading
and clearing is logically performed immediately before
the writing.

4.1.2 Multiple Tracks. As with the search lower
operation, this operation should permit a record to
overlap multiple tracks. The operation takes place over
two cycles as in the single track case except that
S.DELIM (see 3.4.2) is set in the first cycle if any
delimiters are found. Note that after the first cycle,
if one or more tracks contain a continuation of a record
begun on a track to the left, the result of the com
parison is automatically put in bit zero o:E the RAM, and
note that at this time, M.DCT of the cell to the left of
this continuation tracks (the cell containing the de
limiter for this record) still points to the RAM bit
which is associated with the record spread over these
tracks. It is only necessary to put the OJR of these
bits into RAM[M.DCT] of the cell to the left. From
there, it can be distributed to the rest of the record
by forward marking.

A carry lookahead circuit can transfer these bits.
It propagates from lower to higher cells. 'rhe complement
of the delimiter indicator S.DELIM is the "propagate",
the bit RAM[O] is the "generate", and the "carry" is

put into RAM[M.DCT] at the end of the first cycle of a
backward mark operation, before M.DCT is cleared for
the next cycle.

4.2 S-Q Tree Search

By simple extension to forward and backward marking,
an S-Q search of a tree can be conducted. The records
of the previous searches are here considered to be nodes
of a tree. The S-Q search refers to searching particu
lar nodes of a subtree of some larger tree. Typically,
a tree will have several subtrees defined within it.
The subtree consists of some node (marked S) and all of
its descendants. Within the subtrees, some nodes are
marked as being qualified for a search (Q-nodes) • A
well-formed tree has no Q above S and no S above s. The
S-Q search is a search of all of the qualified (Q) nodes
of a subtree; the results are stored in a bit of the S
node of each subtree--rather like a backward marking of
nodes.

In what follows, we will assume that the tree is
stored in left list matrix order, somewhat like putting
a tree structure into an outline form like that used in
writing this paper. For example, the tree below would
be stored as:

A B D E F c I H G K L J node

s Q Q Q Q s Q mark

Fig. 4

From the way the tree is stored, if the S and Q
nodes have been marked (as we discuss later) and are
well-formed, it is clear that this search will be analo
gous to the backward marking in that each S-node is
marked with results of a search of words between it and
the next S-node. The major difference will be that the
search is confined solely to qualified nodes (Q-nodes) .
A bit will not be set in: the RAM when a comparison be
tween the operand and a word unless the word is in a Q
node. As before, the search results will be ORed into
a RAM, and the Post-Processor will mark the appropriate
word. Now, however, the RAM is addressed by a count of
S-node delimiter words. That is, M.DCT is incremented
only when a delimiter of an S node record is encountered.
lilso, the multiple track case requires an identical carry
lookahead circuit. However, the propagate bit from each
cell is from a flip-flop which is set whenever the de
limiter or an s record is met.

The implementation-of this technique requires tag
bits S and Q in delimiter words which can be set or
cleared; S=l indicates that the node which this delimi
ter word begins is an S node. It required, for the
multiple track case, the flip-flop S.DELIM, which is set
i.f a delimiter of an S ~ecord is met, and its complement
is input to the propagate of the carry lookahead. Also,
a flip-·flop M.Q is needed to indicate that the record
we are in is a qualified record (Q record). M.Q and
S.DELIM are initialized and run as in the search lower
operation, and backward marking is done as in set
searches, using delimiters of S nodes to control S.DELIM
and set searches.

4.3 Establishing S and Q Bits

In order to utilize the general S-Q tree search,
one must set the S and Q bits. It is possible that each

183

delimiter word will have a unique code word, so that
content addressing can be used to find the delimiters
and rewrite the S and Q tag bits. However, herein, we
describe techniques whereby S and Q bits can be "walked"
through the tree structure to their final location for
an S-Q search, in a manner similar to the CDR-CAR opera
tions in LISP. This adds another dimension to the
searching capability of the machine, particularly with
regard to artificial intE:!lligence.

Herein, it is assumed that each node has a level
number (equal to the number of nodes in a chain be
tween H: and the root of the tree) and a name. These
can be stored in the delimiter of each node. In the
following discussion, we need only look at the level
and name in the delimiter words. We shall now ignore
the data words within the records. For any node, its
ancestors are nodes between it and the root of the tree,
its descendants are nodes in the subtree below it and
its sons are nodes immediately below it in its subtree,
following terminology from the "family tree". It is
necessary to be able to identify ancestors, sons and
descendants of any node, particularly an S node and a
Q node. Then, one can search for a node, using content
searching for the name of the node, which is the son of
an S node, erasing the old S bit and setting S in the
son or sons that satisfy the search. A sequence of such
searches is analogous to CDR-CAR operations in LISP.
However, unlike LISP, trees other than binary trees can
be used, more than one son can be marked, and any
ancestor or any descendant that satisfies the content
search can be marked.

In the following discussion, S marks will be moved
about in the tree. Q marks can be m9ved about in simi
lar fashion. We will assume that before the operation,
the tree is well formed. The son and descendant searches
are shown first. The problem is to identify nodes that
are in the subtree of nodes that were marked with S=l.
The ancestor search is the inverse of the descendant
search; the potential ancestor must be uniquely identi
fiable by content addressing and the subtree of that
node is then checked to see if it has an S node. If so,
the potential ancestor is finally marked.

4.3.1 Single Track. The implementation of son
and descendant searches requires a save register M.L to
save the level of an s node, and a flip-flop M.D to
indicate that the delimite15being examined are in a sub
tree of an S node. M.D is initially zero. It will be
used, together with the comparator, to find new de
limiters to set S=l. The node delimiters wil~ each con
tain a level number and a unique name in specific fields
and some will be marked in a particular bit (S-bit) as
being S-nodes. If we assume that the hardware is told
only whether it should look for son or descendant of an
S node, then it will firsthave to search for any S-node
and when it is found, set M.D, record its level number
(LEVEL in M.L). Then it will have to compare level num
bers LEVEL of a succeed]J"ig node to M.L: for son, the
comparator must check for LEVEL = M.L + 1, for descen
dant, LEVEL > M.L and to indicate when the subtree is
left, M.D is then cleared \vhen LEVEL < l'LL.

The ancestor search requires the use of the RAM
and M.DCT counter because it is a backward marking
operation. M.L and M.D are used as in the previous sec
tion. It is necessary to be able to identify potential
ancestors (PA 1 s) by content addressing alone, and such
PA's must be well formed (i.e., no PA is in the subtree
below another PA) • Two cycles are required for this
operation~ M.DCT and M.D are initially cleared. When
a PA is found, its level is put in M.L and M.D is set.
M.D is cleared when a delimiter with level LEVEL < M.L
is found. If an S node is found while M.D is 1, then
RAM[M.DCT] is set. In the next cycle, M.DCT is cleared
and incremented as before; S bits are first cleared,
and RAM[M.DCT] is put into each S bit of delimiter word.

4.3.2 Multiple Tracks. If a tree is stored over
several tracks (Fig. ~), then the immediate hardware
problem is one of intercell communication. The subtree
may cross cell boundaries, and each cell needs to know
at the start of the cycle if it is starting in the
middle of the proper subtree with S=l to determine if
it is a descendant, or a subtree of a PA to determine
if the PA is an ancestor and it needs to know if it is
a son. In terms of the hardware outlined for the single
track case, this means properly initializing M.L and
M.D.

Because trees are well formed and stored in left
list order, it is possible to acquire information to
initialize M.L and M.D on a single cycle immediately
before the actual operation cycle. It can be shown
that the cell which contains the end of the subtree can
be found by obtaining the minimum level number LL within
each cell. If a subtree consists of a given node at
level M.L and all of its descendants, then clearly any
cell which contains the end of the subtree must have a
node of level L ~ M.L. Thus, LL ~ M.L.

The hardware problem is one of detecting in one
cycle the 1owest level numbers of each track. At the
end of this cycle and before the start of the operation
cycle, this information can be used to compute the ini
tial values for M.D and M.L for each cell.

This technique requires the register M.L and flip
flop M.D discussed before a flip-flop S.DEL and a re
gister M.LL to hold the least level and a propagate cir
cuit. The operation takes two cycles. In the first
cycle, M.LL is first set to a large number, then loaded
with min (M.LL,LEVEL) where LEVEL is the level of each
delimiter encountered. Meanwhile, S.DEL is initially
cleared, and is set if an S node is found for son or
descendant searches, or if a PA node is found for ances
tor searches. M.L and M.D are computed as in the single
track case but no S bits are changed yet. At the end
of this cycle, assuming the tree is well formed, it is
only necessary to send M.L of any cell with M.D = 1 to
all lower cells down to and including one with S.DEL = 1.

This can be done using a carry lookahead circuit,
sending one-bit of M.L at a time through the generate
to the carry and to M.L, where the complement of S.DEL
is the propagate signal. M. L is correctly initialized
this way. To initialize M.D, M.L is compared to M.LL,
and the signal which is one if M.L > M.LL is the pro
pagate, M.D is put into the generate and the carry is
put into M.D. Now that M.L and M.D are initialized,
the second cycle is executed as in the single cycle case
and S bits are now changed as in that case.

5. Pointer Transfers

A means to store point~rs and to efficiently trans
fer signals via these pointers is invaluable for asso
ciative nets and other data structures. Each record in
the data file is assigned a logical address LA equal to
the number of records above it. A pointer from record
"A" to record "B" is implemented by storing the LA of
"A" in a word in "B". In its simplest form transferrirll::J
of pointers means that, as several records are marked,
all records pointed to from such marked records will
become marked. A second form is where pointers are re
flected. This means that, as several records are marked,
all records that point to a record which is also pointed
to by such marked records will become marked. It should
be noted that pointer reflection is tantamount to a mas
sive parallel content search. It is capable of higher
performance than any other technique described in this
paper. These forms are modified by content and string
or tree context addressing to make them useful. How
ever, in the ensuing discussion attention will be fo
cused on the transferring of pointers and the reflection
of pointers. 184

- - - -·1

-- - --2

·- 3

·g) .. 4

- - -- 5

Figure 5 -- A TREE STORED OVER SEVERAL TRACKS

Pointer transfer means herein that several words
in the data base storing pointers have been markeid as
source pointers, and all records which have logic:al
addresses equal to the value of any of these marked
words are to have their delimiters marked. Pointer re
flections means herein that several pointer words have
been marked as source pointers, several words ha,re been
marked as sink pointers, and wherever a sink pointer is
equal to any source pointer, the sink pointer should be
further marked.

5.1 Single Track

These techniques utilize the association of each
record with a random access memory bit. A RAM and de
limiter counter M.DCT are used. Initially the RAM is
clear. In the first cycle, as a source pointer with
bit value POINT is encountered, RAM[POINT) is set. For
pointer transfers, in the second cycle, M.DCT is ini
tialized to zero and is incremented as each delimiter
word is met. RAM[M.DCT) is read out and marks the de
limiter word. For pointer reflections, as each sink
pointer with bit value SINK is encountered, RAM[SINK)
is read out and marks the sink pointer word. After
each such operation, RAM must be cleared.

5.2 Multiple Tracks

In multiple track systems, the RAM bit in the ap
propriate cell has to.be set or read, and memory access
conflicts have to be resolved. We posit an ove:i:~all
virtual random access memory RAM' which is storeid in
the RAMs in each cell. Each record is associated with
a logical address LA' equal to the number of rec:ords
above it in the file. RAM' [LA') is associated with the
LA'th record. Yet on each track the logical address LA
is defined for each record as before, as the number of
records above it on the track. As before, RAM[LA) is
associated with the LAth record. Note that thiB permits
the second part of a pointer transfer operation to be
done exactly as it was for the single track cas1:!. The
conversion from LA' to LA is quite simple: if 'rD. is
the total count of delimiters on cell i then on tlie ith

j-1
cell LA' is LA + L TD. • Then to read or wri b9 RAM' [LA':

i=l 1

it is necessary to locate the cell it is in and to de
termine LA. To do this, one feeds LA' into the left in
put of the leftmost cell, and each cell subtracts TD.
from what.is input on the left, outputting it on the1

right to be input on the left of the next lower cell.
The leftmost cell that outputs a negative number uses
the number put into it, a positive number, as LA to
read or write RAM[LA].

Note that only one bit at a time can be read or
written in RAM'. It may happen that two cells may en
counter a source pointer at the same time. Although
this should occur very rarely, it creates a memory ac
cess conflict because it may require setting a bit in
two different locations of RAM' using two different
values of LA' at the same time. A buffer register can
store LA' in the two cells so that·both can be used as
addresses at. successive time slots. Nevertheless, these
buffers may be full when a source pointer is encountered.
Thus, it is necessary to mark source pointers, deleting
the mark when the pointer is actually transferred. If
any pointers are still marked at the end of a cycle, an
extra cycle is required to transfer these remaining
pointers. It is expected that all source pointers can
be recorded in the RAM in a few cycles for either
pointer transfer or reflection, and that all pointers
can be read from the RAM in a few cycles for pointer re
flection.

'I'he implementation of these techniques requires the
RAM in each cell, register M.TD; counter M.DCT flip-flop
M.LEF'I', tag bits SR and SK on pointer words to indicate
source and sink pointers, or priority circuit, a one
bit buss B and a special adder between cells. For an
arbitrary number of cells, a serial tree adder provides
a practical adder. See Fig. 6. The adder cell is shown
in Fig. 6a. Numbers are fed serially, least significant
bit first, through a, d and f. c is just a, e is a+d
a.nd b is d+f. Note that in a tree constructed from such
cells as shown in Fig. 6b, any downward-directed link
qenerally has the sum of all values to the left of it,
and any upward-directed link has the sum of all values
below it. The bottom nodes connect to the processing
cells. that contain the RAM and disc tracks discussed
earlier. Note that sums are accumulated from left to
right .in these cells. For instance, D is A+B+C. If A
is the logical address LA', and Band Care the negatives
of their delimiter counts (-TD.) then Dis LA.

1

c f

e

a) CELL b) NETWORK
Figure 6 -- A TREE .ADDER

Pointer transfer is accomplished as follows. SR is
set on source pointers and M. DC'I' has the number of de
limiters in each track, as in the backward marking opera
tion. The negative of M.DCT is put in M.TD. RAM and
M.LEFT are cleared. If one of the cells meets a source
pointer and the priority circuit finds that it is the
prior one (leftmost) having a source pointer, then tag
b:Lt SR is cleared, the value of this word LA' is put
into the top of the tree (at location A in Fig. 6b),
and M.TD is put into each bottom input to the tree
(locations B, C, etc. in Fig. 6b). The bottom outputs
(location D, etc.) are collected. If the next right
cell ha:3 a negative value and this cell has a positive

value, then that value is us.ed as LA to set RAM[LAl.
If another cell finds a source pointer and is unable
to send it out because the priority circuit prevents it,
tag bit SA is not cleared but M.LEFT is set. At the
end of the cycle, if any cell has M.LEFT = 1, then
another cycle is used to send out remaining pointers,
and M.LEFT is initially cleared for this cycle. This
continues until all source pointers are sent out CM.LEFT
is zero in all cells). In the final cycle, the bits in
RAM are put in the delimiters using M.DCT as in the
single track case.

Pointer reflection is similarly handled. First,
source pointers are transferred as above. When all
source pointers are transferred, sink pointers are
selected just as source pointers, their LA's are trans
lated, and the bit RAM[LA] read from the selected cell
is output on a buss B, to the cell containing the sink
pointer, where it is written.

6. Summary

We have developed implementations for some basic
segment sequential functions. As mentioned at the
beginning, however, these functions do not constitute a
complete set of primitive functions for data base
storage and management. The concepts of word insertion
and deletion, collect.ion (of words which satisfy search
criteria), and garbage collection (packing of unused
words to eliminate fragmentation) have .not been men-

1 tioned here~ but are discussed by De Martinis., et al.

All of these concepts were developed for use in
the CASSM system at the University of Florida, but this
system i~i intended to be a research vehicle for de
termining just which of these concepts will prove to be
useful for specific applications. The basic functJons
and their implementations are presented independently
here in the belief that they will prove useful in the
design and implementation of further systems with
specific applications.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

References

De Martinis, M., "A Self-Managing Secondary Memory
System," to be published.
Fuller, R.H., Bird, R.M., and Worthy, R.M., "Study
of Associative Processing Techniques," AD-621516,
August 1965.
Healy, L.D., Doty, K.L., and Lipovski, G.J., "The
Architecture of a Context Addressed, Segment
Sequential Storage," Proceedings of FJCG, Vol. 41,
Part I, 1972, pp. 691-702.
Hollander, G.L., "Quasi-Random Access Memory Sys
tems," ?roceedings of EJCC, 1956, pp. 128-135.
Minsky, N., "Rotating Storage Devices as Partially
Associative Memories," Proceedings of FJCC, Vol. 41,
Part I, 1972, pp. 587-596.
Parharni, B., "A Highly Parallel Computer System for
Information Retrieval," Proceedings of FJCC, Vol.
41, Part I, 1972, pp. 681-690.
E.A. Feustel, "On the Advantages of Tagged Architec
ture," IEEE Trans. Computers (July 1973) pp. 644-
656.
Ozkarahan, E.A., Schuster, S.A., Smith, K.C., "A
Data Base Processor," Technical Report CSRG-43,
University of Toronto, Nov. 1974.
Lipovski, G.J., Su, S.Y.W., "On Non-numerical
Architecture," Computer Architecture News, Vol. 4,
No. 1, March 1975, pp. 14-29.
Su, S.Y.W., Lipovski, G.J., "CASSM: A Cellular Sys
tem for Large Data Bases," Proc. International
Conference on Very Large Data Bases, Farmingharn,
Mass., Sept. 1975, pp. 466-472.

185

A SELF MANAGING SECONDARY MEMORY SYSTEM*
Manlio DeMartinis

Departamento de Circuitos y Medidas
Universidad de Carabobo, Venezuela

G. Jack Lipovski
Stanley Y.W. Su
J. K. Watson

Department of Electrical Engineering
University of Florida

Gainesville, Florida 32611

Abstract

A Self Managing Secondary Memory (SMSM) organiza
tion is proposed herein, in which hardware directly
assists the storage, retrieval and management of arbi
trary length records on such devices as fixed head
discs or charge coupled devices (CCD's). This paper
emphasizes some of the techniques used to implement an
SMSM system.

In an SMSM, fixed length words are organized into
variable length recor·ds, and these records are packed
into a file. The first word of the record, a label,
can be associatively addressed to mark the record.
Marked records can be output, erased, or a word or a
collection of words can be inserted after the label of
such records. Erased words are shifted to the bottom
of memory as data words are packed upward, so t~at new
records or extensions of old records can be inserted at
the bottom of the file. In this system, although the
file appears to be a single one dimensional array of
words, it is actually stored on a number m of n word
circular access memories, such as CCD's or tracks of a
fixed head disc. Larger systems are implemented by
increasing m. The access time for the entire system
depends only on n.

This architecture is self-managing in that no
directories are kept, nor is software garbage collec
tion or allocation necessary. The hardware replaces
these functions. This appears to be a desirable direc
tion for secondary memory architectures to develop,
with special application to their use in computer
networks.

This paper discusses techniques for implementing
an SMSM. These techniques were developed as part of
the Context Addressed Segment Sequential Memory (CASSM)
system. This paper therefore also describes that part
of CASSM that, by itself, forms a useful SMSM. It is
hoped that these techniques will be useful in the de
velopment of a new class of irttelligent secondary
memories to me.et present and future needs of computing
systems.

I. Introduction

A traditional secondary memory system represents a
very large part of the global investment in a computer
system. The smaller the computer, the bigger the cost
of the secondary memory .. is with respect to the global
cost. Since the secondary memory is a "passive" element
with respect to the data processing, part of its cost is
in the software needed for the managing system. Tradi
tionally, a sequential secondary memory, such as a fixed
head disc, is treated as a random addressed memory.
Fixed length words are organized into fixed size tracks
and sectors, and are located by track, sector, surface
and unit addresses. The software maintains a directory
to map the name of a variable length record into the
address(es) of sector(s) where it is stored. Garbage
collection software also collects unused space from time
to time. However, as hardware costs drop, it is feas
ible and attractive to put some processing logic on each
head of a fixed head disc, or on each charge couple

*This paper was supported by NSF grant GJ-43225

device (CCD) memory to assist these softwarE~ functions.
By replacing random addressing by content addressing of
a label in each record, the records do not have to be
tied down to tracks. Several short records can be put
on one track, or a long record may be put 011 several
tracks. Each ·record will have a label word, and the
record will be located by its label. Since sever·al
records with the same label will be retriev1ed together,
there is no need f~r linking such records i·n the direc
tory. In effect, the "directory" is stored with the
data by means of the labels. Moreover, since the
records are not tied down to tracks, words in records
can be moved from one track to another as hardware
automatically collects garbage. words into. one ania
where large records can be input. The memory is self
managed to efficiently store variable length records.

A self-managing memory has three attractive fea
tures. Whereas, in a conventional system, loss of the
directory will usually cause loss of all the data,
since the "directory" is stored with the data in this
system, the directory is only lost when thei data is
lost. This system can be more fail-soft. Whereas, in
a conventional system, the directory may bEl so large
that it is stored on the disc and two accesses are
required to get the directory first and then the data,
in this system, it is not necessary to ret1cieve the
directory. This feature saves the time required for one
access to the disc. Moreover, it does not require the
computer to store and search the (large) d:lrectory in
its primary memory. This is a very attractive feature
for small computers that do not have much memory.
Finally, whereas, in conventional systems used with com
puter networks, long protocols are required to gain
access to the directory, in this system the only require
ment is the establishment of unique labels and the pass
ing of these labels between cooperating processEis. For
example, it would be reasonable to initially apportion
groups of labels to each of the processes, which indi
vidually assign them upon execution of the UNIQUE func
tion (6) to records created by the process. Eac:!h pro
cessor gains control of the disc in a simple way, such
as a hardware priority circuit. It uses the label to
access the record. Cooperating processes need only have
the label to access the same record.

In the design of the Context Addressed Seg1111ent
Sequential Memory (CASSM) system (1, 2, 3), sev,eral
techniques have been developed that allow automatic man
aging of variable length records stored on a segment
sequential memory system such as a fixed head disc.
These operations include: garbage collection, insertion
of single word,s or blocks of words. in a r1acord input of
records at the end of the file, and several modes of
outputting data. While these techniques were developed
for a more powerful machine capable of searching rela
tional, hierarchical and network data basies, these tech
niques in themselves make up a useful self-managing
secondary memory system. The purpose of this paper is,
then, twofold: 1) show those techniques of the~ CASSM
system that relate to input, output and garbage! collec
tion as part of the series of papers on CASSM; and 2)
cast these techniques in a self-contained paper. that

186

shows how a relatively simple self-managing secondary
memory can be constructed with the desirable features
given above. It is hoped that this paper will show
such techniques as will be useful in the development of
a new class of intelligent secondary memories to meet
present and future needs of computing systems.

2. §ystem Description

In this section, the software view of the file
structure is presented first. Then operations on the
file are presented •. Finally, the block diagram of the
syste:Iil and construction of the cell are outlined.
While this section describes the architecture of an
SMSM, it must be emphasized that this architecture is
presented only as a vehicle to describe the technique~
developed in later sections,in a more cohesive form.

2.1 Word and File Structure

Figure 1 shows the basic word structure. Each
word is fixed length, and consists of two fields: TAG
and DATA. The TAG field (7) is used to distinguish the
several types of words that may exist· simultaneously in
the system memory and mark words for processing. The
DATA field stores the actual data of the word. Figure
2 shows, in its left half, the basic software file
structure. RECORDS consist of a variable number of
words, the first of which is a label for the record.
All the records are packed together to form the FILE.
Note that only one FILE exists in memory. Unused words
"below" the FILE are available for storing new records.

TAG

DL 0 x c LABEL

DT 1 0 c DATA

GB 1 1 0 Don't care

EOF 1 1 1 Don't care

Figure 1. WORD STRUCTURE

::1J/l j~
SEGMENTS

• TWARE MAKEUP HARDWARE PLACEMENT

gure· 2. STORAGE OF DATA

187

For the purpose of searching operations and gar
bage collection, the TAG field must differentiate, at
least, between the following types of words:

a) Data (DT): This word identifies an actual data
word-:--For the purpose of this paper it will be consid
ered that data words consists only of a fixed length
string of ASCII characters.

b) Delimiter (DL): This word marks the start of a
logical record within the file. A record is defined as
the block of contiguous delimiter and data words, start
ing with a delimiter, up to but not including the next
delimiter.

c) Garbage (GB): This word is to be deleted by garbage
collect:lon hardware.

d) End of File (EOF): All words below the file are EOF
word;. The ;emory is empty if filled with EOF words.

The tag bits, X and C, are used to mark delimiter
and data words for input or output. These are discussed
in the next section.

2.2 Operations on the File

ThE~ general operations on the file are discussed
first. Then, an "instruction set" of input/output com
mands is presented that implements these operations.
The general operations are input, output, and deletion
of records.

The normal technique for inputting new records is
to put them at the end of the file. An input command
exists for this type of input. There is a command to
initialize the memory by filling it with end-of-file
(EOF) wc>rds. The memory can then be filled by input
ting at the end of file. It is sometimes possible to
add new words to an existing record with label L by in
putting a new record with label L at the end of file.
However, it is occasionally necessary to input a single
word or a block of words at the beginning of an exist
ing record. Two input commands are provided for such
cases. There is a command to mark delimiters with label
L to prepare for inputting single words or blocks of
words below such marked words.

Output is generally accomplished by a command that
sets the collection bit C in all delimiter or data words
in a record or records that are to be output and selec
ting three options for the mode of output. This can be
done in one revolution. The words are output later.
As collection words are output, the first mode of the
output instruction can cause the SMSM to merely clear
the C bit in such words, to leave the word in place but
prevent it from being output again until the C bit is
set aga:l.n (SAVE) or to delete the word (DELETE). The
SAVE mode can be used when the memory is storing per
manent files. The DELETE mode can be used when the
memory :l.s being used as a spooling device. Words can be
deleted as they are used. Unfortunately, there is no
way in a multiple segment system to quickly output words
from many records in the same order that they are stored
in the file. The output is controlled by a second mode
which may be RANDOM, DELIMITED, ORDERED, or UNIQUE. The
RANDOM mode outputs words quickly (essentially in one
disc revolution) but they appear in a different order
than they are in the file. The DELIMITED mode outputs
words in a record in the same order as they are stored
in a record, but the records may be output in a differ
ent order than they appear in the file. Output in this
mode takes somewhat longer time than in the RANDOM mode •
The ORDERED mode outputs words in the same order as they
appear in the file. For such multiple track systems,
this output mode takes as many revolutions as there are
tracks that contain words to be output. (Note that for

outputting single records, this mode can be quite fast.)
Finally, the UNIQUE mode, which is an important output
mode in sophisticated systems like CASSM, outputs words
in ordered mode but does not output a word if that same
codeword were output already.

There is a possibility that two output commands can
be executed sequentially so that collection words from
both commands may be outputting together. This may be
deliberate or it might be unacceptable. A third mode
of the output command (MGC, WTC) can halt the process
ing of the command until all collection words are out
put (wait for collection, WTC) or execute the command
regardless of whether collected words will be mixed
together upon output (merge collection, MGC).

In addition to the output command, there is•a
command to cancel all output by clearing the C bits.
It is useful, especially when output is done in the
DELETE mode, so that the computer receiving words from
this memory can stop output when its input buffer is
full.

Garbage collection is accomplished by a command
that changes data or delimiter words into garbage words.
Such words migrate to the bottom of the file, where they
become end-of-file words.

The user sees only a one dimensional file of fixed
length words, arranged into variable length contiguous
word records that have a delimiter word (DL) which has
a label word stored at its beginning. For the simplic
ity of presentation, we pr9pose the following colllllands,
although more complex commands would undoubtably im
prove. the performance of the machine. Herein, Lis a
code word to be compared against labels, and B is a full
word, including tag bits. These commands are supplied
by meru-rs of a direct memory access (DMA) input channel
from a small or large machine, or a computer network.
An output DMA channel is implicitly controlled through
the input DMA channel.

Erase Memory, EM

The entire memory is filled with words with tag EOF
(end of file).

Input at End of File IE B

The word B replaces the first EOF word, thus being
appended to the end of the last record. A rapid suc
cession of such commands can append many words to the
bottom of the file in essentially one revolution of the
disc. ·

Output record OR L ,~, m
2

• m
3

The record with label L is output using modes m1 , m2 ,
m

3
• This sets the C bit on all·worde in the record!i

with label Land sets the output mode m1 , m2 , m1 . C
marked words will be output later under modem1 l_SAVE,
DELETE)-determines whether words that are output are
deleted or not, m (RANDOM, DELIMITED, ORDERED, UNIQUE)
determines the oraer of output from multiple cell sys
tems, and m

3
(MGC, WTC)-determines whether this command

must be delayed until all previous collection words are
output.

Kill output KO

All C bits in memory are cleared, thereby prevent
ing any more output.

Delete record DR L

The words in the record(_s) with label L are re..-.
written with tag GB(garbage).

188

Mark label ML L,n

The X bit is set to 1 in any delimiter word(s) hav
ing label L and is cleared in other delimiter words.
The number n needs to be saved for block insertion to
indicate the number of words in the block.

Write label WL L

The label L is written into the label field of any
delimiter word that has X=l.

·Input word IW B

The word B is inserted immediately below any label
marked with X = 1, and X is cleared. All words below
the label with X=l are moved down one word in the file
to make room for B.

Input block IB B

The word B is inserted into the block after the
label marked with X = 1, and X is cleared. Only one
delimiter word in memory may have X = 1 whe:n this in
struction is executed. A rapid succession of such
commands can insert a block of words into the disc in
(essentially) one revolution of the disc.

Clearly, an I/O program can be written using the
I/0 commands given above. For instance, to add a new
record consisting of delimiter word B

1
, and. data words

B
2

and B
3

to the file, one executes

IE

IE

IE

In the next section, the implementation and. timing of
these commands in a cellular system is cons:iderecl.

2.3 System Implementation

In a content addressed system, a high degree of
parallelism for data processing and overall operations
is possible and desirable. Systems with such archi
tectural characteristics have been presente:d in
[l, 2, 5]. Based on these ideas an outline of the
basic architecture for the SMSM follows:

a) The system will consist of a linea~r array of
identical cells in which each cell communic:ates direct
ly with its two neighbors and with a common I/0 bus
(see Fig. 3). The array will be considered vert:Lcal,
using such terminology as top cell, next lower c1~ll,

etc.

b) Each cell consists of a segment of memory, to
be implemented, for instance, with CCD's, and a logic
section which is able to search, modify and rewr:Lte
data, and perform input/output and managing operations
(see Fig. 4).

c) Last, a Control Module (COM), will control
ali the common ope;ations-in all the cellst communi
cate to a computer or network via input and output DMA
channels commands received from the compute!r to all the
cells, where they are executed in parallel by all the
cells. See figure 3.

Within each segment of memory, the data is written
in a bit-serial mode, and all the cells run on a common
clock. In that way the data is shifted synchronously
in all the memory segments. The data shifted out from
memory is fed into the logic section, where~ it i:s
processed, and then rewritten into the memory segment.

Cell 1

Cell 2 Computer

Cell n

FIGURE 3. SYSTEM STRUCTURE

tNext upper cell

1
UPDATE

1
CCD SEARCH I/O Buss

1
I

INPUT/
OUTPUT

J

Next lower cell

FIGURE 4. CELL STRUCTURE

As was noted in section 2.1, the words will be or
ganized in records, and each record may contain a
variable number of words. The different records of a
fil~ will be stored in the system in sequential order,
starting with the top cell, and continuing with the
next lower ones. In that way, variable length files
are divided into equal segments, each one containing
a number of words equal to the amount of valid data
that can be stored in one cell memory. This is shown
:ln the right half of Figure 2. E;ach cell memory may
contain one or more whole records, or only part of a
record, and a record may start in one cell and con
tinue in the next one.

Within each cell, the memory segment is scanned.
Thus, :t;:n all cells, the top word in each segment is
read by each cell concurrently, then the next word in
each cell is read, and so on. This process is here
called a scan. After the last word has been read, a
short gap occurs, and the first word of each segment
is again read concurrently in each cell. The scan
and gap together form a memory cycle. Note that the
cycle time is dependent upon the number of words in a
segment, but that the size of the memory can be ex
tended indefinitely by adding more cells without in
creasing the size of the segment.

The following commands wait until the beginning of
each scan and last throughout a scan: EM, OR, KO, DR,
ML, WL and IW. However, the command OR will also
have to wait until the last output is complete (all C
bits are zero) if mode m3 is WTC. The IE and IB

connnands wait until some segment finds the first EOF
word, or X=l delimiter, respectively, but a rapid
succession of such connnands can be executed to write
words one after another into the memory after this.

189

Note that the OR and KO commands control the sys
tem output direct memory access channel, and that the
DR connnand controls the garbage collection system.
These systems operate concurrently with the input
channel to achieve a degree of speedup in the SMSM
architecture.

The logic section within each cell contains sever
al different modules that perform specific functions
on the data as it is shifted through them. The func
tions performed in these modules, and a simplified des
cription of the logic in each module, will be dis
cussed now.

The search for a given word, and the modification
of the matched ones takes place in the search process
or module. Therefore this module must, at least, con
tain a one word length shift register where the data
is held while it is being examined and possibly changed
after it has been examined, an input to receive the
operand from the COM module and a serial comparator.
Several "flags" (or flip-flops) must be implemented in
that module in order to store the results of matches
when the operation to be performed must be extended
to subsequent words of a record, or when that infor
mation is needed later on for other operations. In
particular, delimiter words are searched by the ML
command to set X=l in preparation for word or block
insertion in that module. A flag is set to continue
the IB command in a segment, and intercell links are
provided to resume such IB commands on the next'.' lower
cell when block insertion overlap several segments. A
flag is set for the OR command to set the C bits in
the delimiter and following data words to collect them
for output. Similarly a flag is set for the DL command
to change the delimiter and following data words to
garbage words to prepare them for garbage collection.
Intercell links and logic is provided to initialize
these flags whenever a record overlaps two or more seg
ments so that the entire record is eventually marked
for collection or made into garbage words.

The I/0 nndule will handle input at the end of file,
when the IE command is executed and all the modes of
output. Other modes of insertion take place in the
update modµle as explained shortly.

To handle input at the end-of-file, the data to be
input is provided from the input DMA (direct memory
access) v:la the COM module and .buss as an operand of
an IE command. A tag comparator for EDF words is im
plemented. A flag is set to mark the cell to deter
mine the highest cell having EOF words. The topmost
·cell having EOF words will replace that word with an
input w.or.d provided by an u:. coil)IIJ.and. As long as IE
commands continue to be given, their operands are
written in successive EOF words.

The output hardware will detect words pre-marked
for output, (C=l) and set a flag to mark the cell for
priority purposes. Priority will be determined by the
mode of output, as will be explained in section 5.
The module of the cell that has priority will communi
cate via the COM module with the computer by means of
the output DMA (Direct Memory Access) channel.

Within the update module, garbage collection hard
ware deletes garbage words and shifts the valid data
toward the top of the overall system memory, increas
ing the availability of space at the end of the sys
tem memory. Word and block insertion also take place
within th:ls module. The update module will consist of
a tag comparator for the detection of garbage words
and words with X=l that define the place for insertion
of words or blocks.

As explained later, the garbage collection circuit
ry will need a two word shift register having taps on
the input, middle and output, that provide the necess
ary slack to expand and contract the data stored in
each cell memory. An up-down counter and associated
control circuitry is needed to select the taps on the
shift register.

The COM module will have all the hardware needed to
interface with the computer, a counter register which
is loaded by the ML conunand, a subtractor to handle the
block insertion and a shift register to provide com
parands to all modules for the OR, DL and ML con:anands.
The words for word insertion or block insertion are
provided by the input DMA by means of the COM module
and buss as operands of IW or IB commands.

Besides all the above mentioned hardware, each cell
must be provided two extra registers that will hold
the first and the last word stored in the CCD memory.
These registers are used for the word shifting between
cells in the garbage collection and word insertion op
eration. The implementation of some functions (e.g.,
serial comparison) is well understood and need not be
further explained. However, the implementation of
several processes deserve greater exposition. The re
mainder of this paper will focus on garbage collection,
input and output, which are at the heart of a self
managing secondary memory. Garbage collection and word
insertion, as proposed by Copeland et al [2] is ex
plained for multiple track systems, and input and out
put techniques are introduced. These will be treated
in detail in the following sections. Further tech
niques for searching data in segment sequential memor
ies can be found in the paper by Bush et. al. [4].

3. Garbage Collection and Word Insertion

Garbage is created when records are erased; or
as we see later, when a block of words is inserted
that is not equal to the size of a memory segment.
Such garbage words need to be collected towards the
bottom of the memory where they become EOF words to
provide room for large records to be written.

One of the ways of inserting limited amounts of
data int9 existing records is word insertion. It is
the inverse of garbage collection. It is discussed
along with garbage collection because it interacts
with that process. In the following sections, garbage
collection, word insertion, and then multiple word
garbage collection and insertion are considered.

3.1 Garbage Collection

As the result of processing, words are erased from
time to time by changing their TAG field to "garbage"
type words. Garbage words are automatically moved to
ward the bottom of the system memory, as good words
are packed toward the top.

In order to explain the basic mechanism of how
the garbage collection words, a system with only one
cell will be considered first. Figure 5 is a simplified
schematic diagram of the update sub-module. The circuit
consists basically of two one-worQ. shift registers SR1
and SRz, a selector switch S and an up-down counter TC
(tAp counter) having values +1,0 or -1, that controls the
position of the selector. During the scan period, words
are fed into the update module, and sent to the next
module via the selector switch S. In the figure, the
selector Sis shown in its 'normal' position (O). The
positions +l and Wl are used mainly for word insertion
that is explained in the next section.

Input

Output

EC

FIGURE 5. UPDATE MODULE

Fig. 6 shows the data stored on the segment memory,
where W1 to Wn is the fixed number of words processed
during the scan period and contains the valid data stored
on the cell memory, and bi-1 along with ti+l are the ex
tra words used for word insertion and garbage collection
respectively. Since bi-1 is used for word insertion, it
will not be considered in the discussion that follows.
For a single cell-system, the word ti+l will always con
tain an end of file word (EOF). In a multiple cell sys
tem, the word, ti+l of the bottom cell will be an EOF
word.

At the eno of the gap, the selector S is always re
set to the normal position (0) by initializing TC to 0,
so that there is one word delay between the output of the

search processor and the output of the garbage collec
tion. If during the scan period, a garbage word is de
tected, TC is decremented by one, and S moved to the
position '-1'; in that way the garbage word is deleted.
However, at the end of the scan, the segment: will be
short of one word, and ti+l will be considered as the
last word of the scan. Since ti+l contains an EOF word,
the result of deleting the garbage word will effectively
shift it to the bottom of the memory, and convert it to
an EOF word.

CELL i-1

M
CELL i

r; - - -1
J'.!.2.. I bi-1 I

! f
f I
I A I Wl A
- - - - .J -W2 B

W3 c
W4 D

r- - - -,
Wn N -.i N 1

Wi+l L "..<::~:+-~
CELL i+l

FIGURE 6 DATA IN A CELL

190

For a multiple segment system, the memory space
Wn+l in segment i contains a copy of the top valid word
(W1) of the next lower segment i+l. To perform this,
the first word W1 of every segment .is stored into a one
word length register R at the beginning of each scan,
and then the content of each register Ri is written on
the previous segment at the end of the scan. The only
exception is for the last segment, which always contains
an EOF word in Wn+ , and the 'next lower cell' to it
always loads an EOP word in the register. Figure 7a
shows a stable situation for the data in W + and the
one word registers Ri for the ith cell andnt~e bottom
cell of a multiple cell system.

In order to explain how the garbage collection words,
consider first a case only one garbage word GB in only
one segment, say segment i, and no word input (or other
operations) is taking place. Before the garbage word
appears, the data in the cells will be stable, and will
look as shown in Figure 7a. La~er on, a garbage word
is created, and Figure 7b is a 'snap-shot''at the be
ginning of the scan when the garbage word is going to
be detected (Scan 1). During this scan, GB will be
deleted from the segment i as explained for the case
of one segment; the difference now is that the topmost
word of segment i+l has been inserted as the last word
of segment i. Figure 7c shows the situation at the
end of Scan 1. We see the word Wn+l of segment i is
now 'empty', and this condition is reflected by TC=-1
for that segment.

The fact that TC=-1 in segment i, will signal when
word Wl is SRl in all cells, all the cells below cell
i, to shift one word up during the next memory cycle.
To perform this, TC is set to -1 in all the cells
below cell i, and is set to 0 in all cells above cell i,
and in cell i at the after Scan 1. At the beginning
of the next scan (Scan 2), all the cells below cell i
will not write word Wl but will write W2 in its place
in the CCD memory. Being short a word, they will write

Ri w I ai I 5J' I aj I
Wl ai ai ai ai

W2 bi G Ci Ci

W3 Ci Ci di di

W4 di di ei ei CELL i

Wn ni ni ai+l

Wn+l
I bi-i-1 I ai+l~ •_ a_!.~l_; I I

I_ - - -'
! __ - J - - - l from

cell i+l

Rn [3J KJ ~ ~
Wl a a a b n n n n
w2· b bn b c n n n

W3 c c c d CELL n n n n n

Wn n n n EOF n n n

Wn+l
I

EOF t
I i I

I I EOF l i EOF I
...,_._ EOF

!_ - - _, ~ - - - -~ -----' ,_ __ - --1

(a) (b) (c) (d)
STABLE SCAN l END SCAN 1 END SCAN 2

FIGURE 7 GARBAGE WORD DELETION

191

the word ti+l from register Ri+l at the end of the scan.
At the end of Scan 2, all the cells below cell i have
moved one word upward, and an EOF word is inserted at
the bottom of the last segment, see Figure 7d.

Finally, we consider the anomalies encountered when
more than one garbage word is found. Two garbage words
can be encountered on the same cell. However, when the
second garbage word is met, the tap is already in the
-1 poaition, which prevents such a word from being
picked up. It will be collected in a later scan. Two
garbage words can be encountered in different cells,
say cells i,j. This requires the lower cell, j,
having a garbage word to send up a garbage word to
cell j-1 in lieu of its word w1 , and initialize its TC
to 0 instead of -1. The garbage word sent to cell j-1
will be collected in a later scan. Finally, if a
garbage word is met when a cell is shifting words up
(scan 2 in Figure 7), the TC having been initialized
to -1 at the beginning of the scan and not having been
changed, the cell will not collect this garbage word
until a later scan.

If word insertion is taking place together with
garbage collection, it will be possible to delete more
than one word per memory cycle. The general case is
explained after word insertion.

3.2 Word Insertion

In word insertion, the word B sent by the computer
will be inserted right after any word that has X=l
in an IW command. This is carried out in the garbage
collection module, within the same circuit used for the
deletion of garbage words (see Figure 5).

A given cell will be able to insert a word if a
word with X=l has just been passed and the selector S
is at the -1 or 0 position. It should be noted that
if the word with X=l is found on the bottom of one
segment, a signal is sent to the next lower segment to
enable insertion in its first word.

For the description that follows, it will be
considered that only word insertion is taking place
(there are no garbage words), and the computer has a
word ready to send. The mechanism for insertion within
a cell is very similar to that of word deletion, but
making use of the +l and Wl position of the selector.

At the beginning of the scan when the word is to be
inserted, the selector S will be at its normal position.

·when the word with X=l is detected at SRl, the X bit
is erased and a signal is sent to the computer which
will feed the new word into the EC line, and the
selector S is temporarily set to the Wl position to
receive that word. In the meantime, the word in SRl is
shifted into SR2. After the insertion the selector S
will be in the +l position, and no further word in
sertion may be performed. This mechanism allows the
insertion of one word per memory cycle in a cell.

In a multiple cell system, if at the end of a scan
period a cell has the condition TC=+l, the segment will
have an extra word on it. During the next scan the
shifting of one word toward the end of the memory must
take place. The mechanism to perform the shifting is
very similar to the one used for garbage collection,
only that in this case, a word b. is shifted downward
instead of upward.

1

To handle the word shifting in a multiple cell
system, an exact copy of the last valid word (Wn) of
the prev:lous segment is stored in register P at the
beginning of each segment memory in W0 , as shown in
Figure 6 (the only exception is the first segment in

which, the data in W
0

is irrelevant), This is done by
writing the last valid word Wn of each segment into
register Pi at the end of each scan period if S=O for
that segment, and then writing the content of the
register into W , before the beginning of the scan, on
each subsequent 0 segment i+l.

If at the end of a scan, cell i has the condition
TC=+l, and all the cells below i have the condition
TC=O, TC will be initialized to 0 in all segments
above i and in segment i, while TC will be intialized
to -1 in all cells below cell i at the end of the scan.
This causes the word originally in W

0
to become the

word now in w1 • Note that at the beginning of the scan,
W is in SRl while w1 is in both SR2 and the search
p~ocessor. Changing TC from -1 to 0, causes the con
tent of W

0
to become first word of the scan. The over

all effect of the above procedure is the shifting of
one word toward the end of the memory in all the cells
below cell i. At least one EOF word is needed at the
end of the last cell in order not to lose data. If
the EOF word does not exist, the system memory is full
and the word insertion (or any other input) should be
inhibited .•

Finally, some anomalies can occur where two words
are inserted at the same time. Like the garbage
collection anomalies, if both words are in the same
cell, or the lower cell is moving a word down, TC will
be in the +l position so that the second word cannot
be inserted. It must be inserted in a subsequent scan.
The IW connnand may take several cycles to insert all
words in this case. If more than one cell1 say cells
i and j, have TC=+l at the end of a scan, the lower
cell, u, will still have one too many words in it at
the end of the next scan. The extra word not able to
be put on the CCD memory is stored in register P.
instead of the last word WN, so that it will be ~assed
down to the next lower cell in the next cycle.

3.3 Insertion and Deletion of More Than One Word

It was assumed that only one operation was taking
place in the description of the garbage collection and
word insertion. However, the garbage collection
circuit is active during the word insertion operation;
which mean.s that both operations may take place during
the same memory cycle. The fact that the word insertion
and garbage collection are operations that complement
each other will allow, when occuring together, to
delete or insert more than one word per memory cycle.

On a single track system, insertion can always
take'place if there is enough room on the shift regis
ters SRl and SR2 to take up the slack; and conversely,
garbage can be collected if deleting a word by moving
the switch S does not move it beyond the shift register.
This permits more than one word to be inserted or
deleted per scan. For instance, if every other word
was a delimiter word that has X=l ·enabling it for
insertion and every other word was tagged as garbage,
then all the erased words will be deleted and the word
B will be inserted after every delimiter word, all in
one scan. Note that the counter TC would oscillate
between 0 and +l, for instance, as words are deleted
and inserted.

On a multiple track system, the operation during
the scan is the same as for the single track system.
Note that each cell autonomously can determine whether
insertion or deletion is possible, looking only at the
counter TC.

During the gap, words w1 and W are exchanged
between cells. This requires two ~dentical adder-like
carry circuits :in place of the priority circuits. The

192

two carries correspond to control signals that cause
the word to be shifted upwards in each cell, or down
wards. Note that if a cell has too many words, it
should shift words downward cell by cell until a cell
that is short of a word is encountered. Such a c1ell
terminates the downward shift. Conversely, if a cell
has not enough words then it should cause words b1elow
it to be shifted up. This should cause a word to be
shifted up one cell, cell by cell, until a cell is
encountered that has too many words. Such a cell
terminates the upward shift.

The logic for multicell operation can be implemented
by two chains of AND-OR gates through the chain of cells,
or equivalently by 74182 carry lookahead generator
chips, that implement two carry chains. "Carries" are
propagated· from higher to lower cells in both easies.
In terms of carry lookahead logic, if SW is 1 if a
cell is short a word and EW is 1 if a cell has an
extra word, then one carry lookahead has SW input to
its generate and EW to its propagate and the~ second
has EW input to its generate and SW to its propagate.
Both propagate carries to lower cells. The carry out
of the first one indicates a word is to be shifted
upward and a carry out of the second indicates a word
is to be shifted down. Except for the anomalies :indi
cated earlier for garbage collection and word insiertion.
These carries simply initialize the counter TC to -1
if the first carry is 1, or to +l if the second carry
is 1, or to 0 if neither carry is 1. The anomali1es can
be handled as indicated in the previous sections.

This garbage collection technique can be extended
to always either collect n garbage words or insert m
words by using a counter TC that can go from +m to -n,
coupled to an (m+n) tap shift register in a similar
manner. A suitable scheme for transferring m or n
words between cells in one step is not known; how1ever
it is possible to transfer one word at a time using
the scheme shown above. Also, it will be necessary to
save the top n words and bottom m words on each track
for possible transfer, and some care is required to
locate the next word below one with X=l if this word
appears on the top of a segment.

4. Block and End Insertion

Fast block insertion is possible in a multitrack
system. However, it may create garbage words. Insertion
at the end of the file is the fastest and cleanest
method for inserting words. These techniques are
described below.

4.1 Block Insertion

Block insertion input allows the insertion of a
large amount of words, equal to an integer multiple
of the number of words in a cell memory. The new
segment is inserted below a word with the X bit siet
and no more than one word with X=l is allowE~d, in the
whole system memory, at the beginning of this input
mode.

To explain the mechanism used for the segment in
sertion refer to Figure 8. For simplicity, only a
three segment system, with four words per SE~gment iS"
shown, and exactly one segment is going to be ins1erted
(segment HI J K).

At the beginning, before the insertion, the system
memory will look like shown in Figure Sa. Only one
word exists with X=l (word b), and there is enough
space for the insertion of the new segment (the last
half of segment two, and all segment three is filled
with EOF words). During the scan for the ML comma.nd,
the word with X=l is detected, and at the end of the

scan, the cell containing t~e X=l word is marked by
setting a flip-flop. (Note that at the end of the scan,
only one segment is marked since no more than one X=l
word is allowed). At this point, if an IB command is
taken, during the scan the cells below, and including
the X=l cell wilL pass all their data to the cell
immediately below (in the example of ,Figure 8, cell
2 passes its data to cell 3, and cell 1 to cell 2).
The cell with X=l, will rewrite its data up to the
word with X=l, at which point the ~ bit is erased and
a signal is sent to the computer to synchronously
start the transmission of the new data. This data is
sent to the X=l cell, and written on the memory,
starting with the word immediately below the X=l word.
This is shown in Figure 8b, which is a 'snap-shot' at
the end of that scan. Note that at the end of the
scan, the X=l word has moved to the next cell. In
the next scan, the input is continued at the next
segment (segment 2 in the example), and when the last
word of the inserted segment is written the X=l word
will disappear. This is shown in Figure 8c.

~
l:J
EOF

EOF

EOF

EOF

(a)

Figure

CELL 1

CELL 2

g Q CELL 3

F F

(b) (c)

8. Insertion of Block HIJK.

If the amount of data to be inserted is greater
than one segment, the shifting of the data in each
cell to the one below, as explained above, should
continue on each next memory cycle, and concurrently
with the input of data, until there is enough space
for all the new data. To handle this, a counter
register is initially loaded with n, the amount of
words that the computer will send for insertion, as
provided by the ML instruction. The counter is
decremented as words are input. The general algorithm
to decide if the data has to be shifted, starting on
the next cycle is: each time a scan has been completed
in block insertion, the data will be shifted on the
next scan if the content of the counter is greater
than the number of words on a segment. The shifting of
all data from each cell to the next lower cell will
be done in all cells below the one that, at the end of
the scan, had just inserted a segment, and the next
lower cell will insert words as explained for the
one segment insertion.

If a block is to be input which is not a multiple
of the number of words in a segment, the remaining
words needed to fill out a segment are input as
garbage. Garbage collection hardware must shift these
garbage words to the end of the file.

Finally, we note some abnormal conditions that have

193

to be considered. Before starting the data shifting,
the availability of space is tested by looking if the
first to last cell has at least one end of file word,
and if this is not the case, the system memory will be
considered full for block insertion, and the input should
stop. Also, garbage collection is always inhibited
during block insertion since the deletion and shifting
of words may disturb the segment insertion.

4.2 Input at the End of the File

The input at the end of the file is handled by the
input/output module and it is the normal input mode of
the system. In this mode the words will be transferred
from the computer and written at the end of the exist
ing file, starting with the first EOF (end of file)
word found. To handle this input, the system keeps
track of the cells with EOF words on it, and at the end
of each scan the cells are marked by setting a flip-flop.

A priority circuit determines the topmost cell with
EOF words on it, and an input will start at this track
and with the first EOF word in the track. Files are
first created in the system using this mode of input.

5. Output

The output of words to the computer is handled by
the input/output module. This module may be implemented
in such a way that it is always active (like the garbage
collection) since there is no conflict with other oper
ations in the system. In that way, words marked for
output (words with the C bit set) will be sent to.the
computer as soon as they are detected. Output is con
trolled by output modes provided by the OR command.
If mode m1 indicates SAVE, when a word is output, the C
bit is cleared. If mode m1 indicates DELETE, when a
word is output, it is changed to a garbage word.

The mode mz is used to assign the output priority
to the different cells that have words with the C bit
set. In the ordered mode, only one cell can output data
in each cycle, starting with the topmost one with a word
with C=l in the first scan, and continuing with the lower
cells in an ordered fashion on each subsequent scan. In
that way the data is sent to the computer in the same
order as it is on the file. A flag stores the fact that
words with C=l are still in a cell. The priority cir
cuit gives access to the topmost cell having this flag
set. In each cycle, the memory is evaluated to find the
topmost cell with collection words in it; this cell out
puts its collection words in the next cycle. If a cell
has the output access, and the computer is not ready by
the time a word with C=l is found·, the output will be
held until the end of that scan (even if the computer
signals ready before the end), and resumed on the same
cell on the next scan in order to preserve the order of
the wors.

In the delimited mode, the order of the words is
kept within each record, but the records are sent to the
computer in random. In this mode, all the cells scan in
parallel, searching for a delimiter with C=l. As soon
as one or more cells find the cells that this condition
the priority network locates the highest such cell. It
sets a flag and gains access to the computer until the
next delimiter word with C clear is found, at which time
the scan for another delimiter with C=l is resumed in
parallel in all the cells. However, if at the end of a
scan, a given cell has the output control, meaning that
a record starting in one cell and continuing to the next
one is being sent out, then the output access will be
passed to the next cell for the next cycle in order to
keep the order within the record.

In the random mode, all the cells are searched in
parallel. As soon as one or more cells find a collection
word, the priority circuit gives access, temporarily, to
the topmost one, which outputs the word at this time.
After the word is output, the search is resumed in paral
lel in all the cells. The same-procedure is repeated on

each scan. This mode of output is the fastest, but the
output is scrambled!

In the unique mode, the output of data of dupli
cate words is prevented. In this mode, the cells will
search in the ordered mode for words with C=l, but each
time the cell with access to the computer finds just
one word with C=l, it outputs only that one word.
During the gap, this word is broadcast to all the
cells in order to search for duplicate words within
the ones with C=l. During the subsequent scan, the C
bit erased if a match is found. During the same scan,
after the C bit is possibly cleared, the cells search
in the ordered mode for just one more word C=l,
continuing as above. This mode allows the output of
only one word per cycle, sent to the computer and
broadcasted to all the cells at the end of the scan.

6. Conclusions

A collection of techniques for hardware manage
ment of a secondary memory have been described. Gar
bage collection and input and output techniques have
been shown to be simple, even on a multiple track
(segment sequential) memory.

The techniques for managing secondary memory, the
main content of this paper, were presented in the con
text of a very simple architecture. They can be em
bedded in more complex architectures, such as the CASSM
architecture [3]. However, this simple architecture
itself offers a secondary memory capable of storing
arbitrary length records, accessing them without need
for a directory, linking separate records automatically,
spooling records so that they can be queued and output
on demand, and collecting garbage words. The absence
of a directory often saves one access time. In small
systems, the directory need not be brought into the
small primary memory. In networks, no protocols are
needed to gain access to the directory. Finally,
essentially no software is needed to manage the direc
tory or collect garbage. A self-managing secondary
memory that uses techniques such as those suggested in
this paper could be a new and useful type of secondary
memory.

References

[l] Healy, L. D., Lipovski, G. J. and Doty, K. L.,
"The Architecture of a Context Addressed Segment
Sequential Storage'', Proc. FJCC, pp. 691-701, 1972.

[2] Copeland, G. P., Lipovski, G. J. and Su, S. Y. W.,
"The Architecture of CASSM: A Cellular System for
Non-Numeric Processing," Proc. of the First Annual
Symposium on Computer Architecture, pp. 121-128,
Dec., 1973.

[3] Su, S. Y. W., Lipovski, G. J., "CASSM: A Cellular
System for Large Data Bases," Proceedings of the
International Conference on Very Large Data Bases,
Farmingham, Mass., September, 1975, pp. 456-472.

[4] Bush, J. A., Lipovski, G. J,, Watson, J, K., and
Su, S. Y. W., "Some Techniques for Implementation
of Segment Sequential Functions." These proceedings

[5] Ozkarahan, E. A., Schuster, S. A., Smithe, K. C.,
"A Data Base Processor." Technical Report CSRG-43,
November, 1974.

[6] Walden, David C., "A system for Interprocess
Communication in a Resource Sharing Computer Net
work", Comm. ACM., April, 1972, Vol. 15, No. 4,
pp. 221-230.

[7] Feustel, E. A., "On the Advantages of Tagged Ar
chitecture," IEEE Trans. Comp., July, 1973, pp.
644-656.

194

PRICE/PERFORMANCE COMPARISON OF C,MMP AND THE PDP-lOi(

Samuel H. Fuller
Departments of Computer Science and Electrical Engineering

Carnegie-Mellon Universi.ty
Pittsburgh, Pennsylvania 15213

ABSTRACT

The analysis in this paper shows a multiprocessor
like c.mmp to have a factor of three to four cost/per
formance advantage over uniprocessor systems such as
the PDP-10 when implementations using similar technol
ogies are considered. This comparison is shown to be
very sensitive to memory prices and considerable atten
tion is given to normalizing memory costs between c.mmp
and the PDP-10.

An important part of this analysis is a comparison
of the PDP-10 architecture with the PDP-11 architecture
(i.e. the architecture of the processors of c.mmp).
When the limited address space of the PDP-11 is not a
problem, we see that to a close approximation it takes
the same number of PDP-11 instructions (average length
25 bits) as PDP-10 instructions (length 36 bits) to
represent a program,

While the comparison in this paper explicitly con
siders multiprocessor degradation factors such as mem
ory interference, it does not address the problem of
writing software systems capable of taking full advan
tage of the multiprocessor structures. The comparisons
in this paper are primarily ofcused on comparing the
hardware structures of uniprocessors and multiprocess
ors. Work is now in progress at CMU that is attempting
to evaluate the effectiveness of both individual multi
processor structures application programs and multipro
grammed systems operating on c.nunp.

CONTENTS

1. Introduction
2. Measures of Price and Performance

2.1 Simple ·performance Parameters
2.2 Benchmarks
2.3 Mp Capacity
2.4 I/O Bandwidth
2.5 Measures of Price

3. Comparison of the PDP-10 and PDP-11 Processors
4. C.mmp Multiprocessor Overheads

4.1 Memory Interference
4,2 Software Overheads

5. Prices
6. Price/Performance Comparisons and Summary

1 • INTRODUCTION

During the first half of the 1970's a surprising
number of computer systems designed as an interconnect
ed set of smaller computers have been proposed and a
nontrivial number of these systems have been built.
Figure 1.1 [Baskett, 1975] helps to explain this spurt
of interest in systems built with several small pro
cessors rather than a single larger processor. This
figure shows the cost effectiveness of all the computers
listed in Coro uter Review [1975], measured in Processor
Memory Bandwidth Dollar, as a function of the price of

· the smallest configuration. Note that the $10,000 sys
tems (i.e. minicomputers) appear to be at least an

* This work was supported in part by the Advanced Re-
search Projects Agency under contract F44620-73-C-0074
which is monitored by the Air Force Office of Scientif
ic Research and in part by National Science Foundation
Grant: GK-41070.

195

----~1~ "'4 ';;; :!
I- 0 -a
~

•
~ · :; ..

:i:

b
10

3
i
0 •
2.
< co
>- cc
0:: c(
0 ...J

.. . ~· • •••• • L:
• • • •

• • •
:iE ...J

~ g l<l>z •
•• ... :·

•• ···..: ·: ..
•

~
0
Vl
Vl
IU
u
0
0::
C>..

l<lll •
1¢ 4 1<2> 5 111/>

C05T(DOLLAR5)---

Figu:re 1.1. Cost/Performance as a Function of
System Cost

order of magnitude more cost-effective than the larger
machines. There a number of apparent reasons for this
phenomenon:

1. Continuing advances in semiconductor technol
ogy favor the small processor. LSI (Large
Scale-Integration) memory and ALU chips have
been able to dramatically cut the cost of pro
ducing minicomputers. Recent LSI advances
such as the Intel 3000 bit-slic~ processing
element [Intel, 1974] and the DEC LSI-11 will
continue to drive down the price of minicom
puters. The larger processors that rely on
specialized logic to speed up ALU functions,
prefetch and buffer instructions, overlap in
struction execution, etc. are currently less
able to exploit the present LSI technology.

2. Economies of scale. A production line that
produces on the orde~ of 10,000 minicomputers
a year (or 105 to 10° microcomputers a year)
will not have the overhead per computer that
a production line has that produces 50 to 100
(large uniprocessor) computer systems a year.

3.. Pricing policies that bury the cost of soft
ware development for the large computer sys
tems in the price of the hardware.

See [Bell et al., 1971] for another view of the reasons
for the emergence of multi-mini-processors.

The purpose of this paper is to try to take a more
detailed, concrete look at the cost effectiveness of
computer systems built from multiple, mini-processors.

* Specifically, we compare C.mmp , the multi-mini-process-
or computer system that has been developed at CMU, with
a standard, uniprocessor computer sys tern: the PDP-10.
Discussion of the details of C.mmp [Wulf, et al., 1975,
Wulf and Bell, 1971] and the PDP-10 [DEC, 1971] are not
within the scope of this paper. The PDP-10 is a conven
tional uni-Pc computer system and C.mmp is structured
as a canonical multi-processor computer system. It con
sists of up to 16 equal, asynchronous Pc's that share
a large Mp.

Manufacturer's specification sheets are vague at
best and often (intentionally?) ambiguous. For this
reason, whenever feasible we are collecting data rather
than rely on published information. The uniprocessor
that is used in this comparison in the PDP-10 (KAlO
processor). We are using the PDP-10 not because it is
necessarily the best example of a uniprocessor system
but because we have two at CMU that are readily avail
able for us to measure and several problems exist that
have been programmed for both the PDP-10 and C.mmp.
Ideally, we will be able to expand this work in the
near future to include processors of other manufactur
ers.

The purpose of this report is limited to a compar
ison of the price/perform~nce of multi-Pc systems to
uni-Pc systems. For this reason we are limiting the
scope of this work to the central processors (Pc's),
primary memory (Mp), and I/O channels (Kio's) or I/O
processors (Pio's) of the computer system. Secondary
storage units, terminals, and communication subsystems
are excluded not because they are insignificant in cost
or performance but because they are common to multi-Pc
and uni-Pc systems and their structure is not directly
affected by the fact there are one or many Pc's. On
the other hand, both Mp and Kio's (or Pio's) often
need to be structured differently to interface with a
uni-Pc or a multi-Pc processing element.

A recent budget survey [McLaughlin, 1974] helps to
put the scope of this report in perspective. Of the
194 computation centers polled, only 39% of the budget
was used for hardware purchases or leases; the bulk of
the budget went to salaries and overhead. Of the money
spent for hardware, about half was spent for central
processors and main memory. The other half of the hard
ware money was spent on secondary storage, communica
tion costs, terminals, and unit record devices.

In spite of the fact that the Pc/Pio/Mp subsystem
of a conventional computing facility only comprises
about one fourth the total operating costs, the asser
tion that a multi-mini-Pc system is more "cost-effec
tive" than a single, larger mini-Pc system has been
argued for several years now. The most ovvious ap
proach to addressing this issue is to set aside costs
common to both multi- and mini-Pc systems and examine
the cost-effectiveness of changes in the computer's
structures introduced by adding multiple Pc's.

2. MEASURES OF PRICE AND PERFORMANCE

2.1 Simple Performance Parameters

The initial measures that we use in this paper for
performance are:

6
• Instructions per second (units: 10 instruc-

tions/sec. Denoted as MIPS, ~illions of
'{(

We use the PMS (Processor-Memory-Switch) notation of
Bell and Newell [1971] to describe computer systems at
the "block diagram" level. C.mmp is a PMS acronym for
a !!!_Ulti-!!!_ini-£rocessor fomputer system. Other fre
quently used PMS names include Pc for .£entral frocess
or and Mp for £rimary ~emory.

Instructions fer §.econd)

• Processor-Memory Bandwidth (units: 10
6

bits/
sec.)

The above two measures of Pc performance are less than
ideal. However, they both have obvi.ous intuitive mean
ings, and they can be directly measured on operational
systems. The following comments may help in our :lnter
pretation of these measures:

2.1.1 The MIPS measure unfairly favors the smallv
primitive machine. Clearly a simple 16 bits/word mini
computer executing 1 MIPS is not as powerful as ~ 1-
MIPS 36 bits/word computer. The individual operations
being evoked on the minicomputer operate on less than
half the number of bits than the larger word computer. ~
In addition, Pc's that incorporate such features as
multiple general purpose registers, vector (or block
move) instructions, or a rich set of data types (e:.g.
the IBM 360 and 370 architecture) will have lower MIPS
rates because of these features, but, in fact, are more
powerful because of these features.

2. 1.2 The Processor-Memory Bandwidth measur1e tends to
give an unfair advantage to large word Pc's :relative to
the smaller word minicomputers. A Pc that g1ets 64
bits/fetch (e.g. the IBM 370/168) will often not use
all 64 bits. In an extreme case it only wants a byte
of information and the remaining seven bytes are simply
discarded. On the other hand, a minicompute1r that only
accesses 16 bits/fetch will not be as inefficient in
its use of memory bandwidth. In fact, ~ low cost
implementation of a processor (e.g. the IBM 360/30) will
make more efficient use of its Processor Memory Band
width than a larger Pc.

The above problems with MIPS and Memory Bandwidth
suggest that we might do well to use both in any ciom
parison of minicomputers to larger computers and at
least as a first order approximation use MIPS and Pro
cessor Memory Bandwidth as upper and lower bounds (re
spectively) of the power of the mini-Pc relative to the
larger Pc.

2.2 Benchmarks

Because of these problems with MIPS and Processor
Memory Bandwidth, we will also use one other measure of
Pc performance: benchmark (or kernel) programs. In
other words, measure the execution time of the same
problems on the various machines of interest. The main
problems with this approach are that the results are
often very problem specific -- and hence the need for
many benchmarks -- and the fact it is very time-consum
ing to recode a set of given problems on the different
machines of interest. However, there is sufficient:
question with the accuracy of the MIPS and Processor
Memory Bandwidth measures that several benchmarks have
been developed for use in the comparison of C.mmp t:o
uniprocessors.

2.3 Mp Capacity

The price of memory is a significant factor in the
prices we will discuss below and yet none of the mea
sures of Pc performance are influenced by Mp size.
Clearly a 10 MIPS Pc with 4K words of memory will have
a better price/performance figure than a 5 MIPS Pc with
3,000K words of Mp, but it is also just as cfoar the
5 MIPS-3 Megaword system is the more powerful system.
As the MIPS rate of a Pc is increased, it will need
more Mp in order to have sufficient data to kE~ep it
busy. This phenonema is captured by a piece of com
puter science folklore known as "Amdahl's Constant".
It states that a balanced computer system needs 1
Megabyte of Mp per Pc MIPS. Rather than arguei the

196

accuracy of Amdahl's constant, in the following analy
sis we will indicate both the performance of the Pc
and the sizn of Mp in the systems we compare. When
comparing a uni-Pc to a multi-Pc system we will vary
the size of Mp over the range of practical configura
tions.

Like Mp capacity, I/O bandwidth is not included in
any of our performance measures, yet a system is in
danger of being starved for data if the I/o channels
have insufficient capacity. As with Mp capacity, we
will simply state the I/O transfer rate capacity of the
various systems and not try to develop formulas to in
tegrate I/O bandwidth into measures of Pc performance.
(Aside: Another, lesser known "Amdahl constant" is
that 1 bit of I/O is needed per instruction executed
[Amdahl, 1970]. However, we won't pursue this idea any
further in this report.)

2.5 Measures of Price

Our basic measure of price will be March, 1975
retail prices. This measure has the attractive proper
ty that it spans different Pc architectures, Mp con
figurations, and I/O channel structures rather cleanly.
However, we still must contend with the following
tr~blesome details that conspire to blur our compari
son.

2.5.1 The year a computer system is implemented in
fluences its cost-effectiveness as expressed in current
retail prices. For example, there is no question that
you receive more power (MIPS, Processor Memory Band
width, •••) per dollar today from a KLlO -- a PDP-10
implemented in 1974 -- than from a KAlO -- a PDP-10
implemented in 1966. In fact, the primary reason for
reimplementing a given instruction set every two to
five years is to get the improved price/performance
available with the newer technology.

2.5.2 Marketing strategies will distort prices some
what in order to hide software costs, encourage user
acceptance, etc. Hence manufacturers' prices cannot
be assumed to give too accurate a measure of the funda
mental cost of implementing the system.

2.5.3 While we use retail prices whenever possible,
some of the components of C.mmp are not commercially
available and the only solid dollar figures we have
are construction costs at CMU. As with the performance
measures, rather than attempt to construct and justify
an appropriate CMU cost to manufacturers' retail price
coefficient, we will simply indicate which figures are
CMU cost figures and which are retail prices.

3. COMPARISON OF THE PDP-10 AND PDP-11 PROCESSORS

C.mmp is implemented with PDP-11 Pc's as the cen
tral processing elements. Hence if we are to make any
meaningful comparison between the PDP-10 and C.mmp, we
need some measure of the relative power of these two
instruction sets. In addition, we need both absolute
and relative measures of the execution rates of the
various implementation models of the PDP-10 and PDP-11
architectures.

used:
To assist in this comparison, four benchmarks were

PDE. This is a classic partial differential equa
tion solver that uses Liebmann's iteration method
(i.e. simple relaxation). Two's complement inte
ger arithmetic is used and 16 bits of precision is
assumed to be sufficient. PDE has been implemented

in ;6L:tSS on both the PDP-1 0 and PDP-11 • On both
machines we have an unoptimized and an optimized
version. The inner loops of the optimized ver
sions are written in assembly language.

L"'•. L-1• is an interpretative list processing sys
tem and the U< benchmark consists of a set of
small programs that exercises the stack, list, and
arithmetic facilities of L~'<. It is written in
assembly language on both the PDP-10 and PDP-11.

TECH. This is a chess playing program and is in
tended to represent a typical application in arti
ficial intelligence. To a first approximation,
TECH is simply a tree-searching program that de
rives most of its power from alpha-beta pruning.
Both PDP-10 and PDP-11 versions are written in
BLISS.

Integer Programming. A modified branch-and-bound
procedure for linear integer programming problems.
Both the PDP-10 and PDP-11 versions are written in
BLISS.

Table 3.1 gives the static comparison between the PDP-10
and PDP-11 for these benchmarks. A number of interest
ing observations can be made from Table 3.1, but the
most significant are:

PDE

L-l<

TECH

1. The ratio of PDP-11 instructions to PDP-10 in
structions needed to implement this set of
benchmarks is nearly unity.

2. The PDP-11 is able to represent these programs
with 0.665 (about 2/3 the number of bits re
quired by the PDP-10.

3. The average number of 16 bit words needed per
PDP-11 instruction for this set of benchmarks
is 1 • 62

PDP-10 PDP-11
PDP-ll ratios
PDR-10

words
instr instr words instr instr words bits
267 269 437 1 .62 1. 01 1.64 o. 728

120 109 186 1 • 71 0.910 1.55 0.689

2378 2429 3829 1.58 1.03 1 • 61 0.716

Integer 744 560 882 1. 57 0.64 1. 18 0.527
Prog.

Average - - - 1.62 0.90 1.50 0.665

Table 3.1. Benchmark Program Sizes

Tables 3.2, 3.3, and 3.4 give information needed
for a dynamic comparison of the PDP-10, specifically
the KAlO, and the various PDP-11 models. Table 3.2
gives the MIPS and Processor Memory Bandwidth for the
KAlO. The most significant figure in Table 3.2 is the
MIPS rate observed when the KA10 was compute bound
running a general mix of programs (over 5*107 instruc
tions were counted). The fascinating aspect of this
MIPS measurement for the KAl 0 is the observed degree of
variability. For example, for the MIPS reading averaged
over ·i sec., the mean is 0.342, but the standard devia
tion of 0.190; for the 10 sec. readings the standard was
still 0.075. Therefore, a reasonable confidence inter
val (95~) surrounding our mean reading of 0.342 MIPS is
(0.327, 0.357).

Reading averaged over 10 second intervals (14 ob
servations)

197

Max: 0.480 MIPS
Min: 0.224 MIPS

Reading averaged over 1 second intervals (20 ob
servations)

Max: 0.515 MIPS
Min: 0.138 MIPS

The MIPS and Processor Memory Bandwidth is given for
the benchmarks to indicate how closely they match the
actual averages seen by the general purpose programs.

Benchmark inst. x 10
3
lsec. words _x 1 o3

lsec

General Use 342 (data not available)

PDE (optimized~ 332 484

L* 289 491

[Lunde, 1974] 312 (data not available)

Table 3.2. PDP-10 (KAlO) Execution Rates

Table 3.3 gives the execution rates for the
PDP-11/20 and PDP-11/40. The principle conclusions
are:

3.4. MIPS: 11/20 = 0.18g; 11/40 = 0.34 (estimate)
3.5. Pc-Mp Bandwidth (10 words/sec.): 11/20 = 0.470;

11/40 = • 870
(estimate)

c.rrnnp Pc's

PDP-11/20 PDP-11/40
insl. X words X

Benchmark 103 sec 1 o3lsec

Job monitor 201 446 (2) (2)

PDE 210 455
(Optimized)

L~'< 155 508 (2) (2)

c.mmp Avg. 186 470 (2) (2)

Relative Speed - 1. 0 - 1.85
[O'Loughlin,
1975]

1PDP-ll/20's and PDP-11/40's are slightly slower on
C.mmp than in standalone configurations because of de
lays in the crosspoint switch.

2
At the time these measurements were conducted no

PDP-11/40 was operational on C.mmp and these figures
for the PDP-11/40 are estimates based on PDP-11/20 to
PDP-11/40 measurements reported by O'Loughlin [1975].

Table 3.3

Table 3.4 completes this dynamic comparison of the
PDP-10 to the PDP-11 by showing the total execution
times for the benchmark programs. In fact, it is pos
sible to estimate the PDP-11/20 to KAlO execution time
ratio from the already discussed ratios of PDP-11 to
PDP-10 instructions and PDP-11 to PDP-10 MIPS. Which
ever way it is computed, directly from Table 3.4 or in
directly from program sizes and MIPS rates, we find a
ratio of throughput (benchmarks/second) of KAlO to
PDP-11/20 throughput of 2.16 and a KAlO to PDP-11/40
throughput ratio of 1. 17 (estimate) -- not far from
unity.

198

1.ill..Q.
Benchmark KA10 PDP-1ll20b:JA10

PDE 124.7 186.4 1.49

L'>'(66 195 2. 95

Integer Programming 30.0 61.4 2.04

Average 2. 16

Table 3.4. Benchmark Timings

Before continuing, a few comments are m~eded on
this comparison of the PDP-10 to PDP-11 inst1:uction
sets. Most importantly, the comparisons in this sec
tion have not adequately accounted for the differences
in data-types between the PDP-10 and PDP-11. The
PDP-11 only has 16 bit integers and when we consider
solving problems often encountered on the PDP-10 (and
hence C.mmp) 32 or 36 bit integers will be rE~quired.
The current PDP-11 instruction set will forcE~ us to
emulate the manipulation of large integers via software
routines. Another factor missing from this comparison
is floating point numbers. Although the PDP-·11140 has
a floating point option, it has floating point add (and
subtract) times of 20 µ.sec., a floating multlply time
of 20 µ.sec., and a floating divide time of 4i' µ.sec. In
contrast, the KAlO has much faster floating point oper
ations: add (subtract): 5 µ.sec.; multiply: 11 µ.:sec.;
and divide: 14 µ.sec. Hence, the PDP-11740 has an
execution rate very close to the KA 10 for the: bas ii:~
operations, but is a factor of 3 to 4 slower for float
ing point operations. This shortcoming of the PDP·· 11/40
needs to be studied in further evaluations of C.mmp. A
factor that tends to downplay the significanc.e of this
floating point comparison is that instruction mixeB of
large, conventional Pc' s show that floating point :ln
structions rarely exceed lOc;b of the instruction mix,
even for scientific computations [Stone, 1975, p. 540].
The PDP-11/45 executes floating point operations at
about the same rate as the KAlO. In addition, the
PDP-11/45 has both 32 and 64 bit floating point dat:a
types; comparable to the 36 and 72 bit floating polnt
data-types of the PDP-10.

Another important factor in comparing the PDP-· 11
to the PDP-1 0 is that the PDP-11 has a much smaller ad
dress space than the PDP-10; in fact, the PDP-ll's 64K
byte address space is less than 1/16th the address
space of the PDP-10 (and 1/356th the 16M byte addre:ss
space of the IBM 360-370). When we use the PDP-11 pro
cessor in a multi-mini-configuration we can expect a
larger overhead to establish and maintain addressabil-
ity than we have historically experienced with the ~
PDP-10 or other conventional processors such as the
IBM 360 and 370 Pc' s. The PDP-11 's poor suit.ability
for applications heavily oriented toward large integers k

or large address spaces suggests that the above measure
ments comparing the 11 to the 10' s instruction set be
viewed with caution.

This addressing space problem for the PDP-11 (and
minicomputers in general) has not been solved with the
memory mapping units of either the PDP-11/40, 11/45,
11/70, or c.mmp. In these cases the physical memory
can be substantially larger than 64K bytes, but the
immediately accessible address space remains 64K bytes:
explicit loading of the memory mapping registers is re- ~
quired to give the Pc addressability outside its ..::-
"immediate virtual address space" of 64K bytes.

4. C.mmp MULTIPROCESSOR OVERHEADS

In the last section we attempted to establish a
quantitative relation between the processing power of
the KA 10 and the PDP-11/20 and 11/40 (the Pc' s of C.mmp).

In this section we examine factors that affect perfor
mance as we connect the PDP-11 Pc's into a multipro
cessor configuration.

4. 1 Memory Interference

A number of studies have been conducted to deter
mine the amount of performance degradation that results
when the Pc's of a multiprocessor contend for primary
memory [Strecker, 1970; Bhandarkar, 1074; Bhandarkar
and Fuller, 1974; Baskett and Smith, 1975]. Although
the mathematical techniques used have differed among
the studies, they give remarkably consistent results
for the set of configurations that include actual and
proposed c.mmp configurations: they all show degrada
tion factors of less than 101;6. The fundamental reason
is that the Mp ports of c.mmp have a much higher band
width (2.5 Megawords/sec.) than either the PDP-11/20
(0.47 Megawords/sec.) or the PDP-11/40 (0.87 Megawords/
sec.). Figures 4.1-4.2 show the Processor Memory Band
width for C,.mmp from a number of aspects. Figure 4.1
Bhows the bandwidth as the number of Mp ports is varied
from 1 to 16. The five PDP-11/20's, variable number of
11/40's, is included since the actual C.mmp system at
CMU now has five 11/20's and two 11/40's and will soon
grow to a full 16 Pc system by adding nine more
PDP-11/40's. The dotted lines show performance with no
memory interference and no cache memories, the solid
lines show the expected interference, and the lines
with circles are the expected performance with 1024
word cache memories that are being designed for the
PDP-11/40's. These caches will only buffer read-only
pages and the cache bit ratio is estimated to be 0.5.

u
LLl

1 Z..¢

1 r/l.r/J

tf) .
........... 8.¢
~
Q
~

0
~ 6.0
<(
._!)
UJ
~

4.0

2.(/J

¢.¢

1 2

Figure 4. 1.

5 PDP-l l/Z.¢ 1s AND
-e--11 PDP-11/4<2'.>'s

,--s PDP-11/Z~'s

1--i----r I r
4 <o e 10 12 14 1"

NUMBER OF Mp's

Effective Pc to Mp Bandwidth
(no caches)

Dotline: Maximum Bandwidth of Mp's

12.¢

-"'"":"'
0
~10.0
...........
V')

0
oc
~ 8.0

'9 s -:c 6.¢
l-
a
$
0 4.¢
z
<
en

~2.¢
I

~

1 2 4 ~ 8 1¢> 12 14 10
NUMBER OF Pc's

Figure 4.2. Effective Pc to Mp Bandwidth

Dotline: Maximum Bandwidth of Pc's

4.2 Software Overheads

At this point in the development of C.mmp and its
operating system, Hydra, we have very little information
on the extent of software overheads that must be in
curred because we must coordinate the execution of co
operating, asynchronous, parallel processes. What lit
tle hard data we do have is given in Figures 4.3 and
4.4. Figure 4.3 shows the execution rate of the PDE
benchmark as a function of the number of available Pc's
on C.mmp. This figure exhibits the promising property
that we get very nearly linear speed up as the number
of Pc's is increased. In fact, the PDE benchmark is so
easily decomposed it would have been a bit surprising,
given we know memory interference is negligible for
five ll/20's, if we had seen less than linear speed up •

Figure 4.4 is probably a bit more useful. It shows
the execution time of the PDE benchmark as a function of
the number of processes the work has been divided among.
Also on the graph is the time the PDE benchmark takes
on a standalone PDP-11/20. We can see that for this
benchmark C.mmp switching overheads and Hydra have in
duced an overhead of 25% when compared with the PDE
benchmark run on a standalone PDP-11/20. Figure 4.4
also illustrates the speed up in the PDE benchmark you
would expect as the benchmark is decomposed into suc
cessively parallel processes in order to take advantage
of the multi-Pc's. Another useful observation from
Figure 4.4 is the slight upturn in execution time as the
number of processes becomes very large. This is simply
a measure of the overhead incurred as Hydra is required
to manage more processes than can be usefully dispatched.
The encouraging fact is that the incremental overhead in
adding these processes is as small as it is.

199

(J)
Q

::z
0
l.J
llJ
If)

,_......_
~ .<!J 15
~Q
<(z
:E 0
:r u
l) UJ
.z \{)
IU
<O
....__,./

uJ z
t:= .01 rt>
z
:::)

ct'.
_J

-<!'.'.
I-

~
lL
0 .¢(/)5
__J

<C
\...)

0
IX:'.
Cl..

\..}
LU
~

LI NEAR SPEEDUP

2 3 4 5
Pc's --

Figure 4.3. Execution Rates for PDE Benchmark
(18 process versions of PDE used)
(Unoptimized PDE version)

lr/Jr/J

8(/J

6(/:J

40

Z..r/J

<!>

• • • •
EXECUTION TIME. ON
STANDALONE PDP-11/Z..¢

-- EXECUTION TIME FOR KA10

Pc
• 2. Pc's
• 3 Pc's
e 4 Pc.'s

5. PRICES

5. 1 PDP-lO's

Central Processors

KAlO Pc (first delivery: 9/67): $130K
Kil 0 Pc (first delivery: 5/72): $200K
KLlO Pc (first delivery: 6/75 (est.))$250K

(Measurements reported in this report are only for the
KAlO; this is the only PDP-10 Pc available at CMU. For
measures of Kil 0 and KLl 0 performa.nce we must depart
from our objective of using actual measurements rather
than manufacturers' published data and use DEC's pub
lished ranking of a KilO being 2.0 times a KAlO and a
KLlO being approximately two times a KilO,)

Primary Memory

128K word, 4 port Mp module for
either KAlO or KilO:

256K word,, 8 port Mp module for KL 10:

Data Channels (DFlO)

DFlO (max. transfer rate:
106 words/sec.):

5.2 PDP-11 's

Central Processors

$110K
$180K

$ 14K

PDP-11/20 (first delivery: 4/70): $ 9.95K
(This is a 7/72 price. PDP-1"1/20
no longer offered by DEC. TI1is
price includes 4K words of Mp.)

PDP-11/40 (first delivery: ?/72): $ 12K
(This price includes 8K words of
Mp.)

Primary Memory

16K word Mp module (with parity): $ 5.95K

5 .3 C.mmp Specific Hardware (These are CMU cost:s rather
than DEC pric:es.)

16 Pc by 16 Mp Crosspoint Switch: $ SOK
(First, and at present only, 16xl6
switch cost $100K.)

BK word Mp module (from Ampex): ~? 1.3K

Processor Modifications to adapt PDP-11 Pc to C.mmp

PDP-11/20:
PDP-11/40:

(Includes 1024 word cache.)

$ 4K
~) 5K

1 3 4 5 6 7 8 9 1<1>

NUMBER OF PROCESSES

Figure 4.4. Running Times for PDE Benchmark

20~10 data array
10 iterations
16-bit fixed point data types
inner loop coded for speed
supervisory program p'ed on a semaphore

5.4 Primary Memory Prices

In reasonably large quantities, it should be ex
pected that the price per bit of Mp should be indepen
dent of whether the memory is attached to a uniprocess
or or a multiprocessor and whether it is in 16 bi.ts/
word or 36 bits/word configurations. However, the
prices given above are a bit at variance with this ex
pectation:

KAlO, KilO Mp:
KLlO Mp:
PDP-11 Mp:
c.mmp Mp:

$110K/128K words = 2.3Bt/bit
$180K/256K words 1.95.t/bit
$5.95K/16K words = 2.32t/bit
$1.3K/8K words 1.02~/bit

Note that the C.mmp memory comes out significantly
cheaper than either the PDP-10 or PDP-11 memory from
Digital. There are two reasons for this: (1) the c.mmp

200

memory does not include the cost of the switch while
the KLlO memory has an 8 port switch included and
(2) add-on Mp manufacturers sell Mp modules at a lower
price/bit than a mainframe manufacturer such as Digital.
If we include the $SOK cost of the C.mmp switch in the
cost of a 1 Megaword Mp constructed from the Ampex mem
ory modules, we get:

[128 ($1.3K) +$SOK]/ Megawords= l.35p/bit.

The difference between 1.35p/bit for C.mmp and 1.95p/
bit for the KLlO can be accounted for by the facts we
are using the cost of the C.mmp switch rather than at
tempting to estimate its fair market price and the core
memory itself is coming from Ampex rather than the
mainframe manufacturer. In order to better understand
the effect Mp prices have on our latter cost/perfor
mance evaluation, let us postulate a l.35p/bit Mp for
the KL10. This gives us a price of $124K rather than
$180K for 256K words of memory.

6. COST/PERFORMANCE COMPARISONS AND SUMMARY

It should be clear from the previous sections that
while c.mmp is able to utilize most of the computing
power from the PDP-11 Pc's, it cannot be justified
solely on the absolute computing power it provides. 6A
16 PDP-11/40 c.mmp has a Pc/Mp Bandwidth of 241 X 10
bits/sec. 6while the CDC 7600 has a Pc/Mp Bandwidth of
2180 x 10 bits/seg. end the IBM 360/195 has a band
width of 1185 X 10 bits/sec. [Computer Review, 1975].
The primary justification for constructing multi-mini
processors such as C.mmp stems from their cost/perfor
mance advantages over conventional uniprocessor sys
tems.

CONFIGURATIONS PRICES

Table 6.1 shows the performance, price, and sever
al price/performance measures for various representa
tive C.mmp and PDP-10 configurations. These figures are
directly based on our discussions in the previous sec
tions. A prominent factor in the price of the Pc/Mp/
Kio computer subsystem is the cost of the Mp. However,
none of the measures of performance we have discussed
here includes the amount of Mp in the system. Hence
column 2 i.n Table 6.1 shows the amount of Mp assumed
and we include a Mp-Pc "balance index" to give a rough
guide as to the amount of Mp relative to the computing
power that: is provided.

The cost of a bit of Mp should not be a function
of whether it is used in a multi-mini-processor or
whether it: is used in a uniprocessor system. However,
for non-technical reasons current PDP-10 Mp is priced
at 1.96p/bit while c.mmp Mp costs l.35p/bit. There
fore, two hypothetical PDP-lO's are included in Table
6.1 that assume Mp is available for the PDP-10 at 1.35p
per bit.

Since the price/performance comparisons of Table
6.1 are most sensitive to Mp configurations and prices,
Figure 6. "I shows the price/ performance of C.mmp and the
various PDP-10 systems as a function of Mp size and
price. Note that as the price of Mp is increased, the
fact that there is a single Pc-or a multi-Pc becomes
irrelevant; the price of the system is determined by
the size of Mp and the performance by the Pc MIPs.
As Mp prices decrease, the cost of the Pc dominates and
now we see that c.mmp becomes a factor of 4 more cost
effective than the most cost-effective PDP-10.

PERFORMANCE PRICE~PERFORMANCE

inst./sec. Avg. Pc-Mp Max. I/O Mp/Pc
Bandwidth Qndwidth ~lance Index Pc-Mp

-2_ _X 103
Megabits) u~egabit~ Megabits M22_ instructions[sec 1 bits[sec

Pc M..Q.. Kio _(_MIPS_) sec. sec. MIPS dollar dollar
Standard PDP-lO's

KAlO 128Kw 2DF10's 130+110+28=26~ .342 !498x36=17.9 72 13.5 1.27 66.8

KilO 256Kw 2DF10's 200+220+28=44~ .684 35.9 72 13.5 1.52 80. 1

KLlO 256Kw 2Dfl 0 I~ 250+180+28=45E 1.37 71.8 72 6.74 2.99 157

PDP-lO's with 1.35_,¢/biJ;
~

KilO 256Kwl 2DF10" 200+125+28=353 .684 35.9 72 13.5 1.94 102

KLlO 256Kw 2DF10'~ 2s o+ 125+2 8=403 1.37 71.8 72 6.74 3.40 178

C.mmp Configura ions
5 20's 512Kw - 70+83+50=203 .927 37.6 70 8.34 4.57 185

5 20's lMw - 257+166+50=473 s.02 203 225 3. 18 10.6 429
1 40' s

6 40's lMw - 272+166+50=48~ 5.95 241 225 2.69 12.2 494

6 40's 2M - 272+333+50=65~ 5.95 241 225 ~ 9.08 367

Table 6.1. Price/Performance Figures for c.mmp and PDP-lO's

The dotted lines in Figure 6.1 are for a hypothet
ical C.mmp in which the Pc's are not standard PDP-11
processors but are Pc's constructed from Intel's I3000
microcomputer chip set [Intel, 1974]. We estimate

that an Intel 3000 Pc, and its as~ociated relocation
registers, could be priced at $400U rather than the
$17,000 now needed for a PDP-11/40 and its relocation
registers.

201

l)

~ (. 1<.L1¢(l~75)
~ 4-- .
2 -~ K.l1¢(l£>7Z)
I- -'

~ g z KA1¢(l%7)

n
!

J·
.6

.<.

·"'"

KLI ¢ \ Z5t. K WORDS
a.t 1.35 CEirTS/BIT

(L
1
¢ ' fa5~~<c_ 1RFc~~

\
\
~
~

.2. 1975 CORE. MEMOR.Y PP.ICES

• J-i-~-,---,:---,:-r·-r---,-~-.--r-r-r..V'~G.('~---,,_.,c-..--r---.-~~~~

.~I .1 .4 .G>.61 2 "1 Go Cl0 2¢J '41/J{,VJ l~t>

CUJT5 PE.R &IT 01= P!\.lMAR.Y Ml:.MORY--11--

Figure 6.1. Cost Performance of C.rrnnp

REFERENCES

Amdahl, G., Lecture in course on cache memories and
computer architecture (EE 392C), Stanford Universi
Winter quarter, 1970.

Baskett, F. and A. J. Smith, "Interference in Multi
processor Computer Systems with Interleaved Memory."
To appear in Comm. ACM (1975).

Baskett, F., Figure 1.1 is a revision of an unpublished
graph developed by Forest Baskett (1975).

Bell, c. G. and A. Newell, Computer Structures: Read
ings and Examples, McGraw-Hill, New York, New York,
1971.

Bell, c. G. et al., c.mmp: The CMU Multiminiprocessor
Computer: Requirements and Overview of the Initial
Design, Department of Computer Science Technical
Report, Carnegie-Mellon University, Pittsburgh, Pa.
(1971).

Bhandarkar, D. P. and s. H. Fuller, A Survey of Tech
niques for Analyzing Memory Interference in Multi
Processor Systems, Carnegie-Mellon University Tech
nical Report, Pittsburgh, Pa. (April, 1973).

Computer Review, GML Corporation, Lexington, Mass.,
1974.

(DEC, 1975), PDP-11/05/10/35/40 Processor Handbook,
Digital Equipment Corporation, Maynard, Mass. (1973).

(DEC, 1975), LSI-11 Microcomputer, Digital Equipment
Corporation, Maynard, Mass. (1975).

Intel 3002 Control Processing Element; Shottky Bipolar
LSI Microcomputer Set, Intel Corporation, 1974.

McLaughlin, R. A., "A Survey of 1974 dp Budgets,"
Datamation, February 1974, 52-56.

Newell, A., P. Freeman, D. McCracken, G. Robertson,
"The Kernel Approach to Building Software Sys toms,"
CMU 1970-71 Computer Science Research Review.

Newell ,A., and G. Robertson, Some Issues in Prog1:amming
Multi-Mini-Processors, Department of Computer Science
Technical Report, Carnegie-Mellon University,
Pittsburgh, Pa., January 1975.

O'Loughlin,J. F., "Microprogramming a Fixed Archi.tec
ture Machine," Info tech State of the Art Report. 23,
Infotech Limited, Maidenhead, England, 1975.

Stone, H. s. (ed.), Introduction to Computer Architec
~' SRA, Chicago, Illinois, 1975.

Strecker, W. D., Analysis of the Instruction Execution
Rate in Certain Computer Structures, Ph.D. Disserta
tion, Carnegie-Mellon University, Pittsburgh, Pa.,
1970.

Wulf, W. A. and C. G. Bell, "C.mmp -- A Multi-Mini
Processor," AFIPS Conference Proc., Vol. 41, Part
II, FJCC 1972, 765-777.

Wulf et al., "The Hydra Operating System," submitted
to the Fifth ACM SIGOPS Symposium on Operating Sys
tem Principles (November 1975) •

202

flexibility in pipeline design. Let us define a cycle
to be perfect, if it allows a 100% segment utilization;
e.g., cycle (1,9) of Example 1. Unfortunately we can
not test the perfectness of a cycle without forming
the compatibility classes. However, we know a special
class of perfect cycles which are of considerable
interest in single function pipelines.

Theorem 3: All constant latency cycles are perfect.

Proof: For constant cycle (£), Q mod p=[O} and thus
H mod p=fl,2 .•. (£-1)}. One can verify that [0,1,2, ..• ,
(£-1)} is a compatibility class with £ elements. Hence
the upperbound on the segment utilization is
Mt = 100%.

III. Noncompute Segments

0

In this section we consider the addition of non
compute segments to a pipeline to make it allowable for
a given cycle. The effect of delaying some computation
step can be displayed in a reservation table by writ
ing a 'd' before the X which is being delayed. Each d
indicates one unit of delay called an elemental delay.
In the absence of any other information on precedence,
we must asslim~ that all the steps in a column must be
completed before any steps in the next column are
executed. Therefore, if the steps in column 2 of Fig.
1 are unevenly delayed, we must store the output of
some steps so that all the outputs are simultaneously
available to the steps in column 3 of Fig. 1. The
effect of delaying the step in row O, column 2 (x

02
)

of Fig. 1 by 2 units and x22 by 1 unit is shown in

Fig. 2. The elemental input delays d1 , d
2

, and d
3

require the elemental output delays d4 , d5 , and d
6

.

Now given some integer i between 0 and (p-1), we are
in a position to delay any step arbitrarily such that
the step occurs in a column number equivalent to i
modulo p. Thus given a cycle, we can make any row of
a given reservation table to look like one of the rows
of Theorem 2; provided of course, the row does not
have more X's than the size of the largest compatibil•
ity class of the.cycle. Hence we have the following
theorem.

Theorem 4: For a given cycle, a pipeline can be made
allowable by delaying some of the steps, iff the
number of X's in each row of the reservation table is
less than or equal to the size of the largest compati
bility class of the cycle. D

CorollarY 4.1: For a given constant latency cycle (t),
a pipeline can be made allowable by delaying some steps,
iff there are no more than t X's in each row of the
table. 0

An important implication of Corollary 4.1 is that
by adding elemental delays to a pipeline one can always
fully utilize a single function pipeline with the use
of a cycle with constant latency equal to the maximum
number of X's occurring in any single row of the reser
vation table. Full utilization of a pipeline he~e,
means that at least one segment is busy all the time.
Thus the maximum achievable throughput of that pipe
line is attained. Of course complete redesign or
replication of selected segments to reduce the number
of X's in a row may allow higher throughput.

Example 3: The reservation table of Fig. 1 is to be
made allowable with respect to cycle (1,5). The re
sulting table appears in Fig. 3. For cycle (1,5),
p=6, G mod 6=[0,1,5} and hence R mod 6=[2,3,4}. The
maximal compatibility classes containing 0 are:
[0,2,4} and [0,3}. The first row of Fig. 3 is row
[0,2,10}, which resulted from the class [0,2,4} by
constructing row [0,2,4+p} as per Theorem 2. The
second row, [1,3,5} results from class [0,2,4} and the
third row, [2,4} results from class [2,4} c [0,2,4}.

Thus all the rows are allowable. 0

Once we have a modified table, we need to assign
the elemental delays to noncompute segments. Noncom-

• pute segments are physical resources like any other
segment and may be shared by various elemental delays
for their efficient utilization. Two elemental delays
di and dj are defined to be compatible if lti-tjl

mod p E R mod p. Where t 1 and tj are labels of the

columns in which di and dj appear. Clearly, if di and

d. are compatible, they can share one noncompute segment
J

because the usage interval lti-tjl is allowable. Using

the above definition we can form the maximal compatibil
ity classes of all the elemental delays present in the
solution. All the elements of a compatibility class
can share a single noncompute segment. Now the problem
reduces to the standard covering problem; i.e., finding
the minimum number of compatibility classes which cover
all the elemental delays.

Example 4: The set of elemental delays of Fig. 3 is
<d 1 ,d2,d3 ,d4 ,d5 ,d6 ,d-j>· Their corresponding column

numbers are <3,6,7,8,9,2,3>. For cycle (1,5), R mod 6
is [2,3,4} (from Ex. 3). Thus [d1 ,d2}, [d

1
,d

3
}, fd 2 ,

d4}, [d2 ,d5}, [d2 ,d6}, [d2,d7}, [d3 ,d
5
}, [d3 ,d

7
} are

the maximal compatibility classes. Noting that the
subsets of maximal compatibility classes are compati
bility classes, one of many possible minimal cov~rs is
[d1 ,d2}, [d4}, [d5}, [d6}, [d3 ,d7}. Thus 5 noncompute

segments are required. The assignement above is shown
in Fig. 4, where s3 through s7 are noncompute segmentsq

Besides reducing the number of noncompute segments
in a solution, it is also important to reduce the added
execution delay. The execution delay of a task in Fig.
1 is 6 units while in the modified table of Fig. 4 it
is 11 units. In situations where it often becomes
necessary to empty the pipeline; e.g., due to logical
dependancies among tasks, the execution delay of a task
can become an important parameter in determining the
overall throughput. Therefore, we shall take the added
execution delay as the objective function to be mini
mized. Now the problem of making a pipeline allowable
can be formulated as follows.

Let I and J be the number of rows and columns in
the given reservation table. Let dij and d~j be the

number of elemental delays to be.inserted respectively
at the input and output of a step Xij of the reservation

table. If no X occurs in cell (i,j) of the table then
d and d' are defined to be zero. Some other dij ij ij
can be set to zero if it occurs between two consecutive
computation steps which are indivisible. Let D be the
added execution delay. Then the problem can be formal
ly stated as:

Minimize D = L (max (d)\
09<J ~i<I . ij /

subject to the constraints,

integer dij ::::. O. \

[(c-b)+cl 'b +cl . + L (max
a ac h<j<c \~i<I

E R mod p.

for each pair <Xab'Xac> with c > b.

mod p

where, g is the set of allowable usage intervals with

161

respect to the given cycle with period p, and

d' = max (d) d
ab O::;_i<I ib - ab

The constraints result directly from Theorem 1.
The term (c-b) i.s the usage interval which existed be
tween Xab and Xac before the insertion of any delays.

The variable d~b is the number of elemental delays at

the output of step Xab; dac is the number at the input

of step Xac' The sununation term in each const~aint is

the effect of inserted delays in the intervening
columns between xab and xac'

Since all the constraints are in modulo p arith
metic, dij need only take integer values between 0 and

(p-1). Thus the solution space of the above problem
is finite. This places an upper bound on the added
execution time equal to (p-l)·J, where J is the number
of columns in the reservation table. More.over, the
objective function Dis nondecreasing in dij' These

properties suggest the following branch-and-bound
algorithm to find all minimum added delay solutions.

Let the nuniber of X's in the reservation table be
n and let the n variables, dij' be stored in any arbi-

trary order in a one dimensional array V. Let D(i)
represent the value of the objective function for given
values of V(l) through V(i), with V(i+l) through V(n)
taken to be 0.

Algorithm B:
Bl. [Initialize] i~O; BOUND~(p-l)·J;
B2. [Advance] i~i+l; V(irO;
B3. [Check bounds and constraints] if (V(i)=p) or

(D(i)>BOUND) then go to B6; if a completely as
signed constraint is violated then go to BS;

B4. [Solution found?] if i<n then go to B2 else out
put the solution V(l) through V(n) and D(n);
BOUND+-D (n) ;

BS. [Try another value] V(irV(i)+l; go to B3;
B6. [Backtrack] i~i-1; if i>O then go to BS else

terminate the algorithm.

The last value of BOUND is the minimum value of
the objective function over all possible solutions and
therefore the output solutions meeting this bound are
all the minimum added delay solutions. If only one
optimum solution is desired, the condition D(i)>BOUND
in step B3 should be changed to D(i)>BOUND.

A complete example with the constraints and the
backtrack tree are given in Fig. S. The variables,
dij, have been retained in the figure for simplicity.

B is the variable BOUND, and '>B' indicates that the
bound has been exceeded, and 'a' indicates that the
constraint (a) has been violated.

This algorithm is remarkably efficient in our
limited experience. For example for one 20 variable
problem with a potential 1014 nodes only 104.nodes were
expanded and an optimum solution was obtained in 40
seconds on an IBM 360/67. For a particular class of
problems, the technique of [S] may be applicable to
estimate the complexity of the algorithm.

IV. Multifunction Pipelines

Here we present the generalizations of most of
the results and definitions of the previous two
sections. The variables X and Y will be used in most
of these results, where X and Y take function names as
their values; the values need not be distinct. Let
f.xy be the set of usage intervals of all <X,Y> pairs

in the reservation table. This set can be formed by
taking all pairwise distances between an X and a Y
which appears to the right of the X in the same row.
For example, for the reservation table of Fig. 6, the

162

sets of usage intervals are: ~=[l}, .EAB=[0,1,2,4},

,EBA=[0,2,3}, ,EBB•[2,3}.

Similarly we define ~' the set of initiation

intervals of all <X,Y> pairs of a cycle, to be the~ set
which contains all intervals of a task of type X from
a previously initiated task of type Y. A cycle ia
described with latencies suffixed with the function
name of the task being initiated with that latency;
e.g., cycle (1A,1B,2A). The period pis the sum of

the latencies. The initiation interval sets for <!ycle
(1A,1B,2A) are: ~mod 4•[0,1,3}; QAB mod 4•[2,3};

QBA mod 4=[1, 2} ; QBB mod 4•[O} . The propert:ie s Pl, P2

and P3 can be generalized as follows.

P4.a. if g,&O then g E .9.xx mod p => g+i.p E S~xx V:~O.

b. 0 E QXX mod p and ip E QXX V~l, always.

c. if Xr/:Y then g E .9.xy mod p => g+ip E S~XY V:~O.

PS.a. if g,&0 then g E .9..xy mod P<=>(p-g)E £yx mod p.

b. o· E QXY mod P<=> O E .9.yx mod :p,
P6. if hr/:O then h E !!xY mod P<=>(p-h) E !!yX miod p,

where llxY mod p is the complement oj: ~ mod p,

in z . -p

Theorem S: A cycle is allowed by a multifunction
pipeline iff (!xy mod p) n (QXY mod p) • ,!, or equiva-

lently iff (!XY mod p) S !!_xy mod p, V X, Y in the set

of function names present in the cycle.

The generalization of the definition o:E compati
bility is straightforward, except that each integer
must be suffixed with an appropriate function name.
Thus two elements ix and jy, such that i,j E: ~. and

j>i, are said to be compatible if (j-i) E ~ mod p.

The following are generalizations of Lemma :2.1 and
Theorem 2.

i,j E ~

Cl

Cl

Lerrnna 6.1: Two elements ix and Jy such that

are compatible iff (j-i) mod p E !ixY" mod p.

Theorem 6: Given a cycle with period p, all
rows which are allowed by the cycle are:

possible

row [(i+i1p)X' (j+J 1P)y, ••. } V nonnegative

integers i
1
,i

2
,J 1,J 2 ... and V compatibility

classes [iX,jY''''}. Cl

The maximal compatibility classes can be formed
in a manner similar to the one for single function
pipelines. As an example take again the cycle
(1A,1B,2A) whose Q sets were formed earlier. The~ al-

lowable usage interval sets are: ~mod 4•[2};

!!AB mod 4=[0,1}; .!!iJA mod 4=[0,3}; .!!iJB mod 4•[1,2,,3}.

The maximal compatibility classes containing OX are:

(OA,2A}' (OB,1B,2B,3B}' (OA,OB,lB}' (OB,3A,3B}.
A compatibility class Q.1 is said to £2~ another

class Q.
2

if for each function, the number 0 1f elements

of that function type in class Q.1 is greate.r than or

equal to the number of elements of the same: function
type in class Q.2 . In the above example, [OA,OB,lB}

and [OB,3A,3B} cover each other. The same defin:ltion

for cover applies among rows and also betwe:en a irow
and a compatibility class. Now we have the geneiral
ization of Theorem 4.

Theorem 7: For a cycle, a multifunction pipeline can
be made allowable by delaying some computation steps
iff each row of the reservation table is covered by at
least one compatibility class of the cycle. D

Now it is a simple matter to formulate the problem
of making a pipeline allowable. In a multifunction
pipeline different functions have different execution
times. Let D(X) be the added execution delay to
function X. The objective function can be any function
of the D(X)'s, which is nondecreasing in each D(X);
e.g., some linear combination of D(X)'s with positive
coeffi.cients. Let dij (X) be the number of elemental

delays to be inserted at the input of a step of function
name X in cell (i,j). Let I and J be the number of
tows and columns in the reservation table. The added
execution delay for a function X can be expressed as

D(X) = L (max di. (X)~
Osj<J _ O:;_i<I J j

While the constraints can be written from Theorem 5,
the usage interval between Xab and Yac can be express-

ed as: [(the distance of Yac from column 0) - (distance

of Xac from column O)] • Thus we have the following

set of constraints.

E R_Y mod p. for each pair <X b'Y >.
"-"X a ac

From property 6 we can see that we need construct only
one constraint per pair without regard to the magni
tudes of b and c. The algorithm to obtain an optimum
soltuion is the same as Algorithm B.

V. Concluding Remarks

We have presented the allowability characteristics
of pipelines and cycles. We know the structure of all
allowable pipelines for a given cycle. It is seen
that one can utilize a pipeline fully by adding non
compute segments to make it allowable with respect to
a perfect cycle. For nonperfect cycles, the pipeline
can still be made allowable if every row of the reserv
ation table is covered by at least one compatibility
class of the cycle.

For single function pipelines, constant latency
cycles were shown to be perfect. Thus a single
function ·pipeline can always be utilized fully with
the use of an appropriate constant latency cycle.

For multifunction pipelines, there is no straight
forward procedure to construct a perfect cycle, given
a mix of functions to be executed. However, if a cycle
is given, it can always be tested for its perfectness
with the use of compatibility classes. Cycles which
are most likely to be perfect are those having evenly
spaced task initiations, as well as a fairly regular
pattern of functions. These cycles have a small set of
initiation intervals and hence one has more freedom in
choosing an allowable usage interval. For the same
reason, these cycles are also most likely to require a
small number of noncompute segments in making a pipe
line allowable.

For increasing the throughput beyond what would
result due to the full utilization of a pipeline,
segment replication nrust be done. Segment replication
is also a viable alternative to noncompute segments if
the costs are comparable. For a cost effective design,
segment replication and addition of delays should be

163

considered simultaneously.

References

1. E. S. Davidson, "The design and control of pipe
lined function generators," Proc. 1971 Int. IEEE
Con£. on Systems. Networks and Computers, Oaxtepec,
Mexico, January 1971.

2. L.E-; Shar, "Design and Scheduling of Statically
Configured Pipelines," Tech. Report N<;>. 42, Digital
Systems Lah., Stanford University, Sept. 1972.

3. A.K. Winslow, "Task scheduling in a class of pipe
lined systems," Report R-633, Coordinated Science
Lah, Univ. of Illinois-Urbana, Nov. 1973.

4. E.S. Davidson, L.E. Shar, A.T. Thomas, and J.H.
Patel, "Effective Control for pipelined computers,"
Proc. Compcon Spring 1975, pp. 181-184, Feh.1975.

5. D.E. Knuth, "Estimating the efficiency of Backtrack
programs," Mathematics of Computation, Vol.29,
no. 129, pp. 121-136, Jan. 1975.

0 l 2 3 4 5

x x x
x x x

x x
FP- 4684

Figure 1. Reservation table

0 l 2 3 4 5 6 7

x d1 d2 x x
x x d4 ds x

d3 x ds x
FP- 4685

Figure 2. Delaying parallel computation steps

3 4 5 6 7 8 9 :J.0

x d1 d2 d3 d4 ds x
x ds x x

x d1 x
FP -4686

Figure 3. Making a pipeline allowable
for cycle (1,5)

So

s.i

52

53

54

s~

56

57

0 l 2 3 4 5 6 7 8 9 10

x x
x x x

t--

x x
x x

x
x

1-----1

x
x x

FP- 4687

Figure 4. Assignment of elemental
delays to noncompute segments

FP-4689

Optimum solutions are:

0 l 2 3 4

A B B
AB B

B A AB
FP-4688

Figure 6. Reservation table f1~r
a multifunction pipeline

cycle (2). ll mod 2 = fl}

Added delay:

Constraints:

(i) [2 + max[<l 00 ,d10} - d00 + d02 + d11} mod 2 E [l}.

(ii) [1 + maxf d00 ,d10} - d10 + <l 11} mod :2 E [1}.

1. <loo = d10 = a11 = o. do2 = 1.

2 · <loo= d11 = do2 = 0 · d10 = 1•

Figure 5. Making the pipeline allowable for cycle (2):

A branch-and-bound search for optimum solutions.

164

- -
/

......-Local function';;'

/ " !.
!'-->

I \

\
I

I
\

\ I
'\ /

"
/

I /
............. I

--I L- --
Figure 10: Layered structure for an interface

4.7 Further development.

The previous discussion of the structure of an
interface suggests a sequence in the development of
the layers, according to the sequence of the sections
4.1 through 4.6. This development is based on a
strategy of successive definition. First the architec
ture of the total interface is determined, and its
partitioning and dispersion over the related architec
tures. Next the architecture of the central message path
is determined, and finally the architectures of the
individual relational functions. Though this procedure
is a useful guideline, a practical application often
requires a substantial number of iterations through
this sequence, due to the high dependency among the
layers.

A further substructuring per layer may result in
either the development of sublayers per layer (extended
horizontal partitioning) or a partitioning of a layer
into functions which are not or only slightly related
(vertical partioning). The previous discussions have
already used the vertical partitioning by interpreting
each layer as a class of functions, and showing
examples of such functions. Much is dependent on the
possibility of defining a function first as an indepen
dent entity, and next of establishing the linkages to
a.nd from other functions. As is true for the vertical
partitioning, the extended horizontal partitioning may
a.lso provide more clarity in the specification of the
interface. The protocol function of figure 6 shows what
type of operations may be sequenced. The way these
operations are organized in detail can be specified in
a lower protocol layer. Complex data transmission inter
faces may build up their transfer layer as a stack of

Local function A

R
e

Source & Sink:
lWTTu""-._,i--...,i._.i.,....i... __ ._..,... __ ...

a n Protocol
t c 1•t·-------------...... o I n•o1 ______ __,_..._ _______ _.

a n Trans f e r'<-----.----1

r-J
<

\-- - -
Central message path

,-------

Architecture
B

L_ T - -
.J

Figure 11: The Interface from the perspective of architecture A.

103

sublayers. Such a sublayer, and all that it encloses,
may be interpreted as the central message path of the
transfer layer that is just one level higher. An
opposite development also occurs frequently: variables
pass a layer unchanged.

The structure so far developed for the interface
is shown in figure 11 from the perspective of an
individual architecture. Each box in the figure repre
sents a function, that exists in parallel with the other
functions and is related with them via the exchange of
variables. This horizontal and vertical structuring is
different from the structuring in which functions on a
lower layer are used to implement an abstract machine
on a higher layer [10],

S. What is a standard interface

As stated, a system can be understood as a callee~
tion of interfaces (figure Sb) as well as a collection
of architectures (figure Sa). This viewpoint is signifi
cant when an interface is defined first, and the asso
ciated architectures later. This happens with a so called
standard interface. A standard interface, such as a
Channel-to-I/O interface, is always defined to meet many
different architectures, e.g. printers, tape units, disc
units, display devices, architectures that still have to
be invented, etc. in different quantities and configura
tions. At the time of the definition of the standard, the
current application area is known, and there is a rough
estimate of the characteristics of future applications.
Definition of a standard to include all current and
future applications is not only impossible, it is also
highly inappropriate since it loads anyparticular applica
tion with the overhead of a multiplicity of unused applica
tion functions. Instead the standard is defined to suit
all requirements of current and future applications with
out containing the specific functions of individual
applications. The standard is by definition incomplete.
Consequently, when the standard is used in a particular
application, each relational function has to be extended
with application dependent functions. Those application
dependent functions form yet another layer around the
source and sink layer of the standard interface, and
are designated 'Application' in figure 12a.

~ - -
Local function

\

Figure 12a: Application of a
Standard Interface

Standard

Interface

Figure 12h: Partitioning of the
Appl I cation layer.

' /

The consequence of this structure is that the
variables exchanged among the application functions are
unknown, i.e. transparent to the standard interface, and
yet pass all layers and the message path. Since we want
the function of the standard te remain invariant with
each application, it implies that the standard has to
provide for the space and time for the exchange of those
variables. If on the level of the central message path
the available space is to be defined in terms of avail
able code elements, the definition of the available space
at the level of the source and sink functions has to be
in terms of the same number of code elements, since the

coding of the variables is transparent with respect to
the standard. The coded source in figure 3 is an example.
Therefore, in using a standard interface in a particular
application, the application dependent interface can be
defined according to the procedure explained above. The
standard interface is now embedded as a central message
path with a high level of complexity. (See figure 12b).

6. Application

The structuring and description discipline has been
succesful applied to a number of existing and proposed
standard interfaces. Among these are a complex data trans
mission interface [2], two I/O interfaces, one complex
Channel-to-I/O interface [1], and an instrumentation
interface [4]. The relational function of the secondary
station of SDLC [2] was for example described by 25 func
tions, each of an average complexity as shown in the
figures 8 and 9. It contains 4 sources, 2 sinks,
8 protocol, 2 decoding, 3 encoding, and 6 transfer func
tions. A formal specification was developed as far as
the intentions of the interface architects were stated
unambiguously. This specification was generally a frac
tion of the length of the original document. As part of
the description process ambiguities and omissions in
the original documents were systematically uncovered.

The state description technique was introduced in
an IEC (TC 66/WG 3) standardization activity in june
1973 [4], and eventually accepted as the method to
define the considered interface. In the opinion of the
committee it has contributed much to the fact that the
definition work was practically completed within 9
months, that is May 1974 [5]. A structured and complete
description of this interface can be found in [3],

7. Canel us ion.

The proposed design discipline facilities fast,
correct, efficient and clear specification, inter
pretation, and judgement of an interface through the
definition and its evaluation into a structured
specification methodology. As such it can be profit for
both interface designers and users:

The definition provides a better understanding, of
what an interface substantially is: a specification
of a portion of each of the related architectures
(relational functions) and the architecture of the
message path, defined to provide cooperation of the
related architectures. It is not the story of the
reporter, who is sitting on a grandstand, viewing the
communication between the related architectures,
observing, interpreting and logging what happens. It
is the rules of the game according to which the teams
play.
The architecture of each relational function and the
message path is specified individually. For all these
architectures one specification methodology and
language should be used. Poor interface specification
mixes relational functions and message path, as well
as specification methodologies and languages.
The horizontal and vertical partitioning strategy for
the specification of the relational functions facili
tates the recognition of the nature of functions of a
particular application and their embedding in such a
structure. It facilitates easier specification and
recognition of quality and correctnes of the indivi
dual and compound functions.
A standard interface is by definition incomplete. It
can be interpreted as a complex central message path,
that can be extended to a complete interface in a par
ticular application.
The method has proven to be applicable to a number of
widely used interfaces.

104

8. Acknowledgement.

The project Interface was suggested by G,A, Blaauw,
It is one of the projects of the digital techniques
group at Twente University of Technology that focusses
on the control of the design process of digital systems.
The author would like to thank G.A.Blaauw, B.v.d.Dolder,
and R.Davey for their constructive criticism during the
preparation of this paper.

9. References.

1. M.J. Reg - Formal description and evaluation of a
proposal for an international standard for an input/
output interface for electronic data processing
systems (ISO TC97/SC13) - M. Sc. Thesis (Dutch/
English). June 1975 - Twente Univ. of Techn.

2. B.v.d. Dolder - Algorithmic description of a data
transmission interface - M. Sc. Thesis (Dutch) -
June 1975 - Twente Univ. of Techn.

3. C.A. Vissers - Digital Techniques IV: lnterface
Lecture notes - Spring 1975 - Twente Univ. of Techn.

4. Byte-serial bit-parallel standard interface for
programmable measuring apparatus - Drafts of July
1973 and June 1974 - IEC TC66/WG3.

5. D.E. Knoblock, D.C. Loughry, C.A. Vissers - Insight
into Interfacing - IEEE Spectrum - May 1975 ·- pp.
50-57.

6. D.L. Parnas - Information distribution aspects of
design methodology - Proc. IFIP, 1971 -- North-Holland
Publishing Company (1972).

7. R.W. Floyd - Assigning meanings to programs - Procee
dings of symposia in Applied mathematics, Vol. 19,
Mathematical aspects of computer science, pp. 19-32,
American Mathematical Society, 1967.

8. C.A.R. Hoare - An axiomatic basis for computer pro
gramming·- Connn. ACM. 12, 576-580, 583 (1969).

9. F. Wijnstra - A conversational system for representa
tion and verification in APL of interfaces - M. Sc.
Thesis (Dutch) - sept. 1975 - Twente Univ. of Techn.

10. E.W. Dijkstra - The structure of the THE multipro
gramming system - CACM, Vol. 11, No.5, May 1968.
pp. 341-346.

A DESIGN STUDY OF A SHARED RESOURCE COMPUTING SYSTEM*

A. Thomasian and A. Avizienis
Computer Science Department
University of California

Los Angeles, California 90024

Summary. The motivations for the design study of
a modular, shared resource computing system are given by
discussing fault-tolerance and resource utilization is
sues in parallel processing architectures. A design is
presented which employs an array of pipelined arithmetic
processors to perform array operations. The desi9n pro
vides for fault-tolerance ("graceful degradation") capa
bility and is efficient in using main memory bandwidth.
Various architectural tradeoffs of the design are dis
cussed. Some results of simulations used for the veri
fication of design decisions are also reported.

1. Some Current Issues in the Design of Numeric
Processors

l .1 Introduction

We wish to report several aspects of a design study
of a fault-tolerant (highly available) [l] Shared Com
puting Resource (SCR) for parallel processing, which is
intended for use in a multiaccess, scientific ("number
crunching") computing environment. In fact, the SCR
corresponds to a high capacity node in a hierarchical
networkof computing nodes [2]. Our purpose is to pre
sent the evolving architecture of the SCR system, iden
tifying the constraints that apply and the tradeoffs
that have to be considered.

Many scientific computations involve array process
ing and hence need a mathematical programming language
with array capabilities, such as APL L3]. The large
computing requirements of such programs call for a sys
tem which is tailored to carry out array computations
very efficientl~. To this end,some computers such as the
CDC STAR-100 [4J, the TI ASC [5] and the STARLET compu
ter [6] implement array operations directly in their
hardware. Alternatively, special purpose systems are
used in conjunction with general purpose computers to
attain cost-effective operation in array processing.
The IBM 2938 Array Processor [7] and,·at a larger scale,
the Illiac IV [8], the PEPE [9], and the SCR belong to
this category.

To put the SCR design in the proper perspective, we
initially discuss fault-tolerance and resource utiliza
tion issues in parallel processing architectures. This
is followed by the functional organization of SCR, its
operation in the context of a hierarchical multiprogram
ming/multiprocessing system, various tradeoffs consi~
dered in designing the SCR and the scheduling issue in
the SCR system. We conclude our discussion with a com
parison of the scheduling of array operations in the SCR
and the ASC systems.

1.2 Fault-Tolerance Issues in SIMD Computer
Architectures

SIMD computer architectures [10], which are of in•
terest here have been classified to [11]:

@) Parallel in space and structured array machines
with a high level of interconnectivity among the proc
essing elements, such as Illiac IV.

~) Unstructured linear array and associative proc
essors, such as the PEPE system.

(c) Primarily parallel in time or pipelined proc
essors, such as the STAR-100 and the ASC.
*This research was supported by the National Science
Foundation, Grant No. DCR72-03633 A03.

105

Obviously, a wide range of systems with various de
grees of interconnectivity exist in the spectrum between
"structured" and 11 unstructured 11

• Also, pipelining can
be incorporated in the first two categories.

The hardware complexity of SIMD systems impairs
their reliability and complicates the implementation of
fault-tolerance or, at least, partial fault-tolerance.
This is especially evident in structured systems. For
example, we consider dynamic reconfiguration in the
Illiac IV. In order to switch out a failed processing
element (PE) and activate a spare PE, we would need ad
ditional, high bandwidth interconnections among the PE's.
Furthennore, operation in a "degraded" mode (with fewer
PE 1 s) is not practical, since most programs written for
the Illiac IV take its structure into account during
computation. On the other hand, in systems with limited
interconnections, "graceful degradation" and even com
plete fault-tolerance can be achieved at little extra
cost, once provisions for on-line fault detection have
been incorporated.

It is evident that fault-tolerance or partial
fault-tolerance C'graceful degradation") is a very de
sirable attribute for parallel processing systems. The
SCR system described in this paper is an attempt to ex
plore the problems of introducing fault-tolerance into
parallel processing. The motivations for some design
decisions of the SCR are given in the next two sections.

1.3 Processor Utilization Issues in SIMD Architectures

A frequent resource underutilization associated
with parallel-in-space SIMD computer architectures is
due to the following facts: (1) often task requirements
cannot be matched to the available processors, and (2)
processors are used sporadically during their assignment
to a program.

Resource sharing in space with self-optimized sche
duling has been proposed to increase resource utiliza
tion in parallel processing systems [12]. For example,
resource sharing was proposed for the Illiac IV computer
[8] consisting of four quadrants, such that tasks re
quiring one or two, but not all quadrants for execution
would be able to share the system.

Theoretical justifications for resource sharing are
provided in [13]. It is shown that an important perfor
mance measure, the mean response time, improves signifi
cantly when the system load and processing capacity is
increased simultaneously. The space sharing approach is
further discussed in conjunction with the SCR system.

1.4 Memory Utilization Issues in High-Performance
Computers

The larg·est cost component in high-speed pipelined
computers is the main memory; hence strong emphasis must
be placed on effective utilization of memory bandwidth
and space.

Since we frequently deal with large arrays of data,
the efficient handling of temporary results has major
importance in such computers. Due to limited memory
space, the programmer might be constrained to use a
given vector length for all of his computations [14];
alternatively, the space reserved for temporary results
might be specified via a compiler run time parameter
[15]. Another major issue, which underscores the impor
tance of memory bandwidth and space, is the refurbishing

of main memory contents, such that computations can
proceed in an uninterrupted manner.

As discussed in [14], a space-time tradeoff exists
regarding temporary results. Since each array opera
tion consists of a startup time and an execution time,
some time is wasted due to additional startups, when a
large array has to be operated upon in parts. Addition
ally, there exists a memory management overhead in al
locating space for temporary results.

A straightforward solution to the above problem is
the "elimination" of intermediate array results, with
the consequent saving of memory accesses and space [16].
This scheme, which has been implemented at the scalar
level in the IBM 360/91 [17], is considered in the con
text of the SCR design for arrays of data, as the fol
lowin~ two schemes:

(a) The storing and fetching of temporary results
is avoided by transmitting them directly among the re
spective arithmetic units. This scheme can be extended
to sequences of assignment statements having common sub
expressions and to the case where the final result of
an array expression is the input to another one.

To weigh the attractiveness of this approach, we
evaluate the relative saving in memory accesses when
an array assignment statement, involving n binary oper
ators is evaluated. Denoting the number of array ele
ments by l, customarily 3nl memory accesses would be
required, while the proposed scheme requires (n+2)l
accesses; hence 2(n-l)l accesses are saved. Given that
the probability of the occurrence of an arithmetic as
signment sta~ement ~ith n (n>O) binary op~rators is Pn
and postulating a fixed mean array size (l) for array
expressions of varying complexi!Y, then the relative
saving in memory accesses is (2n-2)/3n, where n is the
mean value of n.

(b) Memory accesses are saved by concurrently ex
ecuting operations involving the same input operands.
An example of the relative saving in memory accesses
using this scheme is given in Section 2.4.

The use of variables in a sequence of array as
signment statements of a program can be represented as
a directed acyclic graph, which will be called the data
digraph. Each node in the data digraph corresponds---rc;
an input variable or the generation of a result (per
manent or temporary}. The links determine variables
or temporary results, which are utilized in generating
a new result. The data digraph can then be manipulated
{see Section 2.5) to determine sets of operations whose
simultaneous execution minimizes memory accesses. Such
sets of operations, which have to be executed in a
single step by the SCR, constitute a task.

To illustrate the previous discussion, we consider
the multiplication of two vectors with complex data
types:

A.B = {a+a'i) • {b+b'i) = {ab-a 1 b1
) + {ab'+a'b)i

Figure 1 gives the data digraph corresponding to
this computation. In this case the relative saving in
memory accesses, when all operations are performed in
one step is 66.7%.

2. The SCR: Functional Description

2.1 Operating Environment of the SCR

The SCR is intended to operate in conjunction with
a multiprogramming/multiprocessing computing system,
whose interfaces with the SCR are discussed here.

The computing system consists of several Program
Processors {PP's), which execute user programs and
perform OS functions. The PP 1 s and the SCR share a
high-bandwidth main memory by means of a main memory
controller. The main memory is large enough to allow
multiprogramming. The PP's are equipped with local
memories, thus relieving the main memory from excessive
PP accesses. Programs executed by the PP's have spe-

106

cial provisions for specifying array operations and
while executing user programs, the PP's relegate array
operations to the SCR. However, scalar operations and
also array operations that cannot be vectorized {see
[15] for examples) are handled directly by the PP's.
The SCR has local autonomy and requests for computation
or tasks, which the SCR receives from various PP's are
enqueued in the SCR and assigned to execution based on
local self-optimization considerations.

2.2 Functional Organization of the SCR

The SCR design is aimed toward the major goals of
achieving fault-tolerance {"graceful degradation") and
of making efficient use of main memory bandwidth.

The approach employed to preserve main memory band
width is to allocate several Arithmetic Processors {AP's)
to the execution of a task such that temporary results
are transmitted directly from one AP to another*. Since
rather high bandwidths of data transmission are in
volved, an Interconnection Network {IN) is used to
transmit intermediate results among the AP 1 s. Addition
ally, due to the high data transfer rates at which ar
ray operands are to be transmitted between the main me
mory and the SCR, dedicated Address Generators {AG's)
are assigned to each array operand. -----

In order to achieve fault-tolerance and high avail
ability, a "pooling" concept is used for the various
subsystems of the SCR. In the case of AP 1 s, the mean
AP requirement for a single task {as generated by a pro
gram translator) is smaller than the total number of
AP's. During program execution, a subset of the avail
able AP's {under some constraints due to the IN) is as
signed to the execution of a task. Several tasks can
be executed concurrently in the SCR. The binding of pro
gram requests to the SCR elements is deferred until the
time of execution. At that time it is performed dyna·
mically taking into account the inventory of available
elements. Consequently, system operation can continue
with fewer elements (1n 11 degraded mode 11

) after failures
of system elements occur.

Figure 2 gives a block diagram of the SCR and its
interfaces with the computing system. The SCR consists
of the following subsystems:

{a) A pool of m AP 1 s {Arithmetic Processors) which
access the main memory controller by means of a)Vlemory
Interface Unit {MIU). The AP 1 s are high bandwidth, ·
pipelined arithmetic units capable of performing basic
arithmetic operations generating elementary results
{sums, products, etc.), as well as some common matrix
operations such as the inner product {it is considered
to be a nonelementary result). The internal str1Jcture
of the AP's will not be discussed here, but we postu
late that once an AP is set up by an external command,
it proceeds autonomously with the assigned operation.
An Input Switching Unit {ISU) whose function is des
cribed in (c) below is associated with each AP.

{b) The MIU contains a pool of k AG's {address
generators) which generate the addresses of data ele
ments to be transmitted to or from main memory. Each
AG is associated with a buffer memory to mask the vari
ation in main memory response t:ime. High bandwidth
buses are used to transmit data and addresses between
AG' s and the main memory controller. The operat"ion of
AP and AG units is overlapped, such that the AG 1 s fetch
input operands in lookahead mode into the buffers, be
fore the AP 1 s operate upon them.

{c) The IN {interconnection network) provides da
ta communication links among the AP 1 s according to the
pattern described in Section 2.5. The ISU associated
with each AP selects the specified inputs from the set
of buses originating from the AG 1 s and other AP's {the
IN) according to task requirements under externa·1 con
trol.

{d) A Switchini Network {SN) is used to dynamic
ally assign AG 1s toP 1 s. The motivation and certain
*A variation of this approach is discussed in Section 2.~

Effect of CPU Speed

The percentage improvement in the figure of merit (f)

versus the primary memory cost/program for CPU's

with different speeas is drawn in Figure 7. For

low primary memory cost/program the combination of

a slow processor with a slow CCD has a better per

formance improvement than a fast processor with a

fast CCD. Also in certain regions of the graphs

the three different speed CCD's and a given CPU

track each other showing no significant advantage

in using a fast processor over a slow processor.

This indicates that in this region the instruction

execution is memory speed limited rather than

processor speed limited.

Effect of Degree of Multiprogramming

The effect of degree of multiprogramming D on, f is

shown in Figure 8. A large improvement occurs·

in going from D=l to D•4, a small amount in going

from D=4 to D=8 and very little in going from D=8

to D=l6. This is due to the high probability of

at least one task waiting for service at the pro

cessor queue when the degree of multiprogramming

is increased. A similar behavior can be expected

if the CPU's or the type of CCD are changed.

Effect of Amount of MOS Memory Retained

Figure 9 shows the effect of the amount of MOS

memory retained on the percentage improvement in f.

As higher amount is spent on the primary memory

per program, it is seen that the optimum per

centage improvement in f occurs at higher and

higher values of the MOS memory being retained.

Conclusions

A two server queuing model is used to analyze the

performance of a memory hierarchy in a multiprogr

amming mode. For the primary memory a two level

hierarchy of Bipolar, MOS is compared with a three

level hierarchy of Bipolar, MOS and CCD by keeping

the cost of the primary memory constant. A figure

of merit that is a function of number of instruct

ions executed is used to evaluate the hierarchies.

It is shown that a hierarchy using CCD's has 2 to

3 times higher figure of merit over that using

just MOS. Effect of varying the speed of the

CCD's used,, effect of different cpu•s, effect of

degree of multiprogramming and the effect of the

amount of memory retained is then evaluated.

An interesting result seen is that for small

values of primary memory a slow CCD with slow
67

CPU has better figure of merit than a fast CCD

with fast CPU. Also, for certain regions of primary

memory requirements, it is seen that no advantage

is gained by going to a faster CPU.

Acknowledgement

I would like to thank Marvin E. Steiner, Kent R.

McCune and G. Panigrahi for pertinent comments

and discussions.

References

1. Altman, L.: "Special Report - CMOS Enlarges
its Territory," Electronics, Vol. 48, No. 10,
May 15, 1975, pp. 77-88.

2. Amelio, G. F.: "Charge-Coupled Devices for
Memory Applications," NCC, AFIPS Conference
Proceedings, Vol. 44, May 1975, pp. 515-522.

3. Bhandarkar, D. P.: "Computer System Advantages
of Magnetic Bubble Memories," IEEE Computer
Society Repository, No. R-75-114, June 1975.

4. Bobeck, A. H. and H. E. D. Scovil: "Magnetic
Bubbles," Scientific American, June 1971.

5. Fuller, S. H. and F. Baskett: "An Analysis of
Drum Storage Units," JACM, Vol. 22, No. 1,
January 1975, pp. 83-105.

6. Hiller, F. s. and G. L. Lieberman: Introduction
to Operation Research, Holden-Day, San Francisco,
1967.

7. Harton, R. L., J. Englade and G. McGee: "I2L
Takes Bipolar Integration A Significant Step
Forward;" Electronics, Vol. 48, No. 3, Feb
ruary 6, 1975, pp. 83-90.

8. Martin, R. R. and H. D. Frankel: "Computer
Memories of the Future," IEEE Intercon, April
1975, Session K.

9. Pugh, E. W .':. "Storage Hierarchies: Gaps, Cliffs,
and Trends," IEEE Transactions on Magnetics,
Vol. Mag. -7, No. 4, December 1971, pp. 810-814.

10. Spain, R. and M. Marino: "Magnetic Film Domain
Wall Motion Devices," IEEE Transaction on Mag
netics, Vol. Mag.-6, No. 3, September 1970, pp.
451-1+63.

11. Spel:i.otis, D. E.: "Bridging the Memory Access
Gap,." NCC, AFIPS Conference Proceedings, Vol. 44,
May 1975, pp. 501-508.

12. Strecker, W. D.: "An Analysis of Instruction
Execution Rate in Certain Computer Structures,"
Ph.D. Thesis, EE Dept., Carnegie-Mellon Univ.,
Pittsburgh, Pennsylvania, 15213, 1970.(AD711408).

13. Traiger, I. L. and R. L. Mattson: "The Eval
uation and Selection of Technologies for Computer
Storage Systems," AIP Conference Proceedings, No.
5, Part I, Magnetism and Magnetic Materials,
1971, pp. 1-12.

I
I

1 PO<E~ r0G .. +· .. 1

I
--PR-ll"AR--Y -t-'El1'.J--RY _ ___. I

SECONDARY f>'EM)RY

l

a::
~
LL
0

~
TASK SWITCHING

BOLtlDARY

FIGURE l: A f'EMJRY HIERARCHY WITH A TASK SWITCHING BOLtIDARY

PROCESSOR WITH

PR 11-WlY MEl'ORY

~ITIIC

~~1=1
FIGURE 2: T'iiO SERVER QUEUHIG VODEL

250

200

SECONDA.'lY t'EM:lRY

AND 1/0

F '"'0.050

~! 150
<:"~
(.:_

L;,
.l
~--

ii -=

100 NSFC,

500 NSEC,

laJht.:c.

r r<Pc) = :ffi NSEC.
0.

g- liK f'DS RETA! NED
50

D = 8
PR I ~V\R'L MEf TRY

BIPOLAR JK rn:~STANT
t'OS AND CCD VARIABLE

lK 2K SK 101<

FIGU1E 3; TYPICAL HIT RATIOS FOR A SET OF REPRESENTATIVE PflOGI N'S

1.0

0.94

0.92

0.9 +--.---.--.--.---.--.--,.-,,.--.---,----..--,----

1'EMJRY

PROCESSOR

4 5 8 10 20 30 40 50 70 100 20) :m
PRIW\HV r-EMJRV SIZE (K WORDS)/PR(X;RAM

INSTRUCTION OPERAND INSTRUCTION

mm ~Tffi ?c
~~~ 

INSTRUCTION 
DECODE 

OPERATION 

FIGURE 4: i'ODEL FOR PROCESSOR AND flft1)RY OPERATION 

INSTRUCTION 
DECO.DE 

F = 0.150 
T3 = 192 SEC, 

F = 0,200 

F = 0.250 

F = 0.400 

F = 0,500 

20K lOOK 2COK :IYJK 
f"()S MEt'ORY SIZE/PROGRAM FOR A TWO LEVEL HIERARCHY 

FIGrnE 5: EFFECT OF CONSTANT COSi AND CONSTANT PERFORM6.NCE TRANSFORMATIONS ON A r-EMJRY SYSTEM DESIGN 
67A 



Model and Assumptions 

The behavior of a typical task executed in a multi

programming environment is represented by four 

states: the task being serviced by the processor, 

the task waiting for the secondary memory or I/O 

service in a queue, the task being serviced by the 

secondary memory or I/O, and finally, the task 

waiting in a queue for processor service. Thus, 

in general, there are two queues and two service 

facilities and a task cycles through them until 

it is completed (Figure 2). This, then, can be 

modeled by a two server cyclic queuing model. 

Traigerl3 has referenced the use of this model, 

Fuller and Baskett5 have used it in their analysis 

of scheduling philosophies of drum systems while 

Bhandarkar3 has used it to compare magnetic bubbles, 

CCD's, Fixed and Moving Head disks, etc. Most 

previous researchers have used CPU utilization as 

a main criterion to evaluate the effect of multi

programming. Some of the other criterions consid

ered are the waiting time in queue and the memory 

utilization, which is the percentage of the time 

that a given memory spends its time transferring 

its data. The criterion used here will be the 

ratio of the actual number of instructions executed 

by the processor to the maximum number of inst

ructions executed provided all the memory was 

substituted by the level having the fastest speed. 

The assumption made in using the two server queuing 

model (Figure 2) is that both server one, consisting 

of the processor and the primary memory, and server 

two, consisting of secondary memory and I/O, have 

an exponential service time distribution. Even 

though this may not be the case in any particular 

computing system, most models make this assumption 

since most natural phenomenon can be modeled by a 

poisson process and a general feeling for the 

performance of the hierarchy can be determined. 

Later, simulations may be used to verify the results. 

A FIFO scheduling philosophy is assumed for all 

queues in the system. 

Hit Ratio Characteristics 

A typical hit ratio characteristic as shown in 

Figure 3 is used to determine the performance of 

the hierarchy. The statistics were taken from some 

representative programs for a large computer. Once 

the hit ratio characteristics are known, the miss 

ratio characteristics can be easily determined. 

65 

Processor Characteristics 

A typical processor activity is characterized as an 

instruction fetch, instruction decode, data fetch and 

data operation (Figure 4). Thus, using this model, 

the average time interval between the issuance of 

successive memory accesses can be determined. For 

a more rigorous analysis of the processor behavior 

characteristics, see Streckerl2. 

Performance of the Hierarchy 

If A is assumed to be the average service rate of the 

first server, then the mean execution interval l/A 

can be expressed as [Bhandarkar3]: 

l/A '=Hit Ratio [t (M) + t (P )] 
Miss Ratio p c 

Where t (Mp) = aggragate access time for the 

primary memory 

t (Pc) • average processing time between 

successive memory accesses. 

Assuming 11 is the service rate for the second 

server th1~ probability of CPU being busy or CPU 

utilization is given by: 

u probability of CPU being busy 

l - probability (M jobs queued for second 

server) 

M 
.L.:::..e.._ 

1 M+l 
- p (Hiller6) 

Where M = the degree of multiprogramming and 

p = A/µ 

Once the CPU utilization is found, then the figure 

of merit (f) can be derived as: 

f = No. of inst. executed with a given hierarchy 

No. of inst. executed with all memory sub
stituted by fastest technology 

t (Pc) + t (fastest memory) 

t (Pc) + t (~) 
*U 

Where t (fastest memory) = access time of the 

fastest memory, and U is determined by using 

the equation given above. 

A Memory Hierarchy Design 

The final outcome of a memory system design in 

which a user is interested is its cost and per

formance. Invariably, the requirements are to 

minimize the cost while maximizing the performance. 

The cost and performance of the memory system is a 



function of the technologies T1 , T2 .... Tn and their 

sizes S1, Sz .... Sn used at any level. 

Reduction in the cost of the memory system nec

essitates a small amount whereas increase in per

formance necessitates a large amount of memory at 

the lower levels (levels nearer the processor). 

Therefore a problem encountered in the design of 

the memory hierarchies is that of finding a mix of 

memories for different levels in the hierarchy 

that would give an optimum performance for a given 

cost. 

Assume that a certain cost constraint exists for 

the design of the primary memory. Also assume that 

a two level hierarchy of Bipolar and MOS,with sizes 

S1 and Sz respectively, satisfies the cost constraint 

and places the hierarchy at point A on the hit ratio 

characteristics (Figure 3). A t~ree level hierarchy 

of Bipolar, MOS and CCD having the same cost as 

above is one that has memory sizes of S1, Sz, and 

S3 respectively such that S3 = X* (Sz - Sz), and 

X > 1 is the cost/bit ratio between the MOS and 

CCD memories. Let these sizes place the memory 

hierarchy design at Point B on the hit ratio 

curve (Figure 3). Since S3 > s2 the primary 

memory hit ratio is improved. Then the performance 

of the hierarchy can be determined by finding the 

hits and the access times for each level. 

The following sections will evaluate the effects 

on different parameters due to the constant cost 

conversion described above. The various aspects 

investigated will be the effect on the performance 

due to: 

a) CCD's of different speed and, hence cost 
used, 

b) CPU's of different speed, 

c) the change in the degree of multiprogramming, 

d) the amount of MOS memory replaced by CCD. 

The different parameters for the Bipolar, MOS and 

CCD memories, the service rate µ of the secondary 

memory and I/O and characteristics of different 

CPU's used in the calcualtions are shown in Table 2. 

Effect of CCD Speed 

The effect of replacing a partial amount of MOS 

memory by cost equivalent CCD is shown in Figure 5. 

The percentage improvement in the figure of merit 

(f) in replacing a two level by a three level 

hierarchy is shown against the cost of the primary 

memory per program. The percentage improvement 

66 

in the figure of merit is defined as: 

Percentage Improvement 
in the figure of merit *100 

Where fz figure of merit for a three level 
hierarchy 

And f1 • figure of merit for a two level 
hierarchy 

Since the two and three level hierarchies have 

same amount of Bipolar memory, the cost is rE~p

resented in terms of the size of the MOS memory/ 

program for a two level hierarchy. 

The graph shows that the replacement of MOS by CCD 

improves f over a wide range. It is advantageous 

to use slow speed low cost CCD's to replace MOS 

when the total dollars to be spent on primary 

memory is low. When the amount of money to be 

spent increases, then the medium cost medium speed 

CCD's give a better improvement in f than the low 

cost low speed, and high cost high speed CCD's. 

Finally, in the high cost region, high cost high 

speed CCD's become the most advantageous choice. 

A little thought will show that intuitively this 

makes sense. Also, the highest improvement in f 

is obtained for the slowest CCD' !:!. (about 300%), 

when the MOS primary memory per program is about :L6K. 

The graph shown in Figure 5 can also be used. for 

constant performance transformation rather than 

constant cost transformation. The dashed lines on 

the graph show lines of constant figure of merit, 

which is an indication of the performance of the 

processor together with the memory system. Thus, 

following the same dashed line one can determine 

the cost savings that are incurred in switching from 

a two level Bipolar, MOS hierarchy to a three level 

Bipolar, MOS, CCD hierarchy for various·CCD devices. 

With the particular assumption made in draw:Lng the 

graph and a figure of merit of f = 0.100, i:E the 

cost of the MOS memory required for a two level 

hierarchy is 52K units then the cost of the three 

level hierarchy for the slowest CCD device (T3 

400µsec.) is 15K units. Thus a cost advantage of 

about 3.5 times is realized for a constant per

formance transformation. 

Figure 6 shows the advantageous regions for Bipolar, 

MOS, CCD and Bipolar, MOS combinations as a function 

of CCD speed and primary memory requirement. 


