
The 2nd Annual 
Symposium on 

COMPUTER 
ARCHITECTURE 

Sponsored by the lEE E Computer Society 
and the Association for Computing Machinery 

in cooperation with the University of Houston 

JANUARY 20-22, 1975 

Additional copies may be ordered from: 

~ lEE E Computer Society Publ ications Office 
~ 5855 Naples Plaza, Suite 301, Long Beach, CA 90803 

acm Association for Computing Machinery 
1133 Avenue of the Americas, New York, N.Y. 10036 75CH0916-7 C 

Copyright (~)'1975 by the Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York, New York 10017 



SYMPOSIUM CHAIRMAN 

WILLIS K. KING 

PROGRAM CHAIRMAN 

OSCAR GARCIA 

PROGRAM COMMITTEE 

HARVEY G. CRAGON 
TSE-YUN FENG 
REINER W. HARTENSTEIN 
E. DOUGLAS JENSEN 
TED A LALIOTIS 
HAROLD LORIN 
ELLIOTT I. ORGANICK 

STEVE SHERMAN 
DANIEL P. SIEWIOREK 
HAROLD S. STONE 
STEPHEN Y. SU 
BRUCE WALD 
ROD NAY ZAKS 

SYMPOSIUM COMMITTEE 

JAMES BARGAINER 
OSCAR GARCIA 
JUNG-CHANG HUANG 
OLIN JOHNSON 

JACK LIPOVSKI 
DUANE PYLE 
HUGH WALKER 

CO-SPONSORS: 

ACM SIGARCH 

COMPUTER SCIENCE DEPARTMENT~ UNIVERSITY OF HOUSTON 

COMPUTER SOCIETY OF THE IEEE 

it 



CHAIRMAN'S REMARKS 

A professional symposium should provide the attendees with the opportunities, 1) to gain new knowledge and 
keep abreast of new developments in the 'field and 2) to express and exchange ideas with other attendees. We 
believe the Second Annual Symposium on Computer Architecture will achieve these goals. 

First of all we trust that anyone who reads this volume would agree with us that we have an abundance of 
high quality papers assembled here. As a matter of fact, it was most gratifying to us in organizing the sympo
sium to find the tremendous enthusiastic response from the practitioners of the field in the form of the large 
number and high quality of papers submitted. The program committ(~e, especially its chairman, of course, had to 
be faced with the difficult task of deciding how to limit the size of the technical program without leaving out 
any topic of importance. We are, however, pleased to say that every paper submitted was reviewed by no less 
than three referees and all papers accepted were rated as top quality by at least two of the referees. The 
result is a technical program consisting of twelve sessions with topics ranging from the architecture of computer 
networks to computer architecture education. Within this broad spectrum, most every computer architect will find 
some novel and exciting topic that will benefit him professionally. 

No less encouraging and significant than the large number of papers being submitted, is the fact that over 
one third of them come from foreign countries. We are well aware of the fundamental contributions in computer 
architecture made by many European countries in the past. The full participation by those countries and others 
assure us that the state of art of research in computer architecture in the world will be reflected in the 
conference. 

Furthermore, we were able to organize in conjunction with the symposium a one day tutorial on microcomputers 
--a subject that really attracts the interest and fancy of many of us. So, for those who come here with the 
intention of keeping themselves abreast in the field, they will not be disappointed. 

As far as facilitating the exchange of ideas among the attendees is concerned, ,we provide the following: 
We have scheduled an evening of panel discussion with a list of distinguished speakers leading the discussion. 
We hope and expect to have some exciting and perhaps even heated debates on the current issues of computer 
architecture not only among the panelists but also with active participation from the floor. We have arranged 
a coffee break of half an hour after everyone and a half hours of technical session so that the audience can 
have an additional chance to question the speakers closely while the subject is still fresh in everybody's mind. 
We provide a cocktail hour so that people can talk in a relaxed and informal atmosphere. We hold our meetings 
on the campus of the University of Houston away from the big hotels downtown so that attendees can seek one 
another out easily. 

Beginning this year, we established a best paper award for the symposium. Steve Szygenda, as program 
chairman of the previous symposium, assumes the chairmanship of the award committee. The committee will not 
only examine the papers but also evaluate the oral presentation of the candidates. The award will be presented 
to the winner in the next symposium. 

We are indebted to a great many people, too numerous, in fact to mention them all individually. However, 
we do want to acknowledge our appreciation to the following in particular. We would like to thank the chairmen 
of our sponsoring organizations, Jack Lipovski of TCCA and Chuck Casale of SIGARCH, for their continuous support. 
Mike Flynn, in spite of his busy schedule, never failed to provide his valuable advise and guidance when asked. 
Harry Haymann of IEEE, with his vast experience and contact, not only helped us in publicizing the symposium, 
but also in publishing the proceedings. The members of the symposium provide us with indispensable help, 
particularly, J. C. Huang who serves as treasurer and registration chairman, and Olin Johnson who serves not 
only as our publication chairman but also as the acting chairman of the Department of Computer Science, provided 
the extensive use of its facilities. To each of them, we'wou1d like to express our thanks. However, most of 
all we would like to send our gratitude to our program chairman, Oscar Garcia, and his program committee. Due 
to the extraordinarily large number of papers submitted and the strict standard of review we adhere to, it would 
have been impossible to get the job done were it not for the tireless effort and boundless resourcefulness of 
Oscar. We understand that before the technical program was finally hammered out, over forty people got the~ 
selves involved in the process of reviewing papers for the symposium. 

Finally, we wish to acknowledge the assistance of the secretaries, particularly, I want to thank Alice Sand 
for her infinite patience and didication and help in answering all the correspondence and putting this proceed
ings in its final shape. 
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Willis K. King 
Symposium Chairman 
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DECENTRALIZED PRIORITY CONTROL IN DATA COMMUNICATION 

L. Nisnevi.ch & E. Strasbourger 

Computer Science Department 
Technion, Haifa, Israel 

This paper describes a new principle for the control 
of data transmission within real time parallel systems. 
Control is effected by a number of identical units which 
are uniformly distributed among sender-receivers. When 
senders desire a transmission channel, their units try 
to capture the channel. The unit having the highest 
priority captures the channel. We describe a procedure 
for assigning and changing unit priorities under the 
constraint that customer service indices remain above 
given levels. The suggested procedure can be used to 
assign priorities in real time systems. 

Index Terms. real time, parallel processing, 
decentralized control, priority control, data 
communication, channel control, priority assigning. 

Introduction 

In this paper, we are concerned with real time 
parallel systems and in particular with their data 
communication subsystems. In parallel systems 
decentralized control incretses flexibility and reliabil
ity. The following comment deals with this important 
feature of parallel system organization: 

"While graceful degradation is desirable in many 
commercial applications, it is essential in any 
military system where the results of complete system 
failure for even a short period of time could be 
catastrophic. The importance of this aspect of 
parallel processor techniques is further enhanced 
in military systems, since they face the loss of 
part of the system hardware not only from normal 
equipment and hardware failures, but also from the 
results of enemy action such as shell or bomb 
damag.e. In the latter case, however, it is import
ant to note that this advantage of a parallel org
anization may be largely nullified unless the com
ponents of the parallel system are distributed 
physically as well as conceptually." 

2 3 4 Recently, some publications have appeared ' , 
related to a data communic~tion system with decentralized 
control proposal by Pierce. Control is effected by 
distributing control units throughout the system. A 
Pierce system has many advantages, but data communication 
control in a teal time system may require interrupts and 
priority servicing. It is difficult to inc1uge

7
sijch 

features in a Pierce system. Other proposals " for 
decentralized data communication priority control in 
real time parallel computers have been based on the ideas 
of associative memory. Using these ideas, it is possible 
f~ t~hi5ve complete decentralization of priority control 

, , • For such systems it is interesting to inves
tigate the possibility of controlling priority parameter 
values in decentralized ways. This paper contains the 
outline of some results relating to decentralized prior
ity control. First we shall consider schemes for the 
realization of dispersed control and then consider a 
scheme for changing priority values. We shall limit our 
discussion and consider only those systems in which the 
order of servicing is defined by absolute static prior
ities. The suggested methods may be extended to other 
systems. 

Changing the order of servicing involves a reassign
ment of customer priorities. The purpose of such changes 
in this context is to find permissible priorities, i.e. 
to generate permissible values for multiple service 
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indices. Such indices describe the level of customer 
service. Their values should not exceed the limits 
specified by the conditions under which customers oper
ate. Examples of service indices are: average time 
between arrival and fulfillment of customer requirements 
for service, average number of customer requirements 
awaiting service more than a fixed limit. Such problems 
are important in real time computer systems. Their 
solution can have a strong influence on the structure 
of those hardware and software components which inter
act among the subsystems. 

Channel Capturing Units (CCU) 

Consider a channel connecting some sender-receiv
ers (SR). We shall describe the decentralized control 
of the transmission time distribution to sender-recei
vers where the addresses of i~e SR's are fixed. This 
method was suggested in 1970 • The address of all 

Address 

Fig. 1 

Example Channel 

SR's are binary numbers having an identical number of 
bits which determine the priority assigned to the SR. 
Each SR is provided with a channel capturing unit (CCU) 
(Fig. 1). If it is necessary to transmit a message, 
SRi switches CCUi into the active state. While in this 
state, CCUi is watching the state of the channel. 

The channel may be in three states: "transmit 1", 
"transmit 0", or "no transmission". The "no transmis
sion" signal causes all of the active CCU's to transmit 
the highest bit (left most) of their addresses into the 
channel. In other words, after a message has been 
transmitted and the channel turns into the "no trans
mission" state, the active CCU's start transmitting 
their addresses into the channel. If at least one of 
the transmitted bits is one then the channel is in the 
state "transmit 1", while if all the transmitted bits 
are zero, the channel is in the state "transmit 0". 
CCUi of SRi compares the state of the channel with its 
own highesc bit. If the channel is in the state 
"transmit 1" and CCUi has transmitted a "0", then it 
switches itself off and awaits the next "no transmis
sion" state. Otherwise, CCUi remains connected to the 
channel. 

Each CCU which remains connected to the channel 
transmits into the channel its second address bit and 
the channel turns into state of either "transmit 1" or 
"transmit 0". All of the CCU's which have sent their 
second bit behave as they did following the transmis
sion of their first bit. In other words, if the chan
nel is in the state "transmit 1" then all the CCU's 
which have sent the signal "0" are switched off and 
await the next "no transmission" state. This process 



is repeated until all the address bits have been trans
mitted. 

After the last bit is transmitted, only one SR re
mains connected to the channel (its eeu having captured 
the channel). The address of this SR is greater than 
the addresses of all of the other SR's that have been 
trying to occupy the channel during this period. 

Example 
Let the senders that require transmission time have 

the addresses 1001, 1101, 0111, and 1100 (as shown in 
Fig. 1). During the transmission of the highest bit the 
SR having the address 0111 will stop transmitting its 
address. The rest will start transmitting the second 
bit of their addresses. At this moment the SR having 
the address 1001 will stop its transmission. The re
maining two SR's will transmit the third bits of their 
addresses which are O. Therefore, they will continue 
to transmit their addresses. While the fourth bit is 
being transmitted, the SR having the address 1100 will 
stop transmitting. Thus, the channel will be occupied 
by the SR with address 1101. 

After all the bits of the address have been trans
mitted, the eeu of the sender occupying the channel 
transmits the destination address and having received 
an answer as to whether it is free either starts sending 
a message for its SR or switches off and after some time 
repeats its attempt to establish communication with the 
same receiver. 

Parallel Channel Capturing Units 

Now consider a parallel scheme realizing decentral
ized control of the channel (Fig. 1). This scheme in
corporates priority interrupt, whereby a higher priority 
eeu can preempt the channel from a lower priority eeu 
that is currently using the channel. For this approach 
the channel must have a line for each address bit plus 
a line for the message. Each line may be in one of two 
states: "transmit 0" if the line is dormant, or "trans
mit 1" if the line is set by one or more eeu's. Each 
active eeu continually attempts to capture the channel 
as follows: (see Fig. 2). 

If the most significant address bit of an active 
eeu is a 1, then the eeu sets the most Significant add
ress line to "transmit 1" and activates the next most 
significant bit capture logic. Also, if the most sig
nificant bit is a a and the most significant address 
line is "transmit 0", the eeu activates the next most 
significant bit capture logic. However, if the most 
significant bit is a a and the corresponding address line 
is a"transmit 1", then the eeu simply waits for either a 
change in state of the address line (indicating that a 
higher priority eeu has relinquished the channel) or a 
change of state of the address bit (indicating a raise 
in priority of the eeU). 

Thus, if the most significant address bit of an 
active eeu matches the corresponding address line of the 
channel, then the next most significant address line is 
set or compared and so on throughout the address lines 
or until a mismatch occurs. Only the address of the 
highest priority SR will completely match the channel 
address and force channel capture by its eeu. However, 
there is a transient time when two or more SR's might 
think they match the channel address (i.e. a logical 1 
occurring at point "address match" in Fig. 2). This is 
because of transmission time lag from the time a higher 
priority eeu sets an address line to "transmit 1" and 
the time that the same address line at a lower priority 
SR switches from "transmit 0" to "transmit 1". This 
transient effect is eliminated by the settle detect, 
which has an output of 1 if and only if the "address 
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Paralh~l eeu 

match" stays at 1 for a sufficient period of time T as 
explained below. 

For example consider the channel in Fig. 1 w:lth the 
number n of bits per address equals 4, with maximum 
channel transmi.ssion time t L , and with maximal gate dela) 
time T: Let the SR with adaress 0111 have control of thE 
channel and let an SR with address 1111 become active 
which is t < tL time along the channel away from the OllJ 
SR. The 0111 5R will not release the channel unt:l1 the 
following chain of events occurs: (see Fig. 3) 

1. The"transmit 1" on the most significant address line 
propagates from the 1111 SR to the 0111 SR (time t < t L) 

2. The most significant address bit mismatch propagates 
through the 3 gates of the capture logic at each of the 
n = 4 address bit positions (time < 3nT). 

Therefore the 1111 SR has to wait a maximum time of 
t + 3nT before the 0111 SR (or any other SR) rel,eases 
c~ntrol of the channel. A settle detect element of time 
delay T = t + 3nT is thus needed after detE!ction of a 
complete ad&ress match before a eeu can capture channel 
control for its SR. The eeu settle detect (Fig. 2) 
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provides this delay in a decentralized manner and assures 
that the channel is controlled by at most one SR. 

It is also interesting to examine the maximum time 
that an active SR with the highest priority must wait 
while its active pulse propagates through its CCU until 
it reaches its settle detect element. Consider the 
following worst case as illustrated in Fig. 4 and Fig.5. 

Let a channel address contain n address bits and 
let the SR's be arranged in a star such that each SR is 
tL distant along the channel from all others. Further
more, let an SR with address 101010 ••• 10 become active 
while an SR with address 0101 ••. 01 is in control. Also 
assume that SR's with addresses 1001 .•• , 101001 .•. , etc., 
become active at their critical worst effect times. Then 
the active signal propagation of the CCU with address 
1010 ••• 10 can at worst follow the path as shown in Fig. 
4 and Fig. 5, taking 6t = n~ + 3nT time. This sequence 
of events is unlikely but possible. Adding this active 
propagation time ntL + 3nT to the settle detect time of 
tL + 3nT yields a t1me of (n+l)tL + 6nT as a maximum 
bound dn waiting before the highest priority active SR 
obtains control of the channel. 
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Notice that the higher the SR priority with the 
most consecutive address bits set to 1, then the less 
the waiting time for active pulse propagation. In 
particular, an SR with address containing alII bits 
waits only 2nT time until its delay element is activated. 

Two advantages of the parallel scheme are: 

1. Channel capture is much faster (at least an order of 
magnitude). 

2. Priority interrupt is built in to the scheme allevi
ating the need to incorporate separate protocol and logic. 

A disadvantage of the parallel scheme is the additional 
address lines (or higher bandwidth) needed in the channel. 

Changing Priority Parameters 

The general approach to the problem of selecting 
priority parameters is as follows. Assume that a system 
serves some fixed number N of customers denoted by i; 
i = 1, 2, ••. , N. On the basis of some a priori consid
erations all the customers are divided into several 
groups which are assigned different priorities. Quanti
tative characteristics of system behavior are then 
specified only for the whole system and for the selected 
groups. These characteristics determine the sort of 
necessary priorities. Since each group is generally 
considered to have a unique priority the search routines 
which select adequate priority sets must use priority 
permutations. 

A system in which customers are separated into L 
groups where each group has a different priority can be 
described as follows. Let us assign each customer i 
(i = 1, 2, .•• , N) a priority parameter Pi and let the 
value of Pi be equal to the priority of tfie group to 
whi.ch the customer belongs. Therefore, all customers 
belonging to the same group will have identical parameter 
values, while the total number of different values will 
be L. The queue discipline is determined by priority 
parameter Pi in the following manner. Customer i has a 
higher priority with regard to customer j if p. > P . 
Requirements of customers having identical valUes 01 
priority parameters are serviced in the order "first 
come, first serve". Using this approach the value of 
each priority parameter Pi can be changed independent 
of the other priority parameters. 

To illustrate, consider a given number L of priori
ty groups dividing all the customers. Pick any customer 
i and let his priority parameter value change continuous
ly from _00 to +00. Observe the changes taking place in 
the system. At the outset i will represent a separate 
group having the lowest priority. Then as the value of 
Pi becomes equal to the parameter value of the lowest 
priority group this customer will be included in it. 
Subsequently he will constitute a separate group again 
having a higher priority than this first group but a 
lower priority than the rest. This process will continue 
until customer i forms a separate group with the highest 
priority. 

Priority Parameter Value Changing To Get Adequate Service 

The possibility of changing priorities independently 
allows a system to respond in a very simple way to custo
mer dissatisfaction when the level of service falls below 
a permissible value. Under such conditions the values of 
priority parameters for dissatisfied customers should be 
increased while leaving the rest unchanged. 

In order to appreciate the need for demonstrating 
the validity of this simple procedure, consider another 
simple process of selecting priority parameters. Choose 



the groUp of customers with the highest priority among 
all the groups whose level of service is inadequate. 
Interchange the priority of this group with that of the 
group having the next higher priority. Then continue 
this process of interchanging group priorities until the 
level of service is adequate for all groups in the system. 

parameter values ~~) be represented by any integel: 
component vector P • If at some stage of theyrocess 
II we have determined a set of parameter values P then 
the next stage will involv~ the following procedure. 
Cho£.se a service index .k(P) for which the inequality 
tPk (P) .2: Ck does not hold_for the vector found at t:he 
previous stage. Let tPk(P) be the service index of cus-

Such a process does not always lead to a satisfactory tomer i which means that this customer receives iIlade
queueing discipline even when there is such a discipline. quate service for this index tP

k
• We will assume that 

By way of illustration, select three groups of customers inadequate service for one index means inadequate ser-
whose assigned priorities correspond with their numbers vice in general. The value of parameter P. in the vector 
(1, 2, 3). Assume that under such a queueing discipline P is replaced by (P i+l) while the 9 rest of fhe components 
the level of service is inadequate only for the first do not change. It lias been shown that the process II 
group. Also assume that if we interchange priorities of terminates in a finite number of stages not exceeding 
the first and second groups then the level of service N(N-l) and results in a permissible set of priority 
will be inadequate only for the second group. Continuing parameter values provided such a set actually exists. 
in this manner, we will return to the initial state and 
the process will cycle. If assigning the third group the 
lowest priority would in fact solve the problem, then 
this process will not find the solution. 

Let us now return to the process of independent 
parameter change. This process ensures a solution of the 
problem whenever service indices possess certain proper
ties described below. This method also permits the 
assignment of customers to a specified number of priority 
levels within the constraint of adequate service, 
providing such an assignment is possible at all. 

For a fixed arrival and service pattern, the values 
of service indices depend only on the vector 
P = (P , P , ••• , P). Denote the total set of service 
indice! whtch have ~he property that each i~dex is_ 
ass£.ciated with exactly one customer by ~l (P), tP 2 (P), ••• , 
tP (P). Some subset of these indices indicate the service 
l~el of the first customer, another subset that of t!!.e 
second, etc. Denote the permissible level £.f the 'k(P) 
index by St. Let the components of vector pit be a 
permissible set of priority values for which the 
following system of inequalities holds: 

(k = 1, 2, ••• , K) 

If we want to find. a permissible set of parameters for a 
system in which the number of priority levels does not 
exceed L then we have to introduce an additional 
constraint that the components of the vector p* take no 
more than L different values. 

Note that any vector P whose compone~t6)differ from 
the corresponding components of a vector P by ,the same 
value defines the same sueueing discipline. Therefore, 
the service indices tPk~P) do not change along the 
straight line defined-oy: 

P = P (0) + t 
1 1(0) 

P2 = P2 + t 

P
N 

= PN(O) + t 

where p(O) is any fixed vector and ~ < t < +00. 

Many service indi.ces used in practice such as the 
examples cited earlier for the case of service by a 
$fngle~achine or a single channel have a so called 
monotonicity property which is explained as follows. 
~tf)~(P) be a service index of cus~~21r i. If the vector 
P is generated from the vector P by decreasing the 
va!~I)of any_~2tority parameter excluding the i-th, then 
tP(P ) ~ ~(P ). 

For m£.notonic systems in which all service indices 
~l(P), ~2(P), ••• , ~K(P) possess the monotoni£ity proper
ty, the problem of fInding a permissible set p* of prior
ity values is solved by the process which we will call 
"simple descent" and denote by II. The initial set of 
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If we initially adopt the queueing discipline 
"first come, first serve" for all the requir4~ments oi(tl)l 
customers (this discipline is specified by a vector P 
with equal components) then the process IT will result in 
a set of priority parameter values in a numb'~r of stages 
less than N(N-l)/2. This set of values determines an 
adequate service level for all the customers with a 
minimum possible number of priority levels. In case an 
adequate set of parameter values does not exist, the 
process will result in a situation demonstrating this 
fact during the same number of stages. Therefore, the 
process having an initial vector with equal components 
solves the problem of assigning customers to priority 
levels when the number of levels must be limited. 

At any stage of the process IT the values of service 
indices of several customers might lie below corre:3pondin~ 
permissible values. In such a case one can c:hoose one of 
these indices and raise the value of the priority parame
ter associated with the corresponding customer. It is 
possible to raise the values of several priority parame
ters simultaneously. The set of parameter values genera
ted by the process IT does not depend_~8)this choice, but 
is determined by the initial vector P • 

It is important to stress that in order to realize 
the search process o~e does not need to know the vlilues 
of the functions tPk(P) (k = 1,2, ••• ,K). The only E~ssen
tial information is whether these values lie below speci
fied levels. In other words it is only necessary to know 
if each customer is getting adequate service when the set 
of priority values is given. 

Example 
There are four customers in the system. Their re

quests arrive independently in conformity with a Poisson 
distribution. The customers are serviced by a single 
channel with exponential service times. The paramE~ters 
of the corresponding distributions for each customer are: 

1/5 

1 

1/20 

1/4 

1/10 

1/2 

1/20 

1/4 

The average total time (ATT) any requirement is in the 
system should not exceed 4 units for the first customer, 
5 for the second, 16 for the third, and 30 for the fourth. 

To find the values of the priority param4~ters satis
fying these constraints, consider the operations of pro
cess IT. At the outset assign priorities in the order of 
decreasing the values of_~B1 given constraints (ATT), 
i.e. the initial vector P will be equal to (4,3,2,1). 
Under this queueing discipline the average total times 
are 1.25 for the first customer, 8.75 for the second, 
9.17 for the third, and 37.50 for the fourth. As we can 
observe, this apparently natural set of priorities does 
not satisfy customers 2 and 4. 

At the first stage of process IT raise thE~ priority 
parameter values of customers 2 and 4. Then ue obtain 



priority vector p(l)a (4,4,2,2). Under this queueing 
discipline, the average total times are 2.07, 5.07, 
14.33, and 16.33. Now only the second customer is not 
satisfied. By rai~t~~ his priority parameter value, we 
obtain the vector P = (4,5,2,2), which gives times of 
3.33, 5, 14.33, and 16.33, thereby satisfying all of the 
customers. In this case partitioning the customers into 
three priority levels is sufficient and in addition is 
the only possible solution. 

This method of changing parameter values in order 
to determine an adequate queueing discipline can be 
applied when the order of servicing depends on priority 
in other ways, i.e. in other classes of priority sys
tems lO • To ensure efficiency of the process IT, it is 
sufficient that service indices remain monotonic functi
ons of priority parameters. Other papers ll are devoted 
to the study of such systems and contain proofs of the 
efficiency of the simple descent procedure. 

For real time systems the process IT may serve as a 
means to introduce dynamic priorities. Specifically, 
such priority will adapt to changes in the system and 
modify priority parameters when the values of service 
indices approach their limits provided external 
conditions change sufficiently slow1y9,lo. 

Distributed Control of a Multiplex Channel 
For Real Time Systems 

Consider now the channel capture units as described 
earlier. Let the address of each SR consist of three 
parts: A psa. 

Part p is the binary value of the customer priority 
parameter. This part changes independently as determined 
in the simple descent mode IT ,as just described. A modi
fication of IT is required however, because of the upper 
limit of priority values, to prevent all customer prior
ities settling at the highest level. When an SR attains 
the highest priority level and is still not receiving 
adequate service, then its CCU will send the pulse "I" 
into the auxiliary channel ~ (Fig. 6). Each other CCU 
will respond by lowering its priority parameter p. 

Part s is employed to provide the order of servicing 
"first come, first serve" among the SR's having equal 
priority values. This part of A is formed in the follow
ing manner. The value of s is 0 for all inactive SR's. 
When a requirement arrives and the CCU becomes active, 
it sends the signal "1" into the auxiliary channel S 
(Fig. 6). From this moment each "1" which is entered 
into the auxiliary channel S due to the activation of a 
channel capture unit is added to the value of s for each 
CCU awaiting transmission time. Among the senders 
belonging to the same priority group, the one whose 
waiting time for message transmission is the longest has 
the greatest value of s. After a message is transmitted 
and its SR becomes passive, its s returns to O. 

Address part a is the number (personal address) of 
an SR. This part is necessary only because address part 
P-s may have the same value for two SR's. The auxiliary 
channels ~ and S can be combined into one line by special 
coding of the limit and the longevity pulses. 

Thus in such a data communications system with de
centralized control, transmission time is granted to an 
SR with the highest priority parameter value. In case 
of ties, an SR with the longest waiting time is chosen. 
If ties still remain, the SR having the greatest person
al address is serviced. 

Priority interrupt is built in to the parallel CCU 
scheme. For the serial CCU scheme a multiplex channel 
with interrupt capabilities may be organized by dividing 
the channel into two channels: one to transmit the 
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address 

~----~~------~------------~---

Fig. 6 

Priority Interrupt Channel With Distributed Control 

addresses of the SR's and the other to transmit the 
regular messages (see Fig. 6). In this case the SR's 
try to capture the message channel by sending their 
addresses along the address channel after a "no trans
mission" state has appeared in the address channel. The 
CCU occupying the address channel transmits into this 
channel the address of the required receiver and connects 
its sender to the message channel. After this it creates 
a "no transmission" state in the address channel (Le. 
switches off this channel) but remains active. When the 
"no transmission" state appears, the CCU's start to fight 
for the channel by trying to transmit addresses into the 
address channel. A CCU only disconnects its sender from 
the message channel when it has completed sending the 
message or when it has been preempted by another CCU. 
In the latter case its transmission time is interrupted 
and another SR with higher 'priority connects to the 
message channel and transmits its message. When a sender 
has completed its message it causes its CCU to enter the 
passive, state and the CCU does not make any attempt to 
reference the address channel until it again becomes 
active. 

Pa.pers 14 ,15 are devoted to the problems of broaden
ing the functional possibilities of multichannel and 
mu1ti100p data communication systems based on the princi
ples dj,scussed above. These papers also consider design 
methods for such systems. 

The decentralized distributed control systems des
cribed above have a great deal of flexibility. In case 
such a system connects highly organized devices such as 
computer units, computer terminals, or computers, the 
address of an SR may be modified according to the 
transmltted message. 

Conclusions 

Parallel computers inherently have a communication 
control problem. Schemes have been presented in this 
paper to realize the following control capabilities: 

1. decentralized priority control 
2. decentralized priority changing 
3. priority interrupt handling 

Decentralized priority control using small channel cap
turing unlts enables efficient communication path utili
zation between parallel processors. Decentralized 
priority changing using independent priority determining 
automata alleviates unacceptable service conditions and 
lockouts. Priority interrupt handling allows minimal 
responBe time for most critical tasks. The implications 
of theBe capabilities upon parallel architecture should 
be investigated. 
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A LOOP NETWORK FOR SIMULTANEOUS TRANSMISSION 
OF VARIABLE-LENGTH MESSAGES 

Cecil C. Reames and Ming T. Liu 
Department of Computer and Information Science, and 
Mechanized Information Center 
The Ohio State University 
Columbus, Ohio 43210 

A loop (ring) system is proposed for distributed 
computer networks which: 1) allows simultaneous trans
mission of variable-length message frames, 2) minimizes 
loop access and transmission times, and 3) provides a 
form of automatic traffic regulation. The ring inter
face transmitter which performs these three functions 
is described, and a conceptual model of its operation 
is developed. The model illustrates a technique by 
which the ring interface transmitter can delay incoming 
messages by hardware buffering just long enough for a 
variable-length output message to be placed on the loop. 
It is shown how advantage can be taken of gaps between 
incoming messages to clear out the delay buffer and to 
make room for future outgoing messages. It is further 
demonstrated that an interesting form of automatic mes
sage traffic regulation results from use of the pro
posed technique. Possible hardware implementations of 
the model are also considered, using a variable-length 
shift register for the incoming message delay buffer. 
The probable effects of the proposed technique on mes
sage transmissimn are discussed, and ongoing analytic 
and simulation studies are described. 

I. Introduction 

The loop topology is becoming increasingly popular 
today for the design of distributed computer networks 
[3,4,5,6,7,8,13,14,17,18]. A loop network consists of 
a high-speed digital communication channel, arranged as 
a closed loop (ring), to which the nodes (which may be 
processors, peripherals or terminals) are attached 
through simple ring interfaces. Messages are sent from 
a source node as addressed blocks of data which travel 
around the loop from interface to interface until 
picked off by the destination node. Some of the major 
advantages of a loop network are: 1) the ease of con
trolling information, 2) the simplicity of message 
routing, 3) the high rate of data transmission, 4) the 
facility to attach dissimilar nodes through a standard 
ring interface, and 5) the low costs of construction 
and incremental expansion. 

With only a few except.ions, most loop systems 
studied or constructed have employed the concept of 
fixed-size frames (slots) for message transmission [3, 
4,5,8,9,13,17]. Such systems, as illustrated by Fig.la, 
are sometimes called Pierce loops. The reason for 
using a fixed-size frame is that message transmission 
protocol and ring interface hardware are thereby greatly 
simplified. The loop is initially filled with an inte
gral number of empty frames, where a bit in the control 
field of each frame specifies if that frame is empty 
(not in use) or full (in use), If a node has a message 
it wishes to output which is shorter than the frame 
size, it simply waits for an empty frame to appear and 
then inserts its message into that frame; the unused 
frame space is wasted. On the other hand, should the 

This research was supported in part by the National 
Science Foundation under grants GN-534.1 and GN-27458 
and in part by the Office of Naval Research under con
tract N00014-67-A-0232-0022. 
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output message be longer than the frame size, it must 
be broken down into frame-size packets and transmitted 
one packet at a time. The disadvantages of this 
approach are obvious: message space on the loop is 
wasted for short messages, while longer messages require 
elaborate buffering and disassembly/assembly techniques. 
Clearly, it would be more efficient if variable-length 
messages could be transmitted directly as variable
length frames. 

A few attempts have been made to provide loop 
systems for transmission of variable-length message 
frames. but such systems, using Newhall loops alS shown 
in Fig. lb, have been severely handicapped by their 
inability to allow simultaneous message transmission 
[6,14]. Newhall loops operate under a round-robin 
control-passing mechanism which permits only one node 
at a time to transmit an arbitrary length message onto 
the loop. This restriction, although highly ineffi
cient as far as loop utilization and message transmis
sion is concerned, is absolutely necessary. Otherwise, 
two or more messages transmitted onto the loop during 
overlapping time periods could completely destroy each 
other. 

It is primarily for this reason that most loop 
designs have favored fixed-size frames for message 
transmission. It seems entirely reasonable to suppose, 
however, that if variable-length frames could be trans
mitted as easily as fixed-size frames. it would be 
advantageous to do so. A loop system constructed for 
variable-length message transmissi.on should result in 
faster message transmissions and better loop utiliza
tion, since no frame space (and thus time) would ever 
be unnecessarily wasted. 

In this paper. a new ring interface design i.8 
proposed which does allow simultaneous transmission of 
variable-length message frames in a loop system. It 
will be argued that the proposed system does have the 
desirable properties mentioned above. It will also be 
asserted that the proposed scheme provides a bonus in 
the form of automatic traffic regulation, in the sense 
that aecess to the loop 1.8 controlled by the ring inter
face hardware based on the current system load and pre
vious individual accesses. Preliminary investigation 
by the authors has already established the feasibility 
of the proposed scheme; analytic and simulation studies 
are now underway to verify the claims made for improved 
performance [18]. 

II. Design Considerations 

Rather than immediately launch into a description 
of the proposal. it would be instructive to consider 
first a few of the motivating factors which le~d to the 
particular design chosen. The desired goal walS a 
variable-length message transmission techniquE! which 
would not restrict use of the loop to a singlE! node at 
a time. Any such scheme must ensure that two or more 
messages, transmitted from different nodes during 
the same time period, never meet and interferE~ with 
each other. But if a completely distributed loop net
work is assumed, with each node acting independently 
and without knowledge of other nodes' actions" then it 
is impossible to guarantee that simultaneous transmis
sions will not cause messages to overlap and destroy 



each other. 
The obvious means of overcoming this problem is to 

buffer any incoming messages received at a node while 
an output message is being transmitted. The loop net
work then takes on some characteristics of a message 
store-and-forward network. While such a solution is 
obvious, it is not so easy to apply to a distributed 
loop network, for the nodes in such a network may well 
be unintelligent peripheral devices that are incapable 
of buffering messages. 

In fact, in a loop network the node itself never 
sees messages not addressed to it; only the ring inter
face sees all messages that pass by on the loop. So if 
any buffering of incoming messages is to occur, it must 
be done entirely by the ring interface. But this 
requirement poses a new problem: the ring interface is 
a relatively simple, inexpensive ($200-$600) hardware 
device with little data buffering capability. It was 
deliberately designed that way to be cheap and reliable. 
Replacing it by a much more expensive minicomputer is 
not a feasible alternative, although in the future a 
microprocessor system might be economical. For the 
present time, however, it seems that the function of 
the ring interface must be expanded by giving it some 
hardware buffering capability. 

Before describing how the ring interface is to 
accomplish this buffering of incoming messages while 
output is in progress, some other desirable character
istics for such a loop system will be listed for 
inclusion in the new design: 

1) Incoming messages should experience the mini
mum delay possible in passing through the ring inter
face, the amount depending solely on the quantity of 
previously buffered data. 

2) Outgoing message transmission should be pos
sible at the completion of any incoming message, even 
if another message is incoming and must be delayed. 

3) The quantity of data buffered by a ring inter
face should be reduced whenever possible and should be 
strictly limited so as to avoid unreasonable transmis
sion delays. 

4) All nodes should be allowed access to the loop 
as much and as often as the system can handle, but no 
node should be permitted to dominate the loop to the 
exclusion of other nodes. 

III. Proposal for New Ring Interface 
With these thoughts in mind, the major functions 

of the ring interface proposed in this paper will now 
be described. The scheme chosen allows the ring inter
face to delay an incoming message by hardware buffering 
just long enough for a variable-length message to be 
output onto the loop. The maximum length of an output 
message which can be transmitted at any moment is 
determined by the available space in this hardware 
delay buffer. More space is made available by taking 
advantage of gaps between messages to reduce the 
amount of data buffered, gaps appearing either from a 
lack of message transmission or due to removal of a 
message from the loop by its receiving node. Since an 
output message cannot be transmitted until sufficient 
buffer space is available to delay possible incoming 
messages, and since space is made available by the 
accumulation of intermessage gaps whose arrival rate 
depends on the total system traffic, it can be seen 
that output message transmission is automatically 
regulated as a function of traffic load. 

A conceptual model of the proposed ring interface 
transmitter will be developed in the next section, so 
that its operation can be explained and understood 
without worrying about hardware details. Following 
the model presentation, Section V will consider hard
ware implementations of the model, with several 
approaches being suggested. A discussion of the 
effects the proposed scheme might have on message 
transmission in a loop system will be taken up in 

8 

Section VI. 

IV. Conceptual Model Development 
The operation of the proposed ring interface trans

mitter will be explained through the development of a 
hardware-independent conceptual model; the design of 
the interface receiver is not considered in this paper. 
Fig. 2 is an illustration of the data buffers and paths 
for the model. It shows an Output Buffer and a multi
functioned Delay Buffer as the two data storage devices 
in the transmitter. Incoming messages enter this part 
of the ring interface from the loop communication 
channel bit-serially over the Input Line. The same 
incoming messages (perhaps after some delay) and out
going messages from the attached node exit the trans
mitter onto the loop bit-serially on the Output Line. 
The Input and Output Lines are synchronized at the same 
data rate, so that for each bit input, another is out
put. 

The function of the Output Buffer is simply to hold 
the output message as it is being assembled by the 
attached node and while it is waiting for its transmis
sion onto the loop to begin. When transmission actually 
is to start, the output message will be parallel-trans
ferred'into a portion of the Delay Buffer, freeing the 
Output Buffer so that it can again be filled by the 
attached node. Since messages are of variable length 
in this system, only a portion of the Output Buffer may 
actually be used for a particular message transmission. 
The attached node is allowed to output a message of any 
length that does not exceed the capacity of its Output 
Buffer. 

The Delay Buffer is slightly more complicated, for 
it has several functions to accomplish. It is physi.
cally one storage device, but logically it can be 
thought of as partitioned into two distinct storage 
devices, the boundary of this partition being <changed 
from time to time. In the illustration of Fig. 2, this 
partitioning is shown as active and inactive portions 
of the Delay Buffer. Consider for the moment Just the 
active portion. 

The active portion of the Delay Buffer acts as a 
FIFO queue that delays the retransmission of incoming 
messages for a specified time period. Assume the entire 
Delay Buffer to have a capacity for storing N bits of 
data, and assume that r bits are presently allocated to 
the active portion, l<r<N, leaving N-r bits for the 
inactive portion. Let the bit positions in thl:;! Delay 
Buffer be labeled DBa, DBl , .•. DBr _l , DBr' ••• DBN_l • 

Choose a time scale for the rate of data transmission 
on the loop so that message bits arrive everyone time 
unit. Then if the next message bit is to arrive at 
time t+r, the active portion of the Delay Buffl~r (DBa, 
DB

l
, •.• DBr _l ) represents a FIFO delay queue which 

contains the message bits that arrived at times t, t+l, 
••• , t+(r-l). 

Since the capacity of this FIFO delay queue is 
only r bits, at time t+r the longest delayed mE~ssage 
bit (contained in DBa) is removed from the queue and is 
output to the loop on the Output Line. Simultaneously, 
the incoming message bit from the Input Line is added 
to the queue (stored in DBr _l ) so that the length of 

the delay queue remains constant at r bits. Thus at 
the completion of these activities at time t+r, the new 
contents of DBa, DBl , ••. DBr _l will be the message bits 

received at times t+l, t+2, ••• t+r. Stated in hard
ware terms, the contents of DBa, DBl , .•• DBr _l , Input 

have been shifted into Output, DBa, DBI , ..• DBr _l . 

The size of this FIFO delay queue is adjustable at 
each time period (if r>l), the object being to reduce 
r to 1 as quickly as possible. A reduction can take 
place only between incoming messages, when the data 
being received is not part of any message and thus does 



not need to be saved for later transmission. Thus, 
the preceeding explanation of the FIFO delay queue 
operation should be modified to state that if r>l and 
the bit input on the Input Line is not part of any 
incoming message, then the input is discarded (not 
stored in DB 1) and r is reduced to r' = r-l. In 
effect, the logical boundary of the partition of the 

Delay Buffer is changed one position, so that the 
active portion is smaller and the inactive portion 
larger. When r reaches 1, no further reduction is 
possible, and the input is always stored in DBO. 

The space in the inactive portion of the Delay 
Buffer, DBr' DBr+l' ••• DBN_l , is not just wasted, but 

also plays a very important role in the ring inter
face transmitter operation. It is here that output 
messages are transferred from the Output Buffer when 
they are to be transmitted onto the loop. Assume an 
s-bit output message has been prepared by the attached 
node and is in the Output Buffer awaiting transmissio~ 
Assume also that at least s+l bits of space are avail
able in the inactive portion of the Delay Buffer 
(which is of size N-r bits). That being the case, 
the s bits of the Output Buffer are parallel-trans
ferred into the inactive portion of the Delay Buffer 
at DBr' DBr +l , ••• DBr+(s_l)' directly adjacent to the 

active portion. Then if no incoming message is being 
received over the Input Line, r is immediately chan~ed 
to r' = r+s+l; otherwise, the change is made at the end 
of the current incoming message. 

This sudden change in r means that now the active 
portion of the Delay Buffer includes its previous 
contents (DBO' ••• Dar_I)' the message to be output 

(DBr , ..• DBr+(s_l» and an extra position for delaying 

new input (DBr +s )' In effect this means that the FIFO 

delay queue has been expanded by s+l positions and has 
had an s-bit message pushed into it. New incoming 
messages will enter the delay queue throughDBr +s and 
will thus be transmitted onto the loop following the 
output message. Thus an output message has been 
inserted'onto the loop between two incoming messages. 

It may be the case, however, that when the out
put message in the Output Buffer is ready to be trans
ferred into the Delay Buffer, insufficient space is 
available in the inactive portion of the Delay Buffer 
(N-r<s+l) for the transfer to take place. If that is 
true, then no output message can be transmitted by the 
ring interface until sufficient space becomes avail
able in the Delay Buffer. Space is made available, 
however, only between incoming messages when the size 
of the FIFO delay queue can be reduced. Furthermore, 
the size of the delay queue is increased only when 
transmitting an output message onto the loop. Thus 
insufficient space for output message transmission can 
only happen when a node tries to output too many mes
sages, of too long a length, over too short a time for 
the loop to handle. Under those circumstances, it 
seems entirely justifiable to force the offending node 
to wait for the system load to decrease before trans
mitting any more messages, especially since other 
nodes with shorter delay queues are still allowed to 
transmit their messages. 

It should be apparent from the above discussion 
that the capacity of the Delay Buffer must be at least 
as large as that of the Output Buffer. Furthermore, 
it should be obvious that the greater the Delay Buffer 
capacity, the less likely is the chance that output 
message transmission will be blocked because of insuf
ficient space being available. Thus, certain nodes 
can in effect have higher output priority than others, 
simply by increasing the sizes of their Delay Buffers. 
The size of the Delay Buffer is thus a design parame
ter which can be adjusted differently for each node to 
suit individual output requirements. However, it 
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should also be observed that for messages alre~ady on 
the loop, transmission time is minimized by ha.ving the 
sum of all possible delays be as small as possible. 
Thus, optimization of overall system performance re
quires that Delay Buffer sizes be neither too excessive 
nor too small. 

The complete operation of the model just developed 
is summarized in the flowchart of Fig. 3. Hopefully, 
the model has demonstrated (at least in concept) a 
plausible method by which variable-length message 
frames can be transmitted in a distributed loop system. 
In any case, it is now time to consider possible hard
ware implementations of the model. 

V. Hardware Implementations 
A direct translation of the model into hardware 

might look something like the device depicted by Fig.4. 
The essential feature of this implementation is a 
variable-length shift register which serves as the 
model's Delay Buffer. Only the left-most r bits of 
this shift register are activated (shifted), corre
sponding to the r-bit FIFO delay queue of the model. 
A l-to·-N decoder (Input Selector) is provided to gate 
the incoming message bits from the Input Line into the 
right-most active position of the shift register. The 
Input Selector thus defines the logical partition of 
the shift register into active and inactive portions. 
A similar K-to-N decoder (Output Selector) performs 
the more complicated operation of parallel-transferring 
s bits of an output message from the Output Buffer 
into the inactive portion of the shift register. 

While the hardware illustrated by Fig. 4 could 
certainly be constructed, it would likely prove to be 
too expensive for a ring interface transmitter. The 
variable-length shift register is essential in any 
implementation for a Delay Buffer and thus cannot be 
eliminated. The same is true for some kind of Input 
Selector to direct incoming data into the shift regis
ter. The most expensive hardware component, however, 
seems to be the Output Selector, since its function is 
so complicated. 

The Output Selector can be totally eliminated by 
separating the Delay Buffer into two distinct registers. 
The variable-length shift register will then be used 
exclusively as a FIFO message delay queue, while a 
second shift register will function for the inactive 
portion of the Delay Buffer. A further saving of hard
ware is possible by letting this second shift register 
also serve as the Output Buffer. If that is done, out
put messages can be assembled in the Output Buffer as 
before and then directly shifted out onto the loop. 

This latter, more economical hardware implementa-
tion of the model is shown in Fig. 5. Now there are 
two shift registers which may be connected to the Out
put Line, the Delay Buffer and the Output Buffer, but 
only one or the other may be activated (shifted) at a 
time. If no output transmission is in progress, the 
Delay Buffer will be shifted out onto the loop. Dur
ing receipt of incoming messages, the length of this 
shift register will remain constant; between messages 
when no valid information is being received, the 
length of the Delay Buffer will be decreased by one at 
each time period (until it is complete.ly empty or a 
new incoming message arrives). 

When an output message is assembled in th,e Output 
Buffer and is ready for transmission onto the loop, 
the control circuitry of the ring interface scans the 
Output Line, watching for the end of the current in
coming message (if any is being received). When the 
end is detected and if sufficient space is available 
in the Delay Buffer (equal to the output message 
length), then the Delay Buffer is deactivated and the 
Output Buffer is activated, thus shifting the output 
message onto the loop. While its transmission is in 
progress, incoming message bits are saved in the Delay 
Buffer by increasing its length by one at each time 



period; between incoming messages the length of the 
Delay Buffer remains constant. When the last bit of 
the output message has been shifted onto the loop, the 
Output Buffer is deactivated and the Delay Buffer is 
reactivated to operate again as previously described. 

By restricting or imposing certain limitations on 
the conceptual model developed in Section IV, further 
hardware savings are possible. It is likely that some 
of these limited implementations might be much more 
economical and just as useful for certain applications. 
There is no reason that several implementations of 
varying degrees of sophistication could not be used in 
the same loop network. For further information in this 
regard, the reader is referred to the authors' previous 
\vork [18]. 

VI. Effects on Message Transmission 
Since analytic and simulation studies of this pro

posed loop system are still in progress, no precise 
statements can be made at this time concerning perform
ance. On the other hand, a number of performance fac
tors can be evaluated, and certain improvements can be 
plausibly argued. Consider the following factors con....; 
cerning message transmission in the proposed system: 

1) The queueing delay a ready message in the Out
put Buffer may experience before being transmitted onto 
the loop depends on its length and the amount of data 
already. stored in the Delay Buffer. If sufficient 
delay space is available, transmission can begin at 
the end of the current incoming message. Otherwise, 
the queueing delay will be extended for whatever time 
is required to make space in the Delay Buffer. This 
time obviously depends in a complicated manner on 
total system traffic and loop utilization. 

2) The transmission delay a message will experi
ence in getting from its source to its destination node 
once it is on the loop is simply the sum of the delays 
imposed by each intermediate node. Each of these 
delays depends solely on the amount of data already in 
each Delay Buffer when the message arrives there. The 
transmission delay will obviously increase rapidly with 
increasing system load but for a worst-case upper limit 
can be no greater than the total capacity of all Delay 
Buffers. 

3) For moderate to heavy traffic loads, nodes that 
transmit messages only infrequently should experience 
little queueing delay, while nodes that desire to 
transmit almost constantly will undoubtedly be slowed 
down because of limited Delay Buffer space. Thus 
heavy, frequent users of the loop are restricted while 
less frequent users still receive reasonably prompt 
service. Of course, the transmission delays will be 
about the same for all nodes. 

In comparing the proposed loop system with previ
ous fixed-size and/or variable-length loop systems, 
certain performance improvements and advantages can be 
recognized: 

1) Variable-length message frames can be trans
mitted directly. 

2) Simultaneous message transmission is allowed 
by independently acting nodes. 

3) Nearly immediate access to the loop is given to 
any node with sufficient space in its Delay Buffer, 
regardless of the traffic on the loop. 

4) Subsequent loop access is granted by the hard
ware in a manner determined by individual past accesses 
and current traffic. 

5) Automatic access regulation tends to favor 
infrequent or light users and to prevent domination of 
the loop by one or several nodes. 

6) Loop utilization and message transmission are 
improved due to less wasted frame space and simultane
ous message transmissions. 

VII. Conclusion 
As previously mentioned, verification of these 
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performance claims is now underway. Research is pro
ceeding in the areas of analytic modeling and simula
tion. An analytic model of the queueing and transmis
sion delays in the proposed system is being sought as 
one goal. In conjunction with that work, a simulation 
study of loop networks is being performed. Thepe 
studies are expected to yield considerable insight as 
to the actual operation and performance of the proposed 
system. The results of this research will be made 
available in a subsequent report [18]. 

It is felt that distributed loop systems with 
variable-length message transmission facilities could 
play an important role in areas as diverse as credit
card verification systems, mini-computer networks, and 
telephone switching systems. It is hoped that the 
ideas presented here may be of some interest in the 
future development of these and other application areas. 
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THE ARCHITECTURE OF THE PICTURE SYSTEM 
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Abstract 

THE PICTURE SYSTEM is a self-contained, 
stand-alone line drawing system for present
ing dynamically moving pictures of two- or 
three-dimensional objects. This highly inter
active system can display smoothly changing 
true perspective views of 3-D objects in real 
time. Objects can be rotating, translating, 
and changing in scale. Individual sub-objects 
can assume independent or compound motion. 
Lines or parts of lines outside the chosen 
viewing window are clipped. All these trans
formations are performed digitally to avoid 
inaccuracy and range limitations. 

In order to perform these calculations 
fast enough to show smooth motion, support 
high-level interaction, and also sustain 
flicker-free pictures of 11000 line segments 
or more, a new graphics system architecture 
has been developed. This paper will present 
each of the hardware components of the system 
and discuss what each contributes to the pro
duction of pictures. 

THE PICTURE, SYSTEM represents a signifi
cant new graphics system architecture in sev
eral respects. This paper will describe the 
system including data flow, the functions of 
each major component, and some of the advan
tages that accrue from the approaches taken. 

Figure 1. shows a block diagram of THE 
PICTURE SYSTEM. 

The Picture Controller 

Evans & Sutherland selected the DEC PDP-
11 as the standard controller for THE PICTURE 
SYSTEM because of its popularity and because 
its architecture is well suited to supporting 
high-performance graphics systems. THE PIC
TURE SYSTEM requires no modifications to the 
PDP-II at all. Therefore, it can be equipped 
with any standard peripherals, utilize any 
DEC supported system software, and can be put 
to general-purpose use when not executing a 
graphics program. 

The UNIBUS which serves as the universal 
link connecting the PDP-II processor, memory, 
and peripherals also serves as the connecting 
link to the controlling registers and graphic 
peripherals of THE PICTURE SYSTEM. 

Prior to issuing any d"rawing commands, 
the Picture Controller passes parameters to 
the Picture Processor to indicate how subse
quent coordinate data is to be interpreted 
and what transformations are to be made to 
that data. The data interpretation para
meters indicate connectivity (i.e., how 
points are to be connected), and point of or
igin (i.e., whether the coordinate data is 
absolute or relative to preceding coordi
nates). It further states whether subsequent 
coordinate data is two-dimensional, three
dimensional, or homogeneous to provide a much 
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larger effective dynamic range than is normal
ly available with l6-bit words. 

After all these modes have been set up, 
the Picture Controller passes the actual co
ordinate data from its memory to the Picture 
Processor via a DMA interface. The program 
contains DMA setups for each block of coordi
nate data that can be sent without mode 
changes. 

This process continues for the data des
cribing all objects to be displayed, at which 
point the program waits for a clock interrupt 
indicating that the pre-specified amount of 
time allocated for a frame has elapsed. The 
program then jumps back to draw the next 
frame perhaps with a slightly different set 
of transformation parameters, to produce the 
illusion of smooth motion in the picture. 

When there is a great deal of data to be 
drawn a mechanism is provided for organizing 
this data efficiently so that the entire 
frame can be passed to the Picture Processor 
within the time desired. This mechanism en
tails arranging into tables coordinate data 
which have identical mode settings so that 
the issuing of data will not have to be in
terrupted to reset any modes. To make this 
feasible on a large scale, the modes are made 
very general. 

Thus it is possible to issue a command 
to draw an entire table of: 

a. connected lines from the current 
position; 

b. connected lines from a new position; 

c. unconnected lines from the current 
position; 

d. unconnected lines from a new posi
tion; 

e. dots; or 

f. characters. 

Likewise it is possible to specify that 
the coordinates of points in a table are: 

a. all absolute; 

b. all relative to their predecessor; 
or 

c. all relative except the first, which 
is absolute. 

Since coordinate data is being fetched 
from PDP-II memory by the DMA, it is possible 
for the CPU to execute code simultaneously. 
This overlapping of operations substantially 
reduces the time required to process a frame. 



The display program has access to a 120 
cycle clock (which is actually in the Picture 
Processor) for setting refresh and update 
rates. This 120 cycle clock offers more 
choices than the usual 60 cycle clock, includ
ing the optimal refresh rate of 40 hz. 

The Picture Processor 

The Picture Processor receives data sent 
by the Picture Controller in the form of two
or three-dimensional line endpoint coordi
nates. It operates on this data a point at a 
time, based on parameters passed previously 
by the Picture Controller, and deposits the 
processed data in the Refresh Buffer. 

The Picture Processor starts by convert
ing relative coordinate data to absolute. 
Conversion at this point, prior to any co
ordinate transformations, avoids accumulating 
the roundoff errors that may be introduced by 
transformation. 

The Picture Processor then transforms 
the data by any pre-specified combination of 
translations, ~otations, and changes in scale. 
Translation may be in any direction in three 
space; rotation may occur about any axis in 
three space; and scaling may be in any dimen
sion in three space. These transformations 
are imparted by expressing the coordinates of 
each point as a four-component vector (by ap
pending one or two pre-specified coordinates, 
if necessary, to those emanating from memory), 
expressing the desired transformation as a 
four-by-four matrix, and multiplying the two 
together to form a four-component vector rep
resenting the transformed point. The homo
geneous nature of the representation intro
duces much flexibility and permits much larg
er transformation and scale values than would 
otherwise be possible. 

Transformed data is next "clipped"; i.e., 
it is compared with a pre-specified viewing 
window, and lines or parts of lines outside 
this window are eliminated. Clipping is the 
most general way to perform windowing, and 
allows zooming into a displayed structure to 
any desired magnification. 

In two-dimensions, the viewing window is 
a rectangular region in the drawing space. 
In three-dimensions it can be either a cubic 
region (for orthographic views) or a section 
of a pyramid whose apex is at the eye point 
(for perspective views). Clipping is per
formed with respect to all six surfaces of 
the viewing window. 

At this point three-dimensional coordi
nates are converted to two dimensions by 
computing perspective or, if desired, ortho
graphic views. An intensity value propor
tional to depth is also computed here for use 
in depth-cueing if desired. 

The final stage in the Picture Proces
sor's digital processing is a linear mapping 
of points from the objects' coordinate system 
into that of the Picture Display. The map
ping is from the viewing window onto a pro
gram-specified region of the Picture Display 
called a viewport. The viewport may also be 
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thought of as six-sided, since in addition to 
the four geometric boundaries there are in
tensity maximum and minimum values which may 
be specified as well. When depth-cueing is 
used, lines at the front clipping plane of the 
3D viewing window are assigned the maximum 
intensity and lines at back are assigned the 
minimum. Constant intensity is specified. very 
simply by making the maximum and minimum the 
same. 

The advantages of program-specified view
ports are that they free the programmer from 
having to be concerned with the coordinate 
system of the output device in preparing his 
data, and that they provide a convenient way 
to show several views or pictures on the same 
output device. 

The operations discussed above are per
formed serially on each point in the data 
base. That is, the coordinates of a point 
enter the Picture Processor, are converted to 
absolute homogeneous coordinates, multiplied 
by the transformation matrix, clipped to the 
window, put in depth-cued perspective, mapped 
into viewport coordinates, and deposited in 
the Refresh Buffer. A new point then enters 
the Picture Processor and is treated by the 
same operations. The total time required for 
all these processes ranges from 10 usec to 36 
usec per point, depending on the complexity 
of the clipping operation, and averages about 
20 usec. Thus the Picture Processor can pro
cess about 3300 points in 1/15 second, the 
largest frame time which supports smooth 
dynamics. 

An important related feature of the Pic
ture Processor is its ability to concatenate 
transformations. The matrices representing 
two or more simple transformations can be 
multiplied together to form a matrix repre
senting a compound transformation, which is 
left in the Picture Processor for transform
ing points. 

For temporary storage of matrices, a 
four-deep push-down stack is provided in the 
Picture Processor. Thus if a certain trans
formation must be compounded with another but 
will be needed subsequently, it may be pushed 
onto the stack before compounding and later 
popped off the stack for further usage. There 
is provision for overflowing the stack into 
PDP-II memory in case a stack depth of four 
is not adequate for some program. The over
flow has the same properties as the main 
transformation stack except that transfers to 
and from it are slower. 

Data computed by the Picture Processor 
is normally deposited only in the Refresh 
Buffer, but can be read back into Picture 
Controller memory as well. This capability 
is useful for obtaining hard copy output and 
also for performing additional processing on 
pictorial output in software, such as slow 
time shading or hidden line removal. Results 
are available after the transformation stage, 
after the clipping stage, and after the view
port mapping stage. The viewport boundaries 
may exceed those of the Picture Display when 
output is to be returned to memory so that 
full 16-bit accuracy is maintained for cre-



ation of high-quality hard copy. 

A final feature of the Picture Processor 
is its "hit test" capability, which allows 
the system to detect whether any part of a 
given picture element is within a program
specified region in the drawing space. Hit 
testing is used for implementing the pointing 
function with a data tablet, eliminating the 
need for a light pen. 

The Refresh Buffer 

Coordinate data output by the Picture 
Processor, still in digital form, is ready to 
be drawn on the Picture Display. It is not 
drawn immediately, however, but is instead 
deposited in a memory called the Refresh Buf
fer. Once deposited in the buffer, the data 
can be used to refresh the Picture Display 
any number of times before a new frame is 
ready for display. Therein lies the value of 
the Refresh Buffer and the reason why it is 
in the system: picture refresh rate and pic
ture update rate need not be identical, so 
that each may be independently optimized. 
The refresh rate may be specified as any of 
16 submultiples of 120 hz - usually 60, 40, 
or 30 hz. The generation of new frames need 
not proceed so fast, and so the update rate 
is usually lower than the refresh rate, typi
cally 15 or 20 hz. 

Because of the Refresh Buffer, the Pic
ture Generator never has to sit idle while 
its input is being prepared. Therefore it 
can display many more lines in a given time 
than would be possible otherwise. 

The buffer contains 8K 36-bit words, and 
can be optionally expanded to 16K 36-bit 
words. Each word can contain any of the fol
lowing data types: 

a. a point to be moved to with the beam 
off 

b. a point to be moved to with the beam 
on 

c. a point where a dot is to appear 

d. three character codes 

e. mode settings for the Picture Gen
erator or Character Generator. 

In the first three types, the point is 
defined by a l2-bit "X" field, a l2-bit "Y" 
field, and an 8-bit intensity field. In the 
character words, there are three 8-bit char
acter codes. In the last type, called 
"status", there are bits for indicating scope 
selection, dashed mode, blink mode, character 
height and width, and character orientation. 
These bits set up modes which remain in ef
fect until another status word is encounter
ed. 

Data may be single-buffered, in which 
case the Refresh Buffer contains one frame of 
data which is overwritten by the next frame, 
or double-buffered, which entails splitting 
the Refresh Buffer into two areas so that a 
frame in one area remains intact for refresh 
purposes until a new frame is completed in 
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the other. The roles of the two areas are 
then reversed and a third frame is begun. 
Double-buffering is recommended when frames 
are small enough to fit in half of the Refresh 
Buffer, because single-buffered pictures can 
show any of a number of unpleasant effects 
that result from trying to display data that 
is simultaneously being updated. 

A four-word area of the Refresh Buffer 
(two four-word areas in double-buffer mode) is 
devoted to a cursor so that a highly dynamic 
cursor can be maintained even if the update 
rate of the rest of the picture is slow. 

Picture Generator and Picture Display 

These two PICTURE SYSTEM components are 
discussed together since their specifications 
are so intertwined. The Picture Generator 
converts line endpoint and intensity coordi
nates, expressed digitally, to analog volt
ages for the Picture Display. The Picture 
Display contains a cathode-ray tube (CRT) 
whose electron beam sweeps out straight lines 
at any angle based on the analog voltages 
supplied by the Picture Generator. The beam 
briefly illuminates the phosphor coating of 
the CRT, which if repeated frequently enough 
results in a steady visible picture. 

Lines may be solid or dashed, and may be 
made steady or blinking. Constant intensity 
of picture elements may be chosen from 256 
levels. Lines are drawn at a constant rate 
which assures uniform brightness for the 
chosen intensity level. Depth cueing allows 
the intensity of lines to vary continuously 
with depth. In order to present a uniform 
variation in brightness, the intensity con
trol of the Picture Display treats the Z co
ordinate data as the logarithm of the inten
sity to be displayed. The contrast control 
of the Picture Display is completely indepen
dent of the intensity control~ 

The following display rate examples as
sume a 30 hz refresh rate: 

a. 11,000 half inch lines connected 
end-to-end 

b. 1600 ten inch lines connected end
to-end 

c. 6600 uniformly distributed dots 

The Picture Display has a 21" diagonal 
rectangular CRT with a quality viewing area 
of 10" x 10". Line endpoints may be center
ed on any point in a raster of 4096 x 4096 
addressable points on the display surface. 
Line width and spot size do not exceed .020". 
Line endpoints match to within .020". 

The standard phosphor of the Picture 
Display is P4, a white phosphor which fades 
very quickly after illumination so that no 
trail or smear is left by moving picture 
elements. 

The Character Generator 

When character words are read out of 
the Re£resh Buffer, the Character Generator 
unpacks them into codes which access a read-



only memory containing character stroking 
data. The strokes are read out of the read
only memory one by one, multiplied by a pre
specified sizing pa;rameter, and drawn by the 
Picture Generator on the Picture Display. 

The read-only memory contains the 96-
character extended ASCII character set, in
cluding upper and lower case alphabetics, ten 
numerics, and thirty-four special characters. 

There are eight character sizes avail
able under program control ranging from .07" 
high in increments of .07" to .56" high on a 
10" x 10" viewing area. The character width 
is also under program control with eight dif
ferent widths selectable for each size. Char
acters may be displayed horizontally or in a 
90 0 counter-clockwise orientation. Inter
character spacing is handled automatically by 
the Character Generator. 

Such flexibilities as clipping, rotation, 
and continuous sizing cannot be imparted to 
characters generated by the Character Genera
tor. When such operations are desired, the 
Picture Controller should produce characters 
just like other picture elements. 

To place the Character Generator in 
front of the Picture Processor would severely 
and unnecessarily impact the picture update 
rate, since each individual character stroke 
would have to be transformed, clipped, etc. 

The Tablet 

The tablet serves as the standard, gen
eral-purpose graphic input device in THE PIC
TURE SYSTEM. Associated with the tablet is a 
pen whose coordinates are read by the Picture 
Controller. Normally a cursor is drawn on 
the Picture Display to indicate the position 
of the pen on the tablet. 

The tablet is inherently well-suited to 
entry of precise positional information. 
With the aid of the Picture Processor's "hit 
tes t" capabili ty dis cussed earlier, it can 
also be used conveniently for pointing to 
picture elements, eliminating the need for a 
light pen. An extremely versatile device, 
the tablet can also be used for command se
lection, entry of rate information, and even 
entry of alpha-numerics. 

Options 

The components described above comprise 
the so-called Standard Configuration of THE 
PICTURE SYSTEM. A number of options of a 
peripheral nature are also available such as 
keyboards, function switches, hard copy units 
and so forth. These units are interfaced 
directly to the UNIBUS. Additional Picture 
Displays and an expansion of the Refresh Buf
fer are also optional. 

It is significant that there are no op
tions within the central processing path of 
the system. All the processing features 
which E&S believes a high-performance system 
should have are standard in the system, not 
optional. The reason is that to make such a 
feature unpluggable is to make it expensive. 
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It would have to have interfaces at either 
end to fit into the system; it would have to 
be separately packaged; and a great deal of 
care would have to be taken to make sure the 
system worked gracefully without it, hardware
wise, software-wise, diagnostic-wise and doc
umentation-wise. Standardization is perhaps 
the most important reason why the system can 
be marketed for a reasonable price. 

Conclusion 

THE PICTURE SYSTEM's architecture repre
sents a distillation of technology incorpor
ated into earlier digital graphics systems as 
well as some new approaches . Widespread user 
acceptance indicates that the right set of 
features are included, and the relatively low 
system cost indicates that they are packaged 
in an efficient manner. 
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Abstract 

A detailed study of the basic operations of scan 
graphics processes led to the design of this general
purpose expandable processor. Full advantage is taken 
of evolving trends in ECL technology and large-scale 
integrated circuits. The design allocates hardwired 
instructions to critical display functions and provides 
general-purpose flexibility in externally microprogram
mabIe asynchronous processors. The machine uses in
struction set partitioning and is optimized to execute 
relatively short programs operating on large data bases. 
The processor is thus not limited to display generation 
but is rather well suited for other real-time tasks, 
particularly those operating with autonomous processors 
which can be added as external devices. 

1. Background 

Over the last three years a considerable amount 
of work on color scan-display systems was done in the 
Signal Processing Laboratory at North Carolina State 
University. The aim of this work was to study the 
problems in generating realistic-looking images of 
three-dimensional objects. Some of the findings are 
reported in [1] together with performance data of a 
simple display system capable of generating studio 
quality color TV images in a few seconds. This paper 
describes the details of the logical next step in this 
research, the generation of such images in fractions 
of a second. The heart of this speed-up is a very fast 
processor which implements the basic operations required 
for display generation: lt2 

a. Efficient conditional branching; 
b. Fast output; 
c. Handling of linked list structures; 
d. Very fast special arithmetic operations. 

The display requirements are for a modified NTSC 
television receiver t capable of displaying 512 lines 
'with a spatial resolution of 512 positions on each 
line. Each picture element may be colored with any 
combination of 32 levels (5 bits) of red t green, and 
blue. Hence the color definition is ~15 i.e., over 
32,000. Since the entire picture is gen~rated in 
about 30 mS t each displayed line must be completed in 
about 50 ~s (allowing for beam retrace time). Hence 
each picture element must be generated within about 
100 ns. 

This paper describes a small processor capable of 
full cycle speeds of this order. Details of the cen
tral processor design were presented in [10]; this 
paper gives further particulars and stresses the de
sign of the action processors. 

2. Processor 

In addition to the fast logical operations out
lined above and detailed in [1], a real-time graphics 
processor must have a large memory in order to store 
complicated objects. To provide sufficient accuracy 
and resolution, calculations must be done either in 
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floating-point representation or with large integer 
words t and they must above all be done fast due to the 
inherent complexity of visual information t and the con
straints of real-time operation. 

Examination of the requirements reveals some fea
tures which are normally associated with existing com
mercial computer systems, and some features which are 
not. Typical of the former are the requirements for 
large memories t wide words t and linked-list prone archi
tectures. Some systems also offer fast multiply-divide 
operations suitable for array transformations although 
these are generally large "number crunchers" like the 
CDC 6600/7600 which cannot reasonably be dedicated to 
the graphics process alone. Digital array multipliers 
and Watkins' Clippers are generally not obtainable in 
commercial CPU's except microprocessors which are too 
slow for real-time work. Thus the burden of scan
graphics generation has fostered expensive, dedicated, 
extensively pipelined and parallel systems constructed 
solely for image generation. A number of such !!s!2~3 
have been built and are currently in operation. ' t 
The processor described herein can be adapted to solve 
the scan-graphics problem in specific, but which re
tains enough generality to allow re-configuration to 
solve other classes of problems. 

2A. Processor Organization 

The basic block diagram of this processor is shown 
in Figure 1. Note that the machine is a 32-bit multi
bus device t organized around 32 registers. By address
ing the Program Counter (ROO) and the Instruction 
Register (ROI) as operational registers efficient Con
ditional Transfer and Exchange Instructions may be 
mechanized. To set the conditional flags t the baslc 
CPU is equipped with an Arithmetic/Logical Unit with 
a flexible instruction set. I/O is controlled through 
a memory paging system and supervisory memory manage
ment is provided by an external host computer. 

While 8 K words of memory is barely adequate for 
performing scan conversion/hidden surface removal, it 
is certainly not adequate for storing the large data 
bases associated with graphics images. As such, a 
65 K core memory system and memory paging on the fast 
RAM's is provided. This gives a larger virtual memory 
from which to operate and increase the power of the 
system. By including rotating on-line storage and 
magnetic tapes in a 4-layer memory hierarchy, one 
could operate in a 32-bit virtual address space which 
should be more than adequate for most jobs. The 
"action processors" which will first be constructed 
are to bear directly on our goal of real-time scan 
graphics production. A hidden surface removal al
gorithm2 will be implemented to drive a raster-scan 
color display system similar to that already in opera
tion on a slower speed (1.8 ~s) minicomputer. It is 
anticipated that a typical reduction in hidden sur
face removal calculation time on the order of 40 to 1 
will be realized over the present system. 



2B. Instruction Set 

Tables 1 and 2 indicate the basic processor in-
struction set. 

Table 1 

Condition Codes 

CCC Condition Code CCC Condition Code 

000 

001 

010 

001 

31 24 
OP-CODE 

I 
select 

UNCOND 

.LT. 

.GT. 

.NE. 

23 19 
Source 

One 

D 
select 

100 Overflow 

101 .GE. 

110 .LE. 

III .EQ. 

Table 2 

Instruction Format 

18 17 
I'D 

16 12 
Source 

Two 

Source 

11 a 
Displacement 

two contents 

a a Memory Location addressed by Source Two 
register * Displacement 

a 1 contents of Source Two register * 
Displacement 

1 a Memory location addressed by bits a - 16 
of 1. R. 

1 1 Sign extended bits a - 16 of I.R. 

OP CODE 

a 000 0 C C C 

o 0 0 Ole C C 

o 0 0 1 0 C C C 

000 1 1 C C C 

o 0 1 0 E 000 

001 0 E 0 0 1. 

o 010 E 0 1 ° 
° ° 1 ° E 0 1 1. 
001 0 E 1 0 0 

o 0 1 ° E 1 0 1 

001 0 Ell ° 
o 010 Ell 1 

Operation Performed 

Sl register gets contents of S2 bus 
on condition 

Sl register exchanged with S2 regis
ter on condition 

Sl register written into memory at 
S21 address on condition 

Sl register exchanged with memory at 
S21 address on condition 

S2 2's complemented 

Sl Exclusive-OR S2 

S1 OR 82 E = 0: 

S1 AND S2 

set condition 
codes 

81 minus S2 with borrow 

Sl minus 82 E = 1: set condition 

Sl plus S2 with carry 

Sl plus S2 

codes and 
return result 
to Sl regis
ter 

All other OP-CODES are undefined and may 
tion proc'essors connected to the Sl, S2, 

be us ed by ac
& IR busses. 
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2C. Design Details 

The entire basic processor is designed with Emit
ter-Coupled Logic (ECL) and uses medium-scale integra
tion (MSI) extensively. 

ECL was chosen over other available logic fa.milies 
because of its high speed capabilities. A typical gate 
propagation delay for ECL is 2.0 ns compared to 3.0 ns 
for Schottky Transistor-Transistor Logic (TTL-S):I the 
closest competitor. In more complicated MSI packages, 
the ECL advantage in speed rises to approximately 2 to 
lover TTL-S. In a processor such as this one with a 
high speed architecture well suited to MSI implementa
tion, the speed advantage offered by ECL is quite im
portant. ECL offers a further advantage in that gates 
have complementary outputs greatly reducing the need 
for separate inverters and their consequent delays. 
Additionally, the open emitter outputs of the ECL 
10,000 series logic chosen for this design enable the 
use of wire-OR techniques (not available with totem
pole output TTL) resulting in a further decrease in 
package count. The low output impedance an.d open 
emitter design facilitate the use of termin.ated line 
interconnections. The lack of internally generated 
current spikes (as with totem pole TTL) and. the eon
stant current design of ECL insure less problems with 
noise in such a large and dense system as this pro
cessor' design. 

Specifically the ECL 10,000 line of logic hl3.s 
been chosen for use in the proces sor. The mul ti·
source availability of complex MSI elements, well 
suited to computer architecture, along with the de
creasing cost of plastic packages in this line led 
to this choice. The slower edge speeds of ECL 10,000 
enable the use of wirewrapped interconnection tech
niques with attendant flexibility. 

The design has made full use of such currently 
available MSI functions as hex latches, co~mters, data 
selectors, etc. The operating registers will be imple
mented with register files to be available soon. As 
an example of the MSI package and ECL speed adv&1tages 
combined in the ECL 10,000 line, the ALU of the pro
cessor can perform a 32-bi t ADD in a typical time of 
19 ns. This is achieved using only ten packages 
(eight 10181 4-bit ALU's and two 10179 lookahead 
carry generators). 

As a final consideration, the availability of ECL 
to TTL and TTL to ECL translators enables the easy 
interconnection of TTL, NMOS or CMOS "action proces
sors," memory, or peripheral elements as necessary. 
Slightly more complex translation circuitry is neces
sary only with PMOS logic systems. 

The circuit realization allows a worst-case in
struction execution time of 80 ns. Since instruction 
fetch will be overlapped, this then becomes the actual 
full machine cycle time. For comparisons in the suc
ceeding sections a machine cycle time of 100 ns is 
used. 

3. Peripherals 

The basic processor efficiently implements the 
tasks of conditional branching and register transfers. 
Arithmetic other than integer addition, transcendental 
function calculation and graphics-specific arithmetic 
are performed by plug-in processors. It should be 
noted that the basic architecture is quite general in 
nature. It is the use of plug-in processors suited 
to graphics that results, in this instance, in e, 
specialized graphics processor. This section describes 



a fast multiplier, a CORDIC processor and a display ro
tation subsystem. Also included is a brief description 
of the color display system. 

3A. Fast Multiplier Using Cellular Logic 5 

Simple circuits for multiplication deal with one 
bit of the multiplier at a time. While ECL technology 
can be used to speed up this operation, a far more 
fruitful way is to work with more than one bit of the 
multiplier per iteration. Such a scheme may be viewed 
as multiplication in radix r where r = 2k, with k equal 
the number of bits inspected per iteration. Use of a 
higher radix has the disadvantage of requiring addi
tional multiples of the multiplicand. In the case in 
which it uses a nonredundant number system, multiplica
tion in radix r requires the multiples 0,1,2, ••• 
(r-l) times the multiplicand. In the case in which a 
redundant number system is adopted, then the multiples 
stated above may be transformed into the multiples 
-r/2, (-r/2-1), ••• ,1,0,1, ••. , (r/2-1), r/2 (for 
even radices). In this new set of multiples, half of 
them are merely the complement of the others. For the 
case of multiplication simultaneously by two digits of 
the multiplier (r=4), the set {0,1,2,3} may be replaced 
by the set {2,1,O,1,2}. In the second set we have re
dundancy since there are more than ~ (in this case five) 
digit symbols. The multiple of 3 in the first set is 
awkward or costly to form, but in the second set all 
multiples may be formed by shifting and complementation. 

The recoding sCh~me of the multiplier adopted was 
suggested by Wallace. The recoding actually requires 
the parallel inspection of three bits of the multiplier. 
If m. is the low-order bit of the multiplier, then the 
bitslinspected are m. ~ m. and m. • The bit m. 1 is 
an extra position atlt~e rIght oflt~e least signIflcant 
bit of the multiplier. It is initially 0, but in the 
second iteration it will equal the previous m. l' The 
recoding is shown in Table 3. It will accomm6date a 
negative number in two's complement representation. 

Table 3 

m
i

_
l m. mi +l Recoded Digit/Multiple Selected 

l 

0 1 1 +2 

0 1 0 +1 

0 0 1 +1 

0 0 0 0 

1 1 1 0 

1 1 0 -1 

1 0 1 -1 

1 0 a -2 

Using this recoding scheme a cellular logic array 
can be built which can achieve simultaneous multiplica
tion by two digits of the multiplier. As before, let 
the two n-bit numbers be M and m where 

m = mO 20 + ml 
2-1 + m2 2 -2 + .. m 2-n 

n 
(mi 

0, 1) 

-1 
M = MO 20 

+ Ml 2 + M 2-2 
2 

+ M 2-n (Mi = 0, 1) .. n 

and a similar notation is used for M. The steps of the 
multiplication algorithm are summarized below. The 
rules for the multiplication apply to digits mn , mn_2 , 

m~, m. 2 m. 4' ..• len is odd), starting with the 
..L l-' l-
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least significant bit. 

1. If m
io 

= m
i

_l m
i 

mi +l + mi _l mi mi +l = 1, 

shift the existing sum of partial products two places 
to the right. 

2. If mil = mi _l mi mi +l + mi _l mi mi +l = 1, 

add M to the existing sum of partial products and shift 
the new sum two places to ihe right. 

3. If mil = m
i

_l mi mi +l + mi _l mi mi _l = 1, 

subtract M from the existing sum of partial products 
and shift the new sum two places to the right. 

4. If m
i2 

= m
i

_
l 

m
i 

m
i
+l = 1, add 2M to the ex-

isting Bum of partial products and shift the new sum 
two places to the right~ 

5 If m m m = 1, subtract 2M from • mi2 = i-I i i+l 
the existing sum of partial products and shift the new 
sum two places to the right. 

No shift is requested after the last operation 
is carried out. Clearly, if the multiplicand is shifted 
instead of the partial sum, the same end result is ob
tained. 

This algorithm can be implemented by a cellular 
logic array having the basic cell shown in Fig. 2. 
Four-bit arithmetic logic unit used in this basic cell 
performs three arithmetic operations, which are selected 
by applYing the app~opriate binary word to the select 
inputs (SO through S3)' as follows: 

1. If So = 8 = 8 = 8 = 1 and Ci +3 
of LSB is 

1 2 3 
1, then arit~eti£ operation_is F = A plus 0; 

80 2. If Sl = S2 = 1 and Ci +3 
of LSB is 1, but 

8
3 

0, then arithmetic operation is F = A plus M' ; 

3. If S = 8 = 1 and Ci+3 of LSB is 1, but Sl o 3 s = 0, then arithmetic operation is F = A minus M' 
minus 1. 

The selection of these three arithmetic operations 
is achieved by the inputs mi12 and ffii12 , where 

m:Ll2 = mi _l + ~ • mi +l 

(1) 

The arithmetic logic unit operates correctly when one's 
complement of its inputs are used. The inputs mill 

and m. - are used to achieve at the inputs of the l22 _ _ 
arithmetic logic units either M or 2M (the multipli
cand shifted one place to the left), where 

mill = mi ~ mi +l 

mi22 = mi ® mi +l (2) 

In order that the arithmetic logic unit perform opera
tion F' = A minus M' instead of F ~ A minus M' minus 
1, it is necessary that the input Ci +3 of the least 

significant bit be "0" instead of "1". For this pur
pose l.t is sufficient to connect the input mi12 to 

the C of the least significant cell of the row. 
i+3 
1m 8-bit by 8-bit multiplier, using ECL gates 

and EeL arithmetic logic units (ALUs) having the basic 
cell presented in Fig. 2, is shown in Fig. 3. At the 
left-hand edge of the array, mi12 , mi12 , mill' and 

m
i22 

(i.e., mi) are obtained as function of mi _l , mi , 

m according to the logical equations (1) and (2). 
i+l' 



Because after recoding the multiplier, multiple selec
ted 2 or 2 is not followed by the same multiple as well 
as due to the fact that there is an extra bit at the 
left-hand edge of every row, the problem of overflow 
does not arise. The problem of alignment of the sign 
bit does arise because, during shifting, the sign bit 
is shifted along with the other bits. The correct 
alignment is obtained by appending two digits before 
the sign bit of magnitude equal to the sign bit. 

The typical multiply time can be calculated from 
the worst delay path through the multiplier and depends 
on the length of the operands. 

In the case of a cellular logic array for multipli
cation of two signed binary numbers, both being n-bit 
numbers including the sign bit, the typical delays are: 

4 bit-by-4 bit multiplier 24 ns 

8 bit-by-8 bit multiplier 46 ns 

16 bit-by-16 bit multiplier 90 ns 

32 bit-by-32 bit multiplier 179 ns 

(2 full machine cycles) 

For a 32-bit by 32-bit multiplier 144 cells are neces
sary. These can be implemented with 144 MCl018l, 16 
Exclusive OR/Exclusive NOR and 608 AND-OR gates. A 
similar multiplication method is used An a commercially 
available TTL-S 4 x 2 multiplier cellI but of course 
the speed is much slower than the ECL multiplier des
cribed here. 

3B. CORDIC Processor 

When a solid object, such as a cube, is displayed 
rotated at some arbitrary angle, the cosine of the 
angle formed by the normal to the surface and the view
ing line is taken for the modification of the actual 
color. In order to provide this function and to pro
vide general trigonometric and exponential function 
generation capability to the computer, a CORDIC pro
cessor was designed. 

The CORDIC7 principle is used to generate trigo
nometric, inverse trigonometric and the corresponding 
hyperbolic functions. Basically the process is capable 
of generating a wide range of functions by a series of 
pseUdo-rotations of an argument~ Roughly speaking, 
each such step produces another bit in the result and 
the operations required are only addition/subtraction 
and shifting. Without going exhaustively into the 
prinCiples of CORDIC we wish to convey the basic ideas 
involved. In this process two registers (X and y) are 
added to or subtracted from a shifted amount of another 
as a control parameter (~) is modified by a likewise 
addition or subtraction of a set of coefficients re
trieved sequentially from a stored arr~. The decision 
for addition or subtraction is determined by a (greater 
or equal) or (less than) comparison of a register pre
set with a predefined constant. The constants may be 
calculated by using the standard function expansions; 
these values become the stored constants for the pro
cess. The main advantage of CORDIC is its simplicity. 
We utilize fast ROMs for the storage of the control 
constants and optimized hardware for speed with only 
secondary consideration for component count or costs. 
The basic block diagram is shown in Fig. 4. 

Communication with the CORDIC processor is through 
the I/O bus. Initiation of action occurs when a com
mand is received; a control block will decode this in
struction and initialize the processor. The argument 
E is then received and is latched into the shift con-
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trol to initialize the shift control counters for their 
corresponding shifters. This argument is also uned to 
address the ~ table and results with the initial value 
of X (the addressed value from the ~ table) being 
latched into the X register. The Y and 0 registE~rs 
are also initialized. The M-type is also set by the 
first instructions. The M-type tells the proces!wr 
what basic type of function group (linear, polar, or 
hyperbolic) it will be processing. Finally the Com
pare/Output Select is set. Depending on what function 
is being performed, a particular register (X, Y, or 0) 
will be compared to the compare register to determine 
whether the adder-subtractor adds or subtra.cts. The 
processor will go through 32 iterative cycles, after 
which it will signal the computer that it is finished 
and is ready to output the results. The computer 
must then get the processed results out of the regis
ters. Depending on what type of function is being 
processed (sine, cosine, tangent, etc.) the desired 
result or results are in different registers and the 
CORDIC control must put this data out on the I/O bus 
when the computer requests it. 

To speed up the shift operations involved in the 
CORDIC process, two levels of selectors are used. The 
basic operations and their timing are: 

1. Add/subtract 20 ns 

2. Shift 20 ns 

3. Compare 10 ns 

4. Settling Times 35 ns 

Hence the CORDIC processor can complete the calculation 
of a function in about 2.7 ~S; an additiona.l 300 ns is 
allowed for initialization. Thus the basic CORDIC cal
culation time is 3 ~s, or about 30 full machine (~ycles. 

3C. Display Rotator 

The three-dimensional rotation of images of vector 
drawings requires the creation of an [x ,y, 2~) data trip
let for every new rotation angle. This is accomplished 
by keeping an image description in core and. perf(~rming 
a matrix multiplication prior to outputting to the dis
play generator. In creating a perspective drawing an 
additional piece of data is necessary: the distance 
(w) of the point (after rotation) from the observer. 
These four data elements form the homogeneous coordi
nate of a point in 4-space; conversion to 3-spac(~ is 
accomplished by mathematical projection: the value of 
w is divided out. One of the properties of' homogen
eous coordinates is that the parameter w may be :ro
tated and scaled along with the x,y,z data by simple 
matrix multiplication. This peripheral device il3 
designed to accept 16-bit x,y,z and w arguments, per
form the 4 x 4 homogeneous coordinate rotation ruld 
output the result in 2 ~s. 

The Display Rotator uses four parallel 16-b:i t 
multipliers for speed; each of the multipliers i13 a 
shift-and-add device in order to keep costs reason
able. Again extensive use is made of medi~tm-scaLe 
integrated ECL devices; a 16-bi t adder with a 16·.bi t 
shifter of the partial product forms the heart of each 
of four multipliers. These are implemented with 
10181 and 10179 integrated circuits. The mul tipH
cand is selected into the adder with one-out-of-four 
selectors. The partial product shifter is loaded. 
from the multipliers (z,x,y,w) in sequence as the 
multiplication and addition progresses. Overflow in
dication will abort the operation. 

Total hardware used is about 200 chips. Thle bulk 
of the operation time is ADD/Shift sequences. The 



design cycle time is 2 ~s or 20 machine cycles. Design 
details are presented in [9]. 

3D. Color Display System 

The raster scan color display system is described 
in detail in [1]. The system requires only hue and 
run-length data from the processor. The reduction in 
input data rate obtained by this coding will result in 
the possibility of real time generation of moderately 
complex color images. 

4. Summary 

This paper presented the rationale and details of 
implementation of a very fast processor. Part of the 
speed is due to asynchronous instruction fetch and exe
cute overlap, a technique not usually employed in small 
machines; the other major contributor is the use of ECL 
technology. While some of the peripherals described 
are specifically designed for graphics processing, the 
architecture of the machine is well suited for control
ling autonomous peripheral processors. 

The machine is a significant step towards obtain
ing realistic-cost interactive color displays and is a 
test bed for proving out hardware designs. Initial 
operation of the machine is expected by January 1975. 
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COMPUTER DISPLAY OF COLORED THREE-DIM}~NSIONAL OBJECTS 

Jeffrey F. Eastman 
John Staudhamrner 

Department of Electrical Engineering 
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Raleigh, North Carolina 

Abstract 

A television-based computer display system is 
described which uses a minicomputer to calculate scan 
lines of the display image. A display resolution of 
512 lines by 512 positions is achieved with each posi
tion definable with 15 bits of color information (over 
32,000 colors). The scan conversion process incorpo
rates hidden surface removal, calculation of intersec
tions, surface shading and, optionally, perspective. 
Object description must be by polygonal planar surfaces; 
the surfaces can have a solid color and are considered 
opaque. Object complexity is limited only by main 
storage size. 

The design criteria which motivated the system 
architecture are discussed along with pertinent details 
on the particular implementation. The system described 
effectively mates minicomputer technology with that of 
the television industry to produce an economical, fast 
turnaround, color display system for 2-D and 3-D com
puter graphics. This system relies upon a special 
scan-line generator and upon a skillful hardware/soft
ware trade-off to a'Chieve an economical and realistic 
color display device. 

Performance data and examples of display objects 
are given. 

1.1 Introduction 

Cathode ray tube display devices are often used 
in computer graphics because they allow a large amount 
of information to ~e output from the computer at a rate 
limited only by the deflection speed of the electron 
beams. These devices may be subdivided into two groups 
by the manner in which the electron beam is utilized. 
Early computer graphics displays were primarily vector 
drawing displays. In vector displays, the electron 
beaul in the CRT is used to draw intensified lines on 
the screen, and the rate at which a given image can 
be drawn is its refresh rate. If the refresh rate . 
drops much below 30 Hz, an annoying flicker will be 
perceived due to the decay in intensity of the phos
phors used. Vector displays are suitable for display 
of line drawingR and text, but are generally ill
suited for shading large areas of the screen due to 
their random scan nature. 

In situations where large areas of the screen 
are to be intensified, such as the display of shaded 
solid objects, raster scan displays are preferred. In 
raster displays, the electron beam is scanned across 
the screen in an orderly left-right, top-bottom manner 
as in a television receiver. Information is displayed 
by modulating the intensity (color) of the beam as it 
scans the CRT front. In computer graphics modeling, 
the dissimilarity between the image data structure 
which"looks" like the image, and the raster vectors 
which are ultimately displayed necessitates an inter
mediate scan conversion step. For images generated 
from 3-D computer modelS, this scan conversion process 
must include a visible surface determination so that 
only the surfaces which face the viewer are displayed. 
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This paper reports on the development of an economical, 
minicomputer-driven color display subsystem which in
corporates scan conversion and hidden surface removal, 
and uses commercial television technology to produce 
a colored raster display. 

Application areas for this subsystem include: 
a. Clutter Reduction in Large Displays. Color can be 
used to tag new or important data for the operator's 
attention in any display. Hence this display unit be
comes the analog of a viewgraph with its attendant ad
vantages. Color can be utilized to convey more infor
mation to the operator without significantly increasing 
the display data rate. 
b. Three-Dimensional Displays. Various views of ob
jects can be generated with the hidden parts removed 
for a realistic colored display of objects. Pairs of 
such displays can be used with polarizing light filters 
to display stereo image pairs for truly three-dimen
sional effect. These views are in full color. Uses 
for this display mode are in crystallography and molec
ular modeling as well as in architectural design. 
c. Two-Dimensional Displays. While the system des
cribed here was designed initially for three-dimension
al object display, it has been used for the design of 
flat patterns. A simple graphics tablet is used for 
inputting both color information (an "electronic pal
ette") and position information. Application areas in
clude textile and paper patterning. 

In this paper the three-dimensional display capa
bilities are emphasized as the system architecture 
evolved primarily as a result of these design considera
tions. 'I'he evolution of this display system is dis
cussed followed by pertinent details of the software, 
engineering details of the display generator and per
formance data on the display system. A set of photo
graphs is enclosed. 

1.2 Background 

While the idea of using the computer to generate 
pictures has been around since the early days of com
puting, the high initial and operating costs of these 
systems precluded much activity in the area until the 
early 1960's. Then, with the advent of transistorized 
printed eircui ts and, later, integrated circuits, the 
trend towards interactive computer graphics became 
firmly entrenched. Early developments in raster dis
play technology centered at the University of Utah, 
the University of Illinois, and G.E. 's Electronics 
Reyearch Center at Syracuse, N.Y. At Utah, Wylie et 
al and Warnock2 produced some of the earliest images 
Of shaded, solid objects on a POP-IO computer with a 
precision slow-scan CRT system and a film chain. By 
making three successive exposures of a film plate and 
by using colored filters, they were also able to gen
erate colored images .. This system was characterized 
by the production of excellent high resolution photo
graphs which took several minutes to prQduce, and sev
eral more to develop. Thus it was primarily a batch
oriented system. At about the same time (1967), an 3 4 
interactive color display system was developed at G.E. ' 
for NASA to study docking and space maneuvers via sim
ulation. This system, while able to produce animated 



television pictures in real-time (30 new frames per 
second) relied entirely on a special drum memory which 
contained one word for every picture element (pixel) on 
the screen. At a displ~ resolution of 600 x 600 the 
system required a dedicated 360 k word, hea d-per-track 
drum memory which was very expensive. 

In 1969, Bouknight and Kelly adapted Warnock'~ 
scan conversion and hidden surface removal algorithm 
for use on their CDC 1604 computer at the University of 
Illinois. Bouknight5 subsequently wrote his gwn al
gorithm, Kelly extended it to include shadows , and 
they started producing shaded halftone images--again 
using the slow-but-sure time photographic process. At 
the time, researchers were interested in the idea of 
real-time halftone graphics but wanted a more inexpen
sive, generalized system than that at G.E. 

Back at Utah, Watkins7 demonstrated in 1970 that 
a scan conversion algorithm which utilized the struc
tural similarity of adjacent scan lines (scan line co
herence) and a fast recursive clipping process (clip
ping divider8 ) for surface visibility determinations 
could generate real-time images if implemented in sui
table* hardware. Unfortunately, the FORTRAN-coded sim
ulation of this process still required minutes to pro
duce photographic plates which still required more 
minutes to develop, and so· the graphics user with a 
modest budget was again stuck with batch processing. 
The hardware prototype of the Watkins Processor devel
oped by the Evans & Sutherland Computer Corporation 
(and now marketed9 ) is operational at Utah and is used 
to generate black and white 256 x 256-resolution pre
views of the images produced on the slower high resolu
tion system. Its commercial cousin is excellent but 
very expensive. 

With the decline in memory cost in the early 
1970's, some commercial companies started marketing 
scan-graphics d:isplays. These units, such as the Ram
tek GX-lOO, Data Disc 6600, Audin 5214, and Comtal 8000, 
are basically lower resolution versions of the system 
developed at G~ .--word per pixel storage and resolution 
up to 512 x 512 or more at a price. None of these ven
dors address the generalized 3-D scan conversion prob
lem, although all provide optional 2-D vector generators 
and character generators with programmable fonts. The 
main markets for these devices are apparently the pic
ture processing, process control, and management in
formation industries which have little need of gen
eralized 3-D modelling capabilities, yet. 

Our advent into the computer graphics area be
gan in 1972 with a National Science Foundation grant to 
study the feasibility of incorporating off-the-shelf 
television industry hardware and minicomputers into a 
color computer graphics system which could be produced 
at a reasonable cost. We felt (and still do) that the 
main need of the interactive graphics user is a low 
cost color display system which produces directly view
able images quickly but not necessarily in real time. 
To solve the viewable display problem, we utilized a 
video disk "frame grabber" storage medium and a standard 
color television monitor. In this system (Fig. 1.1), 
the image is stored as three black and white television 
video tracks on the disk. A special displ~ generator 
described later in this paper changes the image stored 
on the disk by writing complete scan lines on the disk 
as analog signals. There are 512 addressable scan lines 
and each scan li.ne may be specified to a resblution of 
. 1 of its total length. Each track on the disk con
~ns a 32-level encoded video signal so that a total 

*Rowever, one could say that any algorithm could be 
real-time given a "suitable" hardware implementation. 
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of 32,728 colors may be assigned to each of the 262 k 
pixels. Due to the interlaced nature of the display 
used, adjacent scan lines on the display a.re loeated 
approximately 1800 from each other on the disk. This 
results in a latency of 1/60 second between writing 
opportunities if the new scan lines are calculated mon
itonically as they are in our system. The color dis
play interface is driven by an 8 k, 1.8 ~ sec Varian 
620 minicomputer which is able to calculate next line 
data for a wide range of images in less than lisO 
second using a scan conversion algorithm SCRSA de
veloped by Eastman. Thus a new image may be generated 
in 8 seconds or more depending on image complexj.ty. 
SCRSA incorporates the scan line coherence of Wntkins' 
Algorithm, but uses more conventional arithmetie means 
for visible surface dete;rrai~ation.· Given a "suitable" 
hardware implementationll , , it too will be a real
time algorithm; however, its main strength lies in its 
ease of implementation on a general purpose computer 
and in its efficient use of storage. In executj.on 
speed, SCRSA is well matched to its display system and 
rarely requires more than half a minute to produce a 
viewable image which may then be photographed if desire 

MINICOMPUTER 

DISPLAY GENERATOR 1 

Figure 1.1 

Display Generator 

2.1 Design Considerations 

The display generator interface connects the out
put of a general purpose minicomputer to the input of 
a special purpose video disk. For efficient operation 
it must be able to receive bursts of data at cpu speeds 
defining new scan lines to be written. Since there is 
likely to be a latency period up to 1/30 second before 
the disk is in the correct position for wr:iting, it 
must be able to buffer some or all of this data for 
the latency interval. Also the video disk must be 
supplied with new scan line data at real-t:ime rates. 
This requires a very high buffer memory bandwidth, 
since to attain a 512 point horizontal res'Jlution re
quires 512 raster points to be output in the 53 ~ sec 
scan line interval. Thus a new data point must be gen
erated every 104 nanoseconds during disk writing opera
tions. 



Computer generated images tend to be very simple 
:)y television standards. This is because they are gen
erated from relatively simple mathematical models which 
typically define long segments of a scan line to be a 
eonstant color. Efficient utilization of this phenom
ena results in a tremendous reduction in the I/O band
width required of the driving processor if scan lines 
may be run length encoded. Also the interface should 
embody an exponential intensity mapping (gamma correc
tion) to account for the non-linearities of the phos
phors used on CRTS. Otherwise the apparent light in
tensity viewed will not be a linear function of the 
value specified and a large reduction in usable dynamic 
range will result. 

2.2 Implementation 

The display generator interface (Fig. 2.1) is 
basically a high speed first-in-first-out (FIFO) stack 
with instruction processing ability. The memory used 
is 65 n sec bipolar RAM, and most of the control logic 
is Schottky TTL. A READ and WRITE ADDRESS COUNTER 
each point into the 1024 x 16 bi t memory and are used 
for stack control. Every time a word is written into 
the memory from the computer, the WRITE counter is in
cremented, and every time a word is read out of the 
memory the READ counter is incremented. Whenever both 
counters are equal, the stack is either full or empty, 
depending upon the operation (WRITE or READ) which 
caused the condition. Detection of a counters-equal 
condition after a write operation means that the stack 
is full and vice versa. Writing into the stack is done 
by the connected processor while reading is under con
trol of block definition instructions in the data it
self and control logic slaved to the video disk. 

INPUT BUFFER 

1024 x 16 RAM 

65 n s 

READ ADDRESS 

WRITE ADDRESS 

DISPLAY GENERATOR 
Figure 2.1 

A typical scan line definition contains a START 
XXX instruction, a number of HUE and FILL XXX instruc
tions which define colored segments (length=XXX) on 
that scan line, a STOP and an EOB instruction. The 
argument of the START instruction specifies the scan 
line on the disk which is to be overwritten by the 
following data up to the EOB instruction. A block 
counter insures that an entire line block is present 
in the memory before a disk write operation is ini
tiated. 
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During a disk write operation, the interface may 
need continual access to the stack to maintain the 104 
n sec per word data rate in a worst case condition. 
Data transfers from the computer are thus inhibited 
during this interval. Data output fl'om the stack is 
in the fo!m of 3 5-bit words which specify the amounts 
of red, green, and blue to 32 intensity levels. These 
5-bit words are then used as the addresses into 3 32 x 
8 ROMS which have been programmed to perform the expo
nential gamma correction function. The resulting 8-bit 
intensity values are then converted into analog wave
forms by high speed Digital to Analog Converters, fre
quently modulated on an 8 MHz carrier and written on 
the video disk as normal video signals. When the 
three heads are not being used to write new lines on 
the disk, they are connected by a diode matrix to 
three read amplifiers which supply high level video 
to the color monitor(s). The required sync signals 
are generated by the disk electronics using a sync 
track on the disk and supplied to the monitor also. 

Display Examples 

3.1 Introduction 

The test objects shown in this section were 
generated interactively using the BUILD13 system which 
we developed for our Adage AGT-30. In this system, 
objects are defined by collections of closed, planar 
polygons in 3-space. The edges which define these poly
gons may be displayed in real-time using the hybrid 
array processor and vector generator associated with 
the AGT-30 system. Images shown on this system are 
difficult to assess because of the ambiguity associated 
with depth determination and the lack of hidden line 
removal (see Fig. 3.1). However, the operator may create 
"snapshots" of his image by passing it to the color 
display subsystem for scan conversion, hidden surface 
removal and ultimate display on the color television 
monitor (Fig. 3.2). Part of this handling process in
volves modification of the defined hue of each polygon 
to account for its orientation with respect to the 
viewer. This gives solid objects a realistic shaded 
appearance (Figs. 3.2 to 3.6). 

Conversion times and program statistics for five 
objects (Figs. 3.2 to 3.6) are shown in Table 3.1: 
The table lists: 

A. Total number of polygons in the object. 
B. Total number of edges contained in the object. 
C. The maximum number of polygons that cross the 

same scan line. The objects shown here contain mostly 
triangular and rectangular surfaces. 

D. Average number of polygons in 512 scan lines. 
E. Number of intersection calculations performed. 
F. Actual number of intersections detected. 
G. Compute time in seconds for the scan conver

sion algorithm. 
H. Total image generation time in seconds. This 

includes the disc latency time. 

From the table it is obvious that quite complex 
images may be displayed with ease. The display system 
is rugged and cost effective. Further work proceeds 
in displaying quadratic and hi~~e12order surfaces and 
on a faster display processor. ' 



STK¢l 
Figure 3.1 

STK¢2 
Figure 3.3 

STK¢4 
Figure 3.5 
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STK¢l 
Figure 3.2 

STK¢3 
Figure 3.4 

STK¢5 
Figure 3.6 



Table 3.1 

OBJECT STK¢l STK¢2 STK¢3 STK¢4 STK¢5 

A. TOTAL # POLYS 73 63 14 432 522 
B. TOTAL # EDGES 282 234 48 1584 1756 
C. MAX POLYS/LINE 27 34 11 94 113 
D. AVG,POLYS/LINE 9.45 9.35 3.52 20.9 14.3 
E. # INTER CALC 903 1720 576 245 265 
F. # INTERSECTS 814 1296 569 240 246 
G. COMPUTE TIME 9 9 4 32 25 
H. TOTAL TIME 11 11 8 33 26 

Conclusion 

The work which led to the results reported in 
this paper concerned itself with a critical evaluation 
of the entire display process. In particular, we have 
proven that TV technology is compatible with minicom
puter technology. The generation of faster graphics 
in full shaded color is achievable if picture elements 
can be generated in about 100 n sec. Hence a second 
generation graphics system has been designed which is 
basically an expandable minicomputer optimized for dis
play processing. The use of ECL technology will result 
in a calculated worst-case cycle time160Il instruction 
fetch and execute of about 100 n sec. ' 
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A MICROPROGRAMMED PROCESSOR FOR 

INTERACTIVE COMPUTER GRAPHICS 

Henry D. Kerr 
Adage, Inc. 

Boston, Massachusetts 

Summary 

This paper describes the architecture of the micro
programmed processor which is the heart of the Adage 
GP/400 interactive graphics system, and discusses some of 
the factors which 1nfl.uenced its design. 

Background 

Adage, Inc. manufactures high-performance inter
active refresh graphics systems. These systems are used 
typically in applications requiring a high degree of image 
structure. This structure includes functions such as loading 
or concatenation of coordinate transformation values for 
subsequently displayed picture parts, transfer of control 
commands such as image branches, or sub-image calls, 
and commands for setting and reading console devices. 

In previous generations of Adage graphics systems, 
the image structure was processed by a computer program, 
invoked by an interrupt from the graphics hardware when it 
"saw" a graphical command it could not process. Even 
though these software-implemented commands were per
formed by a relatively fast, medium-scale digital processor, 
in highly structured images the number of vectors and char
acters displayed in each refresh cycle could be reduced to 
25% or less of what the system was capable of displaying. 
The reduction of this overhead was one of the primary ob
jectives to be met by the Adage GP/400 system architecture. 

A second important factor which heavUy influenced the 
design was that of programmability. One graphical command 
set is not always the best for many different applications. 
For example, the fastest and most efficient graphics language 
for situation display (i. e. , aircraft trainers, simulators, 
etc.) is not the best for an interactive computer aided design 
(CAD) application. In addition, Adage had two initial uses 
for the GP/400. One was as a graphics peripheral system 
which was oriented to a 16-bit command format and could be 
attached to a var'lety of different small-, medium-. or large
scale digital computers. The other use was a graphics front
end attached to the Adage DPR4 processor to provide a new 
system (the GS/SOO), compatible with the existing Adage 
AGT/100 Series graphics systems. 

The command sets of the GP/400 and GS/300, while 
functionally alike. are quite different in actual format. 
Furthermore, differences in various potential host computers 
for the GP /400 might require changes in image command 
processing (e. g., the DEC PDP-11's processing of the right 
byte of a word first in string operations instead of left byte 
first as on other systems). Also, we had expected to be 
called upon to implement other application-specific command 
sets and to emulate other graphics systems such as the IBM 
2250. 
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The third major factor was the desire for a lower-cost, 
digital implementation of coordtnate-transformatilon hard
ware. Previous Adage systems used fast, high-precision 
multiplying DACs, with the top-of-the-line, 3-D system, 
employing sixteen multiplying DACs to solve the following 
equations for each vector: 

X' = PS[DX + SCL(RUX + R12 Y + R13Z)] (1) 

Y' = PS[DY + SCL(R21X + R22Y + ~SZ)] (2) 

INT = PS[DZ + SCL(R31X + R32 Y + RS3Z)] IS + ID (3) 

where X, Y, and Z are the 3-dimensional image coordinates 
of the vector endpoint, and X', Y', and INT are the display 
screen X-, and Y-axis endpoints and intensity respectively. 
It was highly desirable to replace the multiplying DACs with 
a fast digital multiplier for solving the above equations as wen 
as for the calculation of transform concatenation (i. e., the 
matrix multiplication of one transformation function -
rotation, displacement, scale -- against the current trans
formation set). 

System maintainability was of prime importance to the 
design of the system. A digitally oriented system, plus 
microprogramming capability, would allow built-in firmware 
diagnostic routines and facilitate system maintenance. 

As the need was established for local computing power 
in the GP/400 to interpret the image structure and to provide 
an "intelligent" graphics system, available commercial pro
cessors were evaluated for inclusion in the system. It was 
very qUickly determined that commercial mini-computers 
were too slow to provide the speed necessary for the high 
performance desired. Systems which offered u.ser-specified 
microprogramming were evaluated. In commercial mini
computers, such as the Interdata Model 85, the micropro
gramming available was most powerful in implementing the 
target machine instruction set, not in providing the facilities 
needed for our application. 

Systems which were specifically designed to be micro
programmable~'4 such as the Microdata MICRO 1600 and 
the Digital Scientific Corporation META 4, were also exam
ined. Although the microprogramming capability in these 
systems was more general, firmware implementation of the 
graphical commands we consider essential would still have 
been too slow to meet our performance goals. 

As no commercially available processor would satisfy 
our needs, we decided to develop a fast, high-performance, 
microprogrammed processor of our own. 



System Development 

Initial system design of the G P /400 began in the fall of 
1972. The first-pass design employed a 32-bit microinstruc
tion word. As it was desired to implement the system with 
TTL devices, this design was abandoned because the large 
amount of decoding required prevented system operation at 
the desired speed. The overall requirements pointed to a 
more horizontal, parallel approach for the next design 
iteration. 

A hardware design based on a 56-bit microinstruction 
word was completed early in 1973. In March, a simulator 
for the processor was written on the Adage DPIM computer. 
Even though this simulator ran about one thousand times 
slower than real-time, microprograms similar to those 
running now on actual systems were run. This simulation 
led to further refinement of the hardware deSign. Although 
minor changes and re-arrangements of the microinstruction 
format were made during the development of the processor, 
the 56-bit microinstruction word was retained. 

Although the market need for a system with writable 
control storage (WCS) was expected from the beginning, it 
became obvious in the early part of 1973 that writable con
trol storage was also essential for prototype development. 
Therefore, the initial system design was with WCS, with the 
design goal that both WCS and read-only memory (ROM) would 
have identical execution speed. 

Prototype checkout was started in the fall of 1973, and 
proceeded rapidly, thanks to the wire-wrap fabrication tech
nique used. A fully working prototype was complete in 
December and the first shipment was made in March of 1974. 

To Other Consoles r----
I 
I 
I 
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Devices 

L ___ _ 

The Final Design 

Figure 1 is a block diagram of the GP /400 system. 
Except for the Remote Console Interface (RCI) , the system is 
implemented on 14" by 1.6" wire-wrap panels housed together 
in a rack-mounted card cage. The Host Computer Interface 
(HCI) occupies one panel, the High-Speed Stroke Generator 
(HSG) occupies three panels, the microprogrammed pro
cessor (DGC) occupies two panels, and the Control Store (CS) 
occupies four panels if bipolar RAM (WCS) , or one panel for 
fusible-link PROM. Analog elements for stroke generation, 
intensity control, and circle-arc generation are built on 
"daughter boards" which plug into two of the HSG wire-wrap 
panels. A separate RCI is located at each of up to four re
mote CRT consoles. The Maintenance Control Panel (MCP), 
rack-mounted above the card cage, contains switches and 
indicators used for maintenance trouble-shooting of the 
GP/400, and for microprogram debugging on systems with 
Writable Control storage. The internal structure of the DGC 
is shown in Figure 2. This figure depicts the data paths, 
arithmetic units, storage elements, and registers which 
make up the DGC. Data paths, except where noted, are 16-
bits wide. 

The Control Store (CS) contains 56-bit microinstructions 
which are addressed by the Location Counter (LC). Versions 
of the Control Store include'both fusible-link PROM and bi
polar RAM (WCS). Typical memory sizes range from 1K to 
2K words, but the CS may be expanded up to 4K. 

The Scratch Pad (SP) is a high-speed bipolar RAM 
containing 256 16-bit words. SP is used to store dynamic 
data values. It is the primary storage element for the micro
program as the CS is not writable by the DGC itself (only 
from the host computer). The SP may be addressed directly 
by the microinstruction, or indirectly by the lower 8 bits of 
the MS register. 
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The Register File (RF) contains eight 16-bit registers, 
arranged with two paraller input ports and two parallel output 
ports. One input port and one output port are tied to the 
major data-transfer busses, as in the SP. The other input 
and output ports are connected to the high-speed multiplier
adder. The Register File is used to store local variables and 
to transform vector endpoints in conjunction with the multi
plier-adder. 

The two arithmetic elements are the Arithmetic-Logic 
Unit (ALU) and the Multiplier-Adder (MAD). The ALU is a 
I6-bit general-purpose digital computation element which 
may perform any of the possible 16 logical. functions of two 
variables, or one of 16 arithmetic functions. A low-order 
carry bit is provided to the ALU by the DGC, which provides 
32 arithmetic functions, although some are duplicates of the 
logical functions and others are not generally useful. 

The ALU result may be transferred to other destina
tions in the DGC, and can be passed through rotation logic 
and loaded into the ALU Accumulator register (AC). The 
rotation logic provides a direct copy, a one-bit left rotation, 
a one-bit right arithmetic shift, or eight-bits (halfword) 
rotation. 

The "A-operand" input to the ALU comes from the 
Operand Bus (O-Bus) which may be the output of the SP, the 
RF, or a 16-bit constant provided by the microinstruction. 
The "B-operand" may be, under microprogram control, the 
current contents of the AC register, or may be the contents 
of the Transfer Bus (T-Bus). 

. The MA register·is loaded from the E)-Bus and the MB 
register is loaded from the T-Bus. The MS register is 
loaded from the Register File, through the output port asso
ciated with the MAD. The MS register may be also used to 
indirectly address the Scratch Pad. 

Although the MAD computes its product-sum in approx
imately 230 nanoseconds, the effective multiply-add time is 
400 nanoseconds (two microinstruction executions). On the 
first microinstruction the appropriate values are loaded into 
MA, MB, and MS. The resultant product-sum is stored in 
the Register File on the next microinstruction. 

The multiplier consists of an array of 2-bit by 4-bit 
MSI multiplier chips, with adders to the sum the resultant 
partial products. 

Various other registers are assigned for the purpose 
of storing specific data values, specifying control signals, 
and testing status signals. Most of these are accessible to 
the DGC as sources or destinations of the 16-bit T-Bus 
(although not all registers utilize the full 16 bits). Several 
of the source/ destination registers are associated with HSG, 
RCI, HCI, and MCP, and provide the interface between the 
DGC and these SUbsystems. The Console Data Bus, a bi
directional 16-bit data bus, runs in a daisy-chain fashion 
from the DGC to each RCI located at each CRT console. The 
direction of the bus, the console select, and console data 
register address are controlled by bits loaded into the console 
bus control register (CONS). 

The 56-bit microinstruction format is shewn in Figure 
3. Bits ~ through 55 specify the various fields of the micro
instructions. Bit 63 is a memory parity bit used only with 
Writable Control Store. The OP field, bits .0 and 1, is the 
only field which changes the meaning of other fields in the 
microinstruction. This field performs a dual function of 
selecting the data presented to the O-Bus and specifying a 
"branch" microinstruction (OP = 3). For OP =.0, the Scratch 
Pad word addressed by SPADR (or addressed by the MS 
register :If SA = 1) is placed on the O-Bus. For OP = 1, or 
OP= 3, the Register File register specified by FAA is on the 
O-Bus.For OP = 2, the constant value in bits 16-31 of the 
microinstruction is placed on the O-Bus. 
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The OOURCE field specifies the data to be placed on 
the T-Bus. Eight of these sources specify values from the 
Host Computer Interface (HC!). One of these values typically 
is a l6-bit register used in programmatic I/O transfers to 
the GP/400. The other seven sources specify various bit
mappings of a l6-bit value read from the host memory via a 
high-speed DMA channel or memory-port interface. This 
value is the output of a four-register "pipeline" built into the 
HCI to minimize word-fetch latencies. 

The other eight sources select other registers or 
values such as the output of the ALU, the Accumulator (AC) 
register, the Index Register (XR), the 16-bit Switch Register 
(SR) from the Maintenance Control Panel (MCP), etc. 

At the end of each microinstruction, the value on the 
T-Bus is loaded into the specified destination (DEST). Eight 
destination codes are assigned to the HCI and consist of reg
isters for the address of data to be read from host-computer 
core, for data to be written into core, for programmatic 
I/O transfer of data to the host computer, for interrupt ad
dress to the host computer, etc. Sixteen destination codes 
are assigned to the High-Speed Stroke Generator (HSG) and 
to other optional graphics devices such as the Circle-A rc 
Generator and the Hardware Windowing Device. These 
destinations are used for loading values such as vector end
point coordinates, vector modes, intensity, character code 
and scale, vector texture and display scope enables. The 
other eight destination codes, used by the DGC itself, select 
destinations such as the Scratch Pad (same addressing as for 
reading), the Location Counter (LC), the Index Register (XR) 
and others. The Register File may be loaded from the T
Bus in addition to the selected destination (if WRF = 1) and is 
addressed for writing by the FAB field (for OP = .0 or 1) or 
the FAA field (OP = 2 or 3). 

Several fields of the microinstruction control the AL U 
and Accumulator (AC). The ALUF field specifies the ALU 
function code and A/L selects an arithmetic or logical func
tion. The AB bit selects either the T-Bus or the contents of 
the AC as the ALU "B" input. The low-order carry into the 
ALU is controlled by CRY. The output of the ALU (with 
possible rotation specified by ROT) will be loaded into the AC 
if LA is set. 

As the T-Bus may be an input or an output of the ALU, 
microinstructions may specify several ways for data to flow 
through the system. For example, both the O-Bus and the 
T-Bus may be inputs to a two-variable ALU function and the 
result stored in the AC(after possible rotation). Note that 
the T-Bus value may also be written into a destination reg
ister and/or the Register File. Another possibility would 
allow a value on the O-Bus to be operated upon by the ALU 
(a one-variable function, or a two-variable function with the 
AC as the ALU "B" input) and placed on the T-Bus for 
writing into the selected destination and/or Register File. 
A variation of the latter case would allow the O-Bus value to 
be loaded into the AC, while the AC (or some other source) 
is sent on the T-Bus to the selected destination. 

A bit-testing facility is provided by the TSTF and 
TSTBIT fields. The DGC maintains three general-purpose 
program flags (FI, F2, and F3). A selected flag (specified 
by TSTF) may be set to the state of a bit on the T-Bus speci
fied by the TSTBIT field. These flags may be tested by 
branch conditions, and may be cleared or complemented by 
control flIDctions (see below). 
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The high-speed multiplier-adder (MAD) is controlled 
by the MOP field and the Register File address field FAC. 
The MOP field specifies the multiplier flIDction, such as no 
operation, storing the product-sum into the Reg1.ster File, 
or selecting various combinations of loading the MA register 
from the O-Bus, loading MB from the T-Bus, or loading MS 
from the Register File. 

A full multiply-add takes place in two successive 
microinstructions in which the first loads the desired eom
bination of MAD input registers, while the second stores the 
product-sum into the Register File. The first microinstruc
tion, in general, uses the major busses and transfer paths. 
However, the second only stores the product-sum in the 
Register File and the microinstruction Is available for other 
microprogram operations. 

The COPR field provides control "pulses" to var:lous 
subsystems of the GP/400. Eight functions are assigned to 
the HCI and are used for starting operations such as re
questing words from the host computer's core, writing data 
into core, requesting a host-computer interrupt, etc. The 
HSG is assigned eight flIDctions for starting vector or (~har
acter drawing, and resetting the HSG subsystem.. The re
maining sixteen control functions are assigned to the DGC 
and are used for operations such as clearing or eomple
menting the microprogram flags (Fl, F2, F3), eapturing 
light-pen "hits", counting the Index Register (XH), sending 
data to the remote consoles, and halting the microprogram 
execution. 

To minimize microprogram latency, the pl'ocessor 
may "pause" until the occurrence of a particular event. The 
WAIT field may specify a "pause" until either a word is 
available from the host-computer core memory, or until the 
HSG has completed the drawing of the previous vector or 
character. This "pause" occurs at the start of execution of 
the microinstruction in which the WAIT field is specified. 

The branch operation (OP = 3) modifies the function of 
several of the microinstruction fields. Bits 20 through 31 
provide the l2-bit branch address. The fields BC3, BC2, 
BCl, and BGR provide 32 possible branch conditions (with 
one code always "true" to provide an unconditional branch). 
The IV bit inverts the sense of the condition. If the rel3ultant 
branch condition is true, the branch address is loaded into 
the Location Counter (LC). If the SV bit is set, the LC value 
is saved in the LCS register prior to being loaded. Branch 
conditions include indicators and conditions such as the state 
of the microprogram flags, the AC being zero, negative, or 
normalized, the ALU overflow and carry indicators, HSG 
busy state, and events such as a light-pen "hit", keyboard 
strike, and frame-clock indicator. Other branch conditions 
assigned to the HCI test compl~tion of host-computer memory 
operations and programmatic I/O "hand-shaking". 

The branch operation is performed early in the micro
instruction execution cycle to allow for the overlapped fetching 
of the correct next instruction. Only one hardware subroutine 
level is provided; however, any number of levels may be 
provided by saving the contents of the LCS register in the 
Scratch Pad or Register File. 

A second method of transferring micropro~~ram control 
is the use of the LC register as a destination of the T-lBus 
(a "dispatch"). As the transfer occurs at the end of the micro
instruction execution, the next (follOwing) microinstruction 



has already been fetched and will be executed prior to the 
execution of the microinstruction at the new location. The 
"dispatch" is the normal form of subroutine return. This 
deferred branching creates several types of special instruc
tion sequences. For example, a second dispatch instruction 
may follow immediately after the first, causing only one 
instruction at the first dispatch address to be executed, 
followed by sequential execution starting at the second dis
patch address. For a second example, a conditional branch 
may follow the dispatch instruction, overriding the dispatch 
and branching if the condition is true, or allowing the dispatch 
to occur if false. Conditional subroutine returns may be 
coded in this manner. 

External control of the GP/400 processor comes from 
two parallel sources. Located on the Maintenance Control 
Panel (Figure 4) are seven pushbuttons, which provide manual 
control of GP/400 system reset, place the DGC into run mode 
or halt mode, and provide the halt-mode functions of STEP 
(indexing LC), CYCLE (single microinstruction execution), 
BRANCH (loading the LC), and LOAD (loading microinstruc
tions). The BRANCH and LOAD operations use data from the 
16-bit toggle-switch register on the MCP. The LOAD func
tion is used to load microinstructions into the Writable Con
trol Storage, or in systems with PROM Control Storage, will 
load the 56-bit Instruction Register (IR) for single-step 
execution. The MCP also contains 32 LED indicators which 
are multiplexed by a four-poSition rotary switch to provide 
128 bits of display information, such as the contents of IR, 
T-Bus, LC, Console Data Bus, etc. 

Seven control commands, equivalent to the pushbuttons 
on the MCP, are provided to the host computer, with the 
programmatic I/O data path used for values required by the 
BRANCH and LOAD functions. A fifth position of the MCP 
rotary switch allows the host computer to selectively read 
back the 128 bits of display data in 8 words of 16-bits each. 
With the ability to load and execute microinstructions from 
the host computer (even on PROM systems) and to read back 
major data paths and registers, a powerful diagnostic envi
ronment is provided. 

Conclusion 

The performance improvement brought about by the 
new microprogrammed graphics processor can be illustrated 
best by an example. Essential to graphics display applica
tions, which involve rotation of picture parts, are sine/ 
cosine calculations. 
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The calculation of the sine and cosine of an angle has 
previously been performed by a software routine running in 
the Adage DPR4 processor. Execution time on this 1-
microsecond cycle-time machine is on the order of 100 
microseconds for about 14 bits of precision of sine and 
cosine. By comparison, when executed by a microsub
routine in the roc, sine and cosine results are generated 
with 15 bits of precision in only 5. 6 microseconds, including 
the call and return. The subroutine occupies less than 60 
words in the Control Storage, including a 32-word lookup 
table. Other functions implemented in microprograms show 
similar speed improvements, averaging 10 to 30 times better 
than execution times on the host processor. 

Although the system design of the GP / 400 is at least 
more than once around the "wheel of reincarnation" of Myer 
and Sutherland~ the introduction of a microprogrammed 
processor as the heart of an interactive graphics system has 
led to enhanced flexibility, superior performance, and more 
effective maintainability, at a lower cost, compared with 
previous-generation hybrid graphics systems. 
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Summary - Consideration is given to the separation of 
the data and control structures of a microprogrammed 
processor. The use of functional memory techniques 
to provide a suitable medium for containing and 
processing the control structure and giving one 
possible solution to this separation problem is 
described. The design considered is that of an 
associative processor but the techniques involved are 
applicable to other types of processors. Some of the 
advantages of this approach are given, together with 
their implications in the light of advances in 
microprocessor technology and cellular logic. 

The microprogrammed control unit of a processor 
has the task of fetching and executing instructions. 
These two functions can be separated out and handled 
by different control units. Similarly, the execution 
unit can be divided into a section that processes the 
data and a section that processes the control 
structure related to that data. Separation of this 
sort is useful because each control section is 
specialised for a particular type of operation and can 
work in parallel with the operation of the other 
sections. It sfems possible to separate out these 
control sections and in fact the use of a 
microprogrammed control unit can go some way towards 
making this separation. However, when the control 
structure requires processing, the microprogrammed 
control unit may borrow resources provided primarily 
for the processing of the data structure and parallel 
operation is no longer possible. 

Take for example the case of the Interdata Model 
70 and related models, a minicomputer where vertical 
microprogramming predominates. Testing may require 
the use of both Sand B busses and does not allow 
multiway branches to take place. This, for example, 
would be very useful in the processing of interrupts. 
The processing of the control structure preempts any 
processing of the data structure during microroutine 
execution. In fact, the processing of the control 
structure is constrained by tbe data processing 
architecture of the processor~ A number of 
instructions have the same microroutines except for 
minor changes, which are restricted to small 
differences in the processing of the data structure. 
A means of separating out these two control sections 
may go some way in compacting the amount of space 
required to hold the differing microroutines into one 
where no such replications are necessary. 
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The attempt is made here to show how the use of 
functional memory techniques may allow a single 
microprogrammed control unit to process, in parallel, 
the data and control operations involved in executing 
instructions. This approach may be useful ,,,hen a 
number of modules, such as microprocessors, must be 
controlled in parallel. 

Functional Memory. 

The term functional memor;~as used to describe 
the use of a special type of memory to realise various 
combinational and sequential functions. A cellular 
structure was considered in which each cell could have 
three possible values : 0, 1 or X (corresponding to 
"don't care"). A rectangular array of thesl3 cells 
could perform searching operations on selected fields 
of rows of cells and data fields from selectl3d rows 
could be ORed together during output. Functional 
memory had the advantages of regular circuitry such as 
RAMs and ROMs when implemented in LSI. The approach 
given here does not require customized LSI. 

The Design of an Associative Proce~~£_~ 

An associative processor was chosen as a 
particular example of a subset of parallel p:r'oces~ors, 
the subset of all single instruction stream - multiple 
data stI'eam pro·cessors. The microprogrammed control 
of such a processor was studied. It is an example 
where the data structure is considerably different 
from the control structure and where control problems 
could be acute,. Associative processors are examples 
where much of the cost of the machine is concentrated 
in the control unit and other supporting modules, and 
where improvements in control unit design can have a 
significant effect. In Goodyear's STARAN pr'ocessor, 
an array of 256 associative elements uses 2,500 
integrated circuits whilst the circuits nec~sary to 
control and support this array number 6,500.J 

There are no fundamental associative properties in 
the processor which was developed. These associative 
properties are provided by the management of the 
processing elements by the microprogrammed control unit. 
The associative operations are emulated by standard 
arithmetic, logical and testing operations on 16-bit 
word-slices of a 256-bit word, as opposed to bit
slices. The control unit could alternatively emulate 
a different type of parallel processor in this 
subclass. 



A hardware realization of an 8 processing element 
associative processor was built using the inventory of 
DEC RTM modules available in this Department, with the 
addition of a small number of other integrated 
circuits. 

Architectural Decisions. 

It was necessary to choose applications for which 
the associative processor could be used whilst its 
operation was being studied. It was decided to 
consider simple programs for: 

(i) air traffic control conflict detection, and 
(ii) information retrieval query processing. 

Both these applications are suitable for associative 
processing. They also seemed complementary in their 
use of available operations of an associative 
processor. 

The hardware realization was constrained by the 
inventory of DEC RTM modules and other circuits 
available, and this meant that the associative 
processor would have 8 processing elements with each 
element storing 256 bits as 16 words of 16 bits. 
Extensive processing capability was available at the 
processing element level. 

The associative processor is interfaced to a 
sequential processor - an Interdata Model 74. This 
stores the program for the associative processor 
together with the data for its processing elements, 
which can only be accessed in sub-blocks. Thus, the 
sequential processor emulates the fetch section of the 
ideal associative processor being considered. 

There would be I/O traffic of data for PEs during 
associative processing which would be reduced as the 
number of PEs increased. The point could be reached 
when all the data necessary for a particular search or 
data processing operation is loaded in one block. 

The instruction stream is provided by the 
sequential processor and instructions modifying this 
stream are trapped by the sequential processor. If 
the modification is conditional, it is based on 
status information provided by the associative 
processor. The associative processor microprogrammed 
control unit can determine whether the status 
information in the sequential processor requires 
modification and transmits this new status, or whether 
the new status is for local control and can remain in 
the associative processor status register. 

The following policies were pursued:-

(a) Apart from supplying the instructions and data, 
the sequential processor would be free to process 
programs in parallel with associative processor 
operation. 
(b) An operation or design guideline would be adopted 
for the hardware realization only if it could be 
employed effectively or even more effectively in a 
larger (full-scale) associative processor. 
(c) By careful choice of instructions, loops would be 
kept at the level of the microcode where they could 
be handled more efficiently, thus bringing the 
instruction stream as close to a sequential stream as 
possible. This is much easier to do in an 
associative processor, where iteration can be handled 
by exploiting parallelism. 
(d) Delays due to modification of the instruction 
stream would be minimised by careful choice of the 
status information to be transmitted to the sequential 
processor and transmission would be well before this 
data is required for modifying the instruction stream. 
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The Data Processing Structure 

The data processing structure consists of eight 
processing elements (PEs). Each PE has 16 16-bit 
words, a simple ALU, two accumulators, and a means of 
communicating with the MCU. It is a simple data 
processor which could be replaced by an LSI 
microprocessor. 

In examples of associative processors such as 
STARAN, serial processing of a 256-bit word allows 
several fields of differing length starting at 
differing places to be processed. Here, processing 
is in parallel on 16-bit words, so the data fields 
must be integral values of 16-bits and aligned on a 
16~bit word boundary. The STARAN example offers 
cons ide:r'ably more flexibility in the layout of data. 
However, the necessary control is correspondingly 
more complex and may require a lower level of 
microprogramming to achieve results such as the 
addition of two 16-bit fields. 

The possible operations of a PE can be seen from 
the first part of Fig. 1. 

As shown in Fig. 2, the PEs are connected in a 
ring structure, each being able to transmit a 16-bit 
word to one neighbour and receive a 16-bit word from 
its other neighbour. In addition, the microprogram 
control unit (MCU) can transmit a 16-bit word to all 
enabled PEs. The MCU can receive the ORing of 
16-bit words transmitted from all the PEs enabled. 
The MCU can also receive an 8-bit status word from 
all the PEs enabled with each PE represented by a 
corresponding bit of the 8-bit word. 

Note that this processing structure is a general 
purpose parallel processor with a simple interconnec
tion pattern and that the associative properties are 
provided by the MCU which alternatively could 
emulate a different sort of parallel processor. The 
interconnection structm'e is easily modified in the 
hardware realization if this should prove necessary. 

The Microprogram Control Unit. 

The objective is to supply minimally encoded 
microinstructions to both the PEs and the MCU. Here, 
"minimally'encoded" means that the microinstruction 
is decoded as much as economically possible with 
respect to the number of control lines and the 
corresponding number of pins on functionally 
organized LSI chips such as microprocessors, RAMs 
and ROMs. Thus, the size of the microinstruction 
wordlength is not considered a restraint in the ideal 
case. 

The requirement, in this case, is that the MCU 
must perform a mapping from a user 'instruction of 
16-bits to a variable number of 64-bit 
microinstructions where the first 24 bits are 
minimally encoded for use by the PEs (the data 
structure) and the second 40 bits are minimally 
encoded for use by the MCU (the control structure). 
Note that the MCU microorders are at a slightly 
higher level in order to reduce the number of bits 
required in the microinstruction. 



The MCU is essentially as shown on Fig. 3. Each 
block named SPn o.r RPn represents a 16)'~16 scratchpad 
memory for the select phase or read phase, respectively. 
These will be called functional memories because of the 
role that they play in the design. 

The basic interpretation cycle is as follows:-
The select phase register breaks up the 16-bit word 
stored in it into 4 4-bit fields which address 4 16-
bit words in the select phase functional memories. 
The 4 16-bit words so accessed are ORed together and 
form the 16-bit word stored in the read phase register. 
This word in turn is broken up into 4 4-bit fields and 
used to address the read phase functional memories. 
This provides the 64 bits of the microinstruction. 
The first 24 bits are used to control all the PEs 
enabled by the enable register. The second 40-bit 
field controls the MCU and either generates another 
16-bit word for loading the select phase register or 
uses the next 16-bit user instruction to load it. The 
same interpretation cycle continues with the only 
variations allowed being the way in which the next 
16-bit word for the select phase register is determined. 

Fig. 1 shows the format that was used for the 
microinstruction in the design of this associative 
processor. Note that a few bits are as yet unused 
and may have their roles assigned later. 

A number of other registers, mainly self
explanatory, are shown in Fig. 3. With proper timing, 
one register could hold the 16-bit word for both the 
select phase and the read phase. The user instruction 
or portions thereof can be loaded directly into the 
select phase register. In the DEC RTM realization, 
the microinstruction is used directly. If this was 
not possible due to synchronization problems then a 
64-bit master-slave register could be used with the 
MCU and the PEs controlled by the master flip flops 
whilst the slave flipflops are being prepared with the 
next microinstruction. 

A simple example of the use of this MCU is now 
given. Consider. that the functional memories are 
loaded as shown in Fig. 4. We consider the example 
of the user instruction 0001 0010 0111 0001 
to read in a variable amount of data into a variable 
number of PEs. Now the user instruction is in 
general broken into 4 4-bit fields as follows:-

(1) First Field - the instruction operation code. 
For example - 0001 - read in a variable amount of data 
into a variable number of PEs. 
(2) Second Field - any necessary information for the 
operation and the PEs, including data or information 
where data is to be found (such as data or address 
in the next 16-bit word of the instruction stream). 
For example - 0010 - load the first (2+1) scratchpad 
words of each PEt 
(3) Third Field - any necessary information for the 
MCU. For example - 0111 - load (7+1) PEs 
consecutively. This field is stored in the X 
register of the MCU. 
(4) Fourth Field - the control level - corresponds to 
a particular microprogram. This is inspected by the 
MCU to cause switching from one set of functional 
memories to another and/or loading or pre loading of 
functional memories. For example - 0001 - the 
control level 1 microprogram. 

Operation commences as follows:-

The fourth field is used for checking that the 
appropriate microprogram is loaded. The first field 
is loaded into the first 4-bit field of the select 
phase register and the second field into the second 
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field 6f the select phase register. The third fiela 
is loaded into the X register of the MCU. Thus, 
initially the select phase register is 
0001 0010 0000 0000 
Only SPI and SP2 are used during the initial user 
instruction interpretation. This causes thl3 read 
phase register to become 
0010 0000 1101 0000 
Note that the one's complement of 0010 (the count of 
the number of words to load into a PE) has bl3en formed 
in the third field. The first microinstruction is 
output (see Fig. 1 for the operations) and the select 
phase register is now loaded directly from this 
microinstruction with 
0001 1111 1101 0000 
Note that a particular bit of the microinstruction 
causes the first field of the select register to be 
loaded from the first field of the instruction. The 
next read phase register contents are 
0010 0001 1110 0001 
Note that the second field has been incremented to 1 
to access the next word in the PE and that the fourth 
field also has this value, which will be used in the 
next cycle for incrementing the second field again. 
Note that the third field has been incremented. The 
test whether the right number of words have been input 
to a PE has been made implicit because when the third 
field reaches 1111, it will cause RP3 to become all 
zero. This will cause the user instruction to be 
used in loading the select phase register as descr'ibed 
above. If the third field of the user instruction as 
stored in the X register of the MCU is non-zero, its 
value is decremented and the same instruction used 
again. Otherwise, the next instruction is used. 

The following points need to be made about this 
microroutine eXample:-
(1) The functional memories have enough space for' more 
instructions than was shown above. The corresponding 
write instruction would be 
0010 0010 0111 0001 
There is space for 14 other instructions which require 
the performing of a particular operation sequentially 
on a variable number of 16-bit fields of a variable 
number of PEs. There are many other possible methods 
of using the MCU of which only one example has been 
given here. Space restrictions do not permit a 
detailed description of the other microprograms for 
parallel and associative operations. In the above 
example, the minimum amount of interaction between 
select phase functional memories in the generation of 
the read phase functional memories data has taken place. 
It is possible for two select phase functional 
memories to contribute alternate bits to a 4-bit 
field of the read-phase register and thus allow 
multiway branching within the one interpretation cycle. 
This could prove useful in instructions where 
considerable decoding and decision making was being 
employed. 
(2) Although primarily designed for associative 
processing, the MCU is suitable for other types of 
single instruction stream - multiple data stream 
processing. Possibly this would require some 
extension of the interconnection pattern considered 
here. 
(3) In addition, it is possible to pick different 
modes of interpretation by suitable use of the mode 
of interpretation field in the microinstruction. 
For example, in the mode of interpretation considered 
above, the select phase register is loaded from the 
previous microinstruction except in the case when 
RP3 is zero. In this case, the previous instruci:ion 
is used again if the X register of the MCU is non··zero, 
otherwise the next user instruction is loaded. 



Another mode tests the activate bit in the micro
instruction and ORs the value in the X register into 
the SPR before the execution of the next stage of 
interpretation. Other modes could make direct use of 
the status bits in the loading of the select phase 
register, thus allowing much of the branching and 
iteration to remain at the level of the microprogram. 
Although there is much repetition in particular 
fields of the above microprogram example, which is 
provided for explanatory purposes, the fact remains 
that another microprogram when loaded can use these 
same fields for entirely different control purposes 
and with other forms of repetition. See (vi) below. 
Note that the incorporation of the mode of 
interpretation as a field in the microinstruction 
allows a microroutine to change the mode dynamically 
during user instruction interpretation. 
(4) Four different microprograms are now available 
and can be loaded corresponding to the four possible 
control levels specified in the last field of the 
user instruction. (Sixteen possible microprograms 
could be specified). There would be a delay during 
loading. Since a user instruction never requires the 
use of more than one of the microprograms, if two 
function memory "units" were available, one could be 
loaded whilst the other was being used. This is 
especially practical since the instruction stream is 
close to a sequential stream, and the fetch control 
unit could look ahead to the last 4-bit field of the 
next instruction. The second functional memory unit 
could be loaded by looking ahead for the first 
instruction which does not use the current microprogram 
and starting to load the required microprogram in 
parallel with the rest of the MCU operation. When 
this instruction is reached, the MCU switches over to 
the second functional memory unit and the above process 
can be applied to the first functional memory unit. 
Having three functional memory units would take care 
of the worst case of user instruction branching with 
minimum delay. With a judicious choice of the 
instruction classes and the corresponding microprograms 
for these ~lasses, the amount of reloading can be 
decreased. By increasing the permitted size and 
number of functional memories, this problem could be 
eliminated altogether. 

The use of the above microprogramming technique 
has the following additional advantages:-
(i) This form of microprogramming does not seem to be 
any more difficult than the microprogramming schemes 
of many existing machines, especially when a simulator 
is available. It has the advantage of postponing 
until late in the design process, the microprogramming 
stage, the specification of the control structure and 
the operations on it. User microprogramming although 
possible is not the main objective of this approach. 
(ii) In considering the firmware-software interaction, 
this approach allows much of the software to be 
concentrated in the firmware. The user writes 
instructions at a variety of levels corresponding to 
the control level specified in the instruction. At 
present, the microprograms are used as follows:-
(1) control level a - resetting, load, store,-'shifts, 
tests of PE condition codes, inter-PE communication 
(2) control level 1 - input and output 
(3) control level 2 - addition and subtraction with 
provision for multiple precision arithmetic, 
mUltiplication 
(4) control level 3 - general associative operations 
- the first field of the instruction gives the type 
of test. The second field gives the scratchpad 
location on which the test is to take place. The 
third field directs what will be done with the result 
of the test. 
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The user can write programs using the higher level 
instructions (such as the general I/O instruction and 
the general associative operation) descending to the 
lower level instructions only when the final elements 
of control are unavailable higher up the hierarchy 
(such as instructions that set particular bits in the 
enable register). This leads to more compact code 
and faster operation. 
(iii) In considering the hardware-firmware interaction, 
many of the simple flags and small field operations 
that a control unit may use, such as condition and 
emit fields, are eliminated completely by using this 
particular firmware approach. In particular, tests, 
multiway branches, complementation, incrementing, 
shifting, masking and reformatting can take place 
implicitly. Key variables or bits of instructions can 
be stored and used when necessary without requiring 
any additional emit fields, flags or registers. 
Apart from the functional memories, the barest minimum 
of extra circuitry and registers are required. 
(iv) Fault recovery can be facilitated if this is a 
critical factor. A special microprogram could test 
all the PEs in parallel, and also test the MCU. The 
isolation of the malfunctioning PEs can be 
accomplished by microprogrammed control of the enable 
register. Since the MCU consists mainly of identical 
functional memories, a spare can be switched in if 
one shoUld fail. The only critical circuitry 
requiring consideration are the small number of MCU 
register's and the combinational networks. The 
necessary redundancy is therefore limited to these 
circuits and a small number of PEs and functional 
memories. This would be a negligible cost for a 
large associative processor. 
(v) There is a minimum delay in processing the data 
structure, since by the time the data structure has 
been acted upon by a microinstruction, the MCU has 
cycled back in parallel and produced the next 
microinstruction. Status information when required 
need never come from the current microinstruction 
execution. This holds true even when a new user 
instruction interpretation has commenced. In 
particular, there is no delay when a test has to be 
made at the microprogram level, where hopefully the 
majority of all branches will take place. 
(vi) Many instructions can use the same 
microinstruction fields (4 l6-bit fields) and only 
the fields which are different require placement in a 
word of the read phase functional memories. The 
other existing fields can be used unchanged'4 This is 
one answer to the field combination problem. 

Microprogrammed Processors. 

The previous section has attempted to show how 
it is possible to gain an increase in the capability 
of containing and processing the control structure of 
a processor by the addition of a minimum amount of 
extra complexity in the microprogram control unit. 
This was achieved by:-
(i) breaking up decoders for the functional memory 
units (or control memory in the conventional case) 
into a number of separate decoders, 
(ii) breaking up the read phase of the control memory 
into a select phase and then a read phase, and 
(iii) performing an ORing of the output from the 
select phase functional memories. This requires no 
additional circuitry when negative logic and open
collector drivers are used as in the DEC RTM TTL 
implementation. 



Thus, this is one possible solution. to tlie 
problem of designing processors with separate data and 
control structures. It would be interesting to 
consider this approach in different types of 
processors. 

In the design of the associative processor, each 
processing element was a 16-bit parallel processor 
with a limited number of possible low level operations. 
This approach was used because of availability, speed 
and simplicity. It simplified the microprogramming 
and did not require the lower level of control that 
a serial processor would require. 

Consider however the case where a processing 
element is replaced with a microprocessor. This could 
still provide enough processing power and storage 
per chip if present trends continue. If micro
processors cost $20-$30 each in large quantities, then 
a lK processing element associative processor would 
have a hardware cost of $20,000-$30,000 plus the cost 
of the control and supporting equipment. The fact 
that suitable microprocessors are available and that 
a possible MCU uses standard RAMs, ROMs and MSI logic 
circuitry means that the development costs are reduced. 
For example, the RCA COS MAC LSI microprocessor is very 
similar to the PE considered here. 

Looking further into the future ,nd considering 
the continuum described by Weinberger, by increasing 
the number of decoders further, the point is reached 
when a decoder is addressing one of two possible 
output lines. The functional memory has then reached 
the cellular complexity of thjse originally 
considered by Flinders, et al. Thus, it is possible 
to envisage the same sorts of operations considered 
here, in a cellular logic implementation with all of 
the many advantages covered by Kautz£ 

Acknowledgement : I am indebted to Peter Gardner for 
mentioning how 16 word memories could be considered 
as an extension of functional memories. 
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Fig.1. Microinstruction. 

Fig 2. System Organ ization. 
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BSR = bus sense register 

ALU 0 no operation 
1 A xor B 
2 A or B 
3 A and B 
4 A-B 
5 A+B 
6 A-I 
7 not B 
8 not A 
9 A 

10 B 
11 A+l 
12 leftshift A 

encoded in a 4-bit field 



enable register }-

I vertical register }-

I status register 

instruction registe}-

ALU 

Fig.3. The Microprogram Control Unit bUS 

Fig.4. Microprogram (for 110) 

SP1 SP2 SP3 SP4 

0 0000000000000000 0010000011110000 0000000000010000 0000000100000001 
~ 0010000000000000 0000000011100000 0000000000100000 0000001000000010 
2 0001000000000000 0000000011010000 0000000000110000 0000001100000011 
::I 0000000000000000 0000000011000000 0000000001000000 0000010000000100 
4 0000000000000000 0000000010110000 0000000001010000 0000010100000101 
5 0000000000000000 0000000010100000 0000000001100000 0000011000000110 
6 0000000000000000 0000000010010000 0000000001110000 0000011100000111 
7 0000000000000000 0000000010000000 0000000010000000 0000100000001000 
8 0000000000000000 0000000001110000 0000000010010000 0000100100001001 
9 0000000000000000 0000000001100000 0000000010100000 0000101000001010 
10 0000000000000000 0000000001010000 0000000010110000 0000101100001011 
11 0000000000000000 0000000001000000 0000000011000000 0000110000001100 
12 0000000000000000 0000000000110000 0000000011010000 0000110100001101 
13 0000000000000000 0000000000100000 0000000011100000 0000111000001110 
14 0000000000000000 0000000000010000 0010000011110000 0000111100001111 
15 0000000000000000 0000000000000000 0010000011111111 0000000000000000 

RP1 RP2 RP3 RP4 

0 0000000000000000 0000000000000000 0000000011110000 0000000000010011 
1 1000000000100000 0001000000000000 0000000011110001 0001000000010010 
2 0100000001000000 0010000000000000 0000000011110010 00100000000100fO 
3 0000011100100000 0011000000000000 0000000011110011 0011000000010010 
4 0000000000000000 0100000000000000 0000000011110100 0100000000010010 
5 0000000000000000 0101000000000000 0000000011110101 0101000000010010 
6 0000000000000000 0110000000000000 0000000011110110 0110000000010010 
7 0000000000000000 0111000000000000 0000000011110111 0111000000010010 
B 0000000000000000 1000000000000000 0000000011111000 1000000000010010 
9 0000000000000000 1001000000000000 0000000011111001 1001000000010010 
10 0000000000000000 1010000000000000 0000000011111010 1010000000010010 
11 0000000000000000 1011000000000000 0000000011111011 1011000000010010 
12 0000000000000000 1100000000000000 0000000011111100 1100000000010010 
13 0000000000000000 1101000000000000 0000000011111101 1101000000010010 
14 0000000000000000 1110000000000000 0000000011111110 1110000000010010 
15 0000000000000000 1111000000000000 0000000000000000 1111000000010010 
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Introduction 

With the introduction of dynamic micro
programmer computers, it becomes practical to 
reconfigure the architecture of a computer to 
more efficiently represent programs. A number 
of methods have been proposed and investigated 
for reducing the redundancy of computer op 
codes, address and data items. The greatest 
gains have come from frequency based encoding. 
Wilner 9 reports 40 to 70 percent reduction of 
program size using frequency based encoding 
for instructions and addresses combined with 
tailored instruction sets. 

This paper examines the effect on pro
gram size of various architectural features 
assuming frequency based encoding. It is 
primarily oriented toward the reduction of 
program memory by selection of instructions 
and features to microcode, but applicable to 
the structure of the underlying micro machine 
and the compressed storage of any type of 
symbol string. 

Simplest Information Theory Model 

A program is assumed to consist of a 
string of symbols from a given alphabet A of 
N symbols. Each symbol S· occurs with proba
bility Pi' The probabiliEy of occurrence of 
a symbol is assumed to be independent of pre
vious symbols. 

From information theoryl the information 
per symbol in bits is given by -Log2 (Pi)' 
The average information per symbol (entropy) 

N 
H = - E Pi Log 2 (Pi)' The lower bound on the 

i=l 
number of bits needed to represent a string 
of L symbols under these assumptions is then 
LH. If symbols are coded individually as 
variable length bit strings with unique pre
fix encoding, the most efficient encoding is 
given by HUffman3 • 

Evaluation Method 

It will be assumed that the symbol string 
is encoded minimally redundant assuming in
dependence. After the technique under study 
is applied the resulting string is assumed to 
be re-encoded. Thus the method of evaluation 
becomes computing the entropy of the string 
after the reduction and comparing with the 
entropy of the string before reduction. If 
there is a change in the number of symbols 
required to represent the string, the entro
py is adjusted to normalize to the length of 
the original string. 

*Supported in part by a National Science 
Foundation Grant, GJ-32596. 
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Replacement of Repeated Strings 

The simplest and most natural process for 
reducing the length of a symbol string is the 
identification of repeated symbol strings and 
the int:roduction of a new symbol to replace 
the string. This is a simple model of sub
routines, macros, and the introduction of new 
instructions. 

If one assumed the string SlS2",Sk occurs 
with probability Ps and is replaced by the new 
symbol SI wherever it occurs, then the new 
value of entropy is given by: 

P P s S 
HI l-(k-l)P Log(l_(k_l)P) 

s s 
k P.-P P.-P 

1 s 1 s 
~E l-(k-l)P Log(l-(k-l)P) 
1=1 s s 
N P. P. 

1 1 
. -E l-(k-l)P Log(l-(k-l)P)' (1) 
l=k+l s s 

The number of symbols needed to represent 
a string is reduced by the factor l-(k-l)Ps ' 
The resulting change in entropy normalized to 
the length of the original string is given by: 

Ha - H = (l-(k-l)Ps ) HI - H. (2 ) 

substi t.uting (1) in (2) gives 

P 
s ) Ha - H = -P s Log(l-(k-l)P 

s 

N Pi 
. EP i Log(l_(k_l)P 
l=k+L s 

N 
+ EP· Log P., 
i=ll 1 

Which reduces to: 

Ha - H =(l-(k-l)Ps ) Log(l-(k-l)Ps ) 

k P P 
-EP· (l-~) s Log (1--) 
i=ll P. P. 

1 1 
k 

+ P E Log P. - P Log P (3) 
s i=l 1 s s 

To determine the value of Ps such that 
replacement results in a decrease of entropy, 
solve the inequality Ha-H<O for Ps ' For an 
approximate solution to the resulting non
linear equation, use the Taylor expansion: 

x 2 
(I-x) Loge (I-x) = -x + ~ + H.O.T. 



to simpli~y the first two terms in (3). This 
gives 

k 
0 > P ( L: LogeP i - LogeP s + 1 + s i=l 

(k-l) 2p k P s 
E s + H.O.T.) . 

2 2P i i=l 

Rearranging yields: 

k 
LogeP s > E LogeP i + 1 + 

i=l 
k P 
L: s + H.O.T. 

i=l 2P i 

(k-l) 2p 
s 

2 

(4) 

For small P ,the Log terms dominate giving: 
s 

k 
P > e II P. (5) s 1 

Thus a decrease 
k 

2.72 II Pi . 
i=l 

i=l 

in entropy results if Ps > 

This result quantifies the intuituve 
idea that a rarely occurring long string of 
symbols can often be replaced by a new symbol 
and save memory, while a shorter string must 
occur more often to result in savings. 

A somewhat less obvious result is that a 
rarely occurring symbol which can be replaced 
by a sequence of very frequently occurring 
symbols can result in a storage saving. This 
compares with Fosters' observation8 that a 
few instructions make up the greatest per
centage of most programs and elimination of 
infrequently used instructions causes little 
loss of programming power. 

Processor State Change 

The second major technique of min1m1za
tion is the setting of a state which modifies 
the interpretation of the symbols that fol
low it. This models changing processor states, 
changing control program, base register ad
dressing, address bank selection, op code 
grouping, shift level coding, and other sim
ilar techniques. 

Let a string of L symbols from an alpha
bet of size N be partitionable into K contig
uous groups such that in each group there is 
a set U· of B symbols which appear in no 
other gfoup. To encode the string, a new 
symbol is introduced to identify each group 
and inserted before each group in the string. 
Each ~ymbol, S. ·€U· is replaced by a new sym
bol S i" For Adtational convenience, let Pij 
the probability of occurrence of Si;€Uj' let 
p· o for 1 ~ i ~ M = N - KB be the probability 
of occurrence of each symbol not in any set 
Uj. Note that 

B K M 
E E P .. + E P. 1 (6 ) 

i=l j=l 1) i=l 10 

The entropy before combining symbols is: 
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B K 
H - E E P .. Log P .. 

i=l j=l 1J 1J 

M 
- E P. Log P. 
i=l 10 10 

To calculate the entropy after the encod
ing, note that the probability of occurrencf 
of a symbol will be reduced by the factor --
by the introduction of the K switch sym- L+K 
b9ls. Thus the probability of occurrence of 
S j becomes 

K L 
E L+K P ... 

j=l 1J 
(7) 

The entropy of the string after encoding is: 

H 
B K LP.. K LP .. 

- E (E -ll) Log(,I L~~) 
i=l j=l L+K J=l 

M 
- E 
i=l 

LP. LP. 10 10 
L+K Log L+K 

To compare, it is necessary to adjust HI 
for the additional symbols introduced. Ad
justed entropy is: L+K I 

Ha = ---r;- H , or 

H a 

B K K LPij 
- E (L: P.,) Log (E L+K) 
i=l j=l 1) j=l 

M LP. K 1 
-i:l Pio Log ( L~~)- L Log(L+K) 

Isolating terms involving L~K yields 

B K K 
H - E ( E Pij ) Log ( E p, .) 

a i=l j=l j==l 1J 

L B K 
-(Log L+K) E E P .. 

j=l j=l :1] 

M L M 
- E P. Log P. -(Log L+K) E P. 
i=l 10 10 i=l 10 

K 1 - L Log (L+K) 

B K M 
Recalling (6) that E E P .. + E P. 

i=l j=l 1J i=l 10 

and substituting in (8) yields: 

K K 
H a 

B 
- E 
i=l 

( E 
j=l 

P. .) Log (E P.. ) 
1J j=l 1J 

The last two terms may be regrouped to 

KKK L Log L + (l+L) Log (l+L) . 

(8 ) 

1, 



The change in entropy becomes 

B K K 
H -H - L ( L P,,) Log( L P .. ) a i=l j=l 1J j=l 1J 

B K 
+ L L P .. Log P .. 

i=l j=l 1J 1J 

K 
(1 !) Log(l K (9 ) + r:; Log L + + + L)· L 

Examining equation (9) f we note that the 
first two terms represen~ the savings gener
ated by combining symbols, and the last two 
terms represent the cost of introducing the 
K switch symbols. The first term is sensitive 
to the way the symbols in each independent 
group are paired. If the Sij are sequenced 
so that Plj ~ P2i ~ ... ~ P3j for every j, 
then the f1rst term in (9) w1ll be minimized. 

Under the above ordering assumption a 
more usable expression can be derived by using 
an approximation. The ratios Pil: Pi2: ••• :PiK 
can be assumed to be approximately independent 
of i. Thus Pij ~ Qi (1 + Dj). Where Qi 

1 K 
L P .. average of P .. over j. K j=l 1J 1J 

B 1 L P .. 13 i=l 1J 
D. - 1 

J 1 B K 

BK L L P .. 
i=l j=l 1J 

Using this approximation: 

B 
L 

i=l 

K 
L 

B 

H -H a 

K 

B 
- L KQ i Log KQ i + 
i=l 

L Q. (l+D.) Log (Q. (l+D . ) ) 
1 J 1 J j=l 

(1 + !) Log(l + K Log L + L) . L 

And 

+ 

Now L Q. 
i=l 1 

1 B K K 
L L P.., and L D. 

K i=l j=l 1J j=l J 

Regrouping and substituting yields: 

1 B K 
H -H K ( L L Pij ) a i=l j=l 

K 
(-K Log K + L (l+D. ) Log (l+D j » 

j=l J 

o. 

Equation (11) gives the conditions for a 
savings in storage. Table 1 is a tabulation 
of equation (11). All D· are assumed to be O. 
This gives a lower boundJon the break even 
point. For distributions with D· of signifi
cant size, the values will be soJewhat higher. 

L 2 
10 .98 

20 .58 

50 .28 

100 .16 

200 .09 

500 .04 

NUMBER OF GROUPS (K) 

3 

.56 

.27 

.15 

.09 

.04 

4 

.59 

.29 

.16 

.09 

.04 

6 

.69 

.33 

.19 

.11 

.05 

8 

.80 

.38 

.22 

.12 

.06 

Table 1. Break Even Point 

10 

.91 

.43 

.25 

.14 

.06 

It is s~en that for a short string, the 
symbols involved in the switch must account 
for most of the probability before any savings 
in storage is realized. For longer strings 
the break even point is quite low. 

L .2 
10 

20 

50 

100 .04 

200 .11 

500 .16 

LL 

.4 

.12 

.24 

.31 

.36 

P .. 
1J 

.6 .8 

.02 .22 

.32 .52 

.44 .64 

.51 .71 

.56 .76 

Table 2. Maximum Savings in Bits/Symbol 
for Number of Groups (K) = 2. 

1.0 
.02 

.42 

.72 

.84 

.91 

.96 

Table 2 is a tabulation of equation (10) 
for K = 2. Assuming Dl=D =0 gives an upper 
bound on the savings. ustng Log base 2 will 
give the savings in bits per symbol. 

A savings of 0.5 bits/symbol represents 
about a 10 per cent reduction of a typical 
program. Thus we see that this type of fea
ture saves significant amounts of storage only 
if the group sizes are on the order of 100 
symbols. 

,Limitations and Extensions 

An important limitation is the ignoring K 
+ L Log L + 

Setting H -H < 0, a 

(l+~) K 
Log (l+r:;) • 

and rearranging yields: 

(10) of implementation cost. While one may ratio
nalize t:hat the cost of hardware is rapidly 
decreasing, the implementation of features 
that result in very small savings is not cost 
effective. 

B K 
L L P .. > 

i=l j=l 1J -

~ Log L + (l+~) Log(l+~) 
K 

Log K-i L (l+D.) Log(l+D.) 
j=l J J 

(11) 
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The derivations can be modified to more 
closely model specific architectural features 
for more precise results. 

Conclusions 

This type of analysis helps evaluate the 
worth of a particular type of architectural 
feature. It shows what memory savings are 
possible over those obtained by frequency 



based encoding. It finds the limits on mem
ory savings for a particular type of feature, 
and the conditions under which the most sav
ings are realized. 
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Appendix 

Example of Frequency Based Coding 

A tabulation of 1900 opcodes from text of 
programs for the MICRODATA 1621 computer was 
made. The MICRODATA 1621 has 8 bi t opcodE~ and 
variable length address and immediate fields. 
Of the approximately 250 ·defined opcodes, 132 
appeared in the sample. A tabulation of re
sults using Huffman coding with different num
ber bases and encoding into fixed size bit 
fields is given. The split into bit fields is 
chosen to minimize average bits/symbol for the 
given maximum length. 

Average Max Length 
Bits/Symbol in Bits 

Entrophy 5.90 ---

Huffman 

base 2 5.93 11 
base 4 6.02 12 
base 8 6.19 12 
base 16 6.32 12 

bit fields 

5 - 4 6.67 9 
6 - 4 6.59 10 
6 - 5 6.61 11 
6 - 6 6.66 12 

5 - 2 - 2 6.48 9 
5 - 2 - 3 6.25 10 
5 - 3 - 3 6.18 11 
5 - 3 - 4 6.16 12 
5 - 3 - 5 6.16 13 
5 - 3 - 6 6.16 14 
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Abstract 

This paper discusses an algorithm for 
optimizing the density and parallelism of 
microcoded routines in microprogrammab1e 
machines. Besides the algorithm itself, the 
algorithm's uses, adaptability to conventional 
machine characteristics, and architectural re
quirements are also discussed and analyzed. 
Even though the paper proposes a hardware im
plementation of the algorithm, the algorithm 
is viewed as an integral part of the entire 
microcode generation and usage process, from 
initial high-level input into a software micro
code compiler down to machine-level execution 
of the resultant microcode on the host machine. 
It is believed that, by removing much of the 
traditionally time-consuming and machine
dependent microcode optimization from the soft
ware portion of this process, the algorithm can 
improve the overall process. 

Introduction 

Since the advent of microprogrammab1e 
machines in recent years, a frenzy of research 
has occurred on developing good software com
pilers to generate user-designed microprograms, 
or microcode, for chosen target machines [1], 
[2J. The traditional argument against such 
compilers is that they will never be able to 
generate-the completely compact microcode 
needed in a typical high-usage microprogram. 
The traditionalists thus conclude that the 
tedious and complex task of microprogramming 
is best left solely to the hardware designers 
[3], [4], [5J, [6]. On the other hand, many 
machine users have long desired a machine 
whose instruction repertoire they could tailor 
to their particular needs [5J, [6]. These 
users argue that a microprogram compiler would 
drastically reduce microcode production time, 
thus making even medium-to-1ow usage, less 
highly compact microprograms practical [4]. 

Two important characteristics usually 
sought by proponents of such compilers are (1) 
a powerful, high-level input language and (2) 
a high degree of target-machine independence 
for the user. Typical versions of such com
pilers are structured in two basic phases 
conducive to these characteristics. The first 
phase is a complete compiler taking high-level 
input source into intermediate-level text. 
The second phase is a simple, direct trans
lator chosen by the user to transform this 
intermediate text into actual microcode for 
his target machine 13J, [7J. 

Although microprogram compilers such as 
those just mentioned have proved quite prom
ising, one particularly annoying problem re
mains. This problem is the compactness, or 
degree of optimization, of the microcode out
put versus the required compilation time. To 
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be feasible, even medium-to-1ow-usage micro
programs require a fair degree of optimization. 
Furthermore, such microprograms require short 
compi1a.tion times to make them worthwhile pro
ducing. These two requirements are inherently 
conflicting, especially since microprograms 
and their formats are traditionally highly 
target-'machine-dependent while the compiler 
attempt:ing to optimize these microprograms is 
designed to be highly target-machine-indepen
dent. In other words, it is extremely diffi
cult to efficiently optimize a machine-depen
dent process by means of a machine-independent 
mechanism [2], [7], [8]. 

One possible solution to this problem is 
to relieve the microprogram compiler of a 
large part of its optimization chores. The 
authors propose moving_many local optimization 
duties out of the compiler and across the 
software-hardware boundary into the hardware 
realm of the target machine. The hardware 
microcode optimizer, HMO, is a simple hardware 
algorithm capable of condensing a sequence of 
essentially horizontal microinstructions to 
increase their bit density and parallelism. 
It is reasonable to expect that a hardware 
implementation of such a hardware-dependent 
process can be both fast and cost-effective 
[9J. Purthermore, by improving the efficiency 
of software microprogram compilers, the HMO 
algorithm can increase the practicality of a 
truly user-microprogrammab1e computer system. 

It must be stressed that the overall 
microcode optimization process being proposed 
in this paper would consist of two basic 
1eve1s v or phases. The first level, performed 
by the software microprogram compiler, would 
be the more complex, global, primarily machine
independent type of optimization procedures. 
The second level, performed by the HMO algo
rithm and associated hardware (after receiv
ing the software compiler's generated micro
code), would consist ideally of as much as 
possible of the less complex, local, highly 
machinE~-dependent type of optimization. 

I. Description of Basic HMO Algorithm 

Consider how the major internal hardware 
components of a computer are involved with 
the flow of data, or information, throughout 
the machine. With respect to the HMO algo
rithm, the following classification of such 
components is useful: 1) a fixed source, or 
data constant (e.g., a pseudo-register which 
supplies a hardwired constant of 0 or 1 to 
other components), 2) a data transformer 
(e.g., an adder, shifter, working register, 

main memory during a load-from-memory instruc
tion, etc.), or 3) a data sink (e.g., main 
memory during a store-into-memory instruction). 
However, since the production of data constants 



is a fixed operation, with no inputs on which 
to perform a function, HMO need not be con
cerned with such constants. Their control is 
inherently covered in the control of the trans
formers and sinks to which they supply inputs. 

Concerning the control of active, func
tional components such as transformers and 
sinks, two major areas of interest are the 
supplying of inputs and the calling for out
puts, with only the former area actually being 
needed for sinks. If we consider now a flex
ible microprogrammable architecture such as 
that shown in Fig. 1, these two areas become 
nothing more than particular groups of hori
zontal microinstruction bits controlling ap
propriate register transfers. One other area 
of interest for both transformers and sinks is 
timing, or the time interval required for them 
to complete their respective functions. This 
timing requirement implies a certain needed 
minimal distance between some microinstructions, 
or microwords, in any microinstruction stream. 
Assume for now that the microcycle time of HMl 
in Fig. 1 is such that this needed distance is 
only one microcycle. This means, for example, 
that it is acceptable for one microword to 
excite an adder "input supply" and the micro
word immediately following to excite the cor
responding adder "output call." 

Notice that the "latching" type archi
tecture of HMl affords the microprogrammer 
virtually complete timewise independence of 
when inputs are supplied to a data transformer 
such as the adder. He may, in fact, "latch" 
in adder inputs during different microcycles. 
All he must do is make certain all desired in
puts are fed at least one microcycle before he 
calls for the corresponding transformer out
put. Thus, the HMO algorithm can simply se
quence through a stream of microinstructions, 
condensing (essentially combining) all micro
instructions containing "input supply" bits 
into one instruction, until it reaches the 
point where the next instruction contains an 
"output call" bit corresponding to the already 
condensed "input supplies." At this point, 
the algorithm must temporarily stop condensing, 
save (or execute) the newly formed condensed 
instruction, and then proceed to condense again 
starting with the next microinstruction in the 
stream. What all this means is that the HMO 
algorithm can produce, from a microinstruction 
stream which exercises HMl's hardware in a 
purely serial fashion, a corresponding con
densed stream which exercises HMl's hardware 
in a highly parallel fashion. 

Unlike data transformers, data sinks, 
which don't require "output call" bits, make 
it difficult for the HMO algorithm to spot 
the point where condensing must temporarily 
stop. This problem can be solved by requiring 
that, following the desired sink inputs, a 
succeeding microinstruction appear containing 
a "1" bit which actually excites, or causes, 
the sinking of these preceding inputs. By 
controlling sinks in this manner, these sinks 
appear identical to data transformers as far 
as the HMO algorithm is concerned. It always 
sees a series of "input supplies" followed at 
least one microcycle later by a microword 
containing a control bit which, for trans
formers, calls for passage of the transformed 
data to some other point and, for sinks, 
causes the actual sinking action to be per
formed. Therefore, the HMO algorithm can now 
handle transformers and sinks with equal fa-
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cility. The major hardware needed is a simple 
set of combinational logic "inhibit'" functions 
which are driven both from the condensed in
struction being formed and from the next in
struction in the stream. At least one of 
these functions is activated when the next in
struction contains an "output call" correspond 
ing to "input supplies" in the condensed in
struction. Further condensing is thus inhib
ited and the algorithm starts anew on the next 
instruction. 

Note that Fig. 2 allows the option of 
either saving a condensed result for later use 
(pre-pass compilation) or executing this re
sult immediately without saving it (inter
pretive execution). Interpretive execution 
would be inefficient for all but ex"tremely 
low-usage microprograms, as it would require 
repeated condensing of repeatedly executed 
blocks of microcode. Therefore, all discus
sion that follows assumes tha.t the---iiMO algo
rithm is being used as a pre-pass condensing 
compiler. 

Fig. 3 contains two examples illustrating 
the algorithm's use. Note that the second 
example illustrates how the authors would 
ideally like to handle conditional branch 
microinstructions. This ideal method would 
be essentially to allow the HMO algorithm to 
condense "past" conditional branches along 
one of the two available paths (hopefully, 
the "non-branch" path, or path expected to be 
taken most of the time). Then, :latElr, the 
algorithm could be restarted separately along 
the yet untouched (hopefully "branch") path. 

Finally, Fig. 4 depicts one example of 
the "inhibit" functions which provide the 
logical signals to control the HMO algorithm. 
These figures should be studied before pro
ceeding to the architectural discussion of 
Section II, as that discussion leans heavily 
upon their contents. 

II. Architectural Requirements 

Although necessarily brief, the Section 
I. HMO algorithm description was of sufficient 
depth to support the following discussion of 
architectural characteristics dictated as de
sirable for easy and efficient usage of the 
algorithm. 

A. General Characteristics 

1. Two-Step Structure. One architec
tural requirement for HMl (Hypothetical Ma
chine 1), already hinted at in Section I., 
is that all basic operations under micro
programmed control consist of "two e1ement:ary 
steps. These two steps, for a data trans
forming unit such as the adder, were quite 
naturally chosen as "the supplying of inputs" 
followed by the "calling for outputs." How
ever, for a data sinking operation such as 
storing data into main memory, two such steps 
were not found so naturally. 

In fact, the author's original scheme 
for main memory was different from that now 
shown in Fig. 1. Originally, the MIR register 
(now used to accept the passage of data t:o be 
stored) did not exist. Instead, a "READ" and 
a NWRITE" flip-flop existed. As see~the 
microprogrammer, a "store-into-memory" opera
tion was then done in only one step by pa.ssing 
the MAR an address, the MBR the data to be 
stored, and the "READ" and "WRITE" flip-flops 
a "0" and a "1" respectively. The actual de
tails of storing the data were then handled 



by the memory controller during the next micro
cycle. Hardwarewise, this scheme indeed worked, 
but examples were found for which the HMO algo
rithm yielded condensed code not equivalent to 
the original uncondensed code-.--

This problem was finally eliminated by 
the hardware now shown in Fig. 1, for which a 
"load-from-memory" and a "store-into-memory" 
operation are both seen by the HMO algorithm 
as two-step operations. In other words, the 
hardware of HMl must be such that all elemen
tary operations under microprogrammed control 
consist of a "starting" step and a "finishing" 
step. 

2. Latching Architecture. Another de
sirable architectural feature suggested in 
Section I. is the "latching" type architecture 
shown in Fig. 1, where "latching" refers to 
the use of, even on a unit such as the adder 
which could have its operand inputs fed direct
ly from the source registers during a given 
add [3], a separate set of operand-holding in
put latches. Not only does this structure 
permit the microprogrammer (and software com
piler). much hardware-timing independence (of 
when adder inputs are supplied for a given 
add, for example [10]), but it also helps to 
readily break down operations (such as addi
tion) into the two necessary "starting" and 
"finishing" steps mentioned previously. An
other possible advantage of this "latching" 
type structure will be pointed out later. 

B. Microinstruction Formats 

As might be expected, the HMO algorithm 
dictates certain characteristics as desirable 
in the area of microinstruction formats. 

1. Control Section Encoding. First, in 
the area of control section formats, the algo
rithm is most easily implemented from a hori
zontal, virtually completely unencoded control 
section, having essentially one bit present 
for each possible register transfer. With 
such an unencoded control format, the inhibit 
functions (Fig. 4) can be driven directly from 
the control register (Fig. 2) and from the 
control memory output lines feeding the con
trol register. While a typical encoding 
scheme such as encoding the mutually exclusive 
input sets of each hardware register, or latch, 
can be employed, the result is that the "out
put calls" section (Fig. 4) of each inhibit 
function can no longer be driven directly from 
the control memory output lines. This is true 
simply because a coding scheme which encodes 
according to register input sets does not 
possess sufficient information to directly 
feed the "output calls" section of an inhibit 
function. In summary, then, a horizontal, 
unencoded control section format permits, for 
inhibit functions, the easiest, fastest reali
zation having the fewest levels of logic. 

2. Basic Addressing Flexibility. Simi
larly, in the other area of microinstruction 
formats, namely addressing formats, the algo
rithm again dictates certain characteristics 
as desirable. Consider the examples of Fig. 
3. They illustrate that the HMO algorithm, 
starting from a particular point, always 
condenses as many microinstructions as possi
ble into one condensed instruction and then 
restores that condensed instruction for later 
use. However, what Fig. 3 does not show is 
that the algorithm always restores each con
densed result in the location of the first, 
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or "top," instruction of the original group of 
uncondensed instructions. This restoration 
at the "top" is necessary to assure that the 
rest of the instructions in each original 
group of uncondensed instructions remain in
tact be-t.ween the restored condensed results. 
Research [11] has shown that these instruc
tions which are left intact between restored 
condensed results, although they appear to be 
garbage, may prove to be needed if one of them 
is looped back to from some point later in the 
microprogram. Even when the algorithm is com
pletely through with its one and only condens
ing pass, there is no real need to remove 
these garbage instructions, as the restored 
condensed results have been linked together 
so that, during execution, the garbage in
structions are circumvented by a series of 
"leap frog" style jumps. 

It should thus be obvious that more ad
dressing flexibility is needed than would be 
provided by using a microprogram counter reg
ister similar to the program counter register, 
or PGC, usually used for addressing machine 
instructions in main memory. Such a counter, 
or pointer, register is readily suited to 
mostly-sequential addressing, but not to the 
"leap frog" style addressing just mentioned. 
At the very least, a microinstruction format 
having one complete "next address" in each 
word of control memory is needed (see Fig. 2). 

3. Conditional Branch Dictates. Con
sider the second example of Fig. 3 which, 
remember, illustrates an extreme, idealistic 
scheme for handling conditional branch micro
instructions. Note that when the conditional 
branch instruction was encountered, condens
ing proceeded down a selected, "favored" path, 
as suggested at the end of Section I. Fur
ther note that the condensed code on the 
right has, in its restored conditional branch 
instruction, the two transfers "AI1+PGC" and 
"AI2+O." The astute reader will notice that 
these two transfers will always be executed 
in the condensed code, no matter which path 
is taken, whereas, in the original uncondens
ed code, they would have been executed only 
if the "favored" path were taken. Thus, along 
the other, unfavored path (here FETCH), the 
program state when using the condensed code 
is slightly different from the program state 
when using the uncondensed code. This situa-
tion could obviously cause errors and unex
pected results. However, this situation can 
be remedied by increasing the width of each 
control memory word, allowing room to place 
the bits representing these two transfers in 
a separate conditional control section which 
is executed only if the "favored" path is 
taken during execution. 

Research [11] has also shown that, in 
order "1:'0 condense, during the formation of 
one condensed result, not only "up to and 
including" a conditional branch instruction 
but "past" it as well (as in Fig. 3), two 
completely independent "next addresses" must 
be available to the conditional branch in
struction. Again, this could be accomplish
ed by further widening each control memory 
word to allow room for a second, optional 
"next address." 

One possibility to consider at this 
point is a double-width scheme in which each 
word o:E control memory has room for essential
ly two complete control sections and two 
complete. "next addresses." Such a scheme 



would permit the storing of two regular or one 
conditional branch microinstruction in each 
control memory word. Indeed, this scheme is 
feasible from a hardware standpoint, the major 
requirement being the capability of reading or 
writing "single-length" or "double-length" 
control memory words. The real problem with 
this scheme surfaces when one attempts to ap
ply the HMO algorithm in its present simple, 
unrestricted form. Whenever the algorithm re
stored a condensed, "double-length", condition
al-branch result, it would generally be de~ 
stroying one "single-length" garbage instruc
tion (discussed previously) and possibly try
ing to store this "double-length" result start
ing on an "odd" boundary, or the midpoint of a 
"double-length" control memory word (an action 
not permitted in some "single/double-length" 
addressing schemes, such as IBM 360/Model 50 
main memory) • 

Significantly, this whole problem dis
appears if one makes the simple restriction of 
not allowing the algorithm to condense "past" 
a conditional branch instruction. With this 
restriction, many format schemes between the 
extremes already discussed become possible, 
even schemes for which the two "next address
es" are interrelated rather than completely 
independent. However, research [11] has 
shown that schemes employing two independent 
"next addresses" for conditional branch micro
instructions are preferable from the stand
point of adaptability to the HMO algorithm. 
Just as an example, one workable scheme is 
the basic "single-length" scheme shown in Fig. 
2 augmented by allowing, for conditional 
branch instructions, a choice between the 
"next address" found in the instruction it
self and a fixed, hardwired optional "next 
address" (pointing, perhaps, to an "increment 
the prograr.l counter (PGC) and then go to 
FETCH" microroutine}. 

4. Summary. The HMO algorithm does not 
dictate an obvious best choice for a micro
instruction format. Instead a myriad of pos
sibilities exist, each with its own good and 
bad points concerning the tradeoff areas of 
microprogramming flexibility, algorithmic 
adaptability, and hardware complexity and ef
ficiency. 

C. Control Memory Characteristics 

1. Microcycle Rate. It was suggested 
in Section I. that the microcycle time, or 
cycling speed of control memory, be such that 
one microcycle is sufficient time to complete 
all basic opera'tions under microprogrammed 
control. While this "one-microcycle assump
tion" is not absolutely necessary, it does 
permit the simplest, neatest realization of 
the HMO algorithm. The alert reader will 
note, however, that this characteristic im
plies essentially that control memory must be 
cycled at least as slowly as the slowest basic 
operation in HMI (say one complete main mem
ory cycle for HMI as presented in this paper). 
One reasonable technique for helping to 
achieve this "one-microcycle assumption" would 
be to use the same type (and speed) of memory, 
say core, for both main and (user) control 
memories, a type of design employed, in vary
ing degrees, on real, production machines 
such as the IBM 360/Model 25 [12] and the 
Burroughs B 1700 [13J. 

Obviously, however, this "one-microcycle 
assumption" could, in the extreme, result in 
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a microcycle time for HMI which is prohibitive 
ly slow. Another promising technique would be 
to take advantage of the "latching" type ar
chitecture previously suggested for HMI and 
use it to pipeline the slower operations of 
HMI (whatever they may be) to a sufficient 
degree such that all micro-operations can be 
completed at least as quickly as one cycle of 
control memory. For example, by insisting 
that the AOI register of Fig. 1 be .a real, 
physical latching register (not assumed thus 
far), the overall process of addition (from 
operand source registers to result destina
tion registers) would then consist of three 
elemental s·tages instead of the present two 
stages. That is, the overall addition process 
would then be a three-stage pipelint=, with 
each stage being a smaller part of the entire 
process than is the case with the present two
stage pipeline. 

Thus, this "one-microcycle assumption" 
is not necessarily as impractical as it may 
have originally seemed, the two techniques 
just discussed (and others [llJ, [14]) helping 
make this assumption reasonable and practical. 
Although modifications to the HMO algorithm 
itself [11], [14] can also be helpful, this 
discussion has concentrated on hardware, or 
architectural, means of achieving and im
proving the practicality of the "one-micro
cycle assumption." 

2. Possible stiucture. Of the many pos
sible methods which could be used to actually 
implement the HMO algorithm, a firmware im
plementation's flexibility is particularly 
attractive. To achieve a firmware implementa
tion, one feasible approach would be to em
ploy two separate control memories (or at 
least two separate sections of one memory) • 
One section would contain the HMO algorithm, 
loader routines, and other factory-fixed 
routines of no condensing interest 1:0 the 
algorithm. In other words, this section 
would essentially contain routines that ·the 
microprogrammer was forbidden to a11:er. The 
other section would basically contain the 
user-written microprograms [11]. Thus, 
during the run mode, the machine could be 
under the control of either control memory 
section, but not both. While performing the 
HMO algorithm, the machine would be under 
control of the user-forbidden section and 
would be operating on the user-accessible 
section to condense some user-writtem micro
program stored therein. Note that this type 
of control memory structure employing two 
separate sections, one being user-accessible 
and the other not, is found, in varying 
degrees, on real, production machines such as 
the Burroughs B 1700 [13] and the Microdata 
1600 [15], a fact indicating the practicality 
of this approac.h. 

Conclusion 

This paper has proposed a hardware algo
rithm which could enable a microprogrammable 
machine to do its own local, machine-depEmdent 
optimization of user-written microprograms, 
leaving the global, machine-independent opti
mization to an associated software compiler. 
In fact, one software microprogram compiler 
could efficiently serve a group of logically 
different, but architecturally similar, 
machines, each possessing an implementation 



of the ~O algorithm enabling it to do its [7] 
own machine-dependent condensing and "cycle 
squeezing." Such a system should be the ideal 
emvironment for a software compiler which can 
efficiently serve several different machines [8] 
but still present the user with a maximum 
degree of machine independence as he writes a 
microprogram for a particular, chosen machine. 

In addition, this paper has discussed 
several of the architectural design implica-
t:ions of this HMO algorithm. It is encourag- [9] 
ing to note that the architectural criteria 
arrived at are not exotic, expensive, imprac-
t:ical criteria, but instead, many are actually [10] 
found on production machines, thus implying 
their cost effectiveness. 
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PGC - Program Counter, IRA - Instruction Register 
Address Portion, 

MIR - Memory Input Register, 
MOR - Memory Output Register, 
etc. 

MEM. 
BANK 

AI2 MAR 116 

PGC 

MIR 

* Write cntrl bit determines gating of either MBR or 
MIR here. 

** These can be real or pseudo registers. 

*** This adder cond' code = 1 iff AOI t 0 (cond' code 
o implies AOI = 0). The algorithm can treat this 
cond' code as an ad0er output. 

NOTE: The #'s indicate the microinstruction bit 
controlling a transfer. 

Fig. 1 Subset of ill11 (Hypothetical Machine 1) 

Control Register 

Master (Control) Register, or MCR 
(Contains 1 Microword) 

Load Upcoming Microword 
into Master Register 

Condense Upcoming Control 
Section into Control 
Register 

Load (Write) Upcoming 
Next Address into 
Next Address Register 

~ 

Save (or 
Execute) 
Contents of 
Master 
Register 

Fig. 2 Flow Chart of Basic HMO Algorithm 
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The following example illustrates condensing of an "add" 
with direct address that performs ACCUM~ACCUM + MEM(IRA) ; 

1: MAR+IRA; to 2i 1: MAR+lRAi to 2; 

2: AI2+MOR; to 3' rC.9n:..-~ 2: , dense 

3: AI1+ACCUM; to 4; 

4: CI+Oi to 5; 

AI2+MOR; AI1+ACCUM; CI+O; 
to 5; 

5: ACCUM+AOli to FETCH; 5: ACCUM+A01i to FETCH; 

uncondensed microcode condensed microcode 

NOTE: The label #'s shown above are symbolically repre
sentative of control memory addresses and thus, in 
reality, could correspond to virtually any absolute 
physical address. 

The following example depicts how the author would ideally 
hope to handle conditional branch microwords. the example 
is a "mem. increment and skip next instr .. if result is 0" 
instruction. Note that "EFF ADDR" means Effective Address. 

1: MAR+EFF ADDRi to 2; 1: MAR+BFF ADDRi to 2; 

2: AI2+MOR; to 3; -----:> 2: AI2+MOR; AIl+O; CI+l; to 5; 
dense rcon

-3: AI1+0; to 4i 

4: CI+l; to 5; 

5: MIR+A01; to 6i 

6: WRITE CNTRL=l; to 7; 
/* Above implies 

"MEM+MIR" during 
data restore */ 

7: to(AOlZ) 8,FETCH; 
/* No reg. xfers in 

above, only cond'l 
branch on cond' 
code A01Z */ 

8: AI1+PGC; to 9; 

9: AI2+0; to 10i 

10: PGC+A01; to FETCH; 

uncondensed microcode 

5: MIR+A01; to 6; 

WRITE CNTRL=l; AI1+PGC; 
AI2+0; to (A01Z) lO,FETCH; 
/* In cond'l branches such 

as above, parenthesized 
quantity is a binary
valued cond' code, or 
CC. If this CC=O, left 
next addresS (here "10") 
is used; if CC=l, right 
next address (here 
"FETCH") is used. */ 

10: PGC+A01; to FETCH; 

condensed microcode 

Fig. 3 Some "Before & After" Examples 

Inhibit 
adder 

14 

2 
control Biti 
from condensed 
instr'n being 
formed in 
Master Reg. 

i=7 
2 

Control Biti 
from next 

.1 upcoming 
microinstr'n 

i=2,4,15,16, 
AOIZ Bit 

h r {"I:" implies Logical OR 
wee "." implies Logical AND 

NOTE: Refer to Fig.'s 1 & 2 for explanation of "Master 
Reg.", various control bit its, etc. (In above, 
"A01Z Bit" refers to the microinstruction bit which 
performs a cond'l branch based on value of A01Z.) 

NOTE: "Inhibit" functions for other components in HMl 
are formed in a similar manner to the one shown 
above for the adder. 

Fig. 4 "Inhibit" Function Example 
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Abstract 

A design automation system is described 
which has certain features that make it par
ticularly well suited to the automation and 
analysis of entire digital systems: includ
ing hardware, firmware and software. The 
code includes faci1ities for automated synthe
sis, simulation and documentation. The lan
guages, called LINDA and MODEL, and their 
processing algorithms are described. 

Examples of computer architecture stud
ies which have been conducted using LINDA 
and MODEL are also presented. These include 
development of an associative processor and 
investigations related to a logic-in-memory 
architecture. It is stressed that reliance 
on the appropriate design automation proce
dures have expedited the work and reduced the 
cost of research by eliminating the implemen
tation phase as a necessary prerequisite to 
the study of machine concepts. 

Introduction 

One ironic aspect of design automation 
is that those who have been intimately aware 
of the capabilities of digital computers 
longer than anyone else, the computer de
signers themselves, lag behind their counter
parts in many other disciplines in adapting 
these machines to solve their problems. 
Users in fields as diverse as astronomy and 
accounting have automated large segments of 
their workload, yet computer design has been 
a manual art until very recently. To be 
sure, the problem of adapting design automa
tion techniques to entire systems is not a 
simple one, yet the fruits of such an endeav
or appear to be well worth the effort. The 
advent of register transfer languages and 
special purpose simulators have increased 
the usage of computers in design of processor 
architectures, but each of the techniques in
troduced heretofore seem to have one or more 
serious deficiencies which detracts from 
large scale acceptance by the computer design 
community. The worth of total system design 
automation and the progress (or lack of it) 
in specific areas such as synthesis, has been 
brought out clearly in recent survey arti
cles. l ,2 

*Work performed under the auspices of the 
U.S. Atomic Energy Commission. 

A design automation system is described 
which has certain features that make it par
ticularly well suited to the automated de
sign and analysis of entire digital systems. 
Unlike register transfer languages, it pro
vides all the ~recision and fidelity of gate 
level or instruction level descriptive 
models. It provides for the specification 
of hardware, software, and firmware at any 
desired level of detail with respect to tim
ing, logical interaction, or cost. The de
scriptive formats used are evocative of the 
designers own "jargon",thus fostering a 
measure of immediate familiarity for new 
users. And the codes are written entirely 
in FORTRAN, to enhance portability among com
puter installations. 

A description of the system follows. In 
addition, some applications of its use in in
vestigation of computer architectures are of
fered. 

The Design Automation Syster!1, 

The design automation system provides 
the modular facilities of automatic synthesis, 
layout, documentation, simulation and genera
tion of diagnostic sequences. It is a uni
fied system centered around a base language 
called MODEL which is the output file of the 
synthesis task and the input file of the 
simulation task. The interrelationship of 
the various program modules and data bases 
are given in Figure 1. 

To synthesize a system, a generalized 
behavior description formatted in a language 
called LINDA is fed into the synthesis task. 
The output of that task is a network of inter
relationships of system building blocks pre
sented in the MODEL network descript,ion for
mat. Typically this is a gate-level logic 
circuit description but facilities exist for 
utilizing complex macromodules and i.nstruc
tion sequences as well. From the MODEL base 
file, a task can be called to generate auto
mated documentation, such as flow and loqic 
diagrams and, in the case of gate-level cir
cuits, layout and routing information as well. 
A simulation task can also be called, which, 
when externally excited by a test sequence, 
will provide indications of the system re
sponse, such as oscillographs or parameter 
dumps. 

The specific behavior of the system under 
analysis, as represented by the simulator 



output, can then be compared to the general
ized behavior description which was fed into 
the synthesis task (as indicated by the check
out path of Figure 1). Many iterations are 
generally necessary before the system has 
been exhaustively tested and is satisfacto
rily producing prescribed behavior. But the 
point is that a logical system can be de
signed and thoroughly tested at any desired 
level of detail with a minimal amount of de
signer intervention. Thus, architectural 
concepts can be explored quickly with a 
vastly reduced level of system implementation 
activity and correspondingly lower develop
ment cost. 

The MODEL and LINDA programs were orig
inally developed for the synthesis and simu
lation of logic designs. It was recognized, 
however, that a fundamental requirement of 
any practical design automation code is the 
ability to encompass macrofunctions, macro
sequences, read-only-storages and writeable 
storages as well as Nand gates and flip
:Elops. The resulting code is a design auto
mation facility that treats all aspects of a 
digital system in a unified and consistent 
manner. 

The elements of LINDA, the behavior 
:specification language, and MODEL, the net
work description language are given in 
~rables 1 and 2. Details of the use of these 
languages and programs with examples are pub
lished elsewhere. 3 Obviously, these lan
guages were originally meant for pure hard
ware applications, but since the formats and 
algorithms were sufficiently general to in
clude "'softer" aspects, MODEL and LINDA have 
evolved into tools that could be applied 
equally well to the analysis of architectural 
questions. The programs, in fact, continue 
to evolve and adapt to new applications, with 
newer versions containing expanded features 
for software. 

Extensability to software in the simula
tion task is quite simple because all MODEL 
devices, both primitives and macrofunctions, 
are handled as "black boxes" with tabulated 
responses to given binary input vectors. 
Hence, by considering an instruction sequence 
as the behavior table of a firmware or proc
essing storage module, it is immediately and 
naturally integrated into the system under 
test. 

There are at least two viable approaches 
for accommodating an instruction reperatory 
in the synthesis algorithm. The first is to 
recognize certain subnetworks as functions 
for which there is a predefined instruction. 
Then, if the timing constraints will allow, 
this portion of the design can be partitioned 
into the software area, and the operands and 
results need only be accessible to general 
registers. The second approach, and the one 
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which is most frequently taken, is to simply 
extend the complement of LINDA operators be
yond those listed in Table 1. 

Internals of the Tasks 

The MODEL simulator uses an event-based, 
table-driven algorithm similar to that used 
in many stochastic simulation systems. The 
main simulation table has one row per device 
and up to sixty parameters or columns. It is 
distributed over several data set media, with 
the more frequently used columns being as
signed to the more accessible media in a hier
archical structure. 

The simulator begins by processing ac
tion statements until it reaches one or more 
signal generation statements. There is only 
one possible type of external event that can 
excite the circuit~ the occurrence of a sig
nal generated on an input line as represented 
by GENSIG. When this occurs, all devices 
whose inputs are affected are checked for 
prospective instabilities directly caused by 
this change. As the instabilities give way 
to outpu.t value changes, the devices to which 
these ou.tputs connect become themselves new 
candidates for instability, and so on until 
the system becomes quiescent or the simula
tion time equals that of the next GENSIG. 

The instability test for any device de
pends, of course, upon the device type. The 
test does, however, lend itself to a gener
alized treatment. For any k-input device i, 
the n-th output is a function of the ordered 
inputs Ij and, in some cases, the current 
state. 

(1) Q5 • := F. (I I' 1 2 , ... I., ... Ik ~ ~. 1) 
~,n ~ J ~,n-

If, then, the state of the inputs is such 
that the output should be modified, a crite
rion labeled B is set 

~,n- ~ 
(2 ) {I i. f fJ. 11- F . (I I' I 2 ' ... Ik~ ~. 1) 

~,n-

B.= 
~ o otherwise 

When thi.s condition is first noted, the cur
rent simulation clock value is added to the 
appropriate device propagation delay (TPD) to 
schedule the next output transition at time 

(3) TNEXT. = TPD. + T 
~ ~ 

Then, criterion A. is set 
~ 

(4 ) A. 
~ {

I if T ~ TNEXT
i 

o otherwise 

The two criteria are added arithmetically and 
tested 
(5) 



F.iqure 1 

M,IIDEL/LINDA SYSTEM. DESCRIPTION 
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TABLE I 

ELEMENTS OF SPECIFICATION LANGUAGE 
(LINDA) 

Operators 

Conditional Operators (CD¢P) 

DURM,T 
DURL,T 
X,N 
PREV 
AFT,T 

Boolean 

Syntax 

C 

+ 

Variable 
Variable 
Variable 
Variable 
Variable 

Output 

duration 
duration 
occurred 
previous 
delay 

Operators 

no more than T 
no less than T 
N times 
occurrence of 

complement of 
or 
and 

Input 
(Variable + Variable) 
(Variable . Variable) 
(CD¢P . (Variable» 
(C (Variable) ) 
Variable 

vior 
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TABLE 2 

MODEL LANGUAGE STATEMENTS 

Device Definition Statements: 

NAME (I,J)/TYPE/INPUTS/OUTPUTS/DELAY 

(Types are: JK, RS , AND, OR, INV, 
NAND, NOR, and TIE) 

NAME (I,J)/FUNCTION/INPUTS/OUTPUTS 

Connection Statements: 

FROMTO/Name,Output No./Name, Input No. 
BUS/Name (I ,J), Output K/Name (M,N) I 

Output L/I=A,B/J=C,D/M=E,F/N=G,H 

Monitoring Statements: 

TRACE/variable list 
SCOPE/output list 
SNAP/output list 

Control Statements: 

END FUNCTION 
END MACRO 

Action Statements: 

START 
STOP 
MACRO 
IF/LABEL 
GOTO/LABEL 
GENSIG/VAR/Duration 
WAIT 
Q={Q is a general register) 
T={T is the simulation clock} 
QU¢TE 

FIGURE 2 COMPARATIVE PERFORMANCE OF 
TWO BUFFER LOADING STRATAGIES 

STRATEGy:r 
----~------~'r.-----~ 

UN8UfFERED 

MACHINE 

+--------I------;-------.-------r---
10 64 256 11: 4K 

BUFFER SIZE 
CUMULATIVE CORREL. COEFF. .71 



Ci = 1 means that the device is ready for a 
transition. Ci = 0 indicates a stable condi
tion~ either the outputs agree with the input 
and no event is scheduled, or a transition is 
pending and recognized as such. Ci = -1 in
dicates that the function of the input condi
tions have changed twice in the time of one 
propagation delay or less, and a "spike" will 
appear on the output of that device. This 
usually indicates a design error and it is 
appropriate to flag this condition with a 
warning to the user. 

The synthesis task consists of parsing 
the statements from the innermost parenthe
sized nesting level outward, and then opti
mizing the resulting forest of directed rooted 
tree graphs by combining those variables rec
ognized as being equivalent and allowing the 
fan-out to exceed one. Most internal states 
or storage requirements of the circuit are 
recognized in the synthesis process. LAn 
output which is explicitly set in one state
ment and explicitly cleared in another will 
be implemented with an R-S flip flop. The 
results of the PREV or X operators will also 
call for utilization of multistable devices.] 
Other simplifications performed by the pro
qram include those recognizing the economies 
of inverting logic and expanded fan-in, i.e. 

and 

C (A) -+ C.(B) 

C (A) • C (B) 

A + (B + C) 

A (B • C) 

C(A . B) 

C (A + B) 

A + B + C 

A • B C 

Brror checking in the synthesis task includes 
testing for the grammar and syntax of the 
specification statements and tests for timing 
problems, particularly those"where the accu
mulated unit delays in a generating tree ex
ceed the expected generation time as speci
fied by the (AFT,N) conditional operator. 

The relationship between behavior and 
structure that suggests extensions of the 
algorithms to other classes of systems has 
been formally explored with the algebraic 
theory of categories. In the terminology of 
category theory, the statement is that be
havior is left adjoint to minimal realization 
as functors between certain categories of 
machines and behaviors. The implication is 
that almost any system which has a descrip
tive algebra can be minimally realized using 
the method of the LINDA synthesis algorithm. 4 

;~pplications in Computer Architecture Studies 

Associative Processor 

The first versions of the design automa
tion codes described above were written ex
pressly for the analysis of novel computer ar
chitectures in studies conducted at Brookhaven 
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National Laboratory. The first machine de
veloped and analyzed in this program was an 
associative processor. S A 1024 word content 
addressable storage was connected to a 
Digital Equipment Corporation PDPll/20 mini
computer via a "unibus" interface controller. 
Within the controller was logic enabling the 
augmented PDPll to process several new in
structions in addition to the standard PDPll 
reperatory. The newly defined instructions 
provided for the parallel association of the 
en·tire 1024 word array for simultaneous com
parison with an instruction operand. In ad
dition to the test for equality, the tests 
for greater-than and less-than, search for 
maxima and minima and other useful exten
sions were implemented via hardwired algo
rithms. 

These new instructions behave exactly as 
any other machine instruction. They are 
trapped by the controller which then becomes 
master of the unibus. Control is returned to 
the central processor only when the instruc
tion is complete. Hence, except for the new 
and powerful associative capability, the ma
chine modifications are transparent to the 
user. 

There are many references in the litera
ture citing advantages of associative proc
essors. The extended capability is' useful in 
the solution of data management problems, 
processing systems of differential equations, 
communications and many other applications. 
The Brookhaven approach provided for an in
expensive method of developing such a proc
essor. The extensive use of design automa
tion techniques increased the cost effective
ness of the project as well. Simulations 
were run to test the storage array and the 
controller, giving the designers a basis for 
early evaluation and providing for consider
able checkout before implementing the compu
ter. Instruction level simulations enabled 
application codes to be written, debugged 
and evaluated prior to hardware availability. 

Logic-in-Memory Processor 

Subsequent to the associative memory 
processor, a more advanced architecture was 
investigated. It was structured around a 
distributed logic storage device or Process
ing Memory. This logic-in-memory architec
ture, unlike the associative processor, was 
not to be ever fabricated, but was rather 
meant only as a vehicle for evaluating its 
concept:s through simulation. This proj ect 
was also the first to make extensive use of 
the synthesis capabilities of the design auto
mation code. 6 

One of the criteria for evaluating the 
logic-in-memory processor was its suitability 
for large-scale-integration (LSI) technolo-
gies. This imposed the requirement on the 



MODEL and LINDA languages to also exhibit 
suitability for LSI. Hence, it was necessary 
to have a convenient method for generating 
and describing networks of large numbers of 
similar or identical subnetworks, as required 
by the economics of LSI implementation. The 
macro definition capabilities of the MODEL 
formats allow the design automation system to 
meet this requirement very well. In fact, it 
was found that the number of MODEL statements 
necessary to describe a system is a good 
measure of the optimization of that system 
for LSI implementation, i.e., the circuit 
with the smaller number of statements was 
more likely to be a better design for LSI. 

Loading Strategies 

Other computing techniques outside the 
framework of MODEL and LINDA have been used 
at Brookhaven to aid the system architect. 
One example arose in the logic-in-memory 
study but is applicable to almost all current 
and future processors. Most computers have 
storage hierarchies ranging from small, fast, 
and perhaps logic-augmented storage to very 
large, slow, sequential storage. For these 
systems, high performance is very much a 
function of the probability that the operands 
of interest are in the fastest store or 
scratchpad. Consequently scratchpad loading 
strategies must be carefully defined and 
analyzed. 

It is difficult to find a deterministic 
method that can explore and resolve questions 
such as which loading strategy is best. It 
is rather easy to write a computer program, 
however, which can simulate and compare vari
ous strategies if a set of typical storage 
address sequences are available. This is 
exactly what was done in the logic-in-memory 
machine study. Large samples of storage ad
dress sequences were extracted from several 
different types of existing computers, both 
real and simulated. They were applied to 
various strategies and tested at several dif
ferent buffer sizes. The resulting curves 
for each strategy were plotted so that the 
designer could select the buffer size and/or 
loading strategy best suited for the computer. 
An example of such graphical results appears 
in Figure 2. With the advent of writeable 
control storage,both strategies and buffer 
sizes can be changed dynamically, so it is 
even more important to develop "a priori" 
knowledge of the various characteristics. 
Then the proper control storage program can 
be invoked for a given set of circumstances 
(i.e. type of job, field length, user esti
mate of CPU utilization, degree of multi
programming, etc.). 
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Other Applications 

There are many other types of problems 
faced by the computer architecture desi':3"ner 
for which computer aided solutions are advan
tageous. Conventional queuing models, mathe
matical programming optimization models, com
munications traffic and sampled dat:a analysis 
models can all be used to good advantag(= for 
computer systems. 7 ,8 Special languages have 
been developed to describe computer: structurel 
and instruction sets. And, of course, IsmaIl 
programs can always be written to expedite thE 
solution of almost any large problem. 

In summary, there is an entire! spectrum 
of computer related facilities available to 
the digital system designer. One of the very 
real challenges of the future may very well 
be to select and adapt the most appropriate 
of these to the project at hand. 
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Abstract 

A distinguishing feature of modular design from ad 
hoc design is the establishment of an intermodu1e pro
tocol to which all modules adhere. The problem of rep
resenting and analyzing intermodu1e protocol for the 
control portion of register transfer level systems is 
outlined. An introduction to two existing graph models 
of computation indicates that existing register trans
:Eer level module sets are representable by various 
"token flow" models. A single model that is capable. of 
representing the token flow models and some of its ana
lytical properties are illustrated by example. Finally, 
three examples of deadlocks in existing modules sets 
are presented. These deadlocks were uncovered by the 
analytic properties of the new model. One example is 
due to incorrect interconnection of modules at the user 
level. The other two illustrate incorrect signaling 
co'nventions between modules necessitating a redesign of 
some modules. 

1. Introduction 

As technology has evolved the primitive components 
available to a digital system design have increased in 
complexity. Twenty-five years ago the designer con
structed his systems out of circuit level components 
such as resistors and diodes. Subsequently switching 
circuit level components, as represented by gates and 
flip-flops, became available as small scale integra
tion (SS1) components. With the introduction of medi
um scale integration (MSI) register transfer (RT) level 
components appeared: arithmetic and logic units, reg
isters, etc. The advent of large scale integration 
(LSI) has made memories and even processors primitive 
components from which systems are designed. 

One model of the design process is as follows. 
The designer partitions the system into "modules" that 
are each, in turn, designed from the available primi
tive components. The advantages of this "modular" de
sign approach are well documented [Bell 73; Davidow 
72; Parnas 71] and a partial list might include: 

1. Reduced development time by allowing the de
sign task to be partitioned, making better 
use of the resources (time and manpower) 

2. Increased flexibility by allowing the altera
tion of specifications and the redesign of 
modules 

3. Comprehensibility by allowing the students of 
the system to concentrate in well defined 
pieces of the final object 

4. Maintainability by allowing the identification 
of faulty components which can then be re
placed or repaired 
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5. Economy of scale by mass producing a small 
number of standard modules rather than sup
porting custom designs 

6. Significantly decrease system construction or 
modification time by conducting all design 
with high level modules as primitives. This 
is different from (1) and (2). Here we are 
talking about building systems with predefined 
modules, while (1) and (2) are concerned with 
the specification of the original modules. 

Many of the advantages of modular design stem 
from the definition of an intermodule protocol for 
transfer of data and control signals: A module belongs 
to a particular set if it adheres to the signaling con
vention for that set. This paper presents two repre
sentational methods from Which is derived a notation 
sufficiently powerful to represent register transfer 
level module sets. Analytical tools based on this no
tation enable us to evaluate the intermodule protocol 
of existing and proposed module sets. 

The paper is divided into six sections. Section 
Two describes existing register transfer level module 
sets while Section Three discusses two theoretical mod
els of computation. A unifying notation and some of 
its analytical properties are presented in Section 
Four. Section Five demonstrates the application of the 
model and tools to existing module sets. The final 
section defines some open research problems. 

In a paper of this length we cannot present all 
the details of our research. Rather we hope to moti
vate and illustrate our results by example. Full de
tails can be found in~uen 73]. 

2. Existing Register Transfer Level Module Sets 

Typically register transfer (RT) level module sets 
are divided into a control part and a data part. An 
example of an RT level module set is the Register Trans
fer Modules (RTMs) designed by Digital Equipment Corpo
ration and Carnegie-Mellon University [Bell 72a, 72bJ. 

RTMs use a distributed control scheme and currently 
there are approximately half a dozen control module 
types. As an economic decision, all the data modules 
(approximately a dozen data module types) are inter
connected via a single bus. However, provision exists 
forRTM systems to have more than one data bus when in
creased performance is required. Figure 1 depicts the 
RTM implementation of a system to sum the integers from 
1 to N. The connections shown in the figure are all 
that are required to construct the physical system. A 
detailed description of RTMs is given in [Bell 72a]. 
However, the flowchart format for RTM notation is so 
familiar that the detailed reference probably need not 
be read to understand the following discussion. Note 
that the primitive functions are very similar to those 
available at the assembly language level of program
ming. Other RT level module sets have been developed at 
MIT [PatH 72], Washington University [Clark 67J, and the 
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Fig. 1. R'IM diagram for sum of integers from 1 to N. 

* University of Delaware [Robinson 73]. An interesting 
feature of the latter module set is that the data part 
is composed solely of commercially available MSI chips. 

As exemplified by the University of Delaware mod
ule set, commercially available MSr/LSI chips can be 
used for the data part of RT module sets. However, 
there is only a bewildering array of SSI components to 
perform control functions [Fuller 73]. Thus motivated 
we examined control from a graph theoretic viewpoint 
and established tools for analyzing intermodule proto
col signals. The tools were subsequently used to 
evaluate existing RT module sets. 

3. Graph Models of Computation 

There are a number of models which may be appli
cable for the description of RT modular systems. These 
are: 

* 

1. Conventional Representations which are the 
flowchart, the state diagram and the state 
table; 

2. Token Flow Models which include the Petri Net, 
Parallel Program Schema [Karp & Miller 67,69], 
Flow Graph Schemata [Slutz 68], Graph Model of 
Computation (GMC) [Gostelow 71]; 

The advantages of design with these module sets are 
dramatic. A PDP-8 like minicomputer could be designed 
and build in six-seven man-months using discrete compo
nents. A similar processor built from SSI components 
might take two-three man-months and from MSI/LSI compo
nents about one man-month to design and construct 
[Bell 74]. A PDP-8 like minicomputer has been designed, 
constructed, and debugged with RTMs in eight-ten man
hours. As in the case with all the RT module sets, the 
translation from paper design to hardware implementa
tion is a one-for-one process. A large majority of the 
systems work the first time power is applied. The mod
ule sets provide a very clean intermodule communica
tions protocol which eliminates any timing problems. 
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3. Data Flow Models which include Computation 
Graph [Karp & Miller 66], Program Graph 
[Rodriguez 67] and Adams' Computational Model 
[68] ; 

4. Register Transfer Languages examples are ISP 
[Bell 71] and CDL [Chu 70]. 

Most of the above models are proposed mainly for 
parallel processing instead of specifically for Regis
ter Transfer Control Systems. Many of these models are 
based on graphs. The existing modular RT isystertl.s have 
the characteristics of being capable of asynchronous 
and concurrent operations. The properties of graphs mak 
these representations very attractive as rl~presenta
tions of RT control. Nodes of a graph can correspond 
to control modules. Concurrent actions arf~ easily 
represented by parallel arcs. The asynchrl)Uous mode 
of operation is represented by the graph property that 
for two nodes A and B joined by an arc dirf~cted from A 
to B, control is considered to pass from A to B if the 
RT operation associated with A is complete" The RT 
operation is assumed to take a finite but unspecified 
time. 

The various models of parallel computution 'were 
surveyed and a taxonomy was developed [Huen 73]. Their 
properties were classified by the taxonomy in order to 
determine their suitability as representations of RT 
level module sets. For a survey of graph models, the 
reader is referred to [Huen 73] or [Baer 73]. '1''''0 mod
els will be discussed here. 

A Petri Net as presented by [Holt and Commoner 70] 
and [Dennis 70] is a directed graph with two types of 
nodes, namely transitions and places. Transitions rep
resent events and are drawn as a bar in the: graph. A 
place represents a condition and is drawn BlS a circle 
(Figure 2). The arcs in the graph must be directed 
from a transition to a place or from a place to a 
transition. If an arc is directed from a place to a 
transi tion, the place is an input place of the transi
tion. If an arc is directed from a transition to a 
place, the place is an output place of the transition. 
Thus in Figure 2, PI is an input place to '1'1 while P 
and P3 are output p aces of T1• 2 



Fig. 2. A Petri Net 

Each place may contain tokens. A place contain
ing a token represents holding of the condition that is 
associated with the place. Graphically a token is rep
resented by a dot in a place. A marking of a Petri Net 
with I' places is a mapping from the set of I' places to 
a set of r-dimensiona1 vector of nonnegative integers, 
each of which represents the number of tokens in the 
corresponding place. 

A transition having tokens in all of its input 
places is said to be enabled. Semantically a conjunc
tion of input conditions enables a transition. Only 
enabled transitions can fire. The firing of a transi
tion removes a token fro~ch of its input places and 
a token is deposited in each of the output places of 
the transition, thuR the conjunction of the output con
ditions hold. A transition cannot selectively put 
tokens in output places. The FORK and JOIN mechanisms 
[Conway 63] are provided by this rule. Alternate con
trol flows are depicted by transitions having common 
input places. In Figure 2 both transitions T1 and T2 
are enabled but the firing of one transition disables 
the other. A simulation is a sequence of transition 
firings that are permitted by the net. A marking M' 
is said to be reachable from a marking M if there 
exists a firing sequence which transforms marking M 
into M', A marking class of a Petri Net is the set of 
all markings reachable from the initial marking. 

Structurally the Petri Net is a token flow model 
in which a token carries no attributes as compared 
with Adams' Computation Graph. Only the positions of 
the tokens matters. Since each place corresponds to a 
boolean condition, it is desirable to have a Petri Net 
constructed so that it never has more than one token 
in a place in any marking. Such a Petri Net is said 
to be safe. 

A Petri Net models control branches by showing 
only the possible branches of token flow. No mechanism 
is provided to show how the branch decision is reached. 

Another interesting property is the liveness of 
Petri Nets. A live Petri Net is one in which every 
transition can be executed infinitely often. [Holt 
and Commoner 70] first studied necessary and suffici
ent conditions for live and safe state machines and 
marked graphs which are proper subclasses of Petri Nets. 
[Hack 72] has presented the necessary and sufficient 
conditions for live and safe Free Choice Nets which in
clude state machines and marked graphs. Free Choice 
Nets, a proper subclass of Petri Nets, are not complex 
enough for the analysis of most of the Petri Net de
scriptions for the behavior of MIT Asynchronous Modules 
given in [Dennis 70]. [Huen 73] has proved the neces
sary and sufficient conditions for Petri Nets. We shall 
discuss the result in Section Five and show how they 
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can be used to analyze RT control flow. 

Another token flow model is the Graph Model of 
Computation (GMC) [Goste10w 71J, which is a graph with 
a single node type, the vertex. The vertices are simi
lar in function to the transitions of Petri Nets. The 
arcs are containers of tokens. The GMC is more general 
than Petri Nets in two aspects: input and output logic 
conditions and input and output thresholds. An input 
logic condition, either disjunctive, '+', or conjunc
tive, '*', is specified among input arcs of a vertex. 
Each input or output arc of a vertex is associated with 
a threshold, a positive integer. An output logic con
dition, '+' or '*', is specified for all the output 
arcs of a vertex. A disjunctive logic condition speci
fies that any input arc, say 01, of a vertex V must con
tain tokens equal in number or exceeding the token 
threshold for arc 01 in order to fire V. The conjunc
tive input logic requires each input arc to contain as 
many tokens as the specified threshold to fire the ver
tex. Similarly, on the firing of a vertex, one or more 
tokens can be placed by the vertex in selective or all 
output arcs depending on whether the output logic con
dition is disjunctive or conjunctive, respectively. 

Figure 3 shows the GMC graph equivalent of the 
Petri Net in Figure 2. The integers in a vertex against 
an arc represent the thresholds. [Gostelow 71] has 
proved that GMCs with thresholds equal to one are 
equivalent to Petri Nets. 

Fig. 3. A GMC 

GMC graphs are organized so that there is an entry 
arc S and exit arc X. A properly terminating GMC is 
one such that given a token only at its entry arc S 
initially, there will be a token at its exit arc X and 
no other arc will have a token when the token flow 
stops. Necessary and sufficient conditions for a prop
erly terminating GMC will be discussed in Section 4. 

4. A Unifying Notation for RT Level' Control 

It may be observed from Section 3 that token flow 
models are suited for RT control description. Token 
flow models are in general directed graphs which 



show explicitly tokens on the arcs or vertices of the applied; in either case the node is called a leaL 
graphs. The configuration of tokens determine if a 
vertex (transition) may fire. A vertex (transition) P1 
may be interpreted to represent a portion of a control 
module and a token describes a control signal. The 
firing of a vertex (transition) corresponds to the ac
tivation of a control module. The parallel flowcharts 
proposed for the Macromodules and the RTMs are actually 
special cases of token flow models. Mor~over, some 
control flow concepts, i.e. Proper Termination (PT) and 
Liveness and Safeness (LS) have already been introduced 
in token flow models. We may borrow these concepts for 
the analysis of deadlocks. 

The token flow models have different assumptions 
and notations. It was shown in [Huen 73] that all 
token flow models can be unified in a geometrical 
structure, the Vector Addition System (VAS), which was 
first studied by [Karp & Miller 67, 69]. We shall de
fine the VAS and show that liveness and safeness of 
Petri Nets and properly terminating GMes can be ex
pressed as properties of the VAS. 

Definition. An r-dimensional vector addition system 
(VAS) V is a pair V-(mO,D) where 

1. mO E N where N is the set of nonnegative 
integers, 

2. D is a finite set of r-dimensional integer 
vectors d. which are called displacement vec
tors, Le: D-[d1,d2 , ••• ,dn}. 

The Reachability Set R(V) is the set of vectors of the 
form mO+d 1+d2+ ••• +ds such that di ED and 
mO+d1+d2+ ••• Tdi ~ 0, i-1,2, ••• ,s. 

[Karp & Miller 69] shows that the possibly infi
nite reachability set R(V) of a vector addition system 
V can be represented by a finite control flow tree 
T(V). We will illustrate this by example. 

Figure 4 depicts a Petri Net and its corresponding 
VAS. The VAS consists of an initial marking vector mo 
and a set of displacement vectors D which correspond to 
transitions. Each component of the vector corresponds 
to a place in the Petri Net. All valid firings (new 
markings) of the Petri Net can be determined by adding 
the d. displacement vectors to the current marking mi. 
ThoseJadditionswhich result in all marking vector com
ponents being nonnegative are valid markings and can be 
used to establish subsequent valid markings. For ex
ample, the only valid markings from the initial marking 
m resulting from the addition of a single displacement 
v2ctor in Figure 4 are (0,1,0,0) and (0,0,0,1). The 
displacement vector d3 does not lead to a valid marking 
since the result of its addition to mO is (2,-1,1,0). 

A control flow tree, depicting all possible mark
ings (or states) of the VAS can be constructed as shown 
in Figure 4. An' w' .indicates that a marking is iden
tical to another marking further up in the tree except 
that the component of the successor marking vector is 
greater than its predecessor. For example, consider 
the initial marking (1,0,0,0). Adding d1 and d3 se
quentially yields (1,0,1,0). Since (1,0, 1,0)~(1,0,0,0) 
componentwise, the sequence of displacement vectors 
d d can be used again. A second addition of d1d3 yle1ds (1,0,2,0). The sequence of displacement vectors 
can be used a large number of times causing the third 
component of the marking to increase to an arbitrar
ily large number. The 'Wi is a notation to indicate 
this indefinite growth of a component. 

Nodes are appended to the tree until for each 
leaf either its marking is identical to that of one of 
its ancestors or no displacement vectors can be 
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VAS=( mO D) 

mO=( 1 0 () 0) 

d1 =(-1 1 () 0) 

d2=( -1 0 0 1) 

dJ =( 1-1 1 0) 

d4=( :1 0-1-1) 

Fig. 4. Petri Net, its VAS and control flo'w treEi T(V) 

Properties of this tree can be used to detect prop
erties of the Petri Net. For example, the marking 
(0,0,0,1) has no successors and is not reprEisented any
where else in the tree. Once in the state represented 
by (0,0,0,1) the system will never move to Blnothe:r 
state. This Petri Net is not 'live'. 

The necessary and sufficient conditions: for Ii Petri 
Net to be live and safe are as follows: 

1. it has no "w" in any marking in its control 
flow tree T(V); 

2. for each leaf there exists at least: one ,ances
tor with an identical marking such that in 
traversing the tree from the ancestor to all 
possible leafs, all displacement VE~ctors in 
D are encountered. 

A properly terminating GMC has a control flol" tree 
such that the marking of every leaf is identical to 
that of a single token at the exit arc X. 



5. Deadlocks in RT Modules Sets 

Unless the intermodule protocol is carefully de
signed a situation can arise where a module initiates 
an activity and awaits a response which never occurs. 
Deadlocks are a common problem with control protocol in 
RT module sets. The two concepts: Proper Terminating 
GMC and Live and Safe Petri Nets can be used to analyze 
deadlocks. A vertex in a GMC models the action of (a 
portion of) a control module and a token models a con
trol signal. With this interpretation, the Properly 
Terminating condition (PT) has the physical meaning 
that when the control flow stops and no control module 
is initiated to wait for a control signal which will 
never occur. A live Petri Net is one in wbich every 
transition can be executed infinitely often. Physical
ly, liveness means that if a control network is cyclic, 
none of its component control modules can be ruled out 
for operation after a finite number of operations. 
Safeness guarantees that no module receives a new con
trol signal until it has completed its control action 
associated with a previous activation. 

For RT modules, deadlock can occur at two levels. 
The first is an erroneous connection of modules by the 
user. [Keller 68] has studied implementation errors 
which are introduced by implementation of an algorithm 
as a concurrent process network. These errors belong 
to the user level. The user usually works with a high 
level description of the module set which we shall call 
the functional level. Figure 5 depicts an R'lM system, 
its functional level VAS and a portion of the tree that 
demonstrates deadlock. For the RTM system a K.div 
evokes all its successor paths, a Kb2 activates only 
one of its two successors, a Kpm awaits signals on all 
incoming paths before evoking its successor, and a Ksm 
evokes its successor if any incoming path is activated. 
In the functional level, a K.evoke of the R'lM can be 
represented by a vertex with a single input arc and a 
single output arc; a K.div by a vertex with conjunc
tive output logic; a K.parallel-merge by a vertex with 
conjunctive input logic; a K.serial-merge by a vertex 
with disjunctive input logic and K.b2 by a vertex with 
disjunctive output logic. 

Fig. 5 
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Fig. 5. 
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d6= ( 0 0 0 0 0 0-1 0 1 0 0 ) 

d 7= ( 0 0 0 0 0 0 0-1-1 1 0 ) 

da= ( 0 0 0 0 0 0 0 0 0-1 1 

(c) 
T(V) 

( 1 000 0 0 0 0 0 0 0 ) 

!d1 
( 0 1 1 0 a 0 0 0 0 0 0 ) 

( 001 
!d2 "'-..d-:. 

1 0 0 0 0 0 0 0 ~ 

~ 
~ 

Jd) 
o 1 1 000 0 

Jd4 
o 1 0 1 000 

00) 

""d4 • 000 
tdS 

( 0 0 0 0 0 1 0 1 
""d~. 

o 0 0 0 
!dS' 

( 0 0 0 0 0 0 0 2 000 ) 
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An RIM system (a), its graphical representa-
tion (b), its VAS (c), and one path of its 
control flow tree (d). 

The components of a marking in Figure 5d represent 
the arcs S,A,B,C,D,E,F,G,H,I,X in that order. The dead
lock is indicated by the fact that the GMC in Figure 5b 
is not properly terminating because the marking of the 
leaf of the tree T(V) is not (0,0,0,0,0,0,0,0,0,0,1). 

Deadlock can also arise from an incorrectly de
signed intercontrol module protocol that would not be 
detected from the functional level descriptions of the 
modules. A signal level description is required. Using 
the VAS and properties developed for the control flow 
tree, deadlocks were discovered in the signal level 
analysis of existing RT module sets. Figure 6 shows a 
system built from Asynchronous Modules that is deadlock 
free from a functional level analysis but exhibits 
deadlocks under a signal level analysis. Signal level 
descriptions, in Petri Nets, of individual Asynchron
ous Modules are given in [Dennis 70]. A Petri Net for 
the configuration in Figure 6 can be easily constructed. 
It is shown in [Huen 73] that the Petri Net is not live 
and safe. The deadlock can be explained as follows. 

The UNION module corresponds roughly to the RIM 
serial merge (Ksm), the DECIDER to a two way branch 
(K.b2) and the SEQUENCE to an evoke. Each control 
link of an Asynchronous Module is composed of two 



SEQUENCE 

SEQUENCE 

Fig. 6. An Asynchronous Module system that 
has signal level deadlock. 

control lines, ready (r) and acknowledge (a), which are 
directed in opposite directions. A control link is de
fined to be active if r $ a = 1 and idle if r $a • O. 
Identical subscripts are attached to r and a to identi
fy the control lines in the same link. 

The protocol of the UNION stipulates that: 

,. if only one input link is active, the UNION 
activates its output link and waits. When the 
output link becomes idle, the UNION idles the 
active input link; 

2. if before an activating input link is reset to 
idle, the other input link becomes active, the 
UNION still waits for the idle state of its 
output link. When the output link becomes 
idle, the UNION resets the first input link 
and sets its output link active again; 

3. if both input links become active at the same 
time, the UNION prevents hazards by picking 
one input at random and performs the cycle of 
activating its output, waiting for the output 
idle signal and idling the requesting input 
link. Next it repeats the cycle for the other 
input. 

Assume that all links in Figure 6 are initially 
idle. Link' of the UNION module becomes active by a 
change in level in line r,. Link 3 in turn becomes 
active. The DECIDER thus sends a r 4 signal to the data 
structure which replies with a control signal to either 
tu or f4 • If a control signal is received along t 4 , 
tfien link 6 becomes active, otherwise link 5 is active. 
The SEQUENCE A is assumed to be connected to a RT op
eration in the data structure. It evokes the RT opera
tion by a signal on line r 7• When link 7 returns to 
idle, i.e. when an acknowledge is received on a 7 , the 
SEQUENCE activates its output link 2 which is also an 
input link for the UNION module. At this stage, the 
UNION must wait for link 3 to become idle. Link 3 be
comes idle when link 6 becomes idle. Input link 6 to 
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SEQUENCE A becomes idle when its output link 2 bE~comes 
idle. Link 2 cannot become idle unless link 3 turns 
idle first. A deadlock is thus formed. 

This is an example of a well accepted concept in 
programming being unacceptable because of conflicts with 
the protocol of a specific RT system. A way out of the 
dilemma is to establish rules forbidding the use of 
UNION's in loops. 

An RTM configuration that will deadlock was also 
discovered by the analytic procedure. It is shown in 
Figure 7. At one stage in the design of RIMs,K.div was 
just a set of divergent wires from a common. source. 
The deadlock originates from the protocol of the K.evoke 
The K.evoke is initiated by an activation signal which 
is also sent directly to the associated RT operation. 
When the RT operation is completed, the bus broadcasts 
the Done signal to all control modules on the bUB. It 
is the duty of the cont~ol predecessor of the current 
K.evoke to reset the activation signal upon receipt of 
the Done before the current K.evoke can activate its 
output. In a multibused system in which the busies are 
not connected, the Ke3 and the Ke4 on the branches will 
be waiting forever for the reset signal. The Done sig
nals from these buses do not reach the contorl module 
before the K.div. The redesign of the K.div so that it 
intercepts the Done signals from the branch buses solvel 
this problem. 

RT2 

from Bu:s 1 

Done 
~from 

'---r----' Bus 4 

Fig. 7. Multibused RTM system exhibit:tng 
signal level deadlock. 

6. Conclusions 

The VAS seems a particularly powerful model to use 
in the analysis of intermodule protocol. DesignE~rs and 
users of modular systems can easily determine the cor
rectness of their designs. Even though a VAS may have 
infinitely many reachable states, it has been shown 
[Karp & Miller 69J that the set of reachable states may 
be represented by a finite control flow tree T(V). The 
properties of proper termination or liveness and sa'fe
ness can be expressed as properties of a control flow 
tree. Although a control flow tree is known to be fi
nite its rate of growth as a function of a VAS is an 
open research question. 



Finally, as module complexity increases the inter
module signals will become more complex and likely have 
unique identities (attributes). An analog to the VAS 
for Data Flow Models would be a valuable tool for ana
lyzing multiprocessor structures. 
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PICTURE SYSTEMS, PS, AND THE DESIGN 
OF A CHANNEL-TO-CHANNEL COMPUTER INTERFACE 

Portia Isaacson 
Xerox Corporation 

Dallas, Texas 

Summary 

This paper introduces a new simulation 
tool called picture systems. A picture sys
tem is (1) a set of pictures - one represent
ing each state of a modeled computer system 
and (2) a transition graph which relates e"ach 
picture to the set of pictures that may 
follow it. Picture systems can be used to 
model computer systems at any level of detail; 
however, this paper is concerned with model
ing hardware/software systems at relatively 
high architectural levels. Picture systems, 
as a simulation t001, are useful to the 
computer architect. Perhaps more important
ly, they provide an unexcelled means of 
communicating computer system mechanisms 
between people. 

The construction of picture systems from 
descriptions of the components of a computer 
system has been automated in PSI This paper 
describes a model of a channel-to-channel 
computer interface mechanism consisting of 
both hardware and software. Transition 
graph analysis by PS is briefly described. 
This powerful aid to computer system modeling 
eases the identification of problems such as 
deadlock, looping, and races. 

Introduction 

The day of the computer architect has 
arrived - basic building blocks are no longer 
gates and flip-flops. but buses, memories, 
and processors. The solution of an informa
tion processing problem involves making the 
right choices from the variety of components 
offered and then designing the hardware/soft
ware interface mechanisms between the compo
nents. Methods of specifying and simulating 
mechanisms involving both hardware and soft~ 
ware at virying levels of detail are needed 
as tools. PS is such a tool that is also 
designed to ease the problem of communicating 
hardware/software mechanisms between people. 

One way of showing the utility of a tool 
for computer system design is to demonstrate 
its use on a reasonably difficult problem. 
This technique will be used to introduce a 
tool which consists of picture-system models 
along with PS

2
t Q nutomate model generation 

and analysis. ,j, The problem is the design 
of a channel-to-channel computer interface 
mechanism involving both hardware and soft. 
ware, in which the operating system in either 
computer can initiate transfer of data in 
either direction. We will show that PS, as 
a simulation tool is useful in designing 
computer systems. Perhaps more importantly, 
PS and the picture systems it produces pro
vide a means of communicating computer system 
mechanisms between people. 

Th1S work was conducted wh1le the 
author was an instructor at North Texas 
State University and a Ph.D. candidate at 
Southern Methodist University. 

63 

Picture-system Models 

Picture-system models grew from a study 
of a variety of notations used for describing 
computeg aystems at various levels of abstrac
tion. 5, ,/ Primary among the notations stud
ied were programming language nota~ipns such 
as the Vienna definition language, 9 lsraph
based notations such as Petri nets, ,. and 
application-specific graphi~ r~pr~sentations 
such as the contour model. ' ,j Of these, 
the application-specific graphic techniques 
are easily seen to be superior for people
oriented communication of computer system 
mechanisms. Picture-system models are a 
generalization of application-specifi'~ graphic 
techniques which encourages the representation 
of a computer system with drawings which are 
closely related to the abstraction being 
modeled. 

The time-history representation of a 
compufer system is necessary for its defini
tion. In picture-system mOdels the time 
history takes the form of a sequence of snap
shots, called a movie. From one snapshot to 
the next in a sequence there is a change in 
the drawing representing a change in the 
system state. To define a computer system by 
manually enumerating all possible movies would 
be a tedious undertaking. The next paragraphs 
explain how PS solves this problem. 

Computer systems are naturally described 
as collections of finite-state elements which 
are interfaced to one another in various ways.l 
A finite-state element may be a passive element 
(its state changes are caused by other elements 
to which it is an interface) or an active 
element (it has transition rules which may 
change the state of the element or its inter~ 
faces). A computer system is a closed col
lection (no element has an interface outstde 
the collection) of finite-state elements 
called a finite-state structure. The PS lan
guage provides a means of associating a unique 
drawing with each state of each element of a 
finite-state structure as shown in Figure 1. 

From the description of a finite-state 
structure along with the associated graphics 
which is provided by the system designer, 
the PS system generates a finite-state system 
(computer system) and its isomorphic picture
system model, as shown in Figure 2. The 
picture-system model consists of a picturl~
set containing a picture for each system 
state (conglomerate of element states) and 
the state-transition graph for the system. 
The state-transition graph and the picture 
set fully determine all possible movies. Thus 
the PS system automatically generates an 
application-specific graphic representation 
of a computer system from a specification of 
the system as a collection of interfaced 
elements with their associated graphics. 



Finite-state struoture 

rules 

~ 
stateo state l . state~ 

cur~~.j cu~ek 

elem.nt2-gr.Phlc.~-gr.Phlc. 

Graphics 

Figure l.--Finite-state structure with graphics 

Finite-state system 

system-stateo system-statel • •• system-E!tatem 

Transi tion graph 

Picture-system mOdel 

Figure 2.--Computer system and its picture
system model 
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The Computer Interface Mechanism 

The computer interface mechanism to be 
designed as an illustrative example has five 
hardware components. namely I two central 
processing units with their respective oper
ating system, two channels. and an interface 
unit. Transfer of data from CPUA to CPUB is 
denoted A2B. Similarly B2A denotes transfer 
the other direction. The mechanism for 
accomplishing a transfer is complicated by the 
fact that the computer requesting the transfer 
cannot predict when the other computer will 
respond. During the waiting time the channel 
must be free for use by other devices. This 
requires a two operation sequence by the 
requ~sting computer. The first operation is 
a request for the transfer. The second oper
ation is the actual connection for the trans
fer. An example is in order. 

Suppose CPUA wants to do an A2B transfer 
and no· other operations are considered. The 
following events take place: 

(1) CPUA transmits an A2B operation on 
channel A. 

(2) The interface unit releases channel 
A and interrupts CPUB with the 
request. 

(3) Eventually CPUB transmits an A2B 
operation. 

(4) The interface unit leaves channel B 
connected while it interrupts CPUA 
with the matched operation. 

(5) CPUA responds immediately by connect·
ing channel A. 

(6) The interface unit transmits the data 
then releases both channels. 

At several points in this sequence CPUA ma~ 
decide to also request a B2A transfer and/or 
CPUB may initiate transfer either direction. 



The number of possible event sequences gets 
very high and the design gets complicated 
quickly. The actual complexity is well 
documented by the number of states in the 
picture-system model. 

Th~ PS Specification 

The PS specification of a finite-state 
structure consists ofa 

(1) a list of all elements, 
(2) the possibly null set of states 

associated with each element, 
(J) the initial state of each element, 
(4) the drawing associated with each 

state of each element, 
(5) the possibly null set of interfaces 

for each element, and 
(6) the possibly null set of state-

transi4ion rules for each element. 
The PS language eases the specification of 
similar elements by allowing references to 
previously defined element models (essential
ly macros). Each reference supplies its 
unique set of interfaces and can tailor the 
drawings associated with the element. In PS 
drawings are specified very concisely as 
curves using a method of enrading a curve 
as a sequence of operators. 

In the PS specification of the computer 
interface mechanism there are four types of 
elements (element models), namely. 

(1) A CPU queue element type which de
fines the state of a queued or in
progress transfer from the point
of-view of the operating system in 
a CPU. There are four instances of 
this element type - one for each 
transfer direction in each CPU. 

(2) The channe1-to-channe1 interface unit 
(only one of these element types) 
which coordinates the four interface 
unit processes. 

(J) An interface unit process element 
type which tracks a single CPU with 
respect to one direction of transfer. 
There are four interface unit pro
cesses. These processes are paired 
according to common transfer direc~ 
tion s6 that they can synchronize 
the actions of the two CPUs. 

(4) A channel element type which is a 
passive element providing an inter
face line between a CPU queue ele
ment type and the interface unit with 
its processes. There are two chan
nels, one attached to each CPU. 

With the state of each element in the 
finite-state structure the PS specification 
associates a drawing. These drawings are 
used by the PS system to construct a picture 
representing each system state. Each picture 
can contain a background drawing over which 
the state-dependent drawings are superimposed. 
The background drawing for the computer inter
face model is shown in Figure J. The draw
ing shows the various components of the syS4 
tern. It leaves space for the state-dependent 
drawings of the elements to be filled in for 
a particular system state. The following 
paragraphs discuss the states and their 
associated drawings for each element in the 
computer interface mOdel. 

Each of the four CPU queues have seven 
possible states which are represented in 
either the upper half (A2B transfer) or the 
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Figure J.--Background drawing 

lower half (B2A transfer) of a CPU. nle 
seven possible states and their representa
tions are: 

(1 ) 
- no activity. 

(2) ( ) 

(J) 

(4) 

(5) 

(6 ) 

(?) 

(WANTED) - the operation has been 
requested by the othl~r CPU. 

(WANTED) 
(WRITE ) 

(WRITE 
(WRITE 

(WRITE 
( 

( 
(WRITE 

- the operation must bc~ re-
transmitted due to a busy 
interface unit on an earlier 
try. 

- both the request and the 
operation are queued waiting 
to be sent. 

- the request has been placed 
on the channel. 

- the request has been accept-
by the interface unit. 

- the operation has been placed 
on the channel. 

Each of the channels have seven possible 
states which are represented in the area be
tween a CPU and the interface unit. 'The 
states and their representations are. 

(1) - no activity. 
(2) »»»» - A2B operation or request 

being transmitted. 
(J) «««« - B2A operation or request 

being transmitted. 
(4) --BUSY-- - interface unit response Clf 

busy to operation. 
(5) --CEND-- - interface unit response Clf 

channel-end (operation
complete) to operation. 

(6) --A<-B-- - interface unit interrupting 
CPU with A2B request. 

(?) --A->B - - interface unit interrupting 
CPU with B2A request. 

The interface unit has five states which 
are represented either in the top border of 
the interface unit box or, in the case of a 
transmi tting state, in the center by ,a line 
connecting the two channels. The non-tran,s
mi tting states and their representations a.re, 

(1) IDLE - no activity. 
(2) BUSY-A2B - the interface unit is in an 

uninterruptib1e sequence., 



(3) BUSY-B2A - the interface unit is in an 
uninterruptible sequence. 

The transmitting states and their represen
tations are: 

(1) »»»» - transmitting A2B. 
(2) «««« - transmitting B2A. 

Each interface unit process has four 
states which are represented in the area of 
the interface unit labeled for the appropri
ate transfer direction and CPU. The states 
and their representations area 

(1) EMPTY no activity. 
(2) REQUESTED - the CPU has requested 

the operation. 
(3) READY - the CPU has been notified 

of the request from the 
other CPU or has initiated 
a matching request prior to 
notification. 

(4) CONNECTED - the CPU is connected by its 
channel to the interface 
unit waiting for the trans
fer. 

The Picture-system Model 

Several submodels of the computer-to
computer interface mechanism are of special 
interest. The one to be considered here is 
called the A2B submodel. It considers only 
transfers in the A2B direction. This submodel 
shows that the system can start in an idle 
state, initiate an A2B transfer from either or 
both CPUs, complete the transfer, and return 
to the idle state. The A2B submodel has 66 
states. The transition graph is shown in 
Figure 4. Since the graph is in straight 
order15 and the backward arcs are drawn, it is 
clear that the graph is a single strongly con
nected region; therefore, any state is reach
able from- any other state and no hang-up 
states or cycles exist in the A2B submode1. 
A movie derivable from the transition graph 
is shown in Figure 5. This movie illustrates 
the case where CPUA initiates an A2B transfer 
and before the interface unit has noticed the 
request, CPUB initiates a matching A2B trans
fer. The interface unit need not notify CPUB 
of CPUA's request, but must match the requests. 

It is interesting to consider the B2A 
submode1 along with the A2B submodel. Due to 
the symmetry of the system, the models are 
alike except that the roles of the CPUs are 
interchanged. A lower bound on the number of 
states in the full model of the channe1-to
channel computer interface mechanism has been 
established at 1,781 by considering the re
lationship of ~he full model to its A2B and 
B2A submodels. This number of states exceeds 
the number for which a transition graph can 
be reasonably generated and analyzed by PSI 
Therefore an alternate method of validating 
the model is desirab1~. The validation was 
done using knowledge of submode1s. The A2B 
and B2A submodels show that the system operates 
properly when there is no channel contention 
by opposite transfer requests. The cases where 
contention is involved were validated by con
structing three additional submode1s. 2 The 
largest of these generated 339 states. 

Conclusions 

This paper has shown, via an illustrative 
example, that picture systems along with PS to 
automate their generation and analysis ~re ~se
fu1 in defining, simulating, and communlcatlng 
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computer system mechanisms comprised of hard
ware and software at the early design stages 
when the descriptions must necessarily be at 
a high level. The need for modeling of high
ly parallel asynchronous' computer system 
mechanisms at the early design stages is 
shown by the very large number of states in 
the relatively simple mechanism given as the 
example in this paper. The difficulty of 
communicating these mechanisms is well-known. 
The usual problem associated with using a 
model as a means of communication is that the 
modeling language must be understood by all 
concerned. Achieving common understanding 
of a modeling language is difficult enough in 
a hardware group or in a software group. To 
achieve such understnading across these two 
disciplines, which is necessary for document
hardware/software mechanisms, would appear 
impossible. The use of PS avoids this diffi
culty. Only the picture set and the transi
tion graph need be broadly understood. Know
ledge of the PS language can be restricted to 
a single individual who writes the PS speci
fication of the finite-state structure from 
which the PS system generates the picture
system model. The pictures in the picture
system model can be chosen, as they were in 
the example given here, to build visually the 
understanding of a computer system by giving 
our minds a crutch for thinking about the 
system. It is not mere coincidence that the 
phrase "I see" is used to mean "I understand." 
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REFERENCE CONCEPTS IN A TREE STRUCTURED ADDRESS SPACE 

Lennart Lofgren 
SAAB-SCANIA AB, Datasaab Division 
Linkoping, Sweden 

Summary. We start by summarizing our 
goals with an emphasis on our requirements on 
references. A dynamically varying space of vir
tual addresses is postulated. This space has the 
structure of a rooted tree. All references consi
dered are essentially relative: to a target from 
a context. A few reference concepts are defined 
and explored, together with a unified operation 
of qualification and offsetting and one operation 
for forming refer.ences from new contexts. 

1. Introduction 

1.1 General 

For a long time we have recognized the fact that 
it wastes core space to carry the full address of 
the computer in the address part of each address
ing instruction. S/360 works with a base address 
and a 12-bit displacement, the Datasaab D5 mini 
computer uses an 8-bit displacement and an elabo
rate scheme to select a base address. 6 

There is one more reason to avoid introducing full 
absolute addresses in the program code. Generally 
speaking, this is flexibility: self-relocatability 
of program code, and capability for dynamic link
age while retaining pure procedure code. 

There is reason to believe that these benefits 
could be achie..-ed on a more universal ecal~ if a 
generalization of this technique could be found, 
extending it to all occurrences of addresses with
in a computer memory. 

Before we proceed, however, a number of concepts 
of this issue should be clarified, such as: 

(i) Where do addresses occur outside of 
machine instructions? 

(ii) What precisely do we mean by addresses? 
(iii) What can a generalized technique roughly 

be like? 

About (!lJ.. We have become accustomed to 
the idea that the address information in machine 
instructions is hardware modified in various ways 
to produce a memory address capable of controlling 
the storage accessing circuitry. For this modifi
cation further information is supplied, such as 
page start addresses, base register and index 
register contents, all of which we could lump 
together under the term supplementary address 
info:rmation. The word "address" has often been 
used to refer to both the displacement in instruc
tions and the mentioned supplementary information. 
In programming "address" is taken even more gene
rally to mean almost any operand (or parameter) 
of an address (in the previous sense) computation, 
particularly if it can be regarded, in isolation 
or in context, to identify a data object. 

Definition of reference. For the purpose 
of this paper, avoiding futile discussions of ter
minology, I replace this loose usage of "address" 
and take reference to mean a piece of information 
that permits accessing of a data object within the 
address-and-storage space under consideration. 
This space may in principle be virtual or real, 
although in sect. 2 a virtual space will be 
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postulated. 

About W. References are frequently used 
wherever we need to represent connections between 
elements in data structures, except in cases where 
we are able to, and choose to, do so by storing 
pairs of connected elements adjacently with re
spect to storage addresse~ or on addresses deter
mined by an arithmetic rule. For referenCEls one 
quite commonly uses memory addresses today. These 
are efficiently handled by current hardware, e.g. 
when used as indirect addresses, or after they 
have been loaded into index or base registers etc. 
Other variants of references are also employed, 
as was noted About (ii), last paragraph. 

The need for references is basic and ubiquitous. 
Could one unified, less problematic, form be pro
vided they would flood our computers. 

About (iii). We develop a form of refer
ence that is both suitable for a majority of 
programming needs and at the same time efficiently 
hardware interpretable. The latter means in pal.'ti
cular that its currently intended corresponding 
machine address should be automatically computed 
when the reference is engaged for accessing. Also 
the most commonly demanded manipulations on refer
ences should be available as programmable hardware 
operations. 

How can this be done? We can analyze the usage of 
such programmer defined information that .is uSEld 
for references, and offer a unified concept that 
covers a majority of such usage. This concept has 
to be sufficiently simple and uniform to be hard
ware implementable. It must of course also cover 
the simple cases of instructions' address partfl 
and today's use of plain memory addresses. 

This paper investigates a proposed such concept. 
The idea is to construe references as partial, or 
incomplete, address information. 

1.2 Preliminaries. definitions 

Definition of gualifiers. A reference 
along these lines needs supplementation bl9fore it 
can be engaged in an access. The pieces of infor
mation needed for this supplementation also re
quire careful attention. I call them gualifier~. 
They may be capable of completely suppleml9nting' 
a given reference into a unique identifier within 
the storage space under consideration, full quali
fiers, or they may contain only part of what would 
be needed for this, partial qualifiers. Some of 
them might constitute objects for manipulation by 
application programs others might not. They can 
frequently be construed also as reference::;, all 
by themselves. The reason why partial add:ress 
information will be more advantageous to use for 
reference than a full address is that we ean 
exploit locality. 

Definition of locality, data objects, 
memory regions. To define locality more 

generally we need in the background the concepts 
of data objects and data structures and also of 
addressspace regions. It would carry too far to 
define them very rigorously. 



An abstract data object is an elementary object, or 
a data structure; a data structure is formed by 
connecting data objects, one way or the other. 
A(n) (abstract) data object represents something, 
and should be called information object. A concrete 
data object is a representation of an abstract one, 
on a form that allows it to be stored in a memory 
space (a virtual or physical memory). The stored 
concrete object must represent the elementary ob
jects as well as all object connections. 

An address space region is a subset of the space of 
addressable storage cells, subject only to the re
striction that there must exist some part P of the 
address and some interval, such that all cells in 
the subset have addresses whose parts P lie inside 
the interval. 

Data object locality means that from within the 
given object there are more frequent connections 
with certain objects (possibly - and commonly! -
including itself) than with others. 

To draw on locality, we try to store concrete ob
jects (structures) in memory regions. As many sub
objects should thereby be assigned to sub-regions 
as possible. Object-to-region correspondence should 
first be satisfied for objects with a high data 
object locality. To the degree that we succeed, we 
wO,uld get reference locality, in the following 
sense: 

References in a given region refer into certain 
regions more frequently than into others. 

Ideas; address reduction. If we have 
reference locality in a region R with respect to 
some region S, let us represent references from 
within R to within S by a (virtual) memory address 
where a certain part peS) is reduced or omitted. 
pes) is identical to,or part o~ that part of 
addresses into S which, by the definition of re
gion, are confined to some interval. We reduce peS) 
by subtracting from it some number in the interval, 
e.g. the lower bound, thereupon deleting all lead
ing .. zeros in the representation of P(S). The lat
ter is the explicit manifestation of the informa
tion loss that we want to bring about. If the in
terval consists of a single number, the result 
will be zero and we omit peS) altogether from the 
reference. We term this process reference forma
tion through address reduction. The supplementary 
information needed to reconstitute a full virtual 
address, the qualifier, is seen to be the sub
tracted number (together with some indication as 
to where in the address pes) is, or should be, 
situated) • 

We will propose one unifying abstract data type 
to apply both to references and qualifiers, par
tial or full. One single operation will be devised 
for recombining a reference with its full quali
fier into a full address, for combining a refer
ence with a partial qualifier into a reference 
presupposing a smaller qualifier and for combining 
full or partial qualifiers into more comprehensive 
qualifiers. - In fact we devise a construct that 
the designer can employ for either of these pur
poses according to his choice, just as a binary 
word can be used to represent many kinds of num
bers. We also devise a single operation for addre~ 
reduction, which takes for operands the address 
and the desired qualifier and produces a reduced 
address, suitable as a reference under that quali
fier. Because of the unification of concepts, 
qualifiers can also be reduced, making them "more 
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parti~l'" We want to develop these ideas in the 
conte t of a comprehensive semantics for a virtual 
addre s~ng system, as has been requested by 
Denni • 

1.3 Advantages - goals 

The advantages we set out to buy with our com
plication of reference representation are twofold, 
viz. : 

(i) Conservation of space 
(ii) Flexibility by avoiding unnecessary 

commitment 

With both of these objectives reached we have torn 
down the worst obstacles against catering for a 
long desired programming generality, formulated 
e.g. by Dennis in his well-known requirements: 

Ability for a program module to: 

1) create information structures of arbitrary 
extent 

2) calIon procedures with unknown require
ments for storage and information structuroo 
and 

3) transmit information structures of arbitrary 
complexity to a called procedure. 

Let me qualify this statement. To cater for 
requirement 1) and 2) we would need a very large 
space indeed. Of course a practical limit could 
be set, but this would mean that uncomfortably 
large fields would have to be reserved for refer
ences were these to be represented as addresses. 
Furthermore, requirement 1) and 2) are reasonably 
implemented by the well-known technique of sparse 
addressing in a virtual memory. SIn our terminology 
this means finding for each data structure to be 
created a region, which the data structure is 
unlikely to overflow while it grows up. Doing so 
for ou:r several structures will aggravate the 
problem of large address fields. We solve this 
problem by simply never storing any full addresses 
but only partial ones, having limited size. Advan
tage (ii) also derives from partialness: We iden
tify data objects only as within regions. Identi
fication of regions is done by the qualifiers, 
which need to be stored only once for each con~. 

If we read 1) and 2) literally, it would require 
us to extend our entire virtual address space 
occasi()nally. Any occurring full addresses would 
then have to be extended - an impossible task, 
were they scattered about as references. The 
advantage (ii) of using partial addresses for 
references admits such extensions. Only the full 
qualifiers as defined, need to be extended. Their 
number will be held to a minimum; wherever an 
application program needs a qualifier, a partial 
one will do - and this is to be enforced. Further
more advantage (ii) will help when a data struc
ture overflows its region. We can extend the region 
by a virtual move (to be defined in sect. 4)of any 
hindering objects to another region, or do such a 
move of the growing object itself. A virtual move 
is achieved by changing a qualifier - the refer
ences themselves are uncommitted (or unbound) with 
respect to the global location within the space, 
of the regions referred into. Advantage (ii) could 
possibly also be helpful in catering for require
ment 3). For one parameter passing method is to 
do moves, physical or virtual. 



Turning to more nearby aspects of what we want to 
achieve, we note about today's minicomputers that 
there is a demand for much more memory, virtual or 
real, than is consistent with the wordlength one 
likes to have. A consistent use of a reference 
system based on the present method allows any 
amount of storage space to be addressed from a 
minicomputer's program without resorting to ad hoc 
features. 

Q,uite generally, in systems architecture, we will 
be able to rely on large virtual memories, and on 
references, to an unprecedented degree. We have 
e.g. hitherto, with few exceptions 4, avoided to 
have large data objects resident in virtual memory 
spaces over time periods, comparable to the life
times of software systems. Considered over such 
periods data objects grow and shrink, undergo 
reorganizations and proliferate generations, all 
things leading to the Dennis requirements. 
References in our sense can be used freely for most 
identification needs, thus lessening the importance 
of the current technique to frequently reassign the 
names of some available name space in the system 
(such as a virtual memory) to different, externally 
named objects. 5 

We can sum up the goals of this work like this: 

We want to devise a method that allows that 

(a) 
(b) 

(c) 

(d) 

the space of addresses can be extended 
that space extensions can be made by way 
of insertion of new regions between 
previously adjacent address regions 
that intra-regional references are unaffec
ted by extensions, thus afortiori not 
lengthened 
that intra-regional references are self
relocatable w.r. to simultaneous reloca
tions of the whole region content. 

1 .4 Ap~licatio~~nd scope of present work 

The work accounted for here is intended as a con
neptual basis for a new architectural feature, 
i);:-wed on a multilevel virtual memory and includes 
HO actual architecture design. This feature has 
been intended both for a new, extended, model of an 
existing minicomputer (the Datasaab D5/30 6) and 
for an entirely new computer architecture based on 
an Intermediate High Level machine language. It is 
also being applied to an interpreter (with both a 
soft and a microprogrammed version) for a language 
~3 Il,L (System Implementation Language, 7Linkoping; 
Implemented at I,inkoping University ). 

All intended architectures, and indeed any archi
tecture, reasonable as a candidate for application, 
must protect all full virtual addresses and full 
qualifiers from access from non-privileged programs. 
Programs refer to data objects via a fixed, small 
set of current root contexts, only generically 
identified as one of a few standard contexts, such 
as "current procedure code region", "current work
ing data region" or "current link segment region". 
This identification is built into the machine 
languages used, even in the case of the mini (D5). 
The latter already has a rudime>nt of this feature. 

Supervisory software, executing in privileged mode, 
or in case of SILL, the program and microprogram 
code of the interpreter, maintains one full quali
fier for each of the standard contexts in each 
running task. Hardware or interpreter (micro) 
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program automatically supplements a reference with 
the qualifier of the identified standard context 
as soon as the program submits that reference to 
be used for access. Access to regions outside of 
current standard contexts is provided either by' 
the simultaneous addressing of a qualifier and 
provision of a reference to be qualified (some
thing similar to indirect addressing with post 
indexing), or by loading a qualifier into a 
"temporary context indicator", which in its turn 
can be identified in instructions, al terna;tively 
to one of the standard contexts. 

All of the user maintained qualifiers are partial 
ones. Which further qualifier is understood in 
these cases is determined by special ruleEl, which 
vary between architectures. 

A completely different approach to automate the 
handling of referencing devices is found ln 
reference 5. 5 

2. Structure of Address Space 

Our method is based on a multilevel virtual 
address-and-storage space that has structural 
properties as described in this section. 

The address space has the structure of a :('ooted 
tree, Le. a directed graph that is conneeted and 
mesh free. The tree depicts the space in the 
following way: Its leaves are the true virtual 
storage cells. Such a cell can be selected by a 
virtual address; here denoted Absolute Virtual 
Address, AVA, for reasons that will appea:r later. 
An AVA should be considered a string of subfields 
that represent non-negative integers: 
a O' ••• , a 1 (n ~ 1 ). (So that if field i is b. n- ~ 

bits long O~a.< 2bi , O~ i< n). Naming the' AVA 
1 

A, we write A = (ao' a 1 , ... , a n _1 ). Looking at the 

tree we number the outgoing edges from any node 
N: 0,1, ••• ,fN~1, where fN is the branching faetor 

of node N. 

To select a leaf/cell, given the AVA 
A = (ao' a 1 , ••• , a n_1 ) we proceed as follows: 

Consider the root node. Pick the leftmost field 
of A, representing a O' and select edge no. a O from 

the root node. Then consider the node entered by 
the selected edge. Pick next field of A, a 1 and 

select edge no. a 1 out of those emanating from 

that node. Proceed similarly field by field until 
and edge is selected by a n_1 • The node where this 

edge ends is the node selected by A. If this hap-
pens to be a leaf, i.e. a terminal node, we 
have identified a true storage cell. If not -
we have identified something in the machinery: 
a thing that corresponds to a non-terminal node 
of the tree. Peeping into possible implementations, 
we dare guess that that thing is a table of the 
outgoing edges, or rather things that these depict. 
To make edge selection easy, the table is linearly 
stored, so that an edge can be found by indexing. 
An edge stands for an address or other identifier 
of the node where it ends. Terminal nodes, leaves, 
are no tables but fixed length cells, storage 
places for words. There is no need to store th~ir 
incoming edges - their addresses - separately if 
the set of leaves under the same next higher level 
node - the prune - is allocated linearly. The 
edges/addresses are computed simply by indexing 



from its start address. Thus the next-to-terminal 
nodes need have no table counterpart. Instead the 
incoming edge to such a node corresponds to the 
Btart address of the prune, and the node might 
Btand for the prune as opposed to its elements. 

We will put no restrictions on the tree such as 
uniform depth or branching factor - these are 
things up to the designer. We also note that a 
meaningful AVA must not contain a subfield repre
Benting an edge number greater than the branching 
factor minus one of the node it applies to. Reacting 
to violations also belongs outside of this account. 
'rhe physical location of the tree root is supposed 
to be known to the system through means devised by 
the designer. We also note that, over time, the 
:3pace is allowed to ohange in size and structure. 

3. Reference concept I: Generalized 
offsets and RVA's 

3.1 Preliminaries 

Given an address space as of sect. 2 we start 
looking for workable reference concepts on the 
basis of the considerations in sect. 1. We note 
that any subtree is a region, in the sense defined 
in 1.2. We make the decision that the candidate 
:regions that we are primarily going to consider for 
locality based address reduction will be the sub
tree regions. - As we have seen in 2, any node of 
the tree is identifiable by an AVA. Weborrow from 
graph theory the simple truth that a subtree has 
a unique top node which is its root. Consider all 
the AVA's to cells/leaves in a subtree. They have 
a common part in their addresses (AVA's) and this 
part is identical with the whole AVA of the sub
tree root. So to form partial addresses to them, 
we can simply remove the root AVA from their 
respective AVA'sl The reason we can do so is that 
the interval to which the designated part P(S) of 
their addresses (AVA's) is confined, can be con
sidered a single number, viz. the root AVA (Cf. 
sect. 1.1). Thus this one is also the full quali
fier. 

We also have the need to form partial qualifiers. 
And we have noted the desirability of a concept 
unifying the notions of qualifiers and references. 
~urthermore we know that the interval used in the 
definition of a region is not unique - we should 
try to leave the choice of interval with the sys
tems designer. In the back of our minds we also 
observe that a most common form of programmer de
fined address reduction is the use of relative 
addresses, i.e. address offsets relative to an 
address called base address. In linear address 
spaces such an offset is simply the target address 
minus the base address. 

As a first approximation we define an analog of 
address difference, commonly called offset, and 
we use this term in a generalized definition: 

Let AM (ao"'" a m_1 ) and 

AN (bO"'" b n _1 ) be 

AVA's of nodes M and N respectively (m, n>O). 

Make k max(m, n). 

If m > n define b n 
If n >m define a 

m 
~ } (1) 
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We define offset of M with respect to ("from") N: 

offset(M, W) = (aO-bO, ••• ,ai-bi, ••• ,ak_1-bk_1) (2) 

for O~i~ k-1. 

This notion of offset has the serious flaw that it 
is not a one-to-one function in its first argument 
when holding the second one fixed (nor vice versa). 
Because consider what happens with offset(NT, N) 
where NT is some non-terminal node and N is any 
node that has a greater distance, say 1 levels 
further down from the root than NT. Then if AVA 
of NT has m components, offset(WT, N) must have 
k = m+l ones. Consider offset(X, N) to any node X 
with AVA's like NT's except for having one up to 1-1 
further fields suffixed that are zero. These off
sets are all equal, and equal to offset(NT, N). 
Nodes with this property are situated along an 
"all-zero-edge path" starting in NT. 

Because the offset is to be used as an identifier 
of its first argument, it has to be a bi-unique 
function (precisely: in its first argument holding 
the second one fixed). So this situation has to be 
remedied. We do this by adding the requirement 
that we know in advance either that the target node 
is terminal or which level it has in the tree. We 
term this information the s tat u s of the node. 

3.2 Properties of first approximation 

Some of the most important properties are listed 
here: 

(i) Use for be 
used for addressing of 
information on which node it is an offset from, 
called the base node, and on the status of the 
target node. This can obviously be done, as follare: 
The base node B is supposed to be known by its AVA. 
We can now find the AVA of the target node T, given 
the value of offset(T, B) by adding this component
wise to the path designation of B: 

Let 

AVA of B = (b O"" b n _1 ) 

and offset(T, B) = (dO"" '~-1) 

Necessarily, by (1)', k;;:':: n. 

Then 

AVA of T = (bO+dO, •• ,bi+di, •• ,bk_1+~_1) (4) 

with 0'::;::; i< k and bn=bn+1= ••• =bk_1=0. 

If one or more of the trailing components of the 
k-tuple of (4) are zeros the status information 
assumed to be known for the target node T is used 
to determine which node with this offset is the 
one addressed. 

(ii) Offset addition. The next important 
property of offsets to be considered is the elimi
nation of an intermediate base by addition. We 
define addition of offsets as componentwise addi
tion, considering any missing trailing components 
in one of the offsets to be zero. Assume: 

offset(B1 , BO) = (eo,···,em_
1

) 

offset(T, B1 ) = (fO, ••• ,f
n

_
1

) 

(5 ) 

(6) 



where k = max(m, n) ~nd em' em+1 , ••• = a or 

fn' f n+1 , ••• = a in the cases n ~m or 

m ~ n respectively. O~ i< k. 

Up to a possible presence or absence of one or 
more trailing zero components E3 is the same as 
offset(T, Bol. 

(iii) Offset subtraction. One may want to 
find the offset from a new base when offsets to the 
new base as well as to the target are given. A con
dition for meaningful application of this operation 
is that the given offsets should be relative to the 
same base. Taking 

(eo"" ,em_1 ) 

(fa, ~ •• ,fn_1 ) 

we define 

to denote offset(T, BO) = P1 
to denote offset(B1 , BO) = P2 

(8) 

(9) 

P3 P1subP 2 =(eO-fO, ••• ei-fi, ••• ek_1-fk_1) (10) 

with O~ i < k, k = max(m, n), em = em+1 == ••• 0 

or fm = fm+1 ••• 0 as under (ii). 

P
3 

is the same as offset(T, B1 ), again except for 

possibly trailing zeros. 

3.3 Revised definitions 

Two offsets are equivalent if and only if they are 
componentwise equal, when possibly missing trail
ing components in one of them are considered zero. 

Definition. For the next approximation to 
our unified reference concept we pick equivalence 
classes of offsets with respect to the stated 
equivalence relation. We term these Relative Vir
tual Addresses, RVA. We can represent RVA's by 
offsets, and thereby drop or add trailing zeros 
freely without changing-denotation. (Cf. fractio
nal notation with decimal point.) As with offsets 
we still need the status of the target - and of 
course a base node - to uniquely identify a node 
by an RVA. An RVA represented by an offset(T, B) 
we write RVA(T, B). 

The operations add and sub are trivially carried 
over to RVA's byprescribing that they be per
formed on arbitrarily chosen offsets representing 
the respective operands. That this works can be 
trivially shown, which will not be done here. 
We note that, using (5), (6), (7) and (8), (9), 
(10), respectively, we get what we want, viz.: 

RVA(T, BO) 

RVA(T, B1 ) 

RVA(B1 , BO) add RVA(T, B1 ) 

RVA(T, BO) sub TVA(B1 , BO) 

(11 ) 

(12) 

For convenience and uniformity we include also 
RVA's standing for the same things as AVA's; call 
them Full Virtual Addresses, FVA's. An FVA is 
simply an RVA with respect to the root node of 
the space. We can now use add and sub when operands 
include absolute virtual addresses, and generally 
apply all the algebraic properties of RVA's also to 
FVA's. It is easily verified that an FVA has the 
same components as its corresponding AVA (disre
garding irrelevant trailing zeros). 

75 

4. Applicability of RVA's 

We contend that RVA's almost serve as a basis for 
the unifying data type that we promised at the end 
of 1.2. Regard RVA's tentatively as reduced 
addresses: P = RVA(T, B) is the address of a node 
T, reduced by a qualifier, which coincides with 
the AVA of node B, AB• Recombination of P into a 
full address is done by performing Ab ~dd RVA(T, B) 
regarding AB as an FVA. - To actually find 
RVA(T, B) we simply do A~AB' regarding aliso AT' 
Le. the AVA of T, as an FVA. Obviously we can 
find RVA(T, B) even if we do not have the AVA's 
AT and A ; it is sufficient to have RVA's with 
respect ~o some common node, "base node", thus not 
necessarily the root node. The final RVA (T, :8) to 
be recombined will commonly be the result of a 
number of steps of "de-reduction" (= qualifi(:ation) 
by partial qualifiers. Some of these steps might 
be performed in advance by combining p~rtial 
qualifiers. All of the flexibility suggested in 1.2 
with regard to these manipulations is clearly 
there: making qualifiers more or less comprehensive 
by doing add or sub with desired qualifiers; making 
reference'St'hat are reduced addresses more OJ::' less 
reduced by doing sub or add respectively with a 
desired qualifier:-Add ana-sub are associative. 
Reduction of an RVAWith respect to a given region 
can be done through sub by any qualifier RVA~, 
which is at the same~me a reference RVA to a 
node, terminal and wi thin the region, or non·· 
terminal and within a subtree whose leaves are all 
wi thin the region. (For subtree regions the l~OOt 
node of these is a natural candidate, see seot. 6.) 

RVA's have two flaws, however, when considered for 
usage as references. The first has been mentioned: 
It is their dependence on "status" for unique iden
tifier capability (3.1,end). The second is that 
they would, as references, after all have to carry 
implications on matters wholly outside the region 
within which they refer, no matter how they are 
reduced with respect to that region. This is con
trary to objective (ii) of 1.3, as it represents 
an unnecessary and, as we shall see, detrimental 
commitment. 

The careful reader may have noticed the second 
flaw in that we have done nothing like "deleting 
leading zeros", as is required for addrElss reduc
tion (1.2). In fact, consider two nodes M and N 
both belonging to a proper subtree of the space, 
and the form this sample RVA(M, N): 

RVA(M, N) == (0, 0, ••• , 0, di , di +1 , ••• " ~-.1) 

(1~ i<k). There are at least 
as many leading zeros (.;;;:, i zeros) as there are 
levels 'above' the subtree, i.e. edges along the 
path between the subtree root node and the space 
root node. These zeros do nothing but indicate 
which levels in the tree the fields d., d. 1"'" 
~~ 1 apply to. Doing so they presuppo~e tli~t 
at-ove the subtree there exist indeed that many 
levels in the address space. This is a m.atter 
global to the subtree region and therefore such 
zeros are a bad commitment. We do indeed. want to 
allow global scale reorganizations of space struc
ture without having to go in and modify references 
local within a region that is not internally 
affected. This is the point of 1.3 (ii) and (c) 
and the meaning of self-relocatability, 1.3 Cd). 
We must, e.g., be able to insert or delete nodes 
dynamically on the levels above the subtree, to 
extend or shrink the space where needed. This is 
one kind of virtual move of a subtree. Giving all 
the nodes of the subtree new addresses, AVA's, is 
the meaning of the phrase Virtual Move. 



The subtree nodes must not have to be identified by 
new references after this operation - as long as 
the references are considered as identifiers only 
within the subtree region. 

'ro conclude, we note that RVA's might violate 
also our objective (i): If all the zeros are 
:represented explicitly as zero fields, space is 
wasted and RVA's would have unbounded lengths. 
However, this could be alleviated by a smarter 
representation, simply by leaving out all leading 
~z;ero fields and representing the number of these 
.in a separate new main component. This removes none 
of the flaws, but it will serve us as a useful 
construct to aid in the construction of a better 
concept. 

5. Reference concept II: Local Virtual Address 

'5.1 Constructing LVA's 

Consider an RVA representation, called FRVA, 
abstracted from specific formats, where possible 
leading zeros may (but need not) be left out and 
-bhe number of these thus dropped is given in a 
main component Z of the representing data object. 
Clearly Z ~ O. So take an FRVA to be a pair: 

]~RVA ( T, B) = (Z, D) } (13 ) 
D = (dz, dz+1 , ••• ,dk _1 ) 

where di are integers, Z ~ i.:s:;;; k-1, k ~ 1, T and 

B are arbitrary nodes and D is the (k-Z)tuple of 
remaining fields of RVA(T, B) after Z leading 
zeros have been left out. 

We will construct another abstract data object 
lacking the flaws of the RVA (and the FRVA). We 
assume an FRVA is given as in (13). First we pick 
one of the new object's components to be D. 
Assuming (13) we further define: 

C = level of B - Z 

(In graph theory the level of a node N in a tree 
i.s the number of edges on the path between the 
tree root node and N.) Are these components suffi
cient? In order to do add and sub we need to know 
the complete strin~ of---riVA components, which can 
be found from the (k-Z)tuple (dz, ••• dk _1 ) and Z 

using (13). To find Z from C, by (14) we need the 
level of B. With RVA's we did not have to know the 
status of any of the nodes involved when we did 
a.ddition or subtraction. We are not going to give 
up this valuable property. So we consider a further 
component that could help us, the level distance E 
to the target node T from the base node 'B, of ( 13). 

E = level of T - level of B (15) 

We are now in a position to define a Local Virtual 
~ddress, LVA, of a node T with respect to a node B: 

LVA(T, B) = (C, D, E) (16) 

where C and D must come from (13) and (14), using 
nodes T and B. 

:;.2 Demonstrating that LVA's work 

l,et us examine how LVA's can be made to work in 
a.ccordance with the suggestions in sect. 1.2 and 
1.3. In sect. 4 we have noted how RVA's could be 
used in this way were it not for their noted flaws. 
'I'he close connection of LVA with RVA, rooted in 
LVA definition, allows us to regard LVA's as 
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representations of RVA's. Our strategy will be to 
show that all wanted properties, as of sect. 4, are 
inheritecl by LVA's while the unwanted ones are not. 

LVA's as representations of RVA's. As long 
as we regard the address space structure as given, 
or fixed, LVA's can be considered to represent 
RVA's. Sect. 5.1 shows how for all RVA's we can 
make LVA's. We also will define operations, LVA-add 
and LVA-sub applicable to LVA's and with the pro
perty (called distributivity)that if R1 can repre
sent P1 and R2 can represent P2 then R1 LVA-add R2 

can represent P1 add P2 if the latter·operation is 

meaningful as of 3.2 (ii), and similarly for 
LVA-sub and sub. (R1 and R2 stand for LVA's, P 1 

and P2 for RVA's.) With distributivity given, it 

is clear that from (11) and (12) we would get the 
analogs: 

LVA(T, BO) 

LVA(T, B.1 ) 

LVA(B1 , BO) LVA-add LVA(T, B1 ) 

LVA(T, BO) LVA-sub LVA(B1 , BO) 

( 17) 

(18) 

From her~~ on we will call the LVA operations add 
and sub, as this can cause no ambiguity. The LVA 
operations will be defined by rules to compute 
their results from the operand LVA information 
alone, i.e. needing no auxiliary data such as e.g. 
status of nodes involved. We will observe while we 
proceed how the noted flaws of RVA's are not pre
sent in LVA's. 

Effectiveness for accessing. Finally we 
will review the conditions for engaging a refer
ence reduced-address in the accessing of the object 
it identifies. We do so while noting that LVA's 
are a kind of such addresses, as well as qualifiers 
and full addresses. We show that effective acces
sing will be achieved. 

Properties of LVA's. An LVA is constructed 
from an RVA by purposely dropping information on 
which depth its components are supposed to apply 
to. (The depth means the number of levels from the 
root. - Components of an RVA are said to apply to 
the level that the corresponding components are 
associated with in a pair of AVA's defining the 
AVA, cf. 2 and 3.1.) Otherwise LVA's and RVA's are 
the same thing. This lack of information in an 
LVA, however, implies that it does not represent 
a unique RVA: All RVA's gotten by prefixing zeros 
arbitrarily to the D component of an LVA (zero or 
more), can be represented by that LVA. When used, 
however, an LVA is associated with a particular 
RVA. This comes about when it gets interpreted as 
from a specific base node, as does the level of 
the target node, something we also will need: The 
E component defines this by (15). - Thereby, also, 
the first flaw of RVA's (end of 3.1) is removed in 
LVA's. So we will be allowed to talk about "the 
number of zeros understood to be prefixed", i.e. 
Z, and of the levels of the two nodes. These things 
are references to absolute depth. They are para
meters in the construction, however, and they are 
all eliminated in the computing rules. 

The lack in an LVA of information on depth, or, 
which is the same, the number of nodes between 
application region and root, is precisely what 
allows insertion or deletion of such nodes in the 
space, and indeed also self-relocation under move, 
real or virtual, of the whole contents of a region 
to any different, but similarly structured, 
address space region. 



LVA's .lack the second flaw of RVA's that was noted 
in sect. 4. This means an extension of a similar 
flexibility achieved already in the RVA's: These 
allow self-relocating moves but only within the 
same, constant II level in the space. 

Devising LVA add and sub. The operations 
will be in essence the same things as add and sub 
of RVA's or offsets, as defined in sec~3.2 T~ 
only distinguishing thing is that in adding (sub
tracting) offsets we add (subtract) components-that 
have same index in both operands. In other words, 
in offsets and RVA's the component strings 
(n-tuples) are aligned, and we can start directly 
with the first component in each operand and pro
ceed componentwise. With LVA's we must first align. 

The theoretical identity of LVA and RVA operations 
warrants the promised distributivity. With it the 
truth of (17) and (18) would be established. That 
alignment can indeed be computed will soon be 
shown. 

Establishing computation rules for add. 
Only add will be treated, the case of sub being 
similar. Given are the LVA's R1 and R2 : 

(C 1 , D1 , l~1) 

(C 2 , D2 , E2 ) 

(19a) 

(19b) 

We devise and validate rules by which to compute 

Ri add R2 

(C
3

, D
3

, E
3

) where 

(20) 

( 21 ) 

C3, D3 and E3 are to be computed. In use, as we 

have noted R1 and R2 both identify target nodes 

with respect to intended base nodes. For addition 
to be meaningfully defined the target of the first 
operand is required to be the base of the second -
it is the intermediate base to be eliminated 
(3.2 (ii) ): 

LVA(B1 , BO) 

LVA(T, B1 ) 

(22) 

(23 ) 

Thus assumed to refer to given base nodes, R1 and R2 

become associated with two RVA's, which they are 
taken to represent. We represent these RVA's in 
turn by certain FRVA's (see (13) ), viz. those 
that arise if their respective D components are 
chosen respectively as D1 and D2 of (19). The FRVA 

Z components then get determined uniquely. Thus 
associate 

with Ri : Q1 

with R2 : Q2 

FRVA(B1 , BO) = (Z1' Di ) 

FRVA(T, B1 ) = (Z2' D2 ) 

(24a) 

(24b) 

For the level in the space tree of an arbitrary 
node N we write L(N). From the definition (14) of 
C components, applied to (19), we get, in view of 
( 22 ), (23) and (24): 

We now consider alignment. How many component 
places, "steps",must one of D1 or D2 be shifted 

before a componentwise addition may be performed? 
Think of right shift and consider this as prefixing 
zeros. Consider the meaning of Z's in (24) as 
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gi ven by definition under (13). ~~he number of shift 
steps must be given by lSi, where 

S = Z1 - Z2 

and which D to shift by the sign of S. Now 

S 

S 

Z1 - Z2 = L(BO) - C1 - (L(B1 ) 

L(BO) - L(B1 ) + C2 - C1 

So by (15), (24a) we give the rule to comput~~ 

S = C2 - C1 - E1 

(26) 

Case I: S = 0, i.e. Z1 = Z2' Neither D1 nor D2 need 

be shifted. Rule for D, Case I: Form D3 by compo

nentwise addition of D1 and D2 (possibly supple

menting trailing zeros in one of them, as in 
3.2 (ii) ). 

If the number of zero components understood to be 
left out in an imagined FRVA: Q

3 
= (Z3' D

3
), is 

taken to be Z1 (so that Z3 = Z1) then indeed we 

have done no more than performed a regular RVA 
add, treating the Z1 = Z2 leading zeros in both 

operands separately from the rest of the components 
dealt with: As regards the said zeros a count of 
them is just copied into Q3' while the remaining 

components have been added regularly. Calling the 
RVA's represented by Q1' Q2 and Q3 : Pi' P2 and P3 
respectively, we have achieved: 

(27 ) 

Case II: S> 0, Zi> Z2' Di applies deeper (farther 

from the root) in the space tree than D~~. Rul.§...1'or 

D, Case II: Prefix S ~ero components to n-tuple D1 

gettiY!-g {n+S )tuple D1 ("right shift"); then a.dd 

corresponding components of D1 * and D2 (possibly 

supplementing trailing zeros) to obtain D3. 
Consider a transformation of the FRVA Q1 into 

Q1 * = ((Z1 - S), D1 * ). Q1 * obviously represemts 

the same RVA as Q1 - we have just chosen to leave 

out a smaller number of zeros from the J) component, 
thus representing them explicitly in D1-l~. As under 

case I we use D3 to imagine a FRVA: Q3 " (Z3' D3 ) 

with Z3 = Z2' by choice. Q1*, Q2 and Q
3 

have the 

same count of dropped zeros, viz. Z1 - S = Z2 = Z3 

and for the same reasons as under I we have for the 

RVA's represented (with similar notation): 

P
3 

= P1* add P2 
as Q1' i. e. Pi * 

But Q1* represents the same RVA 

Pi so 

(like (27)) 

Case III: This is like case II with roles of D1 

and D2 reversed. Rule for D, Case III: Prefix (-S) 

zeros to D2 getting D2*. Perform componentwise 
addition (as above) of D1 and D2* to get D

3
• 

Imagine Q
3

= (Z3' D
3

) and choose Z3 = Z1' 



Analogous to case II we get: P
3 

== P1 add P2* and 

as P2* == P2 because Q2 and Q2* represent the same 

HVA we get 

(like (27) ) 

Because P1 == RVA(B1 , BO) and P2 == RVA(T, B1 ) by 

their definitions and (24), we can apply (11) to 
(27), now that (27) is shown to hold in all three 
cases. We get 

P3 == RVA(T, 130) (28) 

In all three cases we also have found a preferred 
FRVA representation of P

3
, viz. 

Q'3 == (Z3' D3 ) (29) 

where Z3 Z1 in Case I and III } (30) 
and Z3 Z2 in Case II 

Also because Q
3 

represents P
3

, (28) means that 

Q3 == FRVA(T, BO) == (Z3' D3 ) (3 1 ) 

Now that we can compute D3 we turn to how to com

pute the rest of R
3

, viz. C
3 

and E
3

• We have (31) 

so we can use the definition of C that helps us 
to derive an LVA from an FRVA, (14): 

C3 == L(BO) - Z3 == 

== {L(BO) Z1 in Case I and III, by (30) 

L(BO) - Z2 == L(BO) - Z1 + S in Case II, by 
(30) and (26). 

From this we get the computation rule for C: 

In Case I and III make C
3 == C1 } by (14) and (24a ). 

In Case II make C
3 

== C1+S 

To compute E
3

, use deL (15) on nodes T and BO' 

in view of (31 ) , to get 

E3 == L(T) - L(BO) == E2 + L(B1 ) - L(BO) using (15), 

(1 6), (1 9b) and (23). 
We have by (15), (16), (19a) and (22) that 
L(B1 ) == E1 + L(BO) so we state the rule for E: 

From the consideration of Case I thru III it is 
clear that, following the rules, we will have done 
no more than add on whatever two RVA's P1 and P2 
that R1 and R2 can represent. This establishes 

distributivity. 

Conclusion. Local Virtual Address, LVA, 
is the promised unifying data type (1.2 end). An 
LVA will be a reduced address or a qualifier in 
the same manner as the RVA it is taken to repre
sent. Thus the assertions of sect. 4, first para
graph, will carryover literally if "RVA" is 
replaced by "LVA" and all reservations removed. 
Under Properties of LVA's we have established that 
the RVA flaws are not inherited. - While reviewing 
sect. 4, we will make more concrete for LVA's the 
process of recombination into full addresses, in 
preparation for engaging them the accessing of the 
data objects they identify. 
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Recombination and Access. (Cf. sect. 4) 
The full qualifier representing the AVA AB of some 

base node B is to be an LVA, call it Q, now inter
preted as an FVA. (A proposed term for LVA ~ 
interpreted would be Global Virtual Address, GVA.) 
Referring to 3.3, last paragraph, we have: 
Q == LVA(B, Root) when Root is the root of the space 
tree. We are to recombine R LVA(T, B) into a full 
address. We do 

s Q ada, R == LVA(B, Root) add LVA(T, B) 

S LVA(T, Root), by (17). 

s is a GVA. S = (CS ' DS ' ES )· The base node of S 

is the root, so (14) becomes: 

Cs L(Root) - ZS. L(Root) == 0, however. So 

Zs (-CS ) where 

(ZS' DS) == FRVA(T, Root), (13), and 

RVA(T, Root)(= AT) is immediately reconstructed 

by prefixing the Zs zeros to DS (shifting). AT 

is an FVA having the components of the Absolute 
Virtual Address of T (3.3 end) and can thus be 
used directly for access in virtual storage, N.B~ 
if we know the level of T - as AT is indefinite 

with respect to trailing zeros so its number of 
components does not tell this level. But 
ES == L(T) - L(Root) == L(T) - ° == L(T) so this 

level is also contained in S .-LVA's and their 
associated add operation can be used exclusively 
(but for a final shift), in the process of pre
paring reference LVA's for accessing. 

5.3 LVA normalization 

Consider an LVA 

R == (C, D? E) (3, (0,0,2,-1,5), 2). 

Obviously R'= (1, (2,-1,5), 2) can represent the 
same RVA'fj as R; the choice of 3 for C was arbi
trary. The arbitrariness comes from (13), where it 
was introduced for the sake of generality. R' is 
shorter, and presupposes only one level to exist 
above the base node whereas R requires three such 
levels - an unnecessary commitment. The remedy is 
simple: We define normalization of an LVA as the 
process of drop in all leadin zeros in the 
second main component "D", while subtracting 
their number from the first main component ("C"). 
An LVA with no such leading zeros is said to be 
normalized.. In general, LVA's in use should be 
kept on normalized form. A further benefit of a 
normalized LVA is that it is a unique representa
tive of the class of LVA's meaning the same thing -
i.e. capable of representing the same set of RVA's. 
The'LVA to any node N with respect to this node 
itself, LVA(N, N), is not normalizable, nor LVA's 
to nodes M along the path from the root node to N 
or along a path of solely zero numbered edges in 
a subtree whose root is N. In these cases we con
ventionally pick a standard LVA to be (0, (0), E), 
E being the level distance as usual (15). 

6. Remarks on use of LVA's in systems design 

Choice of qualifier. The choice of quali
fier is equivalent to the choice of common base 
node for a set of reference LVA's to objects in 
a region. ',rhis choice can have an important effect 
on LVA length for the set and thus for storage 
economy. 



For a subtree region the natural choice appears to 
be the subtree root. Then, a qualifier LVA that 
identifies the subtree from outside is an LVA 
to the subtree root,. and such LVA's will always 
only carry components for levels above this root. 
The reference INA's to objects in the subtree, pre
supposing such a qualifier, will have at most so 
many components as the identified node has levels 
above itself in the subtree. This appears reason
able. 

Multiple interpretation. There is nothing 
intrinsic in an LVA making it a full qualifier GVA, 
any particular region's qualifier or a reference 
LVA with respect to a particular base node. As an 
LVA it can represent many RVA's (any number of 
zeros supposed in front of the D) and these RVA's 
in turn can represent many references, depending 
on base node supposed. As soon as a definite base 
node is understood, however, both these aspects 
of indefiniteness are removed: The interpretation 
is then fixed. Once implemented, LVA's constitute 
a general purpose facility offered to all algo
rithms realized or realizable on the computer, 
whether these are implemented in hardware or soft
ware, whether system software or application pro
grams. The algorithms using it, or the algorithm 
designer, must keep track of interpretation - just 
as with any other data type supported, such as 
binary words. 

Protection. There are simple and efficient 
ways for system algorithms, hardware or super
visory, to confine user algorithms to any desired 
set of interpretations. The moment to do so is at 
recombination with a system known full qualifier. 
E.g. if a range of confinement is to be a certain 
subtree, then arrange that recombination is to be 
done with a qualifier Q that is the GVA to the 
subtree root. If in the recombining ~ ... S < EQ., 
eee (26) and below (we must have to do witb 

Case II), then a violation is caught. - Sp~ce 
does not allow further expansion on this theme. 

Efficiency. There are evident similari
ties between LVA add and sub and current, well
understood, widel~mplemented operations, such 
as floating point arithmetic or string and deci
mal number manipulation. Therefore, no doubt 
efficient hardware implementations can be designed. 
Of course much attention must be paid to design 
parameters, such as size and uniformity of field 
lengths in the D component. - For the underlying 
virtual space, variability, size and other points 
of design are of course crucial parameters in 
hitting tradeoffs between functional capability, 
flexibility, cost and efficiency. But these are 
matters independent of the LVA concept. 

7. Conclusion 

Local Virtual Addresses meet their objectives as 
stated and summarized in subsection 1.3. - The 
important problems of how and when names of a 
System Name Space are allocated and deallocated 
to/from externally identified data objects may be 
greatly alleviated by clever application. But the 
essence of these problems is outside the present 
work. As I see it, we have here a next major 
challenge. I would propose to chose for Name Space 
the set of LVA's. I hope that when these things 
will be tackled it will appear'that the concepts 
presented will provide a good and profitable basis. 
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A VIRTUAL MEMORY FOR MICROPROCESSORS 
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ABSTRACT 

A virtual memory system for microprocessors is de
scribed. The system is designed to be extensible, to 
minimize software and execution overhead and to mini
mize operating system requirements. Specific applica
tion of the virtual memory system with the INTEL 8080 
microprocessor is given, describing the necessary soft-
1Nare constraints and operating system requirements. 

INTRODUCTION 

The availability of inexpensive microprocessors 
has significantly changed the ground-rules for the de
sign of computers that use them.· ffecause input/output 
I/O devices are far more expensive than microprocessors, 
it becomes desirable to share them among microprocessors 
in a micronetwork. Also, becaus'e the required in~mory 
is now several times more expensive~than microprocess
ors in many cases, it is also desirable to reduce the 
amount of local primary memory required in each micro
processor. However, a small memory raises the cost of 
software because overlays are difficult to program and 
debug. Herein, it is proposed that a small virtual 
memory system be included in each micro-computer, util
:l.z'ing a micronetwork to share bulk memory. Structural
ly, then, the system is similar to a BBN mUltiprocessor 
[1]. However, it is shown that a microprocessor such 
as the Intel 8080 [2], with modified memory hardware, 
can be economically implemented to have the same desir
able effect--to minimize the amount of local primary 
memory associated with each microprocessor. 

A virtual memory for a given microprocessor re
sides somewhere in a micronetwork. It is partitioned 
into contiguous equal length pages. Some pages may be 
on one disc while other pages mig'/:l;t be in another mic
roprocessor's memory. The microprocessor itself con
tains copies of some of these pages, called active 
pages, in its own primary memory. Generally, the mic
roprocessor will generate a virtual address A for a 
word in this virtual memory to read or write it. If A 
is on an active page, the word should be read or writ
ten as quickly as possible in the primary memory of the 
microprocessor. If A is not on an active page, (this 
is called a page fault) then the entire page that word 
A is on is brought into the primary memory and thus 
made active. Then it can be read or written. However, 
since the primary memory in a microcomputer is fixed, 
when a new page is brought in, one of the pages ih 
that memory must be "banished" back to the disc or an
other microprocessor from which it was taken, to make 
roam for the new page. 

This paper shows a distributed virtual memory or
ganization which is believed to be novel. The main 
point is that each page of primary memory, say a 256 x 
8 bit page, should have a page comparator and a coun~ 
ter. This provides a cheap and an extensible virtual 
memory for microcomputers. However, beyond just pre
senting this system, this paper shows why each part of 
the hardware is included. It is written in the format 
of "mathematical proofs", but with the idea of break
ing down the design ,into Simple decisions so that the 
reader can identify those parts of the design which he 
disagrees with. In this way, we hope that architecture 
will become more of a science, less of an art. The 
premises, like axioms, are basic assumptions which we 
hope the reader will accept without further argument. 
This is similar to their use by Parhami [3]. The reaf
ter, each implication, like a theorem, makes one point 
about the design. However, unlike theorems which can 
be proven, implications can only be argued. The argu-
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ments are the reasons we had for making the implica
tions. If the reader does not agree with the implica~ 
tion, the argument should be able to convince him, or 
he should be able to show us where we are wrong~ This 
is similar to the use of implications by Szygenda and 
Hemphill [4]. We hope that this style will not be pre
tentious or formalistic, but will be suitable to clear
ly expose each decision that we made in the design of 
the cellular virtual memory. 

This paper is divided into four section&. The hard
ware construction is considered first. Next, constt"aints 
on the software of the microprocessor imposed by this 
virtual memory are examined. Then implementation with 
the INTEL 8080 is considered as an example of the archi
tecture. Finally, some general implications m the soft
ware operating system are considered. 

VIRTUAL MEMORY HARDWARE 

When implementing the virtual memory, the question 
arises as to which functions should be implemented in 
hardware and which in software. For the determination 
of this system, several premises are given. 

PI: The system should be 'extensible--adding pages 
should require a minimum of hardware/software 
change. 

P2: Minimum execution time and minimum storage over
head for the virtual system is desired. 

P3: Additional hardware costs cannot exceed the cost 
of additional primary memory that it replaces. 

p4: Multiple word instructions are used. 
P5: Operating system requirements should be kept mini

mal. 
P6: As much of the system as possible should be inde

pendent of the processor type. 

The first question to be considered is how and 
where the virtual address is to be decoded to select an 
active page and how and where page faults are detected. 
Since these operat1:ons are done for every memory refer
ence their execution time and software overhead are of 
particular significance. 

II: Address translation in the primary memory for ac
tive pages and page fault detection must be per
formed with hardware. 

Argument: Software address translation results in 
large execution time overhead as well as storage 
overhead which violates P2. Hardware implementa
tion requires little or no execution overhead if 
the page is available in the physical memory and 
no software overhead. 

12: Address translation and page fault detection 
hardware should be cellular, where each page of 
real memory has an associated cell for add1:e&s 
translation and page fault detection. 

Argument: In order to make the system extensible 
(PI), it must either be cellular, each cell con
taining the logic necessary to perform the required 
address translation for one page, or the hardware 
required for the maximum number of possible pages 
must be incorporated in the system. The latter 
would not be cost effective since it would require 
more hardware than would be needed except in the 
extreme case. If the address translation logic is 
page associated, this logic may be incorporated 
directly on a memory chip containing the page 
memory. 



This leads to the following construction (figure 
1). Each cell will have a register, PAGE. It is 
loaded by the software to be the virtual page number 
when the page is loaded. PAGE is compared with the 
high order bits of the address sent out by the mi.cro
computer. If a match occurs, the memory associated 
with the cell :ls enabled so that the word chosen by 
the low order bits of the address can be read or writ
ten. Also, the output of the match from each cell is 
wire-ORed. If no match occurs, a page fault exists, 
and the microcomputer must bring in the page. This 
may be handled by an interrupt in a small microcompu
ter, since most microprocessors have an interrupt fa
cility (P6). Note that most memory accesses take a
bout as much time in this virtual memory implementa~ 
tion as they do in a real memory implementation. 

When a page fault occurs, some page must be ban
ished from real memory and the required page must be 
brought in. The requirements of the cell to support 
these operations are now considered. Generally, a 
page in real memory has to be selected to be removed. 
However, if it has not been written on (it is called a 
clean page), the copy in secondary memory is the same 
as the copy in real memory, and the page need not be 
written back to secondary memory. But if it has been 
written on (it is called dirty) then the page must be 
written back to secondary memory before a new page is 
brought in. Also, when the machine is first turned on, 
or when a new program is started, the first memory 
reference should cause a page fault to begin loading 
the new program. To prevent accidentally matching a 
page number in the memory, some mechanism is required. 

13: Determination of whether a page is dirty, or 
whether the page contains currently valid infor
mation, should be done in hardware. 
Argument: Implementation of either function re
quires one bit in each cell. The dirty page bit 
is set when the page is written on by the program. 
The valid page bit is set when the page is loaded 
and is cleared when the machine is started or when 
a program is completed. Maintaining the dirty 
page bit with software would require execution of 
an additional subroutine each time a store instruc
tion is performed, to save the fact that the page 
was written on, introducing significant executionl 
overhead (P2). The valid page bit simplifies the 
loading of programs because only th-e starting ad
dress of the program is needed to load it. 

The LRU (Least Recently Used) page replacement al
gorithm has been shown to be an effective method of 
choosing pages for replacement [5,6] and will be the 
method to be considered in this implementation of vir
tual memory. The LRU page replacement algorithm can be 
implemented in many different ways. Two will be con
sidered here. The first is a total hardware implemen
tation and consists of an associative queue. Each time 
a page is referenced, the page number is removed from 
the queue and is placed at the bottom. This causes the 
LRU page number to rise to the top of the queue ... When 
a page is required, the page number is read from the 
top of the queue. 

The second i"'11plementation of the LRU paging algo
rithm is a combination of hardware and software tech
niques. A counter is associated with each physical 
page. Every memory cycle, all the counters are incre
mented. When a page is accessed, its counter is reset. 
Overflow of the counters will be inhibited. When a 
page is required, the contents of the counter associa
ted with each physical page is read and the maximum 
found. The maximum counter value corresponds to the 
LRU page. 

14: The counter implementation of the LRU page re
placement algorithm is better than the associative 
queue. 

81 

Argument: The associative queue is not easily 
extensible. The counter implementation is exten
sible, the coun~ being associated with each page 
(PI). It provides flexibility--pages can be kept 
in primary memory by specifying which pages have 
their counters examined when a page fault occurs. 
The execution overhead, while larger than that of 
the queue implementation, is not significant since 
the operation is performed only when a new page is 
required. 

An implementation of a cell incorporating the 
mechanisms described above c.onsists of a status regis
ter with a "dirty bit"·and a "valid page" bit 
and the counter for the LRU algorithm in addition to 
the PAGE register and comparator described earlier. 
The output of the comparator is tied into an OR--rail 
for determining a page fault and is used to enable the 
memory cycle if the page is being accessed. ThE~ PAGE 
register, the counter, the dirty indicator and the mem
ory data lines are tied through a selector switeh to 
the I/O bus. The page is treated as an I/O device so 
that they can be accessed by the software when a page 
fault interrupt is serviced. 

The instruction that was being executed during a 
page fault must be re-executed using correct ·data. 
This requires saving the address of the instruction an< 
also the page number of the missing page, as is now 
discussed. 

When a page fault occurs, the memory data being 
accessed is not available and all zeroes is returned. 
We opt to use the virtual memory system w:lth most mic
roprocessors (P6). Most microprocessors eurrently 
available cannot respond to an interrupt until the in
struction being executed is complete. This causes 
either the wrong instruction to be executed or an in
struction executed with the wrong data. Correcting fo· 
the invalid instruction or data leads to the following 
implications. 

IS: Either the instruction length or the address of 
the first byte of an instruction must be saved 
when a page fault occurs. 
Argument: Whe.n a page fault occurs during an op
erand fetch, the instruction must be re-executed 
after the new page is available with the correct 
operand. Note that the instruction may be a mul
tiple word (P4). In order to "backup" the pro
gram counter, it must be either decremented by th, 
length of the instruction or reset to the address 
of the :first byte of the instruction. The length 
of the instruction varies, but can bla determined 
from its op code during the fetch cy,c1e. 

16: The address of the first byte of the instruction 
should be saved when a page :fault occurs, rather 
than determining the instruction length. 
Argument: The address of the first byte of each 
instruction can be saved in a register. tVhen a 
page fault occurs, loading of the re:gister can 
then be disabled, saving the contents unt:l1 the 
page fault is processed. To determi.ne th,~ in
struction length requires decoding the op code oj 
the instruction. This is processor dependent, 
violating P6, and could be very complicated de
pending upon the instruction set. 

The virtual page number being accessed during a 
page fault must be determined. Two ways of doing thi! 
are considered. The first is to trap the page number 
being broadcast when the fault occurs. The second in
volves determining fi1:'st whether the fault occurred 
during an instruction fetch or an operand fetch. If 
it was during an instruction fetch, the program count' 
er contains the page number. If not, the instruction 
must be decoded to determine which register has the 
page number being accessed. 



17: Saving the page number being broadcast is better 
than decoding the instruction. 
Argument: Saving the page number is easy to imple
ment, requiring only a register which is loaded 
when enabled by the page fault signal. Lt would 
require a minimum of ao~tWare--one L/O command to 
Tead the register •. 'Implememtation would not be 
processor dependent (p6). Decoding of the instruc
tion would require either a software routine to 
examine the instruction which would be storage 
consuming (P2) or combinational circuitry to de
termine which register contained the page number. 
This instruction decoding would vary from process
or to processor, violating P6, and can be very 
complex, as in the case of the INTEL 8080 [2]. 
The mechanisms discussed in 15 through 17 are 
shown in Figure 2. Note that this hardware is not 
needed in each cell associated with a page of real 
memory. Rather, one copy of it is required for 
each microprocessor. 

PROGRAMMING CONSTRAINTS 

When a page fault occurs, the effects of the in
struction being executed at the time of the page fault 
must be correctable. This requirement leads to the 
following implications. 

18: 

19 : 

no: 

Multiple word instructions cannot cross page 
boundaries. 
Argument: Multiple word instructions are of two 
general classes: (a) the additional words are 
used as immediate data, and (b) the additional 
words are used as an address. If a page fault 
occurs during the fetch of the second or third 
word of the first type of instruction, the opera
tion can result in invalid data in one of the reg
isters with no way of recovering the original data. 
With the second type o'f instruction, a page fault 
during the fetch of the second or third byte will 
cause an invalid address to be used, resulting in 
the wrong memory location being referenced and 
possibly having data stored in the wrong location 
or transferring to the wrong location. The ef
fects of page faults occurring during the fetching 
of mUltiple byte instructions for the Intel 8080 
are listed in Table I. Since these two classes of 
instructions represent a large portion of the to
tal capability of the microprocessor (38 of the 
Intel 8080 instruction set--see Table I), they 
cannot be prohibited from use without seriously 
degrading system capabilities. A simple, easy-to
implement alternative is to avoid overlapping page 
boundaries with an instruction. 

Any instruction which cannot be "backed out of" 
after a page fault must be prohibited. 
Argument: If a page fault can occur during execu
tion of an instruction, and the result of that 
instruction is such that data is lost and cannot 
be retrieved (such as the contents of the accumu
lator), that instruction must not be used. This 
will, in general, be restricted to the direct 
memory arithmetic and logical instructions. The 
effect of instructions causing a page fault on 
the Intel 8080 are shown in Table LI. Only three 
instructions must be prohibited. 

The interrupt must be enabled at all times while 
operating in virtual areas. 
Argument: If the interrupt is disabled and a 
page fault occurs, the program will try to contin
ue with invalid results. If the page fault occurs 
on an instruction fetch (that is, if the instruc
tion were on a new page), the CPU will continue to 
execute null instructions, incrementing the pro
gram counter until it reaches a page that is 

available. Either case appears to be disastrous. 

IMPLEMENTATION WITH INTEL 8080 

The software constraints discussed above are 
easily enforced~..,..a compiler can be used to automatical
ly insert NOP instructions if a page boundary is being 
crossed. Relocatable segments can all be started on 
page boundaries. Prohibited instructions may be 
avoided by l3ubstituting a macro. 
The operating system can be given control over the in
terrupt with the user only allowed to inhibit (mask) 
interrupts other than the page fault. 

Non-stack instructions were examined. Those which 
could cause page faults are listed in Table II with 
their effect and remedial action. The only action re
quired was to re-execute the instruction, which mini
mizes software requi~ements. 

When an interrupt occurs in an INTEL 8080, at the 
completion of the execution of the current instruction, 
an instruction is accepted from the data lines without 
affecting the program counter. In order to save the 
contents of the program counter and branch to an inter
rupt processing routine, the RST instructin must be 
used. This causes the program counter to be pushed on
to the stack. If the stack pointer is at a page bound
ary at the·. time, a page fault will occur. This will 
cause another RST instruction to be executed, placing 
the system in an endless loop. Several methods of 
preventing this situation were considered. All in
volved insuring a page fault could not occur during a 
stack operation. 

(a) The stack may be conStrained to one page 
which is kept core-resident. 

(b) All pages allocated to the stack may he kept 
core-resident. 

(c) The current page and the next nearest page 
(relative to the stack pointer) may be kept 
in core. 

Ill: Keeping the current and the next nearest page of 
the stack in core is better than restricting the 
stack to one page or keeping all stack pages in 
core. 
Argument: Method (a) places a tight, almost im
possible to enforce, constraint on the programmer 
and the operating system. Method (b) requires a 
large amount of dedicated pages. Method (c) al
lows flexibility in programming, placing no con
straints on the programmer. It requires only two 
pages dedicated to the stack. Detection of the 
need to bring in a new stack page is easily imp
lemented with a simple four state sequential ma
chine (Figures 3 and 4). The only software re
quirements are that when the sta'ck pointer is 
changed by other than a PUSH or POP instruction, 
the stack associated logic must be initialized 
and the appropriate pages loaded in addition to 
a routine to process the stack page fault inter
rupt. 

OPERATING SYSTEM REQUIREMENTS 

A deterrant to using a virtual memory in a micro
computer may well be that the operating system require
ments to support it consume a large amount of real 
memory. This problem is currently under investigation. 
However, we conjecture that the real memory requirements 
for the resident operating system are quite modest. 

Cons:lder a likely application of this type of 
tvirtual memory in a micronetwork. A terminal will 
(consist of one microcomputer with its primary memory, 
~a keyboard? and a display. A controller will consist 
(of one microcomputer with its primary memory and a 
E fast I/O dE~vice such as a disc. A manager consists of 
~one microcomputer and its primary memory. A micronet
twork would then consist of several terminals, several 
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reliability, it should be possible to make any unused 
controller or terminal into the manager.) We believe 
that those aspects of the operating system that serw 
vice interrupts and errors for an I/O device can be 
resident in the controller while the service routines 
for the keyboard and'disp1ay in the terminal can be 
paged in, and need not be resident. It also appears 
that spooling and scheduling should be handled by the 
manager. We now argue that mapping virtual page num
bers to addresses in I/O devices in controllers, 
should also be handled by the manager. 

112: The manager should map virtual page numbers into 
addresses :In I/O devices. 
Argument: A ,given terminal will execute a program 
in a virtual memory. However, the storage loca
tion for the pages of this virtual memory will be 
stored in various controllers to share the re
sources of the system. A table will be stored, 
for each terminal, which associates each page 
number with routing information to locate the 
controllers and with the physical address of the 
page in the controller. If all these tables are 
in one manager, then storage allocation, schedul
ing, communication through sharing pages, and 
garbage collection are easier than if each termi
nal stores its own table. Such tables can be 
made small and can be accessed quickly enough if, 
for example, they are stored as binary trees 
where each node describes a collection of contig
uously numbered pages that are stored in contitu
ous locations in a controller. Many tables will 
consist:of only one node. Thus, the storage re
quirement should be modest. Moreover, since 
these tables are read only when the terminal has 
a page fault, and the page fault will require 
moving perhaps one or two pages, the overhead 
time in searching this table, and waiting to 
search it if the manager is busy, should be quite 
tolerable. 

Therefore we imply that the resident operating 
system in the terminal will be quite small. 

113: The resident operating system in a terminal will 
have an initial program load routine"e page fault, 
and stack page fault program that will only de
termine which virtual pages need to be banished 
or brought it; and a program for communicating on 
the buss. Finally, these programs should be in 
read-only memory. 
Argument: We believe that all the remaining oper
ating system functions can be best handled in the 
controllers or the manager, or can be paged in on 
demand. However, a program for initializing the 
registers is required to be resident and in a 
read-only memory, and a program for handling page 
faults and buss communication must be available 
for use at all times. 
Flow charts for the page fault handlers are shown 

in figures 5 and 6. These programs, a general inter
rupt handler and the buss communication program appear 
to be modest in size. We believe they will be the 
only resident part of the! operating systems. 

CONCLUSION 

A novel cellular virtual memory has been de
scribed. A hardware comparator is used with each page 
of memory to assist the ~irtua1 memory functions of 
obtaining the word from fast memory, if it is there, 
or determining if it is not there to generate an inter
rupt. A counter is used with each page to determine 
which page is to be banished when a new page is 
brought in. Hardware is used to determine which page 
is missing, and which instruction failed. Software is 
used to find the new page to be Drought in, and to re-
try the instruction that had the page fault. A widely 
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available microcomputer, the INTEL 8080, was studied to 
examine what is required in a practical system that 
would use such"a virtual memory. 

Moreover, in this paper, a new style of presenta
tion is used to give the reasons behind each desj.gn 
decision. Herein, the reader can determine where he 
disagrees with our design. Also, extensions to this 
concept, for example to defining a microprocessor 
better suited to using virtual memory, can be more 
easily spelled out. We hope that ,this style, as well 
as the content of this paper will be a useful contri
bution to the science of computer architecture. 
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INSTRUCTION ErFECT DURING PAGE 
FAULT 

AC! SBI (I..)~ invalid result 

ANI (A)~O 

:~ g~~ (A)_ unchanged 

CPI Condition FF set 
invalid 

LXI B 1:XI D} (r)~inval1d data UIH 

LXI SP (SP) invalid address 

IN Input requested from 
wrong I/o device 

OUT Output sent to wrong 
I/O device 

JHP .JC JNC} 
JZ JIIZ JP (PC)+- invalid address 
JM JPE JPO 

CALL CC CNC} 
CZ CNZ CP (PC) ~ invalid address 
CH CPE CPO 

STA (H)~(A) where K is 
not knowr 

SHLD (H~(L). (H+l) H 
where M is not known 

ACTION TO BE 
TAKEN 

No recovery 

No reco,very 

Re-execute 
instruC!tion 

Re-exec:ute 
instruction 

Re-exec:ute 
instruction 

No recovery 

LDA (A)4--invalid data Re-exflcute 
In8truction 

LHLD (L). (H)~1mralid data Re-eXf!Cute 
instruction 

Table I. Effects of page faults during 
the fetch of Intel 8080 
multiple byte instructions 



INSTRUCTION 

HOV r,M 

HOV H,r 

"'MVI M 

uSTA 

STAX I 

STAX D 

*"'LDA 

LDAX I 

LDAX D 

*"'SHIJ) 

*"'LHLD 

INR M 

DCR M 

ADDM 

SUlI M 

ruM 

ORA M 

CMP M 

ADCM 

SIB M 

ANA M 

EFFECT DURING PAGE 
FAULT 

():)~O 

No store 

No store 

No store 

No store 

No store 

(A)-O 

(A)_O 

(A)<-O 

No store 

(L).(H)-O 

No store, condition 
PF set 

No store, condition 
PF set 

(A) not changed 

(A) not changed 

(A) not changed 

(A) not changed 

Condition FF set 
invalid 

(A),,-- (A) + carry 

(A) (-(A) - borrow 

(A)_O 

ACTION '1'0 BE 
TAKEN 

Re-execute 
Instruction 

(A) cannot be 
reconstruc ted. 

1 
*2 byte instruction **3 byte instruction 

Table II. Instructions causing page faults 

Enable 

L:::====--~--l Cycle 

Memory 
'.!!--+------"'----;-~-__t Rftl Page 

~~~_..f_--40ata 

Addres. 

Figure 1. Physical page for virtual memory 

Pag" faul Page fault: interrupt 

lnt reset 

Pirat: Byte 

A [l5-00J 

Figure 2. Logic to trap page number and instruc
tion address at page fault 
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.,-192 
1-1 

STATES 

~ 
o 0 SP pointe to top quarter of pege 

011 SP points to .. 1ddle helf of page all4 
..... :t high"r p"ge h avaUable 

1 0 I. points to bott_ querter of pege 

1 1 s. points to .. iddle half of page an4 
.. ext lovar page i. avaUable 

Figure 3. Sequential machine to generate 
stack page fault 

Figure 4. Realization of stack page fault 
generator 

Figure 5. Page fault 
processing 

Figure 6. Stack page 
fault 
processing 



THE PERFORMANCE ENHANCEMENT OF DESCRIPI'OR-BASED 
VIRTUAL MEMORY SYSTEMS 'IHROUGH THE USE OF 

ASSOCIATIVE REGISTERSt 

ti' R. E. Brundage and A. P. B3.tson 
Department of Applied Mathematics c;md CoITIJ?ut~r, Science 

University of Virginia, Charlottesvllle, Vlrglnla 22901 

Surmnary 

Contemporary paged virtual rremory systems . 
often use associative registers to reduce access tlffie 
to frequently-referenced pages. Here we examine the 
analogous use of associative registers in descriptor
based, symbolically-segrrented virtual memory systems, 
where each segment contains an entire data structure 
as defined in a high-level language. Symbolic trace 
data from production Algol 60 programs were used to 
determine performance improverrent as a function of the 
number of associative registers in the system. Our 
results indicate that, even for reasonably large pro
grams a hit ratio of 0.9 is achieved with only 4 
associative registers. Increasing the number of 
associative registers to 8 gives a hit ratio of 0.98, 
which with current technology gives a performance 
improvement of at least 80% in addressing speed over a 
similar system without associative registers. 

We examine here the use of associative 
registers to reduce the overhead enc~untered in the 
addressing rrechanisms of segrrented vlrtual rremory 
systems. l This addressing overhead is caused by the 
need for an additional memory reference for each 
access to an element of a symbolic information segment. 
We have studied the performance impr<?verrent? in, terms 
of decreased virtual memory access tlme, whlch lS 
achieved by using associative registers to hold the 
most recently-used segrrent descriptors. A novel 
feature of this performance analysis is the use of 
symbolic data-segrrent reference strings obtained from 
Algol 60 programs executing on a modified Burroughs 
BSSOO. 

Symbolically-Addressed Virtual Memory Systems 

Virtual memoryl is the term coined for those 
computer memory subsystems in which programmer-defined 
symbols are at least one address-translation level re
moved from addresses in executable real rremory. Pro
grammars typically define,information units c;md struc
tures such as simple varlables and arrays, ill a 
symbolic name space in which each info~tion unit or 
structure receives a (contextually) unlque name. The 
set of symbolic names is generally c;m,unordered col-, 
lection of symbol strings of some f illl te length, havillg 

'd 'f' 2) a specified structure (e.g. Algol l entl leI'S . 
Symbolic names (identifiers) ~ objects in the ~o
called narre space, which provldes a means of namlng 
and referencing information in the virtual address . 
space. The virtual address space may take on a varlety 
of forms but here we restrict our attention to seg
rrented address spaces, in which information structures, 
called segrrents, may be variable in size up to an 
implerrentation-imposed limi~. In the pres~n~ study, we 
further restrict our attentlon to non-partltloned 
information segments, i.e., each segment occupies a 
contiguous block of storage. In the virtual address 
space, each informatio~ segment is refe::enced vi~ a , 
special information unl t called a descrlptor, whlch lS 

-tThis research was supported by NSF Grant GJ-IOOS. 

ttPart of this work was performed while this author was 
on leave at the Insti tut de Programrration, Uni versi te 
de Paris VI, France. 
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associated with the symbolic name (identifier) in the 
name space. The descriptor contains the information 
necessary to convert a symbolic address (segme:r;t naITe, 
displacement) into a physical address. Mechanlsrns 
for the implerrentation of this conversion are well
known and are described, for example, in Denning's 
survey article. l These implementations involve -bWo 
separate references to main memory for each conversion 
of a symbolic address. The analogous overhead problem 
in paged virtual memory systems is frequently allevi
ated through the use of associative registers. 'rhe 
purpose of this work is to investigate t~e degree to 
which this addressing overhead in symbollcally segrrent
ed systems can be reduced through the use of a small 
set of associative registers. 

Generation and Collection of Symbolic Refel~nce Strings 

The symbolic reference strines used in this 
study were obtained from a collection of event-trace 
tapes generated by instrumented Algol programs serially 
executed on a modified Burroughs BSSOO. Algol programs 
were collected from the users of the University of 
Virginia BSSOO and other sources and these were use~ to 
generate a da-ta base for the study of progr'am behavlor. 
Included in the events collected are block (procedure) 
entry and exi-t, flow of control (global label . 
branches), occurrence of 1/0 staterrents, p:rocesslng of 
declarations by run-time procedures and other events 
necessary to reproduce the execution sequence. The 
event-types are primarily oriented toward aspec-ts of 
program behavior related to resource allocation c;md 
utilization. One series of monitored runs also In
cluded the collection of references to symbolic data
segments (arrays) and a subset of this data was used 
in this study. 

The method of obtaining symbolic references waf 
relatively straightforward; in a descriptor-based 
machine such as the Burroughs BSSOO, it is possible to 
use the so-called presence bit in a mannel' somewh~t 
different from that envisaged by the ha.rdvJare deslgn
ers.3 To trap all references to data segments the 
presence bit, which norrrally indicates whether or not 
the segment is present in main memory, was simply 
turned off and stored elsewhere. Thus, at each refer
ence to a data-segment, a non-present ir:terrup.t 
occurred, and the descriptors and assoc~a-ted lll.fonna
tion were passed to the event-trace JTlOnltor proce~ure 
and recorded on magnetic tape. Normal pY'l3sence.-bl1: 
handling was then performed by software to allow PIY)

gram execution to continue. 

To process the data-segment referen~e strings, 
it was necessary to convert the referenc~s illto sym
bolic form, using an event-trace processlng prQgram 
(currently implemented on a CDC 6400) .. The event-trac 
processing program simUlates the executlon of a trace 
run by emulating the run-time data structures on the 
Burroughs BSSOO. In order to relate the events to thE 
symbolic level of the source program, the Algol com
piler was modified to emit, along with the instru:rr~ntE 
object code, a file containing the block structure an< 
declarations (procedure, variable and label) occurrinl 
in the source text. This file is converi:ed into a da1 
structure analogous to a symbol table, but which is iI 



actuality an inverse symbol table as it is used to 
convert addresses into symbolic names. The symbolic 
reference strings were written on magnetic tape for 
subsequent processing by the associative memory 
analysis program. 

Performance Analysis 

The use of associative memory in an addressing 
mechanism for a segmented virtual memory system is 
illustrated in figure 1. The symbolic address pair is 
(S,oo), and in a system without associative memory the 
segment name, S, is used directly as an index into the 
segment name table, where the descriptor is stored. 
In the IIDdifi,ed system the segment name is first pre
sented to the associative memory (AM) register system, 
which responds with a match/no match condition. If a 
match occurs, then the real address can be computed 
using the output of "the associative memory (base 
address of the symbolic segment) and the index of the 
symbolic address. Otherwise, the segment name table 
(in main memory) is referenced to obtain the base 
address. The advantage here is, of course, that for 
current technology, the associative register look-up 
is several times faster than the reference to main 
meIIDry, so that the time to reference virtual rremory 
will appear speeded up in direct proportion to the 
number of AM matches and the AM search time. This 
idea is hardly new, but it has only recently been 
incorporated into a symbolically addressed, variable
length, segmented system, the Burroughs B7700. 

Symbol ic 
Address 

r-------- ----, 
w I 

Assoc i at I VB 

Memory 

Segment name 
tab Ie 

I 
I 
I 
I 
I 

~--.I---l'" ~~~~ess 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I L ___________ --.J 

Address i ng Meehan i sm 
(bounds check not shown) 

Figure 1 Operation of Associative Memory 

'The choice of the algorithm to manage entries 
maintained in the AM must be made in the light of 
several considerations, of which the primary one is 
that the AM is of a fixed (maximum) size. This, plus 
the fact that AM is a hardware-allocated, single-user 
resource, constrains the choices of replacement algor
i thms. The most likely choice, which is usuall¥ 
associated with paged virtual memory systems,4, is 
the least-recently-used (LRU) replacement algorithm. 
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This algori t:hm has been shown to be quite satisfactory 
in practice, and it has the added benefit of belonging 
to the class of so-called "stack algorithms" analyzed 
by Mattson et al.,5 for which the analysis of storage 
hierarchy management is quite straightforward. In 
this work we have, therefore, assumed an LRU replace
ment policy for associative memory, and we now proceed 
to define measures for the performance of the virtual 
memory system. Th~s development is based on the work 
of Mattson, et al. 

We first define the s~lic reference string. 
Given a set ~ =.{nl,n2 ... nN~ of.symbolic segment 
names, a Symbol1c reference str1ng 1S a sequence of 
references to segment names: 

rl,Y'2,r3' .. r k , .... 

where r
k 

is the name of the segment referenced at the 
kth instant in virtual time. 

A stack (of size N) is an ordered vector con
sisting of the set N arranged in order of the refer
ences to the elements of ~, 

~t = (St(1),st(2), ... st(N», 

where St (1) is the name referenced at time t - 1, 
and where ~ is updated as follows: 

(St(l) ,st(2), ... st(N» if r t = St(l) 
~t+l 

(St(j),St(1),st(2), St(j - 1), 

St(j + 1), ... st(n» 

if r t = St(j); j # 1. 

Given an initial stack and a reference string, 
we can derive the stack distance ~ as follows: 

at each time instant k, given ~k-l and r k , then: 

~ = i, where r k = sk_l(i) 

Thus, for a given reference, r k , the corre
sponding stack distance dk is the distance "down" the 
LRU name stack at which tne symbolic name is to be 
found. Thus, if the m top elements of this stack are 
held in associative memory, as will be the case for 
LRU management of an associative rnemory of capacity m, 
then a match in this memory will be found when dk :: m. 

Following Mattson et al., we now present an 
expression for the success function, F(m), which is 
the proportion of references Wh1Ch will be matched in 
the top-of-stack memory of size m. Given a reference 
string of length L, the string is processed by main
taining the stack and a vector of stack distance 
counters oed) (ini"tially zero), where oed) is incre
mented by one for each occurrence of stack distance d. 
The success function is then given by: 

m 
F(m) = I o(d)/L 

d=l 

F(m) is often called the "hit ratio," and in 
the next section we present some values for this 
function for a collection of Algol programs. 

If we assume that main meIIDry has a read time 
of T units and that the associative meIIDry has a 
sear~ time of TA units eTA < TM), then we can derive 
a measure of the improvement in performance obtained 



with an m-eleme:flt associative memory. SUPIX>se that we 
are processing J different programs, then we can 
determine the success function F. (m) for the indi vid
ual reference strings, where theJjth string contains 
J:.j symbolic references. Then, a(m), the overall 
fraction of references having an associative memory 
match (the hit-ratio) for an associative rrernory of 
size m is given by: 

J 
a(m) = L F. (m)L./R, where R = 

j=l J J 

J 
L L

J
. 

j=l 

We point out that a(m) is a value which is weighted 
by the different ~'s (rurming ti.nes) of the programs. 
The hit-ratio achieved in practice would be lower 
than that giverl by the expression above if the pro
grams ran in a mul tiprogramrred marmer, since the 
associative registers would be cleared at the time 
of program switching. 

Using i:he value of a(m) , we can easily derive 
the average segrrent reference time g(m): 

gem) = a(m) (T
A 

+ TM) + (1 - a(m» (T
A 

+ 2T
M

) . 

Here we have assumed that the reference ti.ne 
is TA + 2TM when the descriptor is not in associative 
memory. This will not be true for all systems, be
cause of factors such as interleaving and the overlap 
between reading and restoration times. 

Finally, we define e(m) as the ratio of gem) 
to the minimum possible reference time (TA + TM), i.e. 

( ) (TA +2TM) 
e(m) = T g+mT = a(m) + (1 - a(m» (T + T ) 

A M A M 

This quantity e(m) is helpful for visualizing 
the way in which accessing efficiency varies with the 
size of the associative memory, since it is almost 
independent of the ratio T A/TM when this is much less 
than one. When TA/TM is zero, e(m) = 2 - a(m). 

Results 

The experimental data used in this study were 
21 symbolic reference strings, obtained from 21 Algol 
60 programs written in Algol 60 for the Burroughs 
B5500 computer. The only limitation of that version 
of Algol 60 of significance here is that any given 
di.nension of an array may not exceed 1023 words in 
length, though the size of a symbolic data segment may 
greatly exceed that, of course, if it is presented as 
a multi-dimensional array. In this study, we consider 
only references to array elements - one can envisage 
that all simple variables will be stored in a separ
ate, unique data segment. The 21 programs could be 
classified as small-to-medium in size and complexity, 
having from 3 to 28 symbolic data segments (arrays). 
Their total memory requirements on the B5500 (ex
clusi ve of system routines such as 110 rrodules) ranged 
from around 3.000 words to 35,000 words, with from 6 
to 77 code segments (blocks). The reference strings 
themselves ranged in length from 470 to over 175,000 
references to symbolic data segments. All of these 
programs were taken from the user group at the 
University of Virginia or from the program library. 
The applications themselves were in general of a 
scientific nature, including programs for differential 
equation solution, factor analysis, regression anal
ysis, chemical engineering applications, pattern 
recognition, and the reduction of environmental data. 

Since the use of associative registers as a means 
for improving system performance is so closely allied 
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to the characteristics of program structure and 
execution behavior, we first discuss a measure which 
indicates the dependence of the size of the associa
tive memory on program size (mnnber of symbolic data 
segments) for a given performance. We postulate here 
that the contents of the AM will be almost entirBly 
data segment descriptors, since code and data segments 
are logically and physically distinct, and contrDl re
sides for a significant time in a single code segment 
(which can be referenced via normal registers). 
FurtheTIlK)re, "the segment of simple variables can have 
a fixed base for the duration of a burst of processor 
activity on a program, and hence its descriptor can be 
stored in a conventional register. Thus, we define a 
ratio p, given by 

p = (number of AM registers I (number of data. 
segments) 

and show, in Figure 2.1, how the success function, or 
hit ratio, varies with p for all 21 programs. 
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A high hit ratio with a small p value repre'
sents a program with a high degree of relative locality 
of reference, and it is clearly the case tfia.t:some of 
the programs were rrore meritorious than others jn this 
respect. It was postulated that somewhat better' rela
ti ve locality would be found in the larger progr'ams," 
since most rro:ctals cannot manipulate too many things 
at the same time. This supposition was c0hfirmed by 
plotting the same data for programs with less than 11 
data segments (Figure 2. 2) and 11 or more segments 
(Figure 2. 3) . The data from the larger programs 
indicate that very high hit ratios are achieved when 
p is greater than about 0.4. 

From the practical point of view, in terms of 
machine design, the rrore interesting quest:ion is con
cerned with the number of associative registers nec
essary for high performance on real progrcLffi mixes. The 
shape of Figure 2. 3, which in fact represents the 
range of relative locality for 85% of all programs 
measured, gives some hope that a given, fixed, AM size 
will produce aQ8eptable performance improvement for 
all programs. This issue is explored in Figures 3. 4, 
and 5. 
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Figure 3 displays the variation of the overall 
hit ratio, a(m) with m, the size of the associative 
memory. Two sets of points are given - one for all 21 
programs, and a second set which does not contain data 
from one program (NONL) which was much larger then 
any other, making up about 30% of the sample. The 
data show that an AM size of 4 yields a hit ratio of 
greater than O. 9 for this sample. By doubling the 
size of the AM to 8 the hit ratio increases to 0.98, 
Le. one can recover 80% of the overhead remaining at 
size 4. For larger programs than those measured here 
it could well be the case that the hit ratio would 
falloff somewhat, but the data presented in Figure 
2. 3 gives one real hope that perform:mce would not 
fall to an unacceptable level with only 8 associative 
registers. For example, taking the most pessimistic 
viewpoint that relative locality is independent of 
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program size, and thus that Figure 2. 3 is valid for 
very large programs, then an 80-data-segment program 
(which is a very large program indeed) would still 
achieve a hit ratio of around 0.4 with 8 associative 
registers. In practice, one would suspect that per
formance would be significantly better than this for 
the reasons described above. 

To illustrate the increase in virtual memory 
performance as a function of AM we present in Figure 
4 the vari.ation of average reference time, g(m), with 
AM size. Here we have assumed a main memory reference 
time, 1M, of 1.0, and plotted three curves, for AM 
search times TA of 0.01, 0.1, and 0.25. Finally, the 
data is shown in a somewhat more condensed form in 
Figure 5, where e (m) is plotted against m. The 
points shown are for TM = 1. 0, TA = 0.1, but as was 
mentioned earlier, the graph is almost identical to 
those for other AM speeds if these are significantly 
less than main rnerrory speed. Here e (m) is the ratio 
of actual reference time to the minimum possible 
reference time, and thus the graph gives a simple 
illustration of how performance changes with the size 
of the associative memory. 
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Discussion 

+ 

The results presented here are essentially 
~lobal measures of certain program behavioral char
lcteristics, and we have shown how they can be 
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utilized to evaluate a specific hardware design for a 
segmented virtual memory system. One :i.rrq:xJrtant 
question concerns the extent to which this sample of 
programs is representative of the mix of rea.l world 
computing problems. Clearly, an increase in. the size 
of the sample would be an :i.rr"provement, and an obvious 
bias is the lack of any really large problems. Al
though the current results seem to indicate that pro
grams do not have very populous symbolic localities, 
whatever their size, it is clearly the case that -this 
should be studied experimentally. In addition, 
studies of localized behavioral patterns, such as the 
way in which localities change with time, and the 
relationship of these localities to the lexicographic 
structure of the program, would be both infonnative 
and useful. We are in the process of investigating 
such behavior. It is difficult to compare these re
sults with those found by Schroeder for the Multics 
system,6 in that the two concepts of "segment" are 
quite differen-t. Moreover, the GE-6l~5 is a. paged 
virtual memory system with a page size of 1024 words, 
and thus conceptually this is the minimum 'segment' 
size which can be referenced by a descripto:r'. 
Linguistically·-distinct data structures, such as all 
arrays local to a procedure, may well be packed :into 
a single such segment. Conversely, from our vie"7pOint, 
our typical program has a relatively large munber of 
small, distinct segments. 7 ,8 

Another possible direction of study would be 
to consider the effects of different mechanisms for 
representing arrays in memory. On the Burroughs 
5500-6700 machines, for example, multi-dimensional 
arrays are implemented in a tree-structured form. The 
elements of the array are contained in the leaves of 
the tree, and each array-row segment is allocated as 
a contiguous block of storage. Thus, to address an 
array element one must trace a path througrl the inter
mediate levels via dope-vector segments containing 
descriptors to the next lower level. Hence, an 
additional n - 1 memory references are incl..:rrTed in 
referencing an element of an n-dimensional array on 
such systems. This would cause our analysis to be 
valid only as a lower bound on the average reference 
time to a symbolic segment, since these lower-level 
descriptors would obviously displace segment name 
table (root level) descriptors already in associative 
memory, causing a higher replacement rat.e and a 
corresponding. degradation .in. average AM hi-t ratio. 

The effects of environment change (block exit) 
have not been considered in this study. Since Algol 
60 array segments are deallocated on exit from t:he 
block at which they were declared, then their des
criptors become invalid at this time and may be 
delected from AM. Thus, an AM cell containing such a 
descriptor could be freed at block exit time, but this 
fact is not reflected in the analysis of the LRU 
algorithm by the stack processing technique. The 
effect of this omission is not likely to be great, 
since block exit will usually be associated with a 
change in the set of active data segments leading to 
prompt changes in the contents of associative merrDry. 

Finally, we will remark that the use of sym
bolic trace data, as illustrated by the work reported 
here, is clearly important for the study of designs 
for high-level language machines . Although these 
results were obtained with Algol 60 programs, there is 
no reason to expect significantly different findings 
for programs written in other block-structured langu
ages, such as PLiI and Pascal. Whilst considerable 
attention has been given to paged virtual memory sys-
~~, t~ugh the use of address traces illld tpe like, 
l t lS eVl~e~1: tha~ such data have little relationship 
to the orlglTIal hlgh-level program as written. 



Hatfield and Gerald,9 for example, have given some 
striking evidence of the behavioral changes in program 
execution on a paged machine which are obtained by 
varying the mapping between a program's symbolic name 
space and the linear virtual address space of such 
systems. It seems reasonably plausible to expect that 
the behavior of real programs, say in Algol, can only 
be discussed in terms of Algol-level behavioral data, 
such as symbolic traces, and equally that such data 
can be usefully employed for the design evaluation of 
high-level language machines. 
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SPEAC 

SPECIAL PURPOSE ELECTRONIC AREA CORRELATOR 

Dr. Orin E. Marvel 

Honeywell Inc. 

ABSTRACT 

In the high data rate systems (> MHz) associated 
with signal processing, a standard stored program 
computer is not fast enough. At the present time, 
parallel (1, 2) and pipeline (3) architectures are 
being used to solve these computational problems. 

This paper describes a preprocessor which is 
optimized to perform sum -of-product operations 
with a "pipeline ripple through" architecture. A 
breadboard built to perform the "absolute difference" 
and "product" correlation functions using this 
architecture is described. 

Introduction and Summary 

With the introduction of low cost microprocessors 
and "ROM/RAM" memory elements, the area of 
real time control is rapidly expanding. Many 
problems requiring a high computation rate can best 
be solved by adding a special purpose preprocessor 
to the system. This paper describes a pipeline 
sum-of-products preprocessor architecture and a 
breadboard built to demonstrate: 

• Pipeline arithmetic units 

• Microprogram control 

• Hardwired address generation 

• Minimum/ absolute difference correlation 

• Maximum/ product correlation 

This system is built around the following three 
assumptions: 

(1) Preprocessors require high speed 
repetitious processing of a sum-of
products nature. Typical applications 
are in the three to four sum-of-products 
per microsecond range. 

(2) Most sensor based data (especially human 
related) has a very low dynamic range and 
four bit accuracy is sufficient. 

(3) MSI/LSI hardware (multipliers, arithmetic 
limits, comparators, and registers) is 
easily obtained in four bit slices. 
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The breadboard described in this paper demonstrates 
the concepts of pipeline operation, sum-of-product 
architecture, and correlation processing. 'This type 
of demonstrator breadboard acts as an excellent 
training tool for new architectural concepts. 

Pipeline System 

In this paper, the pipeline concept will be associated 
with a preprocessing system. The pipeline system 
consists of a number of hardware modules (see block 
diagram of SPEAC) that each perform an operation on 
the data stream independently and possibly at the 
same time as the other modules. Data enters the 
beginning of the pipe and results exit at the end. The 
throughput of the system is a measure of how fast 
data enters and results exit from the system. 
Throughput is independent of the propagation time 
through the system. Figure 1 shows an exa.mple of 
a three-unit pipe that performs AX2 + BX + C. 

Figure 1. Pipeline Processor 

In the system examples described in this paper, a 
microprogram control unit is the pipe controller or 
master executive. The only inputs, other than data, 
are clock signals and a master reset. 

Pipeline Ripple Through Technique 

The "Ripple Through" pipeline technique is a method 
of performing hard wired arithmetic and logical 
operations by implementing the algorithms directly 
in hardware. The one chip multipliers, adders, 
subtractors, and comparators that are readily 



available allow high speed special purpose arithmetic 
operations to be performed with a small « 50) parts 
count. 

The performance that can be obtained with a sum of 
products unit depends on the component technology 
used. For example. the 16-bit sum of two 4-bit 
products takes: 

(1) With CMOS implementation- 315 nanoseconds 

(2) With TTL implementation - 98 nanoseconds 

(3) With ECL implementation - 21 nanoseconds 

However. one finds that the memory address compu
tations and memory fetches associated with "feeding" 
the pipeline take more time than the arithmetic 
operations (this area is always overlooked in a 
special purpose processor design). The simplest 
system is obtained if the next address computation is 
performed in parallel with the arithmetic operation 
(for a TTL implementation. the address computation 
for a two dimensional correlation is 91 nanoseconds). 
Thus the total algorithm computation time depends 
heavily on the memory access time. A typical high 
speed TTL memory access time is in the 140 to 160 
nanosecond region. 

Preprocessor Architecture 

The class of special purpose preprocessors described 
in this paper have the block diagram shown in 
Figure 2. The preprocessor after receiving a re
start command generates all its own control and 
clock pulses. The unit produces memory addresses 
and requests; and receives the data to be processed. 
As soon as the computations are completed. an inter
rupt is raised so the result can be transferred to the 
main data processor. 

DATA FROM 
MEMORY 

PIPELINE 
PROCESSING 
UNIT 

ADDRESSES TO 
MEMORIES 

RESULTS TO 
MAIN PROCESSOR 

Figure 2. Preprocessor Block Diagram 

The preprocessor contains the following three units: 

(1) The microprogrammed control unit pro
duces all internal control. data steering. 
and clock pulses. The control unit also 
handles all external interface control. 
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(2) The ripple through pipeline sum-of-products 
processing unit performs all the arithmetic 
computations. Ripple through pipeline 
means that the arithmetic functions of 
multiply. add, and con::.pare are performed 
in different hardware subunits with no 
register or clock staging. The unit is 
designed by connecting all the arithmetic 
elements together and calculating the worst 
case delay between the memory port and the 
answer register. This becomes the basic 
computation period and defines the register 
gating clock. 

(3) The hard wired address generation unit pro
duces the addresses for the data required by 
the preprocessor. Since the addresses 
required are not in sequential order. the 
address computations are performed in 
parallel with the arithmetic computations. 
The complexity of most address generation 
algorithms cause this unit to be a limiting 
factor to the throughput of the system. 

The preprocessor architectural trade-offs range from 
maximum throughput (arithmetic computation. 
address computation, and memory access in parallel) 
with highest parts count to the lowest parts count 
mechanization with the f1.mctions performed in 
sequence. 

Applications 

The preprocessor described in this paper is pres
ently being applied to: 

• Fourier Transforms 

• Power Spectrum Density 

• Correlation 

• Weighted Averaging 

Each of these problems requires the high throughput 
sum of a mathematical operation as described in the 
previous section. Simulations have shown that in the 
real world conSistently high probabilities of success 
require sensor data digitized to 4 to 13 bit accuracy. 
The accuracy required depends on the signal to noise 
ratio. contrast in the sensor data. power spectrum, 
correlation aperture and array sizes. Where humans 
are involved with analyzing the sensor data. 4 bits 
has been found to be adequate. 

The SPEAC demonstrator was built to perform two 
different correlation algorithms. SPEAC compares 
a sample array with a larger reference array and 
determines the position within the reference array 
where the best match is obtained. The output is a 
position and correlation result for that position. 

The first algorithm is the Minimum Absolute Differ
ence (MAD) algorithm. The MAD algorithm finds a 
correlation term such that: 

P b = Min L: [L: IR + b+d - S d I ] a. a, b c, d a c, c, 
(1) 



In other words, the sample array (Sij) is tried at all 
possible positions within the reference array (R kl)' 
At each position the sum of the absolute difference 
between the reference and sample arrays are calcu
lated term by term. This gives an array of P kl 
terms which are searched for the smallest term. (If 
a portion of the reference array contained a duplicate 
of the sample array, the Pkl for that position would 
be zero.) The MAD algorithm is very useful for 
correlations where the sensor data may contain a 
fixed bias. This same bias will appear in each P kl 
term and will not affect the selection of the minimum 
term. However, the MAD algorithm is very suscep
tible to random noise upset, because of the absolute 
value computation. 

The second algorithm is the Maximum Product (MP) 
algorithm. The MP algorithm finds a correlation 
term such that: 

P a, b = Max ~ b [~d (Ra+c, b+d)(Sc, d)] (2) 

At each position where the sample (Sij) array is tried 
within the reference (Rkl) array the corresponding 
terms are multiplied and the sum of these products 
is obtained. This gives an array of Pkl terms which 
are searched for the largest term. (If the average 
value of the array terms is kept at 1/2 the maximum 
value, then the position where the sample array is 
duplicated within the reference array will have the 
maximum value.) The MP algorithm is very useful 
for correlations where the sensor data is noisy. 
Random noise will keep the average value over the 
array the sam e and not affect the selection of the 
maximum value. However, the MP algorithm is very 
suspectible to distributed bias, because of the non
linear variations of the product computation. 

SPEAC Demonstrator 

The Special Purpose Electronic Area Correlator 
breadboard shown in Figure 3: 

(1) Performs Scene Matching using 

• Mean Absolute Difference 

• Product Correlation 

(2) Operates on a 

(3) 

• 
• 

lOx 10 reference array 

3 x 3 sam pIe array 

Demonstrates 

• Pipeline arithmetic processing 

• Hardwired address generation 

• Maximum and minimum detection 

The operational speed of the demonstrator has been 
decreased by 1, 000 so that the correlation computa
tions can be observed. Of the total parts count, less 
than half are actively used to perform the correlation 
function. 
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Figure 3. SPEAC Breadboard 

Figure 4 shows an actual sample problem as per
formed on SPEAC. This example has a referenee 
array with the samply array imbedded in it. The 
locations and eorrelation values of the exact matches 
are identified. One will notice in Figure 4 that a 
reference array of 10 x 10 and sample array of :3 x 3 
produces a correlation array of 8 x 8. This can be 
verified by trying all possible positions within the 
reference array where the sample array can be 
placed. 

Sample: Absolute Difference 

9 I 9 27 61 32 44 54 24 54 19 
I 5 I 48 rn 49 24 22 '13 17 49 
9 I 9 40, 48 37 37 43 ~! 3 57 22 

36 23 45 27 37 :!7 29 45 
45 26 40 36 33 :18 37 29 

Reference: 32 38 35 20 43 ~!6 31 38 

7 7 
44 27 41 40 37 :12 39 39 

8 5 
37 39 40 33 48 :16 25 56 

4 2 8 2 
2 

Sum of Products 
8 4 2 
2 2 7 1 206 80 201 187 129 2115 109 282 

5 7 I 2 2 2 0 1 145 [lill 136 267 257 208 332 154 
0 0 6 7 2 7 5 2 9 2 119 147 156 160 98 248 124 -277 
4 2 0 7 4 5 9 185 258 120 214 142 1112 214 150 
!j 8 3 4 1 2 9 122 201 105 151 114 135 94 168 

191 157 130 225 116 189 158 109 
105 200 142 195 168 173 174 178 
148 162 149 222 129 173 258 145 

Figure 4. Sample Problems 

Figure 5 shows a block diagram of the SPEAC proc
essing section. The demonstrator consists of the 
following operational sections. 

(1) The Auto address processor generates 
sample memory Addresses in a cyclic 
manner. At the same time the reference 
memory address is produced by adding the 
base (correlation array) address to the 
sample memory address. 

(2) The sample array memory is mechanized 
with four 1 x 16 RAMs. A prearranged 
reference array is located in one '1 x 256 
PROM. Also, four 1 x 256 RAMs can be 
loaded from the panel and used as the 
reference array. 



MANUAL 
DATA 
ENTRY 

TO DISPLAY TO DISPLAY 

Figure 5. SPEAC Block Diagram 

(3) The arithmetic unit contains a 4 x 4 multi
plier chip for product calculations and a 
4-bit subtractor chip for difference calcula
tions. The absolute value subtraction is 
assured by a 4-bit comparator that selects 
the proper inputs to the subtractor. Thus, 
the arithmetic unit can perform I R-S I , 
RS, R2 and S2. 

(4) The summation unit produces the sum of the 
term in the temporary storage register with 
one of the following: 

• Multiplier Output 

• Subtractor Output 

• Reference Array 

• Sample Array 

(5) The temporary storage register which is 
edge triggered holds the partial summation 
term for nine sum iterations. 

(6) The Max/Min comparison unit compares the 
last correlation term with the previously 
stored extremum correlation term. For 
product correlations, it keeps the larger 
value; while for the difference correlation, 
it keeps the smaller value. 

(7) The Address and Amplitude storage register 
holds the best fit of the sample array within 
the reference array. The Amplitude portion 
is displayed on the correlation amplitude 
lights. The address portion is decoded to' 
diElplay the position of the optimum 
correlation. 
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This breadboard has been very helpful in understand
ing and solving operational and mechanization prob
lems associated with a high speed pipeline preproc
essor. It has shown that the "ripple through" pipe
line architecture is a cost effective solution to real 
operational problems. 
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ARCHITECTURAL ADVANCES OF THE SPACE SHUTTLE 
ORBITER AVIONICS COMPUTER SYSTEM 
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Abstract 

The Space Shuttle Orbiter manned reusable craft is 
being developed by NASA for applications in the 1980's 
and beyond. Navigation, guidance flight control, 
systems management and control, and payload checkout 
are but a few of the functions of the Orbiter which 
are being mechanized in the avionics computer complex. 

The development of the system is traced through three 
distinct architectures to the current system. Factors 
affecting the architecture and system development are 
discussed. A system figure of merit for evaluating 
competing systems architecture is developed. 

I ntroducti on 

The Space Shuttle Orbiter manned reusable craft is 
being developed by NASA for applications in the 
1980's and beyond. Navigation, guidance flight con
trol, systems management and control, and payload 
checkout are but a few of the functions of the 
Orbiter which are being mechanized in the avionics 
computer complex. 

Mechanization of individual functions by computer 
control has been practiced ever since the 1940's, 
when specialized "computers" provided fire control 
and bombing and navigation aids to military pilots. 
More recently, navigation of both civil and military 
aircraft has been aided by highspeed digital com~ 
puters. In the Apollo lunar flights, several digi
tal computers provided flight control, rendezvous 
guidance and return to earth navigation functions. 

The computer complex being developed for the Space 
Shuttle Orbiter will be called upon to provide not 
only navigation and guidance functions, but flight 
control over an extremely wide spread regime, systems 
monitoring and control, and payload checkout 
functions. This paper traces the early history of 
the Orbiter avionics computer complex and discusses 
some of the major architectural features of the 
system. 

Evolution of the System 

System architecture has undergone change and re
definition as program objectives were revised, 
requi rements were better defi ned or understood, and 
subsystem design continued. The following traces the 
change in the system design. 

Throughout most of the formal study phase (Phase B), 
the avionics system was characterized by a large 
centralized computer with an extensive, multiplexed 
data bus communications system linking various sub
systems to the computer. Although a federated or 
distributed computer system was considered, it was 
not until nearly the end of the Phase B study that 
the centralized system was seriously questioned. 
Initial reaction drove the system design to a 
federated system using dedicated point-to-point 
wiring, but by the time of the RFP (request for 
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proposal) release, the system design approached a 
centralized computer system once again, with several 
"central" computers instead of one and connected to 
subsystems with dedicated wires. 

The first system architecture is illustrated in 
Figure 1 and was the system described in the proposal. 
Three lar~e digital computers with 32,000 word 
memories (32 bit words) were specified for the 
guidance, navigation, and control functions. Separate 
Input-Output Boxes were specified to provide input
output channelization. Formatting of the displays, 
control of displays, and systems monitoring and pay
load related functions were to be provided by six 
sma 11 er di g ita 1 computers with 8000 word mernori es 
(16 bit words). CRT display devices with associated 
keyboards provided the system control and output dis
plays. Two auxil i ary tape memori es were spE~ci fi ed 
for storage of display formats and program copies. 

Studi es were then started to defi ne a sys tem wherei n 
the number of computers would be reduced as well as 
the number of different types of computers. Figure 
2 shows the baseline system which resulted from these 
stUdies. This architecture provided primary and 
standby computers for monitori ng and controll and pay
load related functions. These computers wer'e iden
tical machines with 32,000 word main memories. A 
fifth computer of a different type and with different 
memory size and organization, was provided for backup 
to the guidance and control functions. Table I com
pares the two architectures. 

Continuing studies and better requirements definitions 
have led to the architecture of the current system, 
Figure 3. The "backup" computer was eliminated 
mai nly on the assurance that catastrophi c "generi c" 
failures were preventable. It was replaced by a fifth 
computer identical to the man/standby GNC and system 
payload machines. Hardware interfaces were stand'ized 
among the five computers so that any physical computer 
could be assigned either the GNC or the system-payload 
function, or both. Main memories were incre!ased to 
64,000 words for all machines. 

Hardware-Software Considerations 

The development of the avionics computer system was 
followed with great interest by those responsible for 
computer program development and veri fi ca ti on. In 
fact, the avionics system was not completely specified 
and the sys tem had already undergone two major archi
tectura 1 changes when the computer program desi gnE~rs 
began the software subsystem design. 

Since the programming specifications provided to the 
software designers did not contain complete hardware 
subsystem descriptions, one of the early tasks was to 
assist in the hardware-softwarerfunctional partition
ing which had already begun. An objective was to 
help define the system architecture early so that 
~offware subsystem design could proceed aided by this 
lnf uence on ~he system deslgn. 



The NASA plan for ,the Orbiter avionics software was 
patterned after Apollo and Skylab experience in terms 
of requirements development and contractor-government 
relationships. Because of the critical nature of 
the Orbiter avionics software performance in pro
viding flight control and guidance functions for the 
Orbiter, reliable software was required. A better 
solution to program verification than "independent 
verification, wherein a separate contractor was 
engaged to retest the already tested program, was 
obviously needed. 

There is an abundance of literature relating to the 
methodology for achieving reliable, quality software 
through structured program segments organife9 in a 
hierarchiacal order. In 1966, G. Jacopini· 1 showed 
that any flow chartable program can be represented 
with three basic clauses or program figures con
necting statements and the ~f1gure is not 
required at all. E. W. DijK5"fra<2 further ruled 
out the use of the ~ as detrimental to a visuali
zation of progress of a process,and hence prevents 
an understanding of the program by the programmer. 

H. D. Mil1s{3} and B. H. Liskov{4} have further 
developed the notions of segmented design using 
structured programming and introduced the ideal of 
the importance of organization structure. F. T. Baker 
describes in (5) the promising results achieved 
through application of these techniques to a com
mercial endeavor. 

An R&D project to develop a higher order language for 
further space applications had been started in 1970 
with a company well versed in Dijkstra's and others I 
work in reliable software and program correctness. 
An objective of the language and compiler development 
was enforement of structured programming rules. A 
dialect of the R&D language was specialized as 
IIHAL/S" and was mandatory for use in all programming 
in the Orbiter avionics computers. This was 
necessary because the reliability demanded of the 
computer program could be satisfied only by adopting 
Harlan Mills' objective of never finding the first 
error t ~o matter how much it is read, tested, or 
used. 3 

Hardware-Software Integration 

Finally, some comments are due on the integration, as 
currently practi ced, between the hardware and soft
ware subsystems design. In the usual procedure, the 
hardware design is postulated and then software inte
grates the various hardware components and makes them 
function as a system. The program objective of use 
of "off-the-shelf" equipment and the realities of 
cost and weight budgets sometimes forced a selection 
of hardware based not on functional or performance 
requirements but based on lowest cost, weight, and 
availability. 'It is not hard to understand the 
difficulty in optimizing such a potpourrie of 
electronic components. The software designers were 
accustomed to preparing software designs for existing 
and supported (by operating systems) hardware and 
the evaluation of hardware options against software 
techniques was difficult. They were not, by and 
large, experienced in circuit design and hence lacked 
the capability to perform hardware software trades. 
Inexpensive programmable digital controllers and 
computers, which have replaced much discrete com
ponent logic circuitry, caused hardware designers 
some difficulty in applying the new devices in an 
optimum fashion and software designers some diffi
culty understanding them at a system level and then 
djfferentiating between general purpose digital 
computers and specialized controllers. 
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Apparently, a current need in terms of capability of 
technical people seems to be systems designers who can 
write and code programs as well as design logic cir
cuits, who understand computer circuits as well as the 
set of instructions which are executed by the computer 
hardware. These people are required for hardware-soft
ware trade studies and partitioning of functions which 
must be the basis for effective system design out of 
which is produced an optimum system. 

Appendix I 

System Figure of Merit 

Because so many configurations and designs are pos
sible in the Orbiter avionics computer system, a System 
figure of Merit is developed to discriminate between 
the designs. The System Figure of Merit measures the 
system in terms of economy of redundancy management 
applications and in terms of the effectiveness of the 
system design. The System Figure of Merit is defined 
as follows: 

S t F' of Merl't = Levels of redundancy req:'d 
ys em 19ure LeVels of redundancy prov'd. 

Levels of redundancy req'd 
Iqo. of computers Used for 
all functi ons 

Applying the System Figure of Merit to the systems dis
cussed, one obtains: 

System Figure of Merit = 3/4 x 3/9 x 1/4 = .250 
(initial system) 

System Figure of Merit 
(2nd sys tem) 

System Figure of Merit 
( current) 

3/3 x 3/5 = 3/5 = .600 

3/4 x 3/5 = 9/20= .450 

System Figure of Merit = 3/4 x 3/4 = 9/16= .563 
(author preferred system) 

The second system design, although ranking highest 
(the upper bound on the System Figure of Merit is 1.0), 
required that the failure detection and redundancy 
management system be able to differneitate between a 
malfunctioning pair and pick the currently functioning 
member of the pair, to a certainty of 1.0. It is not 
clear how one would achieve such detection with 
techniques available today. 
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VOTING AFlIR 
1 FAIL 

NO 2-64K; 1-32K; 2-32K 

YES 5-64K 

YES 5-64K 

YES 5-48K 

NO 4-64K 

NO 2-64K; 2-48K 

NO 4-48K 

NO 3-88K; 1-32K 

Table 1 - Comparison of Avi oni cs Computer Systems 

CENTER 
CONSOLE 

PLM • PAYLOAD MANAGEMENT 
MOE· MODULAR DISPLAY ELECTRONICS 
PM • PERFORMANCE MONITOR 
au • BACKUP G&N 
OFI • OPERATIONAL FLIGHT INSTRUMENTATION 
PLH • PAYLOAD HANDLING 
lOB = INPUT OUTPUT BUFFER 
1/0 = INPUT 10UTPUT 

MISSION SPECIALIST 
STATION 

Figure 1 - Initial Space Shuttle Orbiter Avionics 
Computer System 
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Abstract ----
A microcomputer program to solve the complex task 

of airborne navigation was developed to demonstrate 
the practicality of replacing costly general-purpose 
digital computers with relatively inexpensive dedicated 
microcomputers on board naval aircraft. The micro
computer program showed that microcomputers have suffi
cient speed and accuracy to solve the navigation 
problem. In order to overcome the microcomputer's 
major deficiencies, speed and accuracy, special 
arithmetic subprograms based on table look-up were 
developed to trade inexpensive memory for more speed. 
An application of graph theory in the form of process 
graphs was made to facilitate the development and 
documentation of the navigation program. 

Introduction 

Naval aircraft are depending more and more on 
airborne digital computers. The digital computers 
currently used by naval aircraft are all large general
purpose computers. The large size, large power require
ments, and great cost ha~ limi ted each aircraft to one 
such computer. The complexity of these computers has 
made maintenance difficult. The large cost of each 
unit makes spares prohibitive; therefora, one computer 
going down results in the operational loss of one 
aircraft. 

It is advantageous to utilize several small dis
tributed computers to meet all of the systems require
ments. Completely separate computers could be used 
for the various system requirements with back-up 
computers ready to fill in when there is a failure. 
In addition to reliability improvements, a distributed 
approach offers the possibility of matching equipment 
more closely to system requirements, and increasing 
standardization. 

The creation of the microcomputer, using new 
developments in Large Scale Integration (LSI) tech
nology, has made the distributed computer system 
possible. The microcomputer is a general purpose 
computer on a set of standard LSI chips and associated 
integrated circuits. The LSI chip measures 200 mils 
by 200 mils, requires less than one watt of power and 
costs about $30. The limitations of a microcomputer 
are a limited instruction set and slow speed. 

This paper discusses the possibility of using 
the MCS-4 microcomputer as the Avionics Navigation 
Computer in a complex navigation system. Included 
in this paper are the programming aids developed, a 
program analysis of the requirements of this system, 
a discussion of the executive routine and subroutines 
used in this program, and the results of an error 
bound analysis of the navigation program. 

The Intel MCS-4 was chosen as the microcomputer 
in this design study for two major reasons. The first 
reason is that the MCS-4 is the least powerful and 
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hence serves as a lower bound of the microcomputers. 
To prove that the MCS-4 is capable of handling the 
required navigational computations, would in itself 
prove microcomputers capable of handling complex tasks. 
The second major reason for choosing the MCS-4 micro
computer is that it is available, has been tested, and 
has the required software aids to complete a design 
study. 

The cost of developing a system that uses the 
MCS-4 microcomputer can be divided into two areas: 
Hardware and software. The hardware costs have been 
shown to be small for the microcomputer. This is a 
list of the MCS-4 hardware costs: 

CPU 
ROM 
RAM 

(1) 

$60 
$60 
$30 

(over 100) 

$30 each 
$15 each 
$15 each 

(over 1000) 

$15 ea.ch 
$ 5 ea.ch 
$ 5 each 

The software cost of programming the microcomputer 
is not really known. The assembler""type languaqe used 
to program the MCS-4 requires considerably more (~ffort 
than a higher level language, such as FORTRAN. 11,.11 
indexing and transferring of data between the processor 
and the assigned locations in memory must be wri 1:.ten 
into the program. The programming aids developed for 
this system were designed to decrease the cost of 
programming microcomputers. 

Navigation System 

Air Navigation is the process of directing 1:he 
movement of an aircraft from an initial point to a 
desired finai point. A Navigation System must provide 
timely coordinate measurement and computation of the 
aircraft's current position. The desired navigat:ion 
system is one that gives a continuous, real-time 
indication of where the aircraft is located. ThE~ 

need for a navigation system to be reliable is a 
necessity. In case of partial equipment failure, the 
navigation system must automatically switch to an 
alternate source of information. Decision-making: 
circuitry must be a part of the navigation system to 
insure a continuous flow of accurate navigation 
information. 

The navigation system discussed in this paper is 
an Inertial/Doppler system integrated by an MCS-4 
microcomputer. The microcomputer combines the short
term accuracy of the Inertial with the long·-term 
accuracy of the Doppler to obtain the most probable 
position of the vehicle. The microcomputer is pro
grammed to provide decision-making flexibility to 
insure the outputs remain accurate during partial 
system failure. The wind influencing the v(~hicle is 
continually computed and updated in the MCS--4 memory 
so that the computer can automatically switch to an 
air-data mode of operation in case of Inertial and 
Doppler failure. 

The navigation equations used take the dead
reckoning outputs of the Inertial, Doppler, and 
Air-Mass Systems and extrapolate the presen1: position 
of the vehicle from the last known position. Direct 
position data can be inputted into the algorithm ,and 



is used to update the position of the vehicle. The 
system drift error is computed by comparing the known 
position with the dead-reckoned computed position. 

Navigation Process Graphs 

Programming the navigation equations would be an 
easy task in a higher level language such as FORTRAN. 
To program the same equations in an assembly language 
proved to be tedious and complex. The requirements 
of keeping minute details in mind led to the develop
ment of a graphical means of representing the micro
computer program. 

Graph theory provides a simple and powerful tool 
for constructing mathematical models of discrete 
arrangements of objects. The process graph consists 
of vertices which are pairwise connected by a directed 
line. 

The MCS-4 microcomputer was first thought of as a 
black box taking inputs from the Inertial, Doppler, 
Air-Mass, and position Fixing Systems and outputting 
the vehicle~ current position in latitude and longitud~ 
The graphical representation of the total system is 
shown in Figure 1. 

~ 
l'H 

INERTIAL VGXI 
VGYI 

~ 
SHD AVIONICS LA';' ~ 
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NAVIGATION SYSTEM BLOCK DIAGRAM 

Figure 1. 

Programming the navigation equations was accom
plished by continually breaking down the functional 
operations into smaller and smaller parts until the 
operations were simple enough to be directly written 
in the MCS-4 machine language. The functional process 
graph, Figure 2,represents how the microcomputer 
program was initially broken down into the fundamental 
navigation equations. 

The functional process graph. was analyzed to 
define the flow of the input variables and to determine 
thp. feasibility of a multiprocessor system in order to 
shorten the required computational time. It was noted 
that the program could be broken into two parts, the 
calculation of the distance increments, and the 
calculation of the latitude and longitude from the 
distance increments. The analysis demonstrated that 
the computation time could be nearly halved by having 
two microcomputers working simultaneously to produce 
the desired outputs. The system was designed to have 
one microcomputer receive the given input and compute 
the distance increments traveled, while at the same 
time, the second microcomputer computes the latitude 
and longitude from the previously calculated 
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distance increments. 
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The functional process graph was then broken down into 
the operational process graphs for each microcomputer. 
The operational process graph, Figure 3, represented 
the desired program for the first microcomputer. The 
program described by the operational proc~ss graph 
was written to investigate the time and effort required 
to develop the required software. 

TASR'@ 

TH~ 
-~h-~"---LLLlI 

SDD __ _ 

OPERA'rIONhL PROCESS GRAPH 

!"lgure 3. 

The program was written in a modular form. Each 
operation represented in the operational process graph 
was wri1:ten as a separate subroutine. An executive 
routine was then developed to call each subroutine in 
the proper order. 

Program Analysis 

A program analysis was developed to define those 
problem areas that had to be solved before programming 
the microcomputer. The areas that were investigated 
were computational speed, memory space available, and 
accuracy required. 

The operational process graph, Figure 3, rep
resented the tasks to be accomplished. The type of 
operations and number of operations that were 
required are listed as follows: 



Operations 

Multiply 
Cosine 
Sine 
Addition 
Subtraction 
Division by two 

Times Called 

12 
1 
1 

12 
3 
7 

TOTAL 36 

The operational process graph was used to deter
mine the speed limitations on each operation pro
grammed. The total navigation cycle was limited to 
200 milliseconds. Since the number of operations 
required to be performed differed depending on what 
sensors were operational, the critical path of the 
operational process graph was determined. The 
critical path occurred when the Inertial and Doppler 
were both operational, Figure 4. 

TE 

VGXI ------~~----------------_r+------------, 

VGYI ______ ~+---__ ------------~----------_, 

SDD 

SHD 

Figure 4, OPERATIOI,AL CRITICAL PATH 

The operations involved in the critical path 
were ten multiplies, Cosine and Sine calculations, 
ten additions, three subtractions, and seven divisions 
by two. The total computational time for the critical 
path was limited to 200 milliseconds. 

The critical operations which had to be developed 
were the Multiply, Cosine, and Sine subroutines. In
vestigating previous work on the MCS-4 indicated that 
previously programmed multiply, Cosine, and Sine 
routines were requiring 50 msec., 650 msec., and 
750 msec. respectively. In order to program the 
microcomputer for navigation, the development of 
routines which required less than 200 msec. was 
essential. 

The amount of memory available to program the 
navigation routine was a function of the 4004 CPU and 
the number of microprocessors used. One 4004 CPU can 
directly drive sixteen ROMs and sixteen RAMs. The 
number of instructions in the navigation routine was 
limited by the space available in the ROMs. Since 
each ROM could hold 256 instructions, the program 
was limited to 4,096 instructions per microprocessor. 

The time required to sequentially execute every 
instruction in the sixteen ROMs would be 44 milli
second. Since the program was to be written with an 
executive routine and a set of subroutines that would 
repeat the same set of instructions several times, 
the limiting time constraint would be reached before 
using up the available ROM space in one microprocesso~ 
It was determined from this analysis that ROM space 
would not be a limiting factor in writing the navi
gation program. 
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The amount of memory space available to store the 
values of each variable was determined by the space 
available in the RAMs. Since one 4004 CPU could drive 
5120 bits of RAM, the navigation program was limited 
to 320 variables of 16 bits for each micropl::'ocessor. 
The number of variables required was determined from 
the operational process graph, Figure 3, where each 
line connecting a pair of vertices represen1:s one 
variable. There were 54 lines indicating that a maxi
mum of 54 variables were required plus thosEl vari.ables 
used in any single operation. By overlaying vari.ables 
in the same RAM memory space, the memory space require
ment was reduced. It was determined from this analysis 
that RAM space available would not be a limiting facto~ 

The required accuracy of the navigation program 
was a function of the accuracy of the input variables. 
The accuracies of Inertial, Doppler, and Air-Mass 
systems used on board the P3C aircraft were used in 
this analysis as representing the state-of-the-art 
systems in naval aircraft today. The specifications 
for these systems are as follows: 

System Desi~nation Accurac:i, 

Inertial ASN-84 + 1. 5 knots HMS 
True Heading ASN-84 + 9 ARC-MIN RMS 
Doppler APN-187 .!. 1.0 knots RMS 
True Air Speed Pitot-Static + 2.0 knots RMS 

The accuracy of the navigation program \~as a 
function of the accuracy of input data as well as the 
bit size assigned to each variable. The limited 
accuracy of the input data permitted each variable to 
be no greater than 16 bits. This allowed each vari
able to be represented by four hexadecimal-digits 
with the first bit assigned as the sign bit. The 
hexadecimal point for speed measurements was fixed 
so that there is one hexadecimal digit to thE:! right of 
the decimal point. This allowed the accuracy of the 
speed inputs to be wi thin + .0625 knots. ThE~ range on 
the inputs due to a 16 bit-variable limitation was 
+ 2047.99 knots. The accuracy requirement was not 
considered a major limitation in the program analysis. 

Navigation Program 

A large number of the mathematical operaLtions 
required in the navigation program are repeat:ed many 
times. In order to decrease the total programming 
effort and also decrease the memory-capacity require
ments, many of the operations required were written 
as subroutines. The subroutines developed for the 
navigation program were divided into two grou.ps, those 
involving complex mathematical operations and thosE~ 
involving more common functional operations. 

The major limitations of the MCS-4 microcomput:er 
to be overcome were the limited instruction set and 
slow speed of calculation. The multiplication rout:ine 
was especially written to enhance the capability of 
the MCS-4 microcomputer in order to sa'tisfy the 
requirements of the, navigation program. 

A multiplication routine had been written involving 
multiplication by a series of additions. The program 
required only fifty instructions'; however, the com
putational time was 40 milliseconds. Since the navi
gation program required a minimum of ten mul
tiplications, this method was unsatisfactory. 

One of the advantages ,the MCS-4 microcomputer has 
is its inexpensive memory. It was decided to investi
gate a different way of programming the microcomputer 
that would take advantage of available memory. It was 
discovered that memory space could be traded for speed 

by using a table look-up scheme. An example of this 



method follows: 
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'rhe table of values used in the mpltiplication routine 
consisted of a 16 by 16 matrix of product values. 
Each product val~was an exact value of a multiplica
tion of two single hex-digit numbers. The row that 
would normally contain the products of a zero multi
plication was used for instructions within the ROM 
containing the table. 

The method used in this procedure becomes very 
complex because of the large number of separate hex
digits involved and the small number of index 
registers available to store each digit. This problem 
becomes more complex since each adJition of two hex
digits creates a possible carry. A solution to this 
problem was to make a process graph that simulated 
the multiplication process. The process graph for 
the multiplication routine is shown in Figure 5. The 
symbols used have the following meaning: 

M 

IY 3 Xo ~ table value of product of the digits Xo 
times Y 3 

hex-digit cy 

heX-di9i~ addition 

The multiplication routine was written to give a 
truncated product of two four-digit hex numbers 
accurate to four significant hex digits. 

[Y~~-,_J---------=----=--=--::=---= 

u;y---=-======--==---==--
Pi:OCE,32 m.f\~ ii FOR MULTIP!"lCATro;~ ROU'I'liH: 

The multiplication routine required the memory 
space of three ROMs and computed its result in five 
milliseconds. 

The development of a Cosine routine for the 
microcomputer which could compute sufficiently fast 
was one of the major programming tasks. Cosine 
routines written for general purpose computers are 
usually written as series approximations in order to 
save memory space. The object of the routine written 
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was to increase the speed of calculation. 

Two cosine routines previously programmed on the 
MCS-4 Microcomputer were investigated. The first was 
a Chebyshev approximation routine which required 750 
milliseconds to compute the Cosine. The second 
routine investigated was a Cordie approximation which 
required 350 milliseconds. Both methods were too time
consuming for this project. 

The procedure developed in this project was a 
table look-up, linear interpolation routine. The 
Newton Divided-Difference Interpolating polynomial was 
used because of its simplicity. The size of the table 
required and the accuracy of the results are both 
functions of the degree of the Polynomial used. For 
simplicity and speed, a first-order divided-difference 
table was used which resulted in a linear interpolation 
of the form: 

F(X) = F(X
O

) + (X - XO) F[X
l 

. XO] 

X 8 
where F(X) = COS e 

F (Xl) - F (Xo) 
----._---

The table consisted of all values of F(Xi ) and 
F[X

i 
I . Xi] for F(X) = COS e, a ~ e ~ 1.88 radians in 

hexadecima: The table was constructed from a FORTRAN 
program which used a decimal increment of ~, 
equivalent to .08 hexadecimal, and outputea 
the desired table values in hexadecimal. 

The size of the table loaded into the program was 
a function of the required accuracy of the Cosine 
routine.. The data supplied to the program from the 
navigation devices was accurate to three significant 
figures. 

Different-size tables were constructed and tested 
for accuracy. Since the interpolation was linear •. the 
largest error occured at the midpoint between each 
table value. 

~MaXi.mum Error 

Linear Approx. ~(X) 

The table size was adjusted until the maximum error 
was wi thin t.hree units in the fourth significant 
figure, thus guaranteeing three significant figure 
accuracy. 

The table values were loaded sequentially into 
the ROM .. The first entry was the value of F(X

O
) 

followed In order by F(Xl·X
O
)' F(X

1
, ..... , 

F(Xn ), I?(Xn+l . Xn~' The re~aining' J?art of the ROM 
was used for the lnterpolatlng routlne. The step by 
step procedure of the Cosine routine is shown in the 
Cosine process graph, Figure 6. 

The table used in the Cosine Routine was also the 
table required by a Sine routine. It was noted that 
this routine Gould also be used to find the sin 8 for 
o < 8 < 90° by subtracting the input 8 from 90 degrees 
(.188 rads-8rads) and using the same routine since 
cos (90 -8) "" sin(8). 



COSINE PROCESS GRAPH 

Fl~ure 6. 

The memory space required by the Cosine routine 
was one ROM plus the space taken up by the subroutines 
called by the Cosine routine. The main part of the 
Cosine routine contains only 46 instructions. The 
time required to execute the Cosine routine was 
basically the time required to execute the multipli
cation. The Cosine routine required only a total of 
5.17 milliseconds. This computational speed represents 
a 70-fold decrease in the computational time to compute 
thE: Cosine by previously available routines. By table 
look-up schemes, it was proven that the computational 
speed of the microcomputer could be competitive with 
thclt of a generab·purpose computer. 

The common ;subroutines were written to do the 
basic housekeeping operations such as storing data, 
simple arithmetic, shift operations, and transfer of 
data between RAM and IR. These subroutines were 
called by 'the executive routine and the multiply and 
Cosines routines to aid in the data handling. The 
functions handled by the common subroutines were those 
best suited for the MCS-4 and therefore could be 
written in a straight-forward way requiring little 
speed or memory :space. The functions of the common 
routines were broken into three groups: Arithmetic, 
Shifting, and Data Handling. 

The arithmetic routines handled the simple 
additions and subtractions required in the navigation 
program. These routines were handled well in the 
MCS-4 by the 4-bit ripple-through carry type adder 
incorporated in the 4004 cpu. This allowed direct 
addition or subtraction of two hexdigits in either 
the accumulator or RAM. There were two addition 
routines, two subtraction routines, and two special 
purpose arithmetic routines written. 

Multiplication and division of hexdigits by a 
multiple of two was accomplished by shifting the 
variable either left or right the required number of 
bits. To take advantage of this capability, two sub
routines were written for the navigation program that 
involved division by two. 

The transfer of data within the navigation 
program was accomplished by the data handling routines. 
These routines saved much memory space in the Executive 
Routine and the Multiply and Cosine Routines by group
ing these tasks into separate subroutine calls. There 
were five data handling routines written for the Navi
gation program. Three routines were written to 
transfer data between the IRs and RAM. Another 
routine was written to transfer data between different 
locations in RAM. A special routine was written to 
load the proper time interval of one navigation cycle 
into the IRs. All five routines were wri,tten to 
handle data of four hexdigit size. 

Each operation defined in the operational process 
graph, Figure 3, was successfully programmed within, 
the memory and time constraint of the program analys1s. 
Each subroutine was written in a modular form allowing 
for easy addition or subtraction of new code. The 
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memory size, computational time, and capability of 
each subroutine is listed in Table I. 

Length 
( 8-bit Time 

Subroutine worde) (usec) Purpos~ 

r~ULT "43 5000 [IR(8+B) J, [IR(C+F) J+IR(C+F) 

COS 255 5170 COS[IR(C+F) J + IR(C+F) 

ADDRAM 12 289 RAM(O,1) + RAM(2, 3)+RAM(2, 3) 

ADDRAMIR 22 238 RAM(O,I) + IR(C+F)+IR(C+F) 

SUBIR 17 183 IR( 4-7)-IR(G+F)+IR(C+F) 

SUBRAMIR 32 346 RAM(2, 3)-IR( C+F)+RAM(2, 3) 

COMPLEMENT 28 102 -[RAM(2 ,3) J+RAM(2 ,3) 

COMANGLE 18 194 (90 0 )-IR(C-F')+IR(C+F) 

DIV2IR 24 259 [IR(C+F) J/2+RAM( 0,1) 

DIV2 33 356 [RAM(2, 3) J/2"RAM(2, 3) 

RAMIRC 16 173 RAM(2,3) + IR(C+F) 

RAMIR8 16 173 RAM(O,l) + IR(8+B) 

IRRAMC 16 173 IR(C+F) + RAM(2,3) 

'rRANRAM 86 RAM(2,j) + RAM(O,I) 

TIME 97 (Nav Cycle Time)+IR(8+B) 

Table I NAVIGATION SUBROUTINES 

The Executive Routine was written to call up the 
subroutines in the order described by the operational 
process graph, Figure 3. The Executive Routine 
established the priorities of each function and was 
designed to make all the decisions in the execution of 
the Navigation program. The variables used by 'the 
Executive Routine were all stored in RAM. ~rhe 

Executive Routine was loaded into two ROMs l",ith space 
left for addition of new code. 

Error Bound Analysis 

Microcomputers have a limited arithmetic capabil
ity. It was therefore very important to avoid un
necessary precision throughout the calculations. 
Since the inputs into the Navigation program came from 
instruments whose precision is limited to three hexa
decimal digits, the choice of four hexadecimal 
arithmetic was considered to be sufficiently accurate. 
An error bound analysis was performed to show that the 
input errors dominate the total error. 

The starting point for the error analysis is the 
operational process graph, Figure 3. It was apparent 
from the operational process graph that the outputs 
DX and DY are symmetric, therefore an analysis of only 
the computations for DX were made. A process graph 
that involved only the operations which havE~ an 
influence on DX was constructed, as shown in Figure 7 
from the operational process graph, Figure 3. 

'm 

VC,XI --'l'-1'----

l2J
i 

SDD -----'1-----1 DXI 

- +-£P~ 
SHD~ _____ --I 

F'tgure 7. PRocess GRAPH OF DX 



The errors corresponding to each operation in 
Figure 7 were designated e

l
, e

2
, e

3
, ••• ,e

a
• The 

initial errors of the inputted data were expressed as 
e(TH), e(VGXI), e(SDD), and e(SHD). Due to the small
ness of the errors, the products of errors were 
considered negligible when compared to the linear 
terms. 

There were two means by which each operation 
contributed to the error propagation. 

(1) Transmitting the errors which were inputted 
into the operation. 

(2) Adding an error of its own, which is due to 
the rounding or truncating process which 
limits the number of digits carried to the 
next operation. 

The transmitted errors were calculated by 
calculating the differentials of the expression. 

d(x+y) = dx+dy 

d(xy) = ydx+xdy 

d(~) 
Y 

ydx-xdy 
2 

d(sin x) 

d(cos x) 

Y 

cos x dx 

-sin x dx 

The rounding or truncating errors were simply 
added to the transmitted error and thereafter propa
gated through the remainder of the calculation. 

The error bound for each operation in Figure 7 
due to roundoff and truncation was found to be: 

Operation Error Bound (Decimal) Corres. Error 

Cosine 3 x lO- S 
II:~II Sine 3 x 10-S 

Multiplication 3 x 10-S I e31 • I e41 • I esl 
Division a x 10-6 

leal 
Subtraction a x 10-6 le6 1 • le 7 1 
Addition 0 

The error bound for the inputs was obtained from 
published sources. Since an actual maximum error for 
each system could not be found, the 30 value, 99.7% 
CEP, was used. The systems on board the P3C naval 
aircraft were used as representing the current "state
of-the-art" systems in operational use today. 

System Error (30) Corres. Error 

Inertial Navigation S.4 NM/HR Ie (VGXI) I 
System 

Inertial Navigation .S degrees le(TH) I 
True Heading 

Doppler Along Heading La le(SHD) I 
Doppler Across Heading 3.6 e(SDD) 

The results of the error bound analysis indicated 
that the maximum error created in the navigation micro
computers computations was only l.a per cent of the 
total maximum error. It was concluded from this 
analysis that the accuracy of the MCS-4 navigation 
program using a l6-bit fixed word data le~gth was well 
within the limits required for the navigation problem. 

The best way to check the results of this error 
bound analysis would be to fly the system in an 
actual aircraft. Since an aircraft was not available 
for this purpose, a detailed FORTRAN simulation 
program was written to test the functions of the 
navigation program. 
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The FORTRAN simulation program was developed 
as an exact simulation of the navigation program 
developed for the MCS-4 microcomputer. The program 
was writ.ten by utilizing the process graphs previously 
developed. The program included a parallel solution of 
the navigation equations utilizing the FORTRAN routines 
available on the IBM 360/67 computer. The results of 
these runs and the comparison of the errors developed 
are summarized in Table II. 

Gonputed X-Lee. Gonputed Y-Loc. Max1nun Error Dele to 
~ of Path Nav. Mode ~ Input FOI1I'RAN MCS-4 FOI1I'RAN M:;S-4 NAV Proa!!!!!! !!Je\!t 
Point to Integt'ated Exact -0.9814 -0.9811 1.0427 1.0425 .03% 
Point 

Inertial -1.1041 -1.1038 0.9813 0.98n .03% 

Doppler -0.8588 -0.8586 1.1041 1.1038 .03% 

A1r-r.Bss -1.0912 -1.0909 0.9812 0.9808 .04% 

Point to Integrated Exact -0.0001 0.0 0.0 0.0 0.0 
Point and 
Back Inertial 0.0 0.0 0.0 0.0 0.0 

Doppler -0.0001 0.0 -0.0001 0.0 0.0 

Atr-M9.ss 0.0 0.0 -0.0001 -0.0001 .01% 

Point to Integr'ated Max Error -1.0037 
Point 

-1.0034 1.0428 1.0423 .05% 2.23% 

Inertial -1.1228 -1.1227 0.9625 0.9622 .03% 1.88% 

DoPpler -0.8845 -0.8841 1.1230 1.1225 .05% 2.57% 

Air-Mass -1.1088 -1.1081 0.9636 0.9639 .07% 1. 76% 

TABLE 1\ RESULTS OF FORTRAN SIMULATION 

The results confirmed the results of the error 
bound analysis. It was noted that the greatest 
computational error occurred when the vehicle 
traveled a direct path with constant inputs. This 
was due to the linear addition of the truncation 
error when the inputs remain constant. It was also 
noted that the computational error was zero when 
the vehicle returned to the departing position 
indicating that the truncation error cancelled in 
the opposite direction. 

Summary 

The total program consisted of 1768 instruction 
words on seven 4001 ROM chips broken into an 
executive routine and fifteen subroutines. Two 4002 
RAM chips are required to store the data and varia
bles used in this program. The total computational 
time required for one navigational cycle is between 
36 and ao milliseconds depending on the navigational 
mode used. The computational error developed by the 
navigation program from error bound analysis rep
resents only .1 per cent of the total error. The 
program used a sixteen bit fixed point variable 
which allows it to accept inputs up to 2047.99 
knots with an accuracy of + .062S knots. The total 
cost of the one CPU chip, ;even ROMs, and two RAMs 
used by the system is $95.00. 

The results of this design study indicated that 
a microcomputer is both fast enough and powerful 
enough to handle the complex task of navigation. 
It is concluded that many of the dedicated computa
tional tasks being done by large general-purpose 
computers can be done by microcomputers. 
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AN ITERA TI VELY STRUCTURED I NFORMA TION PROCESSOR 

Gerald R. Kane 
University of Tulsa 
Tulsa, Ok lahoma 

Summary 

There exists a widely held belief that the full potential 
of LSI technology will be realized by arrays of logic circuits. 
A novel machine architecture is proposed that consists of a 
uniform array of identical cells with the property that the array 
executes a high-Ieve I programming language directly. Some 
of the more important features of such machines are their inher
ent abilities to sustain concurrent processes and to maintain 
efficient information storage. A detailed simu lation of a lan
guage machine in its architectural style is presented. 

1. Introduction 

For some time a widely held be lief has existed that 
integrated circuit technology wi II increase to the point that 
large iterative arrays of logic circuits will become practical. 
To this end, many cell specifications have been proposed [1], 
and synthesis and analysis techniques have been developed for 
specifying these arrays. 

Cell complexity separates cellular logic into two not
so-distinct groups. The term 'micro-cellu lar' is applied to 
those logic arrays whose basic ce II configurations are on the 
order of complexity of a J -K flip-flop. These cells are often 
combinatorial, and the arrays employ micro-program techniques 
to rea lize various functions. The 'macro-cellular' arrays have 
more complex cell structures. It is doubtful that micro
cellular logic arrays will achieve any degree of acceptance 
before macro-cellu lar representations become effective. This 
principle can best be stated--complex cells are complex and 
simple cells are complex, too. The macro-cellular representa
tions have the advantages that cell functions are more readi Iy 
assimi lated on a large scale, and array customization through 
either manufacturing processes or stored program techniques is 
not an essentia I part of the design. 

It wou Id seem reasonable that cellu lar information pro
cessors cou Id be constructed to execute higher-level languages 
directly. By combining the system hardware and software into 
CIne un it computing complexity and cost shou Id be reduced; the 
macro-cellular array appears to be a most reasonable way of 
achieving this end. The central idea of this paper is that it is 
possible to exploit the geometry of an iterative machine archi
tecture (its structure) to achieve some degree of efficiency 
when dealing with languages that are structure oriented. 

2. Simple String Processor - A language for an iterative lan
guage mach i ne . 

The simple information processing language described 
here is a string rather 2han a list processing language. The syn
tax for the language S P (Simple String Processor) is given in 
Table 2. 1. The semantics ~f the ~nguage are for the most 
part self-explanatory. The program consists of a set of strings 
identified uniquely by name. Strings may be decomposed in 
two ways by the use of the suffix operators head and ta i I: 

label ABC:XYZ, -- --
ABC head = X 
ABC tail = YZ 
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and larger strings may be formed by catenation: 
ABC cat ABC = XYZXYX 
ABC tai I cat ABC head = YZX 

The replacement or definitio~f a string may be effected by 
the use of the assign statement. The only relational operator 
provided is the equal sign. It is the function of this operator 
to compare I'wo strings of arbitrary length. The if-then constuct 
causes the then clause to be executed only if the string compar
ison is equal. Control transfer to a named string is by way of 
the goto staj'ement. These three simple statement types--assign, 
.If..and goto-- comprise the language. Input/output will be 
ignored. 

Methods of implementing a simple language like this on 
a conventional machine are well known [2]; the reader is 
invited to recall such methods and contrast them with the 
iteratively structured approach. Consider now a linear array of 
cells each containing a single symbol. Strings are formed by 
storing the symbols sequentially. Unused strings will be con
veniently left nameless and a dynamic "garbage collection II 
feature will be provided to keep the array tidy by removing 
unnamed stri ngs. A good garbage co I lector is of such impor
tance that its operation wi II be discussed fi rst. 

The garbage collection algorithm consists of locating 
a II unnamed strings in the array and erasi ng them. Named 
strings are then moved to the left so that in a completely gar
bage collected arrangement on Iy named strings appear on the 
left and empty cells appear on the right. It is important to 
rea lize that the garbage co I lector and string processor operate 
concurrently. The language is designed so that these two pro
cesses do not interact; there can be no conflict of interest so 
that both operate a't the same level of priority. 

Referring to the syntax of Table 2. 1, a named string 
<NAMED STRING> consists of: 

label <NAME> : <STRING>,. 
A simple regular expression for a string is then 

A [B] C [0]0 E 
where 

A = label 
B = alphanumeric 
C =: 

o = any symbol 
E = the string terminator ,. 

The string is just those symbols next to the colon with the 
appropriate boundary symbols. From the right of the colon the 
regular expression [0]0 E describes the string and looking to the 
left [B]A describes the string. Hennie [3] indicates that any 
regu lar expression can be recognized by a linear array of cells 
with information flow in only one direction. The garbage col
lector must recognize not only the end of a suitable expression 
but its extent as well; bilateral signal flow is required for iden
tification of the garbage cells. 

The operation of the processor is best understood after a 
brief description of the Lee intercommunicating cells [4]. Each 
of the Lee cells contains memory for a symbol plus an activity 
bit and suHicient logic to interpret commands given the memory 
by a control element. These commands include: 



Reset - Set all activity bits to 0 
Right - Propagate activity bits right 
Match - All cells with matching activity/symbol bits 

set activity bits to 1 othelWise reset. 

TABLE 2.1 

Syntax for S2P 

<ALPHANUMERIC>:: = A I B I C I DIE I FIG I H I I I J I 
KILIMINIOIPIQIRISITI 
UIVIWIXIYIZI 1112131 
4151617181910 

<SYMBOLS> :: = <ALPHANUMERIC> I cat I head I tail I 
I label I !.! I equals I then I end 1-; - -- -

< NAME> :: = [ <ALPHANUMERIC>] 

<LABEL> :: = [label <NAME> :] 

<STATEMENT> :: = < GOTO> kASSIGN> I <IF> 

<STATEMENT LIST> : = <STATEMENT> [;<STATEMENT>]o 

< GOTO> :: = goto <NAME> 

<ASSIGN> :: = ~et <NAME> to <EXPRESSION> 

IF:: =.i!.<EXPRESSION> equals <TERM> then 
<STATEMENT LIST> end --

<TERM> :: = <NAME> I '<STRING>' 

< EXPRESSION> :: = <TERM> I <EXPRESSION> head I 
<EXPRESSION> tail I <EXPRESSION> c~ 
< EXPRESSION> - -

<NAMED STRING> : : =<LABEl> <STRING> 'I 

<PROGRAM> :: = [<LABEL> STATEMENT LIST> ~] 
[<NAMED STRING>]o 'I 

Where [ ] is one or more occurrences of the bracketed item 
[]O indicates an item that occurs zero or more times. 

Figure 2.1 indicates the required actions for locating a string 
named ~ in the Lee memory. First the array is reset. Then all 
the labe Is are identified by the match request O/Iabel. The 
activity bits are passed right and a match request for 1/A is 
made. This cycle of the propagate right-match symbol is 
repeated until the name is exhausted. A propagate right fol
lowed by a match request 1/: wi II tag with one activity a II 
those strings (there may be more than one) with the desired 
name. In figure 2.1 this is the string ~. The proposed pro
cessor differs from the Lee memory in two important respects: 
(1) the cells are able to reflect different degrees of activity 
and (2) the sequentia I commands that di reet the memory come 
from within the memory itself as opposed to an external direc
tor. A machine of this kind has been proposed by Sturman [5] . 
The improvement offered by the S2P machine is its use of a 
high level language as its machine language. 

Commands are transmi tted to a II ce lis via the complex 
signa I bus that carries information in the form of a complex 
symbol from either the language alphabet or one of the aug-
mented symbols ¢.u.#.t and 0 which are used for spe-
cial commands. The sequence of control is provided by an 
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intra-cellular signal Z (which effectively modifies the state of 
the ce II to the right). 

Any cell containing an alphameric symbol wi II output 
its positive activity and its symbol to the complex symbol bus 
and then propagate its activity and the Z signal right. All cells 
interpret the signa I on the complex bus in the fo lIowing manner: 
(1) activity on the bus is zero then the condition is idle, i. e. 
a NOP command, (2) activity is less than zero (-1, -2, -3) 
then the cell symbol is compared to the bus symbol: and a match 
occurring propagates the absolute value of the bus activity to 
the right, (3) for activity 1, 2, 3 both cell activity and symbol 
must match the complex bus symbol activity, (4) activity -0 use 
the bus symbol to direct further action. 

The go to and set cells function identically. Both initi
ate a search for a name using 1 activities in the mJtching pro
cess. Encountering a ; cell while propagating 'onle' activities 
c,auses a transfer of control. The to cell upon receipt of the Z 
signal outputs -O/: to the bus in order to create a pseudo-colon 
and then outputs -2/label to begin the search for the name in 
the replacement string. 

The set sequence requires a copy operation. The easiest 
way to construct a new string for the set operation is to copy the 
new name ending it with a colon and then copy th49 appropriate 
expression following the colon. This simple scheme will fail 
when the string to be replaced is invo Ived in the expression or 
the replace string already exists. Two things must happen when 
a name has been copied: (1) a pseudo-colon must be generated 
that can be converted to a real colon at the completion of the 
assign statement and (2) the 1/colon cell associated with the 
existing name must be activated so that it can be dleleted at the 
end of the assign. A string without a colon wi II revert to free 
storage by action of the garbage co lIector. The copy optHation 
is accomplished by the special cell 0 which copies the symbol 
from the complex bus and propagates the 0 to the ce lion the 
right. 

The expression eva luation sequence is straight-forward. 
Head and tail are suffix operators to simplify the implementation. 
Consider the case where the expression is simply a name. When 
the sem ico Ion (statement termi nator) is reached the name wi II 
have been located and the cell to the immediate right of the 
name will be +2/:. The semicolon must provide signals to copy 
the string. 

The catenation operator works simi larly. First th«~ 
+2/* cell directs the copy of the named string and then hegins 
a search for a new name. The quote operator necessitate:; 
modification of the ab?ve scheme. ~ incident on 1the 2/guote 
causes the cell to reta In the two actl vity, now when the Z 
signal reaches the 0/; cell, a copy operation is indicated but 
there is no colon to bypass so the; (and simi larly the cat) uses 
the 0,2 activity to determine the necessity of skippin~<colon. 
Z incident on +O/quote is an idle condition and thus a wely to 
imbed comments in the memory although such comments must 
contain a co Ion to avoid garbage collection. Quote cells can
not pass non-positive activities thus the second quote of (I 
string wi II terminate the quote process. 

The suffix head operator is handled by cop~'ing one 
symbol and then transmitting a +2/rJ to the bus; the rJ symbol 
matches nothing so this is a clear activities instruction. The 
tail operator outputs +2/u to the "bus. +2/u is a propagate-2-
activities-right as ~ matches anything. Activity 0 is sent to 
the right a long with the Z signal upon completion of the 



operation. Composition of operators is possible--the operators 
being applied in order closest to the name, e.g. ABC tail tail 
head will select the third character in the string ABC whereas 
ABC head tail tail will be I. 

The conditional statement is a non-essential but useful 
feature of the language. Another special symbol # must be 
used to effect the comparison of two strings. The idea is to 
bui Id the expression represented before the equals and then 
compare it character by character with the term following. 
The cell to the right of the # must match any 3 active signal 
on the bus. In this case the # is pro~gatedright; otherwise 
the # is deleted. The command -0/ forces the cell pair # 0 
to emit a +3/#. The -0/# also replaces # with 1 thus returning 
any remaining comparant strings to free space. If the strings 
are not equal, the # will have been deleted or the # and 0 
will be separated by one or more characters. In this case the 
then cell driving the compare will not receive the affirmative 
+37" and wi II propagate -0 and Z to the right. The -0 activ
ity inhibits further communication with the bus until the end 
c:ell is reached. 

3. Synthesis Techniques for Iterative language Machines 

The design of the S2P machine based exclusively on the 
L.ee memory is impractical for severa I reasons. The dependency 
on a central clock and the operation of the entire array in 
IIlockstep II is particularly naive. In realizing an iterative 
machine the design engineer must be cognizant of the propaga
tion of information through the array takes a non-zero inte2val 
of time. The description and simulation of an unclocked S P 
machine is provide? in this section. 

It is helpful to imagine the interconnecting structure of 
the asynchronous or unclocked S2P machine to be a simple 
mu lti -ra it transmission line whe re the propagation time is 
directly proportiona I to the inter-cell distance. The cells on 
the bus are at fixed constant spacing and the cells themselves 
make decisions in zero time; this is to say that all of the 
delays are lumped into the transmission characteristics of the 
bus. The dual approach of lumping all the delays in the cells 
with no propagation delay between cells more nearly represmts 
the approach taken in the design (refer to the appendix) but is 
conceptually more difficult. 

An APl program was written to simulate the machine 
described; the illustrations provided are taken from that simu
lation. Each cell has the capabilities: (1) of examining the 
bus at a IIwindow II in the region of the cell and changing 
s,tates according to the bus command, (2) of transmitting to the 
bus in a vacant window, and (3) of directing the cell to its 
right. 

The branching operation requests an associative match 
for a particular label and then transfers control to that label. 
Spatial separation on the bus is used to order the constituents 
of a labe I. The bus is termi nated at ea ch end by its characte r
Istic impedence so that signals reaching the end are absorbed. 
The process of locating strings in the set-to sequence is equiva
lent to the search for branch names. --

In a clocked machine the copying of a string may be 
directed character by character unti I the string is exhausted: 
this is a reasonable approach when the amount of time required 
11'0 retrieve a single character is a small constant. When the 
1"ime required to access a character varies with the position of 
the string it is reasonable to attempt to find a burst mode of 
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character transmission. This is accomplished by adding a com
mand to the bus repertoire which directs a located string to 
transfer itself to the bus. The difficult thing with this burst 
transfer mechanism is to decide when the transfer is complete. 
The time required to make this decision is related to the size 
of the machine and the relative locations of the accessed 
string and the directing string. Another single rail bus with 
the same transmission characterics as the symbol bus is provided 
to sense the "size ll of the machine. By placing a positive pulse 
on the bus and terminating the line appropriately the cell may 
sense completion of the transfer by awaiting the reflected pulse. 
The bus termination must be chosen in such a way that the 
pulses are reflected only once. In this way it is only necessary 
for the cell to count two incident, reflected pulses. It is not 
necessary for the control pulses to travel to the extremities of 
the array. The structure of the machine requires that the copy 
cell, 0 in the examples that fo II ow , be the extreme right cell 
in use. This means that it is not necessary to search further to 
the right for a name. Similarly the cell containing the found 
name is the furthest cell to the left that need be searched. The 
cells may be designed to reflect the sense pulses conditionally. 

The following snapshots (Figure 3. 1 A to F) are succes
sive states of the S2p machine. The APl symbols used include 
L for label, 'V for set, -+ for goto, and + for to. The example 
is a program string that reverses a string named XYZ. No 
attempt is made to illustrate the if-then mechanism as it does 
not represent any new ideas beyond the goto and set-to con
structs. The term cyc Ie refers to the length of time it takes a 
bus signal to move between adjacent cell sites. "Cycle ll is 
taken from the familiar analog in the design of classical 
machines. 

The first snapshot with Z in the 'V cell initiates the 
search for the label. The information packet +l/Z +1;Y + l/X 
-l/L moving to the right is searching for the name and a simi
lar packet is moving to the left. The differences in spacing of 
the left and right information trains are due to Doppler shift. 

The + (to) cell must di rect two simi lar operations on 
the bus. The string that is to be replaced and a new string with 
the same name must both be tagged. This is done by the +O/:p 
and the +0/ ... cells respectively as set by the -0/: bus directive. 

Once the -0/: directive has been placed on the bus the 
command string can begin expression evaluation. In this case 
the search is for the string with the same name. The search for 
the original set name has progressed sufficiently by snapshot 5. 
The + 1: marks the search string; by the next frame (snapshot 6) 
the string has been tagged for ultimate deletion. 

Before th is matching operation has taken place the com
mand string has provided signals to find the replacement string 
and to locate its tai I. The frequency change (separation 
between the +2: and +2/u bus directives) is due to the desire 
to maintain some separation in left going commands. Even 
before the set string has been located the machine is paused, 
waiting th~~py of the tail of XYZ as indicated by the -+o/*P 
cell as seen in snapshot 5 and fo 1I0wing. The graphic symbols 

.L and T are used to represent originated (positive) and 
reflected (negative) pulses on the control bus. The -0/* direc
tive wi II initiate the required copy. Meanwhile on the right 
side of the array, the new name XYZ is being copied as shown 
in snapshots 5 and 6. The 'M' state is used to inhibit the copy 
function for one cycle to avoid copying the bus contents which 
have a Iready been copied into the cell on the left. This lock
out techn ique with the bus caused by the cell change 



directives is necessary to preserve timing relationships. This 
relationship may seem awkward in the bus configuration as 
described but when the cell delay dominates as in the realiza
tion presented in the appendix such an interlock is easi Iy 
achieved. The cell must have the power not only to sense bus 
activity but the velocity of such a disturbance as well. 

By snapshot 7 some 37 command cycles into the execu
tion of the string, the new name XYZ .. has been formed at the 
right of the array and the locating of XYZ< is in progress at 
the left. 

One frame later the -0/* directive has enabled the 
copy cell Oto copy 2 active bus symbols (the copy cell is in 
the 'P' state). Notice also the negative reflection on the 
control bus caused by the copy cell. By this time the tail 
operation has marked the +2/Q cell to eventually begin the 
copy operation. 

The 'e state is shown directing the placement of the 
to-be-copied symbols on the bus. The operation terminates 
on the I. In the state configuration of snapshot 11 the array 
is quiescent; the +O/*P will next become active after receiv
ing the two T Pu Ises. Some time later (cycle 85) the ;SRQ 
packet has been copied and the search for the head of XYZ is 
in progress. This condition persists without complication until 
the head operation takes place at the left of the array in snap
shots 15 and 16. First the head of XYZ is marked by the 
+2/.P activity state. This permits two things to happen. If 
the program request is of the form of a single head followed by 
a copy request then the cell will place only its contents on 
the bus and revert to its formed qu iescent state. Shou Id an 
additional request such as tail follow the head request then 
the marked cell will return immediately to the idle state as 
the tail of a single character is null. 

Having placed the +2/P on the bus, the array waits 
for the copy operation to take place. The; cell continues to 
count negative control bus pu Ises. The process of searching 
for a new name begins in snapshot 21. The name is copied 
while the goto proceeds and is returned to the array for gar
bage collection by terminating it with a I. The +O/:P cell 
that has wa ited patiently for ann ihi lation is fina lIy satisfied 
by the receipt of the -0/1. The new string XYZ was formally 
inaugurated when the .. cell received the -O/,;£ bus directive 
between snapshots 19 and 20. The program forces a transfer 
to ABC and would remain in this loop indefinitely. Three gar
bage strings are created in each pass through the loop and are 
consumed by the garbage collector. 

The action of the garbage collector in S2p is indicated 
in snapshots 21 and following. The isolation phase quickly 
locates the dummy labe I created by the bran ch i nstru cti on 
and the compactor phase is initiated a Imost as rapid Iy. 

4. Summary and Conclusions 

This paper has presented a novel architecture based 
upon the concept of direct execution of a higher level 
language. A simple string language was introduced and 
an example machine for that language was derived. It 
is important to realize that the resulting machine was it
self a simple string of cells; the structure of this language 
is reflected in the hardware. It can be demonstrated 
that necessary features such as arithmetic processing and 
macro faci lities can be added to the iterative language 
machine. An important result is the ability of such a 
machine to support parallel processing. This is demonstrated 
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b2 the simultaneous processing and garbage collection in the 
S P machine but may be extended to multiple processing 
streams [6] • 

Current technology is leading toward the fe:asibility of 
individually owned computers. The continued development 
of Von Neumann based machine architectures and! the sc.ftware 
support for them in the form of compi lers and single process 
operating systems may be misdirected. The need for processors 
with minimal software support is not in the distant future; it is 
in the present. 

Appendix 

An asynchronous network is required to simulate the 
actions of a transmission I ine as required in the doveloprnent 
of the S2p machine. The design goals include: 

1. Faci lities for the propagation of information to either left 
or right 

2. At any cell site information from only one direction may 
be handled at a time; in a situation where signal flow is both 
left and right preference is given to those signals moving to the 
left although every directive reaches every cell on an inter
leaved basis. 

3. The order of the symbols on the bus is preserved; the spac
ing between symbols is irrelevant 

4. Cell directives and bus directives remain in lock-st,ep 

5. Direction of motion is preserved and such inf,:>rmatic)O is 
avai lable to the cells 

6. It is possible to selectively terminate the bus at any cell 
site. Selection features include--but are not limited to--bus 
contents, cell contents, and direction of motion. 

Extensive use is made of the ready-acknowledge form of 
commands. A command produces a ready signa I when it desi res 
to in itiate a sequence. A completion signa I then responds with 
an acknowledge. The double bussed RDY-ACK signal Ui;es a 
form of transition logic [7]. If the signals are different, then 
the line is active; if they are the same, the idle condition 
prevai Is. The generation of RDY merely changes the level of 
one of the lines whi Ie the generation of ACK changes the 
other. The XOR function wi II then sense the appearanc1e of a 
ready signal. 

The development of the bus network must pay proper atten
tion to the nature of the asynchronous control circuitry. All 
unnecessary delays should be eliminated and the dependency 
on transition time minimized. The bus register will consist of 
a number of bits sufficient to include the width of the bus and 
some error checking circuitry. Since signals may be propa
gated in both directions, it wi II be necessary to Ic)ad the bus 
from two sources. It is assumed that the data proFXlgation rate 
equals the control signal rate so that by the time the actuating 
ready signal is received, data must be available Cit the register. 
A double D fl ip-flop has been designed such that it can be 
loaded from two different data paths by two sepamte clocks. 
The restriction placed on the clock lines is that ai' most one 
clock be high at any time; dota transfer is on the leadin!~ edge 
of the clock line--this rising edge trigger operatic)n is assumed 
for each variety of flip-flop in the design. The slet and reset 
lines are normally high. AtmostonlyoneofR, S, C1' C2 



may be high for the flip-flop states to be deterministic. The 
use of this flip-flop is illustrated in figure A 1. The RDAT and 
LDAT lines are data from the right and left cells respectively; 
RXFR and LXFR are clocking signa Is to the flip-flop. BXFR is 
a transfer signal to a hidden register that is used to allow the 
crossing of data streams from the left and right. BDAT and 
SETBUS are used within the cells to write data on the bus. 

In order to handle bi-directional data flow a cell may 
not receive data from the right unless it is not busy and it has 
transferred its contents to the left--as indicated by the NXOR 
gate in the lower right comer of figure A2--or the buffer 
register to the right has been loaded--as indicated by the 
BUFFI LD signal. The chain of a pair of ready-acknowledge 
signals at the upper left permits the interleaving of signals 
from the left and right. In fact, the cha i n forces such a cond i
tion if possible so that a long string of closely packed symbols 
from one direction or the other cannot hang the bus. The 
remaining RDY-ACK pair is used to transfer data from the left. 
The delay element is necessary to assure that the hidden buffer 
register has stabilized before the bus register is clocked from 
the left. The purist can be satisfied by using an additional 
RDY -ACK network in the place of the delay. The internal 
signal DONE is cleared on any clock of the bus register and 
set when the symbo I has been interpreted. LX FR, RX FR a Iso 
set internal motion flip-flops so that the direction of propaga
tion is maintained. Toggling Q 2 and Q 4 with PROPL and 
PROPR appropriately will cause propagation of the symbol; by 
changing the states of the motion flip-flops the bus may be 
effectively terminated anywhere throughout its length. 
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Summary 

This paper describes the chief attributes of the 
Virtual Processor placed at the disposal of each user 
of the SYMBOL-2R time-shared multiprocessor system, and 
the mechanisms by which SYMBOL's hardwired operating 
system manages processing-mode transitions for individ
ual Virtual Processors and allocates hardware resources 
-processors and memory space -among competing Virtual 
Processors. It describes the provisions by which the 
unusually high-level capabilities of the hardware are 
augmented by software, and contrasts the structure of 
the software component of the operating system with 
that of the hardware component. Finally, it describes 
the hardware/software partition of resource-allocation 
functions, in which allocation policies are controlled 
by software and executed by hardware. 

Introduction 

The SYMBOL-2R computer is an experimental time
shared multiprocessor system in which many of the func
tions normally found in software have been implemented 
in hardware. These hardware functions include the com
pilation of a high-level language, management of a vir
tual memory to support dynamically varying data struc
tures, system supervision, and various other functions 
common to third-generation systems. Without recourse 
to system software, SYMBOL offers time-shared process
ing of interactive jobs, from initiation through load
ing, editing, compilation, execution, I/O, and termina
tion, including all the necessary paging and processor
multiplexing operations. Software is required only to 

ACTIVE PROCESSING MODES 

handle certain exceptional conditions acceptably, and 
to adapt resource-allocation policies to v.arying oper
ating conQitions. 

Overview of the SYMBOL System 

Since one of SYMBOL's novel properties is its 
ability to deliver an unusually high level of service 
with no system software, we first describe the a.ppear
ance it presents to its users in this soft'W'are-free 
configuration. 

Virtual Machines 

SYMBOL makes available to each user (up to 31 
users at a time) a Virtual Machine, with which he com
municates via a special SYMBOL terminal.** Each such 
terminal is equipped with at least a typewriter, a 
control-key console, and a set of processing-mode indi
cators.*** Using the typewriter and control keys, the 
user can load, edit, and cause to be executed a program 
expressed in the high-level SYMBOL Programming Language 
(SPL) .7 B Figure 1 sununarizes the Virtual Machines' 
processing modes, and the means by which the users com
trol them. In this software-free configuration, 
the Virtual Machines operate in complete logical 
independence of one another. 

Virtual and Actual Processors 

We refer to the active data-transforming element 
of each Virtual Machine as a Virtual Processor (VP). 

MODE TRANSITIONS 

1. INITIATE key 
2. LOAD key 
3. end-of-record character read 
4. RUN key 
5. translation successfully completed 
6. INPUT statement encountered in execution 
7. OUTPUT statement encountered in execution 
8. end-of-record character output, or CANCEL 

OUTPUT key pressed 
9. execution successfuJ.ly completed 

lO. RESTART key 
11. PAUSE key 
12. CONTINUE key 
13. processing error encountered 
14. PAUSE statement encountered 
15. CLEAR key 
16. TERMINATE key or communi.cations failure 

LOAD: source text is accepted from terminal's input device. Interactive editing provided includes insertion, 
deletion, and display of selected text (designated by characters or lines), and substring searching in 
both forward and backward directions. 

TRANSLATE: source text is syntactically analyzed and object program is generated. 

EXECUTE: object program (generated from source text in TRANSLATE) is executed. 

INPUT: one record (character string) is accepted from the terminal's input device and aSSigned tC) a variable. 
Editing is provided as in LOAD mode. 

OUTPUT: one or more records are transmitted to the terminal's output device. 

Fig. 1. Virtual-machine Processing Modes and Mode Transitions 

*The work reported on here was supported in part by 
the National Science Foundation under Grant GJ-33097X. 

**SYMBOL can accomodate terminals of other types, 
but this requires software. 

***Other I/O devices - card readers, linE~ printers, 
tape drives, and the like -may be added. At any given 
moment, only one device of a terminal's cOililplement can 
be actively transmitting or receiving data .. 

IB 



SYMBOL's hardware provides for 32 VP's, each: of which 
receives intermittent processing service from one or 
another of five Actual Processors (AP's), according to 
its processing mode. The vp's are permanent entities, 
in the sense that each has hardware dedicated to its 
support (including a fixed portion of core memory for 
its Context Block). The AP's are specialized hardware 
modules13466 connected to one another and to ,two other 
modules, which provide supervisory and memory services, 
a,s shown in Fig. 2. 

FUNCTIONAL RESPONSIBILITIES 

coordinator: allocates resources 
and manages processes 

l 
MEMORY 
CONTROLLER (MC) 
(includes Drum 
Controller 

executes object programs 

reads SPL source text and com
piles object progra~ 

moves I/O data between buffers 
and source string or CP stack; 
executes text-edi tin,g cont:llands 

reclaims virtual-memory space 
for reallocation by MC 

moves I/O data between buffers 
and terminal ports; passes in
coming control characters di
rectly to System Supervisor 

provides all other processors 
with memory service that in
cludes allocation and linking 
as well as reference and re
placement 

Fig. 2. The SYMBOL System's Hardware Components 

Each terminal supported by SYMBOL is permanently 
connected to one of the VP's, up to a total of 31. The 
remaining VP has no I/O capability, and is used exclu
sively for system software. 

Yirtual Memory 

The memory service provided to the other hardware 
modules by the Memory Controller (MC) is unusually e
laborate, in that it includes allocation, linking, and 
garbage-collection features as well as conventional 
reference and replacement. s It is based on a virtual
memory address space of 16 million 64-bit words, parti
tioned into 64K pages. Pages are not shared; at any 
i.nstant, each page in active use belongs to exactly one 
of the Virtual Processors. Pages do circulate over 
time, however; a page may be used by one VP, cleared, 
and returned by the Memory Reclaimer (MRP) to the sys
tem's pool of available pages, and later allocated to 
some other VP.* 

A processor obtains access to memory by transmit
ting a request over the memory bus (witholding its re
quest until the Memory Controller is free and no 
higher-priority processor is making a request). Spec
ified in the request are such parameters as the type of 
operation to be performed (one of the 14 provided), VP 
number, address, and datum to be stored. The transac
tion is concluded by the Memory Controller's reply, in 
which it transmits to the requestor such items as suc-

*This circulation is not to be confused with the 
traffic of pages between core memory and drum, which is 
an altogether separate process (described below). 
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ceeding address, datum fetched, and completion code 
(e.g., success, error, or page-fault). 

Actual Memory 

The physical storage supporting SYMBOL's virtual 
memory consists of 26 pages ("frames") of magnetic core 
memory and 4K pages of magnetic drum (leaving 60K pages 
currently unimplemented). Each core frame is provided 
with an associative register that is loaded with the 
virtual-page number of its frame's contents and used by 
the MC in transforming the virtual addresses submitted 
by processors into the core addresses necessary for 
performing the required accesses. 

When an AP requests access to a page not contained 
in some core frame, the MC returns a page-fault reply. 
The requesting processor then suspends its processing 
and reports to the System Supervisor (SS) for possible 
assignment to some other VP; it will later be reas
signed to the original VP after the necessary page has 
been loaded into core memory. 

In addition to the 26 frames used for buffering 
virtual-memory pages, SYMBOL's core memory contains 
1.SK words used for other purposes. Part of this space 
is permanently allocated to 24-word Context Blocks (one 
for each VP) in which are stored such data as 1) 
processor-state information (during intervals when the 
VP is not being serviced by an AP), 2) memory
management data concerning the virtual-memory space 
allocated to the VP, and 3) process-control informa
tions such as the VP's current processing mode, its 
blocked/unblocked status, and its I/O buffers' ad
dresses. An additional region of O.SK is allocated to 
I/O buffers, at the rate of 16 words per VP. The 
remainder of the 1.5K-word region contains information 
concerning the system as a whole, such as the Reserved 
Word Table of the Translator, the available-space in
formation used by the Memory Controller, and the Soft
ware Entry-point Table and other data of use to the SSe 

NOTE: The allocations described above are those of 
the original design. Currently, at Iowa State, SYMBOL 
is supporting only 16 VP's, of which a mere three are 
connected to physical terminals. The Context-block 
space of the unsupported VP' s is uried for I/O buffers 
for the three terminals, and the O.SK originally in
tended for I/O buffers is used instead for buffering 
virtual memory, raising the total number of core frames 
to 28. 

,The SYMBOL Operating System 

For the purposes of this paper, we consider the 
essential responsibilities of SYMBOL's operating system 
to be the following: '1) process management, which con
sists chiefly of effecting processing-mode transitions 
for each Virtual Processor as it passes from one proc
essing stage to the next; 2) provision of auxiliary 
services, in addition to those provided by the hard
ware, that the user perceives as capabilities of his 
Virtual Machine; 3) resource allocation, i.e., alloca
tion of Actual Processors to implement the system's 
Virtual Processors, and of core memory to implement 
virtual memory. This section deals with the first two 
of these topics; the third is deferred to the following 
section. We intend not to describe these functions in 
great detail, but simply to illustrate the partitioning 
of functions into, and the flow of control between, 
hardware and software. 

A substantial part of the SYMBOL Operating System 
is implemented in the hardwired System Supervisor (SS). 
This part consists chiefly of functions characterized 
by high duty-factor or short response-time require
ments, with certain additional functionl3 included to 
give the system its unusual software-free capabilities. 
The software component of the operating system is im
plemented in programs expressed entirely in SPL and ex
ecuted by the same Central Processor (CP) that executes 



users' programs. It not only augments the capabilities 
of individual Virtual Machines, but also provides cer
tain functions that enhance the performance of the en
tire system. Since the software-implemented functions 
are infrequently invoked, and are free from severe re
sponse-time requirements, the software is paged in on
ly upon demand. 

The Hardwired System Supervisor 
The responsibilities of the SS (as distinguished 

from those of the Operating System as a whole) consist 
of 1) Context Block transformations effecting 
processing-mode transitions, 2) resource-allocation 
decisions, subject to software-controlled parameters 
(described in the following section), and 3) invoca
tion of software for functions beyond those provided in 
the hardware. A fairly detailed description of the SS, 
published heretofore,lO relieves us of any need to de
scribe features of the SS other than those that bear 
directly on the hardware/software interface. 

We view the SS as a cyclic process, as illustrated 
in Fig. 3, that waits in a stationary rest state until 
stimulated by some externally generated Service Request 
(SR). Upon receipt of an SR, the SSleaves its rest 
state and embarks upon a service routine appropriate 
to the request. Approximately 70 different SR's are 
serviced by the SS; some typical examples are 1) the 
Channel Controller reports that a user has pressed a 
control key on his terminal's control console; 2) some 
AP signals normal completion of its current task; 3) 
the Channel Controller reports that it has filled an 
input buffer; 4) the Drum Controller reports the pas
sage of a drum sector boundary under its read/write 
heads; 5) some AP signals that it has experienced a 
page-fault interrupt. Most of the SS's service rout
ines result in some alteration in the busy/idle state 
of some AP, or some change in the set of vp's awaiting 
service; on service-routine completion, therefore, the 
SS proceeds to a common Task Assignment (dispatching) 
routine before returning to its rest state. 

For dispatching purposes, the SS maintains, for 
each AP, a queue containing an entry for each VP whose 
current processing mode calls for service by that AP. 
In Task Assignment, the SS scans each idle AP's queue 
and, on discovering a dispatchab1e VP, issues the AP a 
command to service it. 

Most of the SS's service routines are undertaken 
on behalf of a specific VP, and entail such transforma
tions on the VP's Context Block as 1) initializing the 
processor-state component of the Context Block, in the 
course of switching processing modes, 2) marking the 
VP blocked (after a page-fault interrupt) or unblocked 
(after completion of a paging task), and 3) swapping 
I/O-buffer pointers (after a buffer-full or buffer
empty signal). In most cases, the routine ends by de
leting the VP :tn question from some queue and/or adding 
it to some other queue. 

A crucial assumption underlying the deSign of the 
SS is that every service routine executes quickly 
enough that no serious delays result from processing 
service requests sequentially. This assumption permit
ted the SS to be designed as a non-interruptible and 
non-reentrant process (certain routines are segmented, 
with provisions for suspension and resumption in case 
of page faults). 

An important distinction must be made between two 
classes of Service Requests. One class, whose members 
are called Normal Service Requests (NSR's), consists of 
SR's encountered in successfully processing an ordinary 
job, and for which the SS provides unique and complete 
service routines. It is the inclusion of these rout
ines in the SS that allows software-free processing of 
error-free interactive jobs. 

Service requests in the other class are called 
Exceptional Service Requests (ESR's). Some typical ex
amples are processor-detected errors (e.g., syntax or 
execution errors in users' programs), processing-time 

service requests 
·--from-ActuaI-proceEisors 

000 
sf~rvice 

routines 

_~~!!L~2~'!!~~ __ ,. ___ • 
to Actual Processors 

Fig. 3. General Flow of Control in System Supervisor 

or memory-space limit violations, and certain tE!rminal 
control-key signals. The software invoked in rE!SpOnSe 
to an ESR can provide such functions as diagnostic mes
sages, login/logout and accounting operations, tnter
terminal communications, and file-management facili
ties. 

The Software Component of the Operating Sy'stem 

SYMBOL's operating-system software consists of a 
collection of programs, unique among which is "VPZ", so 
called because it permanently occupies Virtual Proces
sor Zero. VPZ, the first program to go into action in 
response to an ESR, is invoked by the SS in a two-step 
operation which proceeds briefly as folloYl's. The first 
step - the SS's immediate response to the ESR -places 
the VP generating the ESR at the head of the CP queue, 
with an ESR identification code in its Context Block 
indicating which of the 120 types of ESR's has Ilctually 
occurred. There the VP waits for VPZ service along 
with, possibly, other VPZ requests, as well as vp's 
demanding ordinary VPZ service. 

The second step of the VPZ invocation operation 
takes place when the SS, searching the CP queue for an 
executable CP task, encounters a VPZ requEist. As long 
as the binary semaphore "VPZACT" indicates that a VPZ 
task is. in process, the SS ignores all new VPZ re
quests. The completion of a VPZ task, however, clears 
the semaphore, permitting the SS to assign VPZ to the 
first VPZ request in the queue. It selects VPZ's ent~ 
point from the Software Entry-point Table according to 
the ESR code, and signals the CP to begin executing. 
From that point until completion of the task, VPZ con
tends for CP service and memory space with the other C] 
tasks (unlike them, it is not subject to time-Slicing 
preemption). Note: a software process can invoke the 
second step of the operation, and thus "c~lll" VPZ, by 
inserting an ESR code int.o its own Context Block. 

The semaphore VPZACT mentioned above ensur'es that 
VPZ is used only serially, and thus finishes processin! 
each ESR before tackling its successor ( a measure nec· 
essitated by the lack of code-sharing provisions in 
SYMBOL). In a timesharing system, such serial process· 
ing of independent ESR' s would give rise to intolerab14 
delays, especially since ESR processing Clm inv,olve ex· 
tensive dialogues between the system and the user/oper' 
ator. In addition, SYMBOL's hardware supports I/O be
tween each VP and the associated terminal, but does noj 
readily handle I/O for the terminal-less ,~ Zero. 
Therefore the bulk of ESR processing is p.f~rformed not 
by VPZ itself, but by the other major components of thl 
operating-system software, namely, the Vilrtual ProceSS4 
or Monitor (VPM) programs. Each VP is plrovided with 
its own VPM, which is called into play by VPZ whenever 
the VP generates an ESR. As Fig. 4 suggelJts, the caps' 
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bilities of each VPM merge, more or less imperceptibly 
from the user's point of view, with those of the hard
ware, to create an Augmented Virtual Processor possess
ing capabilities, such as program-error diagnostics, 
beyond those of the bare hardware. 

The ESR-processing responsibility of VPZ is thus 
reduced to mere VPM initiation: saving the current Con
text-block data concerning the user process (in memory 
locations accessible to VPM for reference and modifica
tion) and replacing it with VPM Context-block data, 
thereby switching control of the VP from the user proc
ess to the VPM. At the conclusion of its ESR process
ing" the VPM "calls" VPZ to perform the reverse switch, 
restoring control of the VP to the user process. Be
cause the VPM's all run on different VP's, their share 
of the ESR processing can proceed in (time-multiplexed) 
parallel, leaving only the relatively minor process
swapping VPZ portions to be performed serially. 

Conditional ESR's. By setting certain bits in a 
given \TPis Context Block, one can flag certain NSR's 
for ESR treatment, thereby substituting VPZ/VPM proc'':' 
essing for the normal hardware algorithms on a VP-by-VP 
basis. For example, INITIATE-key, TERMINATE-key, and 
TERMINAL OFF-LINE NSR's can be flagged as ESR's in 
order to invoke such functions as log-in, log-out, and 
reverification routines. Central Processor I/O shut
downs, which the SS normally handles by switching the 
VP to the I/O processing mode for IP and·CC service, 
can instead be handled by the VPM in a batch-processing 
mode. A third example is the CLEAR-key NSR, which is 
flagged for the duration of VPM processing to protect 
the pages containing the VPM from being cleared. 

Allowing different NSR's to be flagged for differ
ent VP's accomodates VPM's that are tailored to the 
type of terminal equipment they are dealing with. For 
example, so-called C1ass-A VPM's are deSigned to handle 
the full SYMBOL terminal, with its control-key console 
and processing-mode indicators. For such terminals, 
the SS's normal response to a CP normal completion, 
~7hich is to turn on the "Run Complete" indicator, is 
appropriate. Class-B VPM's, on the other hand, monitor 
Teletype-equipped terminals, which lack such indica
tors; accordingly, CP normal completions are flagged as 
ESR's for those VP's, which permits the VPM to output a 
printed message equivalent to the "Run Complete" 
indicator. 

Eystem-software Provisions in SPL 

In many present-day systems, restriction of global 
system-intervention capabilities to authorized process
es is imposed during execution by the provision of two 
mutually exclusive e,xecution states, such as "supervis
ory state" and "problem state", and interrupting on at
tempts to execute certain instructions while in 'problem 
state. In SYMBOL, by contrast, there is but a single 

execution 13tate; programs are designated "privileged" 
or "non-privileged" at translation time. SPL syntax'" 
for non-privileged programs (which include all users' 
programs*) simply provides no means of accessing any 
part of memory other than that expressly allocated by 
the system for the program's variables. Restricted SPL 
syntax, which applies only to privileged programs and 
procedures, is a superset of the syntax that applies to 
users' programs; it allows statements that can explic
itly access any location in core or virtual memory, us
ing the memory-operation repertoire of the Memory Con
tro1ler.e Another restricted statement allows the pro
gram to set up tasks, consisting of queue and core-word 
modification instructions, to be executed by the SS 
while the CP is momentarily idle (to forestall poten
tial CP-SS race conditions). 

Allocation Algorithms 

In SYMBOL, the processor and memory a1locatio~a1-
gorithms are hardware-implemented functions of certain 
software-controllable parameters. This arrangement 
provides for fast execution of frequently invoked algo
rithms, while maintaining some flexibility in control
ling the underlying policies. The purpose of this sec
tion is to describe the hardware algorithms and the 
roles of the associated parameters. The reader should 
bear in mind that SYMBOL's resource-allocation strateg .... 
ies date f:rom 1966-67, and hence have been denied the 
benefit of more recent work. They are described here 
not because of any intrinsic merit or efficiency (mat
ters which have yet to be resolved), but in order to 
illustrate a significant aspect of hardware/software 
interaction and functional partitioning. 

Processor Allocation 

The services provided by each of SYMBOL's Actual 
Processors are subject to demand by as many as 32 Vir
tual Processors simultaneously. One of the AP's - the 
Channel Controller - allocates itself by continuously 
polling all VP's. The others -CP, TR, IP, and MRP -
depend on the SS to distribute their services among the 
contending VP's. For each of these AP's, the SS main
tains a queue of VP's awaiting or receiving its serv
ices. Whenever a processor becomes available, the SS 
scans its queue and assigns it to the first VP that is 
not in page wait (a VP in page wait maintains its queue 
position). The number of queue positions scanned by 
theSS in each pass is bounded by one of the software
controllable parameters, namely, the Queue Search Limit 
(QSL), which thus bounds the size of the "multiprogram
ming set", i.e., the set of VP's in active contention 
for Actual Processor service. 

The SS distributes AP service among competing vp's 
according to a preemptive service discipline. The time 
slice for each VP is determined by its Queue Run Time 
(QRT) parameter. This parameter is set by the SS to 
its software-controllable initial value when the VP is 
first added to a processor queue. At regular inter
vals, the SS decrements the QRT of each VP that is re
ceiving service from some AP. Whenever some QRT reach
es zero, the SS preempts the associated VP, demotes it 
to the bottom of its queue, and re-initializes its QRT. 
Since the SS scans processor queues from the top down, 
the topmost VP's are most likely to receive service, 
use up their allotments, and move to the bottom (the 
reSUlting circulation is illustrated in Fig. 5). A 
VP's probability of receiving service drops substan
tially when its time slice expires (see Fig. 6); if QSL 
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*Users' programs are allowed to call system
supplied privileged procedures. 

**Throughout this section, the term "memory alloca
tion" refers to the allocation of core frames by the SS 
as a part of its virtual-memory implementation respon
sibilities; it is not to be confused with the alloca
tion of virtual-memory space to vp's by the Me. 
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Fig.5. Circulation of VP's in an AP Queue 

is less than the current queue· length, the VP leaves 
the multiprogramming set entirely. 

A vp's QRT parameter controls its time slice ef
fectively only if the VP is operating on a processor
bound task. To keep a paging-bound VP (Le., one whose 
working set exceeds the capacity of core memory) from 
blocking queue circulation by monopolizing core while 
accumulating very little processor time, each VP is 
provided with a backup time-slice parameter called CP
top Time (CPTT).* A VP's CPTT causes it to be preempt
ed and demoted to the bottom of the CP queue after 
accumulating a software-specified quantity of "wa11-
clock" time at the top of the CP queue since its arriv
al or previous demotion. 

In the interests of minimizing response time for 
short tasks, new arrivals to AP queues are added at the 
top. A task that can be completed in less than one 
quantum therefore receives immediate service, without 
being forced to. wait while previous arrivals are 
served. 

Memory Allocation 

When the MC transmits a page-fault reply to an 
AP's memory-access request, the AP responds by saving 
its state in the Context Block of the VP which it is 
servicing and sending a page-fault signal to the SS. 
The SS generates a paging task for the faulting VP and 
adds it to the bottom of the paging queue. Each paging 
task requires up to three consecutive paging operations 
involVing the paging drum: 1) write the replacement 
page to drum (if it has been modified), 2) check the 
validity of the previous write, and 3) read a new page 
into the core frame vacated by the replacement page. 
After generating a paging task, the SS removes the core 
frame containing the replacement page from the Core 
Frame List (CFL) and marks the VP blocked for page 
wait. It then returns to its rest state by way of the 
processor Task Assignment Routine. The remainder of 
this section describes the paging queue service and the 
algorithm for selecting the replacement page. 

SYMBOL's paging drum is capable of one paging op
eration during each quarter revolution. Each passage 
of a quadrant boundary under the read/write heads is 
reported by the Drum Controller to the SS. While a 
short dead space between quadrants is being traversed, 
the SS performs post-processing on the completed opera
tion and then assigns a paging operation for the upcom
ing quadrant. Post-processing a "write" or successfu1** 
"check" operation requires merely changing the opera
tion to its successor. In post-processing a successful 
"read", the S8 deletes the paging task from the queue, 
unblocks the VP responsible for it, and adds the core 
frame just filled to the bottom of the CFL. After 
post-processing the completed operation, the SS scans 
the paging queue, beginning at the top, until it finds 
an operation to assign for the upcoming quadrant. 

*On1y CP tasks can be paging-bound, because the TR, 
IP, and MRP command inherently small working sets. 

**A "check" or "read" error is treated aE an ESR. 
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The overall paging-queue service policy maximizes 
the throughput on the drum. Among operati.ons eligible 
for a particular pass of a quadrant, fairness is main
tained in that the selected operation is taken :Erom thE 
earliest-enqueued paging task. After post-processing 
and selection of the next operation, the SS passes 
through the Processor Task ASSignment routine to its 
rest state. 

The key phase of the paging process i.s the selec
tion of the replacement page. Like all practic,al page
replacement policies, SYMBOL's attempts to se1e,ct for 
replacement the page destined to go unreferenced the 
longest. Such well-known and accepted policies as 
Working Set and LRU 2 derive their expectations of fut
ure referencing patterns from those of th'e recent past 
SYMBOL attempts to extract the same sort iOf informatio 
from such page attributes as the processing mode and 
queue position· of the VP owning it, as well as the typ 
of data contained within it. 

The SS examines potential replacement pages by 
scanning the CFL, starting at the top. F,or each page 
under consideration, the'SS looks up its Page Residenc 
Index (PRI), which amounts to a measure of the page's 
resistance to removal from core. The PRI assumes val
ues according to the follOwing table: 

PRI Page Characteristics 

3 belongs to the VP occupying the top posi
tion in the CP queue 

2 belongs to some other VP in the CP queue, 
or is a name-table page belonging to a VP 
in the TR queue 

1 belongs to a VP in the IP queue, or is a 
non-name-tab1e page belonging to a VP in 
the TR queue 

o an inactive page 

The PRI of a page is assigned a positive value each 
time the page is transferred to core, and does not 
change thereafter until it is set "inactive" (PRI = 0; 
A page is set "inactive" by the SS whenever the VP to 
which it belongs undergoes a transition such that its 
in-core pages are unlikely to be referenc:ed in the nei 
future. Examples of such transitions arEl PAUSE state
ments or control-key Signals, CP normal completions, 
and CP shutdowns for I/O. In addition, n Vp1s pages 
are inactivated whenever it leaves the multiprogrannnil 
set because its time slice has expired. 

The SS compares the PRI of each candidate for reo 
placement with the Page Pushing Priority (PPP) of the 
faulting VP. A VP' s PPP is computed as follows: 



PPP Virtual Processor Status 

p 

top of CP queue 

top of IP or TR queue (£ is a software 
controllable parameter, 0 S p S 3, for 
each VP) 

other 

The replacement page is the first page encountered in 
the CFL scan such that PPP > PRI. If none are found, 
the SS selects the first page such that PPP = PRI.* The 
page-replacement policy thus favors the VP at the top 
of the CP queue, for it can steal pages belonging to 
any other VP, whereas its own pages are theftproof (the 
E~xtent of the CP-top VP' s advantage depends on the val
ues of "p" assigned to the other ~'s by software). 

~~ombined Allocation Policies 

SYMBOL's resource-allocation policies focus on a 
single VP at a time (the one at the top of the CP 
queue), favoring it with top priority for both proces
sor service and core-memory space. This priority is 
distributed among VP's in round-robin fashion at a 
rate, and in proportions, controlled by software 
through the time-slice parameters QRT and CPTT. Short
task responsiveness, moreover, is enhanced by granting 
every new arrival top priority for its first 
processing quantum. Finally, during intervals when the 
top-priority is in page wait, processor service is 
allocated to other VP's in the queue, to the extent 
permitted by the software-controllable parameter QSL. 

The effectiveness of this design is currently the 
~Iubject of empirical investigations at Iowa State Uni
versity. Present plans call for a hardware-implemented 
software-accessible performance monitor, which will al
low software not only to collect performance data for 
subsequent analysis, but also to exercise real-time 
control over SYMBOL's resource-allocation policies in 
response to variations in the system's operating envi
ronment. 

Conclusions 

Compared against conventional computing systems, 
SYMBOL-2R has implemented a substantially higher pro
portion of its operating-system functions in hardware. 
Since these functions include those that have short 
response-time requirements or high duty factors, the 
penalties incurred in implementing the remaining func
tions in non-core-resident software expressed in a 
high-level progranuning language are correspondingly 
diminished. The high "execution" speed of the hardware 
System Supervisor allows nearly all service requests to 
be handled sequentially, and thus leads to a rather 
straightforward design. The software part is more com
plex, since it must process multiple independent serv
ice requests concurrently in order to achieve satisfac
tory responsiveness. The resource-allocation mecha
nisms exhibit the same design philosophy: the typically 
high-duty-factor execution of allocation policies is 
performed by dedicated hardware, whereas the adjustment 
of these policies from time to time, to meet variations 
in the system's workload, is leftOto software. 

*If no replacement can be found, the SS abandons 
the paging task and leaves the VP unblocked. Subse
quently, the VP will again receive processor service 
and incur another page fault; this continues until the 
page fault can be serviced. 
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ABSTRACT 

This paper describes work on a high-level language 
processor, the Array Machine System. The work des
cribed includes a description of the high-level lan
guage, a discussion of the two components of the system, 
the Net Compiler and the Array Machine, and recent 
measurements made on that system. The language des
cribed is based on postfix notation. The Net Compiler, 
which exists as a PL/1 program, prepares the control 
code for the Array Machine. The Array Machine, which 
exists as a PL/l simulation program, executes the con
trol code, using its primary processing element, an 
array of homogeneous building blocks. The measurements 
on the system feature a comparison to a third genera
tion computer. 

1. INTRODUCTION 

The concept of direct execution of a high-level 
language (HLL) is not new. Cheaper electronic compo
nents and costlier software and support of large sys
tems have encouraged considerable research in this 
field. Several designs have been proposed; several 
machines are in the development stage and others are 
already operational. Among the first reported efforts 
were the "Fortran Machine" by Bashkow et a1 the 
"Cel1u1ar APL Computer" by Thurber and Myrna~, and the 
"APL Machine" by Abrams3• All were intended to process 
a HLL directly although each required some pre-process
ing to produce an object code for execution on the ma
chine. While these architectures were based on exist
ing HLL's, the SYMBOL Process!ng Language and its 
associated SYMBOL-2R Computer ' were designed con
currently. There is also the AeroGpace Computer using 
the Space Programming Language SPL , the

7
AADC Data 

Processing Element of the Navy using APL , and the 
Litton HOL Machine8• In addition to the product ori
ented projects just mentioned, there have been a number 
of research projects such as the Direct-High-Leve1 
Language

1
Grocessor of B100m9 , the HLL Machine GLOSS of 

Herriott ,and the Py{EXUS Language and Virtual Ma
chine of Sitton et a1 • 

The processor which is discussed here was intro
duced in earlier publications by Vineberg and Avizienis 
12,13. The evaluation which will be described is part 
of a continuing effort to design and test a HLL proc
essor. In this work, the Array Machine Language (AML) 
and its processor, the Array Machine System (AMS) , are 
closely inter-related. The postfix structure of AML is 
related to the "AMS building b10cks" and to the asso
ciated concept of a "net" of such building blocks. The 
AMS is composed of two separate units, the Net Compiler, 
a pre-processor which accepts a program written in AML 
and produces an internal "control code," and the Array 
Machine which executes this code using a number of 
AMS building blocks. 

The present design of the AMS has been established 
with the help of a simulation package. Tests were con
ducted using a typical AML program to measure the per
formance of the simulated system under different design 
*This research was supported by the National Science 
Foundation, Grant No. 33007X. 
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parameters, and to provide a basis for comparison of 
some aspects of the performance of the simulated syste 
to those of a "third generation" computer, the IBM S/36 
Model 91. 

The AMS is described in three parts, 1} AML and the 
nets, 2} the Net Compiler, and 3) the Array Machine. 
The AMS simulation, the measurements and the results of 
the evaluation are then presented followed by conclu
sions indicating the present state of our reseal'ch, our 
goals and objectives. 

2. THE HIGH-LEVEL LANGUAGE AND THE NETS 

2.1 The Array Machine Language (A~ 

Programs written in AML represent the input data fo 
the net compiler. AML requires postfix notation for a1 
arithmetic and logical expressions. This 'was done 1) 
to reflect the Array Machine architecture and 2) to 
ease compilation (at this stage of the research). Sinc 
any infix expression can be translated into postfix no
tation, the use of postfix notation is not limiting. 
Those operators currently available include fixed-point 
arithmetic operators +, -, *, and # (EXCLUSIVE OR) and 
the comparison operators <, ~, >, ~, =, and ~ (results 
of comparison operations produce either 0 or 1, FALSE 
or TRUE). These are the projected machine primitives 
but, as will be explained, additional AML primitives, 
such as floating-point arithmetic operations are also 
available. 

AML has three types of statements: the assignment 
statement, which can involve fixed-point or floating 
point arithmetic variables or Boolean variab1es~ the 
transfer statement which is an unconditional branch to 
another part of the program; and the "transfer fa1se" 
statement which is a conditional branch to another part 
of the program subject to a condition either in arith
metic or in logical form. Example 1 shows a} an arith
metic assi9nment statement which assi9ns the infix va1u 
(A * (B+C})*«(D-A) + B) * C} to X, b) a transfer state 
ment which transfers program control to label LAB and 
c} a transfer false statement which transfers control 
to label LAC if (X<Y) 1\ (Y<Z) is false. 

a) X = ABC + * D A - B + C * * 
b) T* LAB 
c} T( X Y < Y Z < 1\ }F LAC 

Example 1: AML Statements. 
AML programs are written in two sections, a dec1ara 

tive part and a computational part. AML is formally 
defined by its grammar in Appendix A. 

2.2 Arithmetic Building Blocks and Nets 

Avizienis and Tung14 have proposed an arithmetic 
micro-processor, the Arithmetic Building Element (ABE); 
it accepts two radix-16 digit operands and an operator 
and yields the result of the operation. The AMS build
ing block, which accepts two word length operands and 
an operator, is postulated on

1
the availability of the 

ABE implemented in LSI (Allen 5) with such projected 
characteristics as high execution speed and low cost. 
The decision, yet to me made, of which functions to 



implement on a building block, will be influenced both 
by the desire to provide as many important hardware 
primitives as possible in order to reduce compile time 
~nd execution time and by the costs and physical limi
tations of LSI implementation. Floating-point opera
tions, to be discussed later illustrate this trade-off. 

The concept of net is now introduced. A net is a 
connected collection of AMS building blocks where each 
output is either the input to other building blocks or 
is a final result (or both). The net generated by the 
statement a) of Example 1 is shown in Figure 1. Note 
that the operations to be performed by blocks 1 and 2 
or 3 and 4 are independent; this independence will 
allow parallel execution on the Array Machine. As will 
be explained later, a net may represent more than one 
statement or part of a statement. A net may also be 
assembled to perform an AML primitive which is not an 
AMS building block primitive. 

Figure 1. An AML Source Statement 

3" THE NET COMPILER 

The Net Compiler accepts an AML program and gener
ates control code directly executable by the Array ~1a
chine. The control code is a sequence of net defini
tions representing the total mapping of the AML program 
statements into ~ets, (illustrated in Section 2.2). 
Any inherent parallelism that exists wi~hin a postfix 
expression is preserved by the Net Comp1ler. For exam
p'Ie, in the net of Figure 1, the operations performed 
by blocks #1 and #2 are performed concurrently. Trans-
mission of a result from one block to the input of 
another block within the Array Machine is done via a 
"processor bus" system. If two blocks wish to send their 
respective outputs at the same time and if there is only 
one processor bus available, a conflict will arise. At 
present, the Net Compiler takes care of such situations 
by specifying that the broadcast of one of the inputs 
be delayed; as an alternative this conflict resolution 
could be implemented in hardware. Figure 2 shows a 
simplified diagram of net compilation. 

Net compilation involves three tasks, 1) syntax 
analysis, 2) semantic analysis, and 3) control code 
specification. 
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Figure 2. Program Flow in the Array Machine System 

3.1 Syntax Analysis 

The Net Compiler first records all variable dec1ar-/ 
ationsand then performs a·1exical analysis on each : 
element of the computational statements in the AML pro
gram. Each lexically correct statement is then checked 
syntactically to verify that it is a member of AML. 

3.2 Semantic Analysis 

Before semantic analysis is begun, an optimization 
preprocessor may be invoked to find those algebraically 
equivalent rewritings of arithmetic expressions which 
yield the best timings. These timings depend on the 
number of processor buses, on the number of building 
blocks, and on arithmetic operation times. The rules 
for generating these rewritings appear in Appendix B. 
The present version of the Net Compiler publishes the 
optimized rewritings but makes no actual sUbstitutions. 

The semantic analysis of a syntactically correct 
AMS program is performed in two steps, the static ana
lysis and the dynamic analysis. In the static part, 
AML statements are mapped into nets regardless of the 
actual number of available AMS building blocks in the 
Array Machine and regardless of net boundaries. In the 
dynamic part nets are arranged according to the number 
of building blocks and the natural net boundaries. The 
"natural" net boundaries are as follows: a labelled 
statement must start a new net a'nd hence forces the 
termination of the net from the preceding statement; a 
transfer statement must terminate a net; and an address 
dependency separates statements. An address dependency 
arises when a variable on the Left-Hand Side (LHS) of 
one statement appears as a subscript of a variable on 
the Right-Hand Side (RHS) of the next statement. This 
part of the Net Compiler also forms subnets if the net 
is oversized with respect to the number of available 
building blocks and it assigns the special standard 
nets for those AML primiti.ves not implemented in 
hardware. 

3.3 Control Code 

Once the nets are formed, the control code is 
assembled and written in the instruction word format. 
The Net Compiler must include appropriate "secondary 
tags" to allow "direct input operand updating." This 



need arises when one net will require a result from 
the preceding net as a consequence of either 1) a 
variable appearing on the LHS of a statement in the 
first net and the RHS of a statement in the second net 
or 2) the partitioning of a single statement. 

At execution time, rather that waiting for the 
variable to be updated in memory, the Array Machine 
(which will be described in the following section) will 
use the secondary tag at the beginning of the descrip
tion of the second net, to update the appropriate 
operand register directly. The Net Compiler also pre
pares temporary register tags for temporary results 
which must be saved for subsequent nets. 

The control code specifies all operands, operators 
and operation times and result destinations (via "pri
mary tags") for each block of each net. A second com
plete control code speCification is prepared by re
peating the dynamic semantic analysis for one less than 
the number of available AMS building blocks. This 
"fault tolerance" feature, along with a table of roll
back points, allows testing of reconfiguration and re
covery in the event of a single AMS building block 
failure. 

4. THE ARRAY MACHINE 

The Array Machine is designed to efficiently proc
ess the control code prepared by the Net Compiler. 
There are four main units in the machine: the instruc
tion memory 1M, the operand memory OM, the sequence and 
control unit SCU, and the array of building blocks ABB. 
The simplified machine block diagram is given in 
Figure 3. 
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Figure 3. The Array Machine System Block Diagram 

Control code execution requires three identical sets 
of internal registers; one set, the "primary registers;' 
is used by the ABS and the other two sets, the "secon
dary registers" and the "tertiary registers," are used 
by the SCU. The control code is initially loaded into 
the 1M and the operands and the rollback points table 
are stored in the OM prior to the beginning of execu
tion. The machine runs in logical "net cycles" which 
are of variable length. The normal mode of operation 
of the machine proceeds as follows: during a net 
cycle, two separate and independent sequences of oper
ations take place simultaneously; one net is executed 
from the primary registers by the ABB while the next 
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net is fetched by the SCU from the 1M and OM into the 
secondary registers and (in the case of a conditional 
transfer) into the set of tertiary registE!rs. The net 
cycle is complete when both the execution and the fetcl 
and decode operations are complete. At that time, the 
contents of the secondary (or tertiary) registers are 
passed to the primary registers and a new net cycle is 
started. When the sequence is broken by a normal trans 
fer or a transfer false (with a FALSE condition), the 
normal mode of operations (which is called the "overla~ 
mode") is modified (as described in Section 4.3). 
Functioning of the Array Machine will now be described 
in three parts, 1) the operand memory and the data bus 
system, 2) the instruction memory, and 3) the sequence 
and control unit. 

4.1 The Operand Memory and the Data Bus System 

The Array Machi ne has two independent memor'j es, thE 
operand memory OM and the instruction memory 1M, and i1 
is envisioned that they will have different organiza
tions. In addition to the obvious advantage of allow
ing independent and simultaneous requests to each 
memory, the choice of two different units was dictated 
by the following: 

i) The structure of the data stored in each systen 
is different. Operands are more or less 'Irandom1y" di~ 
tributed in the OM; access to these data from more thar 
one source may cause conflicts. Instruction wo'rds on 
the other hand are stored sequentially within a net; 
the 1M is i nter1 eaved and access to the 1M is p,erforme( 
one word per modu1 e at a time such that no cont'1 i ct car 
occur. Also, data are read out and written into the O~ 
but instruction words, once loaded into the 1M, are 
only fetched (there is no dynamic alteration of instru( 
tion words in the Array Machine). 

ii) The OM and the 1M are functionally different. 
Requests to the OM can ori9inate from a large number 01 
sources (all the registers) whereas requests to the 1M 
are from at most two independent sources (the two SCU 
decoding units). The OM is linked to the SCU via a bu~ 
system with an elaborate memory manager including both 
input and output queues. The control of the 1M is mucl 
Simpler. 

iii) Finally, measurements have shown that the rate 
at which instruction words are issued is a far more 
critical parameter for system eff'jciency than the aver, 
age speed of operand fetching. 

There are two distinct bus systems (shown in Figurl 
4) in the Array Machine, the processor bus system in 
the ABB for building block inter-conmunication and the 
data bus system for traffic of data between the OM and 
the SCU registers. Information on each bus system is 
tagged for sender-receiver identification. On the 
processor bus system, the tag contains the number of 
the sending building block and the data is received by 
any register whose tag field has been set (by an in
struction word) to that number. On the data bus systel 
the tag contains the receiving register number or add
ress. Bus traffic on the data bus system is managed b, 
the OM contro11 er. Requests are del ayed lr1hen there ar 
not enough bus lines available. 

4.2 The Instruction Memory and the Instruction Word 
Format 

The 1M contains the control code which is composed 
of a sequence of instruction words. Figu're 5 shows th 
format of an instruction word. It has four fields, th 
link field, the status field, the tag field, and the 
address field. Each field is used in some special 
sense by each type of i nstructi on word (cf. Fi ~Iure 2). 
After the fi rs t control word, one fi nds the se(:onda ry 
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tags which identify the secondary registers to be up
dated directly from the net currently executing. Note 
that they are fetched first before execution starts in 
the ABB to prevent any loss of data (since the ABB 
c~uld generate a resu~t needed for updating at any 
t1me). When the ABB 1S executing a net terminated by a 
conditional transfer, the SCU fetches and decodes two 
different,streams,of control code simultaneously from 
the 1M uS1ng two 1ndependent decoding units. The mem
ory handler enqueues and initiates memory access re
quests, fills the buffers when accesses are complete 
and performs various housekeeping functions. The 
buff~rs are,used in flip-flop; that is, a decoding unit 
and 1ts reg1sters work with the contents of one buffer 
while the other is being filled with the next instruc
tions in sequence. Experimentation has shown that it 
is convenient tO,set the buffer length, a machine para
meter, to a mult1ple of the 1M interleaving also a 
machine parameter. ' 

4.3 The Sequence and Control Unit 

The SCU fetches, decodes and sequences the flow of 
instruction words in a net in order to load the secon
dary or tertiary re~isters. In the overlap mode, th~ 
normal mode of machlne operation, the SCU fetches and 
decodes the next net in sequence while the current net 
is being executed by the ABB. The control code descrip
tion, although following a fixed pattern, contains a 
variable number of instruction words. There will al
ways be four control words but there mayor may not be 
secondary tags; the number of blocks is variable and 
each block definition may have from 3 to 9 words-(de
pending on subscripting); there mayor may not be re
~ults and primary tags .. For these reasons, sequencing 
~s complex but also strlctly sequential; pipelining for 
lnstance, would be difficult. A means to improve SCU 
operations will be suggested later. 

One of the most important problems in instruction 
decoding results from transfers. When a net terminates 
by an unconditional transfer, the SCU decodes a special 
instruction word which triggers a series of operations: 
~he buffers are emptied and an 1M request is made for 
1nstruction words at the branch location. A problem of 
variable integrity may arise if, in the target net 
there are variables that are updated by the net cu;rent
ly executing. This problem was solved for two nets in 
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s~quence with the set-up of secondary tags. Such a 
scheme is not possible here since there is no way to 
know beforehand the dynamic path of control leading 
from one net to another (there may be many transfers to 
the same target net for instance). The SCU solves this 
problem by holding up all OM requests made by the tar
get net until the net being executed has enqueued its 
write requests. If the transfer was a conditional 
branch then there are two possible target nets; the SCU 
then enters the "look-ahead" mode and the two indepen
dent decoding units fetch and decode the two possible 
target nets simu~taneously. In this case, when one or 
both of the posslble target nets are not the next net 
in sequence, the same problem of variable integrity 
arises and is solved the same way. As soon as the out
come of t~e conditi.on is generated by the ABB, the SCU 

decides WhlCh net wl11 continue to be fetched (in the 
event where fetching is not finished at that time) and 
consequently which net will be abandoned. Note that a 
branch means waiting for the correct instruction words 
to be delivered by the 1M and can cause delay. When
ever possible, the SCU will issue 1M requests in ad
vance (i.e. before the net cycle is complete) as soon 
as it knows the target 10cation(s). 

At the end of a net cycle, the SCU passes the con
te~ts of th~ secondary (or tertiary) registers to the 
pr1mary reglsters. Note here that due to the fact that 
in general nets are of different lengths it is un
avoidable that, at the end of each net cycle either 
the ABB will wait for the SCU to finish the fetching 
of the next net or the SCU will wait for the ABB to 
finish execution. In the current AMS the time required 
to fetch and decode a net is, on the average much 
longer than the time needed to execute that ~et. 
Therefore effort is being directed at making the SCU 
(in particular, buffer handling) more efficient. 

One ~ay to improve SCU processing speed would be to 
have a flxed pattern for net description (i.e. always 
rese~ve room for the maximum number of building blocks, 
conslder that all operands have two subscripts etc ..• ) 
and to have a fixed number of decoding units in the 
SCU that could fetch and decode several block defini
tions simultaneously. This invoives a space/time 
tradeoff that is being considered. 

5. THE SIMULATION AND THE EVALUATION OF THE ARRAY 
MACHINE SYSTEM 

The AMS, fncorporating the design ideas described 
in the prev~ous s~ctions, exists as a simulation pack
age. The slmu1at1on of a preliminary detailed design 
allowed the viability of the system to be verified and 
its performance to be measured, both as a function of 
different system parameters, architectures, memory 
systems, etc •••• It also helped to evaluate the AMS 
performance against that of the IBM S/360 Model 91. 

5.1 The Simulation and the Results of the Measurement 
Tests ' 

The simulation package consists of two distinct pro
grams, the Net Compiler Simulation Program (NCSP) and 
the Array Machine Simulation Program (AMSP). Both are 
written in PL/1 and run on the IBM 5/360 Model 91 of 
the UCLA Campus Computing Network Facility. An inter
act;~e CRT-display system available at this facility 
permlts the user to use both programs in an interactive 
facion and to view the results. Runs are submitted 
with data consisting of those programs, written in 
AML, to be executed by the AMS. Extensive 
information concerning step-by-step operations of the 
various units of the system as well as program results 
and general timing information from the AM5 are avail
able for each run. The timing results of an execution 



are detailed in three different categories: 1) fetch 
time, the number of machine cycles during which the 
SCU alone was operating (fetching), 2) exec time, the 
number of machine cycles durin9 which the ABB alone 
was operating (executing a net), and 3) overlap time, 
the number of machin~ cycles during which the machine 
is in true overlap mode, that is, when both the SCU 
and the ABB are operating. The total running time is 
the sum of these three times. Both the NCSP and the 
AMSP are parameterized allowing for different system 
configurations. The same source program may be sub
mitted with any number of lists of parameters. A 
parameter not specified in the list is given a default 
value by the NCSP. 

The source program used for the measurement is MLSQ, 
a program taken from IBM's Scientific Subroutine 
Package. MLSQ solves a system of linear equations 
and represents a fairly large computation. It was 
translated into the source language for execution on 
the Array Machine System and is in all points similar 
to the PL/1 version. The correctness of the simula
tion was checked by running MLSQ on the AMS and in 
PL/1 with the same data and check for identical re
sults. Among the many parameters tested in the simu
lation, the most important ones are: 

- DECODE, the rate of instruction decoding and 
sequencing in the SCU and CYCLE, the rate at which 
instructions are issued to the SCU by the 1M; these 
two important functional characteristics were taken 
as independent variables and were given a fixed set of 
values. 

- The main other parameters tested were the number 
of ways the OM is interleaved, the OM cycle time, the 
number of ports per OM module, the number of available 
building blocks, and the number of data buses. These 
parameters were set to a value representing a "test 
case" and a first run was performed with these values 
and ten representative combinations of values of 
DECODE and CYCLE. Then for these ten combinations, 
several tests were run where only one parameter was 
changed from the test case at a time to determine the 
influence of this parameter. 

Relative conclusions for each measurement were 
reached by considering two results: a) the total run
ning time in machine cycles and b) the ratio of fetch 
time to total time. Ideally, the total time should be 
composed primarily of over1 ap time; the other two (that 
is, fetch time and execute time) are mainly due 
to the difference in length between any two nets and 
they should be small. Actually the measurements 
showed that fetch time, although substantially reduced 
by many refinements in the design, remained very im
portant (about 65% of the total time). This consti
tutes the main result from the simulation; as fore
seen above (cf. Section 4.3 about the SCU) it takes 
on the average more time to decode the instructions 
specifying one building block operation than to exe
cute this operation. And in the present design the 
relative speed of the ABB which features parallel 
execution capabilities and the SCU performance are not 
yet matched. Standardizing the net description as 
suggested in the preceding section should improve SCU 
performance. 

An extensive discussion of the results of the simu
lation tests can be found in [17]; the other main re
sults are: 

a} DECODE and CYCLE are critical parameters which 
have an important effect on performance. As illus
trated by Figure 6, it is essential that they are 
matched, i.e., close to equality. The two curves are 
for two values of CYCLE. The topmost two curves re
present measurements where all other parameters were 
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set to their best values according to the simulation re
sults (i.e., yielding the best performance) .. The lower 
two curves are for the test case. It is clear that the 
best improvement in performance is around the knee of 
the curve, that is where CYCLE-1<DECODE<CYCLE+l. Higher 
values of DECODE do not bring any improvement {the 
curves level off rapidly}. 

~ 
;: 5250 

§ 5000 ---
--~------------

UECOuE . 

~----~------~------~------~----~. 

Figure 6. Timing Resul ts: of the AMS for Test Case and 
Best Set of Design Parameters 

b} The operand memory characteristics, number of 
modules and access time showed a strong effect on per
formance. This is not surprising since for most of the 
net cycles operand memory requests are delayed until 
the moment they are all released at the same timE!, and 
a large bandwidth is critical. However, the number of 
ports per module does not seem to affect the perfor
mance. 

c) For the number of building blocks, its upper 
limit is, as projected, equal to the largest possible 
net in the program. Simulation showed that regular 
programs exhibit a lar~e number of natural net boun
daries, therefore requiring a low maximum number of 
building blocks (typically, 10). Reducing this number 
degrades slightly the performance and significantly 
increases the ratio of fetch time to total time. 

d) As an independent project18 floating-point 
operations implemented in II software II with standard nets 
has been simulated in the Array Machine. The conclu
sion of this study states that execution time of these 
operations is significantly high and that it would be 
more advantageous to implement floating point opera
tions in hardware in the Building Blocks. However, 
it is clear that the idea of "standardized" nets might 
be useful for other more complicated functions. ()r 
operations like array operations. 

5.2 The Evaluation of the System 

In order to gain some insight into the viabi'lity 
of such a system, MLSQ was executed on both the Array 
Machine System (in the source language) and on the IBM 
S/360 Model 91 (in PL/l) and timing measurements were 
made during the execution phase of each. On the Model 
91 the execution time was found by recording the ma
chine clock before and after computation and then di
viding the total time into Model 91 basic machine cycle 
(60 nanoseconds). In the AMSP, all parameters were 
set to values reflecting the functional characteristics 
of the Model 91: 1) the OM and 1M were interleaved 16 
ways, 2) the memory cycle times were set to 13, :3} 
DECODE was set to 1 instruction per cycle and 4} all 
operation times were equalized, 1 cycle for' addition, 
3 for mult1p11cation, etc. 

Clearly, a scientific program such as MLSQ t1ends 
to favor the Array Machine because of the ~nherent 
parallelism in the computations; but parallelism is 
also exploited in the Model 91 which employs both an 



adder and a multiply/dive unit. The conclusions to be 
drawn from this comparison are merely indicative and 
in no way definite and abiding. Nevertheless, since, 
1) we tried to make the comparison as fair as possible, 
2) the result was that the Array Machine under the con
ditions specified above was 4 to 5 times faster than 
the IBM S/360 Model 91, 3) there are functional char
acteristics different from those of the Model 91 which 
are better suited to the Array Machine and, 4) a stan
dardized block definition is expected to save substan
tial fetch time, the results of this experiment provide 
an early indication that design of the AMS is a viable 
one and that it should be studied further. 

6. CONCLUSIONS 

An Array Machine System based on a processor whose 
central feature is an array of homogeneous building 
blocks (whose construction will be feasible in the near 
future) has been detailed and designed in a simulation 
package. Although a series of measurements on the sim
ulation indicated that the idea is feasible, particu
larly under certain conditions, it also showed that the 
system needs more work. Although the ABB represents a 
very powerful and fast resource, the SCU, the memory 
systems, and the Net Compiler must be carefully de
signed to efficiently exploit it. Space may have to be 
traded for time as in the standardization of the block 
definition. 

The question of just what an array machine should or 
should not be remains open. The ABB may be considered 
more like a special resource which is efficient under 
certain conditions, for example, in the execution of 
long statements, of special functions which require a 
large net or of array operations which by definition 
imply a high degree of concurrency. Array processing 
is to be implemented, but it is not yet clear that the 
ABB should perform index incrementation, transfer false 
with a simple condition statements with one operation, 
etc., i.e. operations which do not exploit the full 
capacity of the ABB. It is clear from its description 
that even implemented totally in hardware, net compi
lation is slow. Our current research envisions two or 
more mini-processors sharing a single ABB. Some of 
these dedicated processors would be net compilers witt
local storage. In this scheme, the 1M would become 
distributed in the system and the OM would be expanded 
into a hierarchy of storage devices shared by the Net 
Compiler and the ABB. Finally, the SCU would be ex
panded into a scheduler/supervisor to regulate the 
whole system, to keep the ABB busy, to supervise the 
memory transfers, etc. 

As the design evolves, hardware as well as software 
fault-tolerant tereniques, such as thosed used in the 
JPl-STAR computer and other fault-tolerant systems 
will be incorporated into the design. 

We have demonstrated the feasibility of direct exe
cution of a simple Hll on an array machine which takes 
advantage of inter~statement and intra-statement paral
lelism. Work is continuing to use the ABB more effi
ciently and to add more advanced features such as 
fault-tolerance, self-optimization, distributed proc
essing, and resource sharing to the original design. 
Such a computer system would be suitable for processing 
of any Hll that can be translated into the Array 
Machine Language with reasonable efficiency. 
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APPENDIX A 

Formal Definition of Source Language 

The source language is defined by G, the source 
language grammar, where G = (VN, VT, S, Pl. VN and VT 
are the non-terminal and terminal alphabets where VN = 
(S, Sa, Sz, St, A, 0, B, Q, J, c, t) and VT = (v, +, 
;, a, +, -, *, I, b, v, A, I, ..... , T, (, ), F, =, -I, <, 
>, ~,~). The production set P follows: 

Comment Productions P 

S + Sa' Sb' St 
Sa + v + A ; 

There are three statement types. 
Sa is an arithmetic assignment 

A + a 

0++, -, *, I 

B + B B Q 

B + B 
B + b 
Q + v, A, 6) 

St + J L ; 
J + T 
J + T(C}F 
C + C C Q 
C + C..., 
C + a a t 
t + =, -I, <, >, !>, ~ 

statement. 
A is a postfix arithmetic 

expression. 
"a" is an arithmetic operand 

(variable or literal), fixed
point or floating-point. 

There are four arithmetic 
operators. 

Sb is a Boolean assignment 
statement. 

B is a postfix Boolean 
expression. 

(NOT) is a monadic operator. 
"bl! is a Boolean operand. 
OR, AND, and EXCLUSIVE OR are 

logical operators. 
St ;s a transfer control. 
T is an unconditional transfer. 
This is a conditional transfer. 
C is a Boolean condition. 

~ is a comparison operator. 

APPENDIX B 

Optimization of Arithmetic Statements 

Source code optimization considers arithmetic 
assignment statements having 3 or more operators. 
Each of these statements is rewritten to give every 
possible combination of operator placements. Certain 
rewritings are then selected as being optimum with 
respect to the criteria defined in the section on net 
compiling. 

The rewritings are generated using identies 1 
throu9h 10 below: 

(l) C++ = + C + (6) C * * = * C * 
(2) C + - = - C - (7) C * I = I C I 
{3} C - + = - C + (8) C I * = * C I 
(4) C - - = - C + (9) C I I = I C * 
(5) a b + : b a + (10) a b * = b a * 

In (5) and (10) above, lIall and "b ll are well formed 
postfix expressions (e.g., C 0 -) As an example, 

A B - C - 0 - can be rewritten in the following ways: 
(a) ABC + - 0 - (c) ABC + 0 + -
(b) A B - C 0 + - (d) ABC 0 + + -

125 

Expression (~) above is also equivalent to A C B + 
- 0 - for example, but the operator placement is un
changed and the nets for these two rewritings arf~ 
identical (except for an operand interchange). Such 
a rewriting is not considered. 

In addition, a procedure is called which makes 
these substitutions. 

(l) A B * A C * + = B C + A * 
(2) A B * A C * - = B C - A * 
(3) A B I C B I + = A C + B I 
(4) A B I C B I - = A C - B I 
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Abstract: A processor is described which can achieve highly parallel execution of programs represented in data
flow form. The language implemented incorporates conditional and iteration mechanisms, and the processor is a step 
toward a practical data-flow processor for a Fortran-level data-flot-l language. The processor has a unique archi
tecture which avoids the problems of processor switching and memory/processor interconnecion tha.t usually limit the 
degree of realizable concurrent processing. The architecture offers an unusua.l solution to the problem of struc
turing and managing a two-level memory system. 

.Introduc tion 

Studies of concurrent operation within a computer sys
tem and of the representation of parallelism in a pro
grannning language have yielded a new form of program 
~epresentation, known as data flow. Execution of a 
data-flow program is data-driven; that is, each instruc
tion is enabled for execution just when each required 
operand has been supplied by the execution of a prede
cessor instruction. Data-flow representations for pro
grams have been described by Karp and Miller [8], Rod
riguez [11], Adams [1], Dennis and Fosseen (5), Bahrs 
[2], Kosinski [9, 10], and Dennis [4]. 

We have developed an attractive architecture for a pro
cessor that executes elementary data-flow programs [6, 
7]. The class of programs implemented by this processor 
eorresponds to the model of Karp and Miller [8). These 
data-flow programs are well suited to representing sig
nal processing computations such as waveform generation, 
Inodulation and filtering, in which a group of operations 
is to be performed once for each sample (in time) of the 
Bignals being processed. This elementary data-flow pro
cessor avoids the problems of processor switching and 
processor/memory interconnection present in attempts to 
adapt conventional Von Neuman type machines for parallel 
eomputation. Sections of the machine connnunicate by the 
transmission of fixed size information packets, and the 
machine is organized so that the sections can tolerate 
delays in packet transmission without compromising ef
fective utilization of the hardware. 

We wish to expand the capabilities of the data-flow 
architecture, with the ultimate goal of developing a 
general purpose processor using a generalized data-flow 
language such as described by Dennis [4), Kosinski [9, 
10] and Biihrs [2]. As an intermediate step, we have de
veloped a preliminary. design for a basic data-flow pro
cessor that executes programs expressed in a more power
ful language than the elementary machine, but still not 
achieving a generalized capability. The language of the 
basic machine is that described by Dennis and Fosseen 
(5), and includes constructs for expressing conditional 
a.nd iterative execution of program parts. 

In this paper we present solutions to the major probiems 
faced in the development of the basic machine. A 
straightforward solution to the incorporation of decis
ion cap&bilities in the machine is described. In addi
tion, the growth in program size and complexity with the 
addition of the decision capability requires utilization 
of a two-level memory system. A design is presented in 
which only active instructions are in the operational 
memory of the processor, and each instruction is brought 
to that memory only when necessary for program execution, 
and remains there only as long as it is being utilized. 

'\rhe work reported here was supported by the National 
Science Foundation under research grant GJ-34671. 
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The Elementar..Y. Processor 

The Elementary Processor is designed to utilize the ele
mentary data-flow language as its base language. A pro
gram in the elementary data-flow language is a directed 
graph in which the nodes are operators or links. These 
nodes are connected by arcs along which values (conveyed 
by tokens) may travel. An operator of the schema is 
enabled when tokens are present on all input arcs. The 
enabled operator may fire at any time, removing the to
kens on its input arcs, computing a value from the oper
ands associated with the input tokens, and associating 
that value with a result token placed on its output arc. 
A result m~ay be sent to more than one destination by 
means of a link which removes a token on its input arc 
and places tokens on its output arcs bearing copies of 
the input value. An operator or a link cannot fire un
less there is no token present on any output arc of that 
operator or link. 

An example of a program in the elementary data-flow lan
guage is shown in Figure 1. and represents the following 
simple computation: 

AI 

input a, b 
y := (a+b)/x 
x : = (a*(a+b) )+b 

output y, x 

y 

A4 

x 

Figure I. An elementary dota - flow program. 
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Figure 2. Organization of the elementary data -flow processor. 

The rectangular boxes in Figure 1 are operators, and each 
arithmetic operator in the above computation is reflected 
in a corresponding operator in the program. The small 
dots are links. The large dots represent tokens holding 
values for the initial configuration of the program. 

In the program of Figure 1, links LI and L2 are initially 
enabled. The firing of Ll makes copies of the value a 
available to operators Al and A3; firing L2 presents the 
value b to operators Al and A4. Once L1 and L2 have 
fired (in any order), operator Al is enabled since it 
will have a token on each of its input arcs. After Al 
has fired (completing the computation of a + b), link L3 
will become enabled. The firing of L3 will enable the 
concurrent firing of operators A2 and A3, and so on. 

The computations represented by an elementary program 
are performed :I.n a data-driven manner; the enabling of 
an operator is determined only by the arrival of values 
on all input links, and no separate control signals are 
utilized. Such a scheme prompted the design of a pro
cessor organized as in Figure 2. 

A data-flow schema to be executed is stored in the Mem
~ of the processor. The Memory is organized into 
Instruction Cells, each Cell corresponding to an opera
tor of the data-flow program. Each Instruction Cell 
(Figure 3) is composed of three registers. The first 
register holds an instruction (Figure 4) which speci
fies the operation to be performed and the addressees) 
of the register(s) to which the result of the operation 
is to be directed. The second and third registers hold 
the operands for use in execution of the instruction. 

When a Cell contains an instruction and the necessary op
erands, it is enabled and signals the Arbitration Network 
that it is ready to transmit its contents as an operation 
packet to an Operation Unit which can perform the desired 
funttion. The operation packet flows through the Arbi-

Instruction Cell 

register II Instruction +-
data 

register 

pocket --- I" operand =+- operotion 
pocket 

I "0;"" data 
pocket --- I. operand 2 - I • 

L 

Figure 3. Operation of on Instruction Cell. 
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Figure 5. Structure of the Arbitration Network. 

to 
Operation 
Units 

tration Network which directs it to an appropria.te Oper 
tion Unit by decoding the instrl,1ction porti.on of the pa 
et. 

The result of an operation leaves an OperAtion Unit as 
or more data packets, consisting of the c~nputed value 
the address of a register in the Memory to which the va 
is to be delivered. The Distribution Network accepts d 
packets from the Op~ratio.n Units and utiliZeS the addre 
of each to direct the data item through the network to 
correct register in the Memory. The Instruction Cell c 
taining that register may then be enabled if an instruc 
tion and all operands are present in the Cell. 

Many Instruction Cells may be enabled s imu I taneclUs ly , a 
it is the task of the Arbitration Network to efficientl 
deliver operation packets to Operation Units and. to que 
operation packets waiting for each Operation Unit. A 
structure for the Arbitration Network providing a path 
operation packets from each Instruction Cell to each Op 
eration Unit is presented in Figure 5. Each Arbitratic 
Unit passes packets arriving at its input ports one-at
time to its output port, using a round-robin disciplinE 
resolve any ambiguity about which packets should be ser: 
next. A Switch Unit assigns a packet at i.ts input to c 
of its output ports, according to some property of the 
packet, in this case the operation code. 

The Distribution Network is similarly organized using 
Switch Units to route data packets from the Operation 
Units to the Memory Registers specified by the destina
tion addresses. A few Arbitration Units are re'quired ~ 
data packets from different Operation Units can enter 1 
network simultaneously. 

Since the Arbitration Network has many input ports and 
only a few output ports, the rate of packet flow will b_ 
much greater at the output ports. Thus, EL seri.al rep
resentation of packets is appropriate at the input porl 
to minimize the number of connections to the Memory, b, 
a more parallel representation is required at the outp' 
ports so a high throughput may be achieved. Hence, 
serial-to-para11el conversion is performed in stages 
within the Arbitration Network. Similarly, para1lel-t' serial conversion of the value portion of each result 
packet occurs within the Distribution Network. 

The Operation Units of the processor are pipe lined in 

Figure 4. Instruction tormot. 



(0) data link (b) control link 

Figure 6. Links of the basic data-flow language. 

order to allow maximum throughput. The destination ad
dress(es) of an instruction are entered into identity 
pipelines of the Operation Units and are utilized to 
form data packets with the result when it appears. 

A more detailed explanation of the elementary processor 
and its operation is given in [6]. We have completed 
designs for all units of the elementary processor in the 
form of speed-independent interconnections of a small 
set of basic asynchronous module types. These designs 
are presented in [7]. 

The Basic ~-F10w Language 

Our success in the architecture of the elementary data
flow processor led us to consider applying the concepts 
to the architecture of machines for more complete data
flow languages. For the first step in generalization, 
we have chosen,a.class of data:-flpw pro"grams that corre
spond to a formal data-flow model studied by Dennis and 
Fosseen [5]. 

the representation of conditionals and iteration in 
data-flow form requires additional types of links and 
actors. The types of links and actors for the basic 
data-flow language are shown in Figures 6 and 7. 

~~ ¥ 
(0) operato'r ( b) decider 

~ cr 
(c)T-gate (d) F-gate 

r ¥ 
(e) merge (f) boolean operator 

Figure 7. Actors of the basic data-flow language. 

the value ~ at its control input. It will absorb the 
data token on its input arc and place nothing on its out
put arc if a false-valued control token is received. 
Similarly, the F-gate will pass its input data token to 
its output arc only on receipt of a false-valued token 
on the control input. Upon receipt of a true-valued to-
ken, it will absorb the data token. ---

Data values pass through data links in the manner pre
sented previously. The tokens transmitted by control 
links are known as control tokens, and each conveys a 
value of either ~ or false. A control token is gener- A merge actor has a true input, a false input, and a 
ated at a decider which, upon receiving values from its eontrol input. It passes to its output arc a data token 
input arcs, applies its associated predicate, and produces from the input arc corresponding to the value of the 
either a ~ or false control token at its output arc. control token received. Any tokens on the ot~er input 

are not affected. 
The control token produced at a decider can be combined 
with other control tokens by means of a Boolean operator 
(Figure 7f), allowing a decision to be built up from 
simpler decisions. 

Control tokens direct the flow of data tokens by means 
of T-gates, F-gates, or merge actors (Figure 7c, d, e). 
A T-gate passes the data token on its input arc to its 
output arc when it receives a control token conveying 

F 

Figure 8. Data- flow representation of the basic program. 

As with the elementary schemas, a link or actor is not 
enabled to fire unless there is no token on any of its 
cIIutput arcs. 

Using the actors and links of the basic data-flow lan
guage, conditionals and iteration can be easily repre
sented. In illustration, Figure 8 gives a basic data
flow program for the following computation: 

input y, x 
n := 0 
while y < x do 

y := y + x 
n := n + 1 
end 

output y, n 

The control input arcs of the tp,ree merge actors carry 
false-valued tokens in the initial configuration so the 
input values of x and y and the constant 0 are admitted 
as initial values for the iteration. Once these values 
have been received, the predicate y < x is tested. If 
it is true, the value of x and the new value for yare 
cycled back into the body ~f the iteration through the 
T-gates and two merge nodes. Concurrently, the remaining 
T-gate and merge node return an incremented value of the 
iteration count n. When the output of the decider is 
false, the current values of y and n are delivered 
through the two F-gates, and the initial configuration 
is restored. 

The Basic Data-Flow Processor 

Two problems must be faced in adapting the design of the 
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elementary data-flow processor for basic data-flow pro
grams. The first task is to expand the architecture of 
the elementary machine to incorporate decision capability 
by implementing deciders, gates and merges. A fairly 
straightforward solution to this problem will be pr-e
sented. 

However, in contrast to elementary data-flow programs, 
the nodes of a basic data-flow program 'do not fire 
equally often during execution. As computation pro
ceeds, different parts of the program become active or 
quiescent as iterations are initiated and completed, 
and as decisions lead to selection of alternate parts 
of a program for activation. Thus it would be wasteful 
to assign a Cell to each instruction for the duration of 
program execution. The basic data-flow processor must 
have a multi-level memory system such that only the ac
tive instructions of a program occupy the Instruction 
Cells of the processor. In the following sections we 
first show how decision capability may be realized by 
augmenting the elementary processor; then we show how an 
auxiliary memory system may be added so the Instruction 
Cells act as a cache for the most active instructions. 

Decision Capability 

The organization of a basic data-flow processor without 
the two-level memory is shown in Fig. 9. As in the ele
mentary processor, each Instruction Cell consists of 
three Registers and holds one instruction together with 
spaces for receiving its operands. Each instruction cor
responds to an operator, a decider, or a Boolean operator 
of a basic data-flow program. The gate and merge actors 
of the data-flow program are not represented by separate 
instructions; rather, the function of the gates is incor
porated into the instructions associated with operators 
and deciders in a manner that will be described shortly, 
and ~he function of the merge actors is implemented for 
free by the nature of the Distribution Network. 

Instructions that represent operators are interpreted by 
the Operation Units to yield data packets as in the ele
mentary processor. Instructions that represent deciders 
or Boolean operators are interpreted by the Decision 
Units to yield control packets having one of the two 
forms 

{gate, (address) } 

{value, {~~~:e}' (addreSS)} 

A gate-type control packet performs a gating function at 
the addressed operand register. A value-type control 
packet provides a Boolean operand value to an Instruction 
Cell that represents a Boolean operator. 

The six formats for the contents of Instruction Cells in 
the basic processor are given in Figure 10. The use of 
each Register is specified in its leftmost field: 

I instruction register 
D operand register for data values 
B operand register for Boolean values 

Only Regis~ers specified to be operand registers of con
sistent type may be addressed by instructions of a valid 
program. 

The remaining fields in the Instruction Cell formats are: 
an instruction code, op, pr or bo, that identifies the 
class and variation of the instruction in the Cell; from 
one to three destination addresses d1, d2, d3 that speci
fy target operand registers for the packets generated by 
instruction execution; in the case of deciders and Boolean 
operators, a result !!& tl, t2,t3 for each destination 
that specifies whether the control packet is of gate-type 
(tag = gate) or of value type (tag = value); and, for each 
operand register, a gating code gl, g2 and either a data 
receiver vl, v2 or a control receiver c1, c2. 
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Unlt!~ __ ~ 

Instruction 
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In struct ion / Cell n -I 

Figure 9, Organization of a basic data -flow processor 
without two -level memory. 

The gating codes permit representation of gate actors 
that control the reception of operand va1uEls by the op
erator or deci.der represented by the Instruction Cell. 
The meanings of the code values are as follows: 

meaning 

the associated operand is not gated. 

an operand value is accepted by arri
val of a true gate packet; dis(~arded 
by arrival of a false gate packet. 

an operand value is accepted by arri
val of a false gate packet; diu carded 
by arriva~a true gate pack.~t. 

the operand is a constant va1uf~. 

The structure of a data or control. receiver (Fig. 11) 
provides space to receive a data or Boolea.n value, and 
two flag fields in which the arrival of da,ta and contre 
packets is recorded. The gate flaa> is cha.nged from of:f 
to true or false by a true or false gate-t~pe control 
packet; the value flag is changed from off~ to 2.1G. by a 
data packet or value type control packet according to 
the type of receiver. 

(a) operators (b) deciders 

I op 
I 

dl I pr Itll dl 

D gl vi D gl vi 

D g2 v2 D g2 v2 

I dl I tl dl 
-- op r---' I-- pr 

1 d2 I t2 d2 

D 9 I J v I D 9 I I v I 

op - operation code } 
p r - pred icate code instruction codes 
b 0 - Boolean operation code 

dl,d2,d3 
t I , t 2 , t3 
9 I ,g 2 
v I , v 2 
c I , c 2 

destination addresses 
result tags 
gating codes 
data receivers 
control receivers 

(c) Boolean operators one 
control distribution 

~ bO tlm' 
B 9 I c I t;~ d 2 

B g2 c2 t:\ d3 

~J:@I bo 

1 t;~ d 2 

B gl c I t:1 d3 

Figure 10, Instruction Cell formats for the basic processor. 



Receiver: 

value (data or Boolean) 

value flog { Q.f..! 
~ 

{

off 
~--- gate flog true 

false 

no value received 
value received 

no gate - type control pocket received 
true gate -type control pocket received 
false gate-type control pocket received 

Figure II. Structure and states of receivers. 

Instruction Cell Operation 

The function of each Instruction Cell is to receive data 
and control packets, and, ~hen the Cell becomes enabled, 
to transmit an operation or decision packet through the 
Arbitration Network and reset the Instruction Cell to 
its initial status. An Instruction Cell becomes enabled 
just when all three of its registers are enabled. A reg
ister specified to act as an instruction register is al
ways enabled. Registers specified to act as operand reg
isters change state with the arrival of packets directed 
to them. The state transitions and enabling rules for 
data operand registers are defined in Fig. 12. 

In Fig. 12 the contents of an operand register are rep
resented as follows: 

D, no: (off,~) c:=J empty 

t t t t t 
D, true: (true, on) ~ * filled and enabled 

r L va~::,~ge) L ga'e flag 
receiver 

goting code 

register use indicator 

The asterisk indicates that the Register is enabled. 
Events denoting arrival of data and control packets 
are labelled thus: 

d data packet 
t ~ gate-type control packet 
f false gate-type control packet 

With this explanation of notation, the state changes and 
enabling rules given in Fig. 12 should be clear. Similar 
rules apply to the state changes and enabling of Boolean 
operand registers. Note that arrival of a gate-type con
trol packet that does not match the gattng code of the 
Register causes the associated data packet to be discar-

D,!!.Q: (off,.Q.f..!)c=J ~(off,.2!!)~ * 

Figure 12. State transition and enabling rules for 
data operand registers. 
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ded, and resets the Register to its starting condition. 

The operation packets sent to Operation Units and deci
sion £ackets sent to Decision Units consist of the en
tire contents of the Instruction Cell except for the 
gating codes and receiver status fields. Thus the pack
ets sent through the Arbitration Network have the fol
lowing formats: 

To the Operation Units: 

op, vI, v2, dl 
op, vI, dl, d2 

To the Decision Units: 

pr, vI, v2, tl, dl 
pr, vI, tl, dl, t2, d2 
bo, cl, c2, tl, dl, t2, d2, t3, d3 
bo, cl, tl, dl, t2, d2, t3, d3 

An initial configuration of Instruction Cells correspon
ding to the basic data-flow program of Fig. 8 is given 
in Fig. 13. For simplicity, Cells containing control 
distribution and data forwarding instructions are not 
shown. Instead, we have taken the liberty of writing 
any number of addresses in the destination fields of 
instructions. 

The initial values of x and yare placed in Registers 2 
and 5. Cells 1 and 2, containing these values, are 
then enabled and pr~sent to the Arbitration Network the 
operation packets 

{ident; ~' 11, l4} 

and 

{ ident i ;' 13, 20} 

These packets are directed to an identity Operation 
Unit which merely creates the desired data packets with 
the values of x and y and delivers the packets to the 
Distribution Network. 

Upon receipt by the Memory of the data packets directed 
to Registers 7 and 8, cell 3 will be enabled and will 
transmit its decision packet to a Decision Unit to per
form the less than function. The result of the decision 
will be returned through the Control Network as five con
trol packets. If the result is true, Cells 4, 5 and 6 
will be enabled and will send their contents through the 

ce II I 
r-----.. --.----------

00 I 
'-- [ident (8,11,14)] 

o I I 
~~--------------.------

02 D JlQ 

cell 2 

03 ~[ident (7,13,20)] 
04 I 

----------------~ 
05 D..!'!.2 y 

----------------~ 

06 

07 

08 

cell 3 

I less. gate (11,13,16,20,23) 

D !!..2. (- ) 

0 !!.Q (- ) 

cell 4 

09 I 
I-- [ident (8,11,14)] 

10 I 

I I 0 true (-) 

~~.----------------~ 

* 

* 

cell 5 

'2 rIp,", (7.' ~~;-o ) ~ 
13 D ~ (-) __ . ____ _ 

14 D ~ (-) 
'--'--._-

15 

16 

17 

18 

19 

20 

21 

22 

23 

cell 6 

I ~ 
D true 

D ~~ 

cel17 

print 

D cons 

D false 

cel18 

I ~. 

D cons 

D false 

( 16,23) 

0 

I 

( ) 

< format> 
_._----

(- ) 

( ) 

< format> 

(- ) 

Figure 13. Instruction Cell initialization for the basic 
data-flow program in Figure 8. 



Arbitration Network to Operation Units capable of per
forming the identity and addition operations. If the 
result of the decision is false, output cells 7 and 8 
will be enabled, and cells 4, 5 ,and 6 will have their 
gated operands deleted. 

Two-Level Memory Hierarchy 

The high level of parallel activity achievable in data
flow processors makes a unique form of memory hierarchy 
feasible: the Instruction Cells are arranged to act as 
a cache for the most active instructions of the data
flow program. Individual instructions are retrieved 
from auxiliary memory (the Instruction Memory) as they 
become required by the progress of computation, and in
structions are returned to the Instruction Memory when 
the Instruction Cells holding them are required for more 
active parts of the program. 

The organization of a basic data-flow processor with 
Instruction Memory is given in Fig. 14. 

Instruction Memory 

The Instruction Memory has a storage location for each 
possible register address of the basic processor. 
These storage locations are organized into groups of 
three locations identified by the address of the first 
location of the group. Each group can hold the contents 
of one Instruction Cell in the formats already given in 
Fig. 10. 

A memory command packet (a, ~} presented to the ~
mand port of the Instruction Memory, requests retrieval 
of an instruction packet (a, x} in which x is the Cell 
contents stored in the group of locations specified by 
address a. The instruction packet is delivered at the 
retrieve port of the Instruction Memory. 

An instruction packet (a, x} presented at the store port 
of the Instruction Memory requests storage of Cell con
tents x in the three-location group specified by address 
a. However, the·storage is not effective until a memory 
command packet (a., ~} is received by the Instruction 

operation packets 
-·-operatio~l,. __________ _ 

...------1 Units ~. 

dota 
packets 

Instruction 
packets 

command 

decision 
packets 

instruction 
packets 

retrieve store 1+-_______ ... 
~--------I Instruction 

Memory 

Figure 14. Orgonizotion of the basic data - flow processor 
with auxiliary memory. 

Memory at its command port, and any prior retrieval re
quest has been honored. Similarly, retrievnl requests 
are not honored until prior storage requestn for the 
group have taken effect. 

We envision that the Instruction Memory would be de
signed to handle large numbers of storage and retrieval 
fequests concurrently, much as the~input/output facilitij 
of contemporary computer systems operate under software 
control. 

Cell Block Operation 

For application of the cache principle to the basic data' 
flow processor, an Instruction Memory address is div~ded 
into a major address and a minor address, each conta~nini 
a number of bits of the address. One Cell Block of the 
processor is associated with each possible major address 
All instructions having the same major address are pro
cessed by the Instruction Cells of the corresponding Cel 
Block. Thus the Distribution and Control Networks use 
the major address to direct data packets, control packet 
and instruction packets to the appropriate lCell Block. 
The packets delivered to the Cell Block include the mino 
address, which is sufficient to determine how the packet 
should be treated by the Cell Block. 

Operation and decision packets leaving a Cell Block have 
exactly the same format as before. Instruction packets 
leaving a Cell Block have the form (m, x} where m is a 
minor address and x is the contents of an Instruction 
Cell. The major address of the Cell Block :ls appended 
to each instruction packet as it travels through the Ar
bitration Network. In the same way, memory command 
packets leave the Cell Block with just a minor address, 
which is augmented by the major address of the Cell Bloc' 
during its trip through the Memory Command Network. 

Fig. 15 shows the structure of a Cell Block. Each In
struction Cell is able to hold any instructlon whose ma
jor address is that of the Cell Block. Since many more 
instructions share a major address than there are Cells 
in a Cell Block, the Cell Block includes an Association 
Table which has an entry (m, i} for each Instruction 
Cell: m is the minor address of the instruction to which 
the Cell is assigned, and i is a Cell status indicator 
whose values have significance as follows: 

status value meaning 

engaged 

occupied 

the Cell is not assigned to any in
struction 

the Cell has been engaged for the in
struction having minor address m, by 
arrival of a data or control pac:ket 

the Cell is occupied by an instruction 
with minor address m 

1'he Stack element of a Cell Block holds an order:f.ng of 
the Instruction Cells as candidates for displacement of 
their contents by newly activated instructions. Only 
Cells in occupied status are candiates for displncement. 

Operation of a Cell Block can be specified by giving twc 
procedures -- one initiated by arrival of a data or con
trol packet at the Cell Block, and the other activa.ted 
by arrival of an instruction packet from the Instructior 
Memory. 

Procedure 1: Arrival of a data or control packet (n, yJ 
where n is a minor address and y is the pac1tet con
tent. 

step 1. Does the Association Table have an entry with 
minor address n1 If so, let p be the Cell corre
sponding to the entry, and go to step 5. OtherwisE 
continue with step 2. 

step 2. If the Association Table shows that no Instruc· 
tion Cell has status free, go to step 3. OtherwisE 
let p be a Cell with status free. Let: the Associa· 
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Fi~ure 15. Structure of a Cell Block. 

Arbitration 
Network 

instruction 
packets 

tion TaDle entry for p be (m, free); go to step 4. 

step 3. Use the Stack to choose a Cell p in occupied 
status for preemption; let the Association Table 
entry for p be (m, occupied}; transmit the con
tents z of Cell p as an instruction packet em, z} 
to the Instruction Memory via the Arbitration Net
work; transmit the memory connnand packet (m, ~} 
to the Instruction Memory through the Memory Com
mand Network. 

step 4. Make an entry (n, engaged} for Cell p in the 
Association Table; transmit the memory connnand 
packet (n, retr} to the Instruction Memory via the 
Memory Connnand Network. 

step 5. Update the operand register of Cell p having 
minor address n according to the content y of the 
data or control packet (the rules for updating are 
those given in Fig. 12). If Cell p is occupied 
the state change of the register must be consis
tent with the instruction code or the program is 
invalid. If Cell p is engaged, the changes must 
be consistent with the register status left by 
preceding packet arrivals. 

step 6. If Cell p is occupied and all three regis·ters 
are enabled (according to the rules of Fig. 12), 
the Cell p is enabled; transmit an operation or de
cision packet to the Operation Units or Decision 
Units through the Arbitration Network; leave Cell 
p in occupied status holding the same instruction 
with its opera~d registers reset (receivers empty 
with the gate and value flags set to off). Change 
the order of Cells in the Stack to make Cell p the 
last candidate for displacement. 

Procedure 2: Arrival of an instruction packet (n, x} 
with minor address n and content x. 

step 1. Let p be the Instruction Cell with entry 
(n, engaged} in the Association Table. 

step 2. The status of the operand registers of Cell p 
must be consistent with the content x of the in
struction packet, or the program is invalid. Up
date the contents of Cell p to incorporate the in
struction and ope'rand status information in the in
struction packet. 

step 3. Change the Association Table entry for Cell p 
from (n, engaged} to in, occupied). 

step' 4. If all registers of Cell p are enabled, then 
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Cell p is enabled: transmit an operation or deci
sion packet to the Operation Units or Decision 
Units through the Arbitration Network; leave Cell 
p in occupied status holding the same instruction 
with its operand registers reset. Change the order 
of Cells in the Stack to make Cell p the last can
didate for displacement. 

Conclusion 

The organization of a computer which allows the execu
tion of programs represented in data-flow form offers a 
very promising solution to the problem of achieving 
highly parallel computation. Thus far, the design of 
two processors, the elementary and the basic data-flow 
processors, has been investigated. The elementary pro
cessor is attractive for stream-oriented signal pro
cessing applications. The basic processor described here 
is a first step toward a highly parallel processor for 
numerica.1 algorithms expressed in a Fortran-like data
flow language. However, this goal requires further elab
oration of the data-flow architecture to encompass ar
rays, concurrent activation of procedures, and some means 
of exploiting the sort of parallelism present in vector 
operations. We are optimistic .that extensions of the 
architecture to provide these features can be devised, 
and we are hopeful that these concepts can be further 
extended to the design of computers for general-purpose 
computation based on more complete data-flow models such 
as presented by Dennis [4]. 
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REDUCTION LANGUAGES FOR REDUCTION MACHINES 
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~his paper describes a particular realization 
of a Lambda-Red language as a machine 
language. Parts of ~t res€mble the Lambda 
Ca lcu Ius or a transposed form 0 f it. A 
constructor syntax is employed such that a 
linearized preorder representation of the 
syntax tree is the information structure on 
which the machine operates. Instances of 
reduction rules are recognized by 
combinations of constructors and atoms. 
Reduction rules with 1, 2 and 3 constructors 
and/or atoms have been described. 

A recursive control structure forms the 
essential part of the implementation. There 
is a one to one correspondence between 
constructor syntax and control structure 
rather than a simulation of recursive 
structure by von Neumann type instruction 
sequencing. Thus the system is easily 
expandable by new constructors and atoms. 
Execution, ~:hat is the application of 
reduction rules, is subsumed unaer editing. 
Emphasis has been on the following praqmat~c 
concepts: locality of action, directness, and 
secur1ty. There are no error messages t errors 
appear as irreducible expressions. Tnere is 
no "RUN" instruction, J.nstead the number of 
reductions to be performed is specified. 
Whatever happens it is restricted to 
subexpressions. The user has the security 
that all his actions are limited ana 
predictable. 

The machine language resembles a higher level 
orogramming language, but' it is 
hvariable-free": expr@ssions are named, not 
boxes which contain expressions. There seems 
to be a concept of late binding. However, 
this is not made a matter of principle; but a 
matter of degree. Between a qeneral statement 
of a problem and the result are many 
intermeaiate representations - all in the 
same language - corresponding to various 
degrees of oinding parameters. The user has 
complete freedom in the choice of variable 
names. There is a specially developped 
protection system whiCh avoids confusion of 
variables. 

The efficiency of the system is limited ~y 
the rate characters can be processed which 1S 
essentially determined by the control store 
cycletime. Measurements w~ll be performed as 
soon as a simulation of the system is 
available. Three other important subjects~ 
namely arithmetic, the definition or 
constants, and source sink input-output will 
be reported later. 

programming has become the outstanding 
problem in computing. While technology has 
provided ever cheaper and faster hardware 
the methodology to construct software is just 
emerging. Current hardware and software may 
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be major obstacles towards a solut on of the 
programming prob~em. However, here are 
several programm~ng languages hich are 
attractive because of their simpl city and 
expressive power: LISP1, TRAC2, and GPM3. 
Recently John Backus has added to this list 
his RED-Ianguaqes. "RED" stands for reduction 
and de~otes a special type of execution and 
evaluatlon. 

The above mentioned programming lanquages 
have a common denominator which seems-to be 
th~ reason for their attractiveness, namely, 
they are "substitutive". The concepts on 
which conventional hardware - and programming 
languages, too - are built contrad~ct the 
concept substitution. Thus, implementations 
of substitutive systems on conventional 
hardware are bound to be inefficient. 

It is the purpose of this paper to show 

1 ) 

2) 

3) 

that it is possible to design hardware 
which is suitable for substitution 
systems, 
that substitution is an important 
concept the implementation of which 
deserves further investigation and 
that the issue of higher level language 
machir.e architecture arises from the 
apparent inability of conventional 
hardware to support substitution 
economically. 

The following is an opiniated discussion of 
fundamental problem areas which are believed 
to be the cause of the difficulties in 
programming. 

1) Long Bange Effects 

Writing a program generates a net of causes 
and effects which is not easily derivable 
from the visible representation of that 
program making it diff~cult to comprehend it. 
The effect caused by an instructJ.on is long 
range: any part of the system may be 
involved. 

2) Indirect Access 

Operands and operators are seldom directly 
connected. Operands are rather referenced£ or 
called by names and addresses. fhis 
s~paration permits t~e abstraction of 
programs ftom part~cular data. The 
construction of an algorithm therefore 
necessitates the construction of data access 
paths, algorithms to manipulate themL and 
algor~thms to manage storage space. ~hese 
latter tasks often overwhelm the construction 
of the algorithm itself. 



3) central Control 

The c0r-tro+ structure of a machine is that 
part WhlCh lmplements the next-state function 
of the system. This concept is based on the 
notl0n that a "pre:sent" state is defined at 
all. Thus, large systems with a central 
cor.trol resemble more a simulation than a 
"llfe" system. The many parts of such a 
sy~tem, are, merely en?cted by a single agent 
wnlch lS malnly occupled with finoinq out 
what the "present" state of the system is. 

4) Addressibility 

As a consequence 
there is a need to 
stor~ addresses. 
larger and faster 
limlted address 
hardware it is 
addressibi Ii ty. 

of points 1), 2) and 3) 
generate, compute, and 

Techn9logy will provide 
memorles. Because of the 
length of conventional 

a problem to provide 

5) Machine Indenpendent Languages. 

This notion is a misconception. EXperience 
has shown t~at suc~ a machine independence 
cannot be achleved malnly because of details 
and exceptions~ I~ machine independence a 
reasonable obJectlve at all? A program 
consists of "instructions" directed to 
somethlng real. To hid~ the real machine from 
the user may cause lnsecurity about what 
really happens. 

We first formulate our attempts of solving 
the ,problems in rather general terms. 
Exper1ence shows that theories employing 
short-range interactions have more success in 
explaining reality and are easier understood 
than long-range theories. The following ideas 
about ,a c9mputing system seem therefore 
promlslr-g wltn respect to the problems listed 
1n sectlon 2: 

Control is distributed to many parts 
yooperating over, well defined local 
1nterfaces. These ex+st, only to neighbour 
parts. The restrlct10ns and boundary 
conditions which result from a realization of 
the system are an essential and determining 
factot'o ,There are no unexplicable and opaque 
restrlct1ons. 

programs and data are cohesive structures. 
They are modified and changed only locally. 
S~bstitution is al~ay~ literal and not 
slmulated. The system 1S 1nteractive: program 
and data may be lnspected and may be changed 
and modified at the discretion of the user. 
He will not,be able to initialize changes he 
cannot predlct or cannot oversee. There will 
be no aodresses or variables. 

J. Backus~5 has described a class of 
languages which seem to be prime candidates 
for out considerations. We oisregard for the 
moment any particular realization of a 
reduction language. A reduction language 
L = (Er~,M) consists of a set E of 
expr~sslons, a,set C of expressions, and a 
partlal functlon M from E onto C such that c 
lS the set of fixed points of M. A simple 
example of a reduction language is the 
language of arithmetic expresslon without 
varlables: 

M«3+4)*7) = 49 

Considering relizations we first have to 
explain M 1n terms of smaller steps. 

A complete realization CR = (E,C,T) I is a 
reductlon languaqe, where T 1S a total 
fgDction from E into E, and C is the set of 
fflxed points of T, the transition function. 
I Me = c then there is an integer n such 
that T~e = c. With respect to our example we 
may wr1te 
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T «3+-4) *7) = (7*7) 

T (7*7) = 49 

Reduction languages cons~itute a shift of 
emphasis: the meaning lS no longer in the 
states of an automaton taken on while 
reacting on,input signales, the meaning is in 
the exrress10ns and only tnere. But, lf T is 
enacted by an automaton, this automaton will 
go through ~ sequence of ~t?tes starting at 
and retgrnlng. to an 1~lt1al state. Durinq 
that perIod e IS not deflned. -

This should be contrasted with conventional 
instruction execution: to find out the 
meaning of one instruction execution the 
~tate of the whole system has to be 
1nspected. 

Jo~n Back~s5 lists six interrelated informal 
aXIom wh~ch seem nec~ssary and sufficient to 
characterlze a,reductlon language. property 
(5) needs speclal attention: 

(5) The extended Church-Rosser property. 

(a) Every +erminating seguenc~ of reductions 
9f an ~xpression yields tne same meaning for 
1 t, and 
(b) if an expression has a meani ng, then 
every sequence of reductions on it 
termlnates. (Prope~ty (b) is restricted to 
~elected sequences In the usual form of the 
Church-Rosser Theorem., 

If anything equivalent to recursion, which 
c?nnot be relinquished, is implemented there 
wlll always ~xtst non-terminating reAuction 
sequences, WhICh a blind deterministic 
enactor Qf the transition function cannot 
detect. WIthout an enactor no expression does 
anyth1ng. So, we only need a human observer 
who always can force ter.mination by switching 
off the enactor or setting a time limit. The 
adva~tage of ,a red9ct1on system becomes 
partlcularly eVldent In this context. The 
result after each reduction-step is an 
expression a, which "means" something to the 
observ~r. H~ can usually decide if further 
reductlons w~ll terminate or not. 

We have to distinguish further between 
"reduction" and "evaluation". On first sight 
these concept see~ to denote the same thing. 
However~ evaluat10n has the connotation that 
each ana eve~ything has a value. This is 
another pragmat~c point supporting the case 
for a reductl0~ system: it returns a 
"constant.',' expresslon c rather than an error 
messag~ lf It cannot ap~ly reduction rules 
and does not try to deciae lf this c is th~ 
result the user expected or the consequence 
of an ,error c9mmitted bI the user. The 
expt'e~s10n C WIll be se f-explanatory and 
~xn1bIt why further reductions are 
1 mposs:L b le. 

2 __ 2Yn!~!_Qf_§_E~gQ£!iQn_n~£hin~_1sng~sg~ 
We talk about a "machine languaae" although 
there is nothing like a conventional machine 
language in a reduction machine. Instead, 
there are character strings which are 
transformed if certain characters or 
cha~acter combinations occur in these 
strJ.ngs. 

In particular, we employ a constructor sy~tax 
CS = (A,K) to define the set of expresslons 
E. CS is a constructor syntax if 

CS 1) 

CS2) 

CS 3) 

There is a subset AcE the elements of 
which are called atoms. 

There is a set K of constructors k 
which ?re functions from a subset Sk 
of En lnto E (n=?:O). 

For every expression eEE, either eEA 
or there 1S a unique k€K and unique 
e1, ••. ,enEE such that 
k[e1, ••. ,en] = e. 

These axioms regulate the construction of 
elements of the set E. 



To be more specific, we only allow two-place 
(and one-place) constructors. So far a 
particular encoaing or representation for 
constructor functions has not yet been given. 
We choose a direct, explic1t one. Let 
k e1 e2 = e with juxta position as the 9nly 
syntactic tool. The set of expres~10ns 
becomes therefore the set .of 11near 
reprRsentations of binary trees 1n preorder 
form 6 • 

It is our intention to implement a Lambda-Red 
language, that is, a language which resembles 
the lamoda calculus? Lambda-Red languages 
are closed applicative languages. A reduction 
language L = (EfC,M) . w1tl;l a. constructor 
syntax 5 = (A,K) 1S app11cat1ve lff: 

AL1) AcC 

AL2) 

AL3) 

There is a two-place constructor ap(K 
such that for all e,f(E: 

M ap e f = M ap Me Mf 

For all other constructors: 

M kef = k Me Mf 

Using these three axioms we may reduce an 
expression e to a constant where the 
constructor ap occurs only with constant 
expressions: ap c d. The applicative language 
is closed iff there is a function 

RE [ C -[ C - E]] 

such that: 
CAL1) R is total over C 

CAL2) 

CAL3) 

For every cEC, RcE[e -E] is total over 
C. 

For all c,dEe: 

M ap c d = M ap Rc d 

The function R is called representation 
function. . A major Dart of. a hardware 
1mplementat10nwoula conslst of an 
imple~entation of this representation 
functlon R. 

The function R will be undefined for many 
elements of C numbers for example •. The 
machine will take care of thege cases 1n a 
manner consistent with the reduction concept. 
This means the machine will not stop with an 
incomplete reduction of the ap, on the 
contrary the machine will continue with other 
reductions aft~r restoring .the ~p ~ith its 
components. Th1S has pragmat1c slgn1f1cance 
as a direct in-place error indication. 

Generally~ only atomic elements of C will be 
associatea to meaningful mappings C - E. In 
Lambda-Red languages, however, we have lambda 
expressions wflicfl are "applied" to arguments 
bI substituting the argument at deslgnated 
p aces of the lambda expresslons. 

2~1_~.\!'£§1i1£1iQll 

Lambda-Red languages resemble the lambda 
calculus and inherit all its problems caused 
by the introduction of variables. 

We introduce a new class V of atoms called 
variables, and a constructor lambda 
represented by the character \. Variables are 
reQresented by strings of letters externally 
ana their encodings lnternally. Variables are 
constants thus if v E V: Mv = v. This is in 
sharp con~rast to conventional programming 
languages where variables are internally 
represented by a more or less compllcatea 
network of references to memory cells. 

A lambda expression \ v e may be a component 
of an application 

ap \ v e f 

The reduction of this expression corresponds 
to the beta-conversion rule of the lambda 
calculus: f is substituted into e for free 
occurrences of v. 
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We have found by experimenting that it is 
convenient to have several ap-type 
constructors. Firstly, every constructor has 
a transposed form such that 

apt f \ v e 

is an instance of beta-conversion and 

M apt f \ v e = M ap \ v e f 

The use of transposed constructors may 
improve the readability of expressions. 

The other differences of the ap-type 
constructors may be explained with reference 
to axiom AL2: 

Map e f = M ap Me Mf 

This form of the axiom applies if e is not a 
lambda expression, since e has to be redu~ed 
to a constant Defore the representatlQn 
function F can be employed~ If, however w e lS 
a lamb9a expression,. yarl0~s sequ~nges .of 
reduct10ns are posslble Slnce Substltutlon 
does not requirp constant compo~ents. The 
variety of ap-constructors arises lf not both 
of their components are reduced to constants 
before .sub~t1tution. Let g be a lambda 
expressl0n In: 

AL2L) M 
M 
M 

g f 
9 f 
g f 

M R2 1\19 f 
M R2 R1g Mf 
M R2 R1 Mg f. 

The function R1 prepares the lambda 
expression for ~ubstitution w~ile the 
two-parameter functl0n R2 performs 1t. 

It is not necessary to introduce a fo~rth 
constructor for the case where. the f+rst 
component is not a lambda express10n, Slnee 
the machine is designed to detect this. So we 
have if e does not start with a \ constructor 

AL2E) M e f M Me f 
M e f = M Me Mf 
M 6 e f = M 6 Me f 

The constructor. corresponds to th~ usual.ap 
while the constructors - and ~ Y18ld stlll 
other cases. The same statements hold for the 
group of transposed ap:constructors, Wh1Ch 
are ., :, and v, respect1vely. 

The contextual dependencies of constructors 
are rich enough to model all typical higher 
level language constructs. ~oreover, the 
combinational properttes 9f the constr~ctors 
are paralleled by comb1natlonal propert1es of 
the machine co~pon,nts related to the~e 
constructors. Th1S Y1elds a very economlC 
design for a rather rich structure. 

So far we did not mention the problems with 
free and bound variables .in ~ubstituton 
procedures. Our Solutlon 8 , WhlCh dlffers from 
all known ones, is not only effective but 
also effici~nt, because a substit~tion may ~e 
executed wlthout any preparatl0ns. ~rhlS 
method protects poss1ble free occurrences of 
variables by a constructor .lambda-b~r trom 
beinq bouna erroneously whl1e subst1tut2ng. 
The lambda-bar constructor is represented by 
the character I. The user will find Iv where 
he might have expected valone. A lambda-bar 
expression can only appear as a component of 
a lambda expression with the same variable. 
The lambda-bar will automatically disappear 
if this lambda expression is applied to ·some 
argument. 

We may now return to chapter 5. 

There is also a constructor • corresponding 
to the DOT-operator of LISPl which serves to 
compose data structures. 

A few other constructors are implemented for 
special purposes. The constructors # and -
play the role of escape characters to den9te 
numbers, the constructor t 1S a speclal 
binding constructor and is dealt with later. 

Expressions are linear representations of 
binary trees in preorder form~ C9nstructors 
correSpond to nOdes, atoms to l~aves, and 
subtrees to subexpressions. Constructors may 
be in a predecpssor - left successor or 
predecessor - right successor relationship 
with respect to the tree structure. All 



combinations are allowed with the following 
two exceptions: 
1) A binding constructor (\ t) may only ha ve 
variables as left-successor. 
2) A number constructor may only have number 
parts as successors. 

primitive Atoms. The system is equipped 
with-a-se~-o!-primi~ive, one· character atoms 
(leaves). Sing19 letters serve as variables 
and may appear as leaves everywhere. The 
digits 0 to 9 are treated as ~nteg~rs and 
comprise the only numbers without the number 
constructors. If single digits appear in 
oQerator position, namely as that component 
of an application constructor which is 
subjected to the representation function, 
they are interpreted as constant functions 
which yield themselves if applied to 
arbitrary arguments. 

Truthvalues are represented by single 
characters. They act ih operator positions of 
the constructors (. ,: ,+-, .. ) as constant 
functions, 2n operator position of the 
constructors {6~V) ( however as selectors in 
the conditional aeV2ce. 

We have the NIL atom represented by the right 
bracket 1 which acts as the identity funct20n 
in operafor position. 

Members of the set of number-related 
operators and logical connectives are treated 
as constants if they appear in operand 
posit~on. In operator pos1tion however, the 
representation function is involed according 
to their usual meaning. 

There are three decomposition operators 
( 0 ~ c) which delete the constructor, the 
left ?ubtree, or the right sub~ree, 
respect~vely. 

Com£ound Atoms. Variables are formed by a 
seguence---oI---I~tters terminated by any 
non-letter. (The set of non-letters contains 
the blank). compound numbers start with the 
constructor #. Arithmetic will be handled as 
in the programming language TRACZ. 

Ex£ressions. We are now in a position to 
form-ar~Itfif'-binary tree structures from 
constructors as nodes and primitiv.e and 
compound atoms as leaves. The machine accepts 
the preorder linear representation of such 
tree structures. The machine will reject any 
character strinq which is not a binary tree 
or can be augmented by the machine to such 
binary tree using NIL atoms. 

Q __ Q§§_Q!_1h§_li~g~£1iQn_~~£Ei]§ 
B€fore we outline a possible implementation 
of the proposed reduction machine we will 
exhibit the representation of familiar higher 
level language constructs. We believe the 
propose~ realization represents a rat~er 
close f~t to the common usage of programm~ng 
languages, such that the user does not really 
have to learn a new language.. Although the 
rules are more stringent, we believe tnat a 
programm written in the proposed realization 
of a reduction language is more transparent 
and comprehendable, too. 

Infix EXEressions. The input of the 
machrne~-iccepfs--ru1Iv - parenthesized inf~x 
expressl0ns. The pr1ntout appears also 1n 
th1s form. The internal representation, 
however, is a binary tree with two 
constructors correspond~ng to the left and 
right parenthesis ana the two terms and the 
operator as leaves. 

external 
internal 

(e + f) 
( ,) e + f 
• ': e + f 

The parenthesis ( ) and constructors • , 
respectively, arB made synonyms for the 
reduction processor. The prlntout processor( 
however, uses them to restore the externa~ 
representation. The examplify~ng 'plus sign 
may be replaced by any expr~ss10n. 
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The Polish prefix notation for arithmetic 
expression - which should not be confused 
with the preorder linear representation for 
program structures - has the following 
representat20n: 

• • + e f 

We are already in a position to implement the 
loqical connectives without resorting to 
actual hardware. The concepts of constant and 
identity function are suff1cient if we let 
the. prJ.mitive con~tants (1\ v T.L) Illay their 
var10US roles ~n operator and operand 
positions. In Figure 6.1 we have exh1bited 
the evaluation of (A B) employing four 
reduction rules. corresponding reduction 
rules for the OR function are M: .J: v = J and 
M: T v = T. The transposed forms of all these 
reduction rules are provided, too. 

Conditional. The constructor ~ indicates 
a comple~e---reduction of the operator 
component before the reduction process 
continues. This property allows us to 
construct a conditional 

f g 
f g 

f 
g 

In general a predicate expression, that is an 
expression WhlCh reduces to a truth value, 
will be constructed as operator of the 
constructors (6 V). The truth value acts then 
as selector. Finally, the reduction of f or g 
takes place. The conditional can be used 
correspondingly to model either the 
condit20nal expression or the conditional 
statement of conventional programming 
languages. 

Lists. The constructor. corresponds to 
the DOT-orerator • c and • ~ correspond to 
CAR (head and CDR (tail), respectively. To 
facilitate listprocessing, the characters.-, 
(, and , are made synonyms for the reduct20n 
processor such that a tree structure like 

• e - f - g • h ) 
may be typed in and printed out as 

[ e, f, g, h 

The reason for encoding the NIL-atom by a 
closinq bracket is now Qbvious. The 12st 
elements may be any permlssible expressions 
including lists represented in this way. 

Call by value. The constructors. and: 
corresp,ona -~o--a call by value since the 
operana is first reduced, then inserted, and 
flnally the function is reduced. 

Call by name. Similarly, the constructors 
- ana--~- perIorm call by name, since the 
operand is first insertea, and then the 
function is reduced. 

It should be noted, however, that because of 
the lack of any side-effects whatsoever the 
result will be in either case the same, only 
the number of reductions might differ. 

Functions. Functions will be constant 
expressIons--in general. Several parameters 
are simply l~sted with a lambda constructor 
each. 

\v1\v2 -- \vn f v1, ••• ,vn € V 

Arguments follow in the same sequence as the 
paramet6r.variabl~s, the corresponding ap's, 
however, 1n oppos~te direction: 

apn -- ap2 ap1 \v1\v2 -- \vn f e1 -- en 

The constructors ap1, ••• ,apr. may be selected 
from th~ set (. - 6). Constructor ap1 and 2ts 
components are the first to be reduced, 
because it is the only one which has a lambda 
expression as operator component. 

After all ap's have been reduced f has been 
changed such that all parameter variables are 
replaced by actual parameters. The reduction 



of this expression results in a constant 
expression, that is, the value return~d by 
the function. 

Infix expressions are a special case of the 
application of two parameter functions. 
Constructors may be mixed with their 
transposed versions such that the same f 

(e1 f e2) •• f e1 e2 

may be used in either context. 

Since we do not have box-like variables in 
the reduction machine, it is not possible to 
fill a box the name of which has been 
transmitted to an expression by reducing this 
expression. However, the ap constructors 
offer a large variety 1n sequencing 
reductions. One sequencing method resembles 
procedural language. 

PROCEDURAL Reduction. Assignment 
stat~i~Eti----ar---~aEiiEtIanal programming 
languages fill a box. The effect of this 
act10n extends up to the next filling. A 
reduction machine resembles this process by 
reducing one expression and subst1tuting the 
result in an other expresseion. The 
constructor: allows as to wr1te this down as 
an expression g 

g = e1 \ v 1 
e2 \\ v2 
93 v3 

f en \ vn 

This clearly r~sembles a sequence 
assignment statements. The expression 
however, is not a GOTO ! 

of 
f, 

The sequence of reductions is top-down 
because of the constructor:. The reductions 
affect only expression g. The results of the 
computations in g are e1ther availablE as a 
mod1fied f which may be a subexpression of 
another expresslon. Or, the expression f may 
be a funct10n call. Using the constructor • a 
function call has a pattern like 

v e4 e5 e6 

The reduction of g would then change f to a 
constant expression with results de~osited in 
the arguments of the function call f. 

The transposed form of this call 

f == : e6 : e5 : e4 11 

yields ~ pragmatically better pattern for q: 
there 18 a computat10n part, a memory part, 
and a connec~or part. 

Further reductions become possible if a 
fu~ction gets substituted for v 

: e6 : e5 : e4 \ v4 \ v5 \ v6 e 

The memory part keeps e4, e5, e6 queued up 
for transmission to e. 

To construct something which resembles a 
block or procedure we b1nd the connector v 
which gets the appropriate variable name END. 
The block can be 1nserted in a sequence of 
"assignment" reductions: 

e7 \ v7 "asSi~nment" 
reduc.ion 

\ END equivalent to £~gi~ 
e1 \ vl 

J 
computation part 

en \ vn 
e6 
e5 memory part 
64 

END connector 
v4 1 v5 argument for block 
v6 
e8 \ v8 
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The sequencing properties of th~ constructor 
6 effects the compl~te reduction of the 
computation and memory part before the block 
is atPlied to the argument (surrounding 
block following the END variable. Note that 
the 0 ject in the reduction language which 
resembles a block. must have in ~xplicit 
interface for its output. 

Recursion and Iteration. These constructs 
can --De---eIIec~ea---Dy--using the binding 
constructor t, which is similar to the Lambda 
constructor \. There is a reduction rule 
associated with this constructor 

t v e = - \ vet v e 

which reproduces an expression within itself. 
This is sufficient to construct recursion and 
iteration. 

1 __ I~~1§~§n1~1iQn_~Y_~§I£~§I~ 

A reduction language machine may be realized 
in various different ways. In our first 
attempt we will choose the conventional 
separation of an active component operating 
on"information stored in a memory component. 
In a next step one would try to combine these 
two components in one. The reduction concept 
seems particularly suited for a "processing 
in memory". But, for the time bei ng 
app~opriate hardware concepts are no{ 
avallable. 

Th~ expressions in the foregoing sections are 
linear representations of binary trees. ~e 
store expres~ions as character strings 1n 
memory components which operate as stacks, 
that lS, they act on push and pop signals and 
do not need addresses as input. An attempt 10 

to directly represent trees was discarded. 

We need an active component which scans 
expressions to find instances of reduction 
rules. It is not appropriate to perform this 
scan like an instruction counter scans an 
instruction stream, because the expressions 
are structured in subexpressions. The scan 
has to work forward and backward. An economic 
solution consists of generating in a stack 
called A the transpose of an expression in a 
stack called E. 

E k e1 e2 
A 

before 

E 
A k' e2' el' 

after 

The transpose of an atomic Expressions is 
usually the atom itself. Compound atoms may 
require special rules. The correspondencE to 
a conventl0nal von Neumann control structure 
is as follows: the constructors and atoms are 
the op-eration-codes, the expressions are the 
operanns. There lS a major difference 
however. The control structure to be designe~ 
effects the transpose of an expression. This 
is asked for twice within this control 
structure. This cannot be transformed into a 
loop structure. The control structure is 
therefore fitted with a system stack called 
MU which serves to hold return points. The 
system stack has the sam~ hardware properties 
as the other stacks 1n the system and is 
potentially infinite, too. We cannot tolerate 
a bound on the depth of expressions. 

We will give a description of the control 
structure in the form of flowdiagrams. 

Figure 7.1 shows the flow diagram for the 
transpose algori~hm EA. Only one branch of 
each type is exhibited. 

The basic pattern of control flow shows a 
character popped by stack E and "sorted" into 
its proper branch. This will be abbreviated 
by a horizontal line and solid triangles 
denoting the exit down for the annotated 
character. Pushing something into a stack is 
indicated by a solid triangle pointing 
upward. Stack markers are usually not 
annotated to the corresponding triangles. The 
correspondence is established by geometry. 
The particular choice of stack marlers is a 
matter of the next lower design level. 

The following concepts have proven useful in 
this context: A yes-exit consumates the 
tested character, there is no need to store 
the character, conveyed information is now in 



the locus of control in the diagram. Once 
something is pushed into a stack, the control 
structure loses information and control is 
directed to a neutral point. 

There is also a transpose algorithm AE. 
Execution of algorithm AE after algorithm EA 
restores all stacks to the original state. 

The basic hardware to realize these 
algorithms consists of a processor component 
P and three memory components acting as 
stracks E A and MU. Figure 7.2 shows a state 
chart of {he processor component. There is 
one control store which translates stack 
marker encodings into control words. These 
control words contain in this simple basic 
model either a trans~osed constructor to be 
6~s~P~ta~~t~ar~~~c~0 b~ngU~h~~g~~fot~t~gk MM6 
and a signal to pop E. The other control 
store translates expression char~cters. Its 
control words contain either atoms to be 
pushed into stack A and a signal to pop MU 
or a stack marker to be pusbed into stact MU 
and a signal to pop stack E. One-character 
atoms get simpl! moved from stack E to A 
compound atoms wi 1 have special start an~ 
stop symbols around them. The transpose 
processor component may be realized as 
separate component interfacing with memory 
compon~nts, or as special state of the 
reductlon processor. 

We have seen in the preceding sections that 
an instance of a reduction rule can be 
characterized by constructor combinations 
with constructors or atoms. Although an 
expression is undefined while being 
transposed, its components are displayed 
during that process in the stacks E, A and MU 
in a way WhlCh is convenient for recognizing 
instances of reduction rules. We have 
represented in Figure 7.3 an arbitrary 
expression in a mixed form. Some parts of the 
expression are given as subexpressions e1 to 
e7, some parts as tree structure where we 
have to visualize the nodes as constructors. 
It also represents the state of the 
expression while being transposed. Stack A 
contains top-down the transposed 
subexpressions e4, e3, e2, e1, stack E 
contalns top-down the expressions eSt 96, 97. 
Stack MU, however contains stacK markers 
instead of constructors. The stack markers 
contain also the information of being left
or right-successor. The position shown 
corresponds to the point * in Figure 7.1. 
Being at that position encodes the 
constructor k, WhlCh is not explicitly 
represented otherwise. Thus the expression is 
completely represented by the contents of 
stacks and the position of control. By 
inspecting the top elements ot the stacks, we 
may determine the left- and rlghtsuccessor of 
k and its predecessor, from which we also 
learn whet~er k is a leftsuccessor or 
riqhtsucc~ssor. Instances of reduction rules 
ar~ singled out in this manner while 
transposing an expression. 

Execution of a r8duction rule means a 
rearrangement of the top ends of the stacks. 
For example, the top element of stack MU is a 
marker indicating the left-successor of some 
constructor k2. The expression below k2 is 
now 

k2 k e4 e5 e6 

If we replace the marker by the corresponding 
on~ ir.dicating the right-successor of k2, the 
expression below k2 has been changed to 

k2 e4 k e5 e6 

~nother simple case is the identity function. 
Let the atom 1 be deleted from stack E and 
the locus of control in the correspondinq 
branch of the control structure. Now we test 
the top element of MU for a leftsuccessor 
marker of the constructor •• This stack 
marker is automatically deleted if the test 
result is yes. We can see from Figure 7.3 
that the resulting tree structure now 
contains e5 instead of . ] e5. 

Generally, one or more auxiliary stacks might 
be necessary to execute more complicated 
reductions. A subset of the lam~da and 
ap-type constructors is exhibited in Figure 
7.4. The only complicated operation is the 
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transposition R1EB( which replaces free 
occurrences of a des1gnated variable in an 
expression by a special one-character marker. 
The control flow brings into stack A the 
reduced or unreduced argument expression. The 
operation R2ABE is a simple transposition 
from B to E, except that the source is 
switched to A 1f the special one-character 
marker mentioned above appears in B. Actually 
BE is identical to R2ABE, since the special 
marker. appears only in this context. The 
recurSlon constructor t uses R1EB and R2ABE 
with the only difference that the recursion 
constructor together with its two components 
has been copied and transposed by EA to stack 
A. The copying process effects the 
duplication necessary for recursion. 

The examples demonstrate the tasic design 
methods for a reduction machine. New 
reduction rules can be added easily as long 
as there are enough codes for distinct stack 
markers available. 

~ __ lni~IE£iiY§_~Q~EQ!~ng 
The most interesting property of a reduction 
language in the context of interactive 
computlng is the return to the set E of 
expressions after each elementary reduction 
step. There is nothing to learn beyond the 
construction of elements of set F and the 
red~ction rules. Bditing is essentially 
deslqned to walk the tree represented by the 
input. Any editing operation can be applied 
to any subtree, including the order to 
perform reductions. Any finite number of 
reductions may be specifled for a subtree. 
This solution insures that the machine always 
terminates at well defined points. 

AftnQ~lggg§:.!!!§:n! 

I am indebted to C.A. Petri who made this 
work .. possible. by creating favorable 
condl tlons. Speclal thanks go to Mrs. E. 
Pless for preparing the paper on the BITS 
text edl tor. 
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Abstract 

With the dramatic reduction in cost of central 
processors in recent years, the peripheral devices oc
cupy an ever larger share in terms of cost of a mini
computer system. Sharing the expensive components 
among users is a time honored way of increasing utili
zation and hence reducing the cost of unit operation. 
This paper presents the results,of a simulation of 
sharing an output device, such as the printer, by more 
than one processor under different workload conditions. 

1. Introduction 

With the coming of age of LSI technology, the cost 
of central processors and main memories has been reduced 
dramatically in recent years. Today in a typical mini
computer system the peripheral devices might represent 
up to 70-80% of the total cost of the system, the pro
cessor and the memory only 20-30%. This is the reverse 
of the cost distribution of computer systems with com
parable computational power just a decade or so ago. 
With the advent of microprocessors, it is expected that 
this cost distribution will be even more lopsided. Un
der the circumstances, it is meaningful to reexamine 
the way the resources are used and develop new modes of 
operation to reduce unit operation cost. 

Ever since the development of the first electronic 
computer, the trend in the industry has been to build 
larger and more powerful central processors. These pro
cessors, being very expensive, have to be kept produc
tive all the time in order to justify their existence 
economically. Thus, large and complicated operating 
systems are built; multiprogramming and time sharing 
modes of operation are developed. Most are designed 
and used to maximize the utilization of ,the central 
processors. Now, with the center of gravity of cost 
moved towards the peripherals, it seems reasonable to 
use some of these methods to maximize the utilization 
of the more expensive peripheral devices. Recentpubli
cations [1, 2] indicate that people working with mini
computer systems are also gradually turning theiratten
tion to this problem. 

There is a wide variety of applications of mini com
puters, and the utilization of peripheral devices depend 
heavily on the particular applications. However, it is 
observed that there are many cases, especially in the 
university and research environment, where theutiliza
tion of some of the peripheral devices is rather low. 
It is also noted that among the peripherals, storage 
devices, such as disks and drums, have been used as 
shared devices for more than one processor with success, 
although the main purpose of such systems is to enable 
users to share the information on the device rather than 
sharing the device itself. The sharing of input devices 
such as card readers and paper tape readers is quite 
straightforward. The addition of a manually operated 
switch is sufficient to connect the device to different 
processors. For these reasons, we will concentrate our 
discussion in the paper to the output devices. moreover 
since in most minicomputer systems today the single most 
expensive component is probably the line printer, we 
will use the line printer as a specific example in our 

study. Although the following discussion will mention 
the line printers only, it is equally relavant to other 
output devices (e.g., plotters, punches, etc.) withmin
or modifications of certain parameters. 

In the following paragraphs, we present an analysis 
of various printer sharing schemes. Using computer 
simulation the performance characteristics of e~lch shar
ing method under different workloads is determined and 
its relative cost-effectiveness deduced. 

2. Basic Sharing Methods 

Since the local environment and the areas of appli 
cation are different from computer system to computer 
system, one method of sharing might look perfectly rea
sonable in one case but entirely out of the que:3tion if 
another. We will analyse a few methods that are more 
general in nature, excluding those needing human inter
vention. However, before we discuss the individual 
methods, a few comments about the operation of the line 
printer is necessary. Unlike processor time sharing, 
it is unreasonable to switch the printer from one job 
to another at arbitrary time intervals • W,e considered 
the case of switching the printer from one job to anothe 
at the end of printing a page, but abandon,ed the idea 
because of the confusion it would cause in sorting out 
the different programs and the manual labor and time 
involved. If the paper can be separated illunediately 
after a page is printed and the page can ble deposited 
to different hoppers under program control, i.e., the 
paper transport works essentially like that of the card 
reader/punch, then this mode of printer-sharing may be 
viable. However, we do not know whether it is mechani ~ 
cally feasible or how costly it would be to ~!Uild it. 
So we have to consider the output of a complete program 
as a unit and the printer can be switched from one pro
cessor to another only between such output units. 

1) Direct connection - The printer will communi
cate directly with the processor whose output it is 
printing. There are two variations of this casl~. 

a. Without buffer - This is the simplest ease in 
which a number of processors are connected to the prin
ter via an electronic switch. The first processor that 
requires service will seize the printer and the printer 
will not be accessible to other processors until it is 
released by the first one. We can use a first-in first
out queue with some priority scheme to resolve conflict 
of simulataneous request/;! , or more simply a round robin 
polling scheme can be built in haldware into the elec
tronic switch. 

This is, of course, not a very sophisticated method 
The cost of implementing it, however, is also low·. 
Especially in the case of the round robin polling scheme 
A modulo counter driven by a clock can be used to scan 
the processors in turn for print requests. As soon as 
a request is detected, the counter will stop increment
ing and the printer will be connected to ttle processor 
asking for service. 

b. With buffer - For those systems, in which every 
processor has a mass storage device attache~d on line, a 
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buffer for the print output can be used to increase 
the performance. In this case, the processors will not 
ask for printer service until a job is completed and 
they do not have to stop and wait if the printer is 
busy when they request for service. A flag will be set 
and when the printer is free, it will recognize the 
flag and interrupt the processor to perform the print
ing. Alternatively it can be designed such that the 
processor can attempt to seize the printer only at the 
end of a job. If after the first job, the processor 
is unsuccessful in its attempt to seize the printer, 
it will wait until the completion of its second job 
before it tries again to ask for service. If it seizes 
the printer, it will then have output of both jobs 
printed before it releases the printer again. This 
method is similar to the spooling system [3] although 
in spooling the problem is mainly to maximize the uti -
l:ization of a processor which might be driving several 
printers, while in our case here the job is tomaximize 
the utilization of the printer by having it shared 
among several independent processors. 

The cost of implementing this scheme is much high
er than the previous one if mass storage devices have 
to be installed just for this purpose. However, if 
each of the processors already has a disk attached, 
it will probably not be too difficult to find the buf
fer space there. If the processor already has a tape 
cassette system installed and has room for expansion 
the cost of adding a drive is still relatively low as 
compared to the cost of a line printer. In addition 
to the hardware cost, one also has to include the:soft
ware overhead of storing the output to the mass storage 
and later on fetching it out again for printing. 

2) Single control - The printer will be under the 
control of a single processor. The print outputs of 
all the other processors will be communicated to the 
controlling processor which will store them in a mass 
storage and print them out later following some prior
ity schedule. If the processors are sharing a mass 
storage device at the same time and each has direct 
access to the mass storage, then the only thing the 
controlling processor needs to do is to examine some 
flags that have been previously set by the other pro
cessors indicating a job in the buffer is waiting to 
be printed. If the controlling processor has sole 
control of the mass storage device as well, then each 
processor must have a communication link with the con
trolling processor built-in. In the extreme case when 
the controlling processor spends most of its time con
trolling the printing process, it may be more cost
effective if a dedicated processor (perhaps amicropro
cessor) is used just for that purpose. This method 
resembles the direct coupled system DCS [4,5] and the 
attached support processor system ASP) [6]. 

3. Simulation And Analysis of the Results 

A software simulator has been built to study the 
behavior of the various ways of printer-sharing under 
different workloads. For this study, the workload is 
characterized by the time a job may spend in printing 
activities on the one hand and all other non-printing 
processing on the other. For every different workload, 
an eight-hour da¥ is simulated for a particular system 
configuration. More specifically the followingassump
tions are made for the simulation: 

1) The model is empty at the beginning of thesimula
tion of every eight hour work day. 

2) Interarrival times of jobs to the processor are 
made to follow a Poisson distribution with a mean inter
arrival, time slightly smaller than the ~otal throughput 
time such that the system will be sligntIy overloaded. 
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3) Service times for the processor, the printer and 
data transfer to and from buffers follow exponential 
distributions with the following mean service times: 

~_ has been set to vary from .2 to 5 

where 

~pr for each configuration. 

when applicable. 

~pr~ mean printer service time 

l-bf=U1ean data transfer time to or from a buffer 

~pc.=mean time for all non printing processing 

The time when the processor is waiting for the service 
of the printer and the printer idle time is recorded. 

The result of the simulation is shown in Figures 
1-5. Figures 1-3 show the cases when one printer is 
shared by 2 to 4 processors. In Figures 4 and 5 we 
show the more general processors. In all the graphs, 
the accumulated processor waiting time and printer idle 
time expressed as a fraction of the total available 
time are plotted against the ratio 

Now 

r 
_~EC 

We call this ratio, , the 
~pr 

let 

then 

Let 

then 

workload ratio. 

Tt the total processor time 
available for the system 
during a work period 

T The accumulated processor w waiting time during the 
same period 

T the accumulated overhead 
0 

T -T -T 
P = two 

T 
t 

is a measure of performance of the 
system. 

C 
s 

C 

the total cost of the printer
sharing system with n processors 

the total cost of a system with 
n processors, each connected to 
a printer of its own. 

C
I Ic is a measure of cost 

s advantage of the printer 
sharing system. 

The cost-effectiveness E of the printer-sharing 
system can be expressed as 

T -T -T CI E = P. C = (t w 0) •. c 
Tt s 

The cost of the various components in a computer 
system is difficult to assess. According to a recent 
survey [7] the price of a minicomputer configured for 
the end user with 16 k byte of main memory ranges from 
just under $5000 to almost $20000. The cost of the 
printers varies even more widely [8]. However, it is 
expected that the cost of processors will come down by 
15% a year in the next five years [7] while the cost 
of printers will decline at a much slower rate. It 
seems reasonable to consider the ratio of the cost of 
the componEmts 



C C Cd Ct 
: C = 

pr pc i 

1 0.5 0.5 0.1 0.1 

where C Cost of printer pr 

C := Cost of Central processor pc 

Cd Cost of disk 

Ct Cost of tape cassette drive 

Ci = Cost of interface 

The cost of n processors each connecting to a 
printer will be 

n.C + nC = 1.5n pr pc 

For direct connection without buffer 

C nC + C = 1 + 0.5n s pc pr 

buffer 

C 
s 

C 
s 

For direct connection with tape cassette as 

1 + O.7n 

For single control 

1.5 -I- O.6n 

From these we can calculate the cost effectiveness 
of each case. for example, with the workload ratio 
1,3 we have in Figure 6 E versus n for different 
methods of printer sharing. 

4. Conclusion 

We have presented the result of the simulation of 
processors sharing printer(s) under different workload 
conditions and using different sharing methods. We 
used the result of our simulation to deduce the cost
effectiveness of each configuration and found that in 
most of the cases printer sharing will provide the 
users some advantages. To a large extent, the study 
confirms our intuitive idea of the system behavior. 
The simulation gives us the concrete evidence and the 
quantitative basis to decide whether and how we could 
share an output device such as the printer. If the 
cost of processors and mass storage devices actually 
comes down much more rapidly than that of the periph
eral devices as it is generally predicted today, we 
believe output devices sharing by users of small co~ 
puters will be a common practice in the future. 
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Abstract 

This paper presents a method for correlating per
formance measures of small computers to design para
meters. An experiment is described in which execution 
times and memory space requirements are gathered for 
three small benchmark kernels when run on fifteen 
small computers. The benchmarks are drawn from three 
different application areas. All of them exercise 
only the CPU ++ memory area of the machines, and I/O 
operations are not involved. 

Using standard regression analysis techniques, 
this data is then used to calculate coefficients in 
empirical equations which relate the performance mea
sures, time and space, to easily quantifiable design 
parameters of the machines. 

1. Introduction 

The minicomputer designer, or user, continuously 
tries to answer the following question: For a given 
application area, which minicomputer design is the 
most appropriate from among some set whose members 
appear superficially to be about equally applicable? 
In this paper, we will describe the use of quantita
tive statistical techniques in determining the rela
tive importance of various design parameters in the 
CPU ++ memory area of minicomputers. The results are 
potentially useful as an aid in objective selection 
procedures; and, more fundamentally, as an indication 
of a rationale for design decisions. There appears to 
be no lack of new minicomputer designs. But it seems 
that there has not been enough effort in the area of 
quantitative comparative analysis that shows the 
effect of design alternatives on system operation. 

The use of statistical techniques for quantita
tive computer architecture evaluation has nYr)been 
very common. The book edited by Freiberger is a 
collection of papers from a 1971 conference that did 
have statistical computer performance evaluation as 
its theme. On the other hand, many articles, (2)-(8), 
have dealt with a variety of techniques that have gen
erally resulted in qualitative performance evaluations 
that are based on variables ranging from buyer confid
ence in the manufacturer through detailed subsystem 
and interconnection properties of a computing system. 
A recurring technique in this latter group is the use 
of well chosen benchmark programs, either actual or 
synthetic, that purport to characterize an existing 
or intended workload for a computer system. If the 
benchmarks are truly representative of the workload, 
they can be a practical tool for system evaluation 
from two standpoints; first, they are more accurate 
than the use of simplified analytic system models 
which might be used for performance prediction, and 
second, they are less expensive than reasonably de
tailed simulations of the actual systems under 
consideration. 

Since most computer systems, even those based on 
minicomputers, are quite complex structures, it is 
not at all clear that there is a best way to evaluate 
performance. A compounding factor is the intended 
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use of the performance results. The three main rea
sons for doing a performance study are: (a) to aid 
manufacturers in making design decisions in a new 
system, (b) to aid buyers in selecting a system from a 
number of alternatives, and (c) to facilitate improve
ments to an existing system. 

The purpose of this paper is to investigate the 
feasibility of applying statistical regression analy
sis techniques to the objective determination of emp
irical relationships between performance measures and 
structurally determined variables that are normally 
considered as design parameters. Thus we are continu
ing the theme of the articles in (1). The study was 
performed over a range of fifteen computers, most of 
which are classified as minicomputers, but including 
some micro-computers and some medium-sized machines. 
Our results are potentially useful in indicating 
trends that might be significant in areas (a) and (b) 
mentioned above. 

The remainder of the paper is organized into four 
sections. In section 2, the experimental method is 
specified and the data gathering technique is explain
ed. Section 3 discusses the computer design factors 
that are felt to be the dominant ones in determining 
performance. They are used as the independent vari
ables in the construction of empirical equations by 
regression techniques which give a best fit to the 
observed values of execution time and core space re
quired. This section also includes a discussion of 
the limitations of the technique as well as its value 
in indicating the quantitative effect of various 
design changes on performance. 

2. ~xperimental Method and Data Gathering 

In performing regression analysis, two problems 
need to be considered. First, a measure for the per
formance of a given machine in a given application 
area should be obtained. Second, it is required to 
develop a quanti tati ve representation for the various 
design parameters. 

A survey of available evaluation methods is given 
in referenee (4). For the purposes of this study, the 
kernel approach was adopted as the main evaluation 
scheme. A kernel is taken to mean a structurally 
identifiable subset of a benchmark program, chosen 
such that it accounts for most of the execution time 
of the benchmark. The adoption of the kernel tech
nique is based on the following considerations. 

1. It is reqUired to evaluate the basic process
or hardware architecture rather than the 
overall performance of a computer system. 

2. Most minicomputer applications involve a ded
icated processor programmed directly using 
assembly language. Therefore, compilers, 
operating systems and multi-programming con
s:i.derations have only limited relevance to 
the results. 

It is important to note, however, that the use of 
kernels for evaluation limits the validity of the 



results to compute-bound applications. If it is re
quired to include I/O or any other system considera
tions, the more general benchmark program approach can 
be used. Assuming that performance parameters have 
been obtained by one of these methods, the regression 
analysis described in the next section can be applied. 

Memory requirement and execution time, rather 
than throughput, are often the relevant parameters in 
evaluating minicomputer performance. Therefore, total 
memory requirement in bits and execution time measured 
in memory cycles are used in this study as the perfor
mance parameters. 

The problem of obtaining quantitative representa
tions for machine design parameters will be presented 
in the next section. In the remainder of this section, 
the benchmark kernels used in this study and the per
formance data gathered will be described. 

Three small synthetic benchmarks from different 
areas of computing were formulated. The flow-charts 
for the complete benchmarks were constructed without 
any particular machine in mind. Even though these 
flow-charts were reasonably detailed, there was enough 
flexibility at the coding phase to exploit the partic
ular strengths of the instruction set and CPU facili
ties of a given machine. None of the benchmarks in
volved input/output operations. The benchmarks were 
actually run on only one machine. This aided the ver
ification of the logical correctness and completeness 
of the flow-charted algorithms and also permitted the 
extraction of appropriate kernels. These kernels were 
programmed at the machine level by a single programmer 
(the first author) on fifteen different machines, 
mainly minicomputers. Because of the small size and 
easy understandability of the kernels, execution times 
and memory space requirements were relatively easy to 
compute for these kernels from their code on all of 
the fifteen machines. Memory space was recorded in 
bits and execution time was recorded in number of 
memory cycle times. The latter parameter allows a 
concentration on machine design features, and the 
actual speeds of the various technologies used in the 
machines have no effect on the results. 

Brief descriptions of the full benchmarks and 
kernels extracted are as follows: 

Benchmark No. 1 - High Precision Arithmetic 

The wordlength of the machines ranged from 8 to 
24 bits. As an indication of their ability to handle 
high precision arithmetic, the first benchmark per
forms 48-bit integer division by a standard technique. 
The flowchart for the main routine is shown in Figure 
1. 

It was found from an analysiS of this benchmark 
that over 90% of the execution time was spent in the 
three subroutines MOLAD, MULSB, and SHFTM. These 
routines thus constituted the kernel for benchmark 
no. 1. We will not give any detailed explanation of 
the full benchmark or the kernel. The inclusion of 
Figure I is meant to give an indication of the size 
and level of complexity of the types of kernels used 
in this study. Similar sizes and complexities apply 
to the following two benchmarks. 

Benchmark No. 2 - Character Manipulation 

The crucial problem in character manipulation 
applications is to use storage effectively, and at the 
same time facilitate fast processing. For example, in 
a machine where the smallest addressable data unit is 
16 bits, two bytes or characters must be packed per 
data unit if good storage efficiency is to be main
tained. However, this will impede the accessing of a 
single character. In the case of small computers, 
memory space is quite often limited, while execution 
times are not so critical. It was therefore decided 
that on all machines, maximum core packing of charac
ter strings would be used in this benchmark. 
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The actual processing problem that constituted 
this benchmark was the construction of a file of rec
ords to be printed. This print file was extracted 
from certain fields of a base file. A format list 
specified which fields to be selected. Linear search
ing of both the format list and the base file were in
volved in the process of constructing the print file. 
A structurally identifiable set of routines that ac
counted for about 65% of the execution time was declar
ed as the kernel of this benchmark. This set was main
ly concerned with string and substring accessing meth
ods, and format list searching. Other standard char
acter string operations were also included. 

Benchmark No. 3 - List Processing 

This benchmark exercises the abi li ty of the mach
ines to handle scattered data items. The particular 
algorithm that determined the benchmark was binary 
tree insertion and balancing. An 80% execution time 
kernel was identified and used on all machines. 

3. Selection and Quantification of Machine Parameters 

There is a great deal of judgement needed in 
specifying a complete enough set of suitable machine 
design parameters for purposes of characterizing per
formance. There are some obvious choices. Wordlength 
will clearly affect execution time performance on 
benchmark no. 1, and byte addressability should be a 
defini te asset in benchmark no. 2. Beyond a fe\~ ob
servations such as these, it is difficult to be confi
dent about the real value of the more secondary design 
parameters, in terms of having consistent and signifi
cant effects on performance values. Quantifiable par
ameters such as number of general registers, address 
bits per memory operand reference, etc., should be 
included. 

The following is a brief summary of the independ
ent variables used in this study and their quantitativE 
representation. 
1. Memory wordlength: This is defined as the maximum 

number of bits per memory probe. This normally 
corresponds to the instruction length of thc~ 
machine. 

2. Minimum number of bytes per memory probe: This 
identifies whether or not the machine has byte 
addressabili ty. 

3. Add time: Because of variation of add time with 
addressing modes, etc., it is defined to be the 
execution time, in memory cycles, of the add in
struction with one operand in a processor rl~gister, 
and the other operand in a directly addressable 
memory location. Note that the add time as define, 
here is representative of basic machine operations 
such as (i) fetch from memory to a register, or 
(ii) any operation involving a CPU held ope:rand, 
the arithmetic unit, and a directly addressable 
operand in memory, where the result is retained in 
the CPU. 

4. Register Strength: This is defined as the total 
number of registers which can be used for a':cUITRl
lator or pseudo-accumulator functions. Note that, 
to simplify the definition, no attempt: was made to 
use a weighting scheme for different register func
tions, or to include such things as index regis
ters. It is felt that such capabiliti.es should be 
reflected in the strength of the instruction set. 

5. Addressing Capability: Some of the parameters 
that can be used to represent the addressing capa
bility of a machine are given below. 
a) Number of bits in direct address field. 
b) Maximum address reach per memory cycle of in

struction fetching (measured in number of 
address bits). 

c) Maximum address reach per instruction word. 
d) Number of address modification bits per 



instruction. 
In the study reported here, machine performance 
is correlated with parameters (c) and (d) defined 
above. 

6. Instruction Set Strength: Two parameters based 
on numerical scoring methods have been used: 
a) Arithmetic capability: One point is given 

for each of the following instructions: Add, 
Subtract, Multiply and Divide. 

b) Logical Capability: Scores are assigned as 
follows: 

o points: no logical capability 

1 point: AND, conditional skip, and un
conditional jump instructions 

2 points: AND, OR and simple conditional 
branch instructions 

3 points: All of the above plus Exclusive 
OR and complete conditional 
branch instructions 

4 points: All of the above plus bit test 
and bit manipulation instruc
tions 

The above definitions of arithmetic and logical 
capabilities are basically those given in refer
ence (6). 

Note that in the above choices an attempt has 
be,en made to keep the design parameters reasonably 
independent. The soundness of any particular choice. 
however. can only be judged by the goodness of the 
regression fit in the final results. Table I identi
fies the fifteen machines used in the study and lists 
their parameter values for the set of parameters that 
ultimately were found to account for most of the vari
ation in the observed performance results. 

4. Regression Fits to Experimental Data 

Two forms of empirical equations that yield good 
statistical fits to the data of Table II are: 

(a) 
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Y = aO+alxl+a2xl+a3x2+a4x2+ ... +a2nxn • 

(b) 

The dependent variable, Y. represents either execution 
time or memory space. and the independent variables. 
xl' x2 ' ...• x , represent machine design parameters. 
1'11e a. and b. goefficients are routinely determined so 
that ihe equ~tions represent a best fit (in a least 
squares sense) to the experimental data. 

The computed execution times in memory cycles and 
the memory space requirements in bits for each of the 
benchmark kernels on each of the machines of Table I 
are shown in Table II. After a number of trials using 
different sets (usually of size 2 or 3) of the vari-
abIes in Table I, the parameters that accounted for 
most of the variation in the performance measures were 
determined for each benchmark. For example, practic
ally al1 the variation in execution time of benchmark 
kernel #1 can be explained by means of the CPU proper
ties memory wordlength. register strength and add 
time. Adding additional CPU properties as independent 
variables, e.g. arithmetic capability or length of 
direct address field. did not signifi~antly improve 
the fit. A summary of the significant parameters for 
,each performance measure in the three benchmarks used 
is given in Table III. The best fit equations using 
these parameters as independent variables are given 
below. 

Benchmark #1 
TIME: Y = 2.29XI06x -2.26x4 -0.276x 0.640 

1 3 

SPACE: Y = 1.59xl04xl-o.990x4-0.l90x70.400 

Benchmark #2 
TIME' ~l 78 103 1.48 0.687 -0.155 -0.290 . - . x x2 x3 x4 Xl 

322 SPACE: Y = 2.l3xlO -964x2+385x2+2.97xl +0.807xl 
2 +18.7x4-0.296x4 

Benchmark #3 
------ 5 -0.343 -0.885 0.497 
TIME: Y = 1.35xlO x4 Xl x3 

322 SPACE: Y = 6.l4xlO -657x5+33.3x5-252x6+4l.7x6 
2 -149x4+6.83x4 

In all of the above equations, the Xl variables 
are those of Table I. An indication of the relative 
contributions to the fit by any of these variables can 
be found by calculating their respective indices of 
partial determination. These values are given in 
Table IV. While most of the results are as anticipated, 
some of them deserve a few comments. Table III shows 
that add time is one of the significant parameters in 
all three benchmarks. This can be attributed to the 
fact that add time as defined earlier is representative 
of the execution time of the average memory reference 
instruction. 
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It is useful to plot the empirical equations 
superimposed on the experimental data to provide a 
visual notion of the goodness of fit. Figure 2 shows 
the plot of the family of curves that fits the space 
requirement data from benchmark no. 3. For various 
constant values of address modification bits and number 
of registers, the curves plot memory space requirements 
versus the address reach property which is the import
ant property for that benchmark and performance measure. 

A more detailed description of the results of the 
regression analysis can be found in the first author's 
master's thesis. 

5. Conclusions 

A technique based on regression analysis has been 
presented, whereby small machine preformance can be 
correlated to its design parameters. The technique is 
based on quantitative representation of the various 
machine parameters, such as wordlength, number of reg
isters, etc. The validity of this approach has been 
demonstrated by the fact that it was possible to 
account for almost all variations in the performance 
measures through appropriate selection of machine para
meters with which these measures were correlated. For 
example, the standard error in the best regression fit 
of Figure 2 is 13.3%. Note that this figure has been 
adjusted to account for the small number of machines 
used. The resulting correlations are consistent with 
known qualitative trends. However, the method pro
vides quantitative relationships, namely the regression 
equations in section 4, which are potentially useful in 
making rational design trade-off decisions. 

The availability of a family of curves such as 
those of Figure 2 can also be useful in assessing the 
relative merits of two candidate designs in a specific 
application area. Since the machine parameters can be 
easily determined for any given machine, its perfor
mance measures can be obtained from the appropriate 
set of curves. Such a quick evaluation of performance 
should be very useful in machine selection. 



It should be pointed out that use of the particu
lar set of regression analysis results presented in 
this paper is subject to some limitations. The most 
important limitation is the small sample size (15 
machines used). With this number of samples it is 
only possible to obtain reliable correlation results 
for the design parameters that have a major effect on 
performance. Less important parameters, that is those 
with a small index of determination, require a larger 
sample for their effect on performance to become 
measurable. This situation is reflected in the fact 
that many indices of determination in Table IV have 
been reduced to zero after adjustment for sample size. 
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Machine Properties 

Xl x2 x3 
Machine Name Memory Minimum Add 

Word1ength bytes/ time 
(bits) memory (memory 

probe cycles) 

--
1 PDP-8 12 2 2 
2 Kongsberg 400 16 2 2 
3 SAM 24 3 2 
4 Datapoint 2200 8 1 7 
5 H 112 12 2 4.5 
6 PDP-ll 16 1 4.2 
7 DC 6024 24 1 2 
8 Nova 16 2 3 
9 Modcomp III 16 1 3 

10 SEL 804A 24 3 2 
11 SPC-12 8 1 5 
12 Varian 520 8 1 3 
13 Interdata 1 8 1 3 
14 GE-PAC 4010 24 3 2 
15 DataMate 16 16 2 2 

x4 x5 
Registers Address 

Reach 
per memory 

word of 
instruction 

I----

1 8 
6 8 

10 14 
5 3.2 
1 8 
6 8 
5 15 
4 8 

15 8 
5 15 
5 6 
7 5 
1 4 
1 15 
2 8 

TABLE II 

x6 
Address 

modification 
(bi ts) 

1 
3 
4 
0 
1 
3 
3 
3 
4 
3 
0 
3 
1 
4 
3 

x7 
Arithmetic 
capability 

1 
3 
4 
2 
1 
2 
4 
2 
4 
4 
2 
2 
2 
4 
4 

Log 
capa 

le8 
lcal 
bili ty 

1 
l , 

, 

2.5 

Execution times (in memory cycles) and memory space requirements (in bits) for the 3 benchmarks 

Machine Benchmark No. 1 Benchmark No. 2 Benchmark No. 3 

Time Space Time Space Time Space 

1 11448 1224 3627 1776 19305 2448 
2 4809 1072 2515 1872 7805 2016 
3 1535 864 4640 2904 7288 2640 
4 49345 2104 3086 1664 41294 3584 
5 23475 1452 7027 1880 29767 2532 
6 6071 944 1597 1584 10796 2088 
7 1365 768 936 1968 5778 2472 
8 5460 1072 2818 2192 10000 2416 
9 4616 1120 1012 1520 7256 1904 

10 1576 936 4989 3024 8942 3048 
11 33462 2064 2123 1752 23043 2928 
12 23866 1576 1890 1352 19633 2192 
13 41532 3016 2223 1456 50698 4248 
14 2962 1248 6793 3456 12615 3144 
15 6296 1328 2533 1872 9440 2240 
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TABLE III 

Summary of Machine Properties showing definite and consistent relationships to Performance Measure 

Performance Measure 

Execution 
time 

Memory 
Space 

Requirements 

Benchmark No. Machine Properties in order of Significance 

I 
2 
3 

I 
2 
3 

WordIength, Registers, Add time 
Bytes/Probe, Add time, Registers, WordIength 
Registers, WordIength, Add time 

Wordlength, Registers, Arithmetic 
Bytes/Probe, WordIength, Registers 
Address Rea.ch, Registers, Address Modification 

TEMPI :: ~o. of 
leading zeros of B B=_O ______________ '! 

(Call LOMSB) :!! 

(
Error ) 

Br!O Return _ 

TEHPO ::: ~lo. of 
leading zeros of 

(Call LOMSB) 

TEMPI 

IShift B left TEMPI # of 
Lpositions (Call SHFTM) * 

a 
C = 0 

Clear N memory locations 
eN == 48/word length) 

r-------~A-:::7A-_~B--------~ A~B 

(Call l'>1ULSB) 
L---~------r-~------~* 

A=A+B (Call ~lULAD) J'~ * 
TE~lPO = 0 

y 

shift div. I pas. right 
(Call SHFTM) 

TEMPI == THIPI - I 
L-~ ____________________ I* 

Division by 0 

Return. 
Normal 

*Each of the subroutines MULAD, 
MULSB, and SHFTM has about the 
same size and complexity as 
this main routine. 

Fig. I tvlain Routine for Benchmark No. 1. 

150 



TABLE IV 

Indexes of Partial Determination 

I Q) 
!-t Q) !-t 
o U ;:::I Central ~@~ 
Q) S Q) Processor 

p... ::E Property 

Word1ength 

Q) No. of Bytes/ 
S Memory Probe ...... 
~ 

s:: Register 0 ...... 
Strength .f-l 

8 
Q) 

Add Time >< w 

Logical 

~ord1ength 

No. of Bytes/ 
Memory Probe 

Q) VI 
U.f-l 

Register cd s:: 
p.Q) 

~trength en ~ 
>-!-t 
!-t ...... 

!Address ~ g. 
Q) Q) Reach 
:::E:~ 

!Address Mod. 
!capability 

IArithmetic 

Figure 2: Regression Curves for 
Space Requirements 
on Benchmark No. 3 

Statistical parameters indicating 
"goodness of fit": 

Unadjusted Std. Error 258 
Adjusted Std. Error 353 
Max. deviation 558 
Unadjusted Std. Error (%) = 9.7 
Adjusted Std. Error (%) = 13.3 
Unadjusted Index of Determination (%) 
= 82.5 

Adjusted Index of Determination (%) 
= 69.3 

x 

Unaajuste 

BM1 BM2 

97.18 28.74 

91.57 

81.60 48.39 

72.10 69.30 

13.02 

91. 29 41.60 

85.58 

69.99 32.40 

44.21 

64.24 

x 
40 

20 

15 

Index of Partial 
Determination (%) 

BM3 

62.49 

66.93 

34.25 

8.78 

37.81 

67.97 

12.49 

x 

Adjusted 

BM1 BM2 BM3 

96.41 0.0 47.49 

86.39 

76.58 19.72 53.70 

64.49 52.24 7.95 

0.0 0.0 

88.91 0.0 

66.35 

61.81 0.0 0.0 

0.0 43.95 

0.0 

54.49 

A ~ Address Modification 
R - Registers 

A = 1 
R = 1 

R = 10 

3 
7 

W-----~----~-----~I----_;I----~I----~ 
2 4 
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ADVANTAGES OF STRUCTURED HAR.DWARE 

Harold W. Lawson Jr 
Mathematics Institute 
Linkopings Hogskola 
Linkoping, Sweden 

ABSTRACT 

~he proper structuring of the implementation 
levels in a digital computer system is an impor
tant attribute for all aspects of the product. 
~:hat is to say, the design, development, testing, 
production and maintenance of the product are 
facilitated by a well-structured design of the 
software and hardware components. This paper 
discusses digital computer system structuring in 
general, followed by descriptions of the logical 
and physical architecture of the DATASAAB FCPU 
(Klexible Qentral Krocessing Qnit). The implemen
tation of a vector arithmetic instruction is pre
sented to provide a more thorough insight into 
the operational aspects of the FCPU. Finally, the 
benefits derived from the structuring of this 
hardware product are presented. 

Keywords: Computer Architecture, Micropro
gramming, Structured Hardware, Computer System 
Complexity. 

1. INTRODUCTION 

A significant number of suggestions have 
been made in the past several years about struc
tured programming and the factors that affect 
programmers in designing, co~st~uc~ing, debugging 
and maintaining of programs ' , • We should 
not forget that programming is just one of the 
eonstituents in the implementation of a program 
13o1ution that uses a digital computer system. 
r~here exist several levels of hardware structure 
as well as several programming levels (high-level 
languaget assembly language, microprogramming 
language) in a complex digital computer system. 
r~he need for constraining complexity, through 
:3tructuring, exists at all levels. 

To illustrate the levels in the distribution 
of the computing system and to define the com
plexity problem, let us consider Figure 1. We 
must consider the complexity in two dimensions 
and strive to reach an appropriate structure for 
the "total system". From this figure, we define 
l~orizontal complexity and vertical complexity. A 
:3ignificant portion of computer science in the 
future must be directed toward studying both 
inter and intra level complexity 4, 5, 6. From 
the hardware point of view we must develop 
1'ReasonableMachines" 7. 

In this paper we shall consider the logical 
and physical structure of a medium-scale CPU pro
duct. We shall discuss the advantages of the 
13tructuring of this "reasonable machine". Of 
course the term "reasonable" is a relative one. 
We consider this machine to be reasonable for the 
potential "users" of the machine. That is, those 
who microprogram the interpreter solution to 
various classical and new target systems and to 
those who must maintain the systems. 

152 

Bengt Ma.gnhagen 
Datasaab and 
Systems Technique Institute 
Linkopings Hogskola 
Linkoping, Sweden 

2. I,OGICAL STRUCTURE OF THE DATASAAB FCPU 

The logical structure of the FCPU hali! been 
discussed elsewhere in greater detail 8, ~. How
ever, we shall consider a brief overview of the 
logical structure in this section by discussing 
the following list of attributes of the FCPU. 

1. Highly encoded (vertical type) microinstruc
tion formats. 

2. Asynchronous organization. 

3. Data path width of 64 bits. 

4. Writable control storage. 

5. High-level hardware facilities. 

6. Logical storage operations. 

Hardware adaptability (for special require
ments) • 

8. A high level oriented microprogramming 
language. 

In order to provide a time overlapping faci
lity in the utilization of FCPU hardware, and also 
to facilitate the use of highly encoded micro
instructions, we decided upon the use of an asyn
chronous internal organization. That is, the FCPU 
is divided into several units each of which can be 
active simultaneously. The various units of the 
FCPU are illustrated in the block diagram of 
Figure 2. Synchronization registers are used to 
pass data path width values of 64 bits from one 
unit to another. These registers, which act as 
semaphore variables 10, are referred to as To-and-
Krom B.egisters (TFR' s"). -

Microinstructions which are 32 bits wide are 
read two at a time from the writable control 
storage and prepared for execution in the various 
units via the control unit in a microinstruction 
streaming manner. The decision as to whether a 
microinstruction can be executed and whether the 
stream can continue, can be determined from a num
ber of predicates which include whether the 
addressed unit is busy, the state of a referenced 
TFR registers, whether the microinstruction is a 
branch, etc. 

Due to the separation of CPU functions, there 
is no cloek timing dependence upon the CPU as a 
whole. Therefore, we can easily introduce higher
level hardware facilities which have variable 
length execution times into the various CPU units. 
Examples include the use of bit manipulation, high 
speed multiplication, decimal arithmetic and 
editing functions. Logical storage operations are 
used so that the storage can be treated as a 
linear space without fixed word boundries. 



The design of a target system implementation 
can include the use of hardware adaptability 
termed Variable Logic Sets (VLS) for those imple
mentations where~ardware assists for performance 
goals are required. VLS structures are also imple
mented in an asynchronous manner so that more 
sophisticated instruction decoding and addressing 
techniques can be accomodated without affecting 
global timing considerations. 

The hardware is highly structured around the 
asynchronism. This structuring enables the micro
programmer to understand the FCPU structure in a 
much simpler manner than a complicated horizontal 
(minimally encoded). type of organization. However, 
the microprogrammer must still have a good know
ledge of the FCPU architecture. Consequently in 
order to simplify microprogramming, we developed 
a machine dependent, high level oriented micro
programming language called ML 11. 

In accordance with the complexity discussions 
in section 1, we have strived to make this a well
structured language. The instruction cycle, execu
tion cycle organization of a target instruction 
interpreter is structured through the use of a 
START microinstruction for initiating target in
struction execution and a DO CASE statement 12 for 
boundi~g the initial execution sequence for execu
tion-cycles of individual target instructions or 
sets of target instructions. A skeleton of this 
microprogram organization appears in Figure 3. The 
DO CASE (n) is used as a declaration of a maximum 
of ~ microinstructions per case. In this manner, 
the VLS hardware, activated by the START micro
instruction, can easily develop an entry address 
into this branch vector. If the interpretation is 
completed within the alloted number of microin
structions, a START microinstruction is used to 
start the next instruction cycle. Otherwise, a 
branch can be made from the branch vector to con
tinuation microcode. 

As you can determine from the previous dis
cussions there exist several motivations for the 
structuring of the FCPU. Additional motivations 
and experiences are discussed in the following 
sections. The "reasonability" of the FCPU at least 
from a training standpoint has been proven by 
teaching people to construct productive micro
programs in a surprisingly short period of time. 
This training has taken place in both academic and 
commercial environments. Many of the motivations 
for the flexibility aspects of the FCPU are simi
lar to those discussed for other microprogrammed 
computer systems 13, 14. 

3. PHYSICAL STRUCTURE OF THE DATASAAB FCPU 

The first use of the FCPU is as the central 
processing unit of the medium-scale DATASAAB D23 
target system. This general purpose computer sys
tem is a successor to the previous lines of 
medium-scale systems produced and mainly marketed 
in Scandinavia by Datasaab, namely the D21, D22, 
D220 and D223 systems. The resulting physical 
structure has been oriented toward the use of 
electronics to achieve sufficient micro-level per
formance in a flexible system. Other attributes 
which have been directives for the physical struc
ture of the hardware are: 

• Adaptability, modularization and "add-on" faci
Ii ties. 

• Target independent, microprogrammed, maintenance 
panel. 
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• Futuristic interface interconnecting fast units 
in an asynchronous environment. 

• Easy failure diagnostic. 

• High reliability. 

• Short development and production time. 

Figure 4 shows the disposition of the cabinets 
in the D23 system. As you can see, the physical 
structure looks like the logical. 

The modularization and adaptability includes 
the facility of moving the boxes around in the ca
binets and/or append cheaper or more powerful ones, 
due to the independence of interconnection inter
face cable lengths and standardized interface. 

The FCPU is a separate processor that mainly 
communicates with the environment via the Mai.n 
Storage Unit (MSU) , but has positions in an IfExter
nal Input Output" part for bit communication. The 
MSU interface consists of two identical interfaces, 
each with 32 bits data width due to the 32 bi.ts MSU 
banks. The fi.eld manipulation facility is used in 
implementing logical storage addreSSing and works 
with the D23 target system which utilizes a basic 
word length of 24 bits. 

The asynchronism means that each unit has its 
own control part, but most status and status mani
pulation are handled by the main Control Unit (CU). 
Because of the high internal speed and physical 
sizes there exist no clock pulse distribution, not 
even inside the separate units. Timing j.s consti tu
ted by delay lines. "Hand shaking" is mled in the 
asynchronous interfaces throughout the Elystem which 
results in high speed performance, greater control 
of activity and is helpful for "trouble shooting". 

Microprogrammability in a read/write Control 
Storage (CS) makes it possible to give the FCPU 
different identities, that is, programmtng of' hard
ware. For instance, during hardware test the iden
tity is a microprocessor "TEST", not a D23 target 
system test. A specific facility is the micropro
grammed maintenance panel. On the panel it is pos
sible, through microprogram control, to display 
every register or whatever text is desired. The 
panel is designed to permit manual control on both 
the micrOprogram level and on the target program 
level. In addition, the panel has two standard 10-
interfaces, so that the maintenance personnel can 
connect ordinary peripheral units, or telecommuni
cation equipment, to initiate and analyze test pro
gram runs (locally or remote). 

The control storage is ~ 16K, 32 bits, and 
can be divided in two parts; one high-speed (and 
expensive) and one low-speed (and less expensive). 
The low-speed part uses the same storage boards as 
in the Main Storage Unit, and of course it is pos
sible to use only low-speed or high-speed control 
storage. 

4. DESIGN, DEVELOPMENT, TESTING, J?RODUC
TION AND MAINTENANCE OF THE FCPU 

During a.ll phases of the work with the FCPU we 
have exploited the structuring aspects of the pro
duct • 

The logical design was made by a small group 
of highly experienced people, representing both 
hardware and software. 



This mixture of personnel has helped to soften 
the hardware facilities and vocabulary. During the 
design phase the ML (microprogramming language) 
translator (MITRAN) and FCPU simulator (MISIM) were 
developed, and because of this close cooperation 
between hardware and software project members, the 
hardware specification was thoroughly penetrated 
from a microprogram consistency point of view. In 
addition, to gain a better understanding of the ob
jects and relationships of the FCPU, a program was 
developed through use of the CADIS system 15, which 
is a tool for developing associative data structu
res. 

The physical designers stated very early that 
due to short development time, easy and inexpensive 
production, high reliability and maintenance re
quirements, the design should include: 19" boxes, 
one standard board size with mixed wirewrapped/pla
ted intraconnections, TTL and S-TTL, common power 
part plus one separate regulating module per box 
and extra high common mode for interconnections. 
Due to the asynchronism between the units it was 
possible to develop and test the different units 
rather independent of each other. One specific man 
then was responsible for the important intra- and 
interconnections (including the To-and-From 
Registers) • 

During the testing phase the engineer utilized 
debugged test programs since they already had run 
successfully in the simulator (MISIM). To shorten 
the testing time the engineer simulated his logic 
for logical and time "hazard" errors before the 
hardware was available for testing. 

The testing of the FCPU, consisted of three 
phases: 

1. Parallel test of the separate units (AU, CU, 
CS, FU, VLS). 

2. Test of joined units (CS, CU), (cs, CU, AU), 
(CS, CU, AU, FU), (CS, CU, AU, FU, VLS23). 

3. Test of microprogram for system identity and 
performance. 

Phase 1 and 2 utilized the asynchronism so to 
run test sequences on separate "test controllers" 
delivering sequences of microinstructions to test 
the units off-line. 

Phase 2 started with the joining of CS and CU 
with extra long interconnection cables and procee
ded in the order indicated above. The FU had been 
tested against the MSU and I/O system separately 
before integration to the FCPU. The input/output 
media used during testing were a card reader 
(microprogram loading) and a line printer connected 
directly to the maintenance panel. A specific de
bugging facility of interest is the TRACE function 
micro subroutine that after an execution of a micro
instruction stores variables of interest. 

FOr phase 3 the panel was prepared to step 
microinstructions and/or to step target instruc
cions. In addition, microprograms could be loaded 
via the MSU from disc, tape etc. 

In the production line we exploit the asyn
chronism to produce and test units separately and 
Lhen use the substitution metho~ to verify system 
function, that is, to exchange modules an already 
working reference FCPU. 
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The documentation was well coordinated between 
the development and production departments because 
of the well structured hardware. From a iatabase 
for the developed products documentation files, 
control information is directly fed to the produc
tion machines. 

For maintenance, there exist several utility 
functions, which include the following: 

- Input-Output interfaces on the FCPU panel prepa
red for local or remote control and analysis. 

- A panel display for 256 characters, possible to 
display the content of all the FCPU registers and 
its CS. 

- TRACE function. 

STEP function on microprogram level and target 
program level. 

- Asynchronous units with well defined interconnec
tion :interfaces and highly encoded (vertical) 
microinstructions. 

- Testprograms, for separate units or joined units, 
in ML and Target Language with well prepared test 
points. 

5. APPLICATION EXAMPLE 

As stated earlier, the first usage of the FCPU 
will be as an emulator of the DATASAAB D23. Special 
application oriented extensions to the D23 and new 
target systems will provide for powerful target 
level instructions with high semantic content. To 
illustrate this capability, and a high semantic 
content instruction, we shall consider the inner 
loop mierocode and timing for the following simple 
vector operations. 

ASUM 

Ci = Ai + Bi , i = 1, 2, ...... , n 

CAElUM (Cumulative Sum) 

Ci = Ci + Ai + Bi , i = 1, 2, ...... , n 

The Field Access Unit (FU) as pictured in Fi
gure 2, provides an address retention and stepping 
capability in four ACR (Address Control Registers). 
That is, a FU microinstruction can specify that 
the addresses used in reading or writing a logical 
storage cell (1-8 bytes) can be incremente1 by an 
element length. These FU operations are overlapped 
with operand fetching or storing and element pro
cessing in other FCPU asynchronous units. The inner 
loop microcode for the two operators is displayed 
in Figure 5. Note that the FU READ and WRITE in
structions (1, 3 and 6) specify stepping (STEPR) 
and saving of the incremented address in ACR regis
ters named ASTREAM, BSTREAM and CSTREAM. 

Elements read are placed in AU TFR registers 
AVALUE and BVALUE whereas elements written are 
taken from the J?U 'l'FR called CVALUE. Counting of 
the number of elements processed (n) is done in the 
counting register CRO.1 via a CUP (Control Unit 
Processing) microinstruction (5), and testing for 
completion is accomplished through the name DONE 
which is equated to the Zero Sense of ' a counting 
register operation (8). The MIX (Microprogram Index 
Register) is used to hold the opcode specifying 
which operator is to be executed (2, 4). ASUM and 



CASUM are two of several vector operator subrouti
nes sharing the same address control code. The DO 
CASE statement i.ndicates the branch vector struc
ture (four microinstructions per case) of the ope
rator subroutines. ENTER and RETURN statements con
trol the FCPU subroutine stack. Overflow checking 
is performed for each element processed (7, 1.2). 

The execution timing for ASUM and CASUM is 
displayed in Figure 6. The microinstructions are 
numbered with their corresponding numbers from Fi
gure 5. Note that a microinstruction is readied for 
execution every 100 nanoseconds (unless a branch 
occurs). The notation 

~==I[ 

indicates a timing delay. That is, the microin
struction cannot proceed until some other event has 
been completed. The overlapping of time is interes
ting, particularly in case of instructions 4, 1.3 
and 2.4 which, due to overlapping, are transfers of 
control with no time penalty. Subroutine overhead 
is eliminated in this microprogram organization. 

The overlapping here provides an average 
microinstruction rate of approximately 170 nano
seconds. This time must be viewed as varying quite 
widely based upon the semantic content of the tar
get operations involved and the organization of the 
microinstructions. Remember that microinstructions 
for the FCPU perform higher level functions and it 
normally requires fewer microinstructions to per
form the execution of a sophisticated target in
struction than on previous microprocessors. The in
corporation of these vector operations into FCPU 
microprograms provides a performance factor of 
about 3.5 to 1 over D23 target language programs 
executing the same operations and makes the FCPU 
competitive with many much more expensive scienti
fic processors in performing operations on these 
regular information structures. 

6. ~UMMARY AND CONCLUSIONS 

Figure 7 provides a summary of the major logi
cal and physical structure of the FCPU as used in 
the D23 system. Such diagrams are in aid in under
standing complex systems. We have learned the im
portance of structuring in a formal way. A struc
ture contains objects and directed relations in be
tween them. For instance "benefit of A is B" or 
directly from figure 7 "implementation of physical 
structure is FCPU and Add-on". -

Because of the formal way of structuring, it 
is possible to handle the objects and relations 
with computer programs such as CADIS 15. In the de
velopment phase and also in the early production 
phase more detailed programs of structure developed 
using CADIS, were useful in handling construction 
changes. 

Through the experience of the FCPU product de
velopment cycle at DATASAAB, we have learned that 
there is a strong motivation for well-structured 
hardware. Certainly, the larger the scope of the 
product, the more the motivation for structuring. 
It appears that structuring in both horizontal and 
vertical directions (as presented in the introduc
tion) is an important means for controlling system 
complexity. 
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FCPU 
UNIT 

FU LOOP: READ (ASTREAM, AVALUE) STEPR SAVE (ASTREAM) 
. CUP MIX = TOPCODE 

FU READ (BSTREAM, BVALUE) :3TEPR SAVE (BSTREAM) 

CUB 4 ENTER MIX ADDOP 

CUP 5 RETUR: CRO.1 = DECR (CRO.1) 
]'U 6 WRITE (CSTREAM, CVALUE) STEPR SAVE (CSTRE/l.M) 

CUB 7 IF OVERFLOW THEN GOTO OVERCODE 

CUB 8 IF NOT DONE THEN GOTO LOOP 

CUB 9 START ••• * INSTRUCTION FINISHED 

ADDOP: DO CASE (4) 

DO 

AU 1.1 ASUM: CVALUE = ADD (AVALUE, J3VALUE) 
CUP 1.2 ISTORE: OVERFLOW = AU-OVERFLOW 

CUB 1.3 RE'l'URN 

END 

DO 

FU 2.1 CASUM: READ (CSTREAM, TVALUE) 

AU 2.2 AVALUE = ADD (AVALUE, BVALUE) 

AU 2.3 CVALUE = ADD (AVAIJUE, TVALUE) 

CUB 2.4 GOTO ISTORE 

END 

END * END OF CASES 

SAMPLE VECTOR OPERATIONS 
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CONCEPTS OF THE MATHILDA SYSTEM * 

by 

Peter Kornerup, Department of Computer Science, University of Aarhus, Denmark 

Abstract 
A dynamically microprogrammable processor called MATHILDA is described. MATHILDA has been de

signed to be used as a tool in emulator and processor design research. It has a very general microinstruction 
sequencing scheme, sophisticated masking and shifting capability, high speed local storage, a 64-bit wide main 
data path, a horizontally encoded microinstruction, and other facilities which make it reasonably well suited 
for this purpose. This paper presents a brief overview of the MATHILDA system, and some of the concepts In 
more detai I. 

1. Introduction 

1 • 0 Background 
In 1971 the Department of Computer Science at the 

University of Aarhus started the design and construc
tion of a microprogrammable minicomputer. The de
cision was based on the availability of small engineer
ing staff and the evolution of a technology, which made 
it feasible to construct such experimental equipment, 
not as a technological experiment, but as a tool for 
work in emulation. The resulting machine, the 
RIKKE-O, was partially constructed, and started run
ning in early! 972. In the meantime, a number of de
partmental projects were proposed, some of which 
were started whi Ie others were considered not to fi t 
in with the present design. Varlou.s numerical analy
sis projects were put among the latter because RIK
KE-O has a short word size (1 6-bit) and in order to 
obtain an efficient implementation of even standard 
arithmetic operations a wider word was needed. 

It was therefore suggested that a microprogrammed 
functional unit with a wider data path could be attached 
to RIKKE-O as an I/O device, toge"ther with a wider 
memory. This organization would allow the problems 
of numerical analysiS and those of the system-software 
to be more or less separated on the independent units. 
It was this functional unit which eventually became the 
MATHILDA machine (more detailed descriptions of 
this machine can be found in 1, 2 l. 

During the design phase of MATHILDA in mid 1972 
it became apparent that those features which were felt 
to be necessary and those which came as side effects 
covered and extended those of the prototype RIKKE-O. 
As it had been decided earl ier to construct more RIK:'" 
KEs, the MATHILDA-design was adopted for those, 
with the only exception the data width being respec
tively 64 bit and 16 bit. Such a version of RIKKE has 
been running since early 74 as a prototype, and the 
full MATHILDA is due to be completed in late 74. 

1 .1 Motivations 
As mentioned earl ier, the first motivation was to 

allow the implementation of arithmetics, (especially 
non-standard, I ike extended range, extended preci
Sion, significant d ig!t, unnormal i zed, interval, ra
tional or complex arithmetics). The general structure 
and microprogrammabi I ity of MATHILDA certainly 
will offer efficient implementation of the arithmetic 
primitives without the expense of special purpose 
hardware. The overa II structure of the system wi II 
allow extensive experiments on various arithmetics, 
by changing underlying structure 3. 

With respect to emulator or processor design in 
general, MATHILDA, or its 16-bit counterpart RIKKE, 
wi II allow the implementation of experimental virtual 

* This work is being supported by the Danish Research 
Council, grant no. 511-1546, and by NATO Grant 
no. 755. 
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machines in various ways. The control of' the 5iystem 
may be achieved both with various degrees of residual 
control and by immediate control, thus allowin!:! va
rious strategies to be investigated. Much of the bindir 
of particular decisions is left open for the implemento 
of a particular algorithm, also some of the features 01 
the system (e. g. the bit-encoder) may provide the im
plementor with new al ternatives. 

In this way the MATHILDA-design wi II offer an 
experimental host for emulators; not in the way that i 
wi II provide standard solutions to specific problems, 
but by providing resources for alternative way's of im 
plementation. 

1.2 Global system design 
The fact that MATHILDA is to be trE~ated by its 

counterpart RIKKE as an I/O device, as shown in 
Figure 1, offers a great flexibi I ity and suggests somE 
interesting projects. I t was decided that, except for i 

few control signals, every information Interchange 
should be queued up so that asynchronous oper-ation 
was possible. The same principle was also used with 
respect to a 64-bit Wide Memory, this being a commo 
resource to the system, and not dedicat€~d to MATHIL 
DA. 

RIKKE 
incl. 
16 bit 

memory 

Wide Memory 
64 bit words 

MATHILD~~ 
64 bit SystE~ 

The MATHILDA-RIKKE-Wide Memol~~ 
Figure 1 

The Wide Memory is exclusively controlled by RIKKE 
i. e. it is the only unit that can deliver I"'equests for 
memory access. The data transfer can t.ake place on 
a number of memory ports. RIKKE itself will be at
tached to a set of I/O-ports of the memory system. 
RIKKE also has its own private memory (up tlO 64K 
16-bit words). Standard I/O-devices ar'e thepefore 
tended to be coupled either directly to RIKKE or to 
other minicomputers communicating with it. 

The idea of operation is to let RIKKE decode vii 
tual machine instructions, and to do all address cal
culations involved, while' MATHILDA was to perforn 
the actual data transformation required. The philos. 
ophy of the design of MATHILDA was to give it capa 
bilities for doing transformations upon a wide data 
word. Complicated "macro" routines could b'e imple. 
mented in MATHILDA microcode and thereby define 



"Nano-machine" which can be called upon from the mi
crocode In RIKKE to define the complete virtual ma":,,, 
chine. In fact it is not a nano-machine In the QM-l 
sense, but It may be operated in such a way that a 
similar effect Is achieved. Among the differences in 
these approaches is that RIKKE, running in parallel 
with MATHILDA, normally will be ahead of it, pre
paring instructions and operands' for it. 

2. A brief description of MATHILDA 

2.0 An overview 
One may consider MATHILDA as composed of three 

layers, each of which is controlling the lower ones: 

a) The decoding and sequencing unit 
b) Control-faci I ities 
c) The main data path 

which now will be described briefly in the reverse 
order. 

2.1 The Main Data Path. MDP 
MATHILDA has a single 64-bit wide data path 

(called the Main Data Path, MDP) with 8 inputs con
sisting of various 64-bit wide sources. The informa
tion carried on the MDP is subject to transformations 
as described below. 

Control 
Facilities 

Control 
Facilities 

Shifted Bus S8 

1----- Devices 

MATHILDA Main Data Path 

Figure 2 

In every microinstruction it is possible to take the con
tents of a specified 64;...bit wide source and mask It by 
use of a mask, BM, which is composed from two inde
pendently stored masks: BM = MA V MB. Both MA and 
MB are read from a store each containing 16 such 
masks. The reason for the inclusion of double masks 
is that one group of masks (say MB) containing a no
mask and an all-mask can be used to enable/disable the 
other group of masks (say MA). 

The masked data is buffered in a iatch, the output 
of which is termed the BUS. The data on the BUS is 
continuously being encoded, yielding various types of 
control-information (parity and bit-encoding, see2. 3. 2). 
Furthermore, the BUS-information may directly be used 
for loading into various special destinations, e. g. out-
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put buffers. The data on the BUS is passed through the 
bus shifter,BS, which when enabled shifts the data n 
bit positions right cyclic; where 0 :5 n:5 63. 

The implementation of the BS is 64 parallel selec
tors: one selector for every position in the output 
which selects which one of the 64 input lines of the 
BUS is to be used (in a right cyclic connection) as the 
corresponding output bit. When no shift is required, 
the selectors all reside in a standard no shift position 
by disabl ing the selector via a dedicated bit in each 
microinstruction. 

After shifting, the information Is masked again, 
this time by a combined mask PM V PG, where PM is 
similar to BM, and PG is an end-off mask generator, 
which allows the bus-shifter combined with PG to re
sult in a logical shift. The PG is a PROM whose con
tents can be combined to yield the 128 masks which are 
required to make the BS appear as a logical left/right 
shifter as well as a cyclic left/right shifter. The en
abling of the PG is determined by the PM, i. e. PM con
taining both a no-mask and an all-mask allows it to be 
thought of as a switch for the operation of PG. 

If the same source of control is used for BS and PG, 
·then six bits will specify n, and the seventh whether a 
logical ri~~htshift of n places, or a logical leftshift of 
64-n bit positions, will be the resul t when PG is en
abled. The information after shifting and postshift
masking is buffered in a latch, called the SB Latch. 
The output of the SB Latch is called the Shifted BUs, 
SB, and is finally loaded into selected destinations. 

2.2 Additional MDP resources 
The resources are either possible sources of a 

bus-transport, or destinations for a transport, or both. 
Except for' the arithmetic-logic unit, ALU, they are all 
some sort of registers, some are pure storage elements 
(WA, WB, LR), some are shifters (AS, VS, DS), and 
the rest for I/O communication (lA, IB, OA, OB, OC, OD). 

2.2.1 Working reg.isters and their Loading Masks. The 
system contains two local stores, WA and V\B both con
taining 256 words. As they are identical we will only 
consider one of them, say WA, which is shown in Figure 
3. Addressing of WA is made by a 8-bit pOinter, WAP, 
which determines which location to read or write. WAP 
is, in fact, composed of two 4-bit pOinters which may 
be coupled together (or be decoupled), which allows 
for considering WA as either 256 elements, or as 16 
groups of 16 registers. 

CM EX SB SG CM EX SB SG 

Working ~egilstxr:;tii A. WA 

FISUre 3 

Bus 
Selector 



The writing of data into WA is also masked by 
means of a loading mask, LA. LA makes it possible to 
load only selected fields of the addressed WA-word, 
without affecting the remaining word. This permits the 
construction of say the result of a floating pOint opera
tion, by loading the fields of the packed representa
tion separately as they are being computed. LA (and 
LB on WB) is again a group of 16 masks with its own 
address-mechanism. (In fact LA is identical to a re
gister group as shown in Figure 5. ) 

2.2.2 The Shifters. AS, VS and OS. The shifters 
are functionally identical, except for the fact that OS 
shifts two positions at a time, where AS and VS shift 
one position. It is therefore sufficient to consider one 
of them, say AS. 

Inputs to the vacated bit in shift-operations may 
be chosen from any lout of 8 possible sources, one of 
which may be an arbitrary selected bit of AS itself, 
the AS(V) bit. This al lows AS to act as a cycl ic shif
ter of an arbitrary length n, 1 ::; n::; 64. 

Accumulator Shifter. AS 

Figure 4 

2.3. Control facilities 
The control faci I ities consist of storage elements, 

data paths and functional units, thereby allowing a 
high degree of parallelism and permitting a variety of 
external, stored or computed control upon the units on 
the main data path. As it can be seen from the previous 
description of the MOP and its associated storage and 
functional elements, most of these resources require 
some sort of control information. This may be an ad
dress (e. g. for WA and WB), data for a functional 
unit (e. g. a shift specification for BS or mask speci
fication for PG), a functional specification (e. g. con
trol of ALU function) or a selector-specification (e. g. 
for vacated bit input to a shifter). The possible 
sources of control information are the following: 

1 ) CM: the current microinstruct ion 
2) EX: an external register (from controll ing processor) 
3) BE: the bit-encoder unit (see 2.3.2) 
4) S8: rightmost bits of the shifted bus 
5) SG: registers for residual or saved con.trol 

(see 2.3.1) 

It should be noted that item (l) above allows the 
user "immediate control" over the system's resources 
whereas items (2-5) offer varying degrees of "resi
dual control" in the context of F--Iynn and Rosin 5. 
Furthermore, among the control faci I ities are system 
counters, local storage groups7 and condition save 
regi sters. There are al so "statusll and" snooper II fa
cilities, which can be used to gather data useful in 
computing statistics concerning the system and thus 
enhance the experimental nature of this machine. 

2.3.1 The Standard Groups. The amount of residual 
control facilities is large and could have been rather 
complex, because any of the selectors determining 

control sources has among its four inputs ca "private" 
register group, providing stored (residual) control. 
However, a gr'eat deal of simpl icity and modularity has 
been achieved both logically and physically by use of 
a uniform residual control concept, the standard group: 

it The width of the. registers 
depends on the particular selector Involved. 

Typical Standard Group 

Figure 5 

Selector 

A Standard Group is a storage element of 16 words 
wi th an address mechanism. The storage is USE~ for 
residual control, and in these cases wher'e the infor
mation residing there is part of a fixed environment, 
the loading of the storage takes place from the SB. 
However, in connection with some units, it was more 
natural to load the storage from the unit itself, so tha· 
the information there could be saved and later ~restore 

2.3.2 The Bit-encoder BE. One resource of the MA
THILDA is to our knowledge a new invention. It is 
what we call the Bit-encoder, BE. In many algorithms 
it would be useful to have easy access to information 
about a given bit-pattern as to where is the firs~ bit 
on, and where is the last: 

:3 .•....•••.• 01 xx .••••.•••..•••. X~O .••••... : .••. ~~ 

We call the quantities I and m respectively LSB (leas 
significant bit) and MSB (most significant bit). The 
bit-encoder can provide the user wi th such numbers, 
and certain computations using LSB and MSB. 

The Bit-encoder is continuously encoding the info 
mation on the BUS, yielding the two quantities I and r 
correspond ing to the transported bit-pattern. By a 
microoperation these can be loaded into two register~ 
LSB 1 and MSB 1 • The computationa I network of the 
Bit-encoder further contains two additional registers 
LSB a and MSB a , which can be loaded from LSB 1 ar 
MSB 1 respectively, or be interchanged with these. 
Assuming LSB a and MSB a contain the encodings fro! 
a previous BUS-transport, the circuitry of the Bit
encoder continuously computes the following quantitiE 
among which anyone may be selected as the BE-outp 

BE Functions 

F 

LSB , 

LSB , -1 

MSB , 

G 

Ll =MSB 1 -LSB t i=1,2 

MSB , + 1 G = [F /2] + 1 [x] ::= Integer part of x 

LSBa-LSB , 

MSB 2 -MSB , 
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Figure 6 

Control Porls 
and 

Condilion Selector 

The output of the BE may be used in various control 
elements of the system. 

Based on avai lable conditions, it is possible to 
compare some of the characteristics of the two bit
patterns, to: a) direct decisions about the algorithm, 
b) choose BE-function, or c) interchange (LSB1 ,MSB1 
and (LSBa ,MSBa ), before selecting the BE-function 
and use the selected information. 

Since bit-patterns and bit-matrices play an in
tensive role in many non-numerical algorithms, funda
mental operations providing the encodings I and m, may 
prove to be useful both on the virtual machine-level, 
and also in high-level languages. 

2.3.3 The Snoo er and Status Facilit. The Snooper 
Facility consists of (a a Snooper Control Store and 
(b) Snooper Resources (e. g. 2 groups of 16-registers, 
counters, and comparators). The Snooper unit works 
in the following way: when the address of the next mi
croinstruction to be executed is sent to the MATHILDA 
Control Store address buffer, it is also gated into the 
Snooper Control Store address buffer. At the same 
time the microinstruction is fetched so that it can be 
executed, the contents of its associated Snooper Con
trol Store location is fetched. In parallel with the 
microinstruction being executed, the contents of its 
associated Snooper Control Store just fetched is used 
to control the operation of the Snooper Resources. 
Snooper Control Store is 1 6-bit wide and has the same 
number of words as the MATHILDA Control Store. A 
snooper word can specify, for example, any two re
gisters which can be counted up (or down). Snooper 
Control Store is writable so that different data gath
ering routines can be associated with the same seg
ment of microcode without changing the microcode. The 
user is allowed to establ ish the correspondence be
tween any particular snooper resource and the routine 
upon which it is snooping. Information gathered in the 
snoopers can be brought back into the system through 
the status port of the system (see Figure 2), just I ike 
other information from control facilities which have no 
direct connection to the MDP. 

2.4 Microinstruction execution and sequencing 
One microinstruction execution of the machine 

may be considered as consisting of four major sequen
tia Ily executed steps: 

A: Microinstruction fetch 
B: Data transport on MDP 
C: Execution of microoperations 
D: Address calculation (for the next microinstruction) 

Steps B, C, and D are controlled by fields within the 
64 bit wide microinstruction. The execution of one mi
croinstruction is to be considered as totally completed 
before the next microinstruction is executed, i. e. , 
actions initiated by the execution of a particular micro
operation do not span several microinstruction exe
cutions. 

The control store may consist of up to 4096 words 
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of 64-bits (80 nS). Initially, 512 words of control store 
has been implemented. It is writeable under program
control from an output port of the system itself, or 
from a 16-word deadstart PROM. 

The microinstruction consists of three major 
fields, corresponding to the control of the previously 
'Tlentioned steps B, C, and D: 

c B D 

~oopera t ions and da~_a_-+MD __ p_-_tr_a_n_s_p_o_r t+s-ce_Qu_e_n_C_i_n-;9 r3 .- 23 22 16 15 0 

The dealing of dynamic conditions has been made con
sistent. The machine can be run in two modes, under 
program control: 

Long cycle: Any condition arising as an effect of the 
execution of steps A, B, C can be 
tested and used for sequencing in step D. 

Short cycle: All conditions used in the instruction 
is of the state of the machine immediate
ly prior to step A. 

The l3-field of an instruction specifies the source 
and destination of the MDP-transport, and the enabl ing 
of the Bus Shifter. The C-field contains selector spe
cifications for the control facilities, and some fields 
which may be encoded as microoperations, .or used as 
data depending on certain "mode-bitsll. These highly 
encoded fields (typ. 8-bits) are mostly used for exer
cising the control faci I ities associated wi th the arith
metic logical unit, the residual control standard 
groups, addressing of local storage elements, and so 
on. Up to 4 highly encoded microoperations can be spe
cified in one micrOinstruction, plus 3 minimally en
coded operations. 

2.4.1 Sequencing. The determination of the address 
of the next microinstruction to be executed, is an im
plementation of the well known if-then-else construc
tion. The selection is among two ~s--o:r-address
calculations (rather than addresses themselves). Pos
sible modes are: 

1) A -1 } where A is the curr'ent address 2) A 
(location counter) 3) A + 1 

4) F(A,B) where F is an ALU-function of inputs 
A and B 

5) RA + E3 top of return jump stack + B 
6) RB + E3 top of return jump stack + B 
7) SA buffer which can be loaded from the 

Shifted Bus 
8) EX externa I buffer 

The B-input used is an address constant which is 
specified by the D-fleld, involving the selected condi
tion and data from the C-field. Mode 4 allows for ab
solute and relative addressing. 

The if <cond> then At else At clause is real i zed 
the way tii-at the value of the specified condition selects 
among the two spec if i ed mod es At or A f • 

2.4.2 Tim.l!:!!l:. One criteria was to have a clean and 
consistent way of dealing with the timing problems. We 
preferred a slower but more straightforward machine. 
Thus it is possible to consider a machine cycle (the 
execution of one instruction) as consisting of a number 
of logically sequential steps, corresponding to a se
quential execution of the specified actions in the essen
tially horizontal instruction. Figure 7 shows actual 
timing and also the fact that microoperations are di
vided into two classes which are clocked differently. 



This allows as an example within one microinstruction~ 
the loading of an element in a RG, and the changing of 
its pOinter. 

STEP A 
Ifetch: 

STEPB 
Load Bus Latch: 

Load SB Latch: 

Load SB dest. : 

STEPC 
Clock 1 mops: 

Shift AS, VS, OS: 

Clock 2 mops: 

STEP 0 
Select condition 

Select mode 

Carrypropagatlon 

o 40 BO 120 160 200 240 2BO 320 360 
• I I 'e ,I I 

n 
n 

____________ ~r___I~ ____ __ 

______________ ~r_l~ ____ _ 

________________ ~n~ ____ __ 

--------------------~ 
________ ~r---I~ ________ __ 
______________ ~n~ ________ _ 
~ 

System Timing in short cycle 

Figure 7 

The resulting speed is at present 360 ns per short 
cycle, but may be improved (a pre-fetch of instructions 
may reduce it to 280 ns). 

3. Conclusions and experience 

3.1 Design and construction . . . . 
As a department in a non-engineering university, 

our hardware- staff was very restricted (2 engineers + 
1 technical assistant). This staff was mainly intended 
for minor construction and interfacings, together with 
service on all standard equipment in the department. 
The design was originally intended to be for a func
tional unit very intimately connected to the control
ling RIKKE-O. However, during the design process a 
number of complex facilities were added. Thus the 
functional unit grew into a selfcontained processor and, 
of course our original time schedule for the construc
tion was ~ot satisfied. Besides the growth in deSign, 
unexpected other duties of the technicians, del ivery 
problems, lack of project management experienc.e, and 
the fact that the project was, in retrospect, a bl t over
ambitious for the staff, delayed the project. It was 
furthermore decided to test the design on a 16-bit 
RIKKE version before the construction of the 64-bit 
MATHILDA. 

The basic design, including the bus structure and 
the concepts of standard groups bit,encoder etc. was 
made in the period from February to August, 1972. The 
sequencing part and instruction format was designed 
in the fall, While the printboards for the bus-structure 
were laid out and actual mounting of RIKKE started. 
By August 1973, the control unit and control facilities 
(register groups) were ready for initial hardware test
ing. In late October., the 1 6-bit bus structure was added 
for testing, and in January 1974 initial testing of the 
RIKKE processor was considered completed. However, 
no main memory was added before March, due again to 
delivery problems. At the time of this writing (Oct. 74) 
the RIKKE has interfaced to it a high speed tape reader 
and punch and a console writer. The RIKKE machine 
is complete as the MATHILDA machine described in 
thi s document except that the following faci I ities are 
not yet implemented: Snoopers, Status and Bit-encoder. 

The construction of MATHILDA was started In 
August, 1973, but since testing of the MOP (and the 
print boards) was not done before January 1 974, the 
"go ahead" for the construction of the 64-bit bus struc
ture could not be given before then. Here again delivery 
problems for the print boards caused delay. By now 

initial testing has started, but one bus module has yet 
to be mounted. 

The cost of the construction is not easi Iy calculated 
As estimated cost of $12,000 for components and 
$10,000 for mounting assistance was granted by the 
Danish Resear'ch Council. The support from the staff 
technicians cannot be computed that simple because of 
their other duties and projects. An estimate of 2 man
years of design and documentation from the technicians 
might be adequate. The experience gained in the .de
partment during this process cannot be underestimated, 
we learned a lot about what to do, and esp.ecially what 
not to do in such a project. 

3.2 Experience with programming 
Since the summer 73 an assembler, MP.RIA, and a 

simulator of the system have been in us,; _ 6 Emula
tors for an O-code machine for BCPL , and a P-cod4 
machine for Pascal 8 on the RIKKE-MATHILDA
Wide Store system have been Written. Fur-thermore, 
basic software (bootstrap loader, norma Ii zer, etc.), 
an I/O-nUCleus 9 and a large number of routines for 
the implementation of arithmetics have been implemen
ted. Experience with programming of the processors 
shows that the design seems to be suitable for experi
mental purposes, although coding is not so straight
forward because of the horizontal nature of the micro
Instructions as on processors with more highly encode, 
(vertical) but more primitive instruction formats (e. g. 
the B1700). Certain faci I ities of the system have prove 
to be extremely useful, the easy and natur'al sequencin 
possibi I itles, the BS, BM, PG, and espeCially the BE 

Although the design of MATHILDA may seem some
what complicated, experience from courses on com
puter architecture given at Aarhus and at the Univer
sity of Southwestern Louisiana, indicates that the stu
dents learned the MATHILDA design with reasonable 
ease. We are at present only in the very beginning of 
the real use of the RIKKE and MATHILDA processors I 
and only in the future can real evaluations of the suit
abil ity be made. 
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Appendix 

!:>hysical summary of MATHILDA 
MATHILDA Is mounted in 7 frames 8x45x60 cm, each 

c)f which is turnable around a vertical axis I ike pages 
in a book. Each frame is closed from both sides with 
r'emovable boards of plexiglass, thus forming a closed 
box. Each IIboXIl is equipped with three small ventila
tors blowing a stream of air up through the frame. 
Signal-interconnections between the frames are through 
standard cables containing 20 signal-ground wound 
pairs of wires. Plugs are mounted along the vertical 
sides of the frames. 

The printboards are two-sided and are either spe
cial prints, or standard prints only containing power 
and ground where signal-interconnections are in the 
wiring. Special purpose prints exist only in three va
I"iants: 

a) 8-bit of the whole MOP, 25x40 cm, 
b) 4x(4 bit of a s.tandard register group), 1 5x40 cm, 
c) 256 words of control-store, 64-bit wide, 1 5x40 cm • 

.All of the special purpose printboards furthermore 
contain some room for additional circuitry. 

No attempt has been made to carry signals to the 
edges of the boards for board-to-board and board-to
plug interconnections, all such connections are made 
with wires from the proper places on the prints. 

All circuits are from the TI 74 series or equivalent. 
A large amount of signals (data buffers) have been made 
visible on the boards by I ight-emi.tting diodes or dis
plays (for diagnosis in step-mode). 

A survey of the content of the frames is given below: 

Frame 0 

Frame 1 

(Sequencing and Control Store) 
1 pc 30x40 standard print containing se .... 
quencing, clock-generators and deadstart. 
Masterclock (40 ns steps) and its input into 
a shift register which pulses various 
clocks. 
2 pc type c (above) prints control store, 
128 pc TI 74200+amplifiers. 

(CA, CB, WAP, WBP, LA, LB) 
4 pc type b prints (standard groups). 
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1 pc type b print + standard print. 

Frame 4-7: (Each contains 1,6 bits of MOP with all re
gisters and ALU) 
2 pc type a prints + 1 pc lOx 40 standard 
print on each frame. 

Power supply: 8 pc, 5V, max 15 amp. 

Console: (prel iminary) 
Buttons: Deadstart, Run, Stop after dead, 
start, Step-Stop (two pushes per cycle, 
first instruction fetch, second execution). 
Switches: KA, KB conditions, 2 stop
switches (stop on execution of specific 
mops, i. e. not as testable condition). 

Deadstart: 16 words of battery-driven CMOS-PROM 
are copied into control store repeatedly. 
Execution is forced to location zero. 
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Abstract 

SOCRATES is a "Stack-Oriented Computer for Re
search and Teaching--an Exploratory System." It is de
signed around push down stacks as its main store. The 
structure of the machine is specified and several as
pects of programming it are investigated. 
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Introduction 

Many computer architects spend their days reinven
ting the wheel; some with five spokes, some with four, 
and some with seventeen. Even the most cursory exam
ination of computers extant today reveals at once the 
paucity of our :lmagination and the dreary sameness of 
our products. One begins to wonder if he would like 
his daughter to grow up and marry a computer architect. 
To state this another way, I ask the question, "Now 
that we have established the fact that we can produce 
untold variations on a theme by von Neumann, what do 
we do for an encore? 

A couple of years ago, I was considering this 
problem when someone happened to mention that storage 
technologies, namely bubble memories and charge coupled 
devices, were showing every promise of becoming commer
cially feasible in the near future. On investigation, 
I discovered that indeed people were predicting that by 
1976 one should be able to purchase a one inch cube 
with 32K words of 32 bits for $100. But, alas, the 
millenium would not arrive in '76, only the bi-centen
nial. There was a slight drawback to these burgeoning 
technologies. Access points were to be expensive. It 
was the interface with the external world that would 
cost the money, not the mechanism for holding the in
formation. Thus, the only way of meeting these projec
ted prices would be in memories organized as stacks 
either FIFO or LIFO. That is, only as recirculati~g 
memories similar to drums or as push-down stacks could 
this dramatically low cost of .Ol¢/bit be expected to 
be realized. 

Having spent several years programming an LGP-30 
with a 17 millisecond drum as its main (and only) store 
I knew right away that push-down stacks would be a 
much more interesting area to investigate. 

Given my overwhelming weZtansahmertz vis-a-vis 
conventional architectures and the possibility, however 
remote, that truly inexpensive stacks would soon become 
available, I set out to design a computer that used 
push-down stacks as its primary memory. This paper is 
the result of that endeavor. 

Now a caveat. Nobody, least of all the present 
author, is pretending that SOCRATES would be the ma
chine-of-choice of your average, everyday programmer. 
The questions are rather, would such a machine be tol
erable? Would it run ordinary type programs moderately 
fast? (Remember that to achieve a cost-performance 
equivalent to a conventional computer, it could be as 
much as 100 times slower.) Would the enforced push
down access make programming so clumsy that software 
costs would far outpace any hardware savings? 

To attempt to answer these questions, we present 
below a possible architecture for a stack oriented 
computer and a few kernels of programs that tend to 

display the problems of the possibilities :lnherent in 
the design. No pretention of exhaustiveness is intend
ed. 

LIFO Stacks 

LIFO or pushdown stacks are well known. They are 
characterized by having a single access port and a 
finite capacity. Items added to the stack are stored 
so as to preserve the order of their arrival and when 
read out is requested, the items are returned most re
cently arrived (last in) first. A shift register with 
right shift on push down and left shift on pop up is an 
example of such an organization provided that only the 
left-most bit is accessible. 

We will distinguish three basic modes of add.res
sing stacks. Consider first stacks from which informa
tion is to be obtained (operand sources). 

mode 1. The named stack contains the desired 
operand. Obtain a copy of the data but 
do not disturb the stack. 

mode 2. The named stack contains the desir.~d 
operand. After obtaining a copy of 
the data "pop up" the stack removing 
the operand from that stack. 

mode 3. The named stack contains the "addrt~ss" 
of the desired operand. Obtaiin th(~ 

name of the stack which contains the 
operand and the new mode of address and 
reenter the address decoding process. 
Do not change the named stack. 

For completeness, we will also allow "immediate addres
sing" in instructions by: 

mode O. The name of the stack is the desired 
operand. 

Mode 0 doesn't make sense when we are considering 
stacks as destinations for data but the other three 
modes carryover: 

mode 1. The named stack is the destination. 
Store the information in the top cE~ll 
of that stack. 

mode 2. The named stack is the destination but 
before storing the information in the 
top cell of that stack, push down that 
stack, preserving its old contents under 
the new information. 

mode 3. As for sources above. 

For orthographic purposes, we will use the 
following: 

kind mode source destination_ 

immediate 0 tis 
direct 1 S D 
stack 2 Sf -tD 
indirect 3 S @D 

To indicate which mode we desire will require two 
bits per address. If we wish to keep an address (mode 
plus name) to 8 bits out of respect for the National 
Standards Institute, then we will be restricted to hav
ing 64 stacks in our computer. Those who f:lnd this un
duly restrictive, may dream of 9 or 10 bit .:tddresses 
with consequently longer machine words. 
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For design purposes, we will imagine stacks of 
32K words of 32 bits each with a 1/2 microsecond cycle 
time. This will provide a main store of 215 x 22 x 26 

or 8 megabytes. We further imagine the cost of such 
a main store to be around $6500. (Estimates of 32K 
words by 32 bits for $100 were made as long ago as 
1972. ) 

Even with stacks as large as these, they will 
occasionally become full or empty. These "exceptional" 
conditions will generate interrupts for our computer 
when an attempt is made to reference an empty stack or 
to preserve a full stack. 

Brief Description of the Hardware 

SOCRATES is a two's complement, binary, 3 address 
computer with 64 addressable registers of 32 bits each 
Each register is backed up by a pushdown stack of 32K 
words. Registers are accessed via 3 busses, two read 
and one write, so that data fetch and store may be 
done in parallel. 

One register and its associated stack are shown 
in Figure 1. References of modes 1 and 3 go directly 
to the TOP register. Mode 2, on reference to a source, 
causes the following sequence of operations to be car
ried out: 

1. 

2. 

3. 

4. 

When the 
this set 

1. 

2. 

3. 

4. 

If (K) = 0, generate an irterrupt because the 
stack is empty. 
When BUSY = 0, present (A) on read bus 1 or 
2 as requested. 
When data adsorbed by CPU and stack is re
leased, start the popping operation on the 
stack. Make BUSY = 1, and decrement the 
counter K + (K) - 1. 
When pop is complete and new word is in 
register B, copy new word from B into A 
and make BUSY = O. 

stack is used as a destination in mode 2, 
of operations is executed: 

If (K) = 777778 generate an interrupt be
cause the stack is full. 
When BUSY = 0, accept information from WRITE 
bus and give release to CPU. Make BUSY = 1. 
Begin preserving stack writing old word 
from B into stack. Increment the counter 
K + (K) + 1. 
When preserve is complete, copy word in A 
to register B and make BUSY = O. 

This scheme of double buffering ensures that only 
when a single stack is referenced twice in a single 
instruction, the first time in mode 2, will there be 
a delay due to the stack cycle time. 

Of the 64 registers in the CPU several are some
what different from the above. Register a contains 
all zeros and attempts to load, preserve, or pop it 
are ignored, but are not considered to be faults. 

Register 1 serves as the program counter and 
Program Status Word (PSW) for the machine. Several 
instructions reference this register implicitly and 
are described in the next section. Figure 2 shows the 
top cell of register 1. 

The contents of the third byte (PS) specifies the 
stack which holds the next instruction to be executed, 
while the fourth byte (PD) names the stack holding 
"used" instructions. The instruction fetch cycle con
sists of moving one word from the PS stack to the PD 
stack and making a copy of the moved word in the in
struction register. Mode 2 is always implied for both 
stacks involved in an instruction fetch. 

Interrupts 

There are two general classes of interrupts to be 
considered. External (I/O) interrupts will be honored 

166 

write 

readl 

read2 
_--.--+---+--_}nusses 

BDELIUM 
CHTHONIC 

PENCE 
EWE 

A - "Top of stack" 

B 

stack 

Figure 1. One register with its associated stack. Suc
cessive source references in mode 2 will present 
AULD, then BDELIUM, then CHTHONIC, etc. 

IS 1 ID 1 PS I PD 

Figure 2. The top cell of register 1. IS and ID are 
the interrupt source and destination while PS and 
PD are the main program source and destination. 
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between instructions only, the current instruction be
ing allowed to complete its execution. Internal inter
rupts, however, may arise during the course of execut
ing an instruction and must be honored at once. Four 
possible internal interrupt conditions can occur: 
First Source stack is empty, second source stack is 
empty, arithmetic fault, and destination stack is full. 
Suppose for example, the instruction to be executed is 

At + At -+- -I-B 

and the nestination stack B is full or the source stack 
A has only one item in it or perhaps the addition re
sults in an arithmetic overflow. In any of these 
cases, the items removed from the source stack in the 
course of partially executing this instruction must be 
replaced, lest they be lost. Then the instruction may 
be reinitiated after the interrupting condition is 
repaired--perhaps by scaling the data, or draining the 
destination stack. 

We see therefore that the wired in interrupt rou
tine must restore the source stacks to the condition 
they were in before the instruction commenced. We 
will leave it to the software to move the offending 
instruction back from the PD to the PS stack. Hence, 
upon detection of an interrupt condition, we must: 

1. If internal, restore source stacks if they 
were accessed in mode 2. 

2. Push down stack 1 preserving the current PSW. 
3. Swap the two halves of the old PSW bringing 

the interrupt source and destination to the 
lower half and the main program source and 
destination to the upper half. 

Suppose that the main program source and destin
ation were stacks 2 and 3 and that the interrupt 
handling routine is stored in stack 36 and uses 37 as 
a destination. Then before an interrupt, stack 1 
holds a PSW which looks like: 

+ 36 37 2 3 

and after an interrupt it looks like: 

-+- 2 
36 

3 36 37 
37 2 3 

This serves two functions. First, return from an in
terrupt is accomplished simply by popping stack 1. 
Second, the interrupt routine can find out (by examin
ing the upper half of stack 1) where the main program 
resided which generated the interrupt (assuming it was 
an internal interrupt). 

Condition Codes 

Since instruction fetch is defined to be a stack 
operation, the mode bits of the two low order bytes of 
stack 1 are available for other uses. Bits 15 and 14 
(the mode bits of the PS) and bits 7 and 6 (the mode 
bits of the PD) are called the "condition codes". 
They are preserved with the rest of the PSW upon in
terrupt or subroutine calls. They may be tested by 
various bit sensing instructions (see section on the 
set of instructions). 

For arithmetic operations, the condition codes 
will be set as follows, depending on the value of the 
resultant: 

bit 15 0 if result is zero, = 1 if non-zero. 
bit 14 0 if result is positive, 

lif result is negative. 
bit 7 01£ no carry out of bit 31, 

11£ carry generated. 
bit 6 Oif no overflow or underflow, 

11£ overflow or underflow. 

For search and move instructions, the condition bits 
tell what caused the operation to terminate: 

bit 15 = 1 if comparand was found. 
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bit 14 = 1 if flag word was found before match. 
bit 7 1 if source was empty before match. 
bit 6 1 if destination was full before match. 

After an interrupt is generated, the four condition 
bits taken together have the following meani.ngs: 

internal interruEts_ 

15 2 142 72 6 

0 0 0 0 reserved for service calls 
0 0 0 1 source 1 empty 

'0 0 1 0 source 2 empty 
0 0 1 1 destination full 
0 1 0 0 arithmetic overflow 
0 1 0 1 divide fault 
0 1 1 0 exponent overflow 
0 1 1 1 exponent underflow 

external interruEts 

15 2 142 7, 6 

1 M stack 7M generated the interrupt. 
o ~ M ~ 7 

Input/OutEut 

Depending upon the affluence of the purchaser from 
1 to 8 I/O channels may be implemented. They are at
tached in place of stacks 77, 76, ... , 70. As far as 
the CPU is concerned, these stacks do not change by be
coming I/O channels. They may still be used in a stan
dard way. But upon issuing a Begin Output instruction, 
(BID n) for stack n an autonomous transfer is begun in 
the fashion detailed in Figure 3. I/O takes place from 
the physical "top of the stack" in byte by byte format, 
left-to right. The physical top of the stack is the 
fourth word of the stack as seen by the CPU. The first 
word seen by the CPU forms the channel instruction reg
ister, device selector, interrupt mask and dE~vice :stat
us register (8 bits each). The next word is the device 
address register (for drums and disks) while the third 
word holds the number of bytes to be transferred. 

Programming Considerations 

A number of programming problems have been looked 
at in greater or lesser detail. In this section, we 
will present some results of these examinations. In 
general, our philosophy has been that time rather than 
space should be optimized. We would be most interested 
in hearing from any readers who can think of other 
program examples where our selection is found to bE~ 
either helpful or inadequate. 

LooEs 

LISP and other recursive languages notwithstandin& 
most computer programs rely heavily upon iterative 
loops. Figures 4 - 9 show a typical DO loop and its 
translation into assembly language code for SOCRATES 
and for a conventional type machine. The reader will 

DO 10 I = 1,50 
A(I) = B(I) + C(I) 

10 CONTINUE 

Figure 4. A typical FORTRAN DO loop 

ENI 49,1 
.10 LDA B,l 

ADD C,l 
STA A,l 
IJP .10,1 

Figure 5. An assembly language translation of the 
program of Figure 4 for a conventional 
machine. 5 words of storage. 351 memory 
references. 



ADD 0,1/49, I 
NOP .10 
ADD O,B,{oBTEMP 
ADD O,C,{oCTEMP 
ADD Bt,Ct,{oATEMP 
DZS 1,#1,1 
LBK .10 
MOV fI50,BTEMPt, {oB 
MOV 1150, CTEMPt, {OC 
MOV 1fi50,ATEMPt,{OA 

Figure 6. The assembly language loop for SOCRATES 
assuming that Band C must be preserved and A 
must be left upright. 10 words of storage. 751 
memory cycles. (NOP through LBK executed and 
then moved back to PS 50 times followed by 3 
moves of 50 each. Assumes top of stacks 
"instantly available"). 

LDA B 
ADD C 
STA A 
LDA B+1 
ADD C+1 
STA A+1 

STA A+49 

Figure 7. The unfolded loop for maximum speed exe
cution in a conventional one address machine. 
150 words of storage. 300 memory references. 

ADD B,C,{oAINV \ 
MOV #l,Bt,{oBTEMP 3 x 49 
MOV #l,Ct,+CTEMP 
ADD B,C,+AINV 

ADD B,C,{oAINV 1 
MOV #49,BTEMPt,{oB 49 
MOV #49,CTEMPt,{oB 49 
MOV #50,AINVt,{oA 50 

Figure 8. An unfolded loop for SOCRATES which pre
serves Band C and re-erects A. 

ADD Bt,Ct,{oA 
ADD Bt,Ct,{OA 

ADD Bt,Ct,{OA 

Figure 9. The unfolded loop assuming that Band C 
are not needed again and that A is left inverted. 
50 words of storage. 50 memory cycles. 

note that the program for a conventional machine coded 
as a loop (Figure 5) requires 351 memory cycles while 
the similar program for SOCRATES (Figure 6) requires 
751 cycles. 300 of these extra cycles are caused by 
the necessity to "pour back" the 6 instructions of the 
loop. Another 150 can be accounted for by the neces
sity to restore Band C to re-erect A. Figures 7 and 
8 compare an "unfolded" loop approach to the problem. 
The conventional machine requires 300 memory cycles 
and SOCRATES· 296. Finally, in Figure 9, we show the 
SOCRATES program which might be written if we know 
that Band C were no longer needed and that it was 
permissible to leave the vector A upside down. It 
requires only 50 memory cycles. 

Merge 

A typical operation performed on a digital com
puter is to merge two sorted lists into a single mas-

ter list. Figure 10 shows a conventional machine pro-

LOOP 

BFIRST 

ENI 
ENI 
ENI 
ENI 
LDA 
SUB 
JMA 
LDA 
STA 
INI 
INI 
IJP 

STA 
INI 
INI 
IJP 

199,4 
0,1 
0,2 
0,3 
B,l 
C,2 
BFIRST 
C,2 
D,3 
1,2 
1,3 
LOOP,4 

D,3 
1,1 
1,3 
LOOP,4 

put number of words into B4 
clear index register 1 
clear index register 2 
clear index register 3 

minus (B < C) 
jump on A 

count down on index reg.4.jump 
to loop 

Figure 10. A rather straightforward algorithm to 
merge lists Band C into D. Assume 100 items in 
each list. 2204 memory cycles required. 

gram for merging lists Band C into list D. The lists 
Band C are assumed to be in ascending order and each 
of length 100. Counting instruction fetches and data 
references, there are 2204 memory cycles required. 
Figure 11 is the comparable program for SOCRATES. It 

MVI #1, ,{oI 
#199 

GTS B,C, 

MOV #l,ct,{oB 
MOV #l,Bt,{oD 
DZS I,tI1,I 

MOV t15, PD, PS 

make 1=199 
skip next instruction 
if B > C 

put C on top of B if C ~ B 
move word from B to D 
I-1~I)if result is zero 

skip 
move 5 words from program 

destination to program 
source. Returns control 
to GTS. instruction 

Figure 11. 
requ:Lred. 

Merge algorithm for SOCRATES. 2002 
Leaves D upside down. 

requires 2002 memory cycles. Figure 12 is an unfolded 
version of the same program requiring 600 memory cycles 

GTS 
MOV 
MOV 
GTS 
MOV 

B,C, 
#l,Ct~B 
#l,Bt,{oD 

B,C 
#l,Ct,{oB 

MOV #l,Bt,{oD 

200 x 3 instructions 

FigurE! 12. Unfolded merge algorithm for SOCRATES. 
600 memory cycles. 

GTS compares the top of Band C. If C is smaller than 
B, we put the top item from stack C onto stack B. Then 
we move the top of B onto D and repeat. 

Conclusions 

We have presented one possible stack oriented ma
chine and discussed briefly some aspects of programming 
it. In the introduction we posed some questions and it 
is now the time to discuss them in the light of what we 
have seen. 
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Is the machine tolerable? Yes. It has a fairly 
clean organization. Vector operations are natural. 
Iterative loops can be handled. Obvious problems would 
arise if random access to large arrays is required, but 
for many situations it appears to be adequate, even if 
far from ideal. 

How big a penalty do we pay? For the kernels we 
have examined it seems that SOCRATES would require 
2 - 3 times as many memory cycles as would a coordin
ate address based machine. Had the access ratio been 
10 to 1 the point would have been debatable, but we 
observe about a 30:1 cost-performance improvement and 
that is enough to get excited by. 

Can it be programmed by human beings? We have 
included some examples of how SOCRATES might handle 
some more or less common problems. To address the 
larger question consider that our quality software 
brethren urge us to, among other things: 

• keep segements short - say 50 lines or so 
• use one path in/one path out programming 
• pass parameters between segments in a highly 

structured manner 
• use local variables within a segment that 

evaporate when the segment becomes inactive. 

It is my contention that all four of these things can 
be done simply and naturally on SOCRATES. 

I would be less than truthful, however, if I left 
the impression that I would prefer SOCRATES to a con
ventional computer if cost were no object. I would 
not. 
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CONJOINED COMPUTER SYSTEMS: 
AN ARCHITECTURE FOR LABORATORY DATA PROCESSING 

AND INSTRUMENT CONTROL * 

Donald F. Wann Robert A. Ellis 
Computer Systems Laboratory 

Washington University 
St. Louis, Missouri 

ABSTRACT 

A new computer system organization and imple
mentation is described and its application to problems 
in both clinical and research laboratory biomedical 
applications is outlined. This system, called a 
Conj oined Computer System to emphasize the idea of 
computer coordination, consists of a few stored
program computers, each with a fixed assigned task, 
and inter-connected with combined data and control 
paths which may be easily changed. Such systems 
appear to be useful in situations where a) one or 
more major laboratory peripheral devices are included, 
b) operational speed is required which is greater 
than that which can be obtained from a single pro
cessor implementation, and c) the algorithms utilized 
can be partitioned into two or more machines such 
that only moderate intercomputer communication rates 
are needed. This architecture offers the possibility 
of simplifying the peripheral interfacing, reducing 
total computation time, allowing rapid system recon
f:i.guration, enforcing the discipline required for 
structured programming, and, by means of a centralized 
program development console, increasing the effi
d.ency of program development. 

I. INTRODUCTION 

We have recently been examining the impact that 
"zero-cost" computers will have on the designer of 
scientific data processing systems for use in both 
clinical and research laboratory medical applications. 
TIle trend to the widespread use of minicomputers and 
the computer-on-a-chip will result in radical changes 
in the style of computer usage in these configurations. 
In particular, systems with multiple computers will . 
become commonplace. By dedicating several computers 
to the solution of biomedical data processing problems 
the following advantages appear to accrue: 1) I/O com
munication is simplified, 2) peripheral interfacing is 
reduced in complexity, 3) total computation time is 
reduced, 4) system economies are realized, and 5) 
rapid reconfiguration is possible. However, such 
trends are not without their problems. The need for 
standardized and flexible intercomputer communication 
(both software and hardware), for simplified expansion 
and contraction, and for efficient programming and 
debugging, will become of prime importance in such en
vironments. 

Unlike other multicomputer and multiprocessor 
arrangements, we have developed a system organization 
crnsisting of a few stored-program computers, each 
with a fixed, assigned task, and loosely inter
c:onnected with fixed data and control paths which. are 
different from system to system. We refer to this 
type of arrangement as a Conjoined** Computer System 

* TIlis work has been supported by the Division of 
Research Resources of the National Institutes of 
Health under Grant RR-0096. 

** conjoin: "to join together for a common purpose", 
Webster's Seventh New Collegiate Dicttonary. 

(CCS) to emphasize the notion of computer coordination. 
We make a dj.stinction between the type of arrangement 
to be discussed and that of multiprocessors, array 
processors l and computer modules. Multiprocessor 
literature deals principally with the application of 
a few rather large and powerful machines in a problem 
independent configuration for the solution of a given 
task. Reconfigurability, use of microcomputers, and 
interconnection schemes are not the central features 
of such systems. Likewise, array processors, 
although utilizing multiple computers, are normally 
not reconfigurable, the connections tend to be of an 
iterative nature, and the interface to peripheral 
devices is of minor concern. Workers at Carnegie
Mellon U~iversity have used the term "computer
modules" to describe a modular computer system whose 
components are stored-program computers. The scheme 
seems to be intended for use in systems which consist 
of hundreds or even thousands of computer modules 
where the interconnections are not often changed. 

In contrast we see immediate benefits in our 
system organization which consists of a few stored 
program computers engaged in specialized tasks and 
having flexible interconnection. The rationale behind 
this choice is predicated on the appropriate appli
cation of the CCS to the solution of laboratory com
puting problems. The tasks for which CCS are most 
useful are those which a) have one or more major peri
pheral devices, b) require improvements in processing 
speed or program efficiency, and c) utilize algorithms 
which can be partitioned into two or more machines such 
that the necessary communication between machines is 
at a very h:lgh prograrmnatic level - thus requiring 
moderate intercomputer communication rates. 

A key design principle of a CCS requires that the 
configuration be constructed such that a given pro
cessor module connects to a single major peripheral 
device. By committing a processor module to each 
peripheral, the interface design is extremely simple, 
since typically only one class of I/O is used. 
Furthermore, the peripheral-processor combination can 
be treated as an entity in prograrmning or in configur
ing new systems. TIl us , each peripheral can be viewed 
as a resource and can be easily shared among various 
systems . 

In evaluating this approach we analyzed several 
existing laboratory computational t~s~s that had been 
implemented~ by us or our associates ' and discovered 
that nearly all of them would benefit from this con
joined arrangement. It should be emphasized, however, 
that not every problem can be partitioned so as to make 
this an appropriate architecture. Obviously there are 
tasks which are best solved with single machines, with 
highly structured array processors, or special purpose 
configurations. TIle CCS approach merely complements 
these other architectures. 
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II. SYSTEM CONFIGURATION 

A Conjoined Computer System consists of proces
sor modules, an intercomputer communication network, 
peripheral devices, program development connections, 
and a program development console. These items are 
illustrated in Figure 1 which depicts a "representa
tive" configuration and contains four processor 
modules, PMl through PM4• Each of these modules is 
a complete processing unit, containing perhaps 4K or 
more of memory and has three types of connections to 
the remaining portion of the network: 1) the inter
computer communications illustrated by the heavy 
lines, 2) the program development connections (light 
lines), and 3) the peripheral device connections. 
The intercomputer communications lines are bi-dir
ectional paths that provide both data and control 
signals between machines. These paths are established 
by the user of the CCS and are determined exclusively 
by the algorithm requirements. The paths are com
pleted by simple cable connections, thus can be easily 
reconfigured. For simplicity in software, daisy chain 
data communications are avoided if possible; observe 
that PM4 communicates only with PM3 ; if PM

4 
needed 

access to PMl a separate cable would be installed. 
Each processor module has a number of available ports 
to this communication highway as indicated by the 
T-shaped connector, and the machine terminations are 
labelled using double subscript notation. A brief 
description of each of these major components is 
given below. 

A. Processor Modules 

The processor modules are self-contained, stored
program computers capable of being interconnected into 
networks. As such they generally must contain a cen
tral processing unit, memory, and ports for network 
interconnection. Our design goal was to implement a 
sufficiently general interconnection technique so that 
a given system could contain PM's of the microcom
puter, minicomputer, and specialized high performance 
processor variety. 

B. Processor Interconnections 

Processor module interconnection is via processor 
ports. Both DMA and programmed I/O paths could be 
implemented; however, because of the distributed pro
cessing power of a CCS (which allows a PM to be dedi
cated to a single task), we have found that standard, 
single word programmed I/O transfers appear adequate 
for the majority of applications. To minimize the I/O 
programming complexity, a handshaking protocol path 
has been included in the port hardware and cabling and 
this establishes "port ready" levels. Generation of 
these protocol signals is automatic and the single 
word I/O commands have a test for successful data 
transfer. Thus, for the sending PM to complete a data 
transfer, a word will both have to be written by the 
sending PM and read by the receiving PM. This commu
nicating protocol is identic~16to that used in the 
construction of macromodules ' and will permit macro
modules to be directly utilized in Conjoined Computer 
Systems. With the exception of a single mode bit, all 
other control information is encoded and transmitted 
in data words. Notice that the elimination of the 
DMA for an intercomputer communication medium does not 
preclude its use between peripheral devices and a pro
cessor - where it may often be the optium choice. 
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C. Peripheral Devices 

As noted in Figure 1, processor modu.les l~ 2, and 
4 have peripheral connections. Traditional design 
techniques are used for interfacing these devices to 
PM's via device ports and this usually permi ts stan
dard manufacturer's interfaces to be employed. If a 
special interface must be designed, the interfacing 
task is simplified because at most a single major de
vice is attached to each PM and control of the device 
by the system is through the PM. This means that each 
device can be addressed and controlled at a much highe 
level than is normally available. However, because of 
economic considerations, the one peripheral device -
one processor plan may have to occasionally be modi
fied, but continued reduction in microcomputer costs 
should alleviate this problem. 

D. Program Development l~etwork 

The configuration just described - PM, PD, and 
intercomputer connections - is the basic eomputation 
network. Dr. Charles E. Molnar of the Washington 
University Computer Systems Laboratory has proposed 
two additional elements for efficient program develop
ment: the program development console (PDC), and con
nections from the PDC to each computer module. Prograr 
development consists of preparation, editing, filing, 
loading, and debugging. The PDC contains a CPU, sys
tem I/O devices (disk, magnetic tape, etc.) adequate 
fast memory to nm system programs, keyboard and scope, 
and a hard copy device. Use of the PDC makes program 
development very convenient and in general the PDC can 
be quite elaborate in order to insure maxi.mum program
mer productivity. As a consequence, most of th(~ manu
facturer's software can be utilized with little or no 
modification. This equipment does not need to be 
permanently committed to a given system for the PDC is 
a self-contained, portable unit that can be shared 
among systems and users. The PDC can be removed from 
the CCS when program development is not taking place. 

The network connects the program development con
sole to the processor modules via ports which provide 
access to the machine state, e.g., address register, 
memory contents, program counter, control .signals, etc. 
Because the PDC need not simultaneously conununicate 
wi th more than one PM at a time, this network is 
formed by a sIngle, daisy-chained path. This requires 
that the PDC select one PM and all signals which 
follow apply only to the selected PM until a new selec
tion is made. Because of the sequential transmission 
of information on this network, the PDC port provides 
a number of features - such as address matching for 
synchronized program stopping - which requilre fast 
reaction to changing machine states. 

Since the PDC is removable, the rest of the CCS 
should contain whatever devices are necessary (disks, 
tapes, scopes, etc.) for operational use; these are 
uniquely associated with the functioning system. 
Therefore, when the PDC is not connected to a spfacific 
CCS, some alternate equipment must be present for sys
tem start-up and program loading. Obviously, th:ls 
equipment is much simpler (and less expensive) than the 
full PDC. 

1. Program Preparation. Program preparation con
sists of the steps of text entry and editing, aSI;embl
ing, compiling, link-editing and filing. The PDC can 
use standard software products to perform these 'tasks. 
Because the PDC is self-contained, connecti.on to the 
CCS is not required for program preparation. Programs 
can be prepared to run in PM's which mayor may not 
support an opp.rating system. The CPU in the PDC does 



not: have to be the same as the PM's; cross assemblers 
and compilers can prepare code for computers of dif
ferent types. 

2. Program Loading. The initialization and pro
gram loading of each PM can make use of standard boot
strapping procedures because the PDC has access to the 
PM machine states. It is also PQssible to use stan
dard, or only slightly modified, loading programs and 
load module formats. As mentioned earlier, a method 
which does not rely on a PDC is also required for 
these steps. 

3. Program Debugging. Programs in individual 
PM's typically are simpler than those written for con
ventional minicomputers because of the dedicated task 
organization of the system. However, the programs 
will be complicated by the intercomputer connnunication. 
It is for this reason that the PDC is physically con
nected to all of the PM's in a system. It is thus 
possible to use standard program debugging techniques, 
both control panel and software procedures. For 
example, the usual coresident debugging packages can 
be executed with little or no modification. Or new 
debugging systems may be developed which insert break
points and examine and modify memory locations, all 
controlled from the PDC. In addition, because the PDC 
has access to the PM machine states, "virtual consoles" 
can be implemented in the PDC by software. This per
mits active contro1-panel-style operation of more than 
dne PM at a time. Of course, the PDC could also con
tain a special physical control panel which could be 
connected via software to any PM in the system. 

III. IMPLEMENTATION 

This section contains a description of the actual 
implementation of a Conjoined Computer System. For 
si.mplicity, the CCS to be discussed utilizes only a 7 si.ngle type of computer, the Texas Instruments 980A 
These machines are sufficiently low in cost for sever
al to be used in a single system, they possess charac
tE~ristics that are similar to other minicomp\lters, and 
they were readily available in our Laboratory. As 
will be explained later, communication rates between 
machines of nearly 200,000 words per second can be 
achieved using the programmed I/O facilities and thus 
all PM interconnections were made via this type of 
channel. The direct memory access ports, which will 
yield rates of about one million words per second, 
were not used. 

A. Communication Pathways 

To estab lis.h a communication path between two 
machines it is necessary to insert a special CCS 
printed circuit card into an I/O slot of each of the 
machines and to connect these cards together using a 
communication cable. Each I/O card corresponds to a 
"port" and is assigned a port number, via a thumbwheel 
s'witch on the card. The present design permits 8 
ports (numbered 0 to 7) and, since it is unlikely that 
a computer network would be maximally connected, 
should allow a quite elaborate configuration of 
m.achines. Provision has been made for future eXpan
sion to a total of 16 ports. 

A port contains both a "send" and a "receive" 
ehannel which are basically identical in structure. 
Each channel has the following signal's: 

16 data lines 
1 mode line 
1 data delivery line 
1 data delivery return line 
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The data delive~ and data delivery return lines employ 
transition logic and provide for handshaking protocol 
signaling between machines. The remaining lines use 
conventional two-state levels to indicate 0/1 values. 
The mode line is employed to identify the type of in
formation that is being sent (received). This feature 
permits the sending of a 16 bit data word (mode = 0) 
or a 16 bit control word (mode = 1), the line being 
~ed at the receiving port to determine the 'mode of the 
received dat.a. In the implementation described here, 
the sending of a control word always results in an in
terrupt request. When the interrupt state is entered 
the control word can then be read by the program in the 
receiving computer. For example, it might be desired 
to have the control word cause a disk to start seeking, 
etc. 

B. Instructions 

For each port there are three basic functions 
that can be performed, with each function being sub
divided into a read or a write action. This results 
in a total of six instructions per port. These in
structions are summarized below, where n is the port 
number: 

Send Data Word to Port n 
Receive Data Word from Port n 
Send Control Word to Port n 
Receive Control Word from Port n 
Write Status Word to Port n 
Read Status Word from Port n 

The send and receive instructions (data or control) 
check the state of the channel (via the channel state 
hardware) and if the channel is "ready" they may trans
mit or receive a word. In this situation the next 
instruction is skipped. If a word cannot be trans
mitted or received, the next instruction, which is 
usually a bra~ch, is executed and this can cause the 
transmitting or receiving instruction to be re-executed. 

The status word contains bits to enable/disable 
the interrupt, to reset the channels, and to sense the 
channel sta.tus. 

C. Data Transfer Rates Between Processors 

It is useful to determine the rate at which words 
can be transferred from processor to processor via the 
intercommunication pathways. For simplicity, we shall 
only consider communication between two machines: the 
rates would be modified depending on the actual number 
of processors in a network. Let the transmitting pro
cessor be denoted by T, and the receiving processor 
by R. Since the machines will be executing individual 
non-synchronized instructions (each responding to its 
own system clock) it is not possible to compute exact 
rates; however, lower and upper bounds can be easily 
estimated. The form of the machine language program*** 
necessary for communication is listed below: 

Machine T 

[
r+ Write 
L-Branch 
-- Test & Branch 

Machine R 

~
Read 

L-Branch 
Test & Branch 

The Write :lnstruction employes indirect addressing to 
obtain the data from the memory and a "busy" test is 
included in the instruction in order to che'ckthe chan-

'nel status. If the channel is free (not busy) then the 

*** This is the format for the TI980A. Other machines 
would have similar programs. 



next word is placed on the channel, the Branch in
struction is skipped and the rest & Branch instruc
tion executed. If the channel is busy, the uncon
ditional Branch is executed and this causes the 
Write to be tried again. The Test & Branch instruc
tion determines if all words of the block have been 
sent; if not, a branch to the Write is effected -
otherwise the transmission is finished and the machine 
proceeds to the next section of code. The program for 
processor R operates in a completely analogous manner 
except that the machine is reading data from the chan
nel rather than writing data onto the channel. 

The rate at which words can be transferred from 
T to R can be determined under two different condi
tions: 1) T always finds the channel available and R 
can read the data from the channel as rapidly as it 
arrives, and 2) T and/or R must occasionally wait 
while a word is being transmitted over the channel (or 
the protocol signals are being generated). The first 
case will yield the maximum theoretical transfer rate 
and is determined from the typical transfer paths 
diagrammed in Figure 2. The instruction execution 
times and transmission path delays are indicated and 
they result in a 4.5 microsecond delay per word, or a 
rate of nearly 220,000 words per second. In the sec
ond case we assume that the logic and transmission 
delays are sufficiently large that the sequence of 
Figure 2 cannot be obtained. Instead, the busy con
dition is encountered and the Branch instruction (and 
an additional Write and Read instruction) are execu
ted. Computations show that the delay time is leng
thened to about 8.75 microseconds yielding a trans
fer rate of about 114,000 words per second. To verify 
these values, tests were run with two TI980A computers. 
Depending on whether direct or indirect addressing was 
employed, rates of between 180,000 and 133,000 words 
per second were obtained. 

D. Program Development Console 

The implementation of the PDC including the com
munication to the various machines, the operating 
software, and the console interactions, is currently 
in progress. There are a number of very interesting 
techniques and programmatic aspects of this investi
gation, including problems of resetting, restarting of 
the multiple machines, and of high level debugging 
that are being considered. Details of the current 
work will be reported on in the future. It should be 
noted, however, that the PDC has broader application 
possibilities beyond the CCS architecture, and could 
be used as a general aid in minicomputer and micro
computer program development. 

E. Programming 

A set of subroutines has been written which may 
be called from FORTRAN or assembly language programs 
to perform CCS operations. Data routines poll ports 
and send or receive data. Control routines, in addi
tion to sending or receiving data, cause interrupts on 
ports which are properly enabled and handle enabling, 
servicing, and disabling interrupts. 

1. Data Routines 

a. SEND (X,N,D). Send one data word, D, to the 
specified port N. If the data is not accep
ted into the buffer, the routine returns to 
X. 

b. RCEIVE (X,N,D). Receive one data word from 
port N and put it at D. The routine goes to 
X if no data is present. 
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c. SENDM (N,M,D). Send M data words to port N 
from D. Return only after M words have been 
sent. 

d. RCEIVM (N,M,D). Receive M data 11l0rds from 
port N and store them at D. Return only 
after M words have been received. 

e. TEST (X,D,N). Test for port request.ing 
activity in the order defined in a t.able. 
Return with the port number in N and the data 
word in D. If all ports are tested and no 
requests are present, go to X. 

f. NEXT (X, D,N). Continue testing for receipt 
of a data word in D. If all ports are tested 
and no requests are present, go to X. 

2. Control Routines 

a. SENDC (X,N,C). Send one control (interrupt) 
word C to port N. If the word is accepted 
and interrupts have been enabled, an inter
rupt occurs in the receiving processor. If 
the word is not accepted, the routine returns 
to X. 

b. ENABLE (N,SUB). Enable interrupt on port N. 
SUB is the ent ry point of a user subroutine 
where control is transferred after an :lnter
rupt on N. 

c. DISABL (N). Disable the interrupt on port N. 

IV. APPLICATION 

The CCS architecture is well suited for labora
tory-instrumentation type tasks where a number of 
peripheral devices must be controlled. In the past 
this has usually been accomplished by employing one 
central processor. Since the peripheral devices are 
usually more costly than the CPU, the result is often 
a system in which sharing of the various peripherals 
from project to project is quite difficult. In addi
tion, often there is a tendency for such single com
puter systems to grow in an uncontrolled manner. For 
example, a $100,000 configuration may be p,erforming 
five $20,000 tasks. With the conjoined approach it 
is possible to easily create separate configurations 
and/or to share the peripheral resources, since both 
the hardware and often much of the softwarf= necessary 
to communicate with a device is associated with the 
processor module. 

As an example of this technique, we will consider 
a system for eounting of microscopic silver grains 
overlying biological tissue. A system is currently 
being employed that utilizes a single computer, a 
laboratory microscope, a computer controllE~d micro
scope stepping stage, a television camera for viewing 
of the tissue through the microscope, a CRT display 
for on-line viewing of the processed video~ an~ a 
keyboard-scope for communication with the user. The 
arrangement is depicted in Figure 3, which also indi
cates the peak data rates that can be expeeted along 
the various channels. The image processing algo'rithm 
involves the movement of the stage to focus the image, 
collection of video data, analysis of this data, dis
play of the analyzed data, movement of the stage in 
the lateral direction to a new field, and occasional 
operator interaction. Because of the variety of peri
pheral devices, and because of the asynchronous nature 
of the data collection of the television camera, the 
programming requires the use of various interrupt ser
vice routines. The overhead involved in these rou-
tines, plus the time necessary to refresh the display, 



move the stage, etc. severely limits the spped at 
which the individual grains can be counted. As a re
sult, we are now in the process of implementing this 
in. a conjoined format as is illustrated in Figure 4. 
Here four processor modules are used, each connected 
to an individual peripheral device. By this dedica
tion, the interrupt mode is eliminated and the pro
gram development for each module is quite straight
forward. The various data paths are dictated by the 
pa.rtitioning of the algorithm operations into func
tional blocks, many of which can be overlapped. A 
condensed version of the system operation is outlined 
in. Table 1 which indicates the task of each processor 
module as well as the time period devoted to its 
execution. Our preliminary evaluation suggests that 
the CCS configuration (using processor modules with 
memory cycle times comparable to the existing PDP-12) 
would achieve a doubling of processing speed while 
also greatly simplifying both the hardware operation 
and software programming. 

V. SUMMARY 

The availability of conjoined computer system 
components offers several significant advantages to 
the designer of laboratory data processing and instru
ment control systems in which a variety of peripheral 
devices have an important role. In particular we see 
the following benefits: 

1) The ability to solve certain real-time processing 
tasks should be improved since the use of several 
processors allows concurrent manipulation of input 
data, output data, and computations. 

2) By assigning a single processor to each major 
peripheral device a significant reduction in inter
face complexity with the peripheral can be achieved. 

3) Rapid reconfiguration of a system including both 
expansion and contraction, is possible. 

4) Peripherals could be shared among users, since a 
high level, standardized communication (via the pro
cessor module) is available. 

5) Partitioning the algorithm into hardware rather 
than use of memory address division should minimize 
(or virtually eliminate) the occurrence of adverse 
program interactions in which one program in memory 
alters another. 

6) Since modularity is at a very high level and 
inter-computer communication is standardized, both 
rapid design and economical implementation can re
suIt. The employment of multiple copies of the same 
processor will yield cost economies since advantages 
can be taken of the obvious trend toward high vol
ume, low-cost microcomputers. 

7) The application of the program development con
sole will simplify the software - even though mul
tiple processors are utilized. This may well be one 
of the major achievements of the project. 

8) The .system organization enforces the discipline 
required for structured programming. 
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Abstract 

Due to advances in hardware technology, proces
sors are no longer the limiting factor in system 
costs--the software and configuration portions are 
now dominant. Hardware can be effectively applied 
to these problems as well: low processor costs have 
revitalized multiprocessors and multicomputers; the 
executive functions entailed by such architectures can 
be facilitated with powerful yet flexible hardware 
mechanisms. This paper outlines the hardware 
aspects of an experimental distributed function compu
ter intended to examine these issues in the context of 
real-time control systems. 

Introduction 

Modularity is one of the most critical aspects of 
a computer embedded in a real-time control system 
[1 J. Each application is usually unique, with initially 
ill-defined computer requirements which continue to 
evolve throughout the lifetime of the system. There
fore, the computer must readily accomodate incre
mental adjustments in capacity without significantly . 
impacting either the hardware or the software. This 
problem is particularly acute in aerospace and mili
taryapplications, where changes can precipitate long 
and costly reverification and requalification. 

Multisystems (multiprocessors and multicompu
ters) are one of the most promising methods of pro
viding modularity [2 J. Until recently, hardware 
costs have relegated multisystems to those relatively 
few applications which demanded (and could afford) 
the higher reliability and performance that such con
figurations (at least potentially) offered. Even in 
these select circumstances, however, the results 
have many times been less than desired. This has 
been primarily due to the economic necessity of max
imizing processor utilization, which has led to in
comprehens ibly complicated multiprogramming / multi
processing executives. Because of rapid advances in 
hardware technology, processors are no longer the 
limiting resource- -creation and maintenance of these 
baroque software structures is now often the dominant 
portion of system cost. Thus, as the original con
straint is disappearing, continued application of the 
remedy is itself becoming an even worse constraint. 

While individual processor efficiency is of dimin
ishing interest, system-wide supervisory overhead is 
still critical, especially in real-time environments. 
The development of new components as well as im
proved design and implementation techniques is making 
it increasingly feasible to augment executive software 
with hardware. Highly sophisticated functions can be 
consigned to hardware which exhibits much the same 
degree of malleability as software. This suggests 
that a careful re-evaluation of traditional hardware/ 
software interfaces may be in order when designing a 
new computer. 

The enhanced flexibility and precipitous drops in 
cost of contemporary and future hardware may form 
the basis for new multisystems which can effectively 
reduce the predominant software and configuration 
costs. Other benefits to be expected from such 
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architectures include increased reliability, faster 
response times, and the possibility of physical dis
persal. '1'0 help examine these issues, an experi
mental distributed function computer has been initi
ated. The effort is directed toward real-time control 
systems of the late 1970's, including aerospace and 
military applications. Therefore, many of the trade
offs involving hardware are based on the projected 
technology of that period, even though the experiment 
must employ today's hardware. The computer has 
been designated the Modular Computer System (MCS). 

System Philosophy and Overview 

The geographic distribution requirements of real
time control systems typically vary from a few feet to 
a few thousand feet. This factor has a dramatic im
pact on the interconnection mechanism and thus the 
total archi.tecture of a multisystem. The MCS is 
oriented toward the more physically centralized appli
cations. For one reason, the more decentralized 
applications are the object of another concurrent de
sign (to be reported on at a later date); in addition, 
the perspective of this project is the construction of 
one larger machine from a number of smaller ones, 
rather than the interconnection of separate computers. 

Most recent multisystems are multiprocessors 
[3, 4, 5, 6, 7, 8 J, having a shared memory in the 
address space of all processors [9 J. The MCS is a 
multicomputer, in which all interprocessor commun
ication takes place over a set of global busses, as 
shown in Pigure 1. Most earlier multicomputers 
(e. g., mM DCS, ASP) were channel-interconnected; 
the MCS also differs from other modern multicompu
ters which have similar goals but in the context of 
greater geographic dispersion [10 J, and from net
works which have entirely different objelCtives [11]. 

Each processor has a private memory containing 
all of its procedure and most of its data. A processor 
and its memory constitute a processing element. 
Partitioning the processing requirements is facilitated 
by the fact that dedicated control systems operate in 
a well-characterized environment--tasks are per
formed by Some subset of a known set of programs, 
but perhaps in unknown sequences and with unknown 
timing. Even with this advance knowledge, the parti
tioning is still a non-trivial job. The aims and 
approaches of normal program modularization remain 
important: clean decomposition makes it possible to 
develop e~ch module independently, to change one 
module with minimum impact on the others, and to 
understand the system by studying one module at a 
time [12 J; a hierarchical structure Simplifies higher 
level modules through the use of those on lower levels, 
and allows diverse systems to be built on common 
foundations [13 J. The parallelism inherent in a multi
system adds another dimension to the problem-
critical considerations here include the iteration rates, 
precedence relationships, and synchronization of mod
ules. At the same time, the loose coupling between 
multicomputer processing elements constrains the 
intermodule communication. Protection is another 
issue which must be taken into account. 



The final aspect of partitioning in the MCS consti
tutes a significant departure from the historical direc
tion of computer system development. In recognition 
of the changing balance between hardware and soft
ware costs l program modules are assigned to proces
sing elements effectively on a one-to-one basis. 
Multiprogramming is minimized by committing mod
ules which must be unpredictably initiated to their own 
processing elements--processing elements are shared 
only by modules which are known to execute mutually 
exclusively. Preemption of modules is avoided where 
at all possible--interrupts and intermodule messages 
queue themselves for later handling l or activate an 
idle processing element. To prevent deadlocks. one 
module in a processing element may respond to a 
message while another module in that processing ele
ment is blocked (waiting for an answer to a message). 
With proper care. some modules may be replicated 
to reduce either multiprogramming of a processing 
element or traffic between processing elements. 
Certain infrequently referenced global data items are 
kept in the processing elements of associated modules. 
Other global items are accessed often enough that this 
data management task would interface with the primary 
function of the host- -these items are therefore placed 
in processing elements dedicated to administering 
references to them. This philosophy substantially 
uncomplicates scheduling. resource al1ocation. and 
intermodule communication. 

The processor capabilities could be chosen to 
exactly meet the needs of the partitioned modules for 
each application. but this would result in severe adap
tability restrictions as wel1 as logistical disadvantages. 
Instead. the MCS processors are homogeneous. and 
sized such that the demands of the largest most likely 
module can be handled by one processor. Also taken 
into account was the priority given to software sim
plicity over maximizing concurrency or minimizing 
processor cost. This means that in some cases it 
may be cost-effective to employ many processors of 
such a size that one could do the whole job. Conse
quently, while the processors may be overpowered 
for some module requirements. there is little if any 
economic incentive to ful1y utilize them. Processing 
element memories are typically on the order of 1K to 
4K 16-bit words, and while there currently appears 
to be little need for secondary memorYI it can easily 
be provided. Any of several commercially available 
minicomputers would be suitable as the MCS proces
sing element; it is reasonable to expect that approp
riate bipolar LSI microcomputers will appear in the 
foreseeable future. The intended applications appear 
to require configurations of between 10 and 100 pro
cessing elements. 

To be successful, a distributed function computer 
must be founded on flexible, modular intercommuni
cation mechanisms for both hardware and software. 
The MCS incorporates a pool of identical and auton
omous global busses, the number of which depend on 
bandwidth and reliability requirements; the current 
implementation has up to four. For both functional 
and reliability reasons, most I/O devices must be 
accessible to more than one processing element, so 
they are attached to the global busses. Private I/O 
devices are also al1owed. High speed I/O devices 
which require direct memory access are rare, but 
would be interfaced to one or more memory busses as 
well. 

Because autonomy is an important partitioning 
criterion, intermodule coordination and communica
tion are reduced--that which remains is highly disci
plined. All intermodule contact occurs via messages 
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on the global busses. The bus interface hardware 
automatically routes messages properly, regardless 
of static or dynamic processing element assignments 
- -any co- residency is invisible to the software. 
Global data accesses and external I/O operations are 
also accomplished in the same well-defined way. 
Since hardware supports all forms of module inter
facing. these standard protocols extend into the.low
est levels of the system software. 

A hardwired general purpose multiple semaphore 
mechanism is included as one of the devices on the 
global busses, to evaluate its utility in such areas as 
processing element, I/O, and module scheduling, 
resource allocation, intermodule communication, etc 

Al1 these powerful hardware augmentations are 
inexpensive, and yet implemented so as not to stifle 
exploration and adaptation. 

Because the global busses are the key feature of 
the MCS, they are described in greater detail below. 

Global Busses 

The Global Busses (GBs) are paths used by every 
processing element for intermodule communication 
and low to medium speed external I/O. Some form 
of redundancy is necessary so that single-point GB 
failures do not disable the whole system. A bus 
which is physical1y redundant but functionally singu
lar would be of no benefit to the system until an exceI 
tional condition (bus failure) occurred. On the other 
hand, identical but independent busses not only pro
vide this same protection, but also supply added band 
width under normal circumstances. If it is desired 
that the system be failsoft rather than fail-operationa 
full advantage can be taken of this extra bus bandwidtJ 
otherwise. the system must be designed around the 
capabilities of the functionally minimum bus comple
ment. Up to four autonomous GBs may be included 
to meet data rate and reliability requirements. 

Because all devices are closely spaced, the cost 
penalties of parallel transmission over serial trans
mission are minimal. so each GB is one word (16 
bits) wide (plus control). The higher bandwidth of a 
parallel bus reduces transfer latency while compen
sating for protocol and allocation overhead; it also 
allows for external I/O traffic, and insures ample 
margins for growth. 

All devices employ identical interfaces which 
handle GB control and communications, as shown in 
Figure 2. 

Bus Control 

A GB is shared by all devices, so there must be 
a mechanism for guaranteeing that exactly one deviCE 
is transmitting on it at any time. Devices arE~ either 
masters or slaves: masters (processing elements 
and some I/O devices) may obtain control of the bus 
and initiate transfers on it; slaves (most I/O deviceE 
may only participate in such transfers. Each bus is 
independently allocated by bus controllers at every 
master, as seen in Figure 2. With either centralize~ 
or decentralized control there will always be some 
potential failures which would disable a bus, which iE 
a principal motivation for multiple busses. But fail
ures in a centralized controller are more likely to 
affect all of its busses and thus perhaps disable the 
entire system. The reliability of properly impiemell 
ted decentralized control is superior because a fail
ure will probably only disconnect that device from 



that bus. Decentralized control can also be more 
modular: smaller configurations do not have to pay a 
penalty for capabilities needed only by larger machines 
--costs can vary smoothly with system size. Finally. 
decentralized control is faster in that each device 
makes its own bus allocation decisions instead of 
waiting to receive signals from a remote control con
troller. 

Selection of an appropriate bus control procedure 
depends on such requirements as expected distribution 
of bus usage among devices. degree of responsiveness 
to device bus requests. flexibility of the allocation al
gorithm. variability in the number of devices. etc. 
As a consequence of the MCS design philosophy. the 
bus usage of each device can be forecast with reason
able accuracy. This implies the feasibility of a static 
bus control scheme. Whereas a dynamic mechanism 
assigns busses according to the priorities of real
time device demands. a static controller preschedules 
busses according to a priori knowledge or prediction 
of device needs. A device which requires a bus must 
wait until its next turn; the delay depends on the 
number of busses implemented. the number of de
vices earlier in the schedule which want a bus. and 
the length of time these prior users require. When· a 
hus becomes available to a device which does not need 
it. control is passed immediately to the next device 
in the sequence. Since intermodule communication is 
one of the prime partitioning criteria. the full allo
cation flexibility of a dynamic bus controller is un
necessary--adequate responsiveness is further in
Bured by the availability of multiple busses. and the 
higher speed of word-parallel transfers. 

An important requirement for the GB controller 
is modularity. in that varying the number of devices 
should not have significant hardware impact. Dynam
ic algorithms (such as the method of independent re
quests [14 J) tend to involve a direct linear function 
between the number of devices and the number of bus 
control lines. The cables. connectors. and control 
logic must either be initially sized to accomoda te the 
maximum allowable configuration. or be capable of 
incremental adjustments in capacity. The former 
alternative is not only unmodular. both logically and 
financially. but also impractical for moderate to 
larger numbers of devices (e. g.. independent requests 
require two control lines per device). The bus con
troller can be designed to allow for modular incre
ments of logic. although generally the outweighing 
mechanical costs yield no savings over the first alter
na tive. Furthermore. cables and connectors do not 
readily lend themselves to the modularity of the latter 
option. 

A popular static bus control approach which is 
highly modular is daisy-chaining 114 J; an arbitrary 
number of devices may be inserted or deleted at any 
point in the loop without affecting the control lines. 
On the other hand. daisy-chaining is slow (control 
signals must propagate through every device in the 
loop). unreliable (preventing device failures from 
incapacitating the entire system is difficult). and in
flexible (the assignment algorithm is constrained to 
be round robin according to physical sequence on the 
bus). 

The control procedure devised for the GBs exhib
its the modularity of daisy-chaining without the atten
dant disadvantages. The availability of a GB is div
ided into time slots. One message of (limited) vari
able length may be transmitted in each time slot; a 
master may receive a reply from a slave in the same 
time slot. The time slots are preassigned to devices 
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at system configuration time. Devices may be 
assigned multiple time slots in each complete allo
cation cycle to guarantee them various degrees of 
responsiveness or bandwidth. The schedules for 
each GB are independent. so that devices may have 
different priorities on each bus. Figure 3 shows that 
each bus controller contains a programmable read
only memory. having as many bits as the maximum 
number of time slots (currently 256). and a counter 
which addresses the memory. The address counters 
are all initialized at zero, and incremented together 
by a signal on the Bus Sync line at the end of each 
message. The length of the cycle is programmable; 
after the last time slot, the address counters reset 
to zero. A device receives control of the bus during 
every time slot corresponding to a "one" bit in his 
memory. If the device needs the bus, it transfers a 
message and generates Bus Sync; if the device does 
not need the bus, it generates Bus Sync immediately. 
The bus control hardware automatically detects and 
recovers from such problems as the next scheduled 
device failing to either use or pass control of the bus, 
or bus controllers somehow getting out of sync with 
the schedule. Because signals are not looped through 
all devices, control is fast and reliable. The assign
ment sequence may be whatever is desired. Changing 
the number of devices may involve substituting a dif
ferent read-only memory chip and altering the counter 
reset point, but even "this can be avoided at the ex
pense of some wasted bus bandwidth. 

Simultaneously available busses are resolved by 
an arbitor in the output controller, one bus being 
accepted and the others refused. 

Bus Communication 

GB communication is handled by communication 
units whi.ch connect each device to all busses, as 
shown in Figure 2. These units are functionally iden
tical for all devices. although there are a number of 
options which allow them to be tailored for specific 
needs. The principal elements of a communication 
unit are the output controller, the input controller, 
and the communication controllers. 

The GB message format for master devices is 
illustrated in Figure 4; messages from slaves do not 
include the destination name or bus control sync. In 
the case of a processing element, the bus control 
sync field and CRC word are supplied by hardware, 
and all else by software. The present design permits 
messages to contain up to 256 data words. 

Output - - The output controller contains a FIFO 
queue. mTo which the device inserts messages to be 
transmitted. When a bus controller receives control 
of a GB, the output controller checks to see if its 
queue is empty; if not, it asynchronously removes 
one message and sends it via the appropriate com
munication controller; if so. it relinquishes control 
of the bus. Messages may vary in length up to 256 
words; in the applications considered thus far, they 
usually range from one to 16 words. The current 
implementation permits the output queue to be one, 
four. 16, 32. 48, 256, or 1024 words long. 

GB transfers occur in an asynchronous, ready I 
accept fashion. This provides automatic synchroni
zation between devices of differing speeds, and a 
positive or negative response on the correctness of 
every word transmitted. The communication rate is 
limited by the fact that four bus propagation delays 
are required per word. but adequate bandwidth is 
assured by the availability of up to four word-parallel 
busses. the short distances between devices. and the 
inter-process communication partitioning criterion. 



If a parity error is detected by the message des
tination# the source output controller will retry the 
word up to three times. Failing in these, it will ter
minate the transfer and notify its device; the destin
ation input controller will invalidate the entire mes
sage. The output controller may be set either to skip 
this message and send the next one in the output queue 
when it next receives GB control# or to do no further 
transmitting until instructed to resume normal oper
ation. 

The output controller optionally appends a poly
nomial check word to the end of each message. If the 
destination input controller does not correctly decode 
this word# the entire message is repeated (in this 
same time slot). After three unsuccessful retries# 
the message is aborted and the source device notified. 

If the destination device bus interface responds 
as busy to an attempted transfer# the source output 
controller retries the message the next time it re
ceives control of a bus. After three unsuccessful 
retries, it may wait and then re-initiate the message, 
or it may notify the source device and (in the case of 
an I/O device) send an error message to another des
tination. 

A variety of other errors are also detected and 
responded to by the input and output controllers# in
cluding optional record-keeping on errors. 

The output queues are implemented with random 
access read/write bipolar semiconductor memories 
and address pointers. The output controller operates 
the pointers in a circular fashion; signals are avail
able which indicate when the queue is non-empty and 
when it is full. So that message space in the queue is 
not released prematurely# the queue full signal is 
generated using the read pointer value for the last 
message successfully transferred. Attempts by the 
device to enter data in a full output queue are rejected. 

For a proceSSing element, the output queue 
appears as a single word in its memory address space. 
The processing element software loads the desired 
queue input address into a register in the output con
troller. Thenceforth# a store at that memory location 
will cause the data to be entered into the rear of the 
output queue. The most recent queue entry may be 
(nondestructively) read from that location. ' 

When communicating with a slave device# a pro
cessing element may elect to retain control of the GB 
after a message is sent to possibly receive a reply. 
Such a reply will be returned only if the slave's input 
queue is empty (to avoid tying up the bus) and its out
put queue is not (data is available); otherwise (or if 
the selected destination is not a slave)# a negative 
response will occur. 

When a message has been correctly received# the 
output controller reallocates the GB by raising the 
Bus Sync line. 

Inp¥t - - The conventional approach of addressing 
physlca ilevices on the GB is replaced by the concept 
of associative routing to module names L15J. Every 
device is assigned one or more names corresponding 
to its software modules or global data items. Each 
input controller includes an associative memory 
which contains all the names for that device. GB 
messages (f:r:om masters) begin with a one-word des
tina tion name# whi~h is c6mpared with all name.s in 
all device input -c.Dl,i.tI'Ql~r~. . The input controller (if 
any) which finPs ~_,n,.atclf"tben receiVes. Ole message. 
Multiple deviqe.s niatc4:f.r)(-''Wl1i ,cause an error·which )! - -
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is usually, but not always, detected. Failure of any 
device to respond to the destination name is detected 
by a time-out in the source output controller. The in
put controller resolves the simultaneous arrival of 
destination names on more than one GB--the output 
controller response time-out is long enough to accom
odate the worst case delay. The associative memory 
in an input controller may presently have one register 
or multiples of four up to 256. The associative mem
ories are read/write. so names may be assigned 
either permanently or dynamically. Names are auto
matically checked by the input controller when being 
entered to avoid (local) duplication. A default name 
is automatically supplied from a read-only memory 
at power-up. 

The input controller relates each name to a uniquE 
input queue. as seen in Figure 5. Messages may be 
received on all GBs at once if they are directed to 
different destination names; simultaneously arriving 
names are handled in an arbitrary sequence. The 
device communication controller will respond busy to 
a message for a name which is already receiving a 
message on another GB; the source output controller 
will automatically retry later. The queues operate 
on a FIFO basis--the communication controllers in;,. 
sert messages at the rear, and the device asynchron
ously removes them from the front. The first word 
of a message stored in a queue is its word count--the 
destination name is omitted. The specific implemen
tation of the input -queues allows them to individually 
be one. 16. 32. 48# 256, or 1024 words in length. 
When a queue is full, any message for it is rejected 
and will be retried later. Even though the word count 
of an incoming message may be larger than the space 
available in the selected queue. the message words 
will be accepted until the queue is full. This allows 
for the possibility that during the message transfer 
period the destination device may read enough words 
from the queue to prevent overflow. If queue over
flow does occur, the message will be rejected (to be 
retried)# and whatever space it already occupies in 
the queue will be reused for the next message to that 
name. Incomplete messages in a queue can also re
sult from transmission errors. Consequently, the 
input queues (like the output queues) are constructed 
from random access memories and pointers to facil
itate garbage removal. 

To a processing element, the input queues appear 
as one word each in its memory address space. The 
processing element software loads the desired mem
ory addresses into another associative memory in the 
input controller. Thenceforth, a read at one of those 
addresses will access and remove the front word of 
the corresponding inJ?ut queue; the processing element 
main memory will be inhibited from responding. 
Since input queue reading is destructive. the software 
must keep the message currently being processed in 
a main memory buffer. Writing at an input queue 
address writes into main memory_ An attempt to 
write a duplicate address in the address mapping 
associative memory will cause an error response to 
the instruction. 

The software currently has primary responsibil
ity for protection: knowledge of its name is considered 
prima facie evidence of the right to communicate with 
a module; verification of the exact operation is then 
carried out by software. 

There may be some question as to whether the in
put queueing hardware oversteps the bounds of mechan
ism into policy. at least in its prescription of FIFO 



access. Thus far# FIFO appears to be most approp
riate for the intended applications; however, associ
ative queues [16] are being studied as a more gen
eral alternative. 

Interrupts 

In conventional real-time computers, an inter
rupt system is used to achieve rapid response to 
events in the environment. However, the asynchron
ous nature of interrupts implies a particularly intri
cate form of multiprogramming. which is contrary to 
the spirit of the MCS. The hardware minimizes inter
rupts by treating all external I/O in the same way as 
intermodule messages, queueing incoming messages. 
and handling many abnormal conditions without soft
ware intervention. There may sometimes be those 
interrupts which cannot be eliminated- -these are con
s idered during the partitioning. A hierarchical, 
vectored interrupt structure is also available on each 
processing element. Beyond this. a hardware aug
mented time-driven scheduling system is under inves
tigation as a more suitable approach [17]. 

Conclusion 

The MCS is a "software first" experimental com
puter based on the premise that in many applications 
the hardware constitutes a rapidly diminishing per
centage of system lifetime cost. One result of this is 
that the global bus interface logic is approximately an 
order of magnitude more complex than the typical 16 
hit minicomputer processing element which it serves. 
While there is ample evidence in support of the 
premise, there are also those real-time applications 
to which it (and therefore this architectural conse
quence) do not apply--small subsystems requiring 
only minimal software, for example. 

This brief description of the MCS has focused on 
some of its hardware features, but there is also a 
simultaneous and interacting software task. An ini
tial functional des ign has been completed, and the 
detailed implementation of a feasibility model has 
been initiated. Despite the formidable challenges 
remaining in such areas as partitioning, this experi
ment is already proving to be a successful technology 
development effort. 
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ABSTRACT 

A new architecture is proposed for the effective 
use of program memory in highly parallel applications. 
This architecture is particularly suited (but not limi
ted) to being built with standard microprocessors. 
This architecture utilizes a combination of the state 
switching idea of the SIMD organization and the multi
ple data stream idea of MIMD organizations. Through 
scheduling, the program segments are broadcast at the 
times required to achieve efficient utilization of the 
parallel processing array. Relationships are develop
ed to determine, for a given application, if this ar
chitecture is more cost effective than comparable SIMD 
and MIMD organizations. 

INTRODUCTION 

There is a set of interesting practical problems 
whose computational requirements demand "non-conven
tional" computer architectures. Example problems are: 
radar tracking and discrimination, air traffic control, 
and weather prediction. Each of these problems has a 
"real time constraint" which demands that the results 
of certain computations on data be available within 
some time interval after the data are presented to 
the system and a high degree of parallelism, wherein 
the same algorithm is applied to a large number of 
separate packages of data. This time constraint and 
the volume of data inherent in these tasks makes it 
impossible to satisfy their computational requirements 
with a single conventional CPU architecture. 

For such well defined highly parallel algorithms, 
architectures have been studied that utilize parallel
ism, especially in the data stream, to get a suitable 
effective speed at the lowest cost, which is often 
strongly affected by the cost of memory. These gener
ally fall into the single instruction stream-multiple 
data stream (SIMD) or mUltiple instruction stream
multiple data stream (MIMD) architectures defined by 
Flynn [3]. (See Figures la and lb, using Bell and 
Newell's PMS notation [2] to show their structures.) 
In particular, the STARAN computer, a SIMD architec
ture utilizing an associative processing element, is 
widely touted as having significant advantages over 
conventional architectures for air traffic control [9]. 
Also, MIMD architectures like the BBN multiprocessor 
[4] can be used for such problems. However, herein a 
new, simple architecture, the switched multiple in
struction, multiple data stream (SMIMD) architecture 
is proposed for real time computation that has a high 
degree of parallelism. See Figure lc. This new ar
chitecture more effectively utilizes parallelism at 
lower memory cost than the other organizations in 
many cases. 

THE SMIMD ORGANIZATION AND OPERATION 

The SMIMD architecture is very Simple and is par
ticularly suited to being built with standard micro
processors such as the 8080 [10]. It has evolved 
from such processors as the HAPPE [5] and is strongly 
related to the MIMD architectures. However, it does 
not have the properties of SIMD or MIMD architectures 
as described by Flynn [3]. It can be regarded as a 
special case of the MIMD architecture which gets 
'around its greatest flaw - memory access conflicts or 
memory duplication - or as a new architecture midway 
in cost and speed between the SIMD and MIMD architec
tures which is more cost-effective than either in 
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certain important cases. In thts section, the basic 
mode of operation is defined. In the next section tt 
interesting question, when to use the SMIMD organiza-

: tion, is addressed. 
In the SMIMD organization, program segments are 

assigned to different program memory modules to be 
broadcast on different instruction streams. A progra~ 
segment means here a part of the program that contaim 
no data dependent branches. It may contain loops or 
subroutines, and so on, but no condi tional branches 
wherein one processing element with some data may 
branch to a different instruction stream than another 
processing element with other data. Figure 2 shows ar 
.a.lgorithm with three 'program segments. For an air 
traffic control algorithm' to detect possi.ble collisior 
of pairs of aircraft, segment A might be a quick simp] 
computation, for example to test if two aircraft are i 
the same sector. It is followed by a data dependent 
test. If the test fails, say when the two aircraft 
are not in the same sector, the segment A should be 
repeated with two new aircraft. If it passes, then a 
longer, more involved computation is required, say to 
evaluate the trajectories of the aircraft: to s.~e if 
they might collide. This is shown by two progam seg
ments, Band C. For simplicity here we assume that 
program segments A, B, C execute in the s,ame amount of 
time. 

The SMIMD architecture utilizes this flow chart ir 
formation to avoid memory conflicts while at the same 
time sharing the program memory among all the process
ors. Each segment is put in one of the progrmn memo
ries shown at the top of Figure lc. The outputs of 
these memories are distributed on busses to all pro
cessing elements (PE). All PE' s monitoring a given 
buss will execute, in lock step, the. instructions 
broadcast over that buss. Each package of data is in 
a small local memory in each PE. The selector switch 
in the PE chooses one of the memory busses or the loca 
memory according to this rule. When a data word is 
recalled or memorized, the bottom switch is closed so 
that local memory is accessed. When an instruction is 
obtained, it is obtained from one of the memory buss 
lines. The buss can be selected by a word a in a reg
ister of each PE whose output controls the selE!ctor. 
Normally the word a remains cons tant in a PE for some 
time so that a PE will execute the instructions broad
cast from a given program memory and therefore follow 
the same program segment. Meanwhile, each memOl? will 
broadcast an instruction sequence down its buss so 
that instructions arrive at the times they are needEd 
by the PE's. (This can be accomplished several ways, 
such as using a dummy PE to keep track of the program 
counter and subroutine return addresses, letc.) 

When the machine was first started, all PE's would 
be loaded with data and initialized to mOllitor program 
segment A by setting the word a, say, to O. The data 
dependent test would be conducted at the lend of this 
segment. In all PE's where this test passes, the word 
a would be changed say to 1 to allow the PE to monitor 
program segment B, while the others would not change 
the word a, so that they repeat segment A" Presumably 
segment A would input some new data. At the end of 
segment B, all processors monitoring it would store a 
new value, say 2, in word a to cause them to monitor 
segment C, and when segment C is complete, all process
ors monitoring it would store 0 into a to causle them 
to return to monitor segment A. 
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It can be seen in this simple example that all P 
E's are constantly executing instructions from one or 
another buss, and many processors are obtaining instruc
tions from the same memory without generating conflicts, 
while the program i~ not duplicated in several memo
ries. By comparison, in a MIMD architecture, the pro
gram is duplicated in several memories, increasing the 
cost of the processor, or the program is in one memory 
which suffers from conflicts, increasing the time to 
execute the algorithm. In a SIMD architecture, only 
one instruction stream is broadcast to all PEls, 
wherein some PEls (perhaps most of them) ignore the 
instructions that do not pertain to the data in them, 
Flynn shows that this PE idleness is the key problem 
in the SIMD architecture [3]. The purpose. of the mul
tiple instruction streams in the SMIMD architecture is 
to alleviate this problem, while requiring the storage 
of only one copy of the program. 

At the outset, the SMIMD architecture is an attrac
tive one. However, contrary to our simple example, 
program segments are rarely executed in integral mul
tiple time units. This introduces a utilization fac
tor. For example, if segment C were half as long as 
A and B, i 1: would have to be filled with no-ops, or 
there would have to be a wait instruction to wake up a 
PE at the beginning of program segment A after it fin
ishes segment C, so that the PE would synchronize with 
the other PE' s executing segment A. If segment C weE 
executed 10% of the time, the average utilization of 
the PEls would be 95%. In order to determine the· best 
architecture - SIMD, SMIMD, or MIMD, we must consider 
the utilization of the processors as well as the rela
tive costs of processors, ·switch and memory. This an
alysis is conducted in the next section. 

CONDITIONS FOR UTILIZING THE SMIMD ARCHITECTURE 

Some relationships are now developed which will be 
of use in determining which architecture (SIMD, MIMD 
or SMIMD) Is most cost-effective for a given applica
tion. A data-parallel application and real time pro
cessing constraints that require at least D data enti
ties be processed per unit time is assumed. The arch~ 
tecture that can achieve this required processing rate 
with the least hardware cost will be the most cost
effective for this application. 

In determining the costs of these architectures, 
the total costs of program memory, execution unit 
array, and program memory-execution unit interface 
may vary. The per unit costs of these elements is 
assumed the same for any organization, which would be 
the case if the same technology is used in each archi
tecture. But all other total system costs will be 
assumed to be the same for each architecture (e.g., a 
given app1:ication will require the same amount of data 
memory, regardless of which architecture is chosen.) 
Let "a" be the relative cost of one execution unit, 
"b" be the cost of one program memory-execution unit 
link, and "c" be the cos t of storage of one copy of 
the program. If it is determined that the real-time 
processing constraint can be satisfied with a SMIMD 
architecture of M execution units and N instruction 
streams, then (assuming linearly increasing cost fac
tors), the relative SMIMD cost is 

C(SMIMD) = Ma + NMb + c 

It must now be determined if some other architecture 
could have satisfied the real-time constraint with 
less cost. 

(1) 

As was pointed out in the last section,SIMD and 
SMIMD execution units are often idle, even when opera
ting under "peak load" conditions. (MIMD architectures 
are assumed to keep their execution units usefully ac
tive at all times.) The greater the execution unit 
idleness in an architecture, the greRter the number of 



execution units needed to perform a given amount of 
work per unit time. Specifically, the architecture 
utilization "U" is defined as the average fraction of 
time that its average execution unit is engaged in 
useful peak load work. Then, U times the number of 
execution units must be the same for all architectures 
if they are to have equal peak load processing rates. 

Thus, if U is the SMUll execution unit utiliza
tion, and V is the SIMD utilization, a SIMD architec
ture will require UM/V execution units to achieve the 
s.ame processing speed as a M unit SMIMD processor. 
Consequently, an estimate of relative SIMD cost is, 

C(SIMD) = (UM/V) (a + b) + c (2) 

Since the peak load utilization of MIMD execution 
units will be equal to one, only UM execution units 
will be required in a MIMD architecture. If the MIMD 
instruction streams are generated by giving each pro
cessor its own copy of program memory, a configuration 
called here a "multicomputer" is obtained. This cor
responds, in Figure lb, to removing the left top memo
ry and its switches. Here we have a relative cost of, 

C(Multicomputer) = UM(a+b+c) (3) 

A "multiprocessor" MIMD architecture in which 
there is only one common shared copy of program memory 
would be obtained in Figure lb, by removing all memo
ries to the right of the execution units. Performance 
degradation due to program memory access conflicts is 
introduced. For the purpose of this analysis, it is 
conservatively assumed that this degradation will not 
be significant if a mechanism is provided by which 
each execution unit can obtain one instruction per 
average instruction execution time. One way to do 
this would be through modularization and interleaving 
of the program memory. If one memory module can sup
ply one instruction per execution cycle time, UM mem
ory modules are needed to keep UM execution units 
busy. (And, of course, each execution unit will have 
to be able to obtain instructions from any memory mod
ule.) The relative cost of this approach is estimated 
by saying that this increased program memory modular i
zation does not increase the cost (amount) of program 
memory, but that it does increase the cost of the 
memory-execution unit interface. In particular, a 
UM by UM interface is needed and the relative cost is, 

C(Multiprocessor) = UMa + (UM)2b+c (4) 

From these four relative cost estimates we can 
determine which architecture has the least cost for a 
given application and choice of implementation tech
nologies. Comparing (1) with (2), (3) and (4), we 
find that the SMIMD cost is least if and only if the 
following inequalities are satisfied. 

V < U (~+ l)/(~ + N) 

[~ (1 - U) + N]/U2 
b 

M > 

c > [_~ (1 - U) + N - U] / [U - 1.] 
b b M 

(5) 

(6) 

(7) 

Thus, given estimates of U and the cost ratio 
alb, we can determine (from 5) how large the SIMD 
utilization (V) would have to be to make SIM]) more 
cost-effective than an N instruction stream SMIMD 
structure. Similarly, we can determine. (from 6) a 
L)otmd on the number of execution units (M) below 
which a multiprocessor structure would be more cost 
effective than an N stream SMIMD. Finally, with (7) 
and an estimate of M, we can find a lower bound for 
the cost ratio c/b. (Since we know bfa, a lower 
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TABLE I 

(Conditions for which SMIMD has least cost) 

alb N U V ~ M ~ ( 3/b ~ cia ~ 

1 /~ .8 .32 
2 l~ .8 .40 
5 l~ .8 .53 8 
5 8 .7 .32 20 
5 8 .8 .37 15 
5 8 .9 .41 11 

50 8 .7 .61 47 
50 8 .8 .70 30 
50 8 .9 .79 16 

200 8 .8 .77 75 
200 8 .9 .87 35 

alb: execution unit - link cost ratio 

c/b: program memory - link cost ratio 

6.2 
13.5 
11. 3 
9.4 

33 
22.4 
14.5 
60 
31. 2 

cia: program memory - execution unit cost ratio 

N: number of SMIMD instruction streams 

U: SMIMD execution unit average utilization 

V: SIMD execution unit average utilization 

1. 24 
2.70 
2.26 
1. 88 
0.66 
0.45 
0.29 
0.30 
0.16 

bound on c/b also establishes a lower bound on cia.) 
Using this approach, the bounds in Table I were 

calculated. (The lower bound on M was used as the 
value of M in calculating the lower bound on c/b). 
The signifieance of the values in this table is the 
following. The lowest values of alb represent ex
tremely simple execution units; units so simple that 
they would not be capable of the. independent operatiOl 
required in a MIMD architecture. The alb range 5 to 
50 represents projected LSI microprocessor CPU costs, 
and the value 200 might be representative of a mini
computer CPU or a very fast special purpose execution 
unit. Thus, this table covers a very wid.e spectrum of 
potential implementations of highly parallel archi tec
tures. The calculated bounds on U, M, and cia show 
that (if' SMIMD utilizations in the neighborhood of O. ~ 
can be achieved) there are wide ranges of these param
eters for ~vhich SMIMD architecture would be the most 
cost-effective 

Thus, in many applications, the SMIMD architecturE 
will make more effective use of the program memory re
source than the MIMD or SIM]) architectures, by obtain
ing good execution unit utilization from only one cOP) 
of the program. This effectiveness is a result of thE 
fact that the program memory resources (the program 
segments) are broadcast on the SMIMD instruction 
streams at scheduled times chosen to achieve high exe
cution unit utilization. The remainder of this report 
is concerned with the feasibility of obtaining progran 
segment schedules that will result in efficient systen 
operation. 

SMIMD INSTRUCTION STREAM SCHEDULING 
~~_EXECUTJON UNIT UTILIZATION 

In discussing the utilization of execution units 
in a highly parallel architecture, it is necessary to 
make a clear distinction betweeen two types of program 
parallelism. When a program or algorithm can be bro
ken into logically independent and different segments 
("tasks"), these tasks can, in principle, be executed 
in parallel. This task parallelism differs from the 
situations where it is necessary to perform the same 
computation on more than one data set. A SIMD strue
ture cannot exploit potential task parallelism; a mul
tiple instruction stream architecture is required if 
different tasks are to be executed simultaneously. 



Since the SMIMD architecture has multiple instruc
tion streams, it can exploit both potential data and 
task parallelism. To illustrate how program segments 
can be scheduled on the SMIMD instruction streams to 
achieve high execution unit utilizations, we will 
f:lrst consider data parallelism, then task parallelism. 

Consider the algorithm represented in Figure 3, 
and assume that this computation is to be performed on 
D data entities. If we use a conventional computer 
(or a set of conventional computers operating in par
allel) each data entity will cause the computer to ex
eeute one of the possible operation sequence paths be
tween segments 1 and 7. Thus, some qf these segments 
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(e.g., 5 and 6) are mutually exclusive in the sense 
that they will not both be performed on the same data 
entity, In. this example, there are five possible paths 
between segments 1 and 7. If we use a SIMD or a SMIMD 
architecture, we must assume that for each of these 
paths there is at least one of the D data entities that 
will require that the path be executed. Thus, the SIMD 
and SMIMD computers will have to execute, at least onc~ 
each of the seven segments (and associated tests) in 
t:.his algori thm. 

The SMIMD architecture allows us to reduce the to
tal time required for one pass through this algoritbn 
by executing some of these segments (the mutually ex
clusive ones) in parallel. A possible three instruc
tion stream implementation of this program is shown in 
Figure 4. Comparing Figures 3 and 4, we see how the 
various conditional execution paths of Figure 3 can be 
followed by appropriate switching from one instruct;i.o.n 
stream to another at the end of the conditional test 
operations. The only apparent complication in using 
these streams for this example occurs at the end of T3 
or T4 when some execution units will be switched to 
Stream I in order to execute segments 5 and 7 respec
tively. Clearly we do not want these units to execute 
the remainder of segment 2 which is being broadcast 
on Stream I when the switches occur. This can be pre
vented by setting these units' mode registers so that 
they will switch streams, but so they will also ignore 
commands on. the new stream until they are "awakened". 
Also, suitable mechanisms can be provided so that only 
a specified subset of the idle units monitoring a 
stream will be awakened at a given point. (e.g., at 
the beginning of segment 5, we wish to awaken those 
units that were switched to Stream I by T3, while 
keeping idle those units that were switched there by 
T4.) 

When microprocessor CPU's are used as SMIMD execu
tion units, stream switching can easily be effected by 
using the program counter in each unit as the stream
switch control. (Since the CPU's will not be fetching 
their own instructions,the program counter need not 
contain the address of the instruction being executed.) 
By conditionally loading the program counter (Le., by 
broadcasting a conditional jump instruction), condi
~ionalilstream sw~tching can be accomplished. Thus few 
extra instructl0ns must be added to a program to 

cause appropriate stream switching. (A detailed imple
mentation of this concept using the 8080 microprocess
or can be found in reference 7). 

To see if the SMIMD architecture is the best arch~ 
tecture for this example application, we need to eval
uate expressions 5, 6 and 7. To illustrate this, 
assume that we are dealing with an implementation for 
whJ.ch, 

a=5, b=l, c=lO, M=lO. 

To estimate V (the execution unit utilization in a 
SIMD architecture) it's assumed that each of the five 
possible logical paths are equally likely. Broadcast
ing all··seven segments on one instruction stream would 
require 32 time units. Since the average path length 
is 15 time units, we see that V is less than .5. Using 
these estimates, we can see from the third line in 
Table I that if U is approximately 0.8 (or greater) 
the SMIMD architecture will be the most cost effective 
way of executing this example data-parallel algorithm. 

If D (the number of data entities in this example) 
is equal to M, all the SMIMD execut.ion units will be 
devoted to this algorithm. Since, according to the seg
ment schedule in Figure 4, they all will complete the 
algorithm in 18 time units, we estimate.U = 15/18 =.83. 
Thus, the data parallelism of this problem alone would 
be enough to maintain a high level of execution unit 
utilization. However, in general, we cannot expect 
that the data parallelism of an algorithm will exactly 



match the number of execution units in the hardware. 
If they do not match, some execution units will be 
idle during the entire time that. the data-parallel al
gorithm is being executed, and consequently the aver
age unit utilization will be less. 
. In the SMIMD architecture (as in MIMD architec
tures), we can exploit task parallelism when we have 
idle execution units. As a simple illustration of 
this concept, consider segment 8 in Figure 3. This 
segment is logically independent of the other seven 
segments, in that it may be executed Defore, during, 
or after them. Figure 5 illustrates that, by using 
the idle time on Stream III in Figure 4, the 12 time
unit segment 8, can be broadcast within the 18 time 
units required by the data parallel algorithm. This 
concurrent execution of an independent segment is par
ticularly important if that segment can utilize only 
one execution unit. In that event, if the segment 
were wholly broadcast either before or after the data~ 
parallel algorithm, for 12 time-units only one of the 
M execution uni.ts would be active, and the average ex
ecution unit utilization would be substantially re
duced. Thus, this simple example shows that. task par
allelism could and should be exploited to maintain 
high SMIMD execution unit utilization. 

At this point, it is appropriate to briefly dis
cuss how the sequence of operations illustrated in 
Figure 5 could be obtained. The generation of this 
operation sequence could consist of three steps: "pro
gram analysis", "segment allocation", and schedule ex
ecution. Program analysis and segment allocation 
would be performed at compile time. Program analysis 
obtains the algorithm's logical structure such as 
shown in Figure 3. The location of all data dependent 
branches and the corresponding possible logical flow 
paths is a simple procedure. Further, fairly accurate 
compile time estimates of relative segment execution 
times is straight-forward since, by definition, a 
segment contains no data-dependent branches. 

Segment allocation assigns to each control unit 
(and hence to each instruction stream) a set of seg
ments and the order in which they are to be executed. 
(Since segment allocation "binds" a segment to a 
stream, it can be followed by a code generator that 
will cause execution units to switch to specific 
streams when data dependent branches are executed.) 
Allocating segments to control units so that an opti
mum schedule, such as Figure 5, is obtained is not a 
trivial task. In fact, there are no efficient proce
dures that guarantee optimality. However, there are 
fairly simple scheduling heuristics which have been 
shown to be "nearly optimal" when used to schedule 
multiprocessors [8]. Similar efficient heuristics can 
be developed for the SMIMD architecture [7]. 

Once the segments have 'been allocated, schedule 
execution can take place with very little run-time 
overhead. Simple hardware mechanisms can be built in
to the control units to cause one unit to be idle un
til.some other unit issues a special instruction. (e. 
g., control unit II would not begin broadcasting seg
ment J until unit I had completed Tl.) A similar 
mechanism could also cause a unit to interrupt the 
broadcasting of one segment and begin broadcasting 
another. (e.g., control unit III switches from segment 
8 to segment 4 when unit I completes Tl). (This pre
emption of segment 8 would not require significant 
run-time overhead as long as both segments 4 and 8 
could fit into unit Ill's memory module. In that 
event, when the: preemption occurred, the control unit 
would merely have to save the program counter contents 
corresponding to the preempted segment. All other 
process-state information, such as general register 
contents, would not be affected by the preemption; 
when preemption occurred, the execution units that 
were executing the preempted segment would be made 
idle until segment 8 was resumed. These units would 
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not execute segment 4.) Thus, schedule exe.cutioll can 
be effected without the overhead of a run-time resource 
scheduler or dispatcher. The possibility of a compile
time scheduler using preemptive scheduling techniques, 
increases the possible effective use of the: SMIH]) in
struction streams [6]. Consequently, we are confident 
that efficient procedures can be developed which will 
enable us to generate operation sequences (for large 
complex algorithms) which will result in a high level 
of SMIMD execution unit utilization [7]. 

CONCLUSIONS 

A new but simple architecture, SMIMD, i.8 shown to 
more effectively utilize memory in highly parall(~l· al
gorithms than the SIMD or MIMD organization.s through 
the scheduling of program memory resources. This ar
chitecture uti.lizes a combination of the state switch
ing idea of the SIMD organization and the multiple data 
stream idea of MIMD organizations In the SMIMD archi
tecture, only one copy of the program need be stored 
in random access memQry. For given per-uni.t costs of 
memory, processor and switch-link inter-connection, 
and a known rate of processing, it can be deter~lned 
whether the SMIMD organization is most cost-effec.tive. 
This architecture can effectively utilize parallel pro
cessing arrays of minicomputer CPU's, microcomputer 
CPU's or simple comparator-based execution units .. 
Compile-time scheduling techniques permit e:fficil~nt 
execution of algorithms with very little run-time over
head. 
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Introduction 

This paper is concerned with the problem 
of identifying the type and/or length of un
predictable sequences of character-string data, 
or fields, in serial storage. A fundamental 
requirement is that the data sequence must be ' 
scannable in either direction. 

There are two standard methods of encod
ing such sequences. One way is to reserve 
one or more "field separator" characters, 
which are not legal data characters. l This is 
inefficient since one or more intervening 
symbols must also be scanned to find the next 
separator in the sequence. Another is to 
store a separate index table with a field 
length or relative pointer entry for each data 
field in the sequence. This complicates I/O 
buffering since both index and value string 
queues must be maintained. 

When each field has an imbedded binary 
symbol at one edge denoting its actual length, 
then it is possible to skip across fields 
merely by inspecting this length symbol. Un
fortunately, this permits scanning only in 
one direction, unless the length symbol is 
imbedded at both edges of each field. 

Section I describes a novel method of 
encoding field length or type data into one
byte separators that avoids the limitations 
of conventional methods. A "moving window" 
on the serial data buffer contains byte string 
data with imbedded field separators that 
require no reserved characters, yet permit 
scanning or skipping over fields in either the 
forward or backward direction. These field 
separators are called symmetric differences 
because they are a symmetric function of the 
two immediately adjacent data field types. 

An implicit assumption of the first 
application was that field length was a fixed 
function of field type; once the type code 
was identified, field length could be deter
mined by table lookup. Section 2 describes 
another major class of applications, in which 
the field type is either invarient or irrele
vant, in which case the field separators can 
be used to determine field length directly. 
This class includes simple forms of text 
editing. Combinations of type and length 
variability can also be handled, by extending 
the length of the separator symbol to two or 
more bytes. 

The symmetric difference method determines 
field position by accumulating incremental 
length data; consequently it is vulnerable 
to the so-called error extension problem, 
which means that an error in one field position 
can cause misalignment of many other field 
boundaries. A unique advantage of symmetric 
difference coding is an error detection and 
correction ability which applies only to the 
field separators. This insures correct field 
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type identification and boundary alignment 
independent of errors in the field values 
themselves. Section 3 describes this feature, 
and also defines a null or zero~length field 
type which permits a long variable-length 
sequence to be split into fixed-length physi
cal data blocks. 

The problem of inserting or deleting 
fields is not specifically addressed by this 
paper. This problem is no more difficult with 
symmetric difference coding than with any other 
method of encoding data for contiguous stor
age. However, the introduction of the null 
field type described in Section 3 does permit 
local deletion of a field without immediate 
repacking (i.e., "garbage COllection" can be 
deferred). Prior allocation of extra space 
by inserting a fixed percentage of null fields 
permits new field insertion with a minimum of 
data relocation. 

More complex encoding and scanning 
algorithms are required when tree-like data 
structures are represented in one dimensional 
storage. Section 4 defines efficient packed 
sequential representations for tree-structured 
data. The subordinate data structures at
tached to each node are separated by a re
served field type called an "internode sepa
rator •• , Its non-null field value contains 
data related to the length (and possibly the 
type) of the adjacent subtrees; these can be 
entered or skipped in the forward or back
ward direction. Symmetric difference coding 
may also be used to encode the values of 
internode separator fields. Tree coding and 
scanning algorithms are illustrated by an 
example in Figures 4 and 5. 

The space-saving advantage of symmetric 
difference coding is only applicable to data 
within a physically contiguous storage unitiin 
linked storage, forward and backward chain 
pointers cannot be merged at a single physical 
location. However, it is upward-compatible 
with standard methods by which noncontiguous 
physical data blocks are listed in index 
tables or logically chained together. 

Representation of Variable Data Field Sequences 

Sequential data entry and recording on 
serial media, such as tape cassettes, is 
conveniently accomplished by using a double
ended FIFO buffer or "deque" with top and 
bottom end markers, keyboard input (load) and 
tape output (write) pointers. 2 Logically, 
the buffer is cyclic, with no attention paid 
to the physical top and bottom end addresses; 
these ends are implicitly joined together by 
address arithmetic modulo the buffer size. 
In the most general case, tape block reading 
or writing (physical I/O) from-one-sector of 
the buffer can go on concurrently with data 
field insertion or extraction from another 
buffer sector (logical I/O). 



The problem considered in this section is 
that of storing a sequence of data fields of 
varying type. We assume that all occurrences 
of one field type have the same length in 
bytes. Section 2 will consider the more gen
eral case when field lengths cannot be pre
dicted from field types. 

When the following two application require
ments occur together, the FIFO buffer organi
zation described above runs into difficulty: 

(1) Optional or Varying Occurrences: 
Some field types'may have optional or varying 
occurrences as attributes; in either case, 
the next field type is sometimes unpredict
able, so that field type identifiers (names) 
must be recorded occasionally along with the 
data. 

(2) Bidirectional Scanning: When back
ward as well as forward scanning of the data 
file is required, field by field, the queue 
becomes double-ended on the tape or physical 
I/O side. 

Requirement (1) is motivated by a desire 
for flexible source data formating or even 
free-form (self-describing) data entry. 
Requirement (2) is implied by functions such 
as editing or on-line correction which make 
use of a "backspace one field" operator or 
function key, or a bidirectional scrolling 
facility using a CRT display. 

Existing Approaches. One common approach 
to the file access problem is a cyclic FIFO 
buffer, in which a single pointer defines the 
current data entry point. Thus, field names 
and/or lengths must be stored adjacent to 
their value strings (see Figure 1). To scan 
the buffer from left to right, the next 
field's starting address is computed by add
ing the preceding field's length and starting 
address. Unfortunately we cannot get started 
on a right-to-left scan, because the value 
field is encountered first; we cannot locate 
its name without knowing its length, and vice 
versa. 

Another approach avoids this last restric
tion (and permits ranqom access to fields) by 
segregating field names from their values; 
the names (assumed fixed length) are kept in 
a separate ordered list, which can be indexed 
or scanned from either end. Before writing a 
tape block, the sequence of field names is 
appended to the value string sequence. 
Figure 2 shows this solution, with names 
stored in reverse order starting at the end 
of the data block. Names and values can be 
accumulated simultaneously and both share a 
common pool of unused byte-cells in the 
middle of the data block. This complicates 
physical concatenation or logical chaining. 

Recommended Solution. An obvious way to 
overcome the one-directional scanning limita
tion of the format in Figure 1 is to imbed a 
field name before and after its value string 
(see Figure 3A). However, this doubles the 
space needed to store field names. The re
commended approach is a simple extension of 
this format which avoids duplicate storage of 
field names, as illustrated in Figure 3B. 
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Figure 3A shows each field value wi t.h a 
name (one-byte symbol A, B, etc.) at both ends. 
In Figure 3B except for the initial and final 
field name, the two symbols separati:ng each 
pair of field values have been combined i.nto 
one symbol, the "symmetric differencle" between 
the two field names it replaces. 

The symmetric difference (or Boolean 
difference) AAB is defined as the carry-free 
exclusive-or (bit-wise modulo-two) sum of the 
binary codes for A and B: AAB=AEDB. When A 
and Bare k-bi t symbols, the signed .algebraic 
dkfference AAB=(B-A) or the ring sum A+B (mod 
2 ) would work equally well, but the symmetric 
difference is faster on machines with an exclu
sive -or instruction. 

There are two alternate interpr,etations 
for the codes A and B on which the symmetric 
difference is based. One interpretation, 
shown in Figure 3B, is an indirect or variable
field-t~pe interpretation: A and B .are field 
~ co es~the length of each occurrence of 
a-iIeld type is assumed to be fixed and stored 
in a separate table indexed by the field type 
code. The second or variable-field-length 
interpretation, in which the type co(:1es are 
identified directly with field length, will 
be discussed in the next section. -

For example, suppose we have just begun 
a left to right scan in Figure 3B. Given the 
identity of the first field (A) we wish to 
identify the (unknown) second field as type B. 
We add the difference AAB to the first field 
name A, after locating AAB by 100kin9 up 
field A's length in a table. We locate ABC 
relative to AAB via the length of B, and then 
compute C=BEDABC to identify the third field. 
Since B=CEDABC and A=BEDAAB, etc. this procedure 
works equally as well when beginning at the 
right side and scanning left, if the identity 
of the right-most field is known upon block 
entry. 

Other Applications 

The above solution assumed a relatively 
small number of field types, each of known 
constant length, repeated often enough to 
justify a stored tabl~ of field lengths. 
Other applications will now be considered. 

Text Editing. For interactive text 
editing, a bidirectional scan has obvious 
advantages. A minor change to the sl:':!mantics 
of the preceding scanning algorithm permits 
its application to a contiguous sequence of 
words or other "atomic" elements of ·text. 
Suppose we do not need to distinguish fields 
by "type" bu·t regard them all as words, 
whose only distinguishable attribute is their 
length. Assume a maximum word length (e.g., 
255 bytes) and let the field type code 
directly represent word length. (The reserved 
null field type of length zero is consistent 
with this co:nvention.) Symmetric difference 
separators can be computed as before, with 
one additional advantage: the table which 
formerly defined the field length (when 
indexed by field type) now becomes the identi
ty map and is no longer needed. 

Introducing symmetric differencI~ codes 
as field separators need not involve any 



expansion of text volume. For example, sup
pose an "atomic" element of text is defined 
to be any contiguous string of non-space 
characters between two space characters. 
Without loss of generality, every pair of 
contiguous space characters may be regarded 
as bracketing a null or zero length atomic 
element. Then, every sequence of space char
acters may be replaced by an equal-length 
sequence of field separators, coded as sym
metric differences. 

For example, let the values of two fields 
A and B be "the" and "word", respectively. 
Adopt the convention than an underlined digit 
represents the 8-bit binary code for itself; 
e.g., 7 denotes the bitstring '00000111'. . 
Then the type codes for fields A and B may 
be identified with their lengths and become 
3 and 4 respectively. The symmetric dif
ference flAB = 3 ED 4 = 7. The text strings 
below are encoded w~thout changing their 
lengths in byte~ ("#" represents one space): 

(a) "the#word" -------- "the7word" 

(b) "the##word" ------- "the34word" 

(c) "the## ••• ##word" -- "the30 ••• 04word" 

In (a), flAB replaces one space character; in 
(b), flAO flOB replaces two spaces; in (c), 

flAO flOO .-.-.- flOO flOB replaces a corresponding 
:numberof spaces.--

Punctuation. One disadvantage of the 
above length-preserving text-encoding method 
is that it does not separate punctuation 
marks from alphanumeric strings within atomic 
elements of text. However, a punctuation 
symbol which is immediately preceded and/or 
followed by an alphanumeric string may be 
encoded as a separate one-byte field by 
artificially inserting a separator before 
and/or after the punctuation symbol. This 
expands the text by one or two extra bytes 
per punctuation symbol. Upon decoding, these 
separators should be replaced by null fields 
rather than space characters.* (In Section 4, 
we will adopt the convention that a null 
field exists between any two adjacent separa-
1:ors. ) 

Dictionary Look-up. All of the above 
text editing considerations apply equally 
well to dictionary (e.g., symbol table) look 
up. To expedite searches, a very long string 
of lexicographically ordered words can be 
partitioned into blocks, for which an index 
table can also be prepared. Index table 
entries point to block end points which con
t:ain field lengths, rather than symmetric 
differences, as in Figure 3B. This permits 
bidirectional scanning from mUltiple entry 
points. 

*For full generality, in this case symmetric 
difference separators should include a one
bit tag to indicate whether the separator was 
artificially inserted or not. This bit does 
not have the even parity property described 
in the next section, but neither is it im
plicated in the error-extension problem 
mentioned there. 

Variable-Length Fields with a Fixed 
Sequence of Types. Both applications above 
may be regarded as the special case (n=l) of 
a data stream with multiple field types in 
which the type sequence is predictable but 
field lengths are variable and must be encoded 
into symmetric differences. For example, 
card-formatted data with exactly one instance 
of each field type could use symmetric 
difference coding to suppress leading zerffi 
and/or trailing blanks. 

Fields of Unpredictable Type and Length. 
When neither field type nor length can be 
inferred from the other then symmetric differ
ence coding of both length and type is possible. 
In general, thi~ll involve more than 8 bits 
per separator, so a two-byte separator should 
be considered. 

Error Protection 

All encoding methods which build up a field 
address by incremental addition of preceding 
field lengths are vulnerable to a single er
roneous field length indicati@n. For ex-
ample, suppose that the sample encoding 
of "the#:f/:word" in the preceding section 
contained a f9ur~bit error pattern which 
changed the separator sequence (3,4) = 
00000011, 00000100 into (15,8). -I~ this 
error pattern is not detected, it will causea 
left to right scan to erroneously interpret 
the null field length as 3fl15 = 12 rather 
than O. The scanner will-jump 12 bytes to 
the r1ght looking for the next separation. 
In general, this will force all succeeding 
field boundaries out of alignment and manual 
interpretation may be necessary to recover 
th~ir data. This section describes a single
error-detection method using a one-way scan; 
correction requires a two-way scan. 

Error extension can be avoided completely 
by recording a separate table of relative 
addresses or offsets to individual fields, as 
in Figure 2, but with other disadvantages 
discussed earlier. Another way is to take 
advantage of the unique parity checking 
feature of symmetric difference coding. This 
provides error detection and correction 
advantages equivalent to the use of two re
dundant pointer chains as shown below. 

Padding. One requirement for effective 
error control is the ability to partition a 
sequence of variable-length fields into blocks 
of fixed length. In general, field boundaries 
will not coincide with block boundaries. To 
avoid splitting a field into two parts (which 
introduces a new coding problem) and to 
permit resynchronization of the field address 
pointer at inter-block boundaries, a block 
must be padded preferably by some method 
which does not complicate the logic of the 
scanning algorithm. 

Padding can be accomplished by reserving 
a particular 8-bit symbol to indicate a "null" 
field type defined as one whose value string 
has zero length. To be consistent with those 
applications in Section 4 which replace a 
field's type code by its value string length 
in bytes, the zero B-tuple is reserved as a 
null field type code. 
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Null field values take up no space, but 
their separators do. The scanning algorithm 
still works, and a small amount of logic 
to recognize and skip over nullfield separa
tors will make them transparent to the scan 
algorithm. 

Two non-null fields (say, field types A 
and B) with value strings denoted VA' VB and 
separator denoted ~AB appear as follows in 
Figure 3B: ---

VA ~AB VB 

To insert a null field (type S) between 
A and B, we merely replace ~AB by the two 
separators ~A~, ~~B; (this InSerts one extra 
byte into the field stream). Two null fields 
between A and B would appear as VA ~A~ ~~~ 
~~B VB (Each underlined triple represents 
a one-byte field separator.) Each additional 
null field introduces another ~~~ separator, 
whose value is ~ ~ ~ = ~. ---

Self-identification. In order to begin 
a field scan at either block boundary it is 
necessary to know the identify of the first 
field to be scanned. For this purpose it is 
sufficient to adopt the convention that at 
least one null field will always be inserted 
at every block boundary. 

Suppose a block boundary occurs between 
fields A and B of the preceding example. 
Wi thin the field stream 'T.~.~ABVB the separator 
~AB must be assigned either to the block 
containing VA or to the one containing VB. 
Neither choice is satisfactory. For example, 
if ~AB is stored with VB then a backward 
scan-Into the block containing VA requires 
prior reference to succeded . blocks before 
field type A (and its length) can be identi
fied. 

This problem disappears if two null field 
separators straddle the block boundary. For 
example, with a boundary between ~A~ and ~~B 
in the field sequence VA ~A~ ~~B VB' the --
scanning algorithm will encounter a separator 
(~A~ or ~~B) no matter which direction it 
begins to scan. Because zero represents the 
null field type, ~A~ = A$~ = A and ~~B • B$~ 
B. --- ---

In other words, null fields have the 
nice property that adjacent separators direct
ly identify the adjacent field type. In 
other words, the two fields at the edges of 
any block are self-identifying , if blocks 
are padded to avoid splitting fields and at 
least one null field is inserted at block 
boundaries. 

Resynchronization. Null field insertion 
at block boundaries makes each block inde~ 
pendent of adjacent blocks, as far as the 
field scan process is concerned. However, 
a correct field scan from one end of a block 
to the other still requires all intervening 
field separators to have correct values. 
What if an e.rror occurs? 

Consider first the error detection pro
blem. If null fields are "inserted" at 
both block boundaries, a correct sequence of 
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field separators will automatically have a 
zero-valued longitudinal parity check sUJm. 
For example, suppose a block contains four 
fields; A, B, B, C; the sequence of field 
separators and interspersed value strings 
will be 

~¢A~~ABVB~BBVB~BCVC~C¢ 

by definition, ~¢A = A, ~AB = A $ B, etc; the 
parity check sum of these five separators is 

~¢A ~ ~AB ~ ~BB $ ~BC ~ ~C~ = 

A ~ (A $ B) ~ (B ~ B) ~ (B ~ C) $ C = ~ 

That is, field type or length codes appear in 
pairs, causing pairwise cancellation in the 
overall checksum. In conclusion, this zero 
checksum property permits rapid debection of 
separator errors. It also discriminates 
between separator and value string errors if 
an overall error detection coding scheme is 
also used. Often, block lengths can be 
restricted to make the probability of more 
than one separator error per block negligible. 

Assuming a single separator is in error, 
how can its location be established without 
ambiguity? A nonzero check sum over the 
correct location of an erroneous field 
separator sequence would yield the error 
pattern but not its location. However, this 
actual checksum is not computable becauEle 
the computed sequence of separator addresses 
may diverge from the correct locations beyond 
the point of error. The solution is to 
begin checking from the opposite end as well. 

It is easily verified that whenever the 
two sequences of separator addresses (start
ing from opposite ends of the block) have 
only one address in common, ·then their point 
of contact is the erroneous separator loca
tion. In this case, the correct separator 
value is the symmetric difference of thE~ 
field type codes computed by the two scans 
just prior to their point of contact, since 
this gives an overall check sum of zero .. 

Furthermore, if the two address sequences 
have multiple contact points, then each 
contact point must be considered as a possiblE 
error location. This provides double error 
detection, although not all double byte 
errors are necessarily detected in this way. 
For example, if field type A and B have the 
same length, a double separator byt:e error 
pattern that interchanges ~AB wi th ~AA == 
~BB = ~ would recognize the field sequence 
VA flAB VB flBB VB as VA flAA VA ~AB VB. 

Such double errors are not detectable by 
the symmetric difference coding (Note that 
they do not imply loss of correct pointer 
alignment)"":-

Representation of Tree~Structured Data 

The symmetric difference approaoh will 
now be extended to irredundant packed 
sequential representation of hierachial or 
tree-like data structures. This p~rmits 
bidirectional scanning at any level of ·the 
tree, without the necessity of scanning 
intervening data. 



As an example, consider the tree structure 
of Figure 4 in which A, B, etc. represent 
field types whose values V VB' etc., are to 
be stored sequentially in the order (ABCDEFG). 
Nonterminal nodes R (for root) and T for sub
tree may have data fields A ••• G (lea~es of the 
tree) or other subtrees attached to them. 
Branches leading to each subtree are surround
ed by matched pairs of parenthesis. Although 
not shown on Fig. 4, the root node R also has 
an implicit pair of () brackets, which delimit 
(enable the scanner to begin at either end of) 
the entire tree. The corresponding paren-

thesized linear representation of the tree may 
be reconstructed from Fig. 4 by reading off 
all branch and leaf labels while traversing 
the tree counter-clockwise: A (B(CD» (E(FG». 

The value string corresponding to this 
representation is VA(VB(VcVR» (VEVEVG». This 
string is unambiguous as IO g as "l"and")" are 
reserved characters that do not appear in VA' 
..• , VG, or if VA through VG are of known 
lengths. To avo1d reserving the parenthesis 
characters, suppose we consider them as one
byte values of a special "punctuation" field 
type, a. In our example, Va is either")" or 
"(" and must be imbedded within field separ
ators just like any other field. Applying 
symmetric difference coding to this field 
sequence gives the following (inefficient) 
result, requiring two bytes per parenthesis 
character: 

b.~A VA b.Aa Va b.aB VB Lma Va b.aC Vc 
b.CD VD b.Da Va 

b.aa Va b.aa Va b.aE VE b.Ea Va b.aF VF b.FG 

VG b.Ga Va Mfa V 'J b.a~ 

The ordinary fields Va containing 
reserved meta-bracket values "(" and ")" 
may be replaced by two distinct reserved 
field types, whose values may be null. For 
example, using tandt to denote type codes for 
metabrackets of type "(" and ")" respectively, 
and b.AB to represent the symmetric difference 
of type codes A and B, the tree of Figure 4 
is representable as 

b.~A VA b.At b.tB VB b.BC Vc b.CD VD 

b.tt b.tE 

VE b.Et b.tF VF b.FG VG b.Gt b.tt b.t~ 

b.Dt b.tt 

This structure is efficient in storage 
because only one additional byte is needed 
for each imbedded open or close parenthesis 
symbol. However, every field must still be 
scanned to traverse the tree, and this is not 
efficient for many applications. For example, 
suppose A represents an "if" condition, B(CD) 
represents a "then" clause and E(FG) an "else" 
clause of a parsed source language statement 
to be interpreted. After run-time evaluation 
of condition A the interpreter would like to 
either scan B (CD) but skip E(FG), or skip 
B(CD) and then scan E(FG). 

What is missing from the preceding tree 
representations? All of them are ine,fficient 
in the sense that a scan ~neither directiOn 
must still traverse every node and every 
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leave of the tree to get from the one end to 
the other. 

If the tree has many nested levels, and 
if we are only interested in selecting one 
higher-level node, then much time will be 
wasted in such a scan. What we need is a 
"subtree" or 'internode" separator, which 
conveys information about the lengths of the 
complete substructures attached to its adja
cent nodes. The rest of this section describes 
a tree structure representation which does 
permit skipping over subtrees, by reserving 
a single field type called an "internode 
separator" and using symmetric difference 
techniques to encode its contents. 

Extension for Rapid Scanning. The 
preced.ing encoded representation of a tree 
structure is not efficient when a known path 
through the tree must be located. For 
example on Fig. 4, suppose field F is known in 
advance to be attached to the first leaf of 
the second branch of the third branch attached 
to the root node. The extension proposed 
below will permit the scanner to skip the 
first two branches attached to the root node, 
then descend one level and skip field E, 
arriving at field F in three jumps rather 
than the five jumps required to scan over A, 
B, C, ]) , and E. 

A new reserved field type code (denoted 
a) called an internode separator field, will 
be needed. Its non-null value depends only 
on the lengths of the subtrees which it 
borders or separates, and will be used to 
jump over a subtree in either direction. 
Symmetric difference coding will be used on 
internode separator field values, to mini
mize storage requirements. Field of type a 
will be imbedded in the field stream just 
like data and null field types. While a 
field-sequential scan merely recognizes and 
skips over internode separators (as with 
padding fields), a tree scanning algorithm 
must contain logic to recognize them and 
use them appropriately. 

A fixed length is assumed for internode 
separators; e.g. a length of 16 bits would 
limit the maximum subtree length to 65K 
bytes; if this is inadequate, a larger 
separator could be used. A stack will be used 
to save placemarkers (address pointers or 
offsets) to the beginning and end of each 
nested subtree whose content is being scanned 
(or one end and its length). The stack a.lso 
permits a direct return from any subtree to 
its parent node without going through all 
other branches of this subtree. The stack is 
initialized to delimit both ends of the entire 
tree. 

It is simple to construct the proposed 
encoded form of a tree by a sequential scan 
of its parenthesized field structure. Each 
closing parenthesis, and each opening 
parenthesis that does not have a closing 
parenthel:lis as its immediate predecessor, 
is replaced by an internode separator field 
with a 2-byte value. (A pair of brackets of 
the form ") (" is combin~.d into one internode 
separator field.) 



Within each internode separator field 
corresponding to a sing~~ open or close brack
et will be placed the distance (in bytes) to 
the opposite matching bracket. Within the 
internode separator corresponding to a pair 
of "Close, open" or H), (" brackets is placed 
the: symmetric difference of the distances to 
their matching brackets. (This construction 
is consistent with the previous encoding of 
field-lengths into field separators.) 

Each pair of matching brackets plus all 
of its enclosed fields and nested bracket 
pairs corresponds to one subtree and the 
branch connecting to its parent node. For 
example, the tree of Fig. 4 contains 7 leaves 
and 4 subtrees. Its root node is labeled R 
and the root nodes of its subtrees are 
labeled Tl , T2 , T3 and T4 • 

The encoded representation of a subtree 
will be called a compound element, and 
represents a new byte-string-valued data 
type. That is, a compound element is any 
sequence of fields including internode 
separator fields, in which the latter obey 
certain constraints on their pairwise 
cocurrences and contain appropriate length
defining values. 

Compund elements may be nested. Note 
that the internode separators corresponding 
to open or close type brackets are only 
distinguishable by tracking their positions 
relative to parent nodes; a separator 
position and value determines the location 
of its matching separator; the intervening 
internode separators specify inner structure 
at lower levels of the tree. 

In figure 4, four compund elements are 
identified by parentheses around the branches 
leading to the root nodes of their corres
ponding subtrees. Only one pair of subtrees 
(Tl and T ) are adjacent to each other at 
the same tree level. The other two subtrees 
(T3 and T4) are isolated by fields or higher 
level brackets. Let V denote.a value 
string for a field of ~ype A. Let L. denote 
the value of a a-type field (insteadJof Va). 
Define L. = length in bytes of (the encoded 
represe~tation of) subtree T; in Fi~ure 4, 
and def1ne L .. = L.$L., the syrnrnetr1c 
difference OrJLi aftd JL .• Then the tree 
structure of Figure 4 r~quires the following 
sequence of field types to be encoded: 

AaBaCDaaEaFaGaa 

Substituting VA for A etc., and Li_or L .. 
for a we obtain the field value sequence:J 

Appropriate field separators must now be 
inserted to punctuate this sequence of field 
values. Let ~AB represent the single-byte 
field separator between two value strings or 
fields of type A and B. Using this notation, 
the fully encoded linear representation for 
the tree of Figure 4 is shown in Figure 5. 

Figure 5 also illustrates the rules for 
computing compound element lengths. For 
each field which is a direct descendent of 
the compound element whose length is being 

-computed, add the field's value string length 
plus one (separator) byte. For each nested 
compound element which is a direct descendent 
add its length plus three bytes (for a a-i:ype 
field and its separator). Finally, add 
three bytes for the a-type field prefix to 
the compound elment itself. This is illus
trated on Figure 5 for the subtree T2 = (E(FG»; 
the lengths of VE, VF and VG are denoted by 
x, y and z, respectively. 

To illustrate the scanning process, 1:he 
example of Figures 4 and 5 will be used. 
Suppose we wish to access the field F which 
is known a priori to be on the first branch 
of subtree T4 • T4 is on the second branch 
of subtree T2 , wh1ch is on the third branch 
at the top level of the tree. 

Our search for field F proceeds from the 
left edge of the encoded representation (Fig. 
5) and follows the dotted lines: 

(1) Read b.i1A, lookup the length of VA 

and skip to b.Aa. 

(2) Read b.Aa, advance and read Ll , cmd 

skip to L12 • 

(3) Read L12 , compute L2 = Ll $L12 , 

then stack the addresses of L12 
and L2 • This will allow us to 

return from subtree T4 to either 
the left or the right edge of the 

subtree T2 • 

(4) Advance to b.aE, lookup the leng1:h 
of VE, and skip to b.Ea. Advance 

and read L4 and stack both of i 1:s 

addresses. 

(5) Advance to b.aF, which identifies F 
as the next field. This program skips over 
three subtrees and descends two levels down 
into the tree structure. By unstacking the 
return address we can return immediately up 
any branch to the next higher level of the 
tree. The stacked address of the current 
subtree t s left or right boundary is used t:o 
resume the scan in the forward or reverse 
direction, as desired. Internode separators 
within a subtree must be located interior to 
these boundaries. 

During the course of the scan, ambiguities 
will arise. The internode separator content 
does not specify whether it is an end of 1:he 
current subtree, or an internode separator 
within it. This ambiguity may be resolved 
by comparing the separator location to thE~ 
end of the current subtree, which is one of 
the two subtree boundary locations on the top 
of the stack. Another way to resolve this 
ambigui ty is to assign three distinct tYPE~ 
codes d l , a

2
, and a 3 (first, last, and inter-

mediate) internode separator field types, 
corresponding to parenthesis symbols "(", ")", 
and ") (" respectively. 
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Conclusion 

A coding method that supports bi
directional scanning has been defined for 
fields of variable length and/or type. Parity 
checking techniques have been applied to re
solve boundary alignment problems when a 
separator is in error. An extension of the 
concept to hierarchial parenthesized structures 
permits skipping over subtrees without scan
ning their contents. The method is economical 
in space and time and applies with minor 
differences to text editing or formatted data 
storage. 
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INTRODUCTION 

The interpretive process corresponds to 
creating a virtual machine to extend the 
capabilities of a hardware system. One of 
the drawbacks is that the interpreter and its 
instruction set are not implemented in the 
base hardware system~ they are implemented as 
a series of routines written in the language 
of the base hardware system (machine code). 
This means, in many cases, that the inter
preter is slower than the base system since 
it must be executed when a virtual instruc
tion is fetched and executed. This paper 
presents the technique of interpretation 
through instruction execution which elimi
nates much of this overhead. 

BACKGROUND 

An interpreter can be characterized as 
a system that carries out the execution of a 
program by dynamically mapping each primi
tive instruction, at the time it is to be 
executed, into a sequence of target instruc
tions which realize the semantics of the 
mapped instruction. An extensible interpret
er is an interpreter which allows new 
instructions (routines) to be composed from 
primitive instructions. Extensible inter
preters may be implemented by using a sub
routine control structure; however, time is 
wasted in branching to and returning from 
subroutines of target instructions, especial
ly when a primitive instruction maps to only 
a few target instructions. By implementing 
a new class of instructions which imbed the 
control structure of an extensible interpret
er in the standard control structure, this 
overhead can be reduced and a valuable pro
gramming technique for constructing systems 
software introduced. 

Typically the hardware interpreter cycle 
of a standard computer may be partitioned 
into instruction fetch, data-address compu
tation, and instruction execution phases. 
Before presenting the new technique for 
implementing an interpreter control struc
ture, two techniques which operate in the 
data-address and instruction execution 
phases respectively will be reviewed. 

INTERPRBTATION THROUGH DATA-ADDRESS 
COMPUTATION 

In the data-address computation phase 
of a hardware interpreter cycle, use is made 
of the contents of the address field, spe
cialaddress field (e.g. index register 
field), and mode field (e.g. indirect 
addressing field) of an instruction to deter
mine the memory address of data items. If 
the contents of the resulting location are 
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required for the execution of the instruc
tion, the data address is moved to a:n implicit 
register for processing in the instruction 
execution phase. If the address is required 
to store the result of the instruction execu
tion, then the address itself is passed to 
the instruction execution phase. Relative 
addressing and indirect addressing (in combi
nation or separately) are examples of data-
address computatio£. . 

Recently Bell has suggested a technique 
for imbedding a software interpreter in a 
machine whose hardware interpreter has a 
powerful data-address computation phase. The 
interpreter cycle models the followi:ng 
machine cycle: 

1. S, the value of the PCth word of 
memory is fetched (where the PC is 
the program counter). 

2a. The routine starting at location. S 
of memory is executed. 

2b. The value of the PC is incr,ement.ed 
by one. 

3. Go to 1. 
Figure 1 shows the flow of control for 

this interpreter. Every instruction in the 
main code is an address pointing to the 
starting location of a routine; the last in
struction in a routine is a jump to the next 
routine through the main code. 

Realizing this technique on a PDP 11-45 
can be done efficiently through the use of 
the following instruction: 

JMP @ (R) + 
Here R is a register which is dedicated t.o 
the imbedded interpreter. The instruction 
semantics are: jump to the location which is 
found in the location pointed to by the regis
ter R (a double indirect through R) and incre
ment register R by one. If this instruction 
is placed at the end of each interpretive! 
routine, much of the overhead of subroutine 
processing is eliminated. In this case the 
main code is a series of beginning addresses 
for the interpretive routiiles. 

INTERPRETATION THROUGH THE EXECUTE 
INSTRUCTION 

Several present-day computers have a. 
minor interpreter cycle imbedded in their in
struction execution phase through the use of 
an EXECUTE instruction. This instruction 
allows a one instruction interlude to occur 
where machine language instructions can be 
intermixed with interpretive instruotions in 
the main program. As a consequence, an inter
preter can execute machine language inst:r:'uc
tions without transplanting them into itself. 

The semantics of this instructi·on a:r:'e: 
the effective address of the instruction 
specifiesj directly or indirectly, an object 
instruction (possibly another EXECUTE) to be 



executed without changing the program counter 
to point to this instructions. The next in
struction executed is the successor (i.e. 
PC+PC+l) of the EXECUTE instruction not the 
executed instruction, except when the object 
instruction is a branch, then the next in
struction is the successor of· the executed 
instruction. 

The EXECUTE is useful ~or selecting spe
cialized instructions for execution (e.g. I/O 
instructions). It is also useful for tr~cing 
a program during debugging (see Buchholz ). 

INTERPRETATION THROUGH INSTRUCTION EXECUTION 

The EXECUTE instruction imbeds a one 
target instru9tion interlude while the,inter
pretation during data-address computat~on 
imbeds a many target instruction interlude. 
Suppose that a new instruction RETURN is 
created which combines and extends the prop
erty of interpretation through ins~ruction, 
execution embodied by the EXECUTE ~nstruct~on 
and the property of the many target instruc
tion interlude embodied by interpretation 
through data-address computat~on. This in~ 
struction can be used to real~ze an extens~
ble interpreter having more than one level 
of definition. Routines name primitives of 
a higher level machine. The advantage of 
this control structure is that routines and 
primitives may be ~rouped together,and tr~at
ed as a single ent~ty---a new rout~ne. F~g
ure 2 pictures this control structure as a 
tree while Figure 3 gives an example of a 
particular application. 

Consider, for comparison sake, a stan
dard memory reference instruction format as 
shown in Figure 4 (a); higher level instruc
tions can be imbedded in this format. A 
primitive instruction may have the format as 
shown in Figure 4 (b), while a routine spec
ification may have the format as shown in 
Figure 4 (c). using this convention, as 
many locations as can be addressed using the 
standard format are able to be addressed. 

To illustrate extensible interpretation 
through instruction execution, postulate a 
computer with a stack architecture, as shown 
in Figure 5, whose instruction set is given 
in Table 1. (A stack architecture is a 
convenience not a necessity.) The hardware 
for this architecture consists of: 

1. A set of general purpose file regis
ters that can be referenced by 
address. 

2. A general purpose register A. 
3. A register B which is the top ele

ment of a hardware control stack. 
4. A register S which contains the ad

dress of the top element of a main 
memory operand stack. 

5. A memory address register MAR. 
6. A memory buffer register MBR. 
7. A program counter PC. 
Consider the micro-orders for a RETURN 

instruction (where the e,nd of a routine :is 
signalled bya word whose contents is zero): 

START: MAR + B 
MBR + 'MEM (MAR) 
B+ B+l 
IF MBR=O THEN UNSTACK(B) , 

GOTO START ) 
IF MB~=O THEN (PC+ MBR, 
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GOTO FETCH ) 
ELSE ( STACK (B), B + MBR, 

GOTO START ) 

Here MEM is a quickverb for a memory read, 
STACK is a quickverb for pushing down the 
contents of the control stack, UNSTACK is a 
quickverb for popping up the control stack, 
and MB~~ is shorthand for the Nth bit of the 
MBR (i.~. the leftmost bit). 

As an example of its use, consider the 
program segment of Figur~ 3 which computes the 
square of the number on the operand stack. 
It is assumed that the code for NOP is 0, that 
the RETURN for the primitive REPEAT is about 
to be executed, and that the register B is 
pointing to the MULT instruction in the main 
program. 

Ref:lect upon the following snapshots of 
program execution: 

1. A memory cycle is taken and the ad
dress of the MULT routine is placed 
in the MBR. Since it is a routine 
(i.e. MB~~=l) the updated contents of 
register ~ are stacked. Register B 
is now changed to point to the MULT 
routine. 

2. A memory cycle is taken and the ad
dress of the primitive TOP IN 1 is 
placed in the MBR. Since Tt Ts a 
primitive (i.e. MB~=O) the address 
is placed in the PC so that the 
straightforward execution of the 
primitive can be accomplished. 

3. After primitives TOP_IN_l, TOP_IN_2, 
and MLT have been executed, register 
B is pointing to the instruction 
after MLT. A memory cycle is taken 
and NOP is placed in the MBR. Since 
MBR=O, the hardware control stack is 
popped (into B) and processing 
continues in the main program. 

The advantages of this implementation of 
the RETURN instruction are that it allows the 
imbedding of an extensible interpreter in a 
target machine, an implicit block control 
structure, and recursion. The disadvantages 
are that it requires an additional memory 
location for each NOP and an additional memo
ry cycle for testing for the NOP. 

Consider an alternate implementation of 
a RETURN instruction with the modified for
mats for higher level instructions as shown 
in Figure 6. Micro-orders for the alternate 
RETURN instruction are: 

START: IF FF=l THEN (UNSTACK(B),FF+O) 
MAR+B 
MBR+MEM (MAR) 
B+B+l 
IF MB~=O THEN 

ELSE 

ELSE 

(PC+MBR, FF+MB~_l' 
GOTO FETCH) 

IF MB~~ =0 THEN 
(STACK·~Bt ,B+MBR, 
GOTO START) 

(B+MBR, GOTO START) 

While it is true that the number of ad
dress bits is decreased by one over the pre
vious implementation, it should be pointed 
out tha·t the word length of an instruction is 
usually larger than the length necessary to 
access all memory locations (this may not be 
true of many minicomputers). While the hard
ware cohtrol stack plays more of a ~ole in 
this implementation, it now contains less 
information as tb the termination of a 



routine. An example of the use of this im
plementation is given in Figure 7. 

EXTENSIONS 

The class of RETURN instructions may be 
augmented in several ways. The micro-order 
B+B+l may be changed to 

B+B+MBRADDRESS 
which allows relative addressing. Thus a 
command RETURN =2 would skip the next instruc
tion in the calling routine· on return. This 
provides security to register B while still 
allowing several return points. By conven
tion, RETURN means RETURN =1. 

The reader is now referred to Figure 8 
where a recursive function FACT is defined 
which computes the factorial of the number on 
the top of the operand stack. Notice the 
primitive EQUAL, it contains a RETURN =2. 
This allows an instruction skip in the fac
torial program when the top two operand stack 
values are unequal and a continuation when 
these values are equal. 

ARCHITECTURAL IMPLICATIONS 

The imbedding technique described is 
quite efficient for routines that are memory 
limited; that is, those routines that contain 
a large percentage of memory reference in
structions. This leads to a useful criterion 
for the selection of primitive instructions-
select primitives that are memory limited. 

Since recursion is allowed, and the 
control stack is of finite length, something 
must be done when the control stack is full. 
There are two alternatives---stop execution 
of the current program segment, or spillover 
into a protected area of main memory. Each 
has its associated tradeoffs. 

Problems may also arise if interrupts 
are a consideration. It is conceivable that, 
if interrupts are disabled and a routine has 
a highly nested return structure, an inter
rupt may not be serviced in time. This can 
be averted by using either a fast control 
stack, or a counter which enables interrupts 
automatically after a fixed number of control 
stack levels are popped during the execution 
of a RETURN. 

INTERCOMMUNICATION OF PRIMITIVES 

In an extensible system, from time to 
time, new primitives may be added. It may 
also be necessary to imbed the control data 
structure (of a virtual machine) in main 
memory. For example, a target machine may be 
simulated by placing the memory and registers 
that are accessed by the control unit of the 
simulated machine in the main memory of the 
host machine. This means that primitives 
must be added to the system easily and must 
be able to communicate with one another 
through global data structures. A technique 
for this communication process that can be 
used dSaws upon a structure described in 
Wegner . 

A primitive is composed of a communica
tions region and a body. Addresses of 
global data structures (e.g. simulated 
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memory and registers) are kept in the commu
nications region. Target instructions in the 
body access the global data structure indi
rectly through the communications region. 
Thus primitives may be written and added with
out regard for their position or for the posi
tion of the global data struc·ture (see 
Figure 9). 

CONCLUSION 

This paper presents a technique for 
imbedding an extensible interpreter in the 
instruction execution phase of the hardware 
interpreter cycle of a machine.. This tech
nique differs from the3Powerful interpret.ers 
of the ~urroughs B5500 and the Iliffe Basic 
Machine in that an interpreter is created 
with the use of a class of instructions, the 
RETURN instructions. The usefulness of t.his 
instruction class points out the need for 
further research into machine instruction sets. 
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Figure 5 

A Stack Architecture 

TABLE I 

Instruction Set of a Stack Machine 

INSTRUCTION SEMANTICS 

LOAD I, =J Load integer J into rE!gister I 

STORE I Copy the contents of regis·,ter 
I into the top level of the 
operand stack 

SUB I,J Subtract the contents of 
register J from the contents 
of register I and place the 
result in register I 

MPY I,J Multiply the contents of 
register I by the contents of 
register J and place the 
result in register I 

UNSTORE I Copy the contents of the top 
level of the operand stack 
into register I 

PUSH 

POP 

Place a new uninitialized 
level on the top of the 
operand stack 

Remove the top level of thE! 
operand stack 

NOP Non-operation 

SZE I Skip the next instruction if 
the contents of register I 
is zero 
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Summary 

It is a well-acknowledged fact that the adequate 
structuring of data is as important as the adequate 
structuring of a program. The classical von Neumann -
machine deals on the hardware level only with scalars 
and, therefore, provides no hardware support of any 
sort for the manipulation of more complex data struc
tures. Some more recently developed concepts - all 
variants of Iliffe's Basic Language Machinel -- pro
vide some hardware support for structuring data in the 
form of trees. Contrastingly, in the STARLET2,3 con
cept to be discussed in this paper, the basic data 
structure is that of ordered sets (as given by strings 
and arrays). In the paper, the basic notions of this 
novel concept are introduced and discussed, especially 
the internal information structure which differs con
siderably from that of the von Neumann-machine or 
other concepts. This very idiosyncratic information 
structure has far-reaching consequences with respect 
to the hardware structure of the machine. Finally, a 
number of resulting features will be discussed and an 
attempt will be made to compare the computing power of 
STARLET with that of a von Neumann-machine with equal
ly fast hardware., 

Introduction 

STARLET is an attempt to organize the hardware of a 
computer on a higher level than that of the classical 
von Neumann-machine. This is primarily accomplished 
by introducing ordered sets as the elementary data 
type of the machine -- in lieu of the scalars to be 
found in the von Neumann-machine. This has a number 
of far reaching consequences which shall be listed in 
the following. 

Instruction Format 
Unlike the instruction format of a von Neumann

machine, STARLET instructions do not refer to memory 
locations but to variables representing entities of 
data. All data of such an entity are of the same 
type, and they are ordered in the form of strings or 
matrices. Variables are identified by names. Because 
of the higher complexity of this basic data structure 
of STARLET, the processing of an instruction for a 
dyadic operation requires the generation of two source 
streams of data flowing into the data processing unit, 
and the generation of an object stream carrying the 
results of the operation. Therefore, the general for
mat of a STARLET instruction consists of the operation 
code and the referencing of three variables, two 
source variables and one result variable. Of course, 
the interpretation of a STARLET instruction requires 
that the referenced variables must be somewhere des
cribed to the machine. For reasons which will immed
iately become obvious, such a variable-descriptor is 
not part of the STARLET instruction format but stored 
in a separate list called variable specification list 
(VSL). 

Variable Specification List (VSL) 
The VLS is the central part of the internal repre

sentation of a STARLET program. It is stored in a 
fast-access semiconductor memory and has one entry for 
each variable. These entries are called variable
descriptors and contain all necessary information 
about 

-the data type of the variable 
-the species the variable belongs to 
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-the scheme according to which the data 
are ordered 

-the location of the data in a 'data list' 
(DL). 

Since the variable-descriptors are stored in fixed mem
ory locations, their addresses can be used as the in
ternal variable identifier ("call by name" mechanism). 

Species of Variables 
The most important consequence of the separation 

of instructions which reference variable names and the 
descriptors of these reference variables is that all 
"restructuring operations", whose only effect is to 
change the ordering of the data in a set (a Yariable), 
can be executed purely on the variable-descr:lptors. 
New variables generated in such a way are termed 
"pseudo" variables as they have a descriptor but no 
data of their own. Conversely, variables wh:lch do have 
data of their own are called "true" variableB. In 
other words. a pseudo variable shares its data with one 
of the existing true variables (only the ordering of 
these data has been modified or a subset has been se
lected). Hence, restructuring operations such as, for 
example, matrix transposition, indexing, and mapping, 
create only new variable-descriptors but leave the data 
untouched. Thus any unnecessary copying of data in 
the machine is avoided. 

Hardware Structure 
The decomposition of a program into a list of in

structions (IL), a list of variable-descriptors (VSL) , 
and a list of data (DL) suggests that each Olle of 
these lists is interpreted or processed, respectively, 
by its own processor. This leads to the rather ortho
gonal hardware structure of STARLET, as illustrated in 
fig. 1, which may be characterized as "an asymmetric 
four-processor system". The description of the de
tailed structure and the functions of such a system 
will be the major topic of this paper. 

Operating 
System & 
I/O Proces
sor (DL) 

Instructioni"4-__ ~1 Bus LM-__ ~Structure 
Processor ~ISystem I.. ~ Processor 

(IL + vsL) 'I I Scratch Pad 
• 

1 

Data 
Processor 

Pi pel i nes 

===t> Bus 
----+- con t ro 1 

1 ines 

~ Basic Structure of the STARLET System 

The Information Structure of STARLE~ 

The information structure of the classical von 
Neumann-machine consists of a program and its data., 



An initial representation of such an information struc
ture is read into the machine, and a computation is a 
sequence of transformations mapping this initial rep
resentation into a final representation. In STARLET, 
the initial representation of the information struc
ture is a program with ordered sets of data. Hence, 
if L denotes the set of all syntactically correct 
STARLET programs and Ds the set of all structured data 
entities constituting the domain of Lp ' we have the 
initial representation RO S Lp x Ds' The first trans
formation is then given by the translation 

a: Ro 7 I x VS x D (1) 

where I is the set of instructions, VS is the set of 
variable-specifications ("descriptors"), and D is the 
set of all components of D. The variable-descrip
tors are derived from the ~eclaration of the sets of 
data which are input to the program. The ordering 
relation on D is once and for all defined in the form 
of the row-major linear order. This transformation 
is performed by the I/O processor. 

In the process of computation any such internal 
initial representation Ri ~ I x VS x D is transformed 
into a final representation Rf according to one of 
the following functions 

S: I x VS x D + VS x D 
(Data generating operations) (2A) 

y: I x VS + VS 
(Restructuring operations) (2B) 

Eventually, we want to output results, i.e., to per
form a mapping 

w: VS x D + DS (3) 

Generally, the transformations (2A) and (2B) are 
p,erformed in coll.aboration of the structure processor 
and the data processor, whereas transformation (3) 
applies to the instruction processor as well as to 
the structure processor. Of course, the instruction 
processor is also employed for instruction interpre
tation which may, on the other hand,requi-re the 
assistance of the data processor (for example, if a 
conditioned jump has to be executed). 

Whereas input variables have to be declared as to 
their structure and their data type, the name-value 
binding of result variables (including all intermed
iate results) is automatically performed during pro
gram execution. Therefore, the STARLET assembly 
language is to a large extent dec.laration-free. Fig
ure 2 depicts the information structure in STARLET 
as discussed here. The components of this structure 
Bhall be discussed in more detail in the following. 

USER LEVEL 

LEVEL 

USER LEVEL 

~ Information Structure of STARLET 
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Instructi.ons 
As mentioned before, 3-address instructions are a 

prerequisite for dyadic operations performed on data 
streams in a pipeline mode. Since variables are de
fined by separate variable-descriptors (not being part 
of the instruction), the instruction format has only 
to accomodate the operation code and the names of 
three variables and can, therefore, be kept relatively 
small (e.g., 35 bits). 

The set of STARLET operations is basically a subset 
of APL (with some modifications). The data generating 
operations are given by a subset of the APL primitive 
~calar and composite functions. Restructuring op
erations are: Transposition, rotation, indexing, 
mapping. The STARLET instruction repertoire contains 
also organizational instructions such as unconditioned 
and conditioned jumps, subroutine jumps, stack instruc
tions, and I/O instructions. Table 1 gives the com
plete instruction list. 

The STARLET instruction format permits the intro
duction of the transposition operator as a prefix to 
the variable name and, therefore, data generation in
structions can be performed on matrices as well as on 
transposed matrices. Consequently, the transposition 
does not occur explicitly in the instruction set. 
Any extension of this scheme to restructuring opera
tions other than the monadic, parameterless operation 
of transposition, however~ would sacrifice the advan
tages of the descriptor concept such as the compact 
and redundancy-free instruction format and the flexi
bility of the machine language. 

Data 
---T-he STARLET hardware recognizes the following four 
data types: REAL, INTEGER, BOOLEAN, CHARACTER. The 
pipeline mode of processing of ordered sets of data 
requires the generation of three streams of memory 
addresses in order to fetch the two operands and to 
store the result of a dyadic operation. These add
ress streams have to be generated by a special hard
ware (called structure processor) in order to obtain 
the maximum rate as permitted by the memory cycle 
time. As mentioned before. data are always stored in 
the data list in a row-major linear order, whereas 
the order in which they are fetched can be arbitrary. 
The structure processor can easily be designed such 
that the generation of memory address streams includes 
data conversion functions. Hence~ depending on the 
data type, streams o~ bits, bytes, or words are 
fetched and stored. 

Variable-Descriptors 
Variable-descriptors specify: CLASS, TYPE, 

SPECIES, DIHENSION, LOCATION OF DATA of variables. 
The meaning of these parameters shall be explained in 
reverse order. 

LOCATION OF DATA is a pointer to the data list 
where the first data item of the set represente~ by 
the specified variable can be found. DIMENSION 
specifies the array dimension (number of rows and 
columns), or the number of characters in a string, 
etc. Since data are always stored in row-major order, 
the ornering of variables is thus defined by the di
mension parameters (vect,ors are defined as matrices 
either with only one row or only one column). 

SPECIES indicates whether a variable is a true 
variable or a pseudo variable. True variables are 
created by a data generating operation. Pseudo var
iables are created by a restructuring operation. In 
the machine, truevaria.bles are represented by a 
descriptor and a set of data,whereas pseudo varia
bles are only represented by a descriptor. Figure 3a 
illustrates the two-stage process of addressing data 
through a descriptor. A pseudo variable descriptor 
does not reference data directly, since the variable 



does not have data of its own. Instead, the descrip
tor references the true variable whose data are re
ordered or selected by the operation creating the 
pseudo variable. Furthermore, a pseudo variable de
scriptor has to contain all parameters specifying the 
generating operation (such as rotation parameters, or 
indexing (selecti,on) parameters, or the name of a 
mapping vector, respectively). The scheme of addres
sing data through pseudo variables is illustrated in 
figure 3b. From the view point of machine hardware, 
a descriptor has a dual function: (1) it contains 
additional information necessary for the interpreta
tion of an instruction and (2) it may be considered 
as being a micro-instruction to the structure proces
sor causing the generation of data streams in a 
specified order. 

IL VSL 
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DL 
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<iJ 11111/ / / / //1 ~ 

IL 

A p 
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(c) 

F~~ Data Referencing Scheme 

(a) for true array variables; (b) for pseudo 
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In a pseudo variable descriptor, restructuring op
erations are, together with their parameters, independ
ently specified for the two coordinates of a matri:K:. 
Hence, all possible combinations are permittE~d and, as 
a result, restructuring operation can be recursively 
performed on pseudo variables without limitation as to 
the depth of recursion. Each time, all that has to be 
done is to calculate new restructuring parameters as a 
function of the actual parameters in the descriptor 
and the instruction. This scheme is similar to the 
"beading" technique developed by Abrams,4 but: it has 
been refined to the point that a fixed descrjLptor for
mat (e.g. of 35 bits) is never exceeded. 

TYPE specifies the data type of a variable. 

CLASS distinguishes between two possible .~lasses of 
variables, namely ORDERED SETS and SCALARS. Such a 
distinction is an internal measure for improving the 
efficiency of operations performed on scalars, but it 
is not pertinent for the user. As depicted 1n figure 
3, the access to data items is a two-stage process 
which requires first to access the respective descrip
tor. Whereas such a technique is the approp:ciate de
vice for handling more complex data structur1es, it 
penalizes the use of single scalars. As scalars a,re 
true variables of dimension zero, all that has to be 
specified is its type, and the remaining part of the 
descriptor would be empty except for the pointer to 
the memory location where the scalar is storied. There
fore, it is a better method to store the scalar di
rectly in the VSL word that is assigned to its name 
(in this particular case, of course, there is no dif
ference to the von Neumann-machine). Figure 3c de
picts the one-stage addressing scheme employed in the 
case of scalars. 
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At this point it may be useful to compare briefly 
the STARLET information structure with the one to be 
found in the BURROUGHS B5700/B6700 computers. 5 The 
main objective of the information structure in the 
BURROUGHS machines is to group data into "aecess 
regions" which correspond with the actual working set 
of a program. There~ore, data are grouped accord:ing 
to the scope of their identifiers or, in other words, 
according to the'ALGOL-like block structure of the 
program. Descriptors in these machines identify 
program segments (blocks). 

Whereas the B5700/B6700 computers can be charac
terized as "ALGOL-type" machines, STARLET is an 
"APL-type" machine in the sense that we find on the 
machine level almost all APL primitive functions, but 



not the "defined function" mechanism. Hence t a STAR
LET machine program is a piecewise linear sequence, 
and notions like "block structure" are on this level 
meaningless (it has to be considered that, because of 
the higher power of APL mixed functions, most of the 
repetitive loops to be found in languages like ALGOL 
are simply not necessary). Hence, STARLET descriptors 
are not descriptors of program segments but of struc
tured variables, acting as micro-instructions to the 
very unique "structure processor i

!. The only common 
feature which we can see is that, in STARLET as well 
as in the B5700/B6700 computers, memory cells are 
accessed through variable-identifiers. 

System Organization 

In the following, we shall discuss the four major 
components of a STARLET system, I/O PROCESSOR, IN
STRUCTION PROCESSOR, DATA PROCESSOR, and STRUCTURE 
PROCESSOR, with respect to their functions, interrela
tions, and mutual actions. 

I/O Processor 
The very core of the system, the I/O processor, 

will be a commerically available, general-purpose 
minicomputer that will come with all required channels, 
device controllers, and peripherals. Preferably, the 
minicomputer should be micro-programmable, since this 
feature provides a most elegant way of conditioning 
the computer as part of the system. Its memory must 
be of sufficiently large capacity as it has to accom
odate the operating system with all its components 
(assembler, translator, etc.) as well as the data 
list. 

Once the I/O processor has provided the internal 
information structure, as given in the form of the 
instruction list (IL), the variable specification 
list (VSL), and the data list (DL), the remaining 
tasks are to store the data list and to handle I/O. 
Therefore, it is advantageous to have a computer with 
dual port memory access. Requests to the operating 
system are transmitted via interrupts. Output re
quests have to be accompanied by the format specifi
eat ion as given in the instruction. 

Instruction Processor 
- Tasks of the instruction processor are: (1) pro
gram control, (2) instruction interpretation, 
(3) initialization of data processor and structure 
processor, and (4) generation of requests to the I/O 
processor. The memory of the instruction processor 
is a fast-access semiconductor memory that has to 
accomodate the instruction list and the variable 
specification list. The instruction processor is 
lnitialized by a transfer of these two lists from the 
1/0 processor. 

As result variables are created during program 
execution, it is important to check automatically the 
conformity of the operands of an instruction before 
execution. Such conformity tests are partly built 
into the hardware and performed on the variable
descriptors. Variable-attributes to be tested by 
hardware are: 

CLASS: certain operations are only defined on 
one of the two variable classes (e.g., restruc
turing operations can only be performed on 
variables of class array). Furthermore, the 
instruction execution may depend on the var
iable class (e.g., operations on scalars 
involve only the data processor, operations 
on arrays involve data processor and 
structure processor, etc.). 

DIMENSION: In dyadic operations which are 
executed componentwise, the dimensions of the 
operands have to be equal. In the generalized 
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inner product, the row-dimension of the first 
operands must equal the column-dimension of the 
second operand. In stack operations, the 
stack width must equal the respective variable 
dimension. 

TYPE: In almost all operations, the operands 
must be of equal type. 

Before an instruction can be executed, the instruc
tion processor has to initialize the data processor 
and the structure processor by transferring all para
meters specifying the structure of the operands and 
the operations to be performed. Furthermore, the in
struction processor must calculate the parameters 
specifying the structure of result variables (as a 
function of the instruction and the operand structures) 
and to communicate them to the structure processor. 
If the prefix operator denoting transposition of a 
variable is encountered, that information has also to 
be communicated to the structure processor. Program 
control instructions (jumps) are immediately executed 
by the instruction processor; in the case of condi
tioned jumps, however, the assistance of the data 
processor is required in order to determine the truth 
value of the conditioning relation. Figure 4 depicts 
a block d:iagram of the instruction processor. 

.:::::;> Bus 

-... Control 

Data 

IP 

Input ~>~==========~~=========, 
Buffer 

~ Data Processor Block Diagram 

Data Processor 
The processing of data streams requires the repe

titive execution of certain sequences of operations 
performed on scalars, each time generating a component 
of the result stream. The hardware structure of the 
data processing pipeline has to be designed for the 
most complex operations, namely the generalized inner 
products. Here, we have two dyadic operations, 
(f,g). f combines dyadically row-elements of the 
first operand with column-elements of the second 
operand, and g performs subsequently a reduction (in 
the APL definition) on the resulting components. 
Therefore, the pipeline has the structure P=(P I ,(P2 , 
AC», that is, a processing unit PI is followed by a 
processing unit P2 which ,is followed by an accumulator 
AC. 

Since the instruction repertoire encompasses gen
eralized inner products of boolean as well as of 
numerical data, the data processor contains two pipe
lines, one for boolean and the other for arithmetic 
operations (the "boolean" pipeline is very inexpensive 
as it processes only single bits). The order of PI 



and Pz can be interchanged. With PI = x, Pz = + in 
the arithmetic case and PI = A/f, Pz = V/= in the 
boolean case, respectively, we have the combinations 
(x,+) and (+,x) in the arithmetic case and (A,V), 
(V ,A), (A,~), and (I), =) in the boolean case. It need 
hardly be mentioned that each processing unit of the 
pipeline can act autonomously. 

Supply of Data 
Scalar data are supplied by the instruction pro

cessor, whereas the components of arrays are fetched 
by the structure processor from the data list. The 
desired parallel operation of structure processor and 
data processor requires the buffering of the operand 
data streams. Such a buffer provides the additional 
advantage that, in operations combining a scalar and 
an array, the scalar can be stored in the buffer as 
long as it is needed. Likewise, a buffer is required 
for the result stream. Figure 5 shows a block diagram 
of the data processor. 

Gener
ator J 

Pad 

Wri te 
Index
Genera
tor 

Structure Processor Block Diagram 

Structure Processor 
The structure processor generates the address 

streams which are necessary in order to fetch oper
ands from the data list, process them in the pipeline, 
and store the results back into the data list. As 
this has to be done at a high rate (only limited by 
the memory cycle time), the three address streams are 
generated by respective dedicated hardware units 
which we call index generators. 

The two read-index generators need i'o have a cer
tain computing power enabling them to execute the 
variety of index generation algorithms as required 
for the various restructuring operations. The most 
complex operation is in the case of mapping 

MVI(kl mod i)i + MV2(kZ mod j) + B T , 

where MVI and MV2 are the mapping vectors, and in all 
other cases 

(kl mod i)i + k2 mod j + B T • 

B is a base address, T is a factor depending on the 
data type (addressing of bits, bytes, or words), and 
i,j,kl,k2c[1 : nl are sequences of index numbers. 
Thus the required computing power is to count, to 
add) and to multiply. 
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The write index generator is much simpler as it has 
always to store data in a linear (row-major) order. 
This can be performed by a (modulo-n)-counter which 
controls a (modulo-m)-counter (m being the row dimen
sion and n being the column dimension of an array). In 
the case of transposition, we have the same simple 
scheme, only that the role of the two counters is in
terchanged. 

The execution of the generalized inner product re
quires the cyclic read-out of the rows or columns, re
spectively, of the two operands. In order to speed up 
this procedure, the structure processor is equipped 
with a fast-access scratch pad into which the respec
tive row of the first operand is loaded (thuB a multi
ple read-out from the data list is avoided). The same 
scratch pad is used to store the mapping vectors in the 
case of the mapping operation. The transfer of data 
from DL to the scratch pad is controlled by the write
index generator. Figure 6 shows a block diagram of 
the structure processor. 

Instruction 
Processor 

(VSL + IL) 

Operating -
System & I/O 
Processor 

(DL) 

Data 
Processor 

P i pe Jines 

Structure 
Processor 

Scratch Pad 

Fig. 7 STARLET Bus Structure 

Bus System 
The STARLET bus structure for interprocessor com

munication is illustrated in figure 7, assuming a 
dual port memory access in the I/O processor. 

Resulting Features 

Machine Language and High-Level Programming Langu~ 
STARLET provides on the hardware level the possi

bility to perform complex operations on sets of data 
ordered in the form of arrays. These operations are 
a powerful, slightly modified subset of the APL prim
itive functions. 

The high-level programming languages to be imple
mented on a STARLET machine depend, of course, on the 
area of applications and the mode of operation (batch 
or conversational mode). Naturally, the machine is 
predestined for being an APL machine as it supports 
strongly the APL operations as well as the interactive 
mode of operation (delayed variable-value binding). 
However, STARLET will equally well support, for exam
ple, a discrete event simulation language designed for 
a batch mode of operation (supporting factors are the 
notion of ordered sets as the basis data structure and 
the stack instruction to be discussed later). 



Instruction Look-Ahead Mechanism 
Since the instruction processor is not involved in 

the processing of data, simultaneously to the execu
tion of the current instruction it may already inter
pret the next instruction, calculate the result
descriptor, and prepare the initialization for the 
following instruction execution. JUMP instructions 
can also be executed in a look-ahead fashion. Of par
ticular interest is that a restructuring operation may 
be executed by the instruction processor (as this re
quires only the creation of a new descriptor) while a 
data generating instruction is under execution. How
ever, the calculation of a new array and its subse
quent restructuring is a combination which may be en
eountered in a program many times. 

Besides of the instruction look-ahead, a data look
ahead can be performed. This is important if the da
ta list is stored in a virtual memory. Special STAR
LET properties which make such a data look-ahead es
pecially efficient are: (1) STARLET programs will 
hardly contain DO-loops, as the basic data type is al
ready a matrix (thus indexing is only required in the 
ease of hyper-matrices). Therefore, jump instructions 
will usually occur in the only context of program 
branching. Hence, the average length of linear se
quences in a STARLET program can be expected to be 
fairly large. (2) Each instruction look-ahead may 
already result in the swapping of two rather large 
blocks of data. 

Stack Instructions 
Stacks can be programmed simply by defining an in

ternal array variable as a stack. Therefore, the 
stack width and depth can be arbitrarily declared 
(and is limited only by the maximum array dimension). 
The internal mechanism is as follows. As a function 
of the declared stack dimensions and the data type, a 
dummy matrix is created as an internal true variable. 
Furthermore, the variable referred in the stack in
struction is created as a pseudo variable. This 
pseudo variable which is specified by a row-rotation, 
references the (internal) true matrix variable. Stack 
operations such as push-down and pop-up are executed 
by incrementing or decrementing, respectively, the 
rotation parameter. A matrix concatenation is a spe
ci.al kind of stack operation that requires only the 
addition of the row dimension of the additional ma
trix to the current rotation parameter. Once a 
stack has been completely filled up, it can be used 
like any other array variable. 

Specifications 

We decided to use a 32 bit data word for a real 
number and a 36 bit word (including a parity bit) in 
IL and VSL. Thus, the maximum matrix dimension is 
l27 x127, and the maximum character string length is 
4097. A semiconductor memory module of 4Kx36 bits is 
considered to be sufficient for accomodating IL, VSL, 
and the scratch pads (for which 192 words are needed). 
The maximum time for a floating point operation in 
the data processor is 250 nanoseconds. The proces
sing of one or two variables with n components, which 
requires n such operations for primitive monadic or 
dyadic functions and 2n3 operations for the inner 
product, takes the following number of memory cycles: 
Monadic function: n+3; dyadic function: 2n+4; inner 
product: n3+n2r3n+2. Hence. in the case of the inner 
product, the number of cycles required is smaller 
than the number of operations as soon as two matrices 
greater than (3x3) are multiplied. 
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Operation 

OLUTE VALUE 
OR 
LING 

NOT 
ABS 
FLO 
CEI 
ROW 
EQU 
liNE 
GRE 
LES 
ADD 
SUB 
MUL 
DIV 
INN 

REDUCTION 
AL 
QUAL 
ATER 
~, 

Cl 

ITION 
TRACTION 
TIPLICATION 
ISION 
ER PRODUCTS 

LEAN MATRIX PRODUCTS BOO 
IDE 
ROW 
COL 
ROW 
COL 
ROW 
COL 
STA 
PUS 
POP 
ROW 
COL 
VAL 
ROW 
COL 
MEMB 
liNC 
CON 
JUMP 
INP 
OUT 
DIME 

NTITY 
ROTATION 

UMN ROTATION 
MAPPING 

UMN MAPPING 
INDEXING 

UMN INDEXING 
CK DECLARATION 
H DOWN 

UP 
DIMENSION 

UMN DIMENSION 
UE 

REPLACEMENT 
UMN REPLACEMENT 

ERSHIP 
ONDITIONAL JUMP 
DITIONAL JUMP 

TO SUBROUTINE 
UT 
PUT 

NSION OUTPUT 

Notation 

B +"A 
B + IA 
B + LA 
B + rA 
B + o/A 
C+ B - A 
C + B :/: A 
C + B > A 
C+ B < A 
C + B + A 
C + B - A 
C + B x A 
C + B t A 
C+ A+.xB 
C+ Bx.+A 
C + B 0 1 .02 
B + A 
B + k e A 
B + k ~ A 
B + u f A 
B + u ff A 
B + i t A 
B + i tt A 
m,n,t p K 
K t A 
A + K 
B + pA 
B + ppA 
B+ (A) 
B + k:A 
B+ k :: A 
B + a E: A 
-+ (i) 
-+ (AoB x i) 
-+ (name) 
A+O 
O+A 
0+ pA 

TABLE 1 

List of STARLET Operations 
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Abstract 

A 2-dimensional cellular general-purpose computer is 
specified. This particular cellular computer is 
distinguished from previously proposed, locally
controlled cellular computers in that the cellular 
structure is "hidden" from the user. At the ISP 
level, the machine is similar to a small-scale 
computer of the von Neumann type. However, the 
architecture of the computer does not feature 
physically isolated functional units to implement 
memory, processor, or control. As a result, we 
present a machine which may be programmed in the 
conventional manner, but which has the hardware 
advantages associated with the cellular structure. 
Additionally, the machine is controlled by a software 
microprogram, which lends itself to dynamic micro
programming and to such related applications as 
machine simUlation. 

Introduction 

Continued interest in the investigation of cellular 
array implementation of computing devices has been 
inspired by the emergence of LSI as a state-of-the
art technology. Cellular realizations have been 
proposed which serve as universal logic modules,l 
functional units,2,3 and complete computers,Q,5,6 
with hardware complexity per cell ranging from 
several gates to tens of thousands of gates. Often, 
cellular computers proposed incorporate several 
cell types, and almost invariably the devices 
exhibit functional characteristics unique to cel
lular structures (these characteristics often make 
the programming of these devices nonintuitive or 
prohibitively complicated). In contrast, we report 
herein on the architecture of a cellular general 
purpose computer (CGPC) distinguished from those 
previously proposed in two respects. First, the 
cellular hardware structure is "hidden" from the 
programmer; the machine appears (at the instruction 
set processor [ISP] level) to be based upon the 
familiar von Neumann architecture. Second, the 
computer's machine language is determined by a soft
ware microprogram which may be altered dynamically. 
The computer's physical organization is presented, 
as well as a simple machine instruction set which 
is intended to serve an exemplary purpose during a 
discussion of CGPC operation. 

CGPC Architecture 

The computer consists entirely of a regular 
2-dimensional array of identical circuits called 
cells. Each cell not assigned to an array boundary 
is connected to its four neighboring cells in an 
identical fashion (Figure 1). The cell contains no 
identifiable computing units such as full adders, 
counters, etc. Between any two cells defined as 

207 

neighbors, the intercell communication which tran
spires at time t consists of a cell-edge output from 
each of these cells to the other. Cells are syn
chronized by an external clock such that cell inter
nal state transitions for all network cells are 
enabled at integral time instants defined by that 
clock. We define a network cycle as the period 
between two adjacent clock pulses. 

All aspects of program execution (storage, aritrunetic 
and logical operations, and control) are performed 
within the array, independent of external control 
devices. All communication with peripheral devices 
transpires at an array boundary. There is no hard
wired specialization of any cell or group of cells 
through cutpoint 1 techniques. No region of the array 
is set aside to serve as a dedicated functional unit 
(e. g., control, ALU, etc.), hence all computer func
tions are fully distributed among the array's cells. 
Finally, the size of the array is not limited by the 
cell's particular structure, hence the control 
scheme employed accommodates a range of array sizes. 

Functional Structure 

The structure of the basic cell, as well as the cell 
intercommunication format and array boundary inter
connection network, can best be explained if the 
functional organization of the CGPC is first 
presented. The M x N cell array is viewed as an M 
register device, each register being qN bits wide 
(where q is the number of bits of cell storage). 
The user's program, stored in the CGPC, is organized 
into words, each word occupying one network register. 
These words may be either instructions or operands. 
Any register of the array must be available for word 
storage, hence each register is logically identical 
to every other register in the CGPC. Each register 
is partitioned into six functional fields, as 
depicted in Figure 2A. An explanation of the bit 
lengths of each field will be temporarily deferred. 
Register fields are defined independent of the 
register's content. 

Register Field Assignments - The two word types 
identified in association with the user's program 
are partitioned as shown in Figures 2B and 2C. The 
machine instruction features an operation code field 
and two fields for the identification of operands. 
An operand format field is incorporated for the 
purpose of expanding the operation code set where 
appropriate by providing a means whereby the function 
of the operand fields may be modified. Througb the 
use of an associative addressing scheme, each ~ord 
carries its own unique address, while each storage 
location (i.e., register) has no fixed address. It 
is to this end that an address field is included. 



Finally, an activity state field is used to alert the 
cells that make up a register of the type of word 
stored in that register and the current functional 
activity of the register. 

.An operand stored in a register is again partitioned 
into six fields. The activity state field and 
address field serve identically' as specified for the 
machine instruction. The three fields that are 
assigned to data storage are typically used as 
though they were a single field, although the 
fields may be used independently. A condition code 
field is incorporated to store the conditions 
detected during the last operation performed on that 
operand. This convention simplifies the interrupt 
handling routine as there is no localized condition 
register or flag in the CGPC. 

~rhe actual movement of data inside the array is 
rninimized through the use of associative addressing 
and the activity state concept. Any register used 
for operand storage is available to the control unit 
as a general register. An operand is associatively 
located and tagged, and a logical or arithmetic 
operation is then performed on the datum in place 
(with a single data transfer being required in the 
ease of a dyadic operation). Under this scheme, 
the CGPC may appear to the user to have an arbitrary 
number of general registers, a feature which is most 
attractive for machine emulation purposes. 

~~he control uni t itself consists of hardware uni
formly distributed among all registers in the CGPC. 
~~he control sequence is provided by a microprogram 
stored in the CGPC registers in the same manner that 
the user's program is stored. The microinstruction 
shares the 6-field format provided by those regis
t.ers (Figure 2D). The distinction between main 
storage and micro storage is made in the activity 
state field. Microinstructions are located by the 
content of their base address field, modified by the 
content of the branch code field; the machine is 
designed such that codes used as microinstruction 
base addresses may concurrently be used as main 
program addresses without causing ambiguity in 
a.ddressing at either level. Microinstruction 
addressing will be discussed further by example in 
the section on operation. The microinstruction 
incorporates a microoperation code field used for 
array control and a peripheral order code field used 
for control of devices external to the array. The 
next address field denotes the base address of the 
next microinstruction to be executed in the control 
sequence. 

Addressing - Microprogram sequencing is easily imple
mented by associative addressing. A microinstruction 
is located through the generation of an associative 
match between all microinstruction base addresses and 
the active microinstruction's next address symbol, 
accompanied by an associative match between all 
microinstruction branch codes and a condition symbol 
supplied by the main program. A microinstruction 
which experiences a match in both the address and 
branch code fields will be the next microinstruction 
to gain activity. The initialization of a microin
struction sequence by a machine instruction is 
implemented through an associative match between the 
machine instruction's operation code and the address 
of the first microinstruction in the corresponding 
microinstruction sequence. 
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The operand fetch is performed by comparing the 
machine instruction's source (or destination) operand 
field storage state against all main program word 
addresses. When a register containing an operand is 
located through a match, it is tagged with an activ
ity state which reflects the significance of the 
register's contents. 

A departure from the associative addressing process 
will be made to accommodate machine instruction 
sequencing. Linear sequences of machine instructions 
will occupy contiguous main program designated rows, 
with activity state propagation directed between 
adjacent words, thus replacing the function of a 
program counter. Any program branching instructions 
will employ associative addressing in the manner 
described for operand fetching. 

Cell Structure 

Each cell is endowed with enough storage such that a 
single cell may be assigned to represent the 
register's activity state. Six activity states are 
employed (inactive/active microinstruction, active 
machine instruction, active source operand, active 
destination operand, inactive main program word), 
requiring three binary storage devices to implement 
the cell internal state. 

Array Structure and Boundary Cell Interconnection 

The CGPC array, with its field-defined boundary cell 
interconnections and communication paths with a 
generalized peripheral device, is as shown in 
Figure 3. Register fields are established for the 
network by a set of fixed boundary inputs ('1"s) 
applied to the bottom boundary cells. Fixed inputs 
are applied to other boundary cells for other special 
purposes (such as to denote the location of an 
operand's least significant digit). In general, 
these fixed signals ripple through the array and 
remain in steady state. 

We define vertically-going signal propagation in the 
array such that for any particular column (of cells), 
signals propagating upward (downward) will have only 
one source (i.e., cell initiating the signals) during 
a particular network cycle. Accordingly, upward 
(downward)-going interregister signals are function
ally defined on a field basis as follows. Upward
going signal propagation in field-B and downward
going signal propagation in field-D are to be 
associated with microprogram addressing. Downward
going signal propagation in field-B and upward-going 
signal propagation in fields-E and -F are to be 
associated with operand addressing; an exception 
being that simultaneously defined upward-going signal 
propagation in fields-D, -E, and -F is specified in 
association with 2-operand arithmetic or logical data 
operations. Downward-going signal propagation in 
field-E is associated with the micro operation code 
output from the active microinstruction, and 
downward-going signal propagation in field-F is 
associated with the peripheral order code output from 
the active microinstruction. Upward-going signal 
propagation in field-A is associated with linear 
instruction sequencing in the main program. Upward
and downward-going signal propagation in field-C is 
associated with main program-generated condition 
signals wht'ch provide branch code pointers for the 
microprogram. 



Boundary cell interconnections are specified to sup
port the interfield signaling. The array's Dl output 
carries microprogram addressing information which is 
supplied to the microprogram base address field 
(field B) via aQ external connection to the array's 
B2 input. The El output supplies micro order infor
mation to all registers via the external MO bus. 
Data transfers are conducted via upward-going 
signaling in fields D, E, and F. Loop-around is 
provided for these fields via the D2 to D2, E2 to 
E2, and F2 to F2 connections. Communication wi~h the 
peripheral device transpires via array outputs D2, 
~2, and ~2, and inputs AI, Bl, Cl, D~, El, and Fl. 
Operand addresses appear at array outputs E2 and F2, 
which are ORed and presented to input Bl. 

Microinstructions 

A microinstruction set has been specified to imple
ment machine instructions typical of small scale 
computers of the von Neumann type (single instruc
tion stream, single data stream). A detailed 
listing of the microinstruction set has been omitted 
in the interest of brevity. The parallelism of the 
CGPC organization was not explicitly exploited, 
although to do so would require only simple modifi
cation to the basic cell. This decision was made to 
conform with the design goal of providing a machine 
which could be programmed in the conventional 
manner, but which is based on a purely cellular 
structure. The implementation of parallel (i.e., 
single instruction stream, multiple data stream) 
instructions is the subject of ongoing study with 
respect to this particular architecture. 

A clear strength of this processor is that the micro
program is software defined, with all operation codes 
similarly software defined. The user could tailor 
such a system to his specific needs, as well as 
utilize dynamic microprogramming techniques. 

Instruction Set Level Description 

As an example, the ISP-level description of a typical 
microcoded implementation of the cellular computer is 
presented in the appendix. It should be noted that 
this ISP is typical of COmmon small-scale, general
purpose computers of the von Neumann type. The 
programmer is unaware that there is no localized ALU, 
nor that a fetch does not cause data movement, but 
rather the assignment of an activity state. The ISP 
description includes instructions demanding the 
transfer of data to and from a peripheral device. 
Although the peripheral will not be described 
further, it is recognized that the peripheral must be 
able to initiate a program interrupt, as well as 
bootstrap the processor in order to load both the 
main program and the microprogram. 

Operation.. 

An example illustrating program execution given the 
ISP example is presented. Figure 4 represents a 
sample program segment featuring a series of instruc
tions to be executed linearly (i.e., without program 
branching) • 

In the time frame shown, the machine instruction 
with address "MS4" is the active instruction, calling 
for the 2's complement sum of operands at locations 
~'BETA" and "ALPHA" to be stored in location "BETA." 
Both operand locations have been fetched (i.e., 
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located and tagged with the proper activity states.) 
Let us examine how the network might have reached such 
a configuration. 

The program was loaded in queue fashion from the top
array boundary such that instructions which are to be 
executed linearly are physically adjacent. The prop
agation of activity among such instructions is upward 
(thus instruction with address "MS3" was executed 
previous to the current instruction). 

Immediately after register "MS4" received l;,;-activity 

an operand-fetch microprogram subroutine wa:s initi
ated. The contents of field-E were compared against 
the field-B contents of all CGPC registers. The 
register with address "BETA" was associativ·:dy 
located, and tagged with activity state 2s (destina-

tion operand). The register with address "ALPHA" was 
similarly located and tagged with activity state 3

s 
(source operand). The control microprogram now 
examines register MS4's field-D, finds the "ADD" 
operation code, initiating the microroutine that 
accumulates the source operand data into the data 
field(s) of the destination operand. 

The microprogram must then reset field-A of registers 
"BETA" and "ALPHA" to ¢s (inactive main program word) 

and initiate a "linear instruction fetch," that iB, 
command that the Is-activity propagate "upward" one 
register. 

This general description of CGPC operation applie:> to 
all nonbranching user's instructions. A microroutine 
to implement 0-, 1-, or 2-operand fetches is presented 
to illustrate microprogram sequencing. 

At most, one microinstruction is active during any 
network cycle, and no microinstruction is active 
during two successive network cycles. 

Wi th reference to the sample microprogram s€!gment 
presented in Figure 5, the microinstruction with 
address "OPFCH" is shown as 1 -active (active micro-

m 
instruction), indicating that the next address 
specified by the previous active microinstruction was 
"OPFCH," and that the null branch condition (¢) was 
presented to the microstore. This is the first 
instruction of the (multi-) operand fetch mJcrorou
tine. The field-F symbol is ¢, indicating that no 
order is directed to a peripheral device. Micro 
operation "TS2" directs the Is-active register to 

output its field-C symbol (operand format), which 
is made available to all field-C cells in the array. 
The 1 -active field-C content is therefore available 

s 
to the three microstore registers with address "O'rST." 
As the next address is "OTST" (microstore register 
"OPFCH"), the microstore register with address "OTST" 
and branch code symbol (field-C) identical to the Is-

active register's field-C content will become Im

active during the next network cycle (and the micro
store register "OPFCH" will become ¢m-active 

[inactive microinstruction] during the next network 
cycle) . Let us assume that the "ADD" opera,tion is 
associated with the Is-active register, as is the 

case in Figure 4. The Is-active register f'ield-C sym

bol is "3," thus the microinstruction with address 



"OTST" and branch code "3" will become 1 -active. 
m 

Once it does, micro-operation "FH3" directs the Is-

active register to output (upward only) its stored 
field-E symbol, which, through external interconnec
tion will be made available to all CGPC field-B's. 
Simultaneously, micro-operation "FH3" directs all 
¢s-active registers to attempt to match its field-B 

symbol with the 1 -active register's field-E symbol, 
s 

now being received as a downward-going field-B input. 
If a ¢s-active register detects a match, the activ-

ity of that register will be set to "2s" at the 

beginning of the next network cycle. Meanwhile, the 
microstore register with symbolic address "OD" is 
selected by the next address symbol as the next Im-

active register. During the following network cycle, 
micro-operation "FH2" directs the location and "3

s
-

active" tagging of the registe~ with address matching 
the Is-active register's field-F contents. 

Microstore register with address "OA" is selected as 
1m-active for the next network cycle. Micro-

operation "FH1" conunands the Is-active register to 

output (downward) its field-D state (corresponding to 
the operation code). The 1m-active register has a 

null (symbol ¢) next address, but is conunanded by the 
micro-operation to pass its field-D input as its next 
address output. This has the effect of using the 
Is-active register's operation code as the next base 

address provided to the microstore. In our example, 
the microroutine with address "ADD" would be chosen, 
and thus the addition routine is initiated. The 
complete set of microroutines and descriptive 
examples of their operation may be found in 
Reference 7. 

Implementation. 

Using synthesis techniques developed exclusively for 
use with cellular structures,3,7 a gate-level 
realization of the basic cell has been determined. 
Additionally, the stable operation of the CGPC has 
been verified with maximl~ clock rates defined. An 
implication of the intercell conununication scheme 
adopted is that many gate propagation delays are 
experienced by certain signals internal to the CGPC. 
Additionally, the minimum network cycle time which 
will support stable CGPC operation increases as a 
function of the number of cells in the array. 
Accordingly, two cell implementations have been pro
posed, as depicted in Figure 6. The first 
(Figure 6A) is as initially proposed, while the 
:"econd (Figure 6B) features an intercell busing 
scheme to implement certain upward- and downward
going signaling. The advantage of the busing scheme 
is to greatly reduce the minimum network cycle time; 
given an M x N cell array, implemented with gates 
having a typical delay of !J.g, the typical minimum 
network cycle is approximately 

(18N + 10)!J.g + !J.p 

where !J.p represents the combined signal propagation 
delays on the vertical bus. Given the 4170 x 17 
cell array used as an example and !J.g = 30 ns, the 
minimum network cycle is approximately 9 l1S. 
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It is envisioned that it is within the capabilities of 
near term LSI to implement a vertical "cell slice" 
chip version of the CGPC. The limiting factor is most 
likely to be leads, as the number of leads per cell 
slice is 8C + 34, where C is the number of cells per 
slice. 

Conclusions 

A 2-dimensional cellular general purpose stored 
program computer has been specified. This particular 
cellular computer is distinguished from previously 
proposed locally controlled cellular computers as its 
cellular structure is "hidden" from the user. 
Although the ISP description is similar to that of a 
small-scale computer of the von Neumann type, the 
architecture of the cellular computer does not feature 
physically isolated functional units to implement 
memory, ALU, or control. The hardware associated with 
each of the computer's functional units is uniformly 
distributed among all of the array's identical cells. 
The computer is software microprogranuned, which lends 
to dynamic microprogranuning techniques, as well as 
establishing a strength as a machine simulator. 

The CGPC structure does not favor a large associative 
memory space due primarily to the effect of intercell 
signaling on the maximum execution rate. Auxiliary 
random access memory must be interfaced to the CGPC 
at the peripheral interface. 

Future applications under study include use of the 
CGPC as a small laboratory processor, as an intelli
gent memory interface, and as an imbedded microproc
essor in a larger processor. 

Appendix - ISP Description 

This appendix provides the instruction set processor 
description of a 4166 x 17 cell, CGPC, given the 
microprogram presented in Table 1. 

Memory - Pc/Mp State 

Memory-processor\ 
M[1:10106

S
]<1:17>8 

Row-register\ 
ROWi<1:17>S := M[i]<1:17>S 

Row-i activity state\ 
AOi S := ROWi<l>S 

Row-i address\ 
BOi <1:4>8 := ROWi<2:5>S 

Inactive main storage row\ 
¢MS<1:17>S := «AOi=OS) ~ 

(¢MS := ROWi)) 

Active main storage instruction\ 
IMS<l:l7>tr := «AOi=lS) ~ 

(IMS := ROWi» 

Active destination operand\ 
2MS<1:17>8 := «AOi=2

S
) ~ 

(2MS := ROWi) 

Each S-state ele
ment represents a 
cell 

Each row may be 
considered as both 
storage and 
processor 

Tag denoting the 
functional activ
ity of Row-i 

Associative 
address 

Activity state tag 
08 

Activity state tag 

IS 

Activity state tag 

28 



Active source operand\ 
3MS<1:17>a := «(AOi=3

a
) ~ 

(3MS := ROWi)) 

Destination operand data field\ 
DDF<l:ll>a := 2MS<7:17>a 

Source operand data field \ 
SDF<l:ll>a := 3MS<7:17>a 

Source operand condition code\ 
field SCFa:= 3MS<6>a 

Instruction Format 

Operation code \ 
OP<1:3>a := IMS<7:9>a 

Destination operand address\ 
DAD<1:4>a := IMS<10:13>a 

Source operand address\ 
SAD<1:4>a := IMS<14:17>a 

Operand Format \ 
ITa := IMS<6>a 

Address Calculation Process 

BOi := «IT=2a)~BOi := DAD; 

AOi+2
a

); (IT=3a)~(BOi := DAD; 

AOi+2a; next BOi := SAD; 

AOi+3
a

) ) 

Instruction Interpretation Process 

Interpreter := (Run ~ instruc
tion fetch, next execute 
instruction, next 
interpreter) 

Instruction fetch := 
(AOi=la)~(AO(i+l)+la; AOi+Oa ) 

Activity state tag 
3a 

Identifies the in
struction as 0-, 
1-, or 2-operand 

Run is true when 
there is an active 
microinstruction in 
the microprogram. 
Interpretation 
cycle loop. 

Instruction Set and Instruction Execution Process 

Execute instruction := 

ADD(OP := Ol)~(DDF+DDF + SDF); 

SUB(OP := 02)~(DDF+DDF - SDF); 

AND(OP := 03)~(DDF+DDF A SDF); 

OR(OP := 04)~(DDF+DDF V SDF); 

XOR(OP := 05)~(DDF+DDF@ SDF); 

XFER(OP := 06)~(DDF+SDF); 

INCR(OP := 07)~(DDF++DDF); 

Add. OP code is 
arbitrarily 
assigned. 

Subtract (negative 
values expressed 
in 2's complement. 

Logical AND. 

Logical OR. 

Logical exclusive 
OR. 

Move data from SDF 
to DDF. 

Add 1 to stored 
value. 
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DECR(OP .- 10)->-(DDF+..rDDF) ; 

COMP(OP := 11 )->-(DDF+-DDF); 

CLR(OP := 12 )~(DDF+O); 

SHL(OP := 13 )~( DDF+{DDF) ; 

SHR(OP := 14)~(DDF+tDDF) ; 

GOTO(OP := 15)~(AOi=2a~AOi+ 

1 ;AOj=la~AOJ+Oa; next 

e~ecute instruction); 

SKNZ (OP : = 16 )->-( SCF+SDF; next 
SDF= 28~AOi=28~AOi+la; 

AOj=18~AOj+08; next execute 

instruction) ; 

TSN(OP := 17)~(SCF+SDF; next 
SDF=la~AOi=28~AOi+18; 

AOj=18~AOj+08; next execute 

instruction); 

TSZ(OP := 20)~(SCF+SDF; next 
SDF=28~AOi=28~AOi+la; 

AOj=18~AOj+08; next execute 

instruction; 

TSP(OP := 21)~(SCF+SDF; next 
SDF=3a~AOi=28~AOi+18; 

AOj=18~AOj+08; next execute 

instruction) ; 

READ(OP := 22)~(DDF+(data from 
peripheral)); 

WRITE(OP := 23)~«peripheral)+ 
SDF) ; 

JSR(OP := 24)~«2MS<lO:13>8+ 

IMS<2:5>a; next AOi=28~AO 

(i+l)+18; AOi+08 , AOj=18~ 

AOj+08; next execute 

instr.uction. 

RTS(OP := 25)~«ROWi<2:5>8 

2MS<10:13>8)~AO(i+l)+18; 

AOj=18~AOj+08; next execute 

instruction) ; 

START(OP := 26)~(no operation); 

END(OP .- 27)~(Run+0) 
) 
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SUMMARY 

An architecture for resource management in a 
computer system is presented. The architec
ture is a subset of an APL-like higher level 
language machine architecture. The approach 
provides for a natural division of function 
between software and microcode/hardware. Any 
object in the system can be managed as a 
resource, and the fact that an object is 
managed can be transparent to the program 
using the object. Finally the resource man
agement concepts are related to the current 
resource management problems of effective 
third-party control of resources, intell~gent 
work scheduling, and deadlock resolutions. 

Resources and Use Protocols 

In defining an architecture for resource 
management in a computer system, a reasonable 
first question is what are the resources to 
be allocated? There are, of course, data 
files and records, and communication files, 
lines, and devices. But there are others. 
A casual look at the uses of OS/360 ENQ/DEQl 
shows that programs make heavy use of syn
chronization facilities, which must be at 
the least a subset of our allocation facili
ties. While it is clear that those programs 
would not run, or at least would not run well, 
without such serialization, it is not clear 
what resources these ENQ names protect. 
Generally, there is some object, perhaps a 
conceptual or temporal object, for which the 
facility serves as a partial management 
facility. The inability to predict what 
the resources would be, even in a current 
operating system, makes unlikely any success 
in listing all the resources in the 
hypothetical architecture. 

A new approach is therefore in order. First 
there is an object~ then the use of the 
object by various entities in the system 
must be managed. At this point the 
previously ordinary object becomes a 
resource. Which objects are eligible to 
become resources? In particular, any object 
which can require some protocol for use, 
which means, in general, any object. Having 
determined that the existence of a use 
protocol makes an object a resource, we 
proceed to investigate more of the current 
resource management problems, trying at 
the same time to crystallize the objectives 
for a proposed architecture. The first 
problem to become apparent is that the 
management of resources in current systems 
is largely accomplished by convention. 
If the programmer of a function follows 
the allocation rules for the resource he 
is using, things generally work. If he 
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fails to do so, things go awry. At the 
least, programs produced erroneous results. 
In many uses, however, the integrity of 
the resource is compromised. Often the 
violator of the resource is not responsible 
for the resource. So it is left to some 
slaving gnome to set right what the ignorant 
clod has destroyed. The conclusion reached 
is tha't those objects which are resources 
must be susceptible to effective third-party 
control, and not that we require smarter 
or better informed clods. The use protocols 
must not depend on programmer convention 
for effect. 

Objectives 

With this general concept of how resources 
should be managed, it was decided to 
constrain the design with a set of 
objectives. Some follow directly from what 
has been said, others merely appear to be 
good ideas. 

o It should be possible to control or 
manage any object in the system with 
a use protocol. 

o It should be possible to use an 
arbitrarily complex program as a use 
protocol. 

o There should be machine-supported use 
protocols. 

o The invocation of a use protocol should 
occur directly through the addressing 
structure of the machine, whether the 
use protocol is implemented directly 
in hardware/microcode or whether 
implemented in software. 

o ThE~ programmer need not be aware if 
the objects are controlled or not. 
This transparency will allow effective 
third-party control of objects. 

o The programmer must be able to request 
early invocation of a use protocol 
and have the effects endure. He should 
be able to explicitly declare his 
intention to use an object in a 
particular fashion. 

Architectural Environment 

For a variety of reasons--not the least 
of which is that the authors are devoted 
APL bigots--it was decided that the 
appropriate architecture for these concepts 
would be one in which the SOftware/firmware 
interface of the machine is a higher-level 



language. (The model was APL, but we will 
refrain from talking about that specific 
language and bring forth the particular 
aspects of the machine architecture which 
we feel are important to the proper 
application of our resource management 
concepts.) 

We were specifically avoiding the kind of 
layered architecture where distinct lines 
were drawn between the programming language, 
the operating system, and the machine. 
It was felt that such an approach would 
force a description of resource management 
in at least three separate languages: the 
programming language, the operating system 
command language, and the machine language. 
Wi th our machine, the programming language" 
command language, and machine language are 
one, leading to enormous economies of 
description. 

Because we have a single-level architecture 
with the command language facilities directly 
available, the existence of the following 
features is assumed to make further 
discussion meaningful: 

Mul tiprocessiI!9:.' A particular instruction 
stream (i-stream) must have the ability 
to create asynchronous i-streams. 2 They 
must be structured to support implicit 
destruction of i-streams when a superior 
i-stream is destroyed, and to provide a 
capability to establish sets of i-streams 
to which resource usage can be constrained. 

Objects. Another factor leading to the 
formation of the single-level architecture 
is the concept of objects. It is important 
that the system understand what the objects 
are.3 ,4 All objects and subobjects, or 
elements of objects, are named in the machine 
language. For example, a vector called 
A is an object in the language. A[l] is 
an element of that object. The elements 
and objects can be controlled with separate 
use protocols. Considerable help from the 
machine is required in the area of control 
of objects with use protocols. This would 
be a near impossibility with an IBM 
System/360-like machine,S with a single 
continuum of addresses and, as far as the 
machine is concerned, almost no unique 
objects. 

Namespaces. A namespace, similar to an 
APL workspace, is the externalization of 
the symbol resolution mechanism. 6 A local 
namespace is associated with each i-stream. 
Through the name space, the i-stream has 
access to other namespaces. Not every i
stream has access to every namespace. An 
i-stream can address directly any object 
in any namespace to which it has access 
by qualifying the name· of the object. It 
is through the namespace that objects are 
controlled with use protocols. A dyadic 
operator, CONTROL, of the form: 

A CONTROL B 

is introduced wherein the object, whose 
symbol is A, is controlled by the use 
protocol whose symbol is B. The symbol 
A may be resolved to any object in any 

( 1 ) 
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namespace. Similarly, the symbol B may 
be resolved to any of the protocols in any 
namespace (such as an arbitrarily complex 
program or machine LOCK). More precisely I' 
E represents not only the 'USING' protocol 
but the 'RELEASE' protocol as well, an 
indication of what should happen when the 
object is to be unallocated. 

It is important to understand that the 
capability to address an object is given 
to an i-stream independently of the use 
protocols~,7 The use protocols specify 
additional constraints on the use of the 
object (such as synchronization constraints). 

Locking. There is a machine lock faGility 
for synchronization between i-streams, which 
will be the most primitive facility for 
controlling the use of resources. It is 
similar to the ENQ/DEQ facility of 08/360, 
which permits only two locked states, 
exclusive or shared. For complex objects 
such as arrays, structures, and "files," 
the simple exclusive shared approacl"l is 
insufficient, so the locking facility will 
allow more locked states. For an individual 
atomic element of a complex object, a 
shared/exclusive lock is sufficient; but 
when the elements are being locked, there 
must be a control mechanism for the entire 
object. We have four locked states" or 
intents, against the object. The first 
is object exclusive. When the lock is held 
in an object exclusive state, it may not 
be obtained in any other state by another 
i-stream, and changes can be made to the 
elements of the object with the guarantee 
that every element of the object will be 
available while the lock is held. 'rhe 
object exclusive state is also used to 
prevent i-streams which are only rea.ding 
the objects from seeing the object in an 
inconsistent state. The second state is 
object shared. While the lock is held in 
this state, no changes may be made by any 
i-stream. The third intent is element 
exclusive. The holder of the lock in this 
state intends to change individual elements, 
but has no stronger consistency requirement. 
This lock state is generally used with other 
locks on the elements within the object. 
The remaining state is element shared. 
The holder of the lock in this state does 
not intend to change the object and is 
looking at the elements in a manner which 
will allow other i-streams to change 
individual elements of the object ot,her 
than the one(s) he is currently looking 
at. 

When viewing the object, we find that only 
certain states or intents are compal"tible. 
Object exclusive is not compatible 'rlith 
any other intent. Object share is compatible 
only with object share and element share. 
Element exclusive is compatible wi t:h element 
exclusive and element share. Element share is 
compatible with object share, element exclu
sive, and element share. 

Locking presents the simplest use protocol 
for an object. It also represents the 
highest potential performance, because it 
is a machine function. In the interpretation 
of a statement referencing a lock controlled 



object (an object whose use protocol is 
the obtaining of a lock), the use protocol 
can be satisfied without trapping out to 
software. 

Allocation Scopes 

Up to this point locking has been discussed 
in terms of one i-stream holding a lock, 
thus preventing others from having access 
to the object. But if we look at the data 
set allocation facilities in OS/360, we 
find that they do not work in such a 
straightforward manner. 8 ,9 After a data 
set is allocated to a job, all the tasks 
of the job have access to the data set. 
While this is a rigid structure with many 
failings (for example, there are no 
facilities other than programmer convention 
to enforce compatible usage of the data 
set among the tasks of a job), it does 
indicate that there is a need for a more 
general facility. 

Looking at the facility provided by OS in 
more abstract terms, we see that what is 
provided is the facility to declare a set 
of i-streams as a unit. Resources can be 
allocated to this set with a particular 
intent, which primarily limits the degree 
of competition to be allowed with i-streams 
(and sets of i-streams) outside the original 
set. There are also interactions and 
constraints placed on interactions among 
i-streams within the set. To see this we 
must look at the effect of allocating a 
resource to a set with a particular intent. 

If a resource is allocated to a set with 
an object exclusive intent, the i-streams 
within the set can compete without concern 
for the i-streams outside the set, because 
it is guaranteed that no i-stream outside 
can hold the lock with any intent. This 
is the only simple case. In every other 
case, it is possible for i-streams outside 
·the set to hold the resource with at least 
one intent. As long as the inner i-streams 
compete within the bounds of the original 
allocation, there are no problems. But 
consider a case where the resource is 
allocated to the set with an element 
exclusive intent and an operation is 
performed which requires that the object 
be held object exclusive. One might be 
inclined to disallow the case, declaring 
it to be an error. This would be a mistake. 

Consider a program with parameters A and 
B. The program requires A with an element 
exclusive intent, and B with an object 
exclusive intent, while still holding A. 
We are in trouble if the program is called 
with the same object in parameters A and 
B. Hence, rather than disallow this, we 
will allow an i-stream within a set to 
strengthen the allocation to the set at 
any time. This may cause competition with 
i-streams outside the set which hold the 
resource with an intent incompatible with 
the strengthened intent. An attempt to 
strengthen an intent may have to wait. 
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While we allow sets of i-streams to be 
explicitly declared, entered, and left, 
we also have some implicit sets which closely 
approximate OS data set allocation. The 
implicit sets come from the order of creation 
of dependent i-streams. All of the dependent 
i-streams to any i-stream form a set to 
which resources may be allocated. There 
will be a standard facility in the language 
for naming this set and inquiring whether 
an i-stream is in the dependent i-stream 
set of another. 

The notion of explicitly declaring a set 
of i-streams and allowing i-streams to enter 
and leave the set is straightforward, but 
creates some minor problems. An i-stream 
may ent:er a set to which an object is 
allocated object exclusive. It can then 
allocate the resource to itself with any 
intent, presuming of course that no other 
i-streams in the set have allocated the 
resource. Suppose that the i-stream then 
leaves the set. Without some action, we 
would be in a state where a set of i-streams 
and an i-stream not in the set hold a 
resource with incompatible intents. This 
must not occur, so an error is generated 
on the attempt to leave the set. 

The following operators are introduced to 
define sets of i-streams: 

B ENTER A 

B LEAVE A 

In (2) the dyadic function ENTER places 
the i-s1:ream B into the set A. Likewise 
in (3), the function LEAVE removes the i
stream B from the set A. Each function 
has a monadic form: 

ENTER A 

LEAVE A 

In these forms, the i-stream is not 
specified. The i-stream which enters or 
leaves the set A is the i-stream which 
invokes the function. 

Resource Management Transparency 

One objective is that a programmer should 
not have to deal with, or be aware of, the 
allocation of these objects. To do so, 
we must look into the structure of the 
language to see how these allocation or 
locking intents may be determined. Let 

(2 ) 

(3 ) 

(4 ) 

(5) 

A be a vector which is controlled by a lock, 
and in which each element is controlled 
by a lock. We will see that the lock intent 
can be determined by the context in which 
the symbol A is used. 

1. A+B This statement implies an 
atomic modification to the 
entire object A. The 
interpreter indicates, in 
resolving the symbo~ A, that 
it is required in an object 
exclusive manner. 



2. A [1 ]+-C 

3. B+A 

4. C+A [1] 

The intent is clearly that 
A must be locked with an 
element exclusive intfint 
and that the element A[l] 
must be locked with an object 
exclusive intent. 

The required intent on A 
is object shared. 

The required intents are 
element shared on A and 
object shared on A[l]. 

These are simple examples, but they form 
a base for determining the intents in complex 
cases. We propose that the duration for 
holding these locks be on a statement basis. 
All the required locks which are specified 
via the CONTROL dyadic are obtained as it 
becomes apparent that they are required. 
Upon statement completion, they are released. 
It would be useful, before beginning 
interpretation of the statement, to have 
some idea of the strongest intent to be 
expressed on an object. This facility would 
also be useful in dealing with deadlocks. 
There are cases where APL cannot be 
completely compiled. 

One such case is where a single statement 
may generate the name of an object it intends 
to use. Without executing the statement, 
we do not know what resources are required. 
When it is apparent that we cannot "compile" 
the resource requirements for a statement, 
we will then revert to the interpretive 
scheme. We can do a partial compilation 
of those items which are resources. The 
degree to which we do this compilation and 
look-ahead will to a large measure be 
determined by the degree of parallelism 
in the machine. (Resource requirement 
extraction will also be treated in the 
section Job Scheduling and Deadlocks.) 

Explicit Resource Management Functions 

We have postulated a system in which resource 
allocation occurs implicitly over the 
granularity of a statement. There are times 
when the programmer needs the allocation 
over a set of statements. Consider the 
example of the SORT program in Figure 1 
(written in APLGOL, see [10». Here the 
programmer cannot afford to hold A with 
element exclusive at each statement and 
release A upon completion of each statement. 
A must be held object exclusive from the 
beginning of statement [2] through statement 
[ 11]. 

\} SORT A;I;TEMP 
[1 J I+l 
[2J DO WHILE I<pA 
[3] IF A[I]>A[I+1] THEN 
[If J DO 
[5] TEMp· ... ACI] 
[6] A[I]+A[I+l] 
[7J ALI+1J+TEMP 
[8] I+I-l 
[9J END 
[10] E&SE I+I+l 
[11J END 

Figure 1 
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In order to enlarge the extent over which 
the allocation will persist, the following 
APL operators are introduced: 

A USING B 

A RELEASE B 

where in statements (6) and (7) A can be 

(6 ) 

(7) 

any set of objects, and B is the required 
intent. The USING dyadic informs the symbol 
resolver that it should invoke the use 
protocol associated with the object(s) A. 
If the use protocol is a software function, 
then the intent B is a parameter to 1:hat 
function. Furthermore, the release protocol 
(for example, the UNLOCK) will not rll= 
implicitly invoked upon completion of (6) 
but, rather, will not be released unless 
explicitly done so with the RELEASE operator. 
(See Figure 2.) 

Now the integrity of the SORT program can 
be guaranteed, in Figure 2, so that p upon 
completion of the USING, it will hold A 
object exclusive until the RELEASE is issued. 

'iJ SORT A;I;TEMP 
[1 J I+l 
[2J A USING OBJ_EXC 
[3] DO WHILE I<pA 
[4J IF A[IJ>A[I+1J THEN 
[5J DO 
[6J TEMP+A[I] 
[7J A[IJ+A[I+1J 
[8J A[I+l]+TEMP 
[9] r ... I-l 
[10] END 
[11] ELSE I+I+l 
[12] END 
[13] RELEASE A 

V 

Figure 2 

Other Use Protocols 

Inasmuch as we have shown how use protocols 
can, with the multiple intent stra1:egy, 
be used to issue a machine LOCK, they can 
generally be used to invoke any arbitraI:ily 
complex program through a trap in t.he 
microcode/hardware (established wi 't:h thE~ 
CONTROL dyadic). In essence, the :Eirmware 
escapes to the "software" rou·tine upon 
resolution of the symbol. It should be 
possible that the object in question may 
not physically exist at the time of symbol 
resolution, but may be created by the 
invocation of the use protocol. 

Programmed use protocols go beyond the 
simple synchronization mechanisms of locking. 
The administrator of a resource may wish 
to control many aspects concerning its use. 
The use protocol might check certain features 
of the execution environment before granting 
access to the obj ect. A clear exa.mple tOf 
the usefulness of this concept is when ·we 
consider attaching security protoc~ls to 
specific objects. 4 ,II The usepro't'Ocol 
may also have side effects on the environment 
in which the program is executing ,. This 



allows a controller of a resource to actively 
insure that certain environmental conditions 
exist. 

The inclusion of programmed use protocols 
reflects the designer's decision on an 
appropriate division between software and 
microcode. The locking protocols are useful 
when the objectives for controlling objects 
are bounded by the well understood problem 
of synchronization. There are considerably 
broader objectives in an installation, which 
should not be included in the machine. 
To accomplish these objectives, easily 
accessed traps into software should be 
provided. 

Job Scheduling and Deadlock Resolution 

We discussed earlier the problems involved 
in early determination of resource usage 
on a statement basis. Another environment 
in which these problems become apparent 
is the batch or background environment, 
when we wish to do intelligent scheduling 
of jobs. To do so, we must have an idea 
of the resources to be used. One approach 
to the determination of the requested 
resources would be to invent a job control 
language which explicitly declares the 
resources. This approach, however, violates 
two of our objectives. It would require 
more than a single language interface to 
the system, and it would require that the 
programmer be aware of precisely what the 
resources are. 

The only approach consistent with our 
objectives is that we extract the resources 
from the programs to be run. As pointed 
out earlier, at best this process is 
incomplete, and it is often incorrect. 
But our intent in this facility is 
optimization. In those cases where we make 
mistakes, we should be able to correct them. 
In programs which hide resources, we will 
simply not do as good a job at scheduling. 

An important point to be noted is the length 
to which we must go to extract resource 
requirements. In addition to considering 
the initial program and the called programs, 
we must also determine the resource 
requirements of the software use protocols 
for any complex resources. This would be 
a time-consuming task with tests for 
recursion and so on. It might well be that, 
i.n the implementation of a heuristic 
scheduler, we might choose a more limited 
approach to resource extraction in order 
t.o get the best overall performance. 

'J'he partial compilation can also be used 
i.n the prevention of the deadlocks; claim 
sets can be produced covering the resource 
requirements of the program.8 ,12,13 These 
claim sets may be ordered sets. That is, 
the prevention algorithm could also be 
sensitive to the order, in disjoint subsets, 
in whi6h the resources are needed as derived 
from the compilation. Operators such as 
CLAIM and FREE could be introduced into 
the language in order to enable the 
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programmer to surface these claims to the 
system (thereby reducing the possibility 
of having the system overestimate his needs) . 

Conclusion 

A major advantage of this resource management 
architecture over current systems is the 
single mechanism for the allocation of all 
system rHS.ources. Generality is accomplished 
by providing a single language interface 
to the machine, by allowing any object 
to be managed as a resource, and by building 
resource management into the basic addressing 
mechanism of the machine. A basic resource 
management facility is provided through 
objects called locks. The operations on 
these objects are primitive facilities of 
the machine. They control shared access 
to objects, where the degree of sharing 
reflects the intent of the program using 
the object. This primitive facility cannot 
support all the actual intents against an 
object. Thus the controlling mechanism 
is extensible through software. The 
addressing mechanism can invoke a program 
during symbol resolution to enforce the 
limitation of access to the object. 

A second advantage is that resource 
management can remain transparent to the 
user of the resource. Shared resources 
can be controlled by a third party, an 
administrator for the resource, independent 
of the actions of the user of the resource. 
An important feature of this architecture 
is the automatic predeterminat.ion of resource 
usage which is instrumental in the scheduling 
of large background work requests, in the 
resolution of deadlocks, and in the efficient 
accomplishment of overall resource management 
transparency. 
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Summary 

Two national committees issued definitive computer 
curricula in the 1960s. Since then digital technology 
has changed, high school graduates have different 
preparation, computer science and computer engi
neering curricula have proliferated, and design has 
become more important. This paper proposes a 
computer engineering program that will respond to 
these changes. The program is a spiral one, based 
on an introductory computer engineering program, 
and emphasizing design through each of a number of 
streams that can reflect local interests and re
sources. This paper discusses the main courses of 
a stream and the basic introductory course. 

I. Introduction 

During the latter half of the 1960s, two national com
mittees developed model curricula for computer 
science and computer engineering. The ACM Cur
riculum Committee on Computer Education prepared 
a preliminary report in 1965 and issued a final re
port in March 1968. 1 Their 1968 model curriculum 
for computer science was their last major work in 
this area although they have subsequently developed 
programs in other areas such as information sys
tems. 2 The COSINE Committee published reports 
from 1968 through 1972. Their model curriculum 
for an undergraduate computer engineering option in 
electrical engineering was published in January 
1970. 3 They disbanded in 1972. 

More recent efforts to develop curricula for compu
ter science and computer engineering, as opposed to 
information systems and data processing, have been 
sporadic and have been largely confined to develop
ment of guidelines for a single course. The effort 
sponsored by the IEEE Computer Society to suggest 
modules for a computer architecture course is a 
noteworthy example. The problems of funding and 
coordination of a major study of educational pro
grams are, of course, immense. We probably can 
not expect a new major effort in computer science 
and computer engineering curricula in the near fu
ture. 

Nonetheless technology has changed very rapidly 
since ACM and the COSINE Committee made their 
major recommendations. Large-scale integrated 
circuits have had a major impact. Logic design has 
involved increasingly larger scale components. The 
growth of minicomputers and microprocessors has 
caused major changes in the design of logic systems. 
Computer networks are on the verge of making ma
jor changes in the delivery of computer and com
munications services". Other improvements in the 
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speed, size, and reliability of components have af
fected computer architecture. 

Other changes have occurred at the same time. Stu
dents entering undergraduate computer science and 
computer engineering programs are increasingly 
better prepared for computer science although less 
prepared for analog-oriented courses. Mathematics 
courses in the high schools have been almost com
pletely revised in the last decade with the result that 
students have a much different preparation than they 
had in the past. 4 They have a much greater knowledge 
of the concepts of discrete mathematics needed for 
work with computers. Many of them have studied pro
gramming while in high school. In fact some univer
sities have stopped offering introductory computer 
programming as a credit course since they found that 
nearly all their entering freshmen could program and 
that those who didn't could pick it up relatively easily 
from a self-study course. In addition, the pervasive 
influence of computers throughout the culture has 
given students some basic concepts that they lacked in 
the past. For example, many college freshmen own 
calculators, such as the HP-35, that use reverse 
Polish notation. Consequently, the concepts of stack 
operation and Polish notation are ones that they already 
understand at least in an elementary way. Computer 
science and computer engineering programs, however, 
have been slow to build on the increased competence 
of entering students. A major weakness of many uni
versity professors is to regard students as tabula rasa, 
blank tablets coming to the university to be writteilOil" 
there. 

As a consequence of increased student and faculty in
terest in computer science and computer engineering, 
course offerings have proliferated rapidly. 5 In many 
computer science and electrical engineering depart
ments, it is no longer reasonably possible for a stu
dent to take all the undergraduate computer courses, 
let alone to take many of the first-year graduate com
puter courses for which he may have the prerequisites. 
A large number of course offerings necessitates a new 
approach to the design of a program if students are to 
be able to select courses intelligently. Since it is un
reasonable to expect most entering students to know 
whether they would prefer to design integrated cir
cuits, to design with integrated circuits, or to design 
operating systems, there is an increased need for in
troductory courses that provide systematic overviews 
of large areas. The student can then decide on the 
basis of an initial sample of several areas that he 
would like to pursue. Such an approach allows the 
student more flexibility and gives him more respon
sibility for his education than does the approach taken 
by ACM and COSINE that basically provided one main 
path through the curriculum with some electives. The 



new approach recognized that the output of an under
graduate educational system will be graduates headed 
for distinctly different professional careers. Some 
breadth is sacrificed in return for greater specificity. 

Another recent development affecting computer engi
neering curricula perhaps to a greater extent than 
computer science curricula is the realization of the 
importance of design. The 1950s and the 1960s saw 
engineering curricula oriented toward theoretical 
science rather than toward engineering design. 
Laboratory courses, drafting, and machine shop fell 
by the wayside as engineering schools increased the 
amount of basic science in their undergraduate pro
grams. The 1968 Goals Report of the American 
Society for Engineering Education sought to reverse 
this trend by placirw: an increased emphasis on engi
neering as design. This emphasis has continued 
with ECPD requirements for accreditation of M. S. 
programs that require a substantial part of the pro
gram to be design or synthesis instead of analysis. 
Students seem to appreciate a return to emphasis on 
design and are flocking to newly introduced fresh
man design courses and senior projects. Design 
courses usually require a greater depth of knowledge 
in one or a few closely related areas at the expense 
(if time is held constant) of a broad background. It 
is not possible to educate an engineer who is equally 
capable of designing in all the areas of an under
graduate engineering program or even all those in 
one department. 

The influences that we have discussed so far seem 
to point toward the development of a new undergradu
ate computer engineering program. This program 
should be one that builds on the increased competence 
of entering students. It should present an overview 
of the areas that are available to him. Subsequent 
courses will build on the overview course in a way 
that should not be regarded as repf>titive but instead 
as an opportunity to reinforce and expand on earlier 
learnings in the style of Bruner's spiral curriculum. 
The program should emphasize analysis procedures 
that are consistent with current and emerging tech
nologies even when older approaches are more 
mathematically tractable. Design should pervade 
the curriculum. The goal should be the education of 
a graduate who can function as a competent beginning 
designer in some area whether it be design of digital 
subsystems or computer architecture. The remain
der of this paper will discuss one possible approach 
for an undergraduate computer engineering program 
to accomplish these objectives. 

II. A Design-Oriented Computer 
Engineering Program 

The program discussed here is intended to prepare 
design engineers in several areas- of co'mputer engi
neering. The number and selection of the areas to 
be included would depend largely on the size and re
sources of the school. Figure 1 shows the main 
streams of the design programs for three different 
areas of computer engineering. One area, elec
tronics systems architecture, may more accurately 
be regarded as an interface area between electronics 
and computer engineering. The figure is intended to 
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show only the main flow through the design program. 
Students in each stream would take several other 
courses both within and without computer engineering 

SOPHOMORE 
YEAR 

JUNIOR 
YEAR 

SENIOR 
YEAR, 

1ST SEM. 

SENIOR 
YEAR, 

2ND SEM. 

Fig. 1. 

~ 
[ 
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OrganiZ~ 

] 
[ 
campu.~ 

d~ 
Main Streams of a Design-Oriented 
Computer Engineering Program 

In this program, all students begin at about the 
sophomore year with a course that introduces them 
to computer engineering. This course has a prereq
uisite only of introductory programming that the stu
dents may have satisfied in high school. Hence this 
course could be taught at the freshman level. Alter
natively universities that have a high percentage of 
students transferring from community colleges may 
prefer to teach it in the first term of the junior year. 
The course is intended to provide an overview of all 
areas of computer engineering that do not require 
college-level prerequisites such as circuit analysis 
or electronics. The specific content of this course 
will be discussed in more detail in the next section. 
For the moment, the course can be considered to be 
based on some fairly broad introductory computer 
hardware and organization text such as Booth or 
Abrams and Stein. 7, 8 The exact content of this 
course would reflect the interests of the department. 
Some such introductory courses would have a strong 
computer science flavor and include discussion of 
operating systems, etc. while others would have a 
more traditionally electrical engineering flavor and 
include more logic and hardware material. The 
course should be accompanied by a laboratory in 
which students have an opportunity to design very 
simple projects, such as basic combinational and 
sequential logic circuits, and to write short assem
bly language programs. 

After taking the introductory computer engineering 
cours~ students would branch into the stream most 
nearly following their interests. Each student would 
enter a year-long sequence that would strengthen the 
analysis and design tools in his area. Many students 
would choose two such sequences either to give them 
a more adequate basis for final choice of a stream 



or to support interests that lie between two streams. 
The emphasis would be on constructing a strong theo
retical framework for the area while at the same time 
providing some accompanying design experience. 
While design projects of the students in the introduc
tory course would be mostly one-week projects, stu
dents in these intermediate courses would work on 
longer projects. By the end of the year, students 
should feel comfortable working on projects that 
would require a month or six weeks to complete. 
However, in most cases, students in one class would 
all be doing the same projects or perhaps choosing 
from a small set of well-defined projects. 

The examples given for these year-long sequences 
are logic design, electronics, and computer organi
zation. The logic design course would be the stand
ard year-long logic sequence found in many electrical 
engineering departments. Many texts are available 
for this sequence. Because the introductory computer 
engineering course introduces logic concepts, the se
quence could cover somewhat more material than is 
usually the case. Additional material might well 
cover modern logic technologies and design with in
tegrated circuits. Current texts are still unfor
tunately weak in their coverage of IC design. It is 
much easier to cover standard minimization tech
niques that have nice algorithmic solutions than it is 
to treat minimization of logic circuits designed with 
integrated circuit chips subject to some cost crite
rion. 

The electronics sequence would also be the standard 
year-long sequence in electronics offered by most 
electrical engineering departments. Again a wide 
variety of texts are available. Selection of a text 
that includes at least some material in digital elec
tronics would be desirable to build on previous con
cepts and to prepare students for a course in elec
tronic systems architecture. 

The computer organization sequence would consist of 
at least one and preferably two courses. A model for 
the two-term sequence would be the two courses that 
COSINE proposed--Machine Structure and Machine' 
Language Programming and Computer Organization. 3 

Alternatively the courses could look more like the 
two ACM-recommended computer organization 
courses. Again, because some of the concepts had 
been presented in the first computer engineering 
course, more time could be spent on examining re
cent trends in organization. Several texts are availa
ble for this sequence also. 

During the first term of the senior year, students in 
each stream would take an architecture course in 
their area. The aim would be to build on the funda
mental concepts the student had obtained from pre
vious courses with an emphasis on presenting exam
ples of successful and uns1:Ccessful designs. The 
student after completing the course should under
stand the design of several major projects, including 
the major choices made among alternatives. 

The digital subsystems architecture course would 
look much like the course proposed by COSINE in 
November 1968. 9 The choice of text would probably 
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reflect the interests of the instructor. Peatman and 
McCluskey and Gashwind are representatives of texts 
that cover some of the topics of the course. 10, 11 
This course could easily be accompanied by student 
projects that correspond to parts of some of the 
larger projects studied. 

The electronic systems architecture course would 
also reflect the instructor's interests. The balance 
between analog and digital designs studied could vary 
widely. No current text known to the author seems 
well suited for the course. Although there are a num
ber of books on design with integrated circuits on the 
market, they tend to stress the priJ;lciples of inte
grated circuit operation and the design of the chip in
stead of design with the chips. It is the latter that 
would be the basis of a. course on electronics systems 
architecture. In the absence of a good text, the in
structor will have to choose carefully the examples 
of designs for class study. 

The computer architecture course would look much 
like many given now. A course that was based on 
analysis of a number of computer designs would 
probably use Bell and Newell possibly supplemented 
by computer manuals or descriptions of newer com
puter architectures, especially microprocessor 
architectures. 12 An alternative approach would be 
to use a more concept-oriented text and study design 
choices at the major component level such as in 
Stone. 13 ' 

The second half of the senior year for all streams 
would consist of the design, construction, and testing 
of a major project. Each student would work by him
self or with at most one other student and would 
choose a design that would be in some way innovative. 
This at least would be the ideal but could be modera
ted as student capabilities and available resources 
would warrant. 

The basic program outlined in this section could 
easily be modified to fit the needs of a particular de
partment. Inclusion of more or fewer streams would 
be easy. The entire program could be moved one or 
more semesters earlier. The main advantage of the 
suggested level is the student's maturity. Ambitious 
students could take all courses in two streams or the 
intermediate courses in two or more streams. Stu
dents might wish to elect computer science courses 
relevant to their stream. However, the aim of the 
program should still be to present material in a 
spiral fashion. Each course or sequence would echo 
and build on earlier concepts. Each course or se
quence would emphasize design as well as analysis. 
The student who completed a stream would have the 
ability and confidence to design projects in his area. 

III. An Introductory Computer Engineering Course 

Earlier the introductory computer engineering course 
that serves as a base for all streams in this program 
was described as a broad overview of .those aspects 
of computer engineering that could be taught without 
a college-level prerequisite. This section dis
cusses in more detail one introductory computer en
gineering course that has been taught at Michigan 



Technological University to about 150 students in the 
last year. While the course is still being developed, 
its basic structure has taken shape. 

The main purpose of the course is to serve as an 
overview of computer engineering. The course is 
taken by nearly all engineering students whether they 
originally intend to specialize in computer engineer
ing or not. It is also taken as a computer hardware 
course by many computer science students. 

The basic theme of the course is the hierarchy of 
levels of a computer as analyzed by Bell and 
Newell. 12 Because the course has no circuit analy
sis prerequisite and because it is not considered 
worthwhile to take enough time to present electronic 
circuits in any detail, the circuit level is omitted. 
The course involves learning modules for the five 
other levels and sublevels. 

The combinational logic module introduces a few of 
the simpler theorems and postulates of switching al
gebra and the basic logic components. Classic mini
mization by Karnaugh maps and Quine-McCluskey 
methods is presented briefly but more emphasis is 
placed on semi-intuitive methods of minimization. 
Commonly available IC logic chips are discussed and 
choice of an appropriate logic technology is consid
ered. Problems of interfacing with and minimization 
of IC circuits are also included. In the accompanying 
laboratory. students design a few simple combina
tionallogic circuits. such as a decoder for a seven
segment display. 

The sequential logic module is based on common 
flipflops. Analysis of flipflop circuits is treated 
fairly thoroughly. Synthesis of general sequential 
circuits is left to a later course. Instead, students 
learn to design simple standardized flipflop circuits 
such as several types of counters and registers. 
In the laboratory, they check their designs. 

The register-transfer logic module pulls together the 
concepts from sequential and combinational logic 
sublevels. The general concept of register-transfer 
level analysis and design is presented and is illus
trated by Digital Equipment Corporation's RTM 
modules. The basic circuit studied is an arithmetic 
unit. Students learn several types of algorithms for 
addition~ multtplication, and division and their im
plementation for arithmetic in three radix- 2 number 
systems. Again in the laboratory they can check one 
or more designs. 

The next level studied is the programming level. 
Since all students have had programming experience 
in FORTRAN, this course contrasts higher level 
languages with assembly language. Students learn to 
write simple machine and assembly language pro
grams for the department's PDP-8. The basic ideas 
of assemblers, compilers, and interpreters are 
presented. 

The final level studied is the PMS or computer sys
tems level. Memories, processors, and input/ out-
put devices are covered. The unit on memory intro
duces programmable ROMs and PLAs for compari-
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son with random logic. The input/ output unit stresses 
programmed vs. interrupt input/ output handling. 
Basic organization types at this level are studied and 
are illustrated by the architecture of a HP-35, a 
PDP-8, and a PDP-ll, and the IBM 360/370. 
Finally the desirability of computer networks is 
studied and examples of simple network configura
tions are examined. 

IV. Conclusions 

The changes in computer and digital systems tech
nologies, the competences of entering undergraduate 
students, the proliferation of computer courses, and 
the need for increased emphasis on design all argue 
for a new look at computer engineering programs. A 
program that begins with a broad overview of com
puter engineering and spirals through a stream of de
sign-oriented courses should adequately prepare 
computer engineering graduates for beginning design 
engineering careers. A program based on these 
principles can easily be adapted to meet the size, in
terests, and resources of any electrical engineering 
department. 
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Sununary 

Formal education in computer architecture rests 
upon the integration of numerous specialized courses. 
One such course, a new laboratory concerning contem
porary, register-transfer level digital design, is 
described. Design in the course proceeds at the level 
of interconnection of memories, arithmetic logic 
units, I/O interfaces, and buses, rather than at the 
individual gate level associated with traditional 
combinational and sequential logic design. The 
principle items of hardware used in the laboratory 
are DEC Register Transfer Modules, the DEC PDP/16M, 
and the INTEL SIMS-Ol Microcomputer. Numerous soft
ware packages have been developed to support activi
ties within the lab including an RTM siImlator, a 
graphical simulation of an RTM control sequencer, a 
PDP/16M assembler, a microcode generator, and SIMB-Ol 
utility routine, assembler, and simulator. During 
one fourteen-week term, students are expected to 
complete six assigned lab projects and one special 
project. Examples of projects are described. A 
critique based upon the students' reactions and the 
technician's experience with the equipment is given 
together with proposals for future additions to the 
course. 

Introduction 

Computer architecture is a system oriented 
design discipline requiring broad understanding with
in the hierarchy of computer system descriptions: the 
logic level, the instruction set level, the program
ming level, and the PMS level. (See reference [1] 
for a discussion of these description levels.) For
mal education in computer architecture cannot be 
accomplished within a single course or two, but ra
ther rests upon the integration of numerous special
ized courses. This paper describes one such course 
in the computer engineering curriculum at The Univ
ersity of Michigan: a laboratory course concerning 
contemporary digital system design including, but 
not limited to, general purpose computers. 

Laboratories in digital design ("logic labs") 
have existed within university curricula. 
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several others exist within The University of Michigan. 
What justifies describing yet another? The answer to 
this question relies on our notion of "contemporary" 
digital system design which underlies the structure of 
this laboratory. Contemporary digital system design 
includes the following correlated propertIes: 

- Uses medium and large scale integration (1\1SI, 
LSI) technology. 

- Focuses on algorithms (not physical quantities 
such as voltages) and their alternate modes of 
implementation: hardware, software, micropro-
gramming (firmware). . 

- Stresses register-transfer level pri.mi tiVt::!s 
(registers, adders, memories, etc.) rather than 
gate level (gates, flip-flops, inverters). 

- Employs a top-down approach (similar to struc
tured programming) using flowchart specification 
of computation. 

Laboratory projects are implemented using primar
ily two commercially available digital hardware pro
ducts: the Digital Equipment Corporation (DEC) Hegis
tel' Transfer Modules (RTM)* and the INTEL SIMS-OJ. 
Microcomputer. A DEC PDP/B minicomputer is also 
available for projects involving augmentation of gener
al purpose machines with special purpose subsystE~ms. 

The course begins with several modest experiments 
to introduce the student to the Register Transfer 
Modules. Design proceeds at the level of interconnec
tion of memories, arithmetic logic units, I/O inter
faces, and buses rather than at the individual gate 
level associated with traditional combinational a.nd 
sequential logic design. Design at this higher level 
permits the design and implementation of a modera.tely 
complex digital system, e.g. a mini-computer, within 
several laboratory periods. In later phases of the 
course, students select, design, implement, and a.na
lyze projects of their own chosing. 

The course serves at least two broad purposes. 
It provides hands-on experience with digital hardware 
and immerses the st'.ldent in the act of digital system 
design. Secondarily, the course develops skills in 

*Regist.er Transfer Module (RTM) is a registered trade-
1:1l3rk of DigLt-al Equipment ~orporation, Maynard, Mas
sachusetts. Tbe product. is also known In a. special 
form a.s the- PD P-16 . 



the application of two relatively new commercial pro
ducts which exhibit an increasing influence on the 
realities of digital design. 

The course also serves as an introduction to tech
niques for implementing special-purpose digitial struc
tures. Today there are many incentives to organize 
systems around a computer. However, with the present 
low cost of mini-computers, there would probably not 
be economic incentive to build a general purpose com
puter from modules used in this laboratory. The com
mercial value of register-transfer modules rests in 
the area of implementing special-purpose systems: 
either stand alone or augmented geDeral~purpose 
computers. 

This paper will include a description of the hard
ware and software facilities established for the 
laboratory, a description of the content of the course, 
and a critique based upon experience to date. 

The intent of the paper is not to sell the goals 
of the laboratory, but rather to offer our experience 
to other educators who basically agree with the goals 
and who are also attempting to implement them. 

Facilities 

The principle items of hardware used in the 
laboratory are DEC Register Transfer Modules, the 
DEC PDP 16/M, and the INTEL SIM8-01 Microcomputer. 
Other auxilary hardware required for interconnection 
will also be mentioned. 

Register Transfer Modules (RTMs) - Register 
Transfer Modules represent a commercial approach to 
the implementation of modular computer systems which 
permit design and construction at the register trans
fer level. A history of modular computer systems, 
beginning with Estrin's "fixed-pIus-variable" compu
ter systems, is traced in reference [2J. 

Medium and large scale integration circuits in 
themselves provide a loosely constrained modular ap
proach to the design of the data flow section of a 
digital computer. Modular systems, in the spirit 
described in reference [2J and exemplified in the 
DEC RTM's, go further by also standardizing and 
simplifying the control part of the system. They 
represent attempts to provide simple alternatives to 
the complexities and inefficiencies of programming 
general purpose computers for applications which lend 
themselves to specialized hardware organizations. 
The standardization implicit in the Register Transfer 
Modules enables students to design and construct 
several non"':trivial digital systems within one term. 

The RTM's are not projected as the way to imple
ment digital systems. They do, however, provide a 
cost-effective solution to some design problems and 
are a pedagogical tool in studying solutions to many 
others. 

The reader not familiar with a detailed descrip
tion of Register Transfer Modules is referred to 
references [3J-[7J. Reference [3] contains the most 
correct description of the module pin assignments. 

PDP-16/M Subminicomputer - In addition to the 
RTMs, the laboratory is equipped with one PDP-16/M, 
a specific configuration of RTM's sequenced by a 

226 

microprogrammed controller. The unit is a functional 
computer with 256 words of read only control memory, 
4 words of data read only memory, a general purpose 
register unit, 96 instructions, fully implemented 16 
bit I/O enclosure, and power supplies. A detailed 
description of the unit is contained in reference [8]. 

The basic PDP-16/M sells for about $2000. The 
back plane is prewired to accept additional standard 
RTMs to extended memory and I/O capabilities. 

The availability of the 16/M provides a specific 
contrast to the "chained evoke" control technique 
typically used with the RTMs. The economic advantages 
of a stored program approach to control become appa
rent for systems involving more than a few dozen 
control steps. 

Both reprogrammable (PROM) and fusible link read 
only memories (ROMs) are available on the control mem
ory module. DEC provides several options for program
ming ROMs: one using a PDP/8 and special interfacing 
hardware, one using the PDP-16/M itself. None of 
these are used in the U. M. laboratory. The PROMs on 
the pcs16-B control board have been removed and re
placed by zero insertion force, dual-in-line sockets. 
Wi t h this modificati on the PROMs can be easily removed 
and replaced. They are programmed using the INTEL 
SIM8-01 prototype system described in the next section. 
An assembler to produce PDP-16/M code, including 
punched paper tape compatible with the PROM burning 
eq~ipment, is described in the software portion of 
Section II. 

INTEL SIM8-01 - An Mcs-8 Microcomputer - Micro
processors are exerting an increasing influence on 
digital de13ign, not only as the basis for microcompu
ter systems, but also as components within other sys
tems. Evidence is accumulating that they are cost 
effective replacements for even small amounts of ran
dom logic. Exposure to microprocessor technology is 
an essential ingredient in computer engineering edu
cation. The INTEL SIM8 and associated hardware have 
proved to be a satisfactory vehicle for such exposure. 

The SIM8-01 is a specific configuration of compo
nents from the INTEL Microcomputer Set built around 
the 8008-01 central processor chip. It is a proto
typing board which forms an operational microcomputer. 
It includes a central processor (INTEL 8008), 1024 x 8 
bit read/write memory. six I/O ports (two in and four 
out), a clock generator, and sockets for 2048 words of 
read only memory. 

The ST.M8-01, a single 10" x 12" board, is used 
in conjunction with the MCB8-10 interconnect and con
trol module. With the addition of a MP7-03 PROM Pro
grammer, an ASR teletype, and a utility program 
stored in PROMs, the hardware becomes the MCS-8 PROM 
Programming System. Two such configurations are 
included in the laboratory. The purchase price of 
each is approximately $1200. The organization and 
operation of this equipment is well documented in 
reference [9 J . 

Interfacing Equipment - As discussed in Section 
III, the later part of the course is devoted to a free 
choice design project. Many of the projects require 
the interconnection of various combinations of the 
following: RTM systems, PDP-16/M, SIM8, and PDP 8 
minicomputer. The logic levels of all of these are 
compatible. However, some additional interfacing 
logic may be required to satisfy timing constraints. 
Suitcase type logic kits, developed for a long stand-
ing introductory course in gate-level design, 



have proved valuable in meeting the requirement. 
Ribbon cable terminated with 16 pin dual in line con
nectors (DIPs) are the primary means of interconnec
tion. 

A Microcomputer - RTM Student Project - Figure 
1 shows a student built music synthesizer using RTM's, 
the INTEL equipment, and a suitcase logic kit. 

Software 

Several software packages have been developed to 
support activities within the laboratory. These 
packages, all but one of which are reasonably trans
portable, are briefly described in this section. 
References to more complete descriptions will be 
included. The exception cited above is a computer 
graphics package to simulate the operation of an RTM 
control sequence. A computer generated motion pic
ture based upon the graphical simulation is scheduled 
for production within the coming year and will be 
available on a loan basis. 

RTM Simulator - To reduce the amount of time 
that must be spent debugging once hardware assembly 
has begun, the RTM designer may choose to simtuate 
his/her design on the central computing facility 
before building it. With SIM-16, a FORTRAN simula
tion of part of the RTM system, the digital hardware 
designer can create, test, and modify the logical 
structure of any single-bus RTM design. The program 
requires the user to describe the design as a se
quence of FORTRAN CALL statements. These statements 
accomplish transfers of data between symbolic source 
and destination registers and perform control func
tions such as branching, merging, and decoding. The 
program allows close monitoring throughout the pro
gress of the simUlation. It is more fully described 
in Ref. [13]. 

Wiring Table Generation - To facilitate the 
assembly of an RTM device once its flowchart has been 
decided upon, a program called *WIREWRAP is used. 
*WIREWRAP, written in a combination of FORTRAN and 
IBM 360 Assembly Language, is similar to DEC's 
CHARTWARE, which runs only on the PDP-IO. *WIREWRAP 
is a general-purpose logic design aid, extended to 
include RTM designs. Once a design is complete, the 
user need only describe it in a simple form that is 
derived directly from the flowchart. The program, 
then, decides which RTM's are needed, where each will 
be placed on the wire-wrap panel, and which pins 
should be connected together. It checks all gates 
and storage elements for overloading, calculates 
total cost and power requirements, minimizes wire 
length wherever possible, and generates complete 
wiring instructions and documentation. It is further 
described in Ref. [11]. 

Control Simulation on a CRT - As a pictorial 
aid for demonstrating the operation of the hard
wired control structure of the RTM system, The Uni
versity of Michigan's PDP-9 Logic Simulation graphics 
system has been extended to provide an RTM control 
simulation. The simula.tion emphasizes the details 
of control timing rather than the trace of data flow 
provided by SIM-16. The control timing is graphical
ly illustrated in slow motion on a DEC 339 display 
screen. The particular display, composed and con
trolled by the user by means of a light pen, simu
lates the operation of a specified CONTROL SEQUENCER. 
The CONTROL SEQUENCER may consist of EVOKE steps 
(mostly register transfers), two-way Boolean deci
sions, branches, merges, and subrout~ne calls. 
Figure 2 shows a student using the s1.mulator. 
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PDP-16M Assembler - The PDP-16M Assembler, which 
runs on the central computing facility, transla.te:s 
symbolic programs for the PDP-16/M into binary ob,ject 
modules that are usually produced in the form of paper 
tapes. The contents of these paper tapes can be elec
tronically burned into the Programmable Read Only 
Memories (PROMs) for use with the PDP-16M by means of 
the SIM8-01 microcomputer set and the Michigan IN'rEL 
Programmer ann Loader Routines (described below). 
Ref. [16] is a user's guide for the Assembler. 

Microcode Generator - As a special project, three 
students have developed a tool for implementing inter
preters by means of microprogramming. The General 
Purpose Microcode Generator for Emulation on the PDP-
16/M is an IBM 360 Assembly Language program which 
generates microcode for the control memory of the PDP-
16/M. The program's input is a description of the 
instruction set of the emulated computer. ,]~his facil
ity gives the students the opportunity to compare 
hardware and firmware implementations. It is further 
described in Ref. [8]. 

Utility Routines - To support software development 
for the INTEL Corporation SIM8-01 microcomputer, a set 
of utility programs has been developed. The Michigan 
INTEL Programmer and Loader Routines (MIM-9/PL) enable 
the user to load object code contained on paper tape 
into the writable memory of the SIM8-01, to debug the 
code interactively using a variety of breakpoint and 
status examination commands, and to electronically 
program the programmable read only memories (PROMs) 
once the code has been debugged. Although INTEL it
self provides some utility programs, the Mcs-8 PROM 
P:;rogramming System, the programs lack facilities for 
interactive debugging, are inflexible, and require 
an unnecessarily verbose format for object code. 
MIM-8/PL includes all of the facilities of the IN'rEL 
version plus others. 
general distribution. 
Ref. [15]. 

The programs are available for 
They are further described in 

McS-8 Assembler - Object code for the SIM8-0l is 
typically prodLced by the Michigan INTEL MCs-8 Assem
bler (MIM-8/AL), an IBM 360 Assembly Language program. 
The assembler produces a binary-coded paper tape which 
is of the same format as the output of the PDP-161M 
assembler. The contents of the paper tape can be 
electronically burned into a PROM by means of the 
SIM8-01 and MIM-8/PL (described above). MIM-8/AL can 
run under OS/VSI or the Michigan Terminal System and 
is available for general distribution. It i.s further 
described in Ref. [14]. 

MCS-8 Simulator - Students in courses without 
access to the MCS-8 hardware and students in the digi
tal design lab who wish to debug their code before 
using the hardware make use of the Mcs-8 Simulator. 
The simUlator, written in IBM 360 Assembly Language, 
can execute about 300 simulated instructions per 
minute. It is designed to handle all of the Mcs-8 
instructions, including the input/output instructions. 
Its internal registers and I/O ports can be monitored 
throughout the simulation. In addition to providing a 
means for debugging code, the simulator generates a 
trace that is useful later when the code is being 
checked on the real machine. It is more completely 
described in Ref. [17]. 

Content of the Course 

The content of the digital design laboratory 
course is built around class lectures, assi.gned 



laboratory projects, and special student projects, with 
little emphasis on written examinations. Each week of 
the two-credit hour, fourteen-week course contains a 
one-hour lecture and a three-hour lab. The students 
spend additional time outside of class preparing for 
and documenting each lab project. Written examinations 
are not used since the projects themselves are a com
prehensive test of what the students have learned. 

The Class Lectures 

In addition to covering the various hardware and 
software facilities and the assigned projects, the 
class lectures discuss the following topics: 

1. Levels of description of digital design, in 
particular, the register transfer (RT) and 
processor-memory-switch (PMS) levels. 

2. Design choices behind the production of the 
Register Transfer Modules for example, the 
logical design, the bus structure, the 
asynchronous timing. 

3. Speed/cost, hardware/firmware/software, and 
special-purpose/general-purpose trade-offs. 

4. Alternate forms of parallelism and synchron
ization of parallel activities. 

Assigned Projects 

During one fourteen-week term students are 
expected to complete six assigned digital design 
lab projects and one special project. 

Table 1 lists the assigned lab projects and 
the number of lab periods allocated to complete each 
project. 

NUMBER OF 3-HOUR 
P ROJECT ASSIGNED PROJECT LAB PERIODS 

1 1 to N Summer 1 

2 Count the number of l's or 
O's in a word 1 

3 Register I/O Utility 1-2 

4 Single Precision, Integer 
Multiplication and Division 1-2 

5 Simulated Serial 
Synchronous Receiver 2 

6 Mcs-8 Program 1-2 

Table 1 - Assigned Lab Projects 

Projects 1 and 2 enable the students to gain familiar
ity with the RTM's and the design process for using 
t.hem. 

Project 3 is the design and implementation of a 
"Register I/O Utility Routine." The routine uses the 
lights and switches for depositing in and examining 
the registers within the scratch pad memory. It also 
produces an I/O facility that is used in later pro
Jects, for example in lab 4. 

Project 4 gives the students their first exper
ience with the desjgn and implementation of a fairly 
complex RTM system and with multiplication and divi
Bion algorithms. 

~'he fifth project is the design of a serial 
Bynchronous receiver. It is not built in hardware, 
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but is implemented with the SIM-16 RTM simulation 
Package. The students must design the receiver to 
satisfy a set of requirements including transmission 
speed, maximum message length, and specified character 
length. 

The sixth project enables the students to gain 
familiarity with te CPU architecture and the instruc
tion set of the Mcs-8 micro-computer. They write and 
debug a subroutine to sort a group of records stored 
in a buffer in an external random access memory. 

Special Design Projects 

The final six lab periods of the course are de
voted to free choice individual or small-group special 
projects. One suggested approach to the projects is 
intended to illustrate "fixed plus variable structure" 
archi tecture. 

The students are told to: 

1. Define an application problem. 
2. ]~plement a software solution on the SIM8-01. 
3. Identify a time-critical portion of the soft

ware realization and design a special purpose 
RTM or PDP-16M system to implement this por
tion. 

4. Interface the special purpose processor to 
the SIM8-01 software. 

5. Modify the program to use the hardware pro
eessor instead of the software routines. 

6. Conduct a performance comparison of the two 
approaches. 

Projects following this approach give the students 
experience with interfacing and with analysis of 
hardware/software trade-offs. 

The following are examples of some of the more 
ambitious special projects: 

1. 

2. 

3. 

4. 

The implementation of part of an assembler 
on the SIM8-01 with an RTM content-addres
sable memory for the symbol table. 
A SIM8-01 based desk calculator with a PDP-
16M floating point arithmetic unit and ele
mentary function generator (sin,cos, etc.). 
A SIM8-01-controlled signal processor with a 
PDP-16M Fast Fourier Transform (FFT) routine. 
A CRT line drawer. The SIM8-01 receives 
line-drawing instructions from the teletype 
consisting of the endpoints of a set of 
lines. It then sends the data to an RTM 
device which controls the CRT display. 

5. An infix to postfix translator for arithme
tic expressions. The project includes a 
speed and cost comparison of an RTM vs. a 
PDP-8 assembly language implementation. 

6. A "Digital Music Machine." The SIM8-01 
receives the musical score via teletype, 
then translates and forwards it to an RTM 
music synthesizer. (See Figure 1.) 

Critique of the Course 

The following critique will discuss the stud
dents' reactions to the course, the technician's 
reactions to working with equipment, and some accum
ulated ideas for possible future additions to the 
course facilities. 



The Student's Reactions 

Aside from a few complaints, most students claim 
that they find the course challenging, interesting, and 
rewarding. The hands-on experience, they feel, is 
clearly superior to classroom lecture learning. The 
special project, most agree, is particularly interest
ing. Perhaps more time should be allotted for the 
final project by eliminating one of the first six 
projects. 

The students' express only two significant com
plaints. The main complaint concerns the great amount 
of time that the course work requires. Many suggest 
that three hours of credit should be given instead of 
two. In addition, the students feel that the large 
amount of hand-wiring becomes tedious after about four 
projects. For this reason, work with the RTM simula
tor instead of the actual hardware by at least the 
fifth project is advisable. 

The Technician's Reactions 

The laboratory technician has mixed reactions 
about the desirability of working with the equipment 
used in the lab. His job consists of acquiring, 
assembling, and maintaining the equi::gment. These 
tasks, though not time-consuming by themselves, have 
been complicated by what the technician calls "grow
ing pains." In other words, the equipment being used 
is new and still in the development stage. It is, 
therefore, insufficiently--and often incorrectly-
documented. The problems of tracking down needed 
information often consume weeks. Fortunately, the 
availability of information from INTEL and DEC has 
subsequently improved. 

Excluding all problems related to the "growing 
pains," the time requirements of the technician are 
not great. The assembly stage consists of a few 
weeks for the construction of four RTM assembly racks 
for the eight- to twelve-student labs, and a week or 
two for the remaining assembly details. Maintenance 
requirements are minimal. Burnt out PROMs constitute 
the only problem encountered with the MCS-8 system., 
In the past two ye,ars, we have found only two faul:ty 
RTM boards~ No maintenance problems have arisen from 
use of the PDP-16M. 

The technician has compiled lists of tips for use 
by others working with the same equipment. The lists, 
available from the authors, include tips on trouble
shooting, repair, facilities for ease of operation, 
purchase of the needed pieces of hardware, and proper 
care of the equipment. 

Future Additions to the Course Facilities 

Some possible future additions to the course 
facilities include: 

1. 

2. 

Movies of the RTM control sin,ulation -
Students generally agree that the CRT dis
play facility is a helpful, clear, pedagogic 
device. Hopefully, soon, movies of the dis
play will be available for general distribu
tion. 
An interface between the SIM-16 RTM simula
tor and the *WIREWRAP program - After an 
RTM design has been logically debugged by 
means of SIM-16, the next step is to input 
the design to *WIREWRAP for implementation 
details. A program to convert the input for 
SIM-16 to a form compatible with the input 
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rnr *vHREWRAP would greatly simplify the user IS 

job. 

3. An interface to enable the PDP-16M to substi
tute a minicomputer for the PROM d.uring the 
micro-program development stage. Since PROMs 
cannot be re-programmed very easily or very 
often, debugging PDP-16M programs using the 
PROM to store the program is clumBY. A micro
program stored in a minicomputer, however, is 
easily altered. Perhaps, while the micro
program is being debugged, the minicomputer 
could feed it the micro-instruction that will, 
after the debugging is complete, be read from 
the PROM. 
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Fig. 1. A microcomputer - RTM student project 
(a music synthesizer). 
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Fig. 2. Student using RTM control simulator. 

231 






